1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 new_transaction = kmem_cache_zalloc(transaction_cache, 282 gfp_mask); 283 if (!new_transaction) { 284 /* 285 * If __GFP_FS is not present, then we may be 286 * being called from inside the fs writeback 287 * layer, so we MUST NOT fail. Since 288 * __GFP_NOFAIL is going away, we will arrange 289 * to retry the allocation ourselves. 290 */ 291 if ((gfp_mask & __GFP_FS) == 0) { 292 congestion_wait(BLK_RW_ASYNC, HZ/50); 293 goto alloc_transaction; 294 } 295 return -ENOMEM; 296 } 297 } 298 299 jbd_debug(3, "New handle %p going live.\n", handle); 300 301 /* 302 * We need to hold j_state_lock until t_updates has been incremented, 303 * for proper journal barrier handling 304 */ 305 repeat: 306 read_lock(&journal->j_state_lock); 307 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 308 if (is_journal_aborted(journal) || 309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 310 read_unlock(&journal->j_state_lock); 311 jbd2_journal_free_transaction(new_transaction); 312 return -EROFS; 313 } 314 315 /* 316 * Wait on the journal's transaction barrier if necessary. Specifically 317 * we allow reserved handles to proceed because otherwise commit could 318 * deadlock on page writeback not being able to complete. 319 */ 320 if (!handle->h_reserved && journal->j_barrier_count) { 321 read_unlock(&journal->j_state_lock); 322 wait_event(journal->j_wait_transaction_locked, 323 journal->j_barrier_count == 0); 324 goto repeat; 325 } 326 327 if (!journal->j_running_transaction) { 328 read_unlock(&journal->j_state_lock); 329 if (!new_transaction) 330 goto alloc_transaction; 331 write_lock(&journal->j_state_lock); 332 if (!journal->j_running_transaction && 333 (handle->h_reserved || !journal->j_barrier_count)) { 334 jbd2_get_transaction(journal, new_transaction); 335 new_transaction = NULL; 336 } 337 write_unlock(&journal->j_state_lock); 338 goto repeat; 339 } 340 341 transaction = journal->j_running_transaction; 342 343 if (!handle->h_reserved) { 344 /* We may have dropped j_state_lock - restart in that case */ 345 if (add_transaction_credits(journal, blocks, rsv_blocks)) 346 goto repeat; 347 } else { 348 /* 349 * We have handle reserved so we are allowed to join T_LOCKED 350 * transaction and we don't have to check for transaction size 351 * and journal space. 352 */ 353 sub_reserved_credits(journal, blocks); 354 handle->h_reserved = 0; 355 } 356 357 /* OK, account for the buffers that this operation expects to 358 * use and add the handle to the running transaction. 359 */ 360 update_t_max_wait(transaction, ts); 361 handle->h_transaction = transaction; 362 handle->h_requested_credits = blocks; 363 handle->h_start_jiffies = jiffies; 364 atomic_inc(&transaction->t_updates); 365 atomic_inc(&transaction->t_handle_count); 366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 367 handle, blocks, 368 atomic_read(&transaction->t_outstanding_credits), 369 jbd2_log_space_left(journal)); 370 read_unlock(&journal->j_state_lock); 371 current->journal_info = handle; 372 373 lock_map_acquire(&handle->h_lockdep_map); 374 jbd2_journal_free_transaction(new_transaction); 375 return 0; 376 } 377 378 static struct lock_class_key jbd2_handle_key; 379 380 /* Allocate a new handle. This should probably be in a slab... */ 381 static handle_t *new_handle(int nblocks) 382 { 383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 384 if (!handle) 385 return NULL; 386 handle->h_buffer_credits = nblocks; 387 handle->h_ref = 1; 388 389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 390 &jbd2_handle_key, 0); 391 392 return handle; 393 } 394 395 /** 396 * handle_t *jbd2_journal_start() - Obtain a new handle. 397 * @journal: Journal to start transaction on. 398 * @nblocks: number of block buffer we might modify 399 * 400 * We make sure that the transaction can guarantee at least nblocks of 401 * modified buffers in the log. We block until the log can guarantee 402 * that much space. Additionally, if rsv_blocks > 0, we also create another 403 * handle with rsv_blocks reserved blocks in the journal. This handle is 404 * is stored in h_rsv_handle. It is not attached to any particular transaction 405 * and thus doesn't block transaction commit. If the caller uses this reserved 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 407 * on the parent handle will dispose the reserved one. Reserved handle has to 408 * be converted to a normal handle using jbd2_journal_start_reserved() before 409 * it can be used. 410 * 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 412 * on failure. 