xref: /openbmc/linux/fs/jbd2/transaction.c (revision 293d5b43)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits,
93 		   atomic_read(&journal->j_reserved_credits));
94 	atomic_set(&transaction->t_handle_count, 0);
95 	INIT_LIST_HEAD(&transaction->t_inode_list);
96 	INIT_LIST_HEAD(&transaction->t_private_list);
97 
98 	/* Set up the commit timer for the new transaction. */
99 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 	add_timer(&journal->j_commit_timer);
101 
102 	J_ASSERT(journal->j_running_transaction == NULL);
103 	journal->j_running_transaction = transaction;
104 	transaction->t_max_wait = 0;
105 	transaction->t_start = jiffies;
106 	transaction->t_requested = 0;
107 
108 	return transaction;
109 }
110 
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118 
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 				     unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 	if (jbd2_journal_enable_debug &&
134 	    time_after(transaction->t_start, ts)) {
135 		ts = jbd2_time_diff(ts, transaction->t_start);
136 		spin_lock(&transaction->t_handle_lock);
137 		if (ts > transaction->t_max_wait)
138 			transaction->t_max_wait = ts;
139 		spin_unlock(&transaction->t_handle_lock);
140 	}
141 #endif
142 }
143 
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150 	__releases(journal->j_state_lock)
151 {
152 	DEFINE_WAIT(wait);
153 	int need_to_start;
154 	tid_t tid = journal->j_running_transaction->t_tid;
155 
156 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 			TASK_UNINTERRUPTIBLE);
158 	need_to_start = !tid_geq(journal->j_commit_request, tid);
159 	read_unlock(&journal->j_state_lock);
160 	if (need_to_start)
161 		jbd2_log_start_commit(journal, tid);
162 	schedule();
163 	finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165 
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 	atomic_sub(blocks, &journal->j_reserved_credits);
169 	wake_up(&journal->j_wait_reserved);
170 }
171 
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 				   int rsv_blocks)
180 {
181 	transaction_t *t = journal->j_running_transaction;
182 	int needed;
183 	int total = blocks + rsv_blocks;
184 
185 	jbd2_might_wait_for_commit(journal);
186 
187 	/*
188 	 * If the current transaction is locked down for commit, wait
189 	 * for the lock to be released.
190 	 */
191 	if (t->t_state == T_LOCKED) {
192 		wait_transaction_locked(journal);
193 		return 1;
194 	}
195 
196 	/*
197 	 * If there is not enough space left in the log to write all
198 	 * potential buffers requested by this operation, we need to
199 	 * stall pending a log checkpoint to free some more log space.
200 	 */
201 	needed = atomic_add_return(total, &t->t_outstanding_credits);
202 	if (needed > journal->j_max_transaction_buffers) {
203 		/*
204 		 * If the current transaction is already too large,
205 		 * then start to commit it: we can then go back and
206 		 * attach this handle to a new transaction.
207 		 */
208 		atomic_sub(total, &t->t_outstanding_credits);
209 
210 		/*
211 		 * Is the number of reserved credits in the current transaction too
212 		 * big to fit this handle? Wait until reserved credits are freed.
213 		 */
214 		if (atomic_read(&journal->j_reserved_credits) + total >
215 		    journal->j_max_transaction_buffers) {
216 			read_unlock(&journal->j_state_lock);
217 			wait_event(journal->j_wait_reserved,
218 				   atomic_read(&journal->j_reserved_credits) + total <=
219 				   journal->j_max_transaction_buffers);
220 			return 1;
221 		}
222 
223 		wait_transaction_locked(journal);
224 		return 1;
225 	}
226 
227 	/*
228 	 * The commit code assumes that it can get enough log space
229 	 * without forcing a checkpoint.  This is *critical* for
230 	 * correctness: a checkpoint of a buffer which is also
231 	 * associated with a committing transaction creates a deadlock,
232 	 * so commit simply cannot force through checkpoints.
233 	 *
234 	 * We must therefore ensure the necessary space in the journal
235 	 * *before* starting to dirty potentially checkpointed buffers
236 	 * in the new transaction.
237 	 */
238 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239 		atomic_sub(total, &t->t_outstanding_credits);
240 		read_unlock(&journal->j_state_lock);
241 		write_lock(&journal->j_state_lock);
242 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
243 			__jbd2_log_wait_for_space(journal);
244 		write_unlock(&journal->j_state_lock);
245 		return 1;
246 	}
247 
248 	/* No reservation? We are done... */
249 	if (!rsv_blocks)
250 		return 0;
251 
252 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
253 	/* We allow at most half of a transaction to be reserved */
254 	if (needed > journal->j_max_transaction_buffers / 2) {
255 		sub_reserved_credits(journal, rsv_blocks);
256 		atomic_sub(total, &t->t_outstanding_credits);
257 		read_unlock(&journal->j_state_lock);
258 		wait_event(journal->j_wait_reserved,
259 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 			 <= journal->j_max_transaction_buffers / 2);
261 		return 1;
262 	}
263 	return 0;
264 }
265 
266 /*
267  * start_this_handle: Given a handle, deal with any locking or stalling
268  * needed to make sure that there is enough journal space for the handle
269  * to begin.  Attach the handle to a transaction and set up the
270  * transaction's buffer credits.
271  */
272 
273 static int start_this_handle(journal_t *journal, handle_t *handle,
274 			     gfp_t gfp_mask)
275 {
276 	transaction_t	*transaction, *new_transaction = NULL;
277 	int		blocks = handle->h_buffer_credits;
278 	int		rsv_blocks = 0;
279 	unsigned long ts = jiffies;
280 
281 	if (handle->h_rsv_handle)
282 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283 
284 	/*
285 	 * Limit the number of reserved credits to 1/2 of maximum transaction
286 	 * size and limit the number of total credits to not exceed maximum
287 	 * transaction size per operation.
288 	 */
289 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 		printk(KERN_ERR "JBD2: %s wants too many credits "
292 		       "credits:%d rsv_credits:%d max:%d\n",
293 		       current->comm, blocks, rsv_blocks,
294 		       journal->j_max_transaction_buffers);
295 		WARN_ON(1);
296 		return -ENOSPC;
297 	}
298 
299 alloc_transaction:
300 	if (!journal->j_running_transaction) {
301 		/*
302 		 * If __GFP_FS is not present, then we may be being called from
303 		 * inside the fs writeback layer, so we MUST NOT fail.
304 		 */
305 		if ((gfp_mask & __GFP_FS) == 0)
306 			gfp_mask |= __GFP_NOFAIL;
307 		new_transaction = kmem_cache_zalloc(transaction_cache,
308 						    gfp_mask);
309 		if (!new_transaction)
310 			return -ENOMEM;
311 	}
312 
313 	jbd_debug(3, "New handle %p going live.\n", handle);
314 
315 	/*
316 	 * We need to hold j_state_lock until t_updates has been incremented,
317 	 * for proper journal barrier handling
318 	 */
319 repeat:
320 	read_lock(&journal->j_state_lock);
321 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322 	if (is_journal_aborted(journal) ||
323 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324 		read_unlock(&journal->j_state_lock);
325 		jbd2_journal_free_transaction(new_transaction);
326 		return -EROFS;
327 	}
328 
329 	/*
330 	 * Wait on the journal's transaction barrier if necessary. Specifically
331 	 * we allow reserved handles to proceed because otherwise commit could
332 	 * deadlock on page writeback not being able to complete.
333 	 */
334 	if (!handle->h_reserved && journal->j_barrier_count) {
335 		read_unlock(&journal->j_state_lock);
336 		wait_event(journal->j_wait_transaction_locked,
337 				journal->j_barrier_count == 0);
338 		goto repeat;
339 	}
340 
341 	if (!journal->j_running_transaction) {
342 		read_unlock(&journal->j_state_lock);
343 		if (!new_transaction)
344 			goto alloc_transaction;
345 		write_lock(&journal->j_state_lock);
346 		if (!journal->j_running_transaction &&
347 		    (handle->h_reserved || !journal->j_barrier_count)) {
348 			jbd2_get_transaction(journal, new_transaction);
349 			new_transaction = NULL;
350 		}
351 		write_unlock(&journal->j_state_lock);
352 		goto repeat;
353 	}
354 
355 	transaction = journal->j_running_transaction;
356 
357 	if (!handle->h_reserved) {
358 		/* We may have dropped j_state_lock - restart in that case */
359 		if (add_transaction_credits(journal, blocks, rsv_blocks))
360 			goto repeat;
361 	} else {
362 		/*
363 		 * We have handle reserved so we are allowed to join T_LOCKED
364 		 * transaction and we don't have to check for transaction size
365 		 * and journal space.
366 		 */
367 		sub_reserved_credits(journal, blocks);
368 		handle->h_reserved = 0;
369 	}
370 
371 	/* OK, account for the buffers that this operation expects to
372 	 * use and add the handle to the running transaction.
373 	 */
374 	update_t_max_wait(transaction, ts);
375 	handle->h_transaction = transaction;
376 	handle->h_requested_credits = blocks;
377 	handle->h_start_jiffies = jiffies;
378 	atomic_inc(&transaction->t_updates);
379 	atomic_inc(&transaction->t_handle_count);
380 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 		  handle, blocks,
382 		  atomic_read(&transaction->t_outstanding_credits),
383 		  jbd2_log_space_left(journal));
384 	read_unlock(&journal->j_state_lock);
385 	current->journal_info = handle;
386 
387 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
388 	jbd2_journal_free_transaction(new_transaction);
389 	return 0;
390 }
391 
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 	if (!handle)
397 		return NULL;
398 	handle->h_buffer_credits = nblocks;
399 	handle->h_ref = 1;
400 
401 	return handle;
402 }
403 
404 /**
405  * handle_t *jbd2_journal_start() - Obtain a new handle.
406  * @journal: Journal to start transaction on.
407  * @nblocks: number of block buffer we might modify
408  *
409  * We make sure that the transaction can guarantee at least nblocks of
410  * modified buffers in the log.  We block until the log can guarantee
411  * that much space. Additionally, if rsv_blocks > 0, we also create another
412  * handle with rsv_blocks reserved blocks in the journal. This handle is
413  * is stored in h_rsv_handle. It is not attached to any particular transaction
414  * and thus doesn't block transaction commit. If the caller uses this reserved
415  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
416  * on the parent handle will dispose the reserved one. Reserved handle has to
417  * be converted to a normal handle using jbd2_journal_start_reserved() before
418  * it can be used.
419  *
420  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
421  * on failure.
