1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 jbd2_might_wait_for_commit(journal); 186 187 /* 188 * If the current transaction is locked down for commit, wait 189 * for the lock to be released. 190 */ 191 if (t->t_state == T_LOCKED) { 192 wait_transaction_locked(journal); 193 return 1; 194 } 195 196 /* 197 * If there is not enough space left in the log to write all 198 * potential buffers requested by this operation, we need to 199 * stall pending a log checkpoint to free some more log space. 200 */ 201 needed = atomic_add_return(total, &t->t_outstanding_credits); 202 if (needed > journal->j_max_transaction_buffers) { 203 /* 204 * If the current transaction is already too large, 205 * then start to commit it: we can then go back and 206 * attach this handle to a new transaction. 207 */ 208 atomic_sub(total, &t->t_outstanding_credits); 209 210 /* 211 * Is the number of reserved credits in the current transaction too 212 * big to fit this handle? Wait until reserved credits are freed. 213 */ 214 if (atomic_read(&journal->j_reserved_credits) + total > 215 journal->j_max_transaction_buffers) { 216 read_unlock(&journal->j_state_lock); 217 wait_event(journal->j_wait_reserved, 218 atomic_read(&journal->j_reserved_credits) + total <= 219 journal->j_max_transaction_buffers); 220 return 1; 221 } 222 223 wait_transaction_locked(journal); 224 return 1; 225 } 226 227 /* 228 * The commit code assumes that it can get enough log space 229 * without forcing a checkpoint. This is *critical* for 230 * correctness: a checkpoint of a buffer which is also 231 * associated with a committing transaction creates a deadlock, 232 * so commit simply cannot force through checkpoints. 233 * 234 * We must therefore ensure the necessary space in the journal 235 * *before* starting to dirty potentially checkpointed buffers 236 * in the new transaction. 237 */ 238 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 239 atomic_sub(total, &t->t_outstanding_credits); 240 read_unlock(&journal->j_state_lock); 241 write_lock(&journal->j_state_lock); 242 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 243 __jbd2_log_wait_for_space(journal); 244 write_unlock(&journal->j_state_lock); 245 return 1; 246 } 247 248 /* No reservation? We are done... */ 249 if (!rsv_blocks) 250 return 0; 251 252 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 253 /* We allow at most half of a transaction to be reserved */ 254 if (needed > journal->j_max_transaction_buffers / 2) { 255 sub_reserved_credits(journal, rsv_blocks); 256 atomic_sub(total, &t->t_outstanding_credits); 257 read_unlock(&journal->j_state_lock); 258 wait_event(journal->j_wait_reserved, 259 atomic_read(&journal->j_reserved_credits) + rsv_blocks 260 <= journal->j_max_transaction_buffers / 2); 261 return 1; 262 } 263 return 0; 264 } 265 266 /* 267 * start_this_handle: Given a handle, deal with any locking or stalling 268 * needed to make sure that there is enough journal space for the handle 269 * to begin. Attach the handle to a transaction and set up the 270 * transaction's buffer credits. 271 */ 272 273 static int start_this_handle(journal_t *journal, handle_t *handle, 274 gfp_t gfp_mask) 275 { 276 transaction_t *transaction, *new_transaction = NULL; 277 int blocks = handle->h_buffer_credits; 278 int rsv_blocks = 0; 279 unsigned long ts = jiffies; 280 281 if (handle->h_rsv_handle) 282 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 283 284 /* 285 * Limit the number of reserved credits to 1/2 of maximum transaction 286 * size and limit the number of total credits to not exceed maximum 287 * transaction size per operation. 288 */ 289 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 290 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 291 printk(KERN_ERR "JBD2: %s wants too many credits " 292 "credits:%d rsv_credits:%d max:%d\n", 293 current->comm, blocks, rsv_blocks, 294 journal->j_max_transaction_buffers); 295 WARN_ON(1); 296 return -ENOSPC; 297 } 298 299 alloc_transaction: 300 if (!journal->j_running_transaction) { 301 /* 302 * If __GFP_FS is not present, then we may be being called from 303 * inside the fs writeback layer, so we MUST NOT fail. 304 */ 305 if ((gfp_mask & __GFP_FS) == 0) 306 gfp_mask |= __GFP_NOFAIL; 307 new_transaction = kmem_cache_zalloc(transaction_cache, 308 gfp_mask); 309 if (!new_transaction) 310 return -ENOMEM; 311 } 312 313 jbd_debug(3, "New handle %p going live.\n", handle); 314 315 /* 316 * We need to hold j_state_lock until t_updates has been incremented, 317 * for proper journal barrier handling 318 */ 319 repeat: 320 read_lock(&journal->j_state_lock); 321 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 322 if (is_journal_aborted(journal) || 323 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 324 read_unlock(&journal->j_state_lock); 325 jbd2_journal_free_transaction(new_transaction); 326 return -EROFS; 327 } 328 329 /* 330 * Wait on the journal's transaction barrier if necessary. Specifically 331 * we allow reserved handles to proceed because otherwise commit could 332 * deadlock on page writeback not being able to complete. 333 */ 334 if (!handle->h_reserved && journal->j_barrier_count) { 335 read_unlock(&journal->j_state_lock); 336 wait_event(journal->j_wait_transaction_locked, 337 journal->j_barrier_count == 0); 338 goto repeat; 339 } 340 341 if (!journal->j_running_transaction) { 342 read_unlock(&journal->j_state_lock); 343 if (!new_transaction) 344 goto alloc_transaction; 345 write_lock(&journal->j_state_lock); 346 if (!journal->j_running_transaction && 347 (handle->h_reserved || !journal->j_barrier_count)) { 348 jbd2_get_transaction(journal, new_transaction); 349 new_transaction = NULL; 350 } 351 write_unlock(&journal->j_state_lock); 352 goto repeat; 353 } 354 355 transaction = journal->j_running_transaction; 356 357 if (!handle->h_reserved) { 358 /* We may have dropped j_state_lock - restart in that case */ 359 if (add_transaction_credits(journal, blocks, rsv_blocks)) 360 goto repeat; 361 } else { 362 /* 363 * We have handle reserved so we are allowed to join T_LOCKED 364 * transaction and we don't have to check for transaction size 365 * and journal space. 366 */ 367 sub_reserved_credits(journal, blocks); 368 handle->h_reserved = 0; 369 } 370 371 /* OK, account for the buffers that this operation expects to 372 * use and add the handle to the running transaction. 373 */ 374 update_t_max_wait(transaction, ts); 375 handle->h_transaction = transaction; 376 handle->h_requested_credits = blocks; 377 handle->h_start_jiffies = jiffies; 378 atomic_inc(&transaction->t_updates); 379 atomic_inc(&transaction->t_handle_count); 380 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 381 handle, blocks, 382 atomic_read(&transaction->t_outstanding_credits), 383 jbd2_log_space_left(journal)); 384 read_unlock(&journal->j_state_lock); 385 current->journal_info = handle; 386 387 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 388 jbd2_journal_free_transaction(new_transaction); 389 return 0; 390 } 391 392 /* Allocate a new handle. This should probably be in a slab... */ 393 static handle_t *new_handle(int nblocks) 394 { 395 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 396 if (!handle) 397 return NULL; 398 handle->h_buffer_credits = nblocks; 399 handle->h_ref = 1; 400 401 return handle; 402 } 403 404 /** 405 * handle_t *jbd2_journal_start() - Obtain a new handle. 406 * @journal: Journal to start transaction on. 407 * @nblocks: number of block buffer we might modify 408 * 409 * We make sure that the transaction can guarantee at least nblocks of 410 * modified buffers in the log. We block until the log can guarantee 411 * that much space. Additionally, if rsv_blocks > 0, we also create another 412 * handle with rsv_blocks reserved blocks in the journal. This handle is 413 * is stored in h_rsv_handle. It is not attached to any particular transaction 414 * and thus doesn't block transaction commit. If the caller uses this reserved 415 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 416 * on the parent handle will dispose the reserved one. Reserved handle has to 417 * be converted to a normal handle using jbd2_journal_start_reserved() before 418 * it can be used. 419 * 420 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 421 * on failure. 422 */ 423 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 424 gfp_t gfp_mask, unsigned int type, 425 unsigned int line_no) 426 { 427 handle_t *handle = journal_current_handle(); 428 int err; 429 430 if (!journal) 431 return ERR_PTR(-EROFS); 432 433 if (handle) { 434 J_ASSERT(handle->h_transaction->t_journal == journal); 435 handle->h_ref++; 436 return handle; 437 } 438 439 handle = new_handle(nblocks); 440 if (!handle) 441 return ERR_PTR(-ENOMEM); 442 if (rsv_blocks) { 443 handle_t *rsv_handle; 444 445 rsv_handle = new_handle(rsv_blocks); 446 if (!rsv_handle) { 447 jbd2_free_handle(handle); 448 return ERR_PTR(-ENOMEM); 449 } 450 rsv_handle->h_reserved = 1; 451 rsv_handle->h_journal = journal; 452 handle->h_rsv_handle = rsv_handle; 453 } 454 455 err = start_this_handle(journal, handle, gfp_mask); 456 if (err < 0) { 457 if (handle->h_rsv_handle) 458 jbd2_free_handle(handle->h_rsv_handle); 459 jbd2_free_handle(handle); 460 return ERR_PTR(err); 461 } 462 handle->h_type = type; 463 handle->h_line_no = line_no; 464 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 465 handle->h_transaction->t_tid, type, 466 line_no, nblocks); 467 return handle; 468 } 469 EXPORT_SYMBOL(jbd2__journal_start); 470 471 472 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 473 { 474 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 475 } 476 EXPORT_SYMBOL(jbd2_journal_start); 477 478 void jbd2_journal_free_reserved(handle_t *handle) 479 { 480 journal_t *journal = handle->h_journal; 481 482 WARN_ON(!handle->h_reserved); 483 sub_reserved_credits(journal, handle->h_buffer_credits); 484 jbd2_free_handle(handle); 485 } 486 EXPORT_SYMBOL(jbd2_journal_free_reserved); 487 488 /** 489 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 490 * @handle: handle to start 491 * 492 * Start handle that has been previously reserved with jbd2_journal_reserve(). 