413 */ 414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 415 gfp_t gfp_mask, unsigned int type, 416 unsigned int line_no) 417 { 418 handle_t *handle = journal_current_handle(); 419 int err; 420 421 if (!journal) 422 return ERR_PTR(-EROFS); 423 424 if (handle) { 425 J_ASSERT(handle->h_transaction->t_journal == journal); 426 handle->h_ref++; 427 return handle; 428 } 429 430 handle = new_handle(nblocks); 431 if (!handle) 432 return ERR_PTR(-ENOMEM); 433 if (rsv_blocks) { 434 handle_t *rsv_handle; 435 436 rsv_handle = new_handle(rsv_blocks); 437 if (!rsv_handle) { 438 jbd2_free_handle(handle); 439 return ERR_PTR(-ENOMEM); 440 } 441 rsv_handle->h_reserved = 1; 442 rsv_handle->h_journal = journal; 443 handle->h_rsv_handle = rsv_handle; 444 } 445 446 err = start_this_handle(journal, handle, gfp_mask); 447 if (err < 0) { 448 if (handle->h_rsv_handle) 449 jbd2_free_handle(handle->h_rsv_handle); 450 jbd2_free_handle(handle); 451 return ERR_PTR(err); 452 } 453 handle->h_type = type; 454 handle->h_line_no = line_no; 455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 456 handle->h_transaction->t_tid, type, 457 line_no, nblocks); 458 return handle; 459 } 460 EXPORT_SYMBOL(jbd2__journal_start); 461 462 463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 464 { 465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 466 } 467 EXPORT_SYMBOL(jbd2_journal_start); 468 469 void jbd2_journal_free_reserved(handle_t *handle) 470 { 471 journal_t *journal = handle->h_journal; 472 473 WARN_ON(!handle->h_reserved); 474 sub_reserved_credits(journal, handle->h_buffer_credits); 475 jbd2_free_handle(handle); 476 } 477 EXPORT_SYMBOL(jbd2_journal_free_reserved); 478 479 /** 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 481 * @handle: handle to start 482 * 483 * Start handle that has been previously reserved with jbd2_journal_reserve(). 484 * This attaches @handle to the running transaction (or creates one if there's 485 * not transaction running). Unlike jbd2_journal_start() this function cannot 486 * block on journal commit, checkpointing, or similar stuff. It can block on 487 * memory allocation or frozen journal though. 488 * 489 * Return 0 on success, non-zero on error - handle is freed in that case. 490 */ 491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 492 unsigned int line_no) 493 { 494 journal_t *journal = handle->h_journal; 495 int ret = -EIO; 496 497 if (WARN_ON(!handle->h_reserved)) { 498 /* Someone passed in normal handle? Just stop it. */ 499 jbd2_journal_stop(handle); 500 return ret; 501 } 502 /* 503 * Usefulness of mixing of reserved and unreserved handles is 504 * questionable. So far nobody seems to need it so just error out. 505 */ 506 if (WARN_ON(current->journal_info)) { 507 jbd2_journal_free_reserved(handle); 508 return ret; 509 } 510 511 handle->h_journal = NULL; 512 /* 513 * GFP_NOFS is here because callers are likely from writeback or 514 * similarly constrained call sites 515 */ 516 ret = start_this_handle(journal, handle, GFP_NOFS); 517 if (ret < 0) { 518 jbd2_journal_free_reserved(handle); 519 return ret; 520 } 521 handle->h_type = type; 522 handle->h_line_no = line_no; 523 return 0; 524 } 525 EXPORT_SYMBOL(jbd2_journal_start_reserved); 526 527 /** 528 * int jbd2_journal_extend() - extend buffer credits. 529 * @handle: handle to 'extend' 530 * @nblocks: nr blocks to try to extend by. 531 * 532 * Some transactions, such as large extends and truncates, can be done 533 * atomically all at once or in several stages. The operation requests 534 * a credit for a number of buffer modications in advance, but can 535 * extend its credit if it needs more. 536 * 537 * jbd2_journal_extend tries to give the running handle more buffer credits. 538 * It does not guarantee that allocation - this is a best-effort only. 539 * The calling process MUST be able to deal cleanly with a failure to 540 * extend here. 541 * 542 * Return 0 on success, non-zero on failure. 543 * 544 * return code < 0 implies an error 545 * return code > 0 implies normal transaction-full status. 546 */ 547 int jbd2_journal_extend(handle_t *handle, int nblocks) 548 { 549 transaction_t *transaction = handle->h_transaction; 550 journal_t *journal; 551 int result; 552 int wanted; 553 554 WARN_ON(!transaction); 555 if (is_handle_aborted(handle)) 556 return -EROFS; 557 journal = transaction->t_journal; 558 559 result = 1; 560 561 read_lock(&journal->j_state_lock); 562 563 /* Don't extend a locked-down transaction! */ 564 if (transaction->t_state != T_RUNNING) { 565 jbd_debug(3, "denied handle %p %d blocks: " 566 "transaction not running\n", handle, nblocks); 567 goto error_out; 568 } 569 570 spin_lock(&transaction->t_handle_lock); 571 wanted = atomic_add_return(nblocks, 572 &transaction->t_outstanding_credits); 573 574 if (wanted > journal->j_max_transaction_buffers) { 575 jbd_debug(3, "denied handle %p %d blocks: " 576 "transaction too large\n", handle, nblocks); 577 atomic_sub(nblocks, &transaction->t_outstanding_credits); 578 goto unlock; 579 } 580 581 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 582 jbd2_log_space_left(journal)) { 583 jbd_debug(3, "denied handle %p %d blocks: " 584 "insufficient log space\n", handle, nblocks); 585 atomic_sub(nblocks, &transaction->t_outstanding_credits); 586 goto unlock; 587 } 588 589 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 590 transaction->t_tid, 591 handle->h_type, handle->h_line_no, 592 handle->h_buffer_credits, 593 nblocks); 594 595 handle->h_buffer_credits += nblocks; 596 handle->h_requested_credits += nblocks; 597 result = 0; 598 599 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 600 unlock: 601 spin_unlock(&transaction->t_handle_lock); 602 error_out: 603 read_unlock(&journal->j_state_lock); 604 return result; 605 } 606 607 608 /** 609 * int jbd2_journal_restart() - restart a handle . 610 * @handle: handle to restart 611 * @nblocks: nr credits requested 612 * 613 * Restart a handle for a multi-transaction filesystem 614 * operation. 