422  */
423 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
424 			      gfp_t gfp_mask, unsigned int type,
425 			      unsigned int line_no)
426 {
427 	handle_t *handle = journal_current_handle();
428 	int err;
429 
430 	if (!journal)
431 		return ERR_PTR(-EROFS);
432 
433 	if (handle) {
434 		J_ASSERT(handle->h_transaction->t_journal == journal);
435 		handle->h_ref++;
436 		return handle;
437 	}
438 
439 	handle = new_handle(nblocks);
440 	if (!handle)
441 		return ERR_PTR(-ENOMEM);
442 	if (rsv_blocks) {
443 		handle_t *rsv_handle;
444 
445 		rsv_handle = new_handle(rsv_blocks);
446 		if (!rsv_handle) {
447 			jbd2_free_handle(handle);
448 			return ERR_PTR(-ENOMEM);
449 		}
450 		rsv_handle->h_reserved = 1;
451 		rsv_handle->h_journal = journal;
452 		handle->h_rsv_handle = rsv_handle;
453 	}
454 
455 	err = start_this_handle(journal, handle, gfp_mask);
456 	if (err < 0) {
457 		if (handle->h_rsv_handle)
458 			jbd2_free_handle(handle->h_rsv_handle);
459 		jbd2_free_handle(handle);
460 		return ERR_PTR(err);
461 	}
462 	handle->h_type = type;
463 	handle->h_line_no = line_no;
464 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
465 				handle->h_transaction->t_tid, type,
466 				line_no, nblocks);
467 	return handle;
468 }
469 EXPORT_SYMBOL(jbd2__journal_start);
470 
471 
472 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
473 {
474 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
475 }
476 EXPORT_SYMBOL(jbd2_journal_start);
477 
478 void jbd2_journal_free_reserved(handle_t *handle)
479 {
480 	journal_t *journal = handle->h_journal;
481 
482 	WARN_ON(!handle->h_reserved);
483 	sub_reserved_credits(journal, handle->h_buffer_credits);
484 	jbd2_free_handle(handle);
485 }
486 EXPORT_SYMBOL(jbd2_journal_free_reserved);
487 
488 /**
489  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
490  * @handle: handle to start
491  *
492  * Start handle that has been previously reserved with jbd2_journal_reserve().
493  * This attaches @handle to the running transaction (or creates one if there's
494  * not transaction running). Unlike jbd2_journal_start() this function cannot
495  * block on journal commit, checkpointing, or similar stuff. It can block on
496  * memory allocation or frozen journal though.
497  *
498  * Return 0 on success, non-zero on error - handle is freed in that case.
499  */
500 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
501 				unsigned int line_no)
502 {
503 	journal_t *journal = handle->h_journal;
504 	int ret = -EIO;
505 
506 	if (WARN_ON(!handle->h_reserved)) {
507 		/* Someone passed in normal handle? Just stop it. */
508 		jbd2_journal_stop(handle);
509 		return ret;
510 	}
511 	/*
512 	 * Usefulness of mixing of reserved and unreserved handles is
513 	 * questionable. So far nobody seems to need it so just error out.
514 	 */
515 	if (WARN_ON(current->journal_info)) {
516 		jbd2_journal_free_reserved(handle);
517 		return ret;
518 	}
519 
520 	handle->h_journal = NULL;
521 	/*
522 	 * GFP_NOFS is here because callers are likely from writeback or
523 	 * similarly constrained call sites
524 	 */
525 	ret = start_this_handle(journal, handle, GFP_NOFS);
526 	if (ret < 0) {
527 		jbd2_journal_free_reserved(handle);
528 		return ret;
529 	}
530 	handle->h_type = type;
531 	handle->h_line_no = line_no;
532 	return 0;
533 }
534 EXPORT_SYMBOL(jbd2_journal_start_reserved);
535 
536 /**
537  * int jbd2_journal_extend() - extend buffer credits.
538  * @handle:  handle to 'extend'
539  * @nblocks: nr blocks to try to extend by.
540  *
541  * Some transactions, such as large extends and truncates, can be done
542  * atomically all at once or in several stages.  The operation requests
543  * a credit for a number of buffer modifications in advance, but can
544  * extend its credit if it needs more.
545  *
546  * jbd2_journal_extend tries to give the running handle more buffer credits.
547  * It does not guarantee that allocation - this is a best-effort only.
548  * The calling process MUST be able to deal cleanly with a failure to
549  * extend here.
550  *
551  * Return 0 on success, non-zero on failure.
552  *
553  * return code < 0 implies an error
554  * return code > 0 implies normal transaction-full status.
555  */
556 int jbd2_journal_extend(handle_t *handle, int nblocks)
557 {
558 	transaction_t *transaction = handle->h_transaction;
559 	journal_t *journal;
560 	int result;
561 	int wanted;
562 
563 	if (is_handle_aborted(handle))
564 		return -EROFS;
565 	journal = transaction->t_journal;
566 
567 	result = 1;
568 
569 	read_lock(&journal->j_state_lock);
570 
571 	/* Don't extend a locked-down transaction! */
572 	if (transaction->t_state != T_RUNNING) {
573 		jbd_debug(3, "denied handle %p %d blocks: "
574 			  "transaction not running\n", handle, nblocks);
575 		goto error_out;
576 	}
577 
578 	spin_lock(&transaction->t_handle_lock);
579 	wanted = atomic_add_return(nblocks,
580 				   &transaction->t_outstanding_credits);
581 
582 	if (wanted > journal->j_max_transaction_buffers) {
583 		jbd_debug(3, "denied handle %p %d blocks: "
584 			  "transaction too large\n", handle, nblocks);
585 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
586 		goto unlock;
587 	}
588 
589 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
590 	    jbd2_log_space_left(journal)) {
591 		jbd_debug(3, "denied handle %p %d blocks: "
592 			  "insufficient log space\n", handle, nblocks);
593 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
594 		goto unlock;
595 	}
596 
597 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
598 				 transaction->t_tid,
599 				 handle->h_type, handle->h_line_no,
600 				 handle->h_buffer_credits,
601 				 nblocks);
602 
603 	handle->h_buffer_credits += nblocks;
604 	handle->h_requested_credits += nblocks;
605 	result = 0;
606 
607 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
608 unlock:
609 	spin_unlock(&transaction->t_handle_lock);
610 error_out:
611 	read_unlock(&journal->j_state_lock);
612 	return result;
613 }
614 
615 
616 /**
617  * int jbd2_journal_restart() - restart a handle .
618  * @handle:  handle to restart
619  * @nblocks: nr credits requested
620  *
621  * Restart a handle for a multi-transaction filesystem
622  * operation.
623  *
624  * If the jbd2_journal_extend() call above fails to grant new buffer credits
625  * to a running handle, a call to jbd2_journal_restart will commit the
626  * handle's transaction so far and reattach the handle to a new
627  * transaction capable of guaranteeing the requested number of
628  * credits. We preserve reserved handle if there's any attached to the
629  * passed in handle.
630  */
631 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
632 {
633 	transaction_t *transaction = handle->h_transaction;
634 	journal_t *journal;
635 	tid_t		tid;
636 	int		need_to_start, ret;
637 
638 	/* If we've had an abort of any type, don't even think about
639 	 * actually doing the restart! */
640 	if (is_handle_aborted(handle))
641 		return 0;
642 	journal = transaction->t_journal;
643 
644 	/*
645 	 * First unlink the handle from its current transaction, and start the
646 	 * commit on that.
647 	 */
648 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
649 	J_ASSERT(journal_current_handle() == handle);
650 
651 	read_lock(&journal->j_state_lock);
652 	spin_lock(&transaction->t_handle_lock);
653 	atomic_sub(handle->h_buffer_credits,
654 		   &transaction->t_outstanding_credits);
655 	if (handle->h_rsv_handle) {
656 		sub_reserved_credits(journal,
657 				     handle->h_rsv_handle->h_buffer_credits);
658 	}
659 	if (atomic_dec_and_test(&transaction->t_updates))
660 		wake_up(&journal->j_wait_updates);
661 	tid = transaction->t_tid;
662 	spin_unlock(&transaction->t_handle_lock);
663 	handle->h_transaction = NULL;
664 	current->journal_info = NULL;
665 
666 	jbd_debug(2, "restarting handle %p\n", handle);
667 	need_to_start = !tid_geq(journal->j_commit_request, tid);
668 	read_unlock(&journal->j_state_lock);
669 	if (need_to_start)
670 		jbd2_log_start_commit(journal, tid);
671 
672 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
673 	handle->h_buffer_credits = nblocks;
674 	ret = start_this_handle(journal, handle, gfp_mask);
675 	return ret;
676 }
677 EXPORT_SYMBOL(jbd2__journal_restart);
678 
679 
680 int jbd2_journal_restart(handle_t *handle, int nblocks)
681 {
682 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
683 }
684 EXPORT_SYMBOL(jbd2_journal_restart);
685 
686 /**
687  * void jbd2_journal_lock_updates () - establish a transaction barrier.
688  * @journal:  Journal to establish a barrier on.
689  *
690  * This locks out any further updates from being started, and blocks
691  * until all existing updates have completed, returning only once the
692  * journal is in a quiescent state with no updates running.
693  *
694  * The journal lock should not be held on entry.
695  */
696 void jbd2_journal_lock_updates(journal_t *journal)
697 {
698 	DEFINE_WAIT(wait);
699 
700 	jbd2_might_wait_for_commit(journal);
701 
702 	write_lock(&journal->j_state_lock);
703 	++journal->j_barrier_count;
704 
705 	/* Wait until there are no reserved handles */
706 	if (atomic_read(&journal->j_reserved_credits)) {
707 		write_unlock(&journal->j_state_lock);
708 		wait_event(journal->j_wait_reserved,
709 			   atomic_read(&journal->j_reserved_credits) == 0);
710 		write_lock(&journal->j_state_lock);
711 	}
712 
713 	/* Wait until there are no running updates */
714 	while (1) {
715 		transaction_t *transaction = journal->j_running_transaction;
716 
717 		if (!transaction)
718 			break;
719 
720 		spin_lock(&transaction->t_handle_lock);
721 		prepare_to_wait(&journal->j_wait_updates, &wait,
722 				TASK_UNINTERRUPTIBLE);
723 		if (!atomic_read(&transaction->t_updates)) {
724 			spin_unlock(&transaction->t_handle_lock);
725 			finish_wait(&journal->j_wait_updates, &wait);
726 			break;
727 		}
728 		spin_unlock(&transaction->t_handle_lock);
729 		write_unlock(&journal->j_state_lock);
730 		schedule();
731 		finish_wait(&journal->j_wait_updates, &wait);
732 		write_lock(&journal->j_state_lock);
733 	}
734 	write_unlock(&journal->j_state_lock);
735 
736 	/*
737 	 * We have now established a barrier against other normal updates, but
738 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
739 	 * to make sure that we serialise special journal-locked operations
740 	 * too.
741 	 */
742 	mutex_lock(&journal->j_barrier);
743 }
744 
745 /**
746  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
747  * @journal:  Journal to release the barrier on.
748  *
749  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
750  *
751  * Should be called without the journal lock held.