493 * This attaches @handle to the running transaction (or creates one if there's 494 * not transaction running). Unlike jbd2_journal_start() this function cannot 495 * block on journal commit, checkpointing, or similar stuff. It can block on 496 * memory allocation or frozen journal though. 497 * 498 * Return 0 on success, non-zero on error - handle is freed in that case. 499 */ 500 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 501 unsigned int line_no) 502 { 503 journal_t *journal = handle->h_journal; 504 int ret = -EIO; 505 506 if (WARN_ON(!handle->h_reserved)) { 507 /* Someone passed in normal handle? Just stop it. */ 508 jbd2_journal_stop(handle); 509 return ret; 510 } 511 /* 512 * Usefulness of mixing of reserved and unreserved handles is 513 * questionable. So far nobody seems to need it so just error out. 514 */ 515 if (WARN_ON(current->journal_info)) { 516 jbd2_journal_free_reserved(handle); 517 return ret; 518 } 519 520 handle->h_journal = NULL; 521 /* 522 * GFP_NOFS is here because callers are likely from writeback or 523 * similarly constrained call sites 524 */ 525 ret = start_this_handle(journal, handle, GFP_NOFS); 526 if (ret < 0) { 527 jbd2_journal_free_reserved(handle); 528 return ret; 529 } 530 handle->h_type = type; 531 handle->h_line_no = line_no; 532 return 0; 533 } 534 EXPORT_SYMBOL(jbd2_journal_start_reserved); 535 536 /** 537 * int jbd2_journal_extend() - extend buffer credits. 538 * @handle: handle to 'extend' 539 * @nblocks: nr blocks to try to extend by. 540 * 541 * Some transactions, such as large extends and truncates, can be done 542 * atomically all at once or in several stages. The operation requests 543 * a credit for a number of buffer modifications in advance, but can 544 * extend its credit if it needs more. 545 * 546 * jbd2_journal_extend tries to give the running handle more buffer credits. 547 * It does not guarantee that allocation - this is a best-effort only. 548 * The calling process MUST be able to deal cleanly with a failure to 549 * extend here. 550 * 551 * Return 0 on success, non-zero on failure. 552 * 553 * return code < 0 implies an error 554 * return code > 0 implies normal transaction-full status. 555 */ 556 int jbd2_journal_extend(handle_t *handle, int nblocks) 557 { 558 transaction_t *transaction = handle->h_transaction; 559 journal_t *journal; 560 int result; 561 int wanted; 562 563 if (is_handle_aborted(handle)) 564 return -EROFS; 565 journal = transaction->t_journal; 566 567 result = 1; 568 569 read_lock(&journal->j_state_lock); 570 571 /* Don't extend a locked-down transaction! */ 572 if (transaction->t_state != T_RUNNING) { 573 jbd_debug(3, "denied handle %p %d blocks: " 574 "transaction not running\n", handle, nblocks); 575 goto error_out; 576 } 577 578 spin_lock(&transaction->t_handle_lock); 579 wanted = atomic_add_return(nblocks, 580 &transaction->t_outstanding_credits); 581 582 if (wanted > journal->j_max_transaction_buffers) { 583 jbd_debug(3, "denied handle %p %d blocks: " 584 "transaction too large\n", handle, nblocks); 585 atomic_sub(nblocks, &transaction->t_outstanding_credits); 586 goto unlock; 587 } 588 589 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 590 jbd2_log_space_left(journal)) { 591 jbd_debug(3, "denied handle %p %d blocks: " 592 "insufficient log space\n", handle, nblocks); 593 atomic_sub(nblocks, &transaction->t_outstanding_credits); 594 goto unlock; 595 } 596 597 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 598 transaction->t_tid, 599 handle->h_type, handle->h_line_no, 600 handle->h_buffer_credits, 601 nblocks); 602 603 handle->h_buffer_credits += nblocks; 604 handle->h_requested_credits += nblocks; 605 result = 0; 606 607 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 608 unlock: 609 spin_unlock(&transaction->t_handle_lock); 610 error_out: 611 read_unlock(&journal->j_state_lock); 612 return result; 613 } 614 615 616 /** 617 * int jbd2_journal_restart() - restart a handle . 618 * @handle: handle to restart 619 * @nblocks: nr credits requested 620 * 621 * Restart a handle for a multi-transaction filesystem 622 * operation. 623 * 624 * If the jbd2_journal_extend() call above fails to grant new buffer credits 625 * to a running handle, a call to jbd2_journal_restart will commit the 626 * handle's transaction so far and reattach the handle to a new 627 * transaction capable of guaranteeing the requested number of 628 * credits. We preserve reserved handle if there's any attached to the 629 * passed in handle. 630 */ 631 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 632 { 633 transaction_t *transaction = handle->h_transaction; 634 journal_t *journal; 635 tid_t tid; 636 int need_to_start, ret; 637 638 /* If we've had an abort of any type, don't even think about 639 * actually doing the restart! */ 640 if (is_handle_aborted(handle)) 641 return 0; 642 journal = transaction->t_journal; 643 644 /* 645 * First unlink the handle from its current transaction, and start the 646 * commit on that. 647 */ 648 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 649 J_ASSERT(journal_current_handle() == handle); 650 651 read_lock(&journal->j_state_lock); 652 spin_lock(&transaction->t_handle_lock); 653 atomic_sub(handle->h_buffer_credits, 654 &transaction->t_outstanding_credits); 655 if (handle->h_rsv_handle) { 656 sub_reserved_credits(journal, 657 handle->h_rsv_handle->h_buffer_credits); 658 } 659 if (atomic_dec_and_test(&transaction->t_updates)) 660 wake_up(&journal->j_wait_updates); 661 tid = transaction->t_tid; 662 spin_unlock(&transaction->t_handle_lock); 663 handle->h_transaction = NULL; 664 current->journal_info = NULL; 665 666 jbd_debug(2, "restarting handle %p\n", handle); 667 need_to_start = !tid_geq(journal->j_commit_request, tid); 668 read_unlock(&journal->j_state_lock); 669 if (need_to_start) 670 jbd2_log_start_commit(journal, tid); 671 672 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 673 handle->h_buffer_credits = nblocks; 674 ret = start_this_handle(journal, handle, gfp_mask); 675 return ret; 676 } 677 EXPORT_SYMBOL(jbd2__journal_restart); 678 679 680 int jbd2_journal_restart(handle_t *handle, int nblocks) 681 { 682 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 683 } 684 EXPORT_SYMBOL(jbd2_journal_restart); 685 686 /** 687 * void jbd2_journal_lock_updates () - establish a transaction barrier. 688 * @journal: Journal to establish a barrier on. 689 * 690 * This locks out any further updates from being started, and blocks 691 * until all existing updates have completed, returning only once the 692 * journal is in a quiescent state with no updates running. 693 * 694 * The journal lock should not be held on entry. 695 */ 696 void jbd2_journal_lock_updates(journal_t *journal) 697 { 698 DEFINE_WAIT(wait); 699 700 jbd2_might_wait_for_commit(journal); 701 702 write_lock(&journal->j_state_lock); 703 ++journal->j_barrier_count; 704 705 /* Wait until there are no reserved handles */ 706 if (atomic_read(&journal->j_reserved_credits)) { 707 write_unlock(&journal->j_state_lock); 708 wait_event(journal->j_wait_reserved, 709 atomic_read(&journal->j_reserved_credits) == 0); 710 write_lock(&journal->j_state_lock); 711 } 712 713 /* Wait until there are no running updates */ 714 while (1) { 715 transaction_t *transaction = journal->j_running_transaction; 716 717 if (!transaction) 718 break; 719 720 spin_lock(&transaction->t_handle_lock); 721 prepare_to_wait(&journal->j_wait_updates, &wait, 722 TASK_UNINTERRUPTIBLE); 723 if (!atomic_read(&transaction->t_updates)) { 724 spin_unlock(&transaction->t_handle_lock); 725 finish_wait(&journal->j_wait_updates, &wait); 726 break; 727 } 728 spin_unlock(&transaction->t_handle_lock); 729 write_unlock(&journal->j_state_lock); 730 schedule(); 731 finish_wait(&journal->j_wait_updates, &wait); 732 write_lock(&journal->j_state_lock); 733 } 734 write_unlock(&journal->j_state_lock); 735 736 /* 737 * We have now established a barrier against other normal updates, but 738 * we also need to barrier against other jbd2_journal_lock_updates() calls 739 * to make sure that we serialise special journal-locked operations 740 * too. 741 */ 742 mutex_lock(&journal->j_barrier); 743 } 744 745 /** 746 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 747 * @journal: Journal to release the barrier on. 748 * 749 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 750 * 751 * Should be called without the journal lock held. 752 */ 753 void jbd2_journal_unlock_updates (journal_t *journal) 754 { 755 J_ASSERT(journal->j_barrier_count != 0); 756 757 mutex_unlock(&journal->j_barrier); 758 write_lock(&journal->j_state_lock); 759 --journal->j_barrier_count; 760 write_unlock(&journal->j_state_lock); 761 wake_up(&journal->j_wait_transaction_locked); 762 } 763 764 static void warn_dirty_buffer(struct buffer_head *bh) 765 { 766 printk(KERN_WARNING 767 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 768 "There's a risk of filesystem corruption in case of system " 769 "crash.\n", 770 bh->b_bdev, (unsigned long long)bh->b_blocknr); 771 } 772 773 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 774 static void jbd2_freeze_jh_data(struct journal_head *jh) 775 { 776 struct page *page; 777 int offset; 778 char *source; 779 struct buffer_head *bh = jh2bh(jh); 780 781 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 782 page = bh->b_page; 783 offset = offset_in_page(bh->b_data); 784 source = kmap_atomic(page); 785 /* Fire data frozen trigger just before we copy the data */ 786 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 787 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 788 kunmap_atomic(source); 789 790 /* 791 * Now that the frozen data is saved off, we need to store any matching 792 * triggers. 793 */ 794 jh->b_frozen_triggers = jh->b_triggers; 795 } 796 797 /* 798 * If the buffer is already part of the current transaction, then there 799 * is nothing we need to do. If it is already part of a prior 800 * transaction which we are still committing to disk, then we need to 801 * make sure that we do not overwrite the old copy: we do copy-out to 802 * preserve the copy going to disk. We also account the buffer against 803 * the handle's metadata buffer credits (unless the buffer is already 804 * part of the transaction, that is). 