615 * 616 * If the jbd2_journal_extend() call above fails to grant new buffer credits 617 * to a running handle, a call to jbd2_journal_restart will commit the 618 * handle's transaction so far and reattach the handle to a new 619 * transaction capabable of guaranteeing the requested number of 620 * credits. We preserve reserved handle if there's any attached to the 621 * passed in handle. 622 */ 623 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 624 { 625 transaction_t *transaction = handle->h_transaction; 626 journal_t *journal; 627 tid_t tid; 628 int need_to_start, ret; 629 630 WARN_ON(!transaction); 631 /* If we've had an abort of any type, don't even think about 632 * actually doing the restart! */ 633 if (is_handle_aborted(handle)) 634 return 0; 635 journal = transaction->t_journal; 636 637 /* 638 * First unlink the handle from its current transaction, and start the 639 * commit on that. 640 */ 641 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 642 J_ASSERT(journal_current_handle() == handle); 643 644 read_lock(&journal->j_state_lock); 645 spin_lock(&transaction->t_handle_lock); 646 atomic_sub(handle->h_buffer_credits, 647 &transaction->t_outstanding_credits); 648 if (handle->h_rsv_handle) { 649 sub_reserved_credits(journal, 650 handle->h_rsv_handle->h_buffer_credits); 651 } 652 if (atomic_dec_and_test(&transaction->t_updates)) 653 wake_up(&journal->j_wait_updates); 654 tid = transaction->t_tid; 655 spin_unlock(&transaction->t_handle_lock); 656 handle->h_transaction = NULL; 657 current->journal_info = NULL; 658 659 jbd_debug(2, "restarting handle %p\n", handle); 660 need_to_start = !tid_geq(journal->j_commit_request, tid); 661 read_unlock(&journal->j_state_lock); 662 if (need_to_start) 663 jbd2_log_start_commit(journal, tid); 664 665 lock_map_release(&handle->h_lockdep_map); 666 handle->h_buffer_credits = nblocks; 667 ret = start_this_handle(journal, handle, gfp_mask); 668 return ret; 669 } 670 EXPORT_SYMBOL(jbd2__journal_restart); 671 672 673 int jbd2_journal_restart(handle_t *handle, int nblocks) 674 { 675 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 676 } 677 EXPORT_SYMBOL(jbd2_journal_restart); 678 679 /** 680 * void jbd2_journal_lock_updates () - establish a transaction barrier. 681 * @journal: Journal to establish a barrier on. 682 * 683 * This locks out any further updates from being started, and blocks 684 * until all existing updates have completed, returning only once the 685 * journal is in a quiescent state with no updates running. 686 * 687 * The journal lock should not be held on entry. 688 */ 689 void jbd2_journal_lock_updates(journal_t *journal) 690 { 691 DEFINE_WAIT(wait); 692 693 write_lock(&journal->j_state_lock); 694 ++journal->j_barrier_count; 695 696 /* Wait until there are no reserved handles */ 697 if (atomic_read(&journal->j_reserved_credits)) { 698 write_unlock(&journal->j_state_lock); 699 wait_event(journal->j_wait_reserved, 700 atomic_read(&journal->j_reserved_credits) == 0); 701 write_lock(&journal->j_state_lock); 702 } 703 704 /* Wait until there are no running updates */ 705 while (1) { 706 transaction_t *transaction = journal->j_running_transaction; 707 708 if (!transaction) 709 break; 710 711 spin_lock(&transaction->t_handle_lock); 712 prepare_to_wait(&journal->j_wait_updates, &wait, 713 TASK_UNINTERRUPTIBLE); 714 if (!atomic_read(&transaction->t_updates)) { 715 spin_unlock(&transaction->t_handle_lock); 716 finish_wait(&journal->j_wait_updates, &wait); 717 break; 718 } 719 spin_unlock(&transaction->t_handle_lock); 720 write_unlock(&journal->j_state_lock); 721 schedule(); 722 finish_wait(&journal->j_wait_updates, &wait); 723 write_lock(&journal->j_state_lock); 724 } 725 write_unlock(&journal->j_state_lock); 726 727 /* 728 * We have now established a barrier against other normal updates, but 729 * we also need to barrier against other jbd2_journal_lock_updates() calls 730 * to make sure that we serialise special journal-locked operations 731 * too. 732 */ 733 mutex_lock(&journal->j_barrier); 734 } 735 736 /** 737 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 738 * @journal: Journal to release the barrier on. 739 * 740 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 741 * 742 * Should be called without the journal lock held. 743 */ 744 void jbd2_journal_unlock_updates (journal_t *journal) 745 { 746 J_ASSERT(journal->j_barrier_count != 0); 747 748 mutex_unlock(&journal->j_barrier); 749 write_lock(&journal->j_state_lock); 750 --journal->j_barrier_count; 751 write_unlock(&journal->j_state_lock); 752 wake_up(&journal->j_wait_transaction_locked); 753 } 754 755 static void warn_dirty_buffer(struct buffer_head *bh) 756 { 757 char b[BDEVNAME_SIZE]; 758 759 printk(KERN_WARNING 760 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 761 "There's a risk of filesystem corruption in case of system " 762 "crash.\n", 763 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 764 } 765 766 /* 767 * If the buffer is already part of the current transaction, then there 768 * is nothing we need to do. If it is already part of a prior 769 * transaction which we are still committing to disk, then we need to 770 * make sure that we do not overwrite the old copy: we do copy-out to 771 * preserve the copy going to disk. We also account the buffer against 772 * the handle's metadata buffer credits (unless the buffer is already 773 * part of the transaction, that is). 