752  */
753 void jbd2_journal_unlock_updates (journal_t *journal)
754 {
755 	J_ASSERT(journal->j_barrier_count != 0);
756 
757 	mutex_unlock(&journal->j_barrier);
758 	write_lock(&journal->j_state_lock);
759 	--journal->j_barrier_count;
760 	write_unlock(&journal->j_state_lock);
761 	wake_up(&journal->j_wait_transaction_locked);
762 }
763 
764 static void warn_dirty_buffer(struct buffer_head *bh)
765 {
766 	printk(KERN_WARNING
767 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
768 	       "There's a risk of filesystem corruption in case of system "
769 	       "crash.\n",
770 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
771 }
772 
773 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
774 static void jbd2_freeze_jh_data(struct journal_head *jh)
775 {
776 	struct page *page;
777 	int offset;
778 	char *source;
779 	struct buffer_head *bh = jh2bh(jh);
780 
781 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
782 	page = bh->b_page;
783 	offset = offset_in_page(bh->b_data);
784 	source = kmap_atomic(page);
785 	/* Fire data frozen trigger just before we copy the data */
786 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
787 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
788 	kunmap_atomic(source);
789 
790 	/*
791 	 * Now that the frozen data is saved off, we need to store any matching
792 	 * triggers.
793 	 */
794 	jh->b_frozen_triggers = jh->b_triggers;
795 }
796 
797 /*
798  * If the buffer is already part of the current transaction, then there
799  * is nothing we need to do.  If it is already part of a prior
800  * transaction which we are still committing to disk, then we need to
801  * make sure that we do not overwrite the old copy: we do copy-out to
802  * preserve the copy going to disk.  We also account the buffer against
803  * the handle's metadata buffer credits (unless the buffer is already
804  * part of the transaction, that is).
805  *
806  */
807 static int
808 do_get_write_access(handle_t *handle, struct journal_head *jh,
809 			int force_copy)
810 {
811 	struct buffer_head *bh;
812 	transaction_t *transaction = handle->h_transaction;
813 	journal_t *journal;
814 	int error;
815 	char *frozen_buffer = NULL;
816 	unsigned long start_lock, time_lock;
817 
818 	if (is_handle_aborted(handle))
819 		return -EROFS;
820 	journal = transaction->t_journal;
821 
822 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
823 
824 	JBUFFER_TRACE(jh, "entry");
825 repeat:
826 	bh = jh2bh(jh);
827 
828 	/* @@@ Need to check for errors here at some point. */
829 
830  	start_lock = jiffies;
831 	lock_buffer(bh);
832 	jbd_lock_bh_state(bh);
833 
834 	/* If it takes too long to lock the buffer, trace it */
835 	time_lock = jbd2_time_diff(start_lock, jiffies);
836 	if (time_lock > HZ/10)
837 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
838 			jiffies_to_msecs(time_lock));
839 
840 	/* We now hold the buffer lock so it is safe to query the buffer
841 	 * state.  Is the buffer dirty?
842 	 *
843 	 * If so, there are two possibilities.  The buffer may be
844 	 * non-journaled, and undergoing a quite legitimate writeback.
845 	 * Otherwise, it is journaled, and we don't expect dirty buffers
846 	 * in that state (the buffers should be marked JBD_Dirty
847 	 * instead.)  So either the IO is being done under our own
848 	 * control and this is a bug, or it's a third party IO such as
849 	 * dump(8) (which may leave the buffer scheduled for read ---
850 	 * ie. locked but not dirty) or tune2fs (which may actually have
851 	 * the buffer dirtied, ugh.)  */
852 
853 	if (buffer_dirty(bh)) {
854 		/*
855 		 * First question: is this buffer already part of the current
856 		 * transaction or the existing committing transaction?
857 		 */
858 		if (jh->b_transaction) {
859 			J_ASSERT_JH(jh,
860 				jh->b_transaction == transaction ||
861 				jh->b_transaction ==
862 					journal->j_committing_transaction);
863 			if (jh->b_next_transaction)
864 				J_ASSERT_JH(jh, jh->b_next_transaction ==
865 							transaction);
866 			warn_dirty_buffer(bh);
867 		}
868 		/*
869 		 * In any case we need to clean the dirty flag and we must
870 		 * do it under the buffer lock to be sure we don't race
871 		 * with running write-out.
872 		 */
873 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
874 		clear_buffer_dirty(bh);
875 		set_buffer_jbddirty(bh);
876 	}
877 
878 	unlock_buffer(bh);
879 
880 	error = -EROFS;
881 	if (is_handle_aborted(handle)) {
882 		jbd_unlock_bh_state(bh);
883 		goto out;
884 	}
885 	error = 0;
886 
887 	/*
888 	 * The buffer is already part of this transaction if b_transaction or
889 	 * b_next_transaction points to it
890 	 */
891 	if (jh->b_transaction == transaction ||
892 	    jh->b_next_transaction == transaction)
893 		goto done;
894 
895 	/*
896 	 * this is the first time this transaction is touching this buffer,
897 	 * reset the modified flag
898 	 */
899        jh->b_modified = 0;
900 
901 	/*
902 	 * If the buffer is not journaled right now, we need to make sure it
903 	 * doesn't get written to disk before the caller actually commits the
904 	 * new data
905 	 */
906 	if (!jh->b_transaction) {
907 		JBUFFER_TRACE(jh, "no transaction");
908 		J_ASSERT_JH(jh, !jh->b_next_transaction);
909 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
910 		/*
911 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
912 		 * visible before attaching it to the running transaction.
913 		 * Paired with barrier in jbd2_write_access_granted()
914 		 */
915 		smp_wmb();
916 		spin_lock(&journal->j_list_lock);
917 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
918 		spin_unlock(&journal->j_list_lock);
919 		goto done;
920 	}
921 	/*
922 	 * If there is already a copy-out version of this buffer, then we don't
923 	 * need to make another one
924 	 */
925 	if (jh->b_frozen_data) {
926 		JBUFFER_TRACE(jh, "has frozen data");
927 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
928 		goto attach_next;
929 	}
930 
931 	JBUFFER_TRACE(jh, "owned by older transaction");
932 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
933 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
934 
935 	/*
936 	 * There is one case we have to be very careful about.  If the
937 	 * committing transaction is currently writing this buffer out to disk
938 	 * and has NOT made a copy-out, then we cannot modify the buffer
939 	 * contents at all right now.  The essence of copy-out is that it is
940 	 * the extra copy, not the primary copy, which gets journaled.  If the
941 	 * primary copy is already going to disk then we cannot do copy-out
942 	 * here.
943 	 */
944 	if (buffer_shadow(bh)) {
945 		JBUFFER_TRACE(jh, "on shadow: sleep");
946 		jbd_unlock_bh_state(bh);
947 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
948 		goto repeat;
949 	}
950 
951 	/*
952 	 * Only do the copy if the currently-owning transaction still needs it.
953 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
954 	 * past that stage (here we use the fact that BH_Shadow is set under
955 	 * bh_state lock together with refiling to BJ_Shadow list and at this
956 	 * point we know the buffer doesn't have BH_Shadow set).
957 	 *
958 	 * Subtle point, though: if this is a get_undo_access, then we will be
959 	 * relying on the frozen_data to contain the new value of the
960 	 * committed_data record after the transaction, so we HAVE to force the
961 	 * frozen_data copy in that case.
962 	 */
963 	if (jh->b_jlist == BJ_Metadata || force_copy) {
964 		JBUFFER_TRACE(jh, "generate frozen data");
965 		if (!frozen_buffer) {
966 			JBUFFER_TRACE(jh, "allocate memory for buffer");
967 			jbd_unlock_bh_state(bh);
968 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
969 						   GFP_NOFS | __GFP_NOFAIL);
970 			goto repeat;
971 		}
972 		jh->b_frozen_data = frozen_buffer;
973 		frozen_buffer = NULL;
974 		jbd2_freeze_jh_data(jh);
975 	}
976 attach_next:
977 	/*
978 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
979 	 * before attaching it to the running transaction. Paired with barrier
980 	 * in jbd2_write_access_granted()
981 	 */
982 	smp_wmb();
983 	jh->b_next_transaction = transaction;
984 
985 done:
986 	jbd_unlock_bh_state(bh);
987 
988 	/*
989 	 * If we are about to journal a buffer, then any revoke pending on it is
990 	 * no longer valid
991 	 */
992 	jbd2_journal_cancel_revoke(handle, jh);
993 
994 out:
995 	if (unlikely(frozen_buffer))	/* It's usually NULL */
996 		jbd2_free(frozen_buffer, bh->b_size);
997 
998 	JBUFFER_TRACE(jh, "exit");
999 	return error;
1000 }
1001 
1002 /* Fast check whether buffer is already attached to the required transaction */
1003 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1004 							bool undo)
1005 {
1006 	struct journal_head *jh;
1007 	bool ret = false;
1008 
1009 	/* Dirty buffers require special handling... */
1010 	if (buffer_dirty(bh))
1011 		return false;
1012 
1013 	/*
1014 	 * RCU protects us from dereferencing freed pages. So the checks we do
1015 	 * are guaranteed not to oops. However the jh slab object can get freed
1016 	 * & reallocated while we work with it. So we have to be careful. When
1017 	 * we see jh attached to the running transaction, we know it must stay
1018 	 * so until the transaction is committed. Thus jh won't be freed and
1019 	 * will be attached to the same bh while we run.  However it can
1020 	 * happen jh gets freed, reallocated, and attached to the transaction
1021 	 * just after we get pointer to it from bh. So we have to be careful
1022 	 * and recheck jh still belongs to our bh before we return success.
1023 	 */
1024 	rcu_read_lock();
1025 	if (!buffer_jbd(bh))
1026 		goto out;
1027 	/* This should be bh2jh() but that doesn't work with inline functions */
1028 	jh = READ_ONCE(bh->b_private);
1029 	if (!jh)
1030 		goto out;
1031 	/* For undo access buffer must have data copied */
1032 	if (undo && !jh->b_committed_data)
1033 		goto out;
1034 	if (jh->b_transaction != handle->h_transaction &&
1035 	    jh->b_next_transaction != handle->h_transaction)
1036 		goto out;
1037 	/*
1038 	 * There are two reasons for the barrier here:
1039 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1040 	 * detect when jh went through free, realloc, attach to transaction
1041 	 * while we were checking. Paired with implicit barrier in that path.
1042 	 * 2) So that access to bh done after jbd2_write_access_granted()
1043 	 * doesn't get reordered and see inconsistent state of concurrent
1044 	 * do_get_write_access().
1045 	 */
1046 	smp_mb();
1047 	if (unlikely(jh->b_bh != bh))
1048 		goto out;
1049 	ret = true;
1050 out:
1051 	rcu_read_unlock();
1052 	return ret;
1053 }
1054 
1055 /**
1056  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1057  * @handle: transaction to add buffer modifications to
1058  * @bh:     bh to be used for metadata writes
1059  *
1060  * Returns an error code or 0 on success.
1061  *
1062  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1063  * because we're write()ing a buffer which is also part of a shared mapping.