805 * 806 */ 807 static int 808 do_get_write_access(handle_t *handle, struct journal_head *jh, 809 int force_copy) 810 { 811 struct buffer_head *bh; 812 transaction_t *transaction = handle->h_transaction; 813 journal_t *journal; 814 int error; 815 char *frozen_buffer = NULL; 816 unsigned long start_lock, time_lock; 817 818 if (is_handle_aborted(handle)) 819 return -EROFS; 820 journal = transaction->t_journal; 821 822 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 823 824 JBUFFER_TRACE(jh, "entry"); 825 repeat: 826 bh = jh2bh(jh); 827 828 /* @@@ Need to check for errors here at some point. */ 829 830 start_lock = jiffies; 831 lock_buffer(bh); 832 jbd_lock_bh_state(bh); 833 834 /* If it takes too long to lock the buffer, trace it */ 835 time_lock = jbd2_time_diff(start_lock, jiffies); 836 if (time_lock > HZ/10) 837 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 838 jiffies_to_msecs(time_lock)); 839 840 /* We now hold the buffer lock so it is safe to query the buffer 841 * state. Is the buffer dirty? 842 * 843 * If so, there are two possibilities. The buffer may be 844 * non-journaled, and undergoing a quite legitimate writeback. 845 * Otherwise, it is journaled, and we don't expect dirty buffers 846 * in that state (the buffers should be marked JBD_Dirty 847 * instead.) So either the IO is being done under our own 848 * control and this is a bug, or it's a third party IO such as 849 * dump(8) (which may leave the buffer scheduled for read --- 850 * ie. locked but not dirty) or tune2fs (which may actually have 851 * the buffer dirtied, ugh.) */ 852 853 if (buffer_dirty(bh)) { 854 /* 855 * First question: is this buffer already part of the current 856 * transaction or the existing committing transaction? 857 */ 858 if (jh->b_transaction) { 859 J_ASSERT_JH(jh, 860 jh->b_transaction == transaction || 861 jh->b_transaction == 862 journal->j_committing_transaction); 863 if (jh->b_next_transaction) 864 J_ASSERT_JH(jh, jh->b_next_transaction == 865 transaction); 866 warn_dirty_buffer(bh); 867 } 868 /* 869 * In any case we need to clean the dirty flag and we must 870 * do it under the buffer lock to be sure we don't race 871 * with running write-out. 872 */ 873 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 874 clear_buffer_dirty(bh); 875 set_buffer_jbddirty(bh); 876 } 877 878 unlock_buffer(bh); 879 880 error = -EROFS; 881 if (is_handle_aborted(handle)) { 882 jbd_unlock_bh_state(bh); 883 goto out; 884 } 885 error = 0; 886 887 /* 888 * The buffer is already part of this transaction if b_transaction or 889 * b_next_transaction points to it 890 */ 891 if (jh->b_transaction == transaction || 892 jh->b_next_transaction == transaction) 893 goto done; 894 895 /* 896 * this is the first time this transaction is touching this buffer, 897 * reset the modified flag 898 */ 899 jh->b_modified = 0; 900 901 /* 902 * If the buffer is not journaled right now, we need to make sure it 903 * doesn't get written to disk before the caller actually commits the 904 * new data 905 */ 906 if (!jh->b_transaction) { 907 JBUFFER_TRACE(jh, "no transaction"); 908 J_ASSERT_JH(jh, !jh->b_next_transaction); 909 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 910 /* 911 * Make sure all stores to jh (b_modified, b_frozen_data) are 912 * visible before attaching it to the running transaction. 913 * Paired with barrier in jbd2_write_access_granted() 914 */ 915 smp_wmb(); 916 spin_lock(&journal->j_list_lock); 917 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 918 spin_unlock(&journal->j_list_lock); 919 goto done; 920 } 921 /* 922 * If there is already a copy-out version of this buffer, then we don't 923 * need to make another one 924 */ 925 if (jh->b_frozen_data) { 926 JBUFFER_TRACE(jh, "has frozen data"); 927 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 928 goto attach_next; 929 } 930 931 JBUFFER_TRACE(jh, "owned by older transaction"); 932 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 933 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 934 935 /* 936 * There is one case we have to be very careful about. If the 937 * committing transaction is currently writing this buffer out to disk 938 * and has NOT made a copy-out, then we cannot modify the buffer 939 * contents at all right now. The essence of copy-out is that it is 940 * the extra copy, not the primary copy, which gets journaled. If the 941 * primary copy is already going to disk then we cannot do copy-out 942 * here. 943 */ 944 if (buffer_shadow(bh)) { 945 JBUFFER_TRACE(jh, "on shadow: sleep"); 946 jbd_unlock_bh_state(bh); 947 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 948 goto repeat; 949 } 950 951 /* 952 * Only do the copy if the currently-owning transaction still needs it. 953 * If buffer isn't on BJ_Metadata list, the committing transaction is 954 * past that stage (here we use the fact that BH_Shadow is set under 955 * bh_state lock together with refiling to BJ_Shadow list and at this 956 * point we know the buffer doesn't have BH_Shadow set). 957 * 958 * Subtle point, though: if this is a get_undo_access, then we will be 959 * relying on the frozen_data to contain the new value of the 960 * committed_data record after the transaction, so we HAVE to force the 961 * frozen_data copy in that case. 962 */ 963 if (jh->b_jlist == BJ_Metadata || force_copy) { 964 JBUFFER_TRACE(jh, "generate frozen data"); 965 if (!frozen_buffer) { 966 JBUFFER_TRACE(jh, "allocate memory for buffer"); 967 jbd_unlock_bh_state(bh); 968 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 969 GFP_NOFS | __GFP_NOFAIL); 970 goto repeat; 971 } 972 jh->b_frozen_data = frozen_buffer; 973 frozen_buffer = NULL; 974 jbd2_freeze_jh_data(jh); 975 } 976 attach_next: 977 /* 978 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 979 * before attaching it to the running transaction. Paired with barrier 980 * in jbd2_write_access_granted() 981 */ 982 smp_wmb(); 983 jh->b_next_transaction = transaction; 984 985 done: 986 jbd_unlock_bh_state(bh); 987 988 /* 989 * If we are about to journal a buffer, then any revoke pending on it is 990 * no longer valid 991 */ 992 jbd2_journal_cancel_revoke(handle, jh); 993 994 out: 995 if (unlikely(frozen_buffer)) /* It's usually NULL */ 996 jbd2_free(frozen_buffer, bh->b_size); 997 998 JBUFFER_TRACE(jh, "exit"); 999 return error; 1000 } 1001 1002 /* Fast check whether buffer is already attached to the required transaction */ 1003 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1004 bool undo) 1005 { 1006 struct journal_head *jh; 1007 bool ret = false; 1008 1009 /* Dirty buffers require special handling... */ 1010 if (buffer_dirty(bh)) 1011 return false; 1012 1013 /* 1014 * RCU protects us from dereferencing freed pages. So the checks we do 1015 * are guaranteed not to oops. However the jh slab object can get freed 1016 * & reallocated while we work with it. So we have to be careful. When 1017 * we see jh attached to the running transaction, we know it must stay 1018 * so until the transaction is committed. Thus jh won't be freed and 1019 * will be attached to the same bh while we run. However it can 1020 * happen jh gets freed, reallocated, and attached to the transaction 1021 * just after we get pointer to it from bh. So we have to be careful 1022 * and recheck jh still belongs to our bh before we return success. 1023 */ 1024 rcu_read_lock(); 1025 if (!buffer_jbd(bh)) 1026 goto out; 1027 /* This should be bh2jh() but that doesn't work with inline functions */ 1028 jh = READ_ONCE(bh->b_private); 1029 if (!jh) 1030 goto out; 1031 /* For undo access buffer must have data copied */ 1032 if (undo && !jh->b_committed_data) 1033 goto out; 1034 if (jh->b_transaction != handle->h_transaction && 1035 jh->b_next_transaction != handle->h_transaction) 1036 goto out; 1037 /* 1038 * There are two reasons for the barrier here: 1039 * 1) Make sure to fetch b_bh after we did previous checks so that we 1040 * detect when jh went through free, realloc, attach to transaction 1041 * while we were checking. Paired with implicit barrier in that path. 1042 * 2) So that access to bh done after jbd2_write_access_granted() 1043 * doesn't get reordered and see inconsistent state of concurrent 1044 * do_get_write_access(). 1045 */ 1046 smp_mb(); 1047 if (unlikely(jh->b_bh != bh)) 1048 goto out; 1049 ret = true; 1050 out: 1051 rcu_read_unlock(); 1052 return ret; 1053 } 1054 1055 /** 1056 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1057 * @handle: transaction to add buffer modifications to 1058 * @bh: bh to be used for metadata writes 1059 * 1060 * Returns an error code or 0 on success. 1061 * 1062 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1063 * because we're write()ing a buffer which is also part of a shared mapping. 1064 */ 1065 1066 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1067 { 1068 struct journal_head *jh; 1069 int rc; 1070 1071 if (jbd2_write_access_granted(handle, bh, false)) 1072 return 0; 1073 1074 jh = jbd2_journal_add_journal_head(bh); 1075 /* We do not want to get caught playing with fields which the 1076 * log thread also manipulates. Make sure that the buffer 1077 * completes any outstanding IO before proceeding. */ 1078 rc = do_get_write_access(handle, jh, 0); 1079 jbd2_journal_put_journal_head(jh); 1080 return rc; 1081 } 1082 1083 1084 /* 1085 * When the user wants to journal a newly created buffer_head 1086 * (ie. getblk() returned a new buffer and we are going to populate it 1087 * manually rather than reading off disk), then we need to keep the 1088 * buffer_head locked until it has been completely filled with new 1089 * data. In this case, we should be able to make the assertion that 1090 * the bh is not already part of an existing transaction. 1091 * 1092 * The buffer should already be locked by the caller by this point. 1093 * There is no lock ranking violation: it was a newly created, 1094 * unlocked buffer beforehand. */ 1095 1096 /** 1097 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1098 * @handle: transaction to new buffer to 1099 * @bh: new buffer. 