1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 atomic_set(&transaction->t_updates, 0); 89 atomic_set(&transaction->t_outstanding_credits, 90 journal->j_transaction_overhead_buffers + 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_outstanding_revokes, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 INIT_LIST_HEAD(&transaction->t_private_list); 96 97 /* Set up the commit timer for the new transaction. */ 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 99 add_timer(&journal->j_commit_timer); 100 101 J_ASSERT(journal->j_running_transaction == NULL); 102 journal->j_running_transaction = transaction; 103 transaction->t_max_wait = 0; 104 transaction->t_start = jiffies; 105 transaction->t_requested = 0; 106 } 107 108 /* 109 * Handle management. 110 * 111 * A handle_t is an object which represents a single atomic update to a 112 * filesystem, and which tracks all of the modifications which form part 113 * of that one update. 114 */ 115 116 /* 117 * Update transaction's maximum wait time, if debugging is enabled. 118 * 119 * t_max_wait is carefully updated here with use of atomic compare exchange. 120 * Note that there could be multiplre threads trying to do this simultaneously 121 * hence using cmpxchg to avoid any use of locks in this case. 122 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug. 123 */ 124 static inline void update_t_max_wait(transaction_t *transaction, 125 unsigned long ts) 126 { 127 unsigned long oldts, newts; 128 129 if (time_after(transaction->t_start, ts)) { 130 newts = jbd2_time_diff(ts, transaction->t_start); 131 oldts = READ_ONCE(transaction->t_max_wait); 132 while (oldts < newts) 133 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts); 134 } 135 } 136 137 /* 138 * Wait until running transaction passes to T_FLUSH state and new transaction 139 * can thus be started. Also starts the commit if needed. The function expects 140 * running transaction to exist and releases j_state_lock. 141 */ 142 static void wait_transaction_locked(journal_t *journal) 143 __releases(journal->j_state_lock) 144 { 145 DEFINE_WAIT(wait); 146 int need_to_start; 147 tid_t tid = journal->j_running_transaction->t_tid; 148 149 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 150 TASK_UNINTERRUPTIBLE); 151 need_to_start = !tid_geq(journal->j_commit_request, tid); 152 read_unlock(&journal->j_state_lock); 153 if (need_to_start) 154 jbd2_log_start_commit(journal, tid); 155 jbd2_might_wait_for_commit(journal); 156 schedule(); 157 finish_wait(&journal->j_wait_transaction_locked, &wait); 158 } 159 160 /* 161 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 162 * state and new transaction can thus be started. The function releases 163 * j_state_lock. 164 */ 165 static void wait_transaction_switching(journal_t *journal) 166 __releases(journal->j_state_lock) 167 { 168 DEFINE_WAIT(wait); 169 170 if (WARN_ON(!journal->j_running_transaction || 171 journal->j_running_transaction->t_state != T_SWITCH)) { 172 read_unlock(&journal->j_state_lock); 173 return; 174 } 175 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 176 TASK_UNINTERRUPTIBLE); 177 read_unlock(&journal->j_state_lock); 178 /* 179 * We don't call jbd2_might_wait_for_commit() here as there's no 180 * waiting for outstanding handles happening anymore in T_SWITCH state 181 * and handling of reserved handles actually relies on that for 182 * correctness. 183 */ 184 schedule(); 185 finish_wait(&journal->j_wait_transaction_locked, &wait); 186 } 187 188 static void sub_reserved_credits(journal_t *journal, int blocks) 189 { 190 atomic_sub(blocks, &journal->j_reserved_credits); 191 wake_up(&journal->j_wait_reserved); 192 } 193 194 /* Maximum number of blocks for user transaction payload */ 195 static int jbd2_max_user_trans_buffers(journal_t *journal) 196 { 197 return journal->j_max_transaction_buffers - 198 journal->j_transaction_overhead_buffers; 199 } 200 201 /* 202 * Wait until we can add credits for handle to the running transaction. Called 203 * with j_state_lock held for reading. Returns 0 if handle joined the running 204 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 205 * caller must retry. 206 * 207 * Note: because j_state_lock may be dropped depending on the return 208 * value, we need to fake out sparse so ti doesn't complain about a 209 * locking imbalance. Callers of add_transaction_credits will need to 210 * make a similar accomodation. 211 */ 212 static int add_transaction_credits(journal_t *journal, int blocks, 213 int rsv_blocks) 214 __must_hold(&journal->j_state_lock) 215 { 216 transaction_t *t = journal->j_running_transaction; 217 int needed; 218 int total = blocks + rsv_blocks; 219 220 /* 221 * If the current transaction is locked down for commit, wait 222 * for the lock to be released. 223 */ 224 if (t->t_state != T_RUNNING) { 225 WARN_ON_ONCE(t->t_state >= T_FLUSH); 226 wait_transaction_locked(journal); 227 __acquire(&journal->j_state_lock); /* fake out sparse */ 228 return 1; 229 } 230 231 /* 232 * If there is not enough space left in the log to write all 233 * potential buffers requested by this operation, we need to 234 * stall pending a log checkpoint to free some more log space. 235 */ 236 needed = atomic_add_return(total, &t->t_outstanding_credits); 237 if (needed > journal->j_max_transaction_buffers) { 238 /* 239 * If the current transaction is already too large, 240 * then start to commit it: we can then go back and 241 * attach this handle to a new transaction. 242 */ 243 atomic_sub(total, &t->t_outstanding_credits); 244 245 /* 246 * Is the number of reserved credits in the current transaction too 247 * big to fit this handle? Wait until reserved credits are freed. 248 */ 249 if (atomic_read(&journal->j_reserved_credits) + total > 250 jbd2_max_user_trans_buffers(journal)) { 251 read_unlock(&journal->j_state_lock); 252 jbd2_might_wait_for_commit(journal); 253 wait_event(journal->j_wait_reserved, 254 atomic_read(&journal->j_reserved_credits) + total <= 255 jbd2_max_user_trans_buffers(journal)); 256 __acquire(&journal->j_state_lock); /* fake out sparse */ 257 return 1; 258 } 259 260 wait_transaction_locked(journal); 261 __acquire(&journal->j_state_lock); /* fake out sparse */ 262 return 1; 263 } 264 265 /* 266 * The commit code assumes that it can get enough log space 267 * without forcing a checkpoint. This is *critical* for 268 * correctness: a checkpoint of a buffer which is also 269 * associated with a committing transaction creates a deadlock, 270 * so commit simply cannot force through checkpoints. 271 * 272 * We must therefore ensure the necessary space in the journal 273 * *before* starting to dirty potentially checkpointed buffers 274 * in the new transaction. 275 */ 276 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 277 atomic_sub(total, &t->t_outstanding_credits); 278 read_unlock(&journal->j_state_lock); 279 jbd2_might_wait_for_commit(journal); 280 write_lock(&journal->j_state_lock); 281 if (jbd2_log_space_left(journal) < 282 journal->j_max_transaction_buffers) 283 __jbd2_log_wait_for_space(journal); 284 write_unlock(&journal->j_state_lock); 285 __acquire(&journal->j_state_lock); /* fake out sparse */ 286 return 1; 287 } 288 289 /* No reservation? We are done... */ 290 if (!rsv_blocks) 291 return 0; 292 293 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 294 /* We allow at most half of a transaction to be reserved */ 295 if (needed > jbd2_max_user_trans_buffers(journal) / 2) { 296 sub_reserved_credits(journal, rsv_blocks); 297 atomic_sub(total, &t->t_outstanding_credits); 298 read_unlock(&journal->j_state_lock); 299 jbd2_might_wait_for_commit(journal); 300 wait_event(journal->j_wait_reserved, 301 atomic_read(&journal->j_reserved_credits) + rsv_blocks 302 <= jbd2_max_user_trans_buffers(journal) / 2); 303 __acquire(&journal->j_state_lock); /* fake out sparse */ 304 return 1; 305 } 306 return 0; 307 } 308 309 /* 310 * start_this_handle: Given a handle, deal with any locking or stalling 311 * needed to make sure that there is enough journal space for the handle 312 * to begin. Attach the handle to a transaction and set up the 313 * transaction's buffer credits. 314 */ 315 316 static int start_this_handle(journal_t *journal, handle_t *handle, 317 gfp_t gfp_mask) 318 { 319 transaction_t *transaction, *new_transaction = NULL; 320 int blocks = handle->h_total_credits; 321 int rsv_blocks = 0; 322 unsigned long ts = jiffies; 323 324 if (handle->h_rsv_handle) 325 rsv_blocks = handle->h_rsv_handle->h_total_credits; 326 327 /* 328 * Limit the number of reserved credits to 1/2 of maximum transaction 329 * size and limit the number of total credits to not exceed maximum 330 * transaction size per operation. 331 */ 332 if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 || 333 rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) { 334 printk(KERN_ERR "JBD2: %s wants too many credits " 335 "credits:%d rsv_credits:%d max:%d\n", 336 current->comm, blocks, rsv_blocks, 337 jbd2_max_user_trans_buffers(journal)); 338 WARN_ON(1); 339 return -ENOSPC; 340 } 341 342 alloc_transaction: 343 /* 344 * This check is racy but it is just an optimization of allocating new 345 * transaction early if there are high chances we'll need it. If we 346 * guess wrong, we'll retry or free unused transaction. 347 */ 348 if (!data_race(journal->j_running_transaction)) { 349 /* 350 * If __GFP_FS is not present, then we may be being called from 351 * inside the fs writeback layer, so we MUST NOT fail. 352 */ 353 if ((gfp_mask & __GFP_FS) == 0) 354 gfp_mask |= __GFP_NOFAIL; 355 new_transaction = kmem_cache_zalloc(transaction_cache, 356 gfp_mask); 357 if (!new_transaction) 358 return -ENOMEM; 359 } 360 361 jbd2_debug(3, "New handle %p going live.\n", handle); 362 363 /* 364 * We need to hold j_state_lock until t_updates has been incremented, 365 * for proper journal barrier handling 366 */ 367 repeat: 368 read_lock(&journal->j_state_lock); 369 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 370 if (is_journal_aborted(journal) || 371 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 372 read_unlock(&journal->j_state_lock); 373 jbd2_journal_free_transaction(new_transaction); 374 return -EROFS; 375 } 376 377 /* 378 * Wait on the journal's transaction barrier if necessary. Specifically 379 * we allow reserved handles to proceed because otherwise commit could 380 * deadlock on page writeback not being able to complete. 381 */ 382 if (!handle->h_reserved && journal->j_barrier_count) { 383 read_unlock(&journal->j_state_lock); 384 wait_event(journal->j_wait_transaction_locked, 385 journal->j_barrier_count == 0); 386 goto repeat; 387 } 388 389 if (!journal->j_running_transaction) { 390 read_unlock(&journal->j_state_lock); 391 if (!new_transaction) 392 goto alloc_transaction; 393 write_lock(&journal->j_state_lock); 394 if (!journal->j_running_transaction && 395 (handle->h_reserved || !journal->j_barrier_count)) { 396 jbd2_get_transaction(journal, new_transaction); 397 new_transaction = NULL; 398 } 399 write_unlock(&journal->j_state_lock); 400 goto repeat; 401 } 402 403 transaction = journal->j_running_transaction; 404 405 if (!handle->h_reserved) { 406 /* We may have dropped j_state_lock - restart in that case */ 407 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 408 /* 409 * add_transaction_credits releases 410 * j_state_lock on a non-zero return 411 */ 412 __release(&journal->j_state_lock); 413 goto repeat; 414 } 415 } else { 416 /* 417 * We have handle reserved so we are allowed to join T_LOCKED 418 * transaction and we don't have to check for transaction size 419 * and journal space. But we still have to wait while running 420 * transaction is being switched to a committing one as it 421 * won't wait for any handles anymore. 