1064  */
1065 
1066 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1067 {
1068 	struct journal_head *jh;
1069 	int rc;
1070 
1071 	if (jbd2_write_access_granted(handle, bh, false))
1072 		return 0;
1073 
1074 	jh = jbd2_journal_add_journal_head(bh);
1075 	/* We do not want to get caught playing with fields which the
1076 	 * log thread also manipulates.  Make sure that the buffer
1077 	 * completes any outstanding IO before proceeding. */
1078 	rc = do_get_write_access(handle, jh, 0);
1079 	jbd2_journal_put_journal_head(jh);
1080 	return rc;
1081 }
1082 
1083 
1084 /*
1085  * When the user wants to journal a newly created buffer_head
1086  * (ie. getblk() returned a new buffer and we are going to populate it
1087  * manually rather than reading off disk), then we need to keep the
1088  * buffer_head locked until it has been completely filled with new
1089  * data.  In this case, we should be able to make the assertion that
1090  * the bh is not already part of an existing transaction.
1091  *
1092  * The buffer should already be locked by the caller by this point.
1093  * There is no lock ranking violation: it was a newly created,
1094  * unlocked buffer beforehand. */
1095 
1096 /**
1097  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1098  * @handle: transaction to new buffer to
1099  * @bh: new buffer.
1100  *
1101  * Call this if you create a new bh.
1102  */
1103 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1104 {
1105 	transaction_t *transaction = handle->h_transaction;
1106 	journal_t *journal;
1107 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1108 	int err;
1109 
1110 	jbd_debug(5, "journal_head %p\n", jh);
1111 	err = -EROFS;
1112 	if (is_handle_aborted(handle))
1113 		goto out;
1114 	journal = transaction->t_journal;
1115 	err = 0;
1116 
1117 	JBUFFER_TRACE(jh, "entry");
1118 	/*
1119 	 * The buffer may already belong to this transaction due to pre-zeroing
1120 	 * in the filesystem's new_block code.  It may also be on the previous,
1121 	 * committing transaction's lists, but it HAS to be in Forget state in
1122 	 * that case: the transaction must have deleted the buffer for it to be
1123 	 * reused here.
1124 	 */
1125 	jbd_lock_bh_state(bh);
1126 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1127 		jh->b_transaction == NULL ||
1128 		(jh->b_transaction == journal->j_committing_transaction &&
1129 			  jh->b_jlist == BJ_Forget)));
1130 
1131 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1132 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1133 
1134 	if (jh->b_transaction == NULL) {
1135 		/*
1136 		 * Previous jbd2_journal_forget() could have left the buffer
1137 		 * with jbddirty bit set because it was being committed. When
1138 		 * the commit finished, we've filed the buffer for
1139 		 * checkpointing and marked it dirty. Now we are reallocating
1140 		 * the buffer so the transaction freeing it must have
1141 		 * committed and so it's safe to clear the dirty bit.
1142 		 */
1143 		clear_buffer_dirty(jh2bh(jh));
1144 		/* first access by this transaction */
1145 		jh->b_modified = 0;
1146 
1147 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1148 		spin_lock(&journal->j_list_lock);
1149 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1150 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1151 		/* first access by this transaction */
1152 		jh->b_modified = 0;
1153 
1154 		JBUFFER_TRACE(jh, "set next transaction");
1155 		spin_lock(&journal->j_list_lock);
1156 		jh->b_next_transaction = transaction;
1157 	}
1158 	spin_unlock(&journal->j_list_lock);
1159 	jbd_unlock_bh_state(bh);
1160 
1161 	/*
1162 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1163 	 * blocks which contain freed but then revoked metadata.  We need
1164 	 * to cancel the revoke in case we end up freeing it yet again
1165 	 * and the reallocating as data - this would cause a second revoke,
1166 	 * which hits an assertion error.
1167 	 */
1168 	JBUFFER_TRACE(jh, "cancelling revoke");
1169 	jbd2_journal_cancel_revoke(handle, jh);
1170 out:
1171 	jbd2_journal_put_journal_head(jh);
1172 	return err;
1173 }
1174 
1175 /**
1176  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1177  *     non-rewindable consequences
1178  * @handle: transaction
1179  * @bh: buffer to undo
1180  *
1181  * Sometimes there is a need to distinguish between metadata which has
1182  * been committed to disk and that which has not.  The ext3fs code uses
1183  * this for freeing and allocating space, we have to make sure that we
1184  * do not reuse freed space until the deallocation has been committed,
1185  * since if we overwrote that space we would make the delete
1186  * un-rewindable in case of a crash.
1187  *
1188  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1189  * buffer for parts of non-rewindable operations such as delete
1190  * operations on the bitmaps.  The journaling code must keep a copy of
1191  * the buffer's contents prior to the undo_access call until such time
1192  * as we know that the buffer has definitely been committed to disk.
1193  *
1194  * We never need to know which transaction the committed data is part
1195  * of, buffers touched here are guaranteed to be dirtied later and so
1196  * will be committed to a new transaction in due course, at which point
1197  * we can discard the old committed data pointer.
1198  *
1199  * Returns error number or 0 on success.
1200  */
1201 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1202 {
1203 	int err;
1204 	struct journal_head *jh;
1205 	char *committed_data = NULL;
1206 
1207 	JBUFFER_TRACE(jh, "entry");
1208 	if (jbd2_write_access_granted(handle, bh, true))
1209 		return 0;
1210 
1211 	jh = jbd2_journal_add_journal_head(bh);
1212 	/*
1213 	 * Do this first --- it can drop the journal lock, so we want to
1214 	 * make sure that obtaining the committed_data is done
1215 	 * atomically wrt. completion of any outstanding commits.
1216 	 */
1217 	err = do_get_write_access(handle, jh, 1);
1218 	if (err)
1219 		goto out;
1220 
1221 repeat:
1222 	if (!jh->b_committed_data)
1223 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1224 					    GFP_NOFS|__GFP_NOFAIL);
1225 
1226 	jbd_lock_bh_state(bh);
1227 	if (!jh->b_committed_data) {
1228 		/* Copy out the current buffer contents into the
1229 		 * preserved, committed copy. */
1230 		JBUFFER_TRACE(jh, "generate b_committed data");
1231 		if (!committed_data) {
1232 			jbd_unlock_bh_state(bh);
1233 			goto repeat;
1234 		}
1235 
1236 		jh->b_committed_data = committed_data;
1237 		committed_data = NULL;
1238 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1239 	}
1240 	jbd_unlock_bh_state(bh);
1241 out:
1242 	jbd2_journal_put_journal_head(jh);
1243 	if (unlikely(committed_data))
1244 		jbd2_free(committed_data, bh->b_size);
1245 	return err;
1246 }
1247 
1248 /**
1249  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1250  * @bh: buffer to trigger on
1251  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1252  *
1253  * Set any triggers on this journal_head.  This is always safe, because
1254  * triggers for a committing buffer will be saved off, and triggers for
1255  * a running transaction will match the buffer in that transaction.
1256  *
1257  * Call with NULL to clear the triggers.
1258  */
1259 void jbd2_journal_set_triggers(struct buffer_head *bh,
1260 			       struct jbd2_buffer_trigger_type *type)
1261 {
1262 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1263 
1264 	if (WARN_ON(!jh))
1265 		return;
1266 	jh->b_triggers = type;
1267 	jbd2_journal_put_journal_head(jh);
1268 }
1269 
1270 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1271 				struct jbd2_buffer_trigger_type *triggers)
1272 {
1273 	struct buffer_head *bh = jh2bh(jh);
1274 
1275 	if (!triggers || !triggers->t_frozen)
1276 		return;
1277 
1278 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1279 }
1280 
1281 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1282 			       struct jbd2_buffer_trigger_type *triggers)
1283 {
1284 	if (!triggers || !triggers->t_abort)
1285 		return;
1286 
1287 	triggers->t_abort(triggers, jh2bh(jh));
1288 }
1289 
1290 /**
1291  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1292  * @handle: transaction to add buffer to.
1293  * @bh: buffer to mark
1294  *
1295  * mark dirty metadata which needs to be journaled as part of the current
1296  * transaction.
1297  *
1298  * The buffer must have previously had jbd2_journal_get_write_access()
1299  * called so that it has a valid journal_head attached to the buffer
1300  * head.
1301  *
1302  * The buffer is placed on the transaction's metadata list and is marked
1303  * as belonging to the transaction.
1304  *
1305  * Returns error number or 0 on success.
1306  *
1307  * Special care needs to be taken if the buffer already belongs to the
1308  * current committing transaction (in which case we should have frozen
1309  * data present for that commit).  In that case, we don't relink the
1310  * buffer: that only gets done when the old transaction finally
1311  * completes its commit.
1312  */
1313 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1314 {
1315 	transaction_t *transaction = handle->h_transaction;
1316 	journal_t *journal;
1317 	struct journal_head *jh;
1318 	int ret = 0;
1319 
1320 	if (is_handle_aborted(handle))
1321 		return -EROFS;
1322 	if (!buffer_jbd(bh)) {
1323 		ret = -EUCLEAN;
1324 		goto out;
1325 	}
1326 	/*
1327 	 * We don't grab jh reference here since the buffer must be part
1328 	 * of the running transaction.
1329 	 */
1330 	jh = bh2jh(bh);
1331 	/*
1332 	 * This and the following assertions are unreliable since we may see jh
1333 	 * in inconsistent state unless we grab bh_state lock. But this is
1334 	 * crucial to catch bugs so let's do a reliable check until the
1335 	 * lockless handling is fully proven.
1336 	 */
1337 	if (jh->b_transaction != transaction &&
1338 	    jh->b_next_transaction != transaction) {
1339 		jbd_lock_bh_state(bh);
1340 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1341 				jh->b_next_transaction == transaction);
1342 		jbd_unlock_bh_state(bh);
1343 	}
1344 	if (jh->b_modified == 1) {
1345 		/* If it's in our transaction it must be in BJ_Metadata list. */
1346 		if (jh->b_transaction == transaction &&
1347 		    jh->b_jlist != BJ_Metadata) {
1348 			jbd_lock_bh_state(bh);
1349 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1350 					jh->b_jlist == BJ_Metadata);
1351 			jbd_unlock_bh_state(bh);
1352 		}
1353 		goto out;
1354 	}
1355 
1356 	journal = transaction->t_journal;
1357 	jbd_debug(5, "journal_head %p\n", jh);
1358 	JBUFFER_TRACE(jh, "entry");
1359 
1360 	jbd_lock_bh_state(bh);
1361 
1362 	if (jh->b_modified == 0) {
1363 		/*
1364 		 * This buffer's got modified and becoming part
1365 		 * of the transaction. This needs to be done
1366 		 * once a transaction -bzzz
1367 		 */
1368 		jh->b_modified = 1;
1369 		if (handle->h_buffer_credits <= 0) {
1370 			ret = -ENOSPC;
1371 			goto out_unlock_bh;
1372 		}
1373 		handle->h_buffer_credits--;
1374 	}
1375 
1376 	/*
1377 	 * fastpath, to avoid expensive locking.  If this buffer is already
1378 	 * on the running transaction's metadata list there is nothing to do.