1100 * 1101 * Call this if you create a new bh. 1102 */ 1103 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1104 { 1105 transaction_t *transaction = handle->h_transaction; 1106 journal_t *journal; 1107 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1108 int err; 1109 1110 jbd_debug(5, "journal_head %p\n", jh); 1111 err = -EROFS; 1112 if (is_handle_aborted(handle)) 1113 goto out; 1114 journal = transaction->t_journal; 1115 err = 0; 1116 1117 JBUFFER_TRACE(jh, "entry"); 1118 /* 1119 * The buffer may already belong to this transaction due to pre-zeroing 1120 * in the filesystem's new_block code. It may also be on the previous, 1121 * committing transaction's lists, but it HAS to be in Forget state in 1122 * that case: the transaction must have deleted the buffer for it to be 1123 * reused here. 1124 */ 1125 jbd_lock_bh_state(bh); 1126 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1127 jh->b_transaction == NULL || 1128 (jh->b_transaction == journal->j_committing_transaction && 1129 jh->b_jlist == BJ_Forget))); 1130 1131 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1132 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1133 1134 if (jh->b_transaction == NULL) { 1135 /* 1136 * Previous jbd2_journal_forget() could have left the buffer 1137 * with jbddirty bit set because it was being committed. When 1138 * the commit finished, we've filed the buffer for 1139 * checkpointing and marked it dirty. Now we are reallocating 1140 * the buffer so the transaction freeing it must have 1141 * committed and so it's safe to clear the dirty bit. 1142 */ 1143 clear_buffer_dirty(jh2bh(jh)); 1144 /* first access by this transaction */ 1145 jh->b_modified = 0; 1146 1147 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1148 spin_lock(&journal->j_list_lock); 1149 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1150 } else if (jh->b_transaction == journal->j_committing_transaction) { 1151 /* first access by this transaction */ 1152 jh->b_modified = 0; 1153 1154 JBUFFER_TRACE(jh, "set next transaction"); 1155 spin_lock(&journal->j_list_lock); 1156 jh->b_next_transaction = transaction; 1157 } 1158 spin_unlock(&journal->j_list_lock); 1159 jbd_unlock_bh_state(bh); 1160 1161 /* 1162 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1163 * blocks which contain freed but then revoked metadata. We need 1164 * to cancel the revoke in case we end up freeing it yet again 1165 * and the reallocating as data - this would cause a second revoke, 1166 * which hits an assertion error. 1167 */ 1168 JBUFFER_TRACE(jh, "cancelling revoke"); 1169 jbd2_journal_cancel_revoke(handle, jh); 1170 out: 1171 jbd2_journal_put_journal_head(jh); 1172 return err; 1173 } 1174 1175 /** 1176 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1177 * non-rewindable consequences 1178 * @handle: transaction 1179 * @bh: buffer to undo 1180 * 1181 * Sometimes there is a need to distinguish between metadata which has 1182 * been committed to disk and that which has not. The ext3fs code uses 1183 * this for freeing and allocating space, we have to make sure that we 1184 * do not reuse freed space until the deallocation has been committed, 1185 * since if we overwrote that space we would make the delete 1186 * un-rewindable in case of a crash. 1187 * 1188 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1189 * buffer for parts of non-rewindable operations such as delete 1190 * operations on the bitmaps. The journaling code must keep a copy of 1191 * the buffer's contents prior to the undo_access call until such time 1192 * as we know that the buffer has definitely been committed to disk. 1193 * 1194 * We never need to know which transaction the committed data is part 1195 * of, buffers touched here are guaranteed to be dirtied later and so 1196 * will be committed to a new transaction in due course, at which point 1197 * we can discard the old committed data pointer. 1198 * 1199 * Returns error number or 0 on success. 1200 */ 1201 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1202 { 1203 int err; 1204 struct journal_head *jh; 1205 char *committed_data = NULL; 1206 1207 JBUFFER_TRACE(jh, "entry"); 1208 if (jbd2_write_access_granted(handle, bh, true)) 1209 return 0; 1210 1211 jh = jbd2_journal_add_journal_head(bh); 1212 /* 1213 * Do this first --- it can drop the journal lock, so we want to 1214 * make sure that obtaining the committed_data is done 1215 * atomically wrt. completion of any outstanding commits. 1216 */ 1217 err = do_get_write_access(handle, jh, 1); 1218 if (err) 1219 goto out; 1220 1221 repeat: 1222 if (!jh->b_committed_data) 1223 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1224 GFP_NOFS|__GFP_NOFAIL); 1225 1226 jbd_lock_bh_state(bh); 1227 if (!jh->b_committed_data) { 1228 /* Copy out the current buffer contents into the 1229 * preserved, committed copy. */ 1230 JBUFFER_TRACE(jh, "generate b_committed data"); 1231 if (!committed_data) { 1232 jbd_unlock_bh_state(bh); 1233 goto repeat; 1234 } 1235 1236 jh->b_committed_data = committed_data; 1237 committed_data = NULL; 1238 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1239 } 1240 jbd_unlock_bh_state(bh); 1241 out: 1242 jbd2_journal_put_journal_head(jh); 1243 if (unlikely(committed_data)) 1244 jbd2_free(committed_data, bh->b_size); 1245 return err; 1246 } 1247 1248 /** 1249 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1250 * @bh: buffer to trigger on 1251 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1252 * 1253 * Set any triggers on this journal_head. This is always safe, because 1254 * triggers for a committing buffer will be saved off, and triggers for 1255 * a running transaction will match the buffer in that transaction. 1256 * 1257 * Call with NULL to clear the triggers. 1258 */ 1259 void jbd2_journal_set_triggers(struct buffer_head *bh, 1260 struct jbd2_buffer_trigger_type *type) 1261 { 1262 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1263 1264 if (WARN_ON(!jh)) 1265 return; 1266 jh->b_triggers = type; 1267 jbd2_journal_put_journal_head(jh); 1268 } 1269 1270 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1271 struct jbd2_buffer_trigger_type *triggers) 1272 { 1273 struct buffer_head *bh = jh2bh(jh); 1274 1275 if (!triggers || !triggers->t_frozen) 1276 return; 1277 1278 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1279 } 1280 1281 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1282 struct jbd2_buffer_trigger_type *triggers) 1283 { 1284 if (!triggers || !triggers->t_abort) 1285 return; 1286 1287 triggers->t_abort(triggers, jh2bh(jh)); 1288 } 1289 1290 /** 1291 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1292 * @handle: transaction to add buffer to. 1293 * @bh: buffer to mark 1294 * 1295 * mark dirty metadata which needs to be journaled as part of the current 1296 * transaction. 1297 * 1298 * The buffer must have previously had jbd2_journal_get_write_access() 1299 * called so that it has a valid journal_head attached to the buffer 1300 * head. 1301 * 1302 * The buffer is placed on the transaction's metadata list and is marked 1303 * as belonging to the transaction. 1304 * 1305 * Returns error number or 0 on success. 1306 * 1307 * Special care needs to be taken if the buffer already belongs to the 1308 * current committing transaction (in which case we should have frozen 1309 * data present for that commit). In that case, we don't relink the 1310 * buffer: that only gets done when the old transaction finally 1311 * completes its commit. 1312 */ 1313 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1314 { 1315 transaction_t *transaction = handle->h_transaction; 1316 journal_t *journal; 1317 struct journal_head *jh; 1318 int ret = 0; 1319 1320 if (is_handle_aborted(handle)) 1321 return -EROFS; 1322 if (!buffer_jbd(bh)) { 1323 ret = -EUCLEAN; 1324 goto out; 1325 } 1326 /* 1327 * We don't grab jh reference here since the buffer must be part 1328 * of the running transaction. 1329 */ 1330 jh = bh2jh(bh); 1331 /* 1332 * This and the following assertions are unreliable since we may see jh 1333 * in inconsistent state unless we grab bh_state lock. But this is 1334 * crucial to catch bugs so let's do a reliable check until the 1335 * lockless handling is fully proven. 1336 */ 1337 if (jh->b_transaction != transaction && 1338 jh->b_next_transaction != transaction) { 1339 jbd_lock_bh_state(bh); 1340 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1341 jh->b_next_transaction == transaction); 1342 jbd_unlock_bh_state(bh); 1343 } 1344 if (jh->b_modified == 1) { 1345 /* If it's in our transaction it must be in BJ_Metadata list. */ 1346 if (jh->b_transaction == transaction && 1347 jh->b_jlist != BJ_Metadata) { 1348 jbd_lock_bh_state(bh); 1349 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1350 jh->b_jlist == BJ_Metadata); 1351 jbd_unlock_bh_state(bh); 1352 } 1353 goto out; 1354 } 1355 1356 journal = transaction->t_journal; 1357 jbd_debug(5, "journal_head %p\n", jh); 1358 JBUFFER_TRACE(jh, "entry"); 1359 1360 jbd_lock_bh_state(bh); 1361 1362 if (jh->b_modified == 0) { 1363 /* 1364 * This buffer's got modified and becoming part 1365 * of the transaction. This needs to be done 1366 * once a transaction -bzzz 1367 */ 1368 jh->b_modified = 1; 1369 if (handle->h_buffer_credits <= 0) { 1370 ret = -ENOSPC; 1371 goto out_unlock_bh; 1372 } 1373 handle->h_buffer_credits--; 1374 } 1375 1376 /* 1377 * fastpath, to avoid expensive locking. If this buffer is already 1378 * on the running transaction's metadata list there is nothing to do. 1379 * Nobody can take it off again because there is a handle open. 1380 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1381 * result in this test being false, so we go in and take the locks. 1382 */ 1383 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1384 JBUFFER_TRACE(jh, "fastpath"); 1385 if (unlikely(jh->b_transaction != 1386 journal->j_running_transaction)) { 1387 printk(KERN_ERR "JBD2: %s: " 1388 "jh->b_transaction (%llu, %p, %u) != " 1389 "journal->j_running_transaction (%p, %u)\n", 1390 journal->j_devname, 1391 (unsigned long long) bh->b_blocknr, 1392 jh->b_transaction, 1393 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1394 journal->j_running_transaction, 1395 journal->j_running_transaction ? 