422 */ 423 if (transaction->t_state == T_SWITCH) { 424 wait_transaction_switching(journal); 425 goto repeat; 426 } 427 sub_reserved_credits(journal, blocks); 428 handle->h_reserved = 0; 429 } 430 431 /* OK, account for the buffers that this operation expects to 432 * use and add the handle to the running transaction. 433 */ 434 update_t_max_wait(transaction, ts); 435 handle->h_transaction = transaction; 436 handle->h_requested_credits = blocks; 437 handle->h_revoke_credits_requested = handle->h_revoke_credits; 438 handle->h_start_jiffies = jiffies; 439 atomic_inc(&transaction->t_updates); 440 atomic_inc(&transaction->t_handle_count); 441 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 442 handle, blocks, 443 atomic_read(&transaction->t_outstanding_credits), 444 jbd2_log_space_left(journal)); 445 read_unlock(&journal->j_state_lock); 446 current->journal_info = handle; 447 448 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 449 jbd2_journal_free_transaction(new_transaction); 450 /* 451 * Ensure that no allocations done while the transaction is open are 452 * going to recurse back to the fs layer. 453 */ 454 handle->saved_alloc_context = memalloc_nofs_save(); 455 return 0; 456 } 457 458 /* Allocate a new handle. This should probably be in a slab... */ 459 static handle_t *new_handle(int nblocks) 460 { 461 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 462 if (!handle) 463 return NULL; 464 handle->h_total_credits = nblocks; 465 handle->h_ref = 1; 466 467 return handle; 468 } 469 470 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 471 int revoke_records, gfp_t gfp_mask, 472 unsigned int type, unsigned int line_no) 473 { 474 handle_t *handle = journal_current_handle(); 475 int err; 476 477 if (!journal) 478 return ERR_PTR(-EROFS); 479 480 if (handle) { 481 J_ASSERT(handle->h_transaction->t_journal == journal); 482 handle->h_ref++; 483 return handle; 484 } 485 486 nblocks += DIV_ROUND_UP(revoke_records, 487 journal->j_revoke_records_per_block); 488 handle = new_handle(nblocks); 489 if (!handle) 490 return ERR_PTR(-ENOMEM); 491 if (rsv_blocks) { 492 handle_t *rsv_handle; 493 494 rsv_handle = new_handle(rsv_blocks); 495 if (!rsv_handle) { 496 jbd2_free_handle(handle); 497 return ERR_PTR(-ENOMEM); 498 } 499 rsv_handle->h_reserved = 1; 500 rsv_handle->h_journal = journal; 501 handle->h_rsv_handle = rsv_handle; 502 } 503 handle->h_revoke_credits = revoke_records; 504 505 err = start_this_handle(journal, handle, gfp_mask); 506 if (err < 0) { 507 if (handle->h_rsv_handle) 508 jbd2_free_handle(handle->h_rsv_handle); 509 jbd2_free_handle(handle); 510 return ERR_PTR(err); 511 } 512 handle->h_type = type; 513 handle->h_line_no = line_no; 514 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 515 handle->h_transaction->t_tid, type, 516 line_no, nblocks); 517 518 return handle; 519 } 520 EXPORT_SYMBOL(jbd2__journal_start); 521 522 523 /** 524 * jbd2_journal_start() - Obtain a new handle. 525 * @journal: Journal to start transaction on. 526 * @nblocks: number of block buffer we might modify 527 * 528 * We make sure that the transaction can guarantee at least nblocks of 529 * modified buffers in the log. We block until the log can guarantee 530 * that much space. Additionally, if rsv_blocks > 0, we also create another 531 * handle with rsv_blocks reserved blocks in the journal. This handle is 532 * stored in h_rsv_handle. It is not attached to any particular transaction 533 * and thus doesn't block transaction commit. If the caller uses this reserved 534 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 535 * on the parent handle will dispose the reserved one. Reserved handle has to 536 * be converted to a normal handle using jbd2_journal_start_reserved() before 537 * it can be used. 538 * 539 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 540 * on failure. 541 */ 542 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 543 { 544 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 545 } 546 EXPORT_SYMBOL(jbd2_journal_start); 547 548 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 549 { 550 journal_t *journal = handle->h_journal; 551 552 WARN_ON(!handle->h_reserved); 553 sub_reserved_credits(journal, handle->h_total_credits); 554 if (t) 555 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 556 } 557 558 void jbd2_journal_free_reserved(handle_t *handle) 559 { 560 journal_t *journal = handle->h_journal; 561 562 /* Get j_state_lock to pin running transaction if it exists */ 563 read_lock(&journal->j_state_lock); 564 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 565 read_unlock(&journal->j_state_lock); 566 jbd2_free_handle(handle); 567 } 568 EXPORT_SYMBOL(jbd2_journal_free_reserved); 569 570 /** 571 * jbd2_journal_start_reserved() - start reserved handle 572 * @handle: handle to start 573 * @type: for handle statistics 574 * @line_no: for handle statistics 575 * 576 * Start handle that has been previously reserved with jbd2_journal_reserve(). 577 * This attaches @handle to the running transaction (or creates one if there's 578 * not transaction running). Unlike jbd2_journal_start() this function cannot 579 * block on journal commit, checkpointing, or similar stuff. It can block on 580 * memory allocation or frozen journal though. 581 * 582 * Return 0 on success, non-zero on error - handle is freed in that case. 583 */ 584 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 585 unsigned int line_no) 586 { 587 journal_t *journal = handle->h_journal; 588 int ret = -EIO; 589 590 if (WARN_ON(!handle->h_reserved)) { 591 /* Someone passed in normal handle? Just stop it. */ 592 jbd2_journal_stop(handle); 593 return ret; 594 } 595 /* 596 * Usefulness of mixing of reserved and unreserved handles is 597 * questionable. So far nobody seems to need it so just error out. 598 */ 599 if (WARN_ON(current->journal_info)) { 600 jbd2_journal_free_reserved(handle); 601 return ret; 602 } 603 604 handle->h_journal = NULL; 605 /* 606 * GFP_NOFS is here because callers are likely from writeback or 607 * similarly constrained call sites 608 */ 609 ret = start_this_handle(journal, handle, GFP_NOFS); 610 if (ret < 0) { 611 handle->h_journal = journal; 612 jbd2_journal_free_reserved(handle); 613 return ret; 614 } 615 handle->h_type = type; 616 handle->h_line_no = line_no; 617 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 618 handle->h_transaction->t_tid, type, 619 line_no, handle->h_total_credits); 620 return 0; 621 } 622 EXPORT_SYMBOL(jbd2_journal_start_reserved); 623 624 /** 625 * jbd2_journal_extend() - extend buffer credits. 626 * @handle: handle to 'extend' 627 * @nblocks: nr blocks to try to extend by. 628 * @revoke_records: number of revoke records to try to extend by. 629 * 630 * Some transactions, such as large extends and truncates, can be done 631 * atomically all at once or in several stages. The operation requests 632 * a credit for a number of buffer modifications in advance, but can 633 * extend its credit if it needs more. 634 * 635 * jbd2_journal_extend tries to give the running handle more buffer credits. 636 * It does not guarantee that allocation - this is a best-effort only. 637 * The calling process MUST be able to deal cleanly with a failure to 638 * extend here. 639 * 640 * Return 0 on success, non-zero on failure. 641 * 642 * return code < 0 implies an error 643 * return code > 0 implies normal transaction-full status. 644 */ 645 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 646 { 647 transaction_t *transaction = handle->h_transaction; 648 journal_t *journal; 649 int result; 650 int wanted; 651 652 if (is_handle_aborted(handle)) 653 return -EROFS; 654 journal = transaction->t_journal; 655 656 result = 1; 657 658 read_lock(&journal->j_state_lock); 659 660 /* Don't extend a locked-down transaction! */ 661 if (transaction->t_state != T_RUNNING) { 662 jbd2_debug(3, "denied handle %p %d blocks: " 663 "transaction not running\n", handle, nblocks); 664 goto error_out; 665 } 666 667 nblocks += DIV_ROUND_UP( 668 handle->h_revoke_credits_requested + revoke_records, 669 journal->j_revoke_records_per_block) - 670 DIV_ROUND_UP( 671 handle->h_revoke_credits_requested, 672 journal->j_revoke_records_per_block); 673 wanted = atomic_add_return(nblocks, 674 &transaction->t_outstanding_credits); 675 676 if (wanted > journal->j_max_transaction_buffers) { 677 jbd2_debug(3, "denied handle %p %d blocks: " 678 "transaction too large\n", handle, nblocks); 679 atomic_sub(nblocks, &transaction->t_outstanding_credits); 680 goto error_out; 681 } 682 683 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 684 transaction->t_tid, 685 handle->h_type, handle->h_line_no, 686 handle->h_total_credits, 687 nblocks); 688 689 handle->h_total_credits += nblocks; 690 handle->h_requested_credits += nblocks; 691 handle->h_revoke_credits += revoke_records; 692 handle->h_revoke_credits_requested += revoke_records; 693 result = 0; 694 695 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks); 696 error_out: 697 read_unlock(&journal->j_state_lock); 698 return result; 699 } 700 701 static void stop_this_handle(handle_t *handle) 702 { 703 transaction_t *transaction = handle->h_transaction; 704 journal_t *journal = transaction->t_journal; 705 int revokes; 706 707 J_ASSERT(journal_current_handle() == handle); 708 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 709 current->journal_info = NULL; 710 /* 711 * Subtract necessary revoke descriptor blocks from handle credits. We 712 * take care to account only for revoke descriptor blocks the 713 * transaction will really need as large sequences of transactions with 714 * small numbers of revokes are relatively common. 715 */ 716 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 717 if (revokes) { 718 int t_revokes, revoke_descriptors; 719 int rr_per_blk = journal->j_revoke_records_per_block; 720 721 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 722 > handle->h_total_credits); 723 t_revokes = atomic_add_return(revokes, 724 &transaction->t_outstanding_revokes); 725 revoke_descriptors = 726 DIV_ROUND_UP(t_revokes, rr_per_blk) - 727 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 728 handle->h_total_credits -= revoke_descriptors; 729 } 730 atomic_sub(handle->h_total_credits, 731 &transaction->t_outstanding_credits); 732 if (handle->h_rsv_handle) 733 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 734 transaction); 735 if (atomic_dec_and_test(&transaction->t_updates)) 736 wake_up(&journal->j_wait_updates); 737 738 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 739 /* 740 * Scope of the GFP_NOFS context is over here and so we can restore the 741 * original alloc context. 742 */ 743 memalloc_nofs_restore(handle->saved_alloc_context); 744 } 745 746 /** 747 * jbd2__journal_restart() - restart a handle . 748 * @handle: handle to restart 749 * @nblocks: nr credits requested 750 * @revoke_records: number of revoke record credits requested 751 * @gfp_mask: memory allocation flags (for start_this_handle) 752 * 753 * Restart a handle for a multi-transaction filesystem 754 * operation. 