1379 	 * Nobody can take it off again because there is a handle open.
1380 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1381 	 * result in this test being false, so we go in and take the locks.
1382 	 */
1383 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1384 		JBUFFER_TRACE(jh, "fastpath");
1385 		if (unlikely(jh->b_transaction !=
1386 			     journal->j_running_transaction)) {
1387 			printk(KERN_ERR "JBD2: %s: "
1388 			       "jh->b_transaction (%llu, %p, %u) != "
1389 			       "journal->j_running_transaction (%p, %u)\n",
1390 			       journal->j_devname,
1391 			       (unsigned long long) bh->b_blocknr,
1392 			       jh->b_transaction,
1393 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1394 			       journal->j_running_transaction,
1395 			       journal->j_running_transaction ?
1396 			       journal->j_running_transaction->t_tid : 0);
1397 			ret = -EINVAL;
1398 		}
1399 		goto out_unlock_bh;
1400 	}
1401 
1402 	set_buffer_jbddirty(bh);
1403 
1404 	/*
1405 	 * Metadata already on the current transaction list doesn't
1406 	 * need to be filed.  Metadata on another transaction's list must
1407 	 * be committing, and will be refiled once the commit completes:
1408 	 * leave it alone for now.
1409 	 */
1410 	if (jh->b_transaction != transaction) {
1411 		JBUFFER_TRACE(jh, "already on other transaction");
1412 		if (unlikely(((jh->b_transaction !=
1413 			       journal->j_committing_transaction)) ||
1414 			     (jh->b_next_transaction != transaction))) {
1415 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1416 			       "bad jh for block %llu: "
1417 			       "transaction (%p, %u), "
1418 			       "jh->b_transaction (%p, %u), "
1419 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1420 			       journal->j_devname,
1421 			       (unsigned long long) bh->b_blocknr,
1422 			       transaction, transaction->t_tid,
1423 			       jh->b_transaction,
1424 			       jh->b_transaction ?
1425 			       jh->b_transaction->t_tid : 0,
1426 			       jh->b_next_transaction,
1427 			       jh->b_next_transaction ?
1428 			       jh->b_next_transaction->t_tid : 0,
1429 			       jh->b_jlist);
1430 			WARN_ON(1);
1431 			ret = -EINVAL;
1432 		}
1433 		/* And this case is illegal: we can't reuse another
1434 		 * transaction's data buffer, ever. */
1435 		goto out_unlock_bh;
1436 	}
1437 
1438 	/* That test should have eliminated the following case: */
1439 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1440 
1441 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1442 	spin_lock(&journal->j_list_lock);
1443 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1444 	spin_unlock(&journal->j_list_lock);
1445 out_unlock_bh:
1446 	jbd_unlock_bh_state(bh);
1447 out:
1448 	JBUFFER_TRACE(jh, "exit");
1449 	return ret;
1450 }
1451 
1452 /**
1453  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1454  * @handle: transaction handle
1455  * @bh:     bh to 'forget'
1456  *
1457  * We can only do the bforget if there are no commits pending against the
1458  * buffer.  If the buffer is dirty in the current running transaction we
1459  * can safely unlink it.
1460  *
1461  * bh may not be a journalled buffer at all - it may be a non-JBD
1462  * buffer which came off the hashtable.  Check for this.
1463  *
1464  * Decrements bh->b_count by one.
1465  *
1466  * Allow this call even if the handle has aborted --- it may be part of
1467  * the caller's cleanup after an abort.
1468  */
1469 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1470 {
1471 	transaction_t *transaction = handle->h_transaction;
1472 	journal_t *journal;
1473 	struct journal_head *jh;
1474 	int drop_reserve = 0;
1475 	int err = 0;
1476 	int was_modified = 0;
1477 
1478 	if (is_handle_aborted(handle))
1479 		return -EROFS;
1480 	journal = transaction->t_journal;
1481 
1482 	BUFFER_TRACE(bh, "entry");
1483 
1484 	jbd_lock_bh_state(bh);
1485 
1486 	if (!buffer_jbd(bh))
1487 		goto not_jbd;
1488 	jh = bh2jh(bh);
1489 
1490 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1491 	 * Don't do any jbd operations, and return an error. */
1492 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1493 			 "inconsistent data on disk")) {
1494 		err = -EIO;
1495 		goto not_jbd;
1496 	}
1497 
1498 	/* keep track of whether or not this transaction modified us */
1499 	was_modified = jh->b_modified;
1500 
1501 	/*
1502 	 * The buffer's going from the transaction, we must drop
1503 	 * all references -bzzz
1504 	 */
1505 	jh->b_modified = 0;
1506 
1507 	if (jh->b_transaction == transaction) {
1508 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1509 
1510 		/* If we are forgetting a buffer which is already part
1511 		 * of this transaction, then we can just drop it from
1512 		 * the transaction immediately. */
1513 		clear_buffer_dirty(bh);
1514 		clear_buffer_jbddirty(bh);
1515 
1516 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1517 
1518 		/*
1519 		 * we only want to drop a reference if this transaction
1520 		 * modified the buffer
1521 		 */
1522 		if (was_modified)
1523 			drop_reserve = 1;
1524 
1525 		/*
1526 		 * We are no longer going to journal this buffer.
1527 		 * However, the commit of this transaction is still
1528 		 * important to the buffer: the delete that we are now
1529 		 * processing might obsolete an old log entry, so by
1530 		 * committing, we can satisfy the buffer's checkpoint.
1531 		 *
1532 		 * So, if we have a checkpoint on the buffer, we should
1533 		 * now refile the buffer on our BJ_Forget list so that
1534 		 * we know to remove the checkpoint after we commit.
1535 		 */
1536 
1537 		spin_lock(&journal->j_list_lock);
1538 		if (jh->b_cp_transaction) {
1539 			__jbd2_journal_temp_unlink_buffer(jh);
1540 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1541 		} else {
1542 			__jbd2_journal_unfile_buffer(jh);
1543 			if (!buffer_jbd(bh)) {
1544 				spin_unlock(&journal->j_list_lock);
1545 				jbd_unlock_bh_state(bh);
1546 				__bforget(bh);
1547 				goto drop;
1548 			}
1549 		}
1550 		spin_unlock(&journal->j_list_lock);
1551 	} else if (jh->b_transaction) {
1552 		J_ASSERT_JH(jh, (jh->b_transaction ==
1553 				 journal->j_committing_transaction));
1554 		/* However, if the buffer is still owned by a prior
1555 		 * (committing) transaction, we can't drop it yet... */
1556 		JBUFFER_TRACE(jh, "belongs to older transaction");
1557 		/* ... but we CAN drop it from the new transaction if we
1558 		 * have also modified it since the original commit. */
1559 
1560 		if (jh->b_next_transaction) {
1561 			J_ASSERT(jh->b_next_transaction == transaction);
1562 			spin_lock(&journal->j_list_lock);
1563 			jh->b_next_transaction = NULL;
1564 			spin_unlock(&journal->j_list_lock);
1565 
1566 			/*
1567 			 * only drop a reference if this transaction modified
1568 			 * the buffer
1569 			 */
1570 			if (was_modified)
1571 				drop_reserve = 1;
1572 		}
1573 	}
1574 
1575 not_jbd:
1576 	jbd_unlock_bh_state(bh);
1577 	__brelse(bh);
1578 drop:
1579 	if (drop_reserve) {
1580 		/* no need to reserve log space for this block -bzzz */
1581 		handle->h_buffer_credits++;
1582 	}
1583 	return err;
1584 }
1585 
1586 /**
1587  * int jbd2_journal_stop() - complete a transaction
1588  * @handle: transaction to complete.
1589  *
1590  * All done for a particular handle.
1591  *
1592  * There is not much action needed here.  We just return any remaining
1593  * buffer credits to the transaction and remove the handle.  The only
1594  * complication is that we need to start a commit operation if the
1595  * filesystem is marked for synchronous update.
1596  *
1597  * jbd2_journal_stop itself will not usually return an error, but it may
1598  * do so in unusual circumstances.  In particular, expect it to
1599  * return -EIO if a jbd2_journal_abort has been executed since the
1600  * transaction began.
1601  */
1602 int jbd2_journal_stop(handle_t *handle)
1603 {
1604 	transaction_t *transaction = handle->h_transaction;
1605 	journal_t *journal;
1606 	int err = 0, wait_for_commit = 0;
1607 	tid_t tid;
1608 	pid_t pid;
1609 
1610 	if (!transaction) {
1611 		/*
1612 		 * Handle is already detached from the transaction so
1613 		 * there is nothing to do other than decrease a refcount,
1614 		 * or free the handle if refcount drops to zero
1615 		 */
1616 		if (--handle->h_ref > 0) {
1617 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1618 							 handle->h_ref);
1619 			return err;
1620 		} else {
1621 			if (handle->h_rsv_handle)
1622 				jbd2_free_handle(handle->h_rsv_handle);
1623 			goto free_and_exit;
1624 		}
1625 	}
1626 	journal = transaction->t_journal;
1627 
1628 	J_ASSERT(journal_current_handle() == handle);
1629 
1630 	if (is_handle_aborted(handle))
1631 		err = -EIO;
1632 	else
1633 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1634 
1635 	if (--handle->h_ref > 0) {
1636 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1637 			  handle->h_ref);
1638 		return err;
1639 	}
1640 
1641 	jbd_debug(4, "Handle %p going down\n", handle);
1642 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1643 				transaction->t_tid,
1644 				handle->h_type, handle->h_line_no,
1645 				jiffies - handle->h_start_jiffies,
1646 				handle->h_sync, handle->h_requested_credits,
1647 				(handle->h_requested_credits -
1648 				 handle->h_buffer_credits));
1649 
1650 	/*
1651 	 * Implement synchronous transaction batching.  If the handle
1652 	 * was synchronous, don't force a commit immediately.  Let's
1653 	 * yield and let another thread piggyback onto this
1654 	 * transaction.  Keep doing that while new threads continue to
1655 	 * arrive.  It doesn't cost much - we're about to run a commit
1656 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1657 	 * operations by 30x or more...
1658 	 *
1659 	 * We try and optimize the sleep time against what the
1660 	 * underlying disk can do, instead of having a static sleep
1661 	 * time.  This is useful for the case where our storage is so
1662 	 * fast that it is more optimal to go ahead and force a flush
1663 	 * and wait for the transaction to be committed than it is to
1664 	 * wait for an arbitrary amount of time for new writers to
1665 	 * join the transaction.  We achieve this by measuring how
1666 	 * long it takes to commit a transaction, and compare it with
1667 	 * how long this transaction has been running, and if run time
1668 	 * < commit time then we sleep for the delta and commit.  This
1669 	 * greatly helps super fast disks that would see slowdowns as
1670 	 * more threads started doing fsyncs.
1671 	 *
1672 	 * But don't do this if this process was the most recent one
1673 	 * to perform a synchronous write.  We do this to detect the
1674 	 * case where a single process is doing a stream of sync
1675 	 * writes.  No point in waiting for joiners in that case.