1396 journal->j_running_transaction->t_tid : 0); 1397 ret = -EINVAL; 1398 } 1399 goto out_unlock_bh; 1400 } 1401 1402 set_buffer_jbddirty(bh); 1403 1404 /* 1405 * Metadata already on the current transaction list doesn't 1406 * need to be filed. Metadata on another transaction's list must 1407 * be committing, and will be refiled once the commit completes: 1408 * leave it alone for now. 1409 */ 1410 if (jh->b_transaction != transaction) { 1411 JBUFFER_TRACE(jh, "already on other transaction"); 1412 if (unlikely(((jh->b_transaction != 1413 journal->j_committing_transaction)) || 1414 (jh->b_next_transaction != transaction))) { 1415 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1416 "bad jh for block %llu: " 1417 "transaction (%p, %u), " 1418 "jh->b_transaction (%p, %u), " 1419 "jh->b_next_transaction (%p, %u), jlist %u\n", 1420 journal->j_devname, 1421 (unsigned long long) bh->b_blocknr, 1422 transaction, transaction->t_tid, 1423 jh->b_transaction, 1424 jh->b_transaction ? 1425 jh->b_transaction->t_tid : 0, 1426 jh->b_next_transaction, 1427 jh->b_next_transaction ? 1428 jh->b_next_transaction->t_tid : 0, 1429 jh->b_jlist); 1430 WARN_ON(1); 1431 ret = -EINVAL; 1432 } 1433 /* And this case is illegal: we can't reuse another 1434 * transaction's data buffer, ever. */ 1435 goto out_unlock_bh; 1436 } 1437 1438 /* That test should have eliminated the following case: */ 1439 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1440 1441 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1442 spin_lock(&journal->j_list_lock); 1443 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1444 spin_unlock(&journal->j_list_lock); 1445 out_unlock_bh: 1446 jbd_unlock_bh_state(bh); 1447 out: 1448 JBUFFER_TRACE(jh, "exit"); 1449 return ret; 1450 } 1451 1452 /** 1453 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1454 * @handle: transaction handle 1455 * @bh: bh to 'forget' 1456 * 1457 * We can only do the bforget if there are no commits pending against the 1458 * buffer. If the buffer is dirty in the current running transaction we 1459 * can safely unlink it. 1460 * 1461 * bh may not be a journalled buffer at all - it may be a non-JBD 1462 * buffer which came off the hashtable. Check for this. 1463 * 1464 * Decrements bh->b_count by one. 1465 * 1466 * Allow this call even if the handle has aborted --- it may be part of 1467 * the caller's cleanup after an abort. 1468 */ 1469 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1470 { 1471 transaction_t *transaction = handle->h_transaction; 1472 journal_t *journal; 1473 struct journal_head *jh; 1474 int drop_reserve = 0; 1475 int err = 0; 1476 int was_modified = 0; 1477 1478 if (is_handle_aborted(handle)) 1479 return -EROFS; 1480 journal = transaction->t_journal; 1481 1482 BUFFER_TRACE(bh, "entry"); 1483 1484 jbd_lock_bh_state(bh); 1485 1486 if (!buffer_jbd(bh)) 1487 goto not_jbd; 1488 jh = bh2jh(bh); 1489 1490 /* Critical error: attempting to delete a bitmap buffer, maybe? 1491 * Don't do any jbd operations, and return an error. */ 1492 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1493 "inconsistent data on disk")) { 1494 err = -EIO; 1495 goto not_jbd; 1496 } 1497 1498 /* keep track of whether or not this transaction modified us */ 1499 was_modified = jh->b_modified; 1500 1501 /* 1502 * The buffer's going from the transaction, we must drop 1503 * all references -bzzz 1504 */ 1505 jh->b_modified = 0; 1506 1507 if (jh->b_transaction == transaction) { 1508 J_ASSERT_JH(jh, !jh->b_frozen_data); 1509 1510 /* If we are forgetting a buffer which is already part 1511 * of this transaction, then we can just drop it from 1512 * the transaction immediately. */ 1513 clear_buffer_dirty(bh); 1514 clear_buffer_jbddirty(bh); 1515 1516 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1517 1518 /* 1519 * we only want to drop a reference if this transaction 1520 * modified the buffer 1521 */ 1522 if (was_modified) 1523 drop_reserve = 1; 1524 1525 /* 1526 * We are no longer going to journal this buffer. 1527 * However, the commit of this transaction is still 1528 * important to the buffer: the delete that we are now 1529 * processing might obsolete an old log entry, so by 1530 * committing, we can satisfy the buffer's checkpoint. 1531 * 1532 * So, if we have a checkpoint on the buffer, we should 1533 * now refile the buffer on our BJ_Forget list so that 1534 * we know to remove the checkpoint after we commit. 1535 */ 1536 1537 spin_lock(&journal->j_list_lock); 1538 if (jh->b_cp_transaction) { 1539 __jbd2_journal_temp_unlink_buffer(jh); 1540 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1541 } else { 1542 __jbd2_journal_unfile_buffer(jh); 1543 if (!buffer_jbd(bh)) { 1544 spin_unlock(&journal->j_list_lock); 1545 jbd_unlock_bh_state(bh); 1546 __bforget(bh); 1547 goto drop; 1548 } 1549 } 1550 spin_unlock(&journal->j_list_lock); 1551 } else if (jh->b_transaction) { 1552 J_ASSERT_JH(jh, (jh->b_transaction == 1553 journal->j_committing_transaction)); 1554 /* However, if the buffer is still owned by a prior 1555 * (committing) transaction, we can't drop it yet... */ 1556 JBUFFER_TRACE(jh, "belongs to older transaction"); 1557 /* ... but we CAN drop it from the new transaction if we 1558 * have also modified it since the original commit. */ 1559 1560 if (jh->b_next_transaction) { 1561 J_ASSERT(jh->b_next_transaction == transaction); 1562 spin_lock(&journal->j_list_lock); 1563 jh->b_next_transaction = NULL; 1564 spin_unlock(&journal->j_list_lock); 1565 1566 /* 1567 * only drop a reference if this transaction modified 1568 * the buffer 1569 */ 1570 if (was_modified) 1571 drop_reserve = 1; 1572 } 1573 } 1574 1575 not_jbd: 1576 jbd_unlock_bh_state(bh); 1577 __brelse(bh); 1578 drop: 1579 if (drop_reserve) { 1580 /* no need to reserve log space for this block -bzzz */ 1581 handle->h_buffer_credits++; 1582 } 1583 return err; 1584 } 1585 1586 /** 1587 * int jbd2_journal_stop() - complete a transaction 1588 * @handle: transaction to complete. 1589 * 1590 * All done for a particular handle. 1591 * 1592 * There is not much action needed here. We just return any remaining 1593 * buffer credits to the transaction and remove the handle. The only 1594 * complication is that we need to start a commit operation if the 1595 * filesystem is marked for synchronous update. 1596 * 1597 * jbd2_journal_stop itself will not usually return an error, but it may 1598 * do so in unusual circumstances. In particular, expect it to 1599 * return -EIO if a jbd2_journal_abort has been executed since the 1600 * transaction began. 1601 */ 1602 int jbd2_journal_stop(handle_t *handle) 1603 { 1604 transaction_t *transaction = handle->h_transaction; 1605 journal_t *journal; 1606 int err = 0, wait_for_commit = 0; 1607 tid_t tid; 1608 pid_t pid; 1609 1610 if (!transaction) { 1611 /* 1612 * Handle is already detached from the transaction so 1613 * there is nothing to do other than decrease a refcount, 1614 * or free the handle if refcount drops to zero 1615 */ 1616 if (--handle->h_ref > 0) { 1617 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1618 handle->h_ref); 1619 return err; 1620 } else { 1621 if (handle->h_rsv_handle) 1622 jbd2_free_handle(handle->h_rsv_handle); 1623 goto free_and_exit; 1624 } 1625 } 1626 journal = transaction->t_journal; 1627 1628 J_ASSERT(journal_current_handle() == handle); 1629 1630 if (is_handle_aborted(handle)) 1631 err = -EIO; 1632 else 1633 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1634 1635 if (--handle->h_ref > 0) { 1636 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1637 handle->h_ref); 1638 return err; 1639 } 1640 1641 jbd_debug(4, "Handle %p going down\n", handle); 1642 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1643 transaction->t_tid, 1644 handle->h_type, handle->h_line_no, 1645 jiffies - handle->h_start_jiffies, 1646 handle->h_sync, handle->h_requested_credits, 1647 (handle->h_requested_credits - 1648 handle->h_buffer_credits)); 1649 1650 /* 1651 * Implement synchronous transaction batching. If the handle 1652 * was synchronous, don't force a commit immediately. Let's 1653 * yield and let another thread piggyback onto this 1654 * transaction. Keep doing that while new threads continue to 1655 * arrive. It doesn't cost much - we're about to run a commit 1656 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1657 * operations by 30x or more... 1658 * 1659 * We try and optimize the sleep time against what the 1660 * underlying disk can do, instead of having a static sleep 1661 * time. This is useful for the case where our storage is so 1662 * fast that it is more optimal to go ahead and force a flush 1663 * and wait for the transaction to be committed than it is to 1664 * wait for an arbitrary amount of time for new writers to 1665 * join the transaction. We achieve this by measuring how 1666 * long it takes to commit a transaction, and compare it with 1667 * how long this transaction has been running, and if run time 1668 * < commit time then we sleep for the delta and commit. This 1669 * greatly helps super fast disks that would see slowdowns as 1670 * more threads started doing fsyncs. 1671 * 1672 * But don't do this if this process was the most recent one 1673 * to perform a synchronous write. We do this to detect the 1674 * case where a single process is doing a stream of sync 1675 * writes. No point in waiting for joiners in that case. 1676 * 1677 * Setting max_batch_time to 0 disables this completely. 