774 * 775 */ 776 static int 777 do_get_write_access(handle_t *handle, struct journal_head *jh, 778 int force_copy) 779 { 780 struct buffer_head *bh; 781 transaction_t *transaction = handle->h_transaction; 782 journal_t *journal; 783 int error; 784 char *frozen_buffer = NULL; 785 int need_copy = 0; 786 unsigned long start_lock, time_lock; 787 788 WARN_ON(!transaction); 789 if (is_handle_aborted(handle)) 790 return -EROFS; 791 journal = transaction->t_journal; 792 793 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 794 795 JBUFFER_TRACE(jh, "entry"); 796 repeat: 797 bh = jh2bh(jh); 798 799 /* @@@ Need to check for errors here at some point. */ 800 801 start_lock = jiffies; 802 lock_buffer(bh); 803 jbd_lock_bh_state(bh); 804 805 /* If it takes too long to lock the buffer, trace it */ 806 time_lock = jbd2_time_diff(start_lock, jiffies); 807 if (time_lock > HZ/10) 808 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 809 jiffies_to_msecs(time_lock)); 810 811 /* We now hold the buffer lock so it is safe to query the buffer 812 * state. Is the buffer dirty? 813 * 814 * If so, there are two possibilities. The buffer may be 815 * non-journaled, and undergoing a quite legitimate writeback. 816 * Otherwise, it is journaled, and we don't expect dirty buffers 817 * in that state (the buffers should be marked JBD_Dirty 818 * instead.) So either the IO is being done under our own 819 * control and this is a bug, or it's a third party IO such as 820 * dump(8) (which may leave the buffer scheduled for read --- 821 * ie. locked but not dirty) or tune2fs (which may actually have 822 * the buffer dirtied, ugh.) */ 823 824 if (buffer_dirty(bh)) { 825 /* 826 * First question: is this buffer already part of the current 827 * transaction or the existing committing transaction? 828 */ 829 if (jh->b_transaction) { 830 J_ASSERT_JH(jh, 831 jh->b_transaction == transaction || 832 jh->b_transaction == 833 journal->j_committing_transaction); 834 if (jh->b_next_transaction) 835 J_ASSERT_JH(jh, jh->b_next_transaction == 836 transaction); 837 warn_dirty_buffer(bh); 838 } 839 /* 840 * In any case we need to clean the dirty flag and we must 841 * do it under the buffer lock to be sure we don't race 842 * with running write-out. 843 */ 844 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 845 clear_buffer_dirty(bh); 846 set_buffer_jbddirty(bh); 847 } 848 849 unlock_buffer(bh); 850 851 error = -EROFS; 852 if (is_handle_aborted(handle)) { 853 jbd_unlock_bh_state(bh); 854 goto out; 855 } 856 error = 0; 857 858 /* 859 * The buffer is already part of this transaction if b_transaction or 860 * b_next_transaction points to it 861 */ 862 if (jh->b_transaction == transaction || 863 jh->b_next_transaction == transaction) 864 goto done; 865 866 /* 867 * this is the first time this transaction is touching this buffer, 868 * reset the modified flag 869 */ 870 jh->b_modified = 0; 871 872 /* 873 * If there is already a copy-out version of this buffer, then we don't 874 * need to make another one 875 */ 876 if (jh->b_frozen_data) { 877 JBUFFER_TRACE(jh, "has frozen data"); 878 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 879 jh->b_next_transaction = transaction; 880 goto done; 881 } 882 883 /* Is there data here we need to preserve? */ 884 885 if (jh->b_transaction && jh->b_transaction != transaction) { 886 JBUFFER_TRACE(jh, "owned by older transaction"); 887 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 888 J_ASSERT_JH(jh, jh->b_transaction == 889 journal->j_committing_transaction); 890 891 /* There is one case we have to be very careful about. 892 * If the committing transaction is currently writing 893 * this buffer out to disk and has NOT made a copy-out, 894 * then we cannot modify the buffer contents at all 895 * right now. The essence of copy-out is that it is the 896 * extra copy, not the primary copy, which gets 897 * journaled. If the primary copy is already going to 898 * disk then we cannot do copy-out here. */ 899 900 if (buffer_shadow(bh)) { 901 JBUFFER_TRACE(jh, "on shadow: sleep"); 902 jbd_unlock_bh_state(bh); 903 wait_on_bit_io(&bh->b_state, BH_Shadow, 904 TASK_UNINTERRUPTIBLE); 905 goto repeat; 906 } 907 908 /* 909 * Only do the copy if the currently-owning transaction still 910 * needs it. If buffer isn't on BJ_Metadata list, the 911 * committing transaction is past that stage (here we use the 912 * fact that BH_Shadow is set under bh_state lock together with 913 * refiling to BJ_Shadow list and at this point we know the 914 * buffer doesn't have BH_Shadow set). 915 * 916 * Subtle point, though: if this is a get_undo_access, 917 * then we will be relying on the frozen_data to contain 918 * the new value of the committed_data record after the 919 * transaction, so we HAVE to force the frozen_data copy 920 * in that case. 921 */ 922 if (jh->b_jlist == BJ_Metadata || force_copy) { 923 JBUFFER_TRACE(jh, "generate frozen data"); 924 if (!frozen_buffer) { 925 JBUFFER_TRACE(jh, "allocate memory for buffer"); 926 jbd_unlock_bh_state(bh); 927 frozen_buffer = 928 jbd2_alloc(jh2bh(jh)->b_size, 929 GFP_NOFS); 930 if (!frozen_buffer) { 931 printk(KERN_ERR 932 "%s: OOM for frozen_buffer\n", 933 __func__); 934 JBUFFER_TRACE(jh, "oom!"); 935 error = -ENOMEM; 936 jbd_lock_bh_state(bh); 937 goto done; 938 } 939 goto repeat; 940 } 941 jh->b_frozen_data = frozen_buffer; 942 frozen_buffer = NULL; 943 need_copy = 1; 944 } 945 jh->b_next_transaction = transaction; 946 } 947 948 949 /* 950 * Finally, if the buffer is not journaled right now, we need to make 951 * sure it doesn't get written to disk before the caller actually 952 * commits the new data 953 */ 954 if (!jh->b_transaction) { 955 JBUFFER_TRACE(jh, "no transaction"); 956 J_ASSERT_JH(jh, !jh->b_next_transaction); 957 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 958 spin_lock(&journal->j_list_lock); 959 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 960 spin_unlock(&journal->j_list_lock); 961 } 962 963 done: 964 if (need_copy) { 965 struct page *page; 966 int offset; 967 char *source; 968 969 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 970 "Possible IO failure.