1676 	 *
1677 	 * Setting max_batch_time to 0 disables this completely.
1678 	 */
1679 	pid = current->pid;
1680 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1681 	    journal->j_max_batch_time) {
1682 		u64 commit_time, trans_time;
1683 
1684 		journal->j_last_sync_writer = pid;
1685 
1686 		read_lock(&journal->j_state_lock);
1687 		commit_time = journal->j_average_commit_time;
1688 		read_unlock(&journal->j_state_lock);
1689 
1690 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1691 						   transaction->t_start_time));
1692 
1693 		commit_time = max_t(u64, commit_time,
1694 				    1000*journal->j_min_batch_time);
1695 		commit_time = min_t(u64, commit_time,
1696 				    1000*journal->j_max_batch_time);
1697 
1698 		if (trans_time < commit_time) {
1699 			ktime_t expires = ktime_add_ns(ktime_get(),
1700 						       commit_time);
1701 			set_current_state(TASK_UNINTERRUPTIBLE);
1702 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1703 		}
1704 	}
1705 
1706 	if (handle->h_sync)
1707 		transaction->t_synchronous_commit = 1;
1708 	current->journal_info = NULL;
1709 	atomic_sub(handle->h_buffer_credits,
1710 		   &transaction->t_outstanding_credits);
1711 
1712 	/*
1713 	 * If the handle is marked SYNC, we need to set another commit
1714 	 * going!  We also want to force a commit if the current
1715 	 * transaction is occupying too much of the log, or if the
1716 	 * transaction is too old now.
1717 	 */
1718 	if (handle->h_sync ||
1719 	    (atomic_read(&transaction->t_outstanding_credits) >
1720 	     journal->j_max_transaction_buffers) ||
1721 	    time_after_eq(jiffies, transaction->t_expires)) {
1722 		/* Do this even for aborted journals: an abort still
1723 		 * completes the commit thread, it just doesn't write
1724 		 * anything to disk. */
1725 
1726 		jbd_debug(2, "transaction too old, requesting commit for "
1727 					"handle %p\n", handle);
1728 		/* This is non-blocking */
1729 		jbd2_log_start_commit(journal, transaction->t_tid);
1730 
1731 		/*
1732 		 * Special case: JBD2_SYNC synchronous updates require us
1733 		 * to wait for the commit to complete.
1734 		 */
1735 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1736 			wait_for_commit = 1;
1737 	}
1738 
1739 	/*
1740 	 * Once we drop t_updates, if it goes to zero the transaction
1741 	 * could start committing on us and eventually disappear.  So
1742 	 * once we do this, we must not dereference transaction
1743 	 * pointer again.
1744 	 */
1745 	tid = transaction->t_tid;
1746 	if (atomic_dec_and_test(&transaction->t_updates)) {
1747 		wake_up(&journal->j_wait_updates);
1748 		if (journal->j_barrier_count)
1749 			wake_up(&journal->j_wait_transaction_locked);
1750 	}
1751 
1752 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1753 
1754 	if (wait_for_commit)
1755 		err = jbd2_log_wait_commit(journal, tid);
1756 
1757 	if (handle->h_rsv_handle)
1758 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1759 free_and_exit:
1760 	jbd2_free_handle(handle);
1761 	return err;
1762 }
1763 
1764 /*
1765  *
1766  * List management code snippets: various functions for manipulating the
1767  * transaction buffer lists.
1768  *
1769  */
1770 
1771 /*
1772  * Append a buffer to a transaction list, given the transaction's list head
1773  * pointer.
1774  *
1775  * j_list_lock is held.
1776  *
1777  * jbd_lock_bh_state(jh2bh(jh)) is held.
1778  */
1779 
1780 static inline void
1781 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1782 {
1783 	if (!*list) {
1784 		jh->b_tnext = jh->b_tprev = jh;
1785 		*list = jh;
1786 	} else {
1787 		/* Insert at the tail of the list to preserve order */
1788 		struct journal_head *first = *list, *last = first->b_tprev;
1789 		jh->b_tprev = last;
1790 		jh->b_tnext = first;
1791 		last->b_tnext = first->b_tprev = jh;
1792 	}
1793 }
1794 
1795 /*
1796  * Remove a buffer from a transaction list, given the transaction's list
1797  * head pointer.
1798  *
1799  * Called with j_list_lock held, and the journal may not be locked.
1800  *
1801  * jbd_lock_bh_state(jh2bh(jh)) is held.
1802  */
1803 
1804 static inline void
1805 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1806 {
1807 	if (*list == jh) {
1808 		*list = jh->b_tnext;
1809 		if (*list == jh)
1810 			*list = NULL;
1811 	}
1812 	jh->b_tprev->b_tnext = jh->b_tnext;
1813 	jh->b_tnext->b_tprev = jh->b_tprev;
1814 }
1815 
1816 /*
1817  * Remove a buffer from the appropriate transaction list.
1818  *
1819  * Note that this function can *change* the value of
1820  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1821  * t_reserved_list.  If the caller is holding onto a copy of one of these
1822  * pointers, it could go bad.  Generally the caller needs to re-read the
1823  * pointer from the transaction_t.
1824  *
1825  * Called under j_list_lock.
1826  */
1827 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1828 {
1829 	struct journal_head **list = NULL;
1830 	transaction_t *transaction;
1831 	struct buffer_head *bh = jh2bh(jh);
1832 
1833 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1834 	transaction = jh->b_transaction;
1835 	if (transaction)
1836 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1837 
1838 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1839 	if (jh->b_jlist != BJ_None)
1840 		J_ASSERT_JH(jh, transaction != NULL);
1841 
1842 	switch (jh->b_jlist) {
1843 	case BJ_None:
1844 		return;
1845 	case BJ_Metadata:
1846 		transaction->t_nr_buffers--;
1847 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1848 		list = &transaction->t_buffers;
1849 		break;
1850 	case BJ_Forget:
1851 		list = &transaction->t_forget;
1852 		break;
1853 	case BJ_Shadow:
1854 		list = &transaction->t_shadow_list;
1855 		break;
1856 	case BJ_Reserved:
1857 		list = &transaction->t_reserved_list;
1858 		break;
1859 	}
1860 
1861 	__blist_del_buffer(list, jh);
1862 	jh->b_jlist = BJ_None;
1863 	if (test_clear_buffer_jbddirty(bh))
1864 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1865 }
1866 
1867 /*
1868  * Remove buffer from all transactions.
1869  *
1870  * Called with bh_state lock and j_list_lock
1871  *
1872  * jh and bh may be already freed when this function returns.
1873  */
1874 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1875 {
1876 	__jbd2_journal_temp_unlink_buffer(jh);
1877 	jh->b_transaction = NULL;
1878 	jbd2_journal_put_journal_head(jh);
1879 }
1880 
1881 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1882 {
1883 	struct buffer_head *bh = jh2bh(jh);
1884 
1885 	/* Get reference so that buffer cannot be freed before we unlock it */
1886 	get_bh(bh);
1887 	jbd_lock_bh_state(bh);
1888 	spin_lock(&journal->j_list_lock);
1889 	__jbd2_journal_unfile_buffer(jh);
1890 	spin_unlock(&journal->j_list_lock);
1891 	jbd_unlock_bh_state(bh);
1892 	__brelse(bh);
1893 }
1894 
1895 /*
1896  * Called from jbd2_journal_try_to_free_buffers().
1897  *
1898  * Called under jbd_lock_bh_state(bh)
1899  */
1900 static void
1901 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1902 {
1903 	struct journal_head *jh;
1904 
1905 	jh = bh2jh(bh);
1906 
1907 	if (buffer_locked(bh) || buffer_dirty(bh))
1908 		goto out;
1909 
1910 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1911 		goto out;
1912 
1913 	spin_lock(&journal->j_list_lock);
1914 	if (jh->b_cp_transaction != NULL) {
1915 		/* written-back checkpointed metadata buffer */
1916 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1917 		__jbd2_journal_remove_checkpoint(jh);
1918 	}
1919 	spin_unlock(&journal->j_list_lock);
1920 out:
1921 	return;
1922 }
1923 
1924 /**
1925  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1926  * @journal: journal for operation
1927  * @page: to try and free
1928  * @gfp_mask: we use the mask to detect how hard should we try to release
1929  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1930  * code to release the buffers.
1931  *
1932  *
1933  * For all the buffers on this page,
1934  * if they are fully written out ordered data, move them onto BUF_CLEAN
1935  * so try_to_free_buffers() can reap them.
1936  *
1937  * This function returns non-zero if we wish try_to_free_buffers()
1938  * to be called. We do this if the page is releasable by try_to_free_buffers().
1939  * We also do it if the page has locked or dirty buffers and the caller wants
1940  * us to perform sync or async writeout.
1941  *
1942  * This complicates JBD locking somewhat.  We aren't protected by the
1943  * BKL here.  We wish to remove the buffer from its committing or
1944  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1945  *
1946  * This may *change* the value of transaction_t->t_datalist, so anyone
1947  * who looks at t_datalist needs to lock against this function.
1948  *
1949  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1950  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1951  * will come out of the lock with the buffer dirty, which makes it
1952  * ineligible for release here.
1953  *
1954  * Who else is affected by this?  hmm...  Really the only contender
1955  * is do_get_write_access() - it could be looking at the buffer while
1956  * journal_try_to_free_buffer() is changing its state.  But that
1957  * cannot happen because we never reallocate freed data as metadata
1958  * while the data is part of a transaction.  Yes?
1959  *
1960  * Return 0 on failure, 1 on success
1961  */
1962 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1963 				struct page *page, gfp_t gfp_mask)
1964 {
1965 	struct buffer_head *head;
1966 	struct buffer_head *bh;
1967 	int ret = 0;
1968 
1969 	J_ASSERT(PageLocked(page));
1970 
1971 	head = page_buffers(page);
1972 	bh = head;
1973 	do {
1974 		struct journal_head *jh;
1975 
1976 		/*
1977 		 * We take our own ref against the journal_head here to avoid
1978 		 * having to add tons of locking around each instance of
1979 		 * jbd2_journal_put_journal_head().
1980 		 */
1981 		jh = jbd2_journal_grab_journal_head(bh);
1982 		if (!jh)
1983 			continue;
1984 
1985 		jbd_lock_bh_state(bh);
1986 		__journal_try_to_free_buffer(journal, bh);
1987 		jbd2_journal_put_journal_head(jh);
1988 		jbd_unlock_bh_state(bh);
1989 		if (buffer_jbd(bh))
1990 			goto busy;
1991 	} while ((bh = bh->b_this_page) != head);
1992 
1993 	ret = try_to_free_buffers(page);
1994 
1995 busy:
1996 	return ret;
1997 }
1998 
1999 /*
2000  * This buffer is no longer needed.  If it is on an older transaction's
2001  * checkpoint list we need to record it on this transaction's forget list
2002  * to pin this buffer (and hence its checkpointing transaction) down until
2003  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2004  * release it.