1678 */ 1679 pid = current->pid; 1680 if (handle->h_sync && journal->j_last_sync_writer != pid && 1681 journal->j_max_batch_time) { 1682 u64 commit_time, trans_time; 1683 1684 journal->j_last_sync_writer = pid; 1685 1686 read_lock(&journal->j_state_lock); 1687 commit_time = journal->j_average_commit_time; 1688 read_unlock(&journal->j_state_lock); 1689 1690 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1691 transaction->t_start_time)); 1692 1693 commit_time = max_t(u64, commit_time, 1694 1000*journal->j_min_batch_time); 1695 commit_time = min_t(u64, commit_time, 1696 1000*journal->j_max_batch_time); 1697 1698 if (trans_time < commit_time) { 1699 ktime_t expires = ktime_add_ns(ktime_get(), 1700 commit_time); 1701 set_current_state(TASK_UNINTERRUPTIBLE); 1702 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1703 } 1704 } 1705 1706 if (handle->h_sync) 1707 transaction->t_synchronous_commit = 1; 1708 current->journal_info = NULL; 1709 atomic_sub(handle->h_buffer_credits, 1710 &transaction->t_outstanding_credits); 1711 1712 /* 1713 * If the handle is marked SYNC, we need to set another commit 1714 * going! We also want to force a commit if the current 1715 * transaction is occupying too much of the log, or if the 1716 * transaction is too old now. 1717 */ 1718 if (handle->h_sync || 1719 (atomic_read(&transaction->t_outstanding_credits) > 1720 journal->j_max_transaction_buffers) || 1721 time_after_eq(jiffies, transaction->t_expires)) { 1722 /* Do this even for aborted journals: an abort still 1723 * completes the commit thread, it just doesn't write 1724 * anything to disk. */ 1725 1726 jbd_debug(2, "transaction too old, requesting commit for " 1727 "handle %p\n", handle); 1728 /* This is non-blocking */ 1729 jbd2_log_start_commit(journal, transaction->t_tid); 1730 1731 /* 1732 * Special case: JBD2_SYNC synchronous updates require us 1733 * to wait for the commit to complete. 1734 */ 1735 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1736 wait_for_commit = 1; 1737 } 1738 1739 /* 1740 * Once we drop t_updates, if it goes to zero the transaction 1741 * could start committing on us and eventually disappear. So 1742 * once we do this, we must not dereference transaction 1743 * pointer again. 1744 */ 1745 tid = transaction->t_tid; 1746 if (atomic_dec_and_test(&transaction->t_updates)) { 1747 wake_up(&journal->j_wait_updates); 1748 if (journal->j_barrier_count) 1749 wake_up(&journal->j_wait_transaction_locked); 1750 } 1751 1752 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1753 1754 if (wait_for_commit) 1755 err = jbd2_log_wait_commit(journal, tid); 1756 1757 if (handle->h_rsv_handle) 1758 jbd2_journal_free_reserved(handle->h_rsv_handle); 1759 free_and_exit: 1760 jbd2_free_handle(handle); 1761 return err; 1762 } 1763 1764 /* 1765 * 1766 * List management code snippets: various functions for manipulating the 1767 * transaction buffer lists. 1768 * 1769 */ 1770 1771 /* 1772 * Append a buffer to a transaction list, given the transaction's list head 1773 * pointer. 1774 * 1775 * j_list_lock is held. 1776 * 1777 * jbd_lock_bh_state(jh2bh(jh)) is held. 1778 */ 1779 1780 static inline void 1781 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1782 { 1783 if (!*list) { 1784 jh->b_tnext = jh->b_tprev = jh; 1785 *list = jh; 1786 } else { 1787 /* Insert at the tail of the list to preserve order */ 1788 struct journal_head *first = *list, *last = first->b_tprev; 1789 jh->b_tprev = last; 1790 jh->b_tnext = first; 1791 last->b_tnext = first->b_tprev = jh; 1792 } 1793 } 1794 1795 /* 1796 * Remove a buffer from a transaction list, given the transaction's list 1797 * head pointer. 1798 * 1799 * Called with j_list_lock held, and the journal may not be locked. 1800 * 1801 * jbd_lock_bh_state(jh2bh(jh)) is held. 1802 */ 1803 1804 static inline void 1805 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1806 { 1807 if (*list == jh) { 1808 *list = jh->b_tnext; 1809 if (*list == jh) 1810 *list = NULL; 1811 } 1812 jh->b_tprev->b_tnext = jh->b_tnext; 1813 jh->b_tnext->b_tprev = jh->b_tprev; 1814 } 1815 1816 /* 1817 * Remove a buffer from the appropriate transaction list. 1818 * 1819 * Note that this function can *change* the value of 1820 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1821 * t_reserved_list. If the caller is holding onto a copy of one of these 1822 * pointers, it could go bad. Generally the caller needs to re-read the 1823 * pointer from the transaction_t. 1824 * 1825 * Called under j_list_lock. 1826 */ 1827 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1828 { 1829 struct journal_head **list = NULL; 1830 transaction_t *transaction; 1831 struct buffer_head *bh = jh2bh(jh); 1832 1833 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1834 transaction = jh->b_transaction; 1835 if (transaction) 1836 assert_spin_locked(&transaction->t_journal->j_list_lock); 1837 1838 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1839 if (jh->b_jlist != BJ_None) 1840 J_ASSERT_JH(jh, transaction != NULL); 1841 1842 switch (jh->b_jlist) { 1843 case BJ_None: 1844 return; 1845 case BJ_Metadata: 1846 transaction->t_nr_buffers--; 1847 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1848 list = &transaction->t_buffers; 1849 break; 1850 case BJ_Forget: 1851 list = &transaction->t_forget; 1852 break; 1853 case BJ_Shadow: 1854 list = &transaction->t_shadow_list; 1855 break; 1856 case BJ_Reserved: 1857 list = &transaction->t_reserved_list; 1858 break; 1859 } 1860 1861 __blist_del_buffer(list, jh); 1862 jh->b_jlist = BJ_None; 1863 if (test_clear_buffer_jbddirty(bh)) 1864 mark_buffer_dirty(bh); /* Expose it to the VM */ 1865 } 1866 1867 /* 1868 * Remove buffer from all transactions. 1869 * 1870 * Called with bh_state lock and j_list_lock 1871 * 1872 * jh and bh may be already freed when this function returns. 1873 */ 1874 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1875 { 1876 __jbd2_journal_temp_unlink_buffer(jh); 1877 jh->b_transaction = NULL; 1878 jbd2_journal_put_journal_head(jh); 1879 } 1880 1881 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1882 { 1883 struct buffer_head *bh = jh2bh(jh); 1884 1885 /* Get reference so that buffer cannot be freed before we unlock it */ 1886 get_bh(bh); 1887 jbd_lock_bh_state(bh); 1888 spin_lock(&journal->j_list_lock); 1889 __jbd2_journal_unfile_buffer(jh); 1890 spin_unlock(&journal->j_list_lock); 1891 jbd_unlock_bh_state(bh); 1892 __brelse(bh); 1893 } 1894 1895 /* 1896 * Called from jbd2_journal_try_to_free_buffers(). 1897 * 1898 * Called under jbd_lock_bh_state(bh) 1899 */ 1900 static void 1901 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1902 { 1903 struct journal_head *jh; 1904 1905 jh = bh2jh(bh); 1906 1907 if (buffer_locked(bh) || buffer_dirty(bh)) 1908 goto out; 1909 1910 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1911 goto out; 1912 1913 spin_lock(&journal->j_list_lock); 1914 if (jh->b_cp_transaction != NULL) { 1915 /* written-back checkpointed metadata buffer */ 1916 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1917 __jbd2_journal_remove_checkpoint(jh); 1918 } 1919 spin_unlock(&journal->j_list_lock); 1920 out: 1921 return; 1922 } 1923 1924 /** 1925 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1926 * @journal: journal for operation 1927 * @page: to try and free 1928 * @gfp_mask: we use the mask to detect how hard should we try to release 1929 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 1930 * code to release the buffers. 1931 * 1932 * 1933 * For all the buffers on this page, 1934 * if they are fully written out ordered data, move them onto BUF_CLEAN 1935 * so try_to_free_buffers() can reap them. 1936 * 1937 * This function returns non-zero if we wish try_to_free_buffers() 1938 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1939 * We also do it if the page has locked or dirty buffers and the caller wants 1940 * us to perform sync or async writeout. 1941 * 1942 * This complicates JBD locking somewhat. We aren't protected by the 1943 * BKL here. We wish to remove the buffer from its committing or 1944 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1945 * 1946 * This may *change* the value of transaction_t->t_datalist, so anyone 1947 * who looks at t_datalist needs to lock against this function. 1948 * 1949 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1950 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1951 * will come out of the lock with the buffer dirty, which makes it 1952 * ineligible for release here. 1953 * 1954 * Who else is affected by this? hmm... Really the only contender 1955 * is do_get_write_access() - it could be looking at the buffer while 1956 * journal_try_to_free_buffer() is changing its state. But that 1957 * cannot happen because we never reallocate freed data as metadata 1958 * while the data is part of a transaction. Yes? 1959 * 1960 * Return 0 on failure, 1 on success 1961 */ 1962 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1963 struct page *page, gfp_t gfp_mask) 1964 { 1965 struct buffer_head *head; 1966 struct buffer_head *bh; 1967 int ret = 0; 1968 1969 J_ASSERT(PageLocked(page)); 1970 1971 head = page_buffers(page); 1972 bh = head; 1973 do { 1974 struct journal_head *jh; 1975 1976 /* 1977 * We take our own ref against the journal_head here to avoid 1978 * having to add tons of locking around each instance of 1979 * jbd2_journal_put_journal_head(). 1980 */ 1981 jh = jbd2_journal_grab_journal_head(bh); 1982 if (!jh) 1983 continue; 1984 1985 jbd_lock_bh_state(bh); 1986 __journal_try_to_free_buffer(journal, bh); 1987 jbd2_journal_put_journal_head(jh); 1988 jbd_unlock_bh_state(bh); 1989 if (buffer_jbd(bh)) 1990 goto busy; 1991 } while ((bh = bh->b_this_page) != head); 1992 1993 ret = try_to_free_buffers(page); 1994 1995 busy: 1996 return ret; 1997 } 1998 1999 /* 2000 * This buffer is no longer needed. If it is on an older transaction's 2001 * checkpoint list we need to record it on this transaction's forget list 2002 * to pin this buffer (and hence its checkpointing transaction) down until 2003 * this transaction commits. If the buffer isn't on a checkpoint list, we 2004 * release it. 2005 * Returns non-zero if JBD no longer has an interest in the buffer. 2006 * 2007 * Called under j_list_lock. 2008 * 2009 * Called under jbd_lock_bh_state(bh). 