\n"); 971 page = jh2bh(jh)->b_page; 972 offset = offset_in_page(jh2bh(jh)->b_data); 973 source = kmap_atomic(page); 974 /* Fire data frozen trigger just before we copy the data */ 975 jbd2_buffer_frozen_trigger(jh, source + offset, 976 jh->b_triggers); 977 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 978 kunmap_atomic(source); 979 980 /* 981 * Now that the frozen data is saved off, we need to store 982 * any matching triggers. 983 */ 984 jh->b_frozen_triggers = jh->b_triggers; 985 } 986 jbd_unlock_bh_state(bh); 987 988 /* 989 * If we are about to journal a buffer, then any revoke pending on it is 990 * no longer valid 991 */ 992 jbd2_journal_cancel_revoke(handle, jh); 993 994 out: 995 if (unlikely(frozen_buffer)) /* It's usually NULL */ 996 jbd2_free(frozen_buffer, bh->b_size); 997 998 JBUFFER_TRACE(jh, "exit"); 999 return error; 1000 } 1001 1002 /** 1003 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1004 * @handle: transaction to add buffer modifications to 1005 * @bh: bh to be used for metadata writes 1006 * 1007 * Returns an error code or 0 on success. 1008 * 1009 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1010 * because we're write()ing a buffer which is also part of a shared mapping. 1011 */ 1012 1013 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1014 { 1015 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1016 int rc; 1017 1018 /* We do not want to get caught playing with fields which the 1019 * log thread also manipulates. Make sure that the buffer 1020 * completes any outstanding IO before proceeding. */ 1021 rc = do_get_write_access(handle, jh, 0); 1022 jbd2_journal_put_journal_head(jh); 1023 return rc; 1024 } 1025 1026 1027 /* 1028 * When the user wants to journal a newly created buffer_head 1029 * (ie. getblk() returned a new buffer and we are going to populate it 1030 * manually rather than reading off disk), then we need to keep the 1031 * buffer_head locked until it has been completely filled with new 1032 * data. In this case, we should be able to make the assertion that 1033 * the bh is not already part of an existing transaction. 1034 * 1035 * The buffer should already be locked by the caller by this point. 1036 * There is no lock ranking violation: it was a newly created, 1037 * unlocked buffer beforehand. */ 1038 1039 /** 1040 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1041 * @handle: transaction to new buffer to 1042 * @bh: new buffer. 1043 * 1044 * Call this if you create a new bh. 1045 */ 1046 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1047 { 1048 transaction_t *transaction = handle->h_transaction; 1049 journal_t *journal; 1050 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1051 int err; 1052 1053 jbd_debug(5, "journal_head %p\n", jh); 1054 WARN_ON(!transaction); 1055 err = -EROFS; 1056 if (is_handle_aborted(handle)) 1057 goto out; 1058 journal = transaction->t_journal; 1059 err = 0; 1060 1061 JBUFFER_TRACE(jh, "entry"); 1062 /* 1063 * The buffer may already belong to this transaction due to pre-zeroing 1064 * in the filesystem's new_block code. It may also be on the previous, 1065 * committing transaction's lists, but it HAS to be in Forget state in 1066 * that case: the transaction must have deleted the buffer for it to be 1067 * reused here. 1068 */ 1069 jbd_lock_bh_state(bh); 1070 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1071 jh->b_transaction == NULL || 1072 (jh->b_transaction == journal->j_committing_transaction && 1073 jh->b_jlist == BJ_Forget))); 1074 1075 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1076 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1077 1078 if (jh->b_transaction == NULL) { 1079 /* 1080 * Previous jbd2_journal_forget() could have left the buffer 1081 * with jbddirty bit set because it was being committed. When 1082 * the commit finished, we've filed the buffer for 1083 * checkpointing and marked it dirty. Now we are reallocating 1084 * the buffer so the transaction freeing it must have 1085 * committed and so it's safe to clear the dirty bit. 1086 */ 1087 clear_buffer_dirty(jh2bh(jh)); 1088 /* first access by this transaction */ 1089 jh->b_modified = 0; 1090 1091 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1092 spin_lock(&journal->j_list_lock); 1093 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1094 } else if (jh->b_transaction == journal->j_committing_transaction) { 1095 /* first access by this transaction */ 1096 jh->b_modified = 0; 1097 1098 JBUFFER_TRACE(jh, "set next transaction"); 1099 spin_lock(&journal->j_list_lock); 1100 jh->b_next_transaction = transaction; 1101 } 1102 spin_unlock(&journal->j_list_lock); 1103 jbd_unlock_bh_state(bh); 1104 1105 /* 1106 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1107 * blocks which contain freed but then revoked metadata. We need 1108 * to cancel the revoke in case we end up freeing it yet again 1109 * and the reallocating as data - this would cause a second revoke, 1110 * which hits an assertion error. 