2005  * Returns non-zero if JBD no longer has an interest in the buffer.
2006  *
2007  * Called under j_list_lock.
2008  *
2009  * Called under jbd_lock_bh_state(bh).
2010  */
2011 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2012 {
2013 	int may_free = 1;
2014 	struct buffer_head *bh = jh2bh(jh);
2015 
2016 	if (jh->b_cp_transaction) {
2017 		JBUFFER_TRACE(jh, "on running+cp transaction");
2018 		__jbd2_journal_temp_unlink_buffer(jh);
2019 		/*
2020 		 * We don't want to write the buffer anymore, clear the
2021 		 * bit so that we don't confuse checks in
2022 		 * __journal_file_buffer
2023 		 */
2024 		clear_buffer_dirty(bh);
2025 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2026 		may_free = 0;
2027 	} else {
2028 		JBUFFER_TRACE(jh, "on running transaction");
2029 		__jbd2_journal_unfile_buffer(jh);
2030 	}
2031 	return may_free;
2032 }
2033 
2034 /*
2035  * jbd2_journal_invalidatepage
2036  *
2037  * This code is tricky.  It has a number of cases to deal with.
2038  *
2039  * There are two invariants which this code relies on:
2040  *
2041  * i_size must be updated on disk before we start calling invalidatepage on the
2042  * data.
2043  *
2044  *  This is done in ext3 by defining an ext3_setattr method which
2045  *  updates i_size before truncate gets going.  By maintaining this
2046  *  invariant, we can be sure that it is safe to throw away any buffers
2047  *  attached to the current transaction: once the transaction commits,
2048  *  we know that the data will not be needed.
2049  *
2050  *  Note however that we can *not* throw away data belonging to the
2051  *  previous, committing transaction!
2052  *
2053  * Any disk blocks which *are* part of the previous, committing
2054  * transaction (and which therefore cannot be discarded immediately) are
2055  * not going to be reused in the new running transaction
2056  *
2057  *  The bitmap committed_data images guarantee this: any block which is
2058  *  allocated in one transaction and removed in the next will be marked
2059  *  as in-use in the committed_data bitmap, so cannot be reused until
2060  *  the next transaction to delete the block commits.  This means that
2061  *  leaving committing buffers dirty is quite safe: the disk blocks
2062  *  cannot be reallocated to a different file and so buffer aliasing is
2063  *  not possible.
2064  *
2065  *
2066  * The above applies mainly to ordered data mode.  In writeback mode we
2067  * don't make guarantees about the order in which data hits disk --- in
2068  * particular we don't guarantee that new dirty data is flushed before
2069  * transaction commit --- so it is always safe just to discard data
2070  * immediately in that mode.  --sct
2071  */
2072 
2073 /*
2074  * The journal_unmap_buffer helper function returns zero if the buffer
2075  * concerned remains pinned as an anonymous buffer belonging to an older
2076  * transaction.
2077  *
2078  * We're outside-transaction here.  Either or both of j_running_transaction
2079  * and j_committing_transaction may be NULL.
2080  */
2081 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2082 				int partial_page)
2083 {
2084 	transaction_t *transaction;
2085 	struct journal_head *jh;
2086 	int may_free = 1;
2087 
2088 	BUFFER_TRACE(bh, "entry");
2089 
2090 	/*
2091 	 * It is safe to proceed here without the j_list_lock because the
2092 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2093 	 * holding the page lock. --sct
2094 	 */
2095 
2096 	if (!buffer_jbd(bh))
2097 		goto zap_buffer_unlocked;
2098 
2099 	/* OK, we have data buffer in journaled mode */
2100 	write_lock(&journal->j_state_lock);
2101 	jbd_lock_bh_state(bh);
2102 	spin_lock(&journal->j_list_lock);
2103 
2104 	jh = jbd2_journal_grab_journal_head(bh);
2105 	if (!jh)
2106 		goto zap_buffer_no_jh;
2107 
2108 	/*
2109 	 * We cannot remove the buffer from checkpoint lists until the
2110 	 * transaction adding inode to orphan list (let's call it T)
2111 	 * is committed.  Otherwise if the transaction changing the
2112 	 * buffer would be cleaned from the journal before T is
2113 	 * committed, a crash will cause that the correct contents of
2114 	 * the buffer will be lost.  On the other hand we have to
2115 	 * clear the buffer dirty bit at latest at the moment when the
2116 	 * transaction marking the buffer as freed in the filesystem
2117 	 * structures is committed because from that moment on the
2118 	 * block can be reallocated and used by a different page.
2119 	 * Since the block hasn't been freed yet but the inode has
2120 	 * already been added to orphan list, it is safe for us to add
2121 	 * the buffer to BJ_Forget list of the newest transaction.
2122 	 *
2123 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2124 	 * because the buffer_head may be attached to the page straddling
2125 	 * i_size (can happen only when blocksize < pagesize) and thus the
2126 	 * buffer_head can be reused when the file is extended again. So we end
2127 	 * up keeping around invalidated buffers attached to transactions'
2128 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2129 	 * the transaction this buffer was modified in.
2130 	 */
2131 	transaction = jh->b_transaction;
2132 	if (transaction == NULL) {
2133 		/* First case: not on any transaction.  If it
2134 		 * has no checkpoint link, then we can zap it:
2135 		 * it's a writeback-mode buffer so we don't care
2136 		 * if it hits disk safely. */
2137 		if (!jh->b_cp_transaction) {
2138 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2139 			goto zap_buffer;
2140 		}
2141 
2142 		if (!buffer_dirty(bh)) {
2143 			/* bdflush has written it.  We can drop it now */
2144 			__jbd2_journal_remove_checkpoint(jh);
2145 			goto zap_buffer;
2146 		}
2147 
2148 		/* OK, it must be in the journal but still not
2149 		 * written fully to disk: it's metadata or
2150 		 * journaled data... */
2151 
2152 		if (journal->j_running_transaction) {
2153 			/* ... and once the current transaction has
2154 			 * committed, the buffer won't be needed any
2155 			 * longer. */
2156 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2157 			may_free = __dispose_buffer(jh,
2158 					journal->j_running_transaction);
2159 			goto zap_buffer;
2160 		} else {
2161 			/* There is no currently-running transaction. So the
2162 			 * orphan record which we wrote for this file must have
2163 			 * passed into commit.  We must attach this buffer to
2164 			 * the committing transaction, if it exists. */
2165 			if (journal->j_committing_transaction) {
2166 				JBUFFER_TRACE(jh, "give to committing trans");
2167 				may_free = __dispose_buffer(jh,
2168 					journal->j_committing_transaction);
2169 				goto zap_buffer;
2170 			} else {
2171 				/* The orphan record's transaction has
2172 				 * committed.  We can cleanse this buffer */
2173 				clear_buffer_jbddirty(bh);
2174 				__jbd2_journal_remove_checkpoint(jh);
2175 				goto zap_buffer;
2176 			}
2177 		}
2178 	} else if (transaction == journal->j_committing_transaction) {
2179 		JBUFFER_TRACE(jh, "on committing transaction");
2180 		/*
2181 		 * The buffer is committing, we simply cannot touch
2182 		 * it. If the page is straddling i_size we have to wait
2183 		 * for commit and try again.
2184 		 */
2185 		if (partial_page) {
2186 			jbd2_journal_put_journal_head(jh);
2187 			spin_unlock(&journal->j_list_lock);
2188 			jbd_unlock_bh_state(bh);
2189 			write_unlock(&journal->j_state_lock);
2190 			return -EBUSY;
2191 		}
2192 		/*
2193 		 * OK, buffer won't be reachable after truncate. We just set
2194 		 * j_next_transaction to the running transaction (if there is
2195 		 * one) and mark buffer as freed so that commit code knows it
2196 		 * should clear dirty bits when it is done with the buffer.
2197 		 */
2198 		set_buffer_freed(bh);
2199 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2200 			jh->b_next_transaction = journal->j_running_transaction;
2201 		jbd2_journal_put_journal_head(jh);
2202 		spin_unlock(&journal->j_list_lock);
2203 		jbd_unlock_bh_state(bh);
2204 		write_unlock(&journal->j_state_lock);
2205 		return 0;
2206 	} else {
2207 		/* Good, the buffer belongs to the running transaction.
2208 		 * We are writing our own transaction's data, not any
2209 		 * previous one's, so it is safe to throw it away
2210 		 * (remember that we expect the filesystem to have set
2211 		 * i_size already for this truncate so recovery will not
2212 		 * expose the disk blocks we are discarding here.) */
2213 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2214 		JBUFFER_TRACE(jh, "on running transaction");
2215 		may_free = __dispose_buffer(jh, transaction);
2216 	}
2217 
2218 zap_buffer:
2219 	/*
2220 	 * This is tricky. Although the buffer is truncated, it may be reused
2221 	 * if blocksize < pagesize and it is attached to the page straddling
2222 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2223 	 * running transaction, journal_get_write_access() won't clear
2224 	 * b_modified and credit accounting gets confused. So clear b_modified
2225 	 * here.
2226 	 */
2227 	jh->b_modified = 0;
2228 	jbd2_journal_put_journal_head(jh);
2229 zap_buffer_no_jh:
2230 	spin_unlock(&journal->j_list_lock);
2231 	jbd_unlock_bh_state(bh);
2232 	write_unlock(&journal->j_state_lock);
2233 zap_buffer_unlocked:
2234 	clear_buffer_dirty(bh);
2235 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2236 	clear_buffer_mapped(bh);
2237 	clear_buffer_req(bh);
2238 	clear_buffer_new(bh);
2239 	clear_buffer_delay(bh);
2240 	clear_buffer_unwritten(bh);
2241 	bh->b_bdev = NULL;
2242 	return may_free;
2243 }
2244 
2245 /**
2246  * void jbd2_journal_invalidatepage()
2247  * @journal: journal to use for flush...
2248  * @page:    page to flush
2249  * @offset:  start of the range to invalidate
2250  * @length:  length of the range to invalidate
2251  *
2252  * Reap page buffers containing data after in the specified range in page.
2253  * Can return -EBUSY if buffers are part of the committing transaction and
2254  * the page is straddling i_size. Caller then has to wait for current commit
2255  * and try again.