2010 */ 2011 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2012 { 2013 int may_free = 1; 2014 struct buffer_head *bh = jh2bh(jh); 2015 2016 if (jh->b_cp_transaction) { 2017 JBUFFER_TRACE(jh, "on running+cp transaction"); 2018 __jbd2_journal_temp_unlink_buffer(jh); 2019 /* 2020 * We don't want to write the buffer anymore, clear the 2021 * bit so that we don't confuse checks in 2022 * __journal_file_buffer 2023 */ 2024 clear_buffer_dirty(bh); 2025 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2026 may_free = 0; 2027 } else { 2028 JBUFFER_TRACE(jh, "on running transaction"); 2029 __jbd2_journal_unfile_buffer(jh); 2030 } 2031 return may_free; 2032 } 2033 2034 /* 2035 * jbd2_journal_invalidatepage 2036 * 2037 * This code is tricky. It has a number of cases to deal with. 2038 * 2039 * There are two invariants which this code relies on: 2040 * 2041 * i_size must be updated on disk before we start calling invalidatepage on the 2042 * data. 2043 * 2044 * This is done in ext3 by defining an ext3_setattr method which 2045 * updates i_size before truncate gets going. By maintaining this 2046 * invariant, we can be sure that it is safe to throw away any buffers 2047 * attached to the current transaction: once the transaction commits, 2048 * we know that the data will not be needed. 2049 * 2050 * Note however that we can *not* throw away data belonging to the 2051 * previous, committing transaction! 2052 * 2053 * Any disk blocks which *are* part of the previous, committing 2054 * transaction (and which therefore cannot be discarded immediately) are 2055 * not going to be reused in the new running transaction 2056 * 2057 * The bitmap committed_data images guarantee this: any block which is 2058 * allocated in one transaction and removed in the next will be marked 2059 * as in-use in the committed_data bitmap, so cannot be reused until 2060 * the next transaction to delete the block commits. This means that 2061 * leaving committing buffers dirty is quite safe: the disk blocks 2062 * cannot be reallocated to a different file and so buffer aliasing is 2063 * not possible. 2064 * 2065 * 2066 * The above applies mainly to ordered data mode. In writeback mode we 2067 * don't make guarantees about the order in which data hits disk --- in 2068 * particular we don't guarantee that new dirty data is flushed before 2069 * transaction commit --- so it is always safe just to discard data 2070 * immediately in that mode. --sct 2071 */ 2072 2073 /* 2074 * The journal_unmap_buffer helper function returns zero if the buffer 2075 * concerned remains pinned as an anonymous buffer belonging to an older 2076 * transaction. 2077 * 2078 * We're outside-transaction here. Either or both of j_running_transaction 2079 * and j_committing_transaction may be NULL. 2080 */ 2081 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2082 int partial_page) 2083 { 2084 transaction_t *transaction; 2085 struct journal_head *jh; 2086 int may_free = 1; 2087 2088 BUFFER_TRACE(bh, "entry"); 2089 2090 /* 2091 * It is safe to proceed here without the j_list_lock because the 2092 * buffers cannot be stolen by try_to_free_buffers as long as we are 2093 * holding the page lock. --sct 2094 */ 2095 2096 if (!buffer_jbd(bh)) 2097 goto zap_buffer_unlocked; 2098 2099 /* OK, we have data buffer in journaled mode */ 2100 write_lock(&journal->j_state_lock); 2101 jbd_lock_bh_state(bh); 2102 spin_lock(&journal->j_list_lock); 2103 2104 jh = jbd2_journal_grab_journal_head(bh); 2105 if (!jh) 2106 goto zap_buffer_no_jh; 2107 2108 /* 2109 * We cannot remove the buffer from checkpoint lists until the 2110 * transaction adding inode to orphan list (let's call it T) 2111 * is committed. Otherwise if the transaction changing the 2112 * buffer would be cleaned from the journal before T is 2113 * committed, a crash will cause that the correct contents of 2114 * the buffer will be lost. On the other hand we have to 2115 * clear the buffer dirty bit at latest at the moment when the 2116 * transaction marking the buffer as freed in the filesystem 2117 * structures is committed because from that moment on the 2118 * block can be reallocated and used by a different page. 2119 * Since the block hasn't been freed yet but the inode has 2120 * already been added to orphan list, it is safe for us to add 2121 * the buffer to BJ_Forget list of the newest transaction. 2122 * 2123 * Also we have to clear buffer_mapped flag of a truncated buffer 2124 * because the buffer_head may be attached to the page straddling 2125 * i_size (can happen only when blocksize < pagesize) and thus the 2126 * buffer_head can be reused when the file is extended again. So we end 2127 * up keeping around invalidated buffers attached to transactions' 2128 * BJ_Forget list just to stop checkpointing code from cleaning up 2129 * the transaction this buffer was modified in. 2130 */ 2131 transaction = jh->b_transaction; 2132 if (transaction == NULL) { 2133 /* First case: not on any transaction. If it 2134 * has no checkpoint link, then we can zap it: 2135 * it's a writeback-mode buffer so we don't care 2136 * if it hits disk safely. */ 2137 if (!jh->b_cp_transaction) { 2138 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2139 goto zap_buffer; 2140 } 2141 2142 if (!buffer_dirty(bh)) { 2143 /* bdflush has written it. We can drop it now */ 2144 __jbd2_journal_remove_checkpoint(jh); 2145 goto zap_buffer; 2146 } 2147 2148 /* OK, it must be in the journal but still not 2149 * written fully to disk: it's metadata or 2150 * journaled data... */ 2151 2152 if (journal->j_running_transaction) { 2153 /* ... and once the current transaction has 2154 * committed, the buffer won't be needed any 2155 * longer. */ 2156 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2157 may_free = __dispose_buffer(jh, 2158 journal->j_running_transaction); 2159 goto zap_buffer; 2160 } else { 2161 /* There is no currently-running transaction. So the 2162 * orphan record which we wrote for this file must have 2163 * passed into commit. We must attach this buffer to 2164 * the committing transaction, if it exists. */ 2165 if (journal->j_committing_transaction) { 2166 JBUFFER_TRACE(jh, "give to committing trans"); 2167 may_free = __dispose_buffer(jh, 2168 journal->j_committing_transaction); 2169 goto zap_buffer; 2170 } else { 2171 /* The orphan record's transaction has 2172 * committed. We can cleanse this buffer */ 2173 clear_buffer_jbddirty(bh); 2174 __jbd2_journal_remove_checkpoint(jh); 2175 goto zap_buffer; 2176 } 2177 } 2178 } else if (transaction == journal->j_committing_transaction) { 2179 JBUFFER_TRACE(jh, "on committing transaction"); 2180 /* 2181 * The buffer is committing, we simply cannot touch 2182 * it. If the page is straddling i_size we have to wait 2183 * for commit and try again. 2184 */ 2185 if (partial_page) { 2186 jbd2_journal_put_journal_head(jh); 2187 spin_unlock(&journal->j_list_lock); 2188 jbd_unlock_bh_state(bh); 2189 write_unlock(&journal->j_state_lock); 2190 return -EBUSY; 2191 } 2192 /* 2193 * OK, buffer won't be reachable after truncate. We just set 2194 * j_next_transaction to the running transaction (if there is 2195 * one) and mark buffer as freed so that commit code knows it 2196 * should clear dirty bits when it is done with the buffer. 2197 */ 2198 set_buffer_freed(bh); 2199 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2200 jh->b_next_transaction = journal->j_running_transaction; 2201 jbd2_journal_put_journal_head(jh); 2202 spin_unlock(&journal->j_list_lock); 2203 jbd_unlock_bh_state(bh); 2204 write_unlock(&journal->j_state_lock); 2205 return 0; 2206 } else { 2207 /* Good, the buffer belongs to the running transaction. 2208 * We are writing our own transaction's data, not any 2209 * previous one's, so it is safe to throw it away 2210 * (remember that we expect the filesystem to have set 2211 * i_size already for this truncate so recovery will not 2212 * expose the disk blocks we are discarding here.) */ 2213 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2214 JBUFFER_TRACE(jh, "on running transaction"); 2215 may_free = __dispose_buffer(jh, transaction); 2216 } 2217 2218 zap_buffer: 2219 /* 2220 * This is tricky. Although the buffer is truncated, it may be reused 2221 * if blocksize < pagesize and it is attached to the page straddling 2222 * EOF. Since the buffer might have been added to BJ_Forget list of the 2223 * running transaction, journal_get_write_access() won't clear 2224 * b_modified and credit accounting gets confused. So clear b_modified 2225 * here. 2226 */ 2227 jh->b_modified = 0; 2228 jbd2_journal_put_journal_head(jh); 2229 zap_buffer_no_jh: 2230 spin_unlock(&journal->j_list_lock); 2231 jbd_unlock_bh_state(bh); 2232 write_unlock(&journal->j_state_lock); 2233 zap_buffer_unlocked: 2234 clear_buffer_dirty(bh); 2235 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2236 clear_buffer_mapped(bh); 2237 clear_buffer_req(bh); 2238 clear_buffer_new(bh); 2239 clear_buffer_delay(bh); 2240 clear_buffer_unwritten(bh); 2241 bh->b_bdev = NULL; 2242 return may_free; 2243 } 2244 2245 /** 2246 * void jbd2_journal_invalidatepage() 2247 * @journal: journal to use for flush... 2248 * @page: page to flush 2249 * @offset: start of the range to invalidate 2250 * @length: length of the range to invalidate 2251 * 2252 * Reap page buffers containing data after in the specified range in page. 2253 * Can return -EBUSY if buffers are part of the committing transaction and 2254 * the page is straddling i_size. Caller then has to wait for current commit 2255 * and try again. 