755 * 756 * If the jbd2_journal_extend() call above fails to grant new buffer credits 757 * to a running handle, a call to jbd2_journal_restart will commit the 758 * handle's transaction so far and reattach the handle to a new 759 * transaction capable of guaranteeing the requested number of 760 * credits. We preserve reserved handle if there's any attached to the 761 * passed in handle. 762 */ 763 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 764 gfp_t gfp_mask) 765 { 766 transaction_t *transaction = handle->h_transaction; 767 journal_t *journal; 768 tid_t tid; 769 int need_to_start; 770 int ret; 771 772 /* If we've had an abort of any type, don't even think about 773 * actually doing the restart! */ 774 if (is_handle_aborted(handle)) 775 return 0; 776 journal = transaction->t_journal; 777 tid = transaction->t_tid; 778 779 /* 780 * First unlink the handle from its current transaction, and start the 781 * commit on that. 782 */ 783 jbd2_debug(2, "restarting handle %p\n", handle); 784 stop_this_handle(handle); 785 handle->h_transaction = NULL; 786 787 /* 788 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 789 * get rid of pointless j_state_lock traffic like this. 790 */ 791 read_lock(&journal->j_state_lock); 792 need_to_start = !tid_geq(journal->j_commit_request, tid); 793 read_unlock(&journal->j_state_lock); 794 if (need_to_start) 795 jbd2_log_start_commit(journal, tid); 796 handle->h_total_credits = nblocks + 797 DIV_ROUND_UP(revoke_records, 798 journal->j_revoke_records_per_block); 799 handle->h_revoke_credits = revoke_records; 800 ret = start_this_handle(journal, handle, gfp_mask); 801 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 802 ret ? 0 : handle->h_transaction->t_tid, 803 handle->h_type, handle->h_line_no, 804 handle->h_total_credits); 805 return ret; 806 } 807 EXPORT_SYMBOL(jbd2__journal_restart); 808 809 810 int jbd2_journal_restart(handle_t *handle, int nblocks) 811 { 812 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 813 } 814 EXPORT_SYMBOL(jbd2_journal_restart); 815 816 /* 817 * Waits for any outstanding t_updates to finish. 818 * This is called with write j_state_lock held. 819 */ 820 void jbd2_journal_wait_updates(journal_t *journal) 821 { 822 DEFINE_WAIT(wait); 823 824 while (1) { 825 /* 826 * Note that the running transaction can get freed under us if 827 * this transaction is getting committed in 828 * jbd2_journal_commit_transaction() -> 829 * jbd2_journal_free_transaction(). This can only happen when we 830 * release j_state_lock -> schedule() -> acquire j_state_lock. 831 * Hence we should everytime retrieve new j_running_transaction 832 * value (after j_state_lock release acquire cycle), else it may 833 * lead to use-after-free of old freed transaction. 834 */ 835 transaction_t *transaction = journal->j_running_transaction; 836 837 if (!transaction) 838 break; 839 840 prepare_to_wait(&journal->j_wait_updates, &wait, 841 TASK_UNINTERRUPTIBLE); 842 if (!atomic_read(&transaction->t_updates)) { 843 finish_wait(&journal->j_wait_updates, &wait); 844 break; 845 } 846 write_unlock(&journal->j_state_lock); 847 schedule(); 848 finish_wait(&journal->j_wait_updates, &wait); 849 write_lock(&journal->j_state_lock); 850 } 851 } 852 853 /** 854 * jbd2_journal_lock_updates () - establish a transaction barrier. 855 * @journal: Journal to establish a barrier on. 856 * 857 * This locks out any further updates from being started, and blocks 858 * until all existing updates have completed, returning only once the 859 * journal is in a quiescent state with no updates running. 860 * 861 * The journal lock should not be held on entry. 862 */ 863 void jbd2_journal_lock_updates(journal_t *journal) 864 { 865 jbd2_might_wait_for_commit(journal); 866 867 write_lock(&journal->j_state_lock); 868 ++journal->j_barrier_count; 869 870 /* Wait until there are no reserved handles */ 871 if (atomic_read(&journal->j_reserved_credits)) { 872 write_unlock(&journal->j_state_lock); 873 wait_event(journal->j_wait_reserved, 874 atomic_read(&journal->j_reserved_credits) == 0); 875 write_lock(&journal->j_state_lock); 876 } 877 878 /* Wait until there are no running t_updates */ 879 jbd2_journal_wait_updates(journal); 880 881 write_unlock(&journal->j_state_lock); 882 883 /* 884 * We have now established a barrier against other normal updates, but 885 * we also need to barrier against other jbd2_journal_lock_updates() calls 886 * to make sure that we serialise special journal-locked operations 887 * too. 888 */ 889 mutex_lock(&journal->j_barrier); 890 } 891 892 /** 893 * jbd2_journal_unlock_updates () - release barrier 894 * @journal: Journal to release the barrier on. 895 * 896 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 897 * 898 * Should be called without the journal lock held. 899 */ 900 void jbd2_journal_unlock_updates (journal_t *journal) 901 { 902 J_ASSERT(journal->j_barrier_count != 0); 903 904 mutex_unlock(&journal->j_barrier); 905 write_lock(&journal->j_state_lock); 906 --journal->j_barrier_count; 907 write_unlock(&journal->j_state_lock); 908 wake_up_all(&journal->j_wait_transaction_locked); 909 } 910 911 static void warn_dirty_buffer(struct buffer_head *bh) 912 { 913 printk(KERN_WARNING 914 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 915 "There's a risk of filesystem corruption in case of system " 916 "crash.\n", 917 bh->b_bdev, (unsigned long long)bh->b_blocknr); 918 } 919 920 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 921 static void jbd2_freeze_jh_data(struct journal_head *jh) 922 { 923 char *source; 924 struct buffer_head *bh = jh2bh(jh); 925 926 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 927 source = kmap_local_folio(bh->b_folio, bh_offset(bh)); 928 /* Fire data frozen trigger just before we copy the data */ 929 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers); 930 memcpy(jh->b_frozen_data, source, bh->b_size); 931 kunmap_local(source); 932 933 /* 934 * Now that the frozen data is saved off, we need to store any matching 935 * triggers. 936 */ 937 jh->b_frozen_triggers = jh->b_triggers; 938 } 939 940 /* 941 * If the buffer is already part of the current transaction, then there 942 * is nothing we need to do. If it is already part of a prior 943 * transaction which we are still committing to disk, then we need to 944 * make sure that we do not overwrite the old copy: we do copy-out to 945 * preserve the copy going to disk. We also account the buffer against 946 * the handle's metadata buffer credits (unless the buffer is already 947 * part of the transaction, that is). 948 * 949 */ 950 static int 951 do_get_write_access(handle_t *handle, struct journal_head *jh, 952 int force_copy) 953 { 954 struct buffer_head *bh; 955 transaction_t *transaction = handle->h_transaction; 956 journal_t *journal; 957 int error; 958 char *frozen_buffer = NULL; 959 unsigned long start_lock, time_lock; 960 961 journal = transaction->t_journal; 962 963 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 964 965 JBUFFER_TRACE(jh, "entry"); 966 repeat: 967 bh = jh2bh(jh); 968 969 /* @@@ Need to check for errors here at some point. */ 970 971 start_lock = jiffies; 972 lock_buffer(bh); 973 spin_lock(&jh->b_state_lock); 974 975 /* If it takes too long to lock the buffer, trace it */ 976 time_lock = jbd2_time_diff(start_lock, jiffies); 977 if (time_lock > HZ/10) 978 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 979 jiffies_to_msecs(time_lock)); 980 981 /* We now hold the buffer lock so it is safe to query the buffer 982 * state. Is the buffer dirty? 983 * 984 * If so, there are two possibilities. The buffer may be 985 * non-journaled, and undergoing a quite legitimate writeback. 986 * Otherwise, it is journaled, and we don't expect dirty buffers 987 * in that state (the buffers should be marked JBD_Dirty 988 * instead.) So either the IO is being done under our own 989 * control and this is a bug, or it's a third party IO such as 990 * dump(8) (which may leave the buffer scheduled for read --- 991 * ie. locked but not dirty) or tune2fs (which may actually have 992 * the buffer dirtied, ugh.) */ 993 994 if (buffer_dirty(bh) && jh->b_transaction) { 995 warn_dirty_buffer(bh); 996 /* 997 * We need to clean the dirty flag and we must do it under the 998 * buffer lock to be sure we don't race with running write-out. 999 */ 1000 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1001 clear_buffer_dirty(bh); 1002 /* 1003 * The buffer is going to be added to BJ_Reserved list now and 1004 * nothing guarantees jbd2_journal_dirty_metadata() will be 1005 * ever called for it. So we need to set jbddirty bit here to 1006 * make sure the buffer is dirtied and written out when the 1007 * journaling machinery is done with it. 1008 */ 1009 set_buffer_jbddirty(bh); 1010 } 1011 1012 error = -EROFS; 1013 if (is_handle_aborted(handle)) { 1014 spin_unlock(&jh->b_state_lock); 1015 unlock_buffer(bh); 1016 goto out; 1017 } 1018 error = 0; 1019 1020 /* 1021 * The buffer is already part of this transaction if b_transaction or 1022 * b_next_transaction points to it 1023 */ 1024 if (jh->b_transaction == transaction || 1025 jh->b_next_transaction == transaction) { 1026 unlock_buffer(bh); 1027 goto done; 1028 } 1029 1030 /* 1031 * this is the first time this transaction is touching this buffer, 1032 * reset the modified flag 1033 */ 1034 jh->b_modified = 0; 1035 1036 /* 1037 * If the buffer is not journaled right now, we need to make sure it 1038 * doesn't get written to disk before the caller actually commits the 1039 * new data 1040 */ 1041 if (!jh->b_transaction) { 1042 JBUFFER_TRACE(jh, "no transaction"); 1043 J_ASSERT_JH(jh, !jh->b_next_transaction); 1044 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1045 /* 1046 * Make sure all stores to jh (b_modified, b_frozen_data) are 1047 * visible before attaching it to the running transaction. 1048 * Paired with barrier in jbd2_write_access_granted() 1049 */ 1050 smp_wmb(); 1051 spin_lock(&journal->j_list_lock); 1052 if (test_clear_buffer_dirty(bh)) { 1053 /* 1054 * Execute buffer dirty clearing and jh->b_transaction 1055 * assignment under journal->j_list_lock locked to 1056 * prevent bh being removed from checkpoint list if 1057 * the buffer is in an intermediate state (not dirty 1058 * and jh->b_transaction is NULL). 1059 */ 1060 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1061 set_buffer_jbddirty(bh); 1062 } 1063 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1064 spin_unlock(&journal->j_list_lock); 1065 unlock_buffer(bh); 1066 goto done; 1067 } 1068 unlock_buffer(bh); 1069 1070 /* 1071 * If there is already a copy-out version of this buffer, then we don't 1072 * need to make another one 1073 */ 1074 if (jh->b_frozen_data) { 1075 JBUFFER_TRACE(jh, "has frozen data"); 1076 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1077 goto attach_next; 1078 } 1079 1080 JBUFFER_TRACE(jh, "owned by older transaction"); 1081 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1082 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1083 1084 /* 1085 * There is one case we have to be very careful about. If the 1086 * committing transaction is currently writing this buffer out to disk 1087 * and has NOT made a copy-out, then we cannot modify the buffer 1088 * contents at all right now. The essence of copy-out is that it is 1089 * the extra copy, not the primary copy, which gets journaled. If the 1090 * primary copy is already going to disk then we cannot do copy-out 1091 * here. 1092 */ 1093 if (buffer_shadow(bh)) { 1094 JBUFFER_TRACE(jh, "on shadow: sleep"); 1095 spin_unlock(&jh->b_state_lock); 1096 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1097 goto repeat; 1098 } 1099 1100 /* 1101 * Only do the copy if the currently-owning transaction still needs it. 1102 * If buffer isn't on BJ_Metadata list, the committing transaction is 1103 * past that stage (here we use the fact that BH_Shadow is set under 1104 * bh_state lock together with refiling to BJ_Shadow list and at this 1105 * point we know the buffer doesn't have BH_Shadow set). 