2256  */
2257 int jbd2_journal_invalidatepage(journal_t *journal,
2258 				struct page *page,
2259 				unsigned int offset,
2260 				unsigned int length)
2261 {
2262 	struct buffer_head *head, *bh, *next;
2263 	unsigned int stop = offset + length;
2264 	unsigned int curr_off = 0;
2265 	int partial_page = (offset || length < PAGE_SIZE);
2266 	int may_free = 1;
2267 	int ret = 0;
2268 
2269 	if (!PageLocked(page))
2270 		BUG();
2271 	if (!page_has_buffers(page))
2272 		return 0;
2273 
2274 	BUG_ON(stop > PAGE_SIZE || stop < length);
2275 
2276 	/* We will potentially be playing with lists other than just the
2277 	 * data lists (especially for journaled data mode), so be
2278 	 * cautious in our locking. */
2279 
2280 	head = bh = page_buffers(page);
2281 	do {
2282 		unsigned int next_off = curr_off + bh->b_size;
2283 		next = bh->b_this_page;
2284 
2285 		if (next_off > stop)
2286 			return 0;
2287 
2288 		if (offset <= curr_off) {
2289 			/* This block is wholly outside the truncation point */
2290 			lock_buffer(bh);
2291 			ret = journal_unmap_buffer(journal, bh, partial_page);
2292 			unlock_buffer(bh);
2293 			if (ret < 0)
2294 				return ret;
2295 			may_free &= ret;
2296 		}
2297 		curr_off = next_off;
2298 		bh = next;
2299 
2300 	} while (bh != head);
2301 
2302 	if (!partial_page) {
2303 		if (may_free && try_to_free_buffers(page))
2304 			J_ASSERT(!page_has_buffers(page));
2305 	}
2306 	return 0;
2307 }
2308 
2309 /*
2310  * File a buffer on the given transaction list.
2311  */
2312 void __jbd2_journal_file_buffer(struct journal_head *jh,
2313 			transaction_t *transaction, int jlist)
2314 {
2315 	struct journal_head **list = NULL;
2316 	int was_dirty = 0;
2317 	struct buffer_head *bh = jh2bh(jh);
2318 
2319 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2320 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2321 
2322 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2323 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2324 				jh->b_transaction == NULL);
2325 
2326 	if (jh->b_transaction && jh->b_jlist == jlist)
2327 		return;
2328 
2329 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2330 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2331 		/*
2332 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2333 		 * instead of buffer_dirty. We should not see a dirty bit set
2334 		 * here because we clear it in do_get_write_access but e.g.
2335 		 * tune2fs can modify the sb and set the dirty bit at any time
2336 		 * so we try to gracefully handle that.
2337 		 */
2338 		if (buffer_dirty(bh))
2339 			warn_dirty_buffer(bh);
2340 		if (test_clear_buffer_dirty(bh) ||
2341 		    test_clear_buffer_jbddirty(bh))
2342 			was_dirty = 1;
2343 	}
2344 
2345 	if (jh->b_transaction)
2346 		__jbd2_journal_temp_unlink_buffer(jh);
2347 	else
2348 		jbd2_journal_grab_journal_head(bh);
2349 	jh->b_transaction = transaction;
2350 
2351 	switch (jlist) {
2352 	case BJ_None:
2353 		J_ASSERT_JH(jh, !jh->b_committed_data);
2354 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2355 		return;
2356 	case BJ_Metadata:
2357 		transaction->t_nr_buffers++;
2358 		list = &transaction->t_buffers;
2359 		break;
2360 	case BJ_Forget:
2361 		list = &transaction->t_forget;
2362 		break;
2363 	case BJ_Shadow:
2364 		list = &transaction->t_shadow_list;
2365 		break;
2366 	case BJ_Reserved:
2367 		list = &transaction->t_reserved_list;
2368 		break;
2369 	}
2370 
2371 	__blist_add_buffer(list, jh);
2372 	jh->b_jlist = jlist;
2373 
2374 	if (was_dirty)
2375 		set_buffer_jbddirty(bh);
2376 }
2377 
2378 void jbd2_journal_file_buffer(struct journal_head *jh,
2379 				transaction_t *transaction, int jlist)
2380 {
2381 	jbd_lock_bh_state(jh2bh(jh));
2382 	spin_lock(&transaction->t_journal->j_list_lock);
2383 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2384 	spin_unlock(&transaction->t_journal->j_list_lock);
2385 	jbd_unlock_bh_state(jh2bh(jh));
2386 }
2387 
2388 /*
2389  * Remove a buffer from its current buffer list in preparation for
2390  * dropping it from its current transaction entirely.  If the buffer has
2391  * already started to be used by a subsequent transaction, refile the
2392  * buffer on that transaction's metadata list.
2393  *
2394  * Called under j_list_lock
2395  * Called under jbd_lock_bh_state(jh2bh(jh))
2396  *
2397  * jh and bh may be already free when this function returns
2398  */
2399 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2400 {
2401 	int was_dirty, jlist;
2402 	struct buffer_head *bh = jh2bh(jh);
2403 
2404 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2405 	if (jh->b_transaction)
2406 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2407 
2408 	/* If the buffer is now unused, just drop it. */
2409 	if (jh->b_next_transaction == NULL) {
2410 		__jbd2_journal_unfile_buffer(jh);
2411 		return;
2412 	}
2413 
2414 	/*
2415 	 * It has been modified by a later transaction: add it to the new
2416 	 * transaction's metadata list.
2417 	 */
2418 
2419 	was_dirty = test_clear_buffer_jbddirty(bh);
2420 	__jbd2_journal_temp_unlink_buffer(jh);
2421 	/*
2422 	 * We set b_transaction here because b_next_transaction will inherit
2423 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2424 	 * take a new one.
2425 	 */
2426 	jh->b_transaction = jh->b_next_transaction;
2427 	jh->b_next_transaction = NULL;
2428 	if (buffer_freed(bh))
2429 		jlist = BJ_Forget;
2430 	else if (jh->b_modified)
2431 		jlist = BJ_Metadata;
2432 	else
2433 		jlist = BJ_Reserved;
2434 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2435 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2436 
2437 	if (was_dirty)
2438 		set_buffer_jbddirty(bh);
2439 }
2440 
2441 /*
2442  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2443  * bh reference so that we can safely unlock bh.
2444  *
2445  * The jh and bh may be freed by this call.
2446  */
2447 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2448 {
2449 	struct buffer_head *bh = jh2bh(jh);
2450 
2451 	/* Get reference so that buffer cannot be freed before we unlock it */
2452 	get_bh(bh);
2453 	jbd_lock_bh_state(bh);
2454 	spin_lock(&journal->j_list_lock);
2455 	__jbd2_journal_refile_buffer(jh);
2456 	jbd_unlock_bh_state(bh);
2457 	spin_unlock(&journal->j_list_lock);
2458 	__brelse(bh);
2459 }
2460 
2461 /*
2462  * File inode in the inode list of the handle's transaction
2463  */
2464 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2465 				   unsigned long flags)
2466 {
2467 	transaction_t *transaction = handle->h_transaction;
2468 	journal_t *journal;
2469 
2470 	if (is_handle_aborted(handle))
2471 		return -EROFS;
2472 	journal = transaction->t_journal;
2473 
2474 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2475 			transaction->t_tid);
2476 
2477 	/*
2478 	 * First check whether inode isn't already on the transaction's
2479 	 * lists without taking the lock. Note that this check is safe
2480 	 * without the lock as we cannot race with somebody removing inode
2481 	 * from the transaction. The reason is that we remove inode from the
2482 	 * transaction only in journal_release_jbd_inode() and when we commit
2483 	 * the transaction. We are guarded from the first case by holding
2484 	 * a reference to the inode. We are safe against the second case
2485 	 * because if jinode->i_transaction == transaction, commit code
2486 	 * cannot touch the transaction because we hold reference to it,
2487 	 * and if jinode->i_next_transaction == transaction, commit code
2488 	 * will only file the inode where we want it.
2489 	 */
2490 	if ((jinode->i_transaction == transaction ||
2491 	    jinode->i_next_transaction == transaction) &&
2492 	    (jinode->i_flags & flags) == flags)
2493 		return 0;
2494 
2495 	spin_lock(&journal->j_list_lock);
2496 	jinode->i_flags |= flags;
2497 	/* Is inode already attached where we need it? */
2498 	if (jinode->i_transaction == transaction ||
2499 	    jinode->i_next_transaction == transaction)
2500 		goto done;
2501 
2502 	/*
2503 	 * We only ever set this variable to 1 so the test is safe. Since
2504 	 * t_need_data_flush is likely to be set, we do the test to save some
2505 	 * cacheline bouncing
2506 	 */
2507 	if (!transaction->t_need_data_flush)
2508 		transaction->t_need_data_flush = 1;
2509 	/* On some different transaction's list - should be
2510 	 * the committing one */
2511 	if (jinode->i_transaction) {
2512 		J_ASSERT(jinode->i_next_transaction == NULL);
2513 		J_ASSERT(jinode->i_transaction ==
2514 					journal->j_committing_transaction);
2515 		jinode->i_next_transaction = transaction;
2516 		goto done;
2517 	}
2518 	/* Not on any transaction list... */
2519 	J_ASSERT(!jinode->i_next_transaction);
2520 	jinode->i_transaction = transaction;
2521 	list_add(&jinode->i_list, &transaction->t_inode_list);
2522 done:
2523 	spin_unlock(&journal->j_list_lock);
2524 
2525 	return 0;
2526 }
2527 
2528 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2529 {
2530 	return jbd2_journal_file_inode(handle, jinode,
2531 				       JI_WRITE_DATA | JI_WAIT_DATA);
2532 }
2533 
2534 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2535 {
2536 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2537 }
2538 
2539 /*
2540  * File truncate and transaction commit interact with each other in a
2541  * non-trivial way.  If a transaction writing data block A is
2542  * committing, we cannot discard the data by truncate until we have
2543  * written them.  Otherwise if we crashed after the transaction with
2544  * write has committed but before the transaction with truncate has
2545  * committed, we could see stale data in block A.  This function is a
2546  * helper to solve this problem.  It starts writeout of the truncated
2547  * part in case it is in the committing transaction.
2548  *
2549  * Filesystem code must call this function when inode is journaled in
2550  * ordered mode before truncation happens and after the inode has been
2551  * placed on orphan list with the new inode size. The second condition
2552  * avoids the race that someone writes new data and we start
2553  * committing the transaction after this function has been called but
2554  * before a transaction for truncate is started (and furthermore it
2555  * allows us to optimize the case where the addition to orphan list
2556  * happens in the same transaction as write --- we don't have to write
2557  * any data in such case).
2558  */
2559 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2560 					struct jbd2_inode *jinode,
2561 					loff_t new_size)
2562 {
2563 	transaction_t *inode_trans, *commit_trans;
2564 	int ret = 0;
2565 
2566 	/* This is a quick check to avoid locking if not necessary */
2567 	if (!jinode->i_transaction)
2568 		goto out;
2569 	/* Locks are here just to force reading of recent values, it is
2570 	 * enough that the transaction was not committing before we started
2571 	 * a transaction adding the inode to orphan list */
2572 	read_lock(&journal->j_state_lock);
2573 	commit_trans = journal->j_committing_transaction;
2574 	read_unlock(&journal->j_state_lock);
2575 	spin_lock(&journal->j_list_lock);
2576 	inode_trans = jinode->i_transaction;
2577 	spin_unlock(&journal->j_list_lock);
2578 	if (inode_trans == commit_trans) {
2579 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2580 			new_size, LLONG_MAX);
2581 		if (ret)
2582 			jbd2_journal_abort(journal, ret);
2583 	}
2584 out:
2585 	return ret;
2586 }
2587