1111 */ 1112 JBUFFER_TRACE(jh, "cancelling revoke"); 1113 jbd2_journal_cancel_revoke(handle, jh); 1114 out: 1115 jbd2_journal_put_journal_head(jh); 1116 return err; 1117 } 1118 1119 /** 1120 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1121 * non-rewindable consequences 1122 * @handle: transaction 1123 * @bh: buffer to undo 1124 * 1125 * Sometimes there is a need to distinguish between metadata which has 1126 * been committed to disk and that which has not. The ext3fs code uses 1127 * this for freeing and allocating space, we have to make sure that we 1128 * do not reuse freed space until the deallocation has been committed, 1129 * since if we overwrote that space we would make the delete 1130 * un-rewindable in case of a crash. 1131 * 1132 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1133 * buffer for parts of non-rewindable operations such as delete 1134 * operations on the bitmaps. The journaling code must keep a copy of 1135 * the buffer's contents prior to the undo_access call until such time 1136 * as we know that the buffer has definitely been committed to disk. 1137 * 1138 * We never need to know which transaction the committed data is part 1139 * of, buffers touched here are guaranteed to be dirtied later and so 1140 * will be committed to a new transaction in due course, at which point 1141 * we can discard the old committed data pointer. 1142 * 1143 * Returns error number or 0 on success. 1144 */ 1145 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1146 { 1147 int err; 1148 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1149 char *committed_data = NULL; 1150 1151 JBUFFER_TRACE(jh, "entry"); 1152 1153 /* 1154 * Do this first --- it can drop the journal lock, so we want to 1155 * make sure that obtaining the committed_data is done 1156 * atomically wrt. completion of any outstanding commits. 1157 */ 1158 err = do_get_write_access(handle, jh, 1); 1159 if (err) 1160 goto out; 1161 1162 repeat: 1163 if (!jh->b_committed_data) { 1164 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1165 if (!committed_data) { 1166 printk(KERN_ERR "%s: No memory for committed data\n", 1167 __func__); 1168 err = -ENOMEM; 1169 goto out; 1170 } 1171 } 1172 1173 jbd_lock_bh_state(bh); 1174 if (!jh->b_committed_data) { 1175 /* Copy out the current buffer contents into the 1176 * preserved, committed copy. */ 1177 JBUFFER_TRACE(jh, "generate b_committed data"); 1178 if (!committed_data) { 1179 jbd_unlock_bh_state(bh); 1180 goto repeat; 1181 } 1182 1183 jh->b_committed_data = committed_data; 1184 committed_data = NULL; 1185 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1186 } 1187 jbd_unlock_bh_state(bh); 1188 out: 1189 jbd2_journal_put_journal_head(jh); 1190 if (unlikely(committed_data)) 1191 jbd2_free(committed_data, bh->b_size); 1192 return err; 1193 } 1194 1195 /** 1196 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1197 * @bh: buffer to trigger on 1198 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1199 * 1200 * Set any triggers on this journal_head. This is always safe, because 1201 * triggers for a committing buffer will be saved off, and triggers for 1202 * a running transaction will match the buffer in that transaction. 1203 * 1204 * Call with NULL to clear the triggers. 1205 */ 1206 void jbd2_journal_set_triggers(struct buffer_head *bh, 1207 struct jbd2_buffer_trigger_type *type) 1208 { 1209 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1210 1211 if (WARN_ON(!jh)) 1212 return; 1213 jh->b_triggers = type; 1214 jbd2_journal_put_journal_head(jh); 1215 } 1216 1217 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1218 struct jbd2_buffer_trigger_type *triggers) 1219 { 1220 struct buffer_head *bh = jh2bh(jh); 1221 1222 if (!triggers || !triggers->t_frozen) 1223 return; 1224 1225 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1226 } 1227 1228 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1229 struct jbd2_buffer_trigger_type *triggers) 1230 { 1231 if (!triggers || !triggers->t_abort) 1232 return; 1233 1234 triggers->t_abort(triggers, jh2bh(jh)); 1235 } 1236 1237 1238 1239 /** 1240 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1241 * @handle: transaction to add buffer to. 1242 * @bh: buffer to mark 1243 * 1244 * mark dirty metadata which needs to be journaled as part of the current 1245 * transaction. 1246 * 1247 * The buffer must have previously had jbd2_journal_get_write_access() 1248 * called so that it has a valid journal_head attached to the buffer 1249 * head. 1250 * 1251 * The buffer is placed on the transaction's metadata list and is marked 1252 * as belonging to the transaction. 1253 * 1254 * Returns error number or 0 on success. 1255 * 1256 * Special care needs to be taken if the buffer already belongs to the 1257 * current committing transaction (in which case we should have frozen 1258 * data present for that commit). In that case, we don't relink the 1259 * buffer: that only gets done when the old transaction finally 1260 * completes its commit. 