2256 */ 2257 int jbd2_journal_invalidatepage(journal_t *journal, 2258 struct page *page, 2259 unsigned int offset, 2260 unsigned int length) 2261 { 2262 struct buffer_head *head, *bh, *next; 2263 unsigned int stop = offset + length; 2264 unsigned int curr_off = 0; 2265 int partial_page = (offset || length < PAGE_SIZE); 2266 int may_free = 1; 2267 int ret = 0; 2268 2269 if (!PageLocked(page)) 2270 BUG(); 2271 if (!page_has_buffers(page)) 2272 return 0; 2273 2274 BUG_ON(stop > PAGE_SIZE || stop < length); 2275 2276 /* We will potentially be playing with lists other than just the 2277 * data lists (especially for journaled data mode), so be 2278 * cautious in our locking. */ 2279 2280 head = bh = page_buffers(page); 2281 do { 2282 unsigned int next_off = curr_off + bh->b_size; 2283 next = bh->b_this_page; 2284 2285 if (next_off > stop) 2286 return 0; 2287 2288 if (offset <= curr_off) { 2289 /* This block is wholly outside the truncation point */ 2290 lock_buffer(bh); 2291 ret = journal_unmap_buffer(journal, bh, partial_page); 2292 unlock_buffer(bh); 2293 if (ret < 0) 2294 return ret; 2295 may_free &= ret; 2296 } 2297 curr_off = next_off; 2298 bh = next; 2299 2300 } while (bh != head); 2301 2302 if (!partial_page) { 2303 if (may_free && try_to_free_buffers(page)) 2304 J_ASSERT(!page_has_buffers(page)); 2305 } 2306 return 0; 2307 } 2308 2309 /* 2310 * File a buffer on the given transaction list. 2311 */ 2312 void __jbd2_journal_file_buffer(struct journal_head *jh, 2313 transaction_t *transaction, int jlist) 2314 { 2315 struct journal_head **list = NULL; 2316 int was_dirty = 0; 2317 struct buffer_head *bh = jh2bh(jh); 2318 2319 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2320 assert_spin_locked(&transaction->t_journal->j_list_lock); 2321 2322 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2323 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2324 jh->b_transaction == NULL); 2325 2326 if (jh->b_transaction && jh->b_jlist == jlist) 2327 return; 2328 2329 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2330 jlist == BJ_Shadow || jlist == BJ_Forget) { 2331 /* 2332 * For metadata buffers, we track dirty bit in buffer_jbddirty 2333 * instead of buffer_dirty. We should not see a dirty bit set 2334 * here because we clear it in do_get_write_access but e.g. 2335 * tune2fs can modify the sb and set the dirty bit at any time 2336 * so we try to gracefully handle that. 2337 */ 2338 if (buffer_dirty(bh)) 2339 warn_dirty_buffer(bh); 2340 if (test_clear_buffer_dirty(bh) || 2341 test_clear_buffer_jbddirty(bh)) 2342 was_dirty = 1; 2343 } 2344 2345 if (jh->b_transaction) 2346 __jbd2_journal_temp_unlink_buffer(jh); 2347 else 2348 jbd2_journal_grab_journal_head(bh); 2349 jh->b_transaction = transaction; 2350 2351 switch (jlist) { 2352 case BJ_None: 2353 J_ASSERT_JH(jh, !jh->b_committed_data); 2354 J_ASSERT_JH(jh, !jh->b_frozen_data); 2355 return; 2356 case BJ_Metadata: 2357 transaction->t_nr_buffers++; 2358 list = &transaction->t_buffers; 2359 break; 2360 case BJ_Forget: 2361 list = &transaction->t_forget; 2362 break; 2363 case BJ_Shadow: 2364 list = &transaction->t_shadow_list; 2365 break; 2366 case BJ_Reserved: 2367 list = &transaction->t_reserved_list; 2368 break; 2369 } 2370 2371 __blist_add_buffer(list, jh); 2372 jh->b_jlist = jlist; 2373 2374 if (was_dirty) 2375 set_buffer_jbddirty(bh); 2376 } 2377 2378 void jbd2_journal_file_buffer(struct journal_head *jh, 2379 transaction_t *transaction, int jlist) 2380 { 2381 jbd_lock_bh_state(jh2bh(jh)); 2382 spin_lock(&transaction->t_journal->j_list_lock); 2383 __jbd2_journal_file_buffer(jh, transaction, jlist); 2384 spin_unlock(&transaction->t_journal->j_list_lock); 2385 jbd_unlock_bh_state(jh2bh(jh)); 2386 } 2387 2388 /* 2389 * Remove a buffer from its current buffer list in preparation for 2390 * dropping it from its current transaction entirely. If the buffer has 2391 * already started to be used by a subsequent transaction, refile the 2392 * buffer on that transaction's metadata list. 2393 * 2394 * Called under j_list_lock 2395 * Called under jbd_lock_bh_state(jh2bh(jh)) 2396 * 2397 * jh and bh may be already free when this function returns 2398 */ 2399 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2400 { 2401 int was_dirty, jlist; 2402 struct buffer_head *bh = jh2bh(jh); 2403 2404 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2405 if (jh->b_transaction) 2406 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2407 2408 /* If the buffer is now unused, just drop it. */ 2409 if (jh->b_next_transaction == NULL) { 2410 __jbd2_journal_unfile_buffer(jh); 2411 return; 2412 } 2413 2414 /* 2415 * It has been modified by a later transaction: add it to the new 2416 * transaction's metadata list. 2417 */ 2418 2419 was_dirty = test_clear_buffer_jbddirty(bh); 2420 __jbd2_journal_temp_unlink_buffer(jh); 2421 /* 2422 * We set b_transaction here because b_next_transaction will inherit 2423 * our jh reference and thus __jbd2_journal_file_buffer() must not 2424 * take a new one. 2425 */ 2426 jh->b_transaction = jh->b_next_transaction; 2427 jh->b_next_transaction = NULL; 2428 if (buffer_freed(bh)) 2429 jlist = BJ_Forget; 2430 else if (jh->b_modified) 2431 jlist = BJ_Metadata; 2432 else 2433 jlist = BJ_Reserved; 2434 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2435 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2436 2437 if (was_dirty) 2438 set_buffer_jbddirty(bh); 2439 } 2440 2441 /* 2442 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2443 * bh reference so that we can safely unlock bh. 2444 * 2445 * The jh and bh may be freed by this call. 2446 */ 2447 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2448 { 2449 struct buffer_head *bh = jh2bh(jh); 2450 2451 /* Get reference so that buffer cannot be freed before we unlock it */ 2452 get_bh(bh); 2453 jbd_lock_bh_state(bh); 2454 spin_lock(&journal->j_list_lock); 2455 __jbd2_journal_refile_buffer(jh); 2456 jbd_unlock_bh_state(bh); 2457 spin_unlock(&journal->j_list_lock); 2458 __brelse(bh); 2459 } 2460 2461 /* 2462 * File inode in the inode list of the handle's transaction 2463 */ 2464 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2465 unsigned long flags) 2466 { 2467 transaction_t *transaction = handle->h_transaction; 2468 journal_t *journal; 2469 2470 if (is_handle_aborted(handle)) 2471 return -EROFS; 2472 journal = transaction->t_journal; 2473 2474 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2475 transaction->t_tid); 2476 2477 /* 2478 * First check whether inode isn't already on the transaction's 2479 * lists without taking the lock. Note that this check is safe 2480 * without the lock as we cannot race with somebody removing inode 2481 * from the transaction. The reason is that we remove inode from the 2482 * transaction only in journal_release_jbd_inode() and when we commit 2483 * the transaction. We are guarded from the first case by holding 2484 * a reference to the inode. We are safe against the second case 2485 * because if jinode->i_transaction == transaction, commit code 2486 * cannot touch the transaction because we hold reference to it, 2487 * and if jinode->i_next_transaction == transaction, commit code 2488 * will only file the inode where we want it. 2489 */ 2490 if ((jinode->i_transaction == transaction || 2491 jinode->i_next_transaction == transaction) && 2492 (jinode->i_flags & flags) == flags) 2493 return 0; 2494 2495 spin_lock(&journal->j_list_lock); 2496 jinode->i_flags |= flags; 2497 /* Is inode already attached where we need it? */ 2498 if (jinode->i_transaction == transaction || 2499 jinode->i_next_transaction == transaction) 2500 goto done; 2501 2502 /* 2503 * We only ever set this variable to 1 so the test is safe. Since 2504 * t_need_data_flush is likely to be set, we do the test to save some 2505 * cacheline bouncing 2506 */ 2507 if (!transaction->t_need_data_flush) 2508 transaction->t_need_data_flush = 1; 2509 /* On some different transaction's list - should be 2510 * the committing one */ 2511 if (jinode->i_transaction) { 2512 J_ASSERT(jinode->i_next_transaction == NULL); 2513 J_ASSERT(jinode->i_transaction == 2514 journal->j_committing_transaction); 2515 jinode->i_next_transaction = transaction; 2516 goto done; 2517 } 2518 /* Not on any transaction list... */ 2519 J_ASSERT(!jinode->i_next_transaction); 2520 jinode->i_transaction = transaction; 2521 list_add(&jinode->i_list, &transaction->t_inode_list); 2522 done: 2523 spin_unlock(&journal->j_list_lock); 2524 2525 return 0; 2526 } 2527 2528 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode) 2529 { 2530 return jbd2_journal_file_inode(handle, jinode, 2531 JI_WRITE_DATA | JI_WAIT_DATA); 2532 } 2533 2534 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode) 2535 { 2536 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA); 2537 } 2538 2539 /* 2540 * File truncate and transaction commit interact with each other in a 2541 * non-trivial way. If a transaction writing data block A is 2542 * committing, we cannot discard the data by truncate until we have 2543 * written them. Otherwise if we crashed after the transaction with 2544 * write has committed but before the transaction with truncate has 2545 * committed, we could see stale data in block A. This function is a 2546 * helper to solve this problem. It starts writeout of the truncated 2547 * part in case it is in the committing transaction. 2548 * 2549 * Filesystem code must call this function when inode is journaled in 2550 * ordered mode before truncation happens and after the inode has been 2551 * placed on orphan list with the new inode size. The second condition 2552 * avoids the race that someone writes new data and we start 2553 * committing the transaction after this function has been called but 2554 * before a transaction for truncate is started (and furthermore it 2555 * allows us to optimize the case where the addition to orphan list 2556 * happens in the same transaction as write --- we don't have to write 2557 * any data in such case). 2558 */ 2559 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2560 struct jbd2_inode *jinode, 2561 loff_t new_size) 2562 { 2563 transaction_t *inode_trans, *commit_trans; 2564 int ret = 0; 2565 2566 /* This is a quick check to avoid locking if not necessary */ 2567 if (!jinode->i_transaction) 2568 goto out; 2569 /* Locks are here just to force reading of recent values, it is 2570 * enough that the transaction was not committing before we started 2571 * a transaction adding the inode to orphan list */ 2572 read_lock(&journal->j_state_lock); 2573 commit_trans = journal->j_committing_transaction; 2574 read_unlock(&journal->j_state_lock); 2575 spin_lock(&journal->j_list_lock); 2576 inode_trans = jinode->i_transaction; 2577 spin_unlock(&journal->j_list_lock); 2578 if (inode_trans == commit_trans) { 2579 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2580 new_size, LLONG_MAX); 2581 if (ret) 2582 jbd2_journal_abort(journal, ret); 2583 } 2584 out: 2585 return ret; 2586 } 2587