1106 * 1107 * Subtle point, though: if this is a get_undo_access, then we will be 1108 * relying on the frozen_data to contain the new value of the 1109 * committed_data record after the transaction, so we HAVE to force the 1110 * frozen_data copy in that case. 1111 */ 1112 if (jh->b_jlist == BJ_Metadata || force_copy) { 1113 JBUFFER_TRACE(jh, "generate frozen data"); 1114 if (!frozen_buffer) { 1115 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1116 spin_unlock(&jh->b_state_lock); 1117 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1118 GFP_NOFS | __GFP_NOFAIL); 1119 goto repeat; 1120 } 1121 jh->b_frozen_data = frozen_buffer; 1122 frozen_buffer = NULL; 1123 jbd2_freeze_jh_data(jh); 1124 } 1125 attach_next: 1126 /* 1127 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1128 * before attaching it to the running transaction. Paired with barrier 1129 * in jbd2_write_access_granted() 1130 */ 1131 smp_wmb(); 1132 jh->b_next_transaction = transaction; 1133 1134 done: 1135 spin_unlock(&jh->b_state_lock); 1136 1137 /* 1138 * If we are about to journal a buffer, then any revoke pending on it is 1139 * no longer valid 1140 */ 1141 jbd2_journal_cancel_revoke(handle, jh); 1142 1143 out: 1144 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1145 jbd2_free(frozen_buffer, bh->b_size); 1146 1147 JBUFFER_TRACE(jh, "exit"); 1148 return error; 1149 } 1150 1151 /* Fast check whether buffer is already attached to the required transaction */ 1152 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1153 bool undo) 1154 { 1155 struct journal_head *jh; 1156 bool ret = false; 1157 1158 /* Dirty buffers require special handling... */ 1159 if (buffer_dirty(bh)) 1160 return false; 1161 1162 /* 1163 * RCU protects us from dereferencing freed pages. So the checks we do 1164 * are guaranteed not to oops. However the jh slab object can get freed 1165 * & reallocated while we work with it. So we have to be careful. When 1166 * we see jh attached to the running transaction, we know it must stay 1167 * so until the transaction is committed. Thus jh won't be freed and 1168 * will be attached to the same bh while we run. However it can 1169 * happen jh gets freed, reallocated, and attached to the transaction 1170 * just after we get pointer to it from bh. So we have to be careful 1171 * and recheck jh still belongs to our bh before we return success. 1172 */ 1173 rcu_read_lock(); 1174 if (!buffer_jbd(bh)) 1175 goto out; 1176 /* This should be bh2jh() but that doesn't work with inline functions */ 1177 jh = READ_ONCE(bh->b_private); 1178 if (!jh) 1179 goto out; 1180 /* For undo access buffer must have data copied */ 1181 if (undo && !jh->b_committed_data) 1182 goto out; 1183 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1184 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1185 goto out; 1186 /* 1187 * There are two reasons for the barrier here: 1188 * 1) Make sure to fetch b_bh after we did previous checks so that we 1189 * detect when jh went through free, realloc, attach to transaction 1190 * while we were checking. Paired with implicit barrier in that path. 1191 * 2) So that access to bh done after jbd2_write_access_granted() 1192 * doesn't get reordered and see inconsistent state of concurrent 1193 * do_get_write_access(). 1194 */ 1195 smp_mb(); 1196 if (unlikely(jh->b_bh != bh)) 1197 goto out; 1198 ret = true; 1199 out: 1200 rcu_read_unlock(); 1201 return ret; 1202 } 1203 1204 /** 1205 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1206 * for metadata (not data) update. 1207 * @handle: transaction to add buffer modifications to 1208 * @bh: bh to be used for metadata writes 1209 * 1210 * Returns: error code or 0 on success. 1211 * 1212 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1213 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1214 */ 1215 1216 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1217 { 1218 struct journal_head *jh; 1219 int rc; 1220 1221 if (is_handle_aborted(handle)) 1222 return -EROFS; 1223 1224 if (jbd2_write_access_granted(handle, bh, false)) 1225 return 0; 1226 1227 jh = jbd2_journal_add_journal_head(bh); 1228 /* We do not want to get caught playing with fields which the 1229 * log thread also manipulates. Make sure that the buffer 1230 * completes any outstanding IO before proceeding. */ 1231 rc = do_get_write_access(handle, jh, 0); 1232 jbd2_journal_put_journal_head(jh); 1233 return rc; 1234 } 1235 1236 1237 /* 1238 * When the user wants to journal a newly created buffer_head 1239 * (ie. getblk() returned a new buffer and we are going to populate it 1240 * manually rather than reading off disk), then we need to keep the 1241 * buffer_head locked until it has been completely filled with new 1242 * data. In this case, we should be able to make the assertion that 1243 * the bh is not already part of an existing transaction. 1244 * 1245 * The buffer should already be locked by the caller by this point. 1246 * There is no lock ranking violation: it was a newly created, 1247 * unlocked buffer beforehand. */ 1248 1249 /** 1250 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1251 * @handle: transaction to new buffer to 1252 * @bh: new buffer. 1253 * 1254 * Call this if you create a new bh. 1255 */ 1256 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1257 { 1258 transaction_t *transaction = handle->h_transaction; 1259 journal_t *journal; 1260 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1261 int err; 1262 1263 jbd2_debug(5, "journal_head %p\n", jh); 1264 err = -EROFS; 1265 if (is_handle_aborted(handle)) 1266 goto out; 1267 journal = transaction->t_journal; 1268 err = 0; 1269 1270 JBUFFER_TRACE(jh, "entry"); 1271 /* 1272 * The buffer may already belong to this transaction due to pre-zeroing 1273 * in the filesystem's new_block code. It may also be on the previous, 1274 * committing transaction's lists, but it HAS to be in Forget state in 1275 * that case: the transaction must have deleted the buffer for it to be 1276 * reused here. 1277 */ 1278 spin_lock(&jh->b_state_lock); 1279 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1280 jh->b_transaction == NULL || 1281 (jh->b_transaction == journal->j_committing_transaction && 1282 jh->b_jlist == BJ_Forget))); 1283 1284 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1285 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1286 1287 if (jh->b_transaction == NULL) { 1288 /* 1289 * Previous jbd2_journal_forget() could have left the buffer 1290 * with jbddirty bit set because it was being committed. When 1291 * the commit finished, we've filed the buffer for 1292 * checkpointing and marked it dirty. Now we are reallocating 1293 * the buffer so the transaction freeing it must have 1294 * committed and so it's safe to clear the dirty bit. 1295 */ 1296 clear_buffer_dirty(jh2bh(jh)); 1297 /* first access by this transaction */ 1298 jh->b_modified = 0; 1299 1300 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1301 spin_lock(&journal->j_list_lock); 1302 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1303 spin_unlock(&journal->j_list_lock); 1304 } else if (jh->b_transaction == journal->j_committing_transaction) { 1305 /* first access by this transaction */ 1306 jh->b_modified = 0; 1307 1308 JBUFFER_TRACE(jh, "set next transaction"); 1309 spin_lock(&journal->j_list_lock); 1310 jh->b_next_transaction = transaction; 1311 spin_unlock(&journal->j_list_lock); 1312 } 1313 spin_unlock(&jh->b_state_lock); 1314 1315 /* 1316 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1317 * blocks which contain freed but then revoked metadata. We need 1318 * to cancel the revoke in case we end up freeing it yet again 1319 * and the reallocating as data - this would cause a second revoke, 1320 * which hits an assertion error. 1321 */ 1322 JBUFFER_TRACE(jh, "cancelling revoke"); 1323 jbd2_journal_cancel_revoke(handle, jh); 1324 out: 1325 jbd2_journal_put_journal_head(jh); 1326 return err; 1327 } 1328 1329 /** 1330 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1331 * non-rewindable consequences 1332 * @handle: transaction 1333 * @bh: buffer to undo 1334 * 1335 * Sometimes there is a need to distinguish between metadata which has 1336 * been committed to disk and that which has not. The ext3fs code uses 1337 * this for freeing and allocating space, we have to make sure that we 1338 * do not reuse freed space until the deallocation has been committed, 1339 * since if we overwrote that space we would make the delete 1340 * un-rewindable in case of a crash. 1341 * 1342 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1343 * buffer for parts of non-rewindable operations such as delete 1344 * operations on the bitmaps. The journaling code must keep a copy of 1345 * the buffer's contents prior to the undo_access call until such time 1346 * as we know that the buffer has definitely been committed to disk. 1347 * 1348 * We never need to know which transaction the committed data is part 1349 * of, buffers touched here are guaranteed to be dirtied later and so 1350 * will be committed to a new transaction in due course, at which point 1351 * we can discard the old committed data pointer. 1352 * 1353 * Returns error number or 0 on success. 1354 */ 1355 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1356 { 1357 int err; 1358 struct journal_head *jh; 1359 char *committed_data = NULL; 1360 1361 if (is_handle_aborted(handle)) 1362 return -EROFS; 1363 1364 if (jbd2_write_access_granted(handle, bh, true)) 1365 return 0; 1366 1367 jh = jbd2_journal_add_journal_head(bh); 1368 JBUFFER_TRACE(jh, "entry"); 1369 1370 /* 1371 * Do this first --- it can drop the journal lock, so we want to 1372 * make sure that obtaining the committed_data is done 1373 * atomically wrt. completion of any outstanding commits. 1374 */ 1375 err = do_get_write_access(handle, jh, 1); 1376 if (err) 1377 goto out; 1378 1379 repeat: 1380 if (!jh->b_committed_data) 1381 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1382 GFP_NOFS|__GFP_NOFAIL); 1383 1384 spin_lock(&jh->b_state_lock); 1385 if (!jh->b_committed_data) { 1386 /* Copy out the current buffer contents into the 1387 * preserved, committed copy. */ 1388 JBUFFER_TRACE(jh, "generate b_committed data"); 1389 if (!committed_data) { 1390 spin_unlock(&jh->b_state_lock); 1391 goto repeat; 1392 } 1393 1394 jh->b_committed_data = committed_data; 1395 committed_data = NULL; 1396 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1397 } 1398 spin_unlock(&jh->b_state_lock); 1399 out: 1400 jbd2_journal_put_journal_head(jh); 1401 if (unlikely(committed_data)) 1402 jbd2_free(committed_data, bh->b_size); 1403 return err; 1404 } 1405 1406 /** 1407 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1408 * @bh: buffer to trigger on 1409 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1410 * 1411 * Set any triggers on this journal_head. This is always safe, because 1412 * triggers for a committing buffer will be saved off, and triggers for 1413 * a running transaction will match the buffer in that transaction. 