1261 */ 1262 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1263 { 1264 transaction_t *transaction = handle->h_transaction; 1265 journal_t *journal; 1266 struct journal_head *jh; 1267 int ret = 0; 1268 1269 WARN_ON(!transaction); 1270 if (is_handle_aborted(handle)) 1271 return -EROFS; 1272 journal = transaction->t_journal; 1273 jh = jbd2_journal_grab_journal_head(bh); 1274 if (!jh) { 1275 ret = -EUCLEAN; 1276 goto out; 1277 } 1278 jbd_debug(5, "journal_head %p\n", jh); 1279 JBUFFER_TRACE(jh, "entry"); 1280 1281 jbd_lock_bh_state(bh); 1282 1283 if (jh->b_modified == 0) { 1284 /* 1285 * This buffer's got modified and becoming part 1286 * of the transaction. This needs to be done 1287 * once a transaction -bzzz 1288 */ 1289 jh->b_modified = 1; 1290 if (handle->h_buffer_credits <= 0) { 1291 ret = -ENOSPC; 1292 goto out_unlock_bh; 1293 } 1294 handle->h_buffer_credits--; 1295 } 1296 1297 /* 1298 * fastpath, to avoid expensive locking. If this buffer is already 1299 * on the running transaction's metadata list there is nothing to do. 1300 * Nobody can take it off again because there is a handle open. 1301 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1302 * result in this test being false, so we go in and take the locks. 1303 */ 1304 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1305 JBUFFER_TRACE(jh, "fastpath"); 1306 if (unlikely(jh->b_transaction != 1307 journal->j_running_transaction)) { 1308 printk(KERN_ERR "JBD2: %s: " 1309 "jh->b_transaction (%llu, %p, %u) != " 1310 "journal->j_running_transaction (%p, %u)\n", 1311 journal->j_devname, 1312 (unsigned long long) bh->b_blocknr, 1313 jh->b_transaction, 1314 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1315 journal->j_running_transaction, 1316 journal->j_running_transaction ? 1317 journal->j_running_transaction->t_tid : 0); 1318 ret = -EINVAL; 1319 } 1320 goto out_unlock_bh; 1321 } 1322 1323 set_buffer_jbddirty(bh); 1324 1325 /* 1326 * Metadata already on the current transaction list doesn't 1327 * need to be filed. Metadata on another transaction's list must 1328 * be committing, and will be refiled once the commit completes: 1329 * leave it alone for now. 1330 */ 1331 if (jh->b_transaction != transaction) { 1332 JBUFFER_TRACE(jh, "already on other transaction"); 1333 if (unlikely(((jh->b_transaction != 1334 journal->j_committing_transaction)) || 1335 (jh->b_next_transaction != transaction))) { 1336 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1337 "bad jh for block %llu: " 1338 "transaction (%p, %u), " 1339 "jh->b_transaction (%p, %u), " 1340 "jh->b_next_transaction (%p, %u), jlist %u\n", 1341 journal->j_devname, 1342 (unsigned long long) bh->b_blocknr, 1343 transaction, transaction->t_tid, 1344 jh->b_transaction, 1345 jh->b_transaction ? 1346 jh->b_transaction->t_tid : 0, 1347 jh->b_next_transaction, 1348 jh->b_next_transaction ? 1349 jh->b_next_transaction->t_tid : 0, 1350 jh->b_jlist); 1351 WARN_ON(1); 1352 ret = -EINVAL; 1353 } 1354 /* And this case is illegal: we can't reuse another 1355 * transaction's data buffer, ever. */ 1356 goto out_unlock_bh; 1357 } 1358 1359 /* That test should have eliminated the following case: */ 1360 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1361 1362 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1363 spin_lock(&journal->j_list_lock); 1364 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1365 spin_unlock(&journal->j_list_lock); 1366 out_unlock_bh: 1367 jbd_unlock_bh_state(bh); 1368 jbd2_journal_put_journal_head(jh); 1369 out: 1370 JBUFFER_TRACE(jh, "exit"); 1371 return ret; 1372 } 1373 1374 /** 1375 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1376 * @handle: transaction handle 1377 * @bh: bh to 'forget' 1378 * 1379 * We can only do the bforget if there are no commits pending against the 1380 * buffer. If the buffer is dirty in the current running transaction we 1381 * can safely unlink it. 1382 * 1383 * bh may not be a journalled buffer at all - it may be a non-JBD 1384 * buffer which came off the hashtable. Check for this. 1385 * 1386 * Decrements bh->b_count by one. 1387 * 1388 * Allow this call even if the handle has aborted --- it may be part of 1389 * the caller's cleanup after an abort. 1390 */ 1391 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1392 { 1393 transaction_t *transaction = handle->h_transaction; 1394 journal_t *journal; 1395 struct journal_head *jh; 1396 int drop_reserve = 0; 1397 int err = 0; 1398 int was_modified = 0; 1399 1400 WARN_ON(!transaction); 1401 if (is_handle_aborted(handle)) 1402 return -EROFS; 1403 journal = transaction->t_journal; 1404 1405 BUFFER_TRACE(bh, "entry"); 1406 1407 jbd_lock_bh_state(bh); 1408 1409 if (!buffer_jbd(bh)) 1410 goto not_jbd; 1411 jh = bh2jh(bh); 1412 1413 /* Critical error: attempting to delete a bitmap buffer, maybe? 