1414 * 1415 * Call with NULL to clear the triggers. 1416 */ 1417 void jbd2_journal_set_triggers(struct buffer_head *bh, 1418 struct jbd2_buffer_trigger_type *type) 1419 { 1420 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1421 1422 if (WARN_ON_ONCE(!jh)) 1423 return; 1424 jh->b_triggers = type; 1425 jbd2_journal_put_journal_head(jh); 1426 } 1427 1428 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1429 struct jbd2_buffer_trigger_type *triggers) 1430 { 1431 struct buffer_head *bh = jh2bh(jh); 1432 1433 if (!triggers || !triggers->t_frozen) 1434 return; 1435 1436 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1437 } 1438 1439 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1440 struct jbd2_buffer_trigger_type *triggers) 1441 { 1442 if (!triggers || !triggers->t_abort) 1443 return; 1444 1445 triggers->t_abort(triggers, jh2bh(jh)); 1446 } 1447 1448 /** 1449 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1450 * @handle: transaction to add buffer to. 1451 * @bh: buffer to mark 1452 * 1453 * mark dirty metadata which needs to be journaled as part of the current 1454 * transaction. 1455 * 1456 * The buffer must have previously had jbd2_journal_get_write_access() 1457 * called so that it has a valid journal_head attached to the buffer 1458 * head. 1459 * 1460 * The buffer is placed on the transaction's metadata list and is marked 1461 * as belonging to the transaction. 1462 * 1463 * Returns error number or 0 on success. 1464 * 1465 * Special care needs to be taken if the buffer already belongs to the 1466 * current committing transaction (in which case we should have frozen 1467 * data present for that commit). In that case, we don't relink the 1468 * buffer: that only gets done when the old transaction finally 1469 * completes its commit. 1470 */ 1471 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1472 { 1473 transaction_t *transaction = handle->h_transaction; 1474 journal_t *journal; 1475 struct journal_head *jh; 1476 int ret = 0; 1477 1478 if (!buffer_jbd(bh)) 1479 return -EUCLEAN; 1480 1481 /* 1482 * We don't grab jh reference here since the buffer must be part 1483 * of the running transaction. 1484 */ 1485 jh = bh2jh(bh); 1486 jbd2_debug(5, "journal_head %p\n", jh); 1487 JBUFFER_TRACE(jh, "entry"); 1488 1489 /* 1490 * This and the following assertions are unreliable since we may see jh 1491 * in inconsistent state unless we grab bh_state lock. But this is 1492 * crucial to catch bugs so let's do a reliable check until the 1493 * lockless handling is fully proven. 1494 */ 1495 if (data_race(jh->b_transaction != transaction && 1496 jh->b_next_transaction != transaction)) { 1497 spin_lock(&jh->b_state_lock); 1498 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1499 jh->b_next_transaction == transaction); 1500 spin_unlock(&jh->b_state_lock); 1501 } 1502 if (jh->b_modified == 1) { 1503 /* If it's in our transaction it must be in BJ_Metadata list. */ 1504 if (data_race(jh->b_transaction == transaction && 1505 jh->b_jlist != BJ_Metadata)) { 1506 spin_lock(&jh->b_state_lock); 1507 if (jh->b_transaction == transaction && 1508 jh->b_jlist != BJ_Metadata) 1509 pr_err("JBD2: assertion failure: h_type=%u " 1510 "h_line_no=%u block_no=%llu jlist=%u\n", 1511 handle->h_type, handle->h_line_no, 1512 (unsigned long long) bh->b_blocknr, 1513 jh->b_jlist); 1514 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1515 jh->b_jlist == BJ_Metadata); 1516 spin_unlock(&jh->b_state_lock); 1517 } 1518 goto out; 1519 } 1520 1521 journal = transaction->t_journal; 1522 spin_lock(&jh->b_state_lock); 1523 1524 if (is_handle_aborted(handle)) { 1525 /* 1526 * Check journal aborting with @jh->b_state_lock locked, 1527 * since 'jh->b_transaction' could be replaced with 1528 * 'jh->b_next_transaction' during old transaction 1529 * committing if journal aborted, which may fail 1530 * assertion on 'jh->b_frozen_data == NULL'. 1531 */ 1532 ret = -EROFS; 1533 goto out_unlock_bh; 1534 } 1535 1536 if (jh->b_modified == 0) { 1537 /* 1538 * This buffer's got modified and becoming part 1539 * of the transaction. This needs to be done 1540 * once a transaction -bzzz 1541 */ 1542 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1543 ret = -ENOSPC; 1544 goto out_unlock_bh; 1545 } 1546 jh->b_modified = 1; 1547 handle->h_total_credits--; 1548 } 1549 1550 /* 1551 * fastpath, to avoid expensive locking. If this buffer is already 1552 * on the running transaction's metadata list there is nothing to do. 1553 * Nobody can take it off again because there is a handle open. 1554 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1555 * result in this test being false, so we go in and take the locks. 1556 */ 1557 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1558 JBUFFER_TRACE(jh, "fastpath"); 1559 if (unlikely(jh->b_transaction != 1560 journal->j_running_transaction)) { 1561 printk(KERN_ERR "JBD2: %s: " 1562 "jh->b_transaction (%llu, %p, %u) != " 1563 "journal->j_running_transaction (%p, %u)\n", 1564 journal->j_devname, 1565 (unsigned long long) bh->b_blocknr, 1566 jh->b_transaction, 1567 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1568 journal->j_running_transaction, 1569 journal->j_running_transaction ? 1570 journal->j_running_transaction->t_tid : 0); 1571 ret = -EINVAL; 1572 } 1573 goto out_unlock_bh; 1574 } 1575 1576 set_buffer_jbddirty(bh); 1577 1578 /* 1579 * Metadata already on the current transaction list doesn't 1580 * need to be filed. Metadata on another transaction's list must 1581 * be committing, and will be refiled once the commit completes: 1582 * leave it alone for now. 1583 */ 1584 if (jh->b_transaction != transaction) { 1585 JBUFFER_TRACE(jh, "already on other transaction"); 1586 if (unlikely(((jh->b_transaction != 1587 journal->j_committing_transaction)) || 1588 (jh->b_next_transaction != transaction))) { 1589 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1590 "bad jh for block %llu: " 1591 "transaction (%p, %u), " 1592 "jh->b_transaction (%p, %u), " 1593 "jh->b_next_transaction (%p, %u), jlist %u\n", 1594 journal->j_devname, 1595 (unsigned long long) bh->b_blocknr, 1596 transaction, transaction->t_tid, 1597 jh->b_transaction, 1598 jh->b_transaction ? 1599 jh->b_transaction->t_tid : 0, 1600 jh->b_next_transaction, 1601 jh->b_next_transaction ? 1602 jh->b_next_transaction->t_tid : 0, 1603 jh->b_jlist); 1604 WARN_ON(1); 1605 ret = -EINVAL; 1606 } 1607 /* And this case is illegal: we can't reuse another 1608 * transaction's data buffer, ever. */ 1609 goto out_unlock_bh; 1610 } 1611 1612 /* That test should have eliminated the following case: */ 1613 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1614 1615 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1616 spin_lock(&journal->j_list_lock); 1617 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1618 spin_unlock(&journal->j_list_lock); 1619 out_unlock_bh: 1620 spin_unlock(&jh->b_state_lock); 1621 out: 1622 JBUFFER_TRACE(jh, "exit"); 1623 return ret; 1624 } 1625 1626 /** 1627 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1628 * @handle: transaction handle 1629 * @bh: bh to 'forget' 1630 * 1631 * We can only do the bforget if there are no commits pending against the 1632 * buffer. If the buffer is dirty in the current running transaction we 1633 * can safely unlink it. 1634 * 1635 * bh may not be a journalled buffer at all - it may be a non-JBD 1636 * buffer which came off the hashtable. Check for this. 1637 * 1638 * Decrements bh->b_count by one. 1639 * 1640 * Allow this call even if the handle has aborted --- it may be part of 1641 * the caller's cleanup after an abort. 1642 */ 1643 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1644 { 1645 transaction_t *transaction = handle->h_transaction; 1646 journal_t *journal; 1647 struct journal_head *jh; 1648 int drop_reserve = 0; 1649 int err = 0; 1650 int was_modified = 0; 1651 1652 if (is_handle_aborted(handle)) 1653 return -EROFS; 1654 journal = transaction->t_journal; 1655 1656 BUFFER_TRACE(bh, "entry"); 1657 1658 jh = jbd2_journal_grab_journal_head(bh); 1659 if (!jh) { 1660 __bforget(bh); 1661 return 0; 1662 } 1663 1664 spin_lock(&jh->b_state_lock); 1665 1666 /* Critical error: attempting to delete a bitmap buffer, maybe? 1667 * Don't do any jbd operations, and return an error. */ 1668 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1669 "inconsistent data on disk")) { 1670 err = -EIO; 1671 goto drop; 1672 } 1673 1674 /* keep track of whether or not this transaction modified us */ 1675 was_modified = jh->b_modified; 1676 1677 /* 1678 * The buffer's going from the transaction, we must drop 1679 * all references -bzzz 1680 */ 1681 jh->b_modified = 0; 1682 1683 if (jh->b_transaction == transaction) { 1684 J_ASSERT_JH(jh, !jh->b_frozen_data); 1685 1686 /* If we are forgetting a buffer which is already part 1687 * of this transaction, then we can just drop it from 1688 * the transaction immediately. */ 1689 clear_buffer_dirty(bh); 1690 clear_buffer_jbddirty(bh); 1691 1692 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1693 1694 /* 1695 * we only want to drop a reference if this transaction 1696 * modified the buffer 1697 */ 1698 if (was_modified) 1699 drop_reserve = 1; 1700 1701 /* 1702 * We are no longer going to journal this buffer. 1703 * However, the commit of this transaction is still 1704 * important to the buffer: the delete that we are now 1705 * processing might obsolete an old log entry, so by 1706 * committing, we can satisfy the buffer's checkpoint. 1707 * 1708 * So, if we have a checkpoint on the buffer, we should 1709 * now refile the buffer on our BJ_Forget list so that 1710 * we know to remove the checkpoint after we commit. 1711 */ 1712 1713 spin_lock(&journal->j_list_lock); 1714 if (jh->b_cp_transaction) { 1715 __jbd2_journal_temp_unlink_buffer(jh); 1716 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1717 } else { 1718 __jbd2_journal_unfile_buffer(jh); 1719 jbd2_journal_put_journal_head(jh); 1720 } 1721 spin_unlock(&journal->j_list_lock); 1722 } else if (jh->b_transaction) { 1723 J_ASSERT_JH(jh, (jh->b_transaction == 1724 journal->j_committing_transaction)); 1725 /* However, if the buffer is still owned by a prior 1726 * (committing) transaction, we can't drop it yet... */ 1727 JBUFFER_TRACE(jh, "belongs to older transaction"); 1728 /* ... but we CAN drop it from the new transaction through 1729 * marking the buffer as freed and set j_next_transaction to 1730 * the new transaction, so that not only the commit code 1731 * knows it should clear dirty bits when it is done with the 1732 * buffer, but also the buffer can be checkpointed only 1733 * after the new transaction commits. */ 1734 1735 set_buffer_freed(bh); 1736 1737 if (!jh->b_next_transaction) { 1738 spin_lock(&journal->j_list_lock); 1739 jh->b_next_transaction = transaction; 1740 spin_unlock(&journal->j_list_lock); 1741 } else { 1742 J_ASSERT(jh->b_next_transaction == transaction); 1743 1744 /* 1745 * only drop a reference if this transaction modified 1746 * the buffer 1747 */ 1748 if (was_modified) 1749 drop_reserve = 1; 1750 } 1751 } else { 1752 /* 1753 * Finally, if the buffer is not belongs to any 1754 * transaction, we can just drop it now if it has no 1755 * checkpoint. 1756 */ 1757 spin_lock(&journal->j_list_lock); 1758 if (!jh->b_cp_transaction) { 1759 JBUFFER_TRACE(jh, "belongs to none transaction"); 1760 spin_unlock(&journal->j_list_lock); 1761 goto drop; 1762 } 1763 1764 /* 1765 * Otherwise, if the buffer has been written to disk, 1766 * it is safe to remove the checkpoint and drop it. 1767 */ 1768 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) { 1769 spin_unlock(&journal->j_list_lock); 1770 goto drop; 1771 } 1772 1773 /* 1774 * The buffer is still not written to disk, we should 1775 * attach this buffer to current transaction so that the 1776 * buffer can be checkpointed only after the current 1777 * transaction commits. 1778 */ 1779 clear_buffer_dirty(bh); 1780 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1781 spin_unlock(&journal->j_list_lock); 1782 } 1783 drop: 1784 __brelse(bh); 1785 spin_unlock(&jh->b_state_lock); 1786 jbd2_journal_put_journal_head(jh); 1787 if (drop_reserve) { 1788 /* no need to reserve log space for this block -bzzz */ 1789 handle->h_total_credits++; 1790 } 1791 return err; 1792 } 1793 1794 /** 1795 * jbd2_journal_stop() - complete a transaction 1796 * @handle: transaction to complete. 1797 * 1798 * All done for a particular handle. 1799 * 1800 * There is not much action needed here. We just return any remaining 1801 * buffer credits to the transaction and remove the handle. The only 1802 * complication is that we need to start a commit operation if the 1803 * filesystem is marked for synchronous update. 1804 * 1805 * jbd2_journal_stop itself will not usually return an error, but it may 1806 * do so in unusual circumstances. In particular, expect it to 1807 * return -EIO if a jbd2_journal_abort has been executed since the 1808 * transaction began. 1809 */ 1810 int jbd2_journal_stop(handle_t *handle) 1811 { 1812 transaction_t *transaction = handle->h_transaction; 1813 journal_t *journal; 1814 int err = 0, wait_for_commit = 0; 1815 tid_t tid; 1816 pid_t pid; 1817 1818 if (--handle->h_ref > 0) { 1819 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1820 handle->h_ref); 1821 if (is_handle_aborted(handle)) 1822 return -EIO; 1823 return 0; 1824 } 1825 if (!transaction) { 1826 /* 1827 * Handle is already detached from the transaction so there is 1828 * nothing to do other than free the handle. 1829 */ 1830 memalloc_nofs_restore(handle->saved_alloc_context); 1831 goto free_and_exit; 1832 } 1833 journal = transaction->t_journal; 1834 tid = transaction->t_tid; 1835 1836 if (is_handle_aborted(handle)) 1837 err = -EIO; 1838 1839 jbd2_debug(4, "Handle %p going down\n", handle); 1840 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1841 tid, handle->h_type, handle->h_line_no, 1842 jiffies - handle->h_start_jiffies, 1843 handle->h_sync, handle->h_requested_credits, 1844 (handle->h_requested_credits - 1845 handle->h_total_credits)); 1846 1847 /* 1848 * Implement synchronous transaction batching. If the handle 1849 * was synchronous, don't force a commit immediately. Let's 1850 * yield and let another thread piggyback onto this 1851 * transaction. Keep doing that while new threads continue to 1852 * arrive. It doesn't cost much - we're about to run a commit 1853 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1854 * operations by 30x or more... 1855 * 1856 * We try and optimize the sleep time against what the 1857 * underlying disk can do, instead of having a static sleep 1858 * time. This is useful for the case where our storage is so 1859 * fast that it is more optimal to go ahead and force a flush 1860 * and wait for the transaction to be committed than it is to 1861 * wait for an arbitrary amount of time for new writers to 1862 * join the transaction. We achieve this by measuring how 1863 * long it takes to commit a transaction, and compare it with 1864 * how long this transaction has been running, and if run time 1865 * < commit time then we sleep for the delta and commit. This 1866 * greatly helps super fast disks that would see slowdowns as 1867 * more threads started doing fsyncs. 1868 * 1869 * But don't do this if this process was the most recent one 1870 * to perform a synchronous write. We do this to detect the 1871 * case where a single process is doing a stream of sync 1872 * writes. No point in waiting for joiners in that case. 1873 * 1874 * Setting max_batch_time to 0 disables this completely. 1875 */ 1876 pid = current->pid; 1877 if (handle->h_sync && journal->j_last_sync_writer != pid && 1878 journal->j_max_batch_time) { 1879 u64 commit_time, trans_time; 1880 1881 journal->j_last_sync_writer = pid; 1882 1883 read_lock(&journal->j_state_lock); 1884 commit_time = journal->j_average_commit_time; 1885 read_unlock(&journal->j_state_lock); 1886 1887 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1888 transaction->t_start_time)); 1889 1890 commit_time = max_t(u64, commit_time, 1891 1000*journal->j_min_batch_time); 1892 commit_time = min_t(u64, commit_time, 1893 1000*journal->j_max_batch_time); 1894 1895 if (trans_time < commit_time) { 1896 ktime_t expires = ktime_add_ns(ktime_get(), 1897 commit_time); 1898 set_current_state(TASK_UNINTERRUPTIBLE); 1899 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1900 } 1901 } 1902 1903 if (handle->h_sync) 1904 transaction->t_synchronous_commit = 1; 1905 1906 /* 1907 * If the handle is marked SYNC, we need to set another commit 1908 * going! We also want to force a commit if the transaction is too 1909 * old now. 1910 */ 1911 if (handle->h_sync || 1912 time_after_eq(jiffies, transaction->t_expires)) { 1913 /* Do this even for aborted journals: an abort still 1914 * completes the commit thread, it just doesn't write 1915 * anything to disk. */ 1916 1917 jbd2_debug(2, "transaction too old, requesting commit for " 1918 "handle %p\n", handle); 1919 /* This is non-blocking */ 1920 jbd2_log_start_commit(journal, tid); 1921 1922 /* 1923 * Special case: JBD2_SYNC synchronous updates require us 1924 * to wait for the commit to complete. 1925 */ 1926 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1927 wait_for_commit = 1; 1928 } 1929 1930 /* 1931 * Once stop_this_handle() drops t_updates, the transaction could start 1932 * committing on us and eventually disappear. So we must not 1933 * dereference transaction pointer again after calling 1934 * stop_this_handle(). 1935 */ 1936 stop_this_handle(handle); 1937 1938 if (wait_for_commit) 1939 err = jbd2_log_wait_commit(journal, tid); 1940 1941 free_and_exit: 1942 if (handle->h_rsv_handle) 1943 jbd2_free_handle(handle->h_rsv_handle); 1944 jbd2_free_handle(handle); 1945 return err; 1946 } 1947 1948 /* 1949 * 1950 * List management code snippets: various functions for manipulating the 1951 * transaction buffer lists. 1952 * 1953 */ 1954 1955 /* 1956 * Append a buffer to a transaction list, given the transaction's list head 1957 * pointer. 1958 * 1959 * j_list_lock is held. 1960 * 1961 * jh->b_state_lock is held. 1962 */ 1963 1964 static inline void 1965 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1966 { 1967 if (!*list) { 1968 jh->b_tnext = jh->b_tprev = jh; 1969 *list = jh; 1970 } else { 1971 /* Insert at the tail of the list to preserve order */ 1972 struct journal_head *first = *list, *last = first->b_tprev; 1973 jh->b_tprev = last; 1974 jh->b_tnext = first; 1975 last->b_tnext = first->b_tprev = jh; 1976 } 1977 } 1978 1979 /* 1980 * Remove a buffer from a transaction list, given the transaction's list 1981 * head pointer. 1982 * 1983 * Called with j_list_lock held, and the journal may not be locked. 1984 * 1985 * jh->b_state_lock is held. 1986 */ 1987 1988 static inline void 1989 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1990 { 1991 if (*list == jh) { 1992 *list = jh->b_tnext; 1993 if (*list == jh) 1994 *list = NULL; 1995 } 1996 jh->b_tprev->b_tnext = jh->b_tnext; 1997 jh->b_tnext->b_tprev = jh->b_tprev; 1998 } 1999 2000 /* 2001 * Remove a buffer from the appropriate transaction list. 2002 * 2003 * Note that this function can *change* the value of 2004 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2005 * t_reserved_list. If the caller is holding onto a copy of one of these 2006 * pointers, it could go bad. Generally the caller needs to re-read the 2007 * pointer from the transaction_t. 2008 * 2009 * Called under j_list_lock. 2010 */ 2011 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2012 { 2013 struct journal_head **list = NULL; 2014 transaction_t *transaction; 2015 struct buffer_head *bh = jh2bh(jh); 2016 2017 lockdep_assert_held(&jh->b_state_lock); 2018 transaction = jh->b_transaction; 2019 if (transaction) 2020 assert_spin_locked(&transaction->t_journal->j_list_lock); 2021 2022 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2023 if (jh->b_jlist != BJ_None) 2024 J_ASSERT_JH(jh, transaction != NULL); 2025 2026 switch (jh->b_jlist) { 2027 case BJ_None: 2028 return; 2029 case BJ_Metadata: 2030 transaction->t_nr_buffers--; 2031 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2032 list = &transaction->t_buffers; 2033 break; 2034 case BJ_Forget: 2035 list = &transaction->t_forget; 2036 break; 2037 case BJ_Shadow: 2038 list = &transaction->t_shadow_list; 2039 break; 2040 case BJ_Reserved: 2041 list = &transaction->t_reserved_list; 2042 break; 2043 } 2044 2045 __blist_del_buffer(list, jh); 2046 jh->b_jlist = BJ_None; 2047 if (transaction && is_journal_aborted(transaction->t_journal)) 2048 clear_buffer_jbddirty(bh); 2049 else if (test_clear_buffer_jbddirty(bh)) 2050 mark_buffer_dirty(bh); /* Expose it to the VM */ 2051 } 2052 2053 /* 2054 * Remove buffer from all transactions. The caller is responsible for dropping 2055 * the jh reference that belonged to the transaction. 2056 * 2057 * Called with bh_state lock and j_list_lock 2058 */ 2059 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2060 { 2061 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2062 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2063 2064 __jbd2_journal_temp_unlink_buffer(jh); 2065 jh->b_transaction = NULL; 2066 } 2067 2068 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2069 { 2070 struct buffer_head *bh = jh2bh(jh); 2071 2072 /* Get reference so that buffer cannot be freed before we unlock it */ 2073 get_bh(bh); 2074 spin_lock(&jh->b_state_lock); 2075 spin_lock(&journal->j_list_lock); 2076 __jbd2_journal_unfile_buffer(jh); 2077 spin_unlock(&journal->j_list_lock); 2078 spin_unlock(&jh->b_state_lock); 2079 jbd2_journal_put_journal_head(jh); 2080 __brelse(bh); 2081 } 2082 2083 /** 2084 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2085 * @journal: journal for operation 2086 * @folio: Folio to detach data from. 2087 * 2088 * For all the buffers on this page, 2089 * if they are fully written out ordered data, move them onto BUF_CLEAN 2090 * so try_to_free_buffers() can reap them. 2091 * 2092 * This function returns non-zero if we wish try_to_free_buffers() 2093 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2094 * We also do it if the page has locked or dirty buffers and the caller wants 2095 * us to perform sync or async writeout. 2096 * 2097 * This complicates JBD locking somewhat. We aren't protected by the 2098 * BKL here. We wish to remove the buffer from its committing or 2099 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2100 * 2101 * This may *change* the value of transaction_t->t_datalist, so anyone 2102 * who looks at t_datalist needs to lock against this function. 2103 * 2104 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2105 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2106 * will come out of the lock with the buffer dirty, which makes it 2107 * ineligible for release here. 2108 * 2109 * Who else is affected by this? hmm... Really the only contender 2110 * is do_get_write_access() - it could be looking at the buffer while 2111 * journal_try_to_free_buffer() is changing its state. But that 2112 * cannot happen because we never reallocate freed data as metadata 2113 * while the data is part of a transaction. Yes? 2114 * 2115 * Return false on failure, true on success 2116 */ 2117 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio) 2118 { 2119 struct buffer_head *head; 2120 struct buffer_head *bh; 2121 bool ret = false; 2122 2123 J_ASSERT(folio_test_locked(folio)); 2124 2125 head = folio_buffers(folio); 2126 bh = head; 2127 do { 2128 struct journal_head *jh; 2129 2130 /* 2131 * We take our own ref against the journal_head here to avoid 2132 * having to add tons of locking around each instance of 2133 * jbd2_journal_put_journal_head(). 2134 */ 2135 jh = jbd2_journal_grab_journal_head(bh); 2136 if (!jh) 2137 continue; 2138 2139 spin_lock(&jh->b_state_lock); 2140 if (!jh->b_transaction && !jh->b_next_transaction) { 2141 spin_lock(&journal->j_list_lock); 2142 /* Remove written-back checkpointed metadata buffer */ 2143 if (jh->b_cp_transaction != NULL) 2144 jbd2_journal_try_remove_checkpoint(jh); 2145 spin_unlock(&journal->j_list_lock); 2146 } 2147 spin_unlock(&jh->b_state_lock); 2148 jbd2_journal_put_journal_head(jh); 2149 if (buffer_jbd(bh)) 2150 goto busy; 2151 } while ((bh = bh->b_this_page) != head); 2152 2153 ret = try_to_free_buffers(folio); 2154 busy: 2155 return ret; 2156 } 2157 2158 /* 2159 * This buffer is no longer needed. If it is on an older transaction's 2160 * checkpoint list we need to record it on this transaction's forget list 2161 * to pin this buffer (and hence its checkpointing transaction) down until 2162 * this transaction commits. If the buffer isn't on a checkpoint list, we 2163 * release it. 2164 * Returns non-zero if JBD no longer has an interest in the buffer. 2165 * 2166 * Called under j_list_lock. 2167 * 2168 * Called under jh->b_state_lock. 2169 */ 2170 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2171 { 2172 int may_free = 1; 2173 struct buffer_head *bh = jh2bh(jh); 2174 2175 if (jh->b_cp_transaction) { 2176 JBUFFER_TRACE(jh, "on running+cp transaction"); 2177 __jbd2_journal_temp_unlink_buffer(jh); 2178 /* 2179 * We don't want to write the buffer anymore, clear the 2180 * bit so that we don't confuse checks in 2181 * __journal_file_buffer 2182 */ 2183 clear_buffer_dirty(bh); 2184 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2185 may_free = 0; 2186 } else { 2187 JBUFFER_TRACE(jh, "on running transaction"); 2188 __jbd2_journal_unfile_buffer(jh); 2189 jbd2_journal_put_journal_head(jh); 2190 } 2191 return may_free; 2192 } 2193 2194 /* 2195 * jbd2_journal_invalidate_folio 2196 * 2197 * This code is tricky. It has a number of cases to deal with. 2198 * 2199 * There are two invariants which this code relies on: 2200 * 2201 * i_size must be updated on disk before we start calling invalidate_folio 2202 * on the data. 2203 * 2204 * This is done in ext3 by defining an ext3_setattr method which 2205 * updates i_size before truncate gets going. By maintaining this 2206 * invariant, we can be sure that it is safe to throw away any buffers 2207 * attached to the current transaction: once the transaction commits, 2208 * we know that the data will not be needed. 2209 * 2210 * Note however that we can *not* throw away data belonging to the 2211 * previous, committing transaction! 2212 * 2213 * Any disk blocks which *are* part of the previous, committing 2214 * transaction (and which therefore cannot be discarded immediately) are 2215 * not going to be reused in the new running transaction 2216 * 2217 * The bitmap committed_data images guarantee this: any block which is 2218 * allocated in one transaction and removed in the next will be marked 2219 * as in-use in the committed_data bitmap, so cannot be reused until 2220 * the next transaction to delete the block commits. This means that 2221 * leaving committing buffers dirty is quite safe: the disk blocks 2222 * cannot be reallocated to a different file and so buffer aliasing is 2223 * not possible. 2224 * 2225 * 2226 * The above applies mainly to ordered data mode. In writeback mode we 2227 * don't make guarantees about the order in which data hits disk --- in 2228 * particular we don't guarantee that new dirty data is flushed before 2229 * transaction commit --- so it is always safe just to discard data 2230 * immediately in that mode. --sct 2231 */ 2232 2233 /* 2234 * The journal_unmap_buffer helper function returns zero if the buffer 2235 * concerned remains pinned as an anonymous buffer belonging to an older 2236 * transaction. 2237 * 2238 * We're outside-transaction here. Either or both of j_running_transaction 2239 * and j_committing_transaction may be NULL. 2240 */ 2241 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2242 int partial_page) 2243 { 2244 transaction_t *transaction; 2245 struct journal_head *jh; 2246 int may_free = 1; 2247 2248 BUFFER_TRACE(bh, "entry"); 2249 2250 /* 2251 * It is safe to proceed here without the j_list_lock because the 2252 * buffers cannot be stolen by try_to_free_buffers as long as we are 2253 * holding the page lock. --sct 2254 */ 2255 2256 jh = jbd2_journal_grab_journal_head(bh); 2257 if (!jh) 2258 goto zap_buffer_unlocked; 2259 2260 /* OK, we have data buffer in journaled mode */ 2261 write_lock(&journal->j_state_lock); 2262 spin_lock(&jh->b_state_lock); 2263 spin_lock(&journal->j_list_lock); 2264 2265 /* 2266 * We cannot remove the buffer from checkpoint lists until the 2267 * transaction adding inode to orphan list (let's call it T) 2268 * is committed. Otherwise if the transaction changing the 2269 * buffer would be cleaned from the journal before T is 2270 * committed, a crash will cause that the correct contents of 2271 * the buffer will be lost. On the other hand we have to 2272 * clear the buffer dirty bit at latest at the moment when the 2273 * transaction marking the buffer as freed in the filesystem 2274 * structures is committed because from that moment on the 2275 * block can be reallocated and used by a different page. 2276 * Since the block hasn't been freed yet but the inode has 2277 * already been added to orphan list, it is safe for us to add 2278 * the buffer to BJ_Forget list of the newest transaction. 2279 * 2280 * Also we have to clear buffer_mapped flag of a truncated buffer 2281 * because the buffer_head may be attached to the page straddling 2282 * i_size (can happen only when blocksize < pagesize) and thus the 2283 * buffer_head can be reused when the file is extended again. So we end 2284 * up keeping around invalidated buffers attached to transactions' 2285 * BJ_Forget list just to stop checkpointing code from cleaning up 2286 * the transaction this buffer was modified in. 2287 */ 2288 transaction = jh->b_transaction; 2289 if (transaction == NULL) { 2290 /* First case: not on any transaction. If it 2291 * has no checkpoint link, then we can zap it: 2292 * it's a writeback-mode buffer so we don't care 2293 * if it hits disk safely. */ 2294 if (!jh->b_cp_transaction) { 2295 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2296 goto zap_buffer; 2297 } 2298 2299 if (!buffer_dirty(bh)) { 2300 /* bdflush has written it. We can drop it now */ 2301 __jbd2_journal_remove_checkpoint(jh); 2302 goto zap_buffer; 2303 } 2304 2305 /* OK, it must be in the journal but still not 2306 * written fully to disk: it's metadata or 2307 * journaled data... */ 2308 2309 if (journal->j_running_transaction) { 2310 /* ... and once the current transaction has 2311 * committed, the buffer won't be needed any 2312 * longer. */ 2313 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2314 may_free = __dispose_buffer(jh, 2315 journal->j_running_transaction); 2316 goto zap_buffer; 2317 } else { 2318 /* There is no currently-running transaction. So the 2319 * orphan record which we wrote for this file must have 2320 * passed into commit. We must attach this buffer to 2321 * the committing transaction, if it exists. */ 2322 if (journal->j_committing_transaction) { 2323 JBUFFER_TRACE(jh, "give to committing trans"); 2324 may_free = __dispose_buffer(jh, 2325 journal->j_committing_transaction); 2326 goto zap_buffer; 2327 } else { 2328 /* The orphan record's transaction has 2329 * committed. We can cleanse this buffer */ 2330 clear_buffer_jbddirty(bh); 2331 __jbd2_journal_remove_checkpoint(jh); 2332 goto zap_buffer; 2333 } 2334 } 2335 } else if (transaction == journal->j_committing_transaction) { 2336 JBUFFER_TRACE(jh, "on committing transaction"); 2337 /* 2338 * The buffer is committing, we simply cannot touch 2339 * it. If the page is straddling i_size we have to wait 2340 * for commit and try again. 2341 */ 2342 if (partial_page) { 2343 spin_unlock(&journal->j_list_lock); 2344 spin_unlock(&jh->b_state_lock); 2345 write_unlock(&journal->j_state_lock); 2346 jbd2_journal_put_journal_head(jh); 2347 /* Already zapped buffer? Nothing to do... */ 2348 if (!bh->b_bdev) 2349 return 0; 2350 return -EBUSY; 2351 } 2352 /* 2353 * OK, buffer won't be reachable after truncate. We just clear 2354 * b_modified to not confuse transaction credit accounting, and 2355 * set j_next_transaction to the running transaction (if there 2356 * is one) and mark buffer as freed so that commit code knows 2357 * it should clear dirty bits when it is done with the buffer. 2358 */ 2359 set_buffer_freed(bh); 2360 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2361 jh->b_next_transaction = journal->j_running_transaction; 2362 jh->b_modified = 0; 2363 spin_unlock(&journal->j_list_lock); 2364 spin_unlock(&jh->b_state_lock); 2365 write_unlock(&journal->j_state_lock); 2366 jbd2_journal_put_journal_head(jh); 2367 return 0; 2368 } else { 2369 /* Good, the buffer belongs to the running transaction. 2370 * We are writing our own transaction's data, not any 2371 * previous one's, so it is safe to throw it away 2372 * (remember that we expect the filesystem to have set 2373 * i_size already for this truncate so recovery will not 2374 * expose the disk blocks we are discarding here.) */ 2375 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2376 JBUFFER_TRACE(jh, "on running transaction"); 2377 may_free = __dispose_buffer(jh, transaction); 2378 } 2379 2380 zap_buffer: 2381 /* 2382 * This is tricky. Although the buffer is truncated, it may be reused 2383 * if blocksize < pagesize and it is attached to the page straddling 2384 * EOF. Since the buffer might have been added to BJ_Forget list of the 2385 * running transaction, journal_get_write_access() won't clear 2386 * b_modified and credit accounting gets confused. So clear b_modified 2387 * here. 2388 */ 2389 jh->b_modified = 0; 2390 spin_unlock(&journal->j_list_lock); 2391 spin_unlock(&jh->b_state_lock); 2392 write_unlock(&journal->j_state_lock); 2393 jbd2_journal_put_journal_head(jh); 2394 zap_buffer_unlocked: 2395 clear_buffer_dirty(bh); 2396 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2397 clear_buffer_mapped(bh); 2398 clear_buffer_req(bh); 2399 clear_buffer_new(bh); 2400 clear_buffer_delay(bh); 2401 clear_buffer_unwritten(bh); 2402 bh->b_bdev = NULL; 2403 return may_free; 2404 } 2405 2406 /** 2407 * jbd2_journal_invalidate_folio() 2408 * @journal: journal to use for flush... 2409 * @folio: folio to flush 2410 * @offset: start of the range to invalidate 2411 * @length: length of the range to invalidate 2412 * 2413 * Reap page buffers containing data after in the specified range in page. 2414 * Can return -EBUSY if buffers are part of the committing transaction and 2415 * the page is straddling i_size. Caller then has to wait for current commit 2416 * and try again. 2417 */ 2418 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio, 2419 size_t offset, size_t length) 2420 { 2421 struct buffer_head *head, *bh, *next; 2422 unsigned int stop = offset + length; 2423 unsigned int curr_off = 0; 2424 int partial_page = (offset || length < folio_size(folio)); 2425 int may_free = 1; 2426 int ret = 0; 2427 2428 if (!folio_test_locked(folio)) 2429 BUG(); 2430 head = folio_buffers(folio); 2431 if (!head) 2432 return 0; 2433 2434 BUG_ON(stop > folio_size(folio) || stop < length); 2435 2436 /* We will potentially be playing with lists other than just the 2437 * data lists (especially for journaled data mode), so be 2438 * cautious in our locking. */ 2439 2440 bh = head; 2441 do { 2442 unsigned int next_off = curr_off + bh->b_size; 2443 next = bh->b_this_page; 2444 2445 if (next_off > stop) 2446 return 0; 2447 2448 if (offset <= curr_off) { 2449 /* This block is wholly outside the truncation point */ 2450 lock_buffer(bh); 2451 ret = journal_unmap_buffer(journal, bh, partial_page); 2452 unlock_buffer(bh); 2453 if (ret < 0) 2454 return ret; 2455 may_free &= ret; 2456 } 2457 curr_off = next_off; 2458 bh = next; 2459 2460 } while (bh != head); 2461 2462 if (!partial_page) { 2463 if (may_free && try_to_free_buffers(folio)) 2464 J_ASSERT(!folio_buffers(folio)); 2465 } 2466 return 0; 2467 } 2468 2469 /* 2470 * File a buffer on the given transaction list. 2471 */ 2472 void __jbd2_journal_file_buffer(struct journal_head *jh, 2473 transaction_t *transaction, int jlist) 2474 { 2475 struct journal_head **list = NULL; 2476 int was_dirty = 0; 2477 struct buffer_head *bh = jh2bh(jh); 2478 2479 lockdep_assert_held(&jh->b_state_lock); 2480 assert_spin_locked(&transaction->t_journal->j_list_lock); 2481 2482 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2483 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2484 jh->b_transaction == NULL); 2485 2486 if (jh->b_transaction && jh->b_jlist == jlist) 2487 return; 2488 2489 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2490 jlist == BJ_Shadow || jlist == BJ_Forget) { 2491 /* 2492 * For metadata buffers, we track dirty bit in buffer_jbddirty 2493 * instead of buffer_dirty. We should not see a dirty bit set 2494 * here because we clear it in do_get_write_access but e.g. 2495 * tune2fs can modify the sb and set the dirty bit at any time 2496 * so we try to gracefully handle that. 2497 */ 2498 if (buffer_dirty(bh)) 2499 warn_dirty_buffer(bh); 2500 if (test_clear_buffer_dirty(bh) || 2501 test_clear_buffer_jbddirty(bh)) 2502 was_dirty = 1; 2503 } 2504 2505 if (jh->b_transaction) 2506 __jbd2_journal_temp_unlink_buffer(jh); 2507 else 2508 jbd2_journal_grab_journal_head(bh); 2509 jh->b_transaction = transaction; 2510 2511 switch (jlist) { 2512 case BJ_None: 2513 J_ASSERT_JH(jh, !jh->b_committed_data); 2514 J_ASSERT_JH(jh, !jh->b_frozen_data); 2515 return; 2516 case BJ_Metadata: 2517 transaction->t_nr_buffers++; 2518 list = &transaction->t_buffers; 2519 break; 2520 case BJ_Forget: 2521 list = &transaction->t_forget; 2522 break; 2523 case BJ_Shadow: 2524 list = &transaction->t_shadow_list; 2525 break; 2526 case BJ_Reserved: 2527 list = &transaction->t_reserved_list; 2528 break; 2529 } 2530 2531 __blist_add_buffer(list, jh); 2532 jh->b_jlist = jlist; 2533 2534 if (was_dirty) 2535 set_buffer_jbddirty(bh); 2536 } 2537 2538 void jbd2_journal_file_buffer(struct journal_head *jh, 2539 transaction_t *transaction, int jlist) 2540 { 2541 spin_lock(&jh->b_state_lock); 2542 spin_lock(&transaction->t_journal->j_list_lock); 2543 __jbd2_journal_file_buffer(jh, transaction, jlist); 2544 spin_unlock(&transaction->t_journal->j_list_lock); 2545 spin_unlock(&jh->b_state_lock); 2546 } 2547 2548 /* 2549 * Remove a buffer from its current buffer list in preparation for 2550 * dropping it from its current transaction entirely. If the buffer has 2551 * already started to be used by a subsequent transaction, refile the 2552 * buffer on that transaction's metadata list. 2553 * 2554 * Called under j_list_lock 2555 * Called under jh->b_state_lock 2556 * 2557 * When this function returns true, there's no next transaction to refile to 2558 * and the caller has to drop jh reference through 2559 * jbd2_journal_put_journal_head(). 2560 */ 2561 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2562 { 2563 int was_dirty, jlist; 2564 struct buffer_head *bh = jh2bh(jh); 2565 2566 lockdep_assert_held(&jh->b_state_lock); 2567 if (jh->b_transaction) 2568 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2569 2570 /* If the buffer is now unused, just drop it. */ 2571 if (jh->b_next_transaction == NULL) { 2572 __jbd2_journal_unfile_buffer(jh); 2573 return true; 2574 } 2575 2576 /* 2577 * It has been modified by a later transaction: add it to the new 2578 * transaction's metadata list. 2579 */ 2580 2581 was_dirty = test_clear_buffer_jbddirty(bh); 2582 __jbd2_journal_temp_unlink_buffer(jh); 2583 2584 /* 2585 * b_transaction must be set, otherwise the new b_transaction won't 2586 * be holding jh reference 2587 */ 2588 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2589 2590 /* 2591 * We set b_transaction here because b_next_transaction will inherit 2592 * our jh reference and thus __jbd2_journal_file_buffer() must not 2593 * take a new one. 2594 */ 2595 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2596 WRITE_ONCE(jh->b_next_transaction, NULL); 2597 if (buffer_freed(bh)) 2598 jlist = BJ_Forget; 2599 else if (jh->b_modified) 2600 jlist = BJ_Metadata; 2601 else 2602 jlist = BJ_Reserved; 2603 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2604 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2605 2606 if (was_dirty) 2607 set_buffer_jbddirty(bh); 2608 return false; 2609 } 2610 2611 /* 2612 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2613 * bh reference so that we can safely unlock bh. 2614 * 2615 * The jh and bh may be freed by this call. 2616 */ 2617 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2618 { 2619 bool drop; 2620 2621 spin_lock(&jh->b_state_lock); 2622 spin_lock(&journal->j_list_lock); 2623 drop = __jbd2_journal_refile_buffer(jh); 2624 spin_unlock(&jh->b_state_lock); 2625 spin_unlock(&journal->j_list_lock); 2626 if (drop) 2627 jbd2_journal_put_journal_head(jh); 2628 } 2629 2630 /* 2631 * File inode in the inode list of the handle's transaction 2632 */ 2633 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2634 unsigned long flags, loff_t start_byte, loff_t end_byte) 2635 { 2636 transaction_t *transaction = handle->h_transaction; 2637 journal_t *journal; 2638 2639 if (is_handle_aborted(handle)) 2640 return -EROFS; 2641 journal = transaction->t_journal; 2642 2643 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2644 transaction->t_tid); 2645 2646 spin_lock(&journal->j_list_lock); 2647 jinode->i_flags |= flags; 2648 2649 if (jinode->i_dirty_end) { 2650 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2651 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2652 } else { 2653 jinode->i_dirty_start = start_byte; 2654 jinode->i_dirty_end = end_byte; 2655 } 2656 2657 /* Is inode already attached where we need it? */ 2658 if (jinode->i_transaction == transaction || 2659 jinode->i_next_transaction == transaction) 2660 goto done; 2661 2662 /* 2663 * We only ever set this variable to 1 so the test is safe. Since 2664 * t_need_data_flush is likely to be set, we do the test to save some 2665 * cacheline bouncing 2666 */ 2667 if (!transaction->t_need_data_flush) 2668 transaction->t_need_data_flush = 1; 2669 /* On some different transaction's list - should be 2670 * the committing one */ 2671 if (jinode->i_transaction) { 2672 J_ASSERT(jinode->i_next_transaction == NULL); 2673 J_ASSERT(jinode->i_transaction == 2674 journal->j_committing_transaction); 2675 jinode->i_next_transaction = transaction; 2676 goto done; 2677 } 2678 /* Not on any transaction list... */ 2679 J_ASSERT(!jinode->i_next_transaction); 2680 jinode->i_transaction = transaction; 2681 list_add(&jinode->i_list, &transaction->t_inode_list); 2682 done: 2683 spin_unlock(&journal->j_list_lock); 2684 2685 return 0; 2686 } 2687 2688 int jbd2_journal_inode_ranged_write(handle_t *handle, 2689 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2690 { 2691 return jbd2_journal_file_inode(handle, jinode, 2692 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2693 start_byte + length - 1); 2694 } 2695 2696 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2697 loff_t start_byte, loff_t length) 2698 { 2699 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2700 start_byte, start_byte + length - 1); 2701 } 2702 2703 /* 2704 * File truncate and transaction commit interact with each other in a 2705 * non-trivial way. If a transaction writing data block A is 2706 * committing, we cannot discard the data by truncate until we have 2707 * written them. Otherwise if we crashed after the transaction with 2708 * write has committed but before the transaction with truncate has 2709 * committed, we could see stale data in block A. This function is a 2710 * helper to solve this problem. It starts writeout of the truncated 2711 * part in case it is in the committing transaction. 2712 * 2713 * Filesystem code must call this function when inode is journaled in 2714 * ordered mode before truncation happens and after the inode has been 2715 * placed on orphan list with the new inode size. The second condition 2716 * avoids the race that someone writes new data and we start 2717 * committing the transaction after this function has been called but 2718 * before a transaction for truncate is started (and furthermore it 2719 * allows us to optimize the case where the addition to orphan list 2720 * happens in the same transaction as write --- we don't have to write 2721 * any data in such case). 2722 */ 2723 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2724 struct jbd2_inode *jinode, 2725 loff_t new_size) 2726 { 2727 transaction_t *inode_trans, *commit_trans; 2728 int ret = 0; 2729 2730 /* This is a quick check to avoid locking if not necessary */ 2731 if (!jinode->i_transaction) 2732 goto out; 2733 /* Locks are here just to force reading of recent values, it is 2734 * enough that the transaction was not committing before we started 2735 * a transaction adding the inode to orphan list */ 2736 read_lock(&journal->j_state_lock); 2737 commit_trans = journal->j_committing_transaction; 2738 read_unlock(&journal->j_state_lock); 2739 spin_lock(&journal->j_list_lock); 2740 inode_trans = jinode->i_transaction; 2741 spin_unlock(&journal->j_list_lock); 2742 if (inode_trans == commit_trans) { 2743 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2744 new_size, LLONG_MAX); 2745 if (ret) 2746 jbd2_journal_abort(journal, ret); 2747 } 2748 out: 2749 return ret; 2750 } 2751