1414 * Don't do any jbd operations, and return an error. */ 1415 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1416 "inconsistent data on disk")) { 1417 err = -EIO; 1418 goto not_jbd; 1419 } 1420 1421 /* keep track of whether or not this transaction modified us */ 1422 was_modified = jh->b_modified; 1423 1424 /* 1425 * The buffer's going from the transaction, we must drop 1426 * all references -bzzz 1427 */ 1428 jh->b_modified = 0; 1429 1430 if (jh->b_transaction == transaction) { 1431 J_ASSERT_JH(jh, !jh->b_frozen_data); 1432 1433 /* If we are forgetting a buffer which is already part 1434 * of this transaction, then we can just drop it from 1435 * the transaction immediately. */ 1436 clear_buffer_dirty(bh); 1437 clear_buffer_jbddirty(bh); 1438 1439 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1440 1441 /* 1442 * we only want to drop a reference if this transaction 1443 * modified the buffer 1444 */ 1445 if (was_modified) 1446 drop_reserve = 1; 1447 1448 /* 1449 * We are no longer going to journal this buffer. 1450 * However, the commit of this transaction is still 1451 * important to the buffer: the delete that we are now 1452 * processing might obsolete an old log entry, so by 1453 * committing, we can satisfy the buffer's checkpoint. 1454 * 1455 * So, if we have a checkpoint on the buffer, we should 1456 * now refile the buffer on our BJ_Forget list so that 1457 * we know to remove the checkpoint after we commit. 1458 */ 1459 1460 spin_lock(&journal->j_list_lock); 1461 if (jh->b_cp_transaction) { 1462 __jbd2_journal_temp_unlink_buffer(jh); 1463 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1464 } else { 1465 __jbd2_journal_unfile_buffer(jh); 1466 if (!buffer_jbd(bh)) { 1467 spin_unlock(&journal->j_list_lock); 1468 jbd_unlock_bh_state(bh); 1469 __bforget(bh); 1470 goto drop; 1471 } 1472 } 1473 spin_unlock(&journal->j_list_lock); 1474 } else if (jh->b_transaction) { 1475 J_ASSERT_JH(jh, (jh->b_transaction == 1476 journal->j_committing_transaction)); 1477 /* However, if the buffer is still owned by a prior 1478 * (committing) transaction, we can't drop it yet... */ 1479 JBUFFER_TRACE(jh, "belongs to older transaction"); 1480 /* ... but we CAN drop it from the new transaction if we 1481 * have also modified it since the original commit. */ 1482 1483 if (jh->b_next_transaction) { 1484 J_ASSERT(jh->b_next_transaction == transaction); 1485 spin_lock(&journal->j_list_lock); 1486 jh->b_next_transaction = NULL; 1487 spin_unlock(&journal->j_list_lock); 1488 1489 /* 1490 * only drop a reference if this transaction modified 1491 * the buffer 1492 */ 1493 if (was_modified) 1494 drop_reserve = 1; 1495 } 1496 } 1497 1498 not_jbd: 1499 jbd_unlock_bh_state(bh); 1500 __brelse(bh); 1501 drop: 1502 if (drop_reserve) { 1503 /* no need to reserve log space for this block -bzzz */ 1504 handle->h_buffer_credits++; 1505 } 1506 return err; 1507 } 1508 1509 /** 1510 * int jbd2_journal_stop() - complete a transaction 1511 * @handle: tranaction to complete. 1512 * 1513 * All done for a particular handle. 1514 * 1515 * There is not much action needed here. We just return any remaining 1516 * buffer credits to the transaction and remove the handle. The only 1517 * complication is that we need to start a commit operation if the 1518 * filesystem is marked for synchronous update. 1519 * 1520 * jbd2_journal_stop itself will not usually return an error, but it may 1521 * do so in unusual circumstances. In particular, expect it to 1522 * return -EIO if a jbd2_journal_abort has been executed since the 1523 * transaction began. 1524 */ 1525 int jbd2_journal_stop(handle_t *handle) 1526 { 1527 transaction_t *transaction = handle->h_transaction; 1528 journal_t *journal; 1529 int err = 0, wait_for_commit = 0; 1530 tid_t tid; 1531 pid_t pid; 1532 1533 if (!transaction) 1534 goto free_and_exit; 1535 journal = transaction->t_journal; 1536 1537 J_ASSERT(journal_current_handle() == handle); 1538 1539 if (is_handle_aborted(handle)) 1540 err = -EIO; 1541 else 1542 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1543 1544 if (--handle->h_ref > 0) { 1545 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1546 handle->h_ref); 1547 return err; 1548 } 1549 1550 jbd_debug(4, "Handle %p going down\n", handle); 1551 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1552 transaction->t_tid, 1553 handle->h_type, handle->h_line_no, 1554 jiffies - handle->h_start_jiffies, 1555 handle->h_sync, handle->h_requested_credits, 1556 (handle->h_requested_credits - 1557 handle->h_buffer_credits)); 1558 1559 /* 1560 * Implement synchronous transaction batching. If the handle 1561 * was synchronous, don't force a commit immediately. Let's 1562 * yield and let another thread piggyback onto this 1563 * transaction. Keep doing that while new threads continue to 1564 * arrive. It doesn't cost much - we're about to run a commit 1565 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1566 * operations by 30x or more... 1567 * 1568 * We try and optimize the sleep time against what the 1569 * underlying disk can do, instead of having a static sleep 1570 * time. This is useful for the case where our storage is so 1571 * fast that it is more optimal to go ahead and force a flush 1572 * and wait for the transaction to be committed than it is to 1573 * wait for an arbitrary amount of time for new writers to 1574 * join the transaction. We achieve this by measuring how 1575 * long it takes to commit a transaction, and compare it with 1576 * how long this transaction has been running, and if run time 1577 * < commit time then we sleep for the delta and commit. This 1578 * greatly helps super fast disks that would see slowdowns as 1579 * more threads started doing fsyncs. 1580 * 1581 * But don't do this if this process was the most recent one 1582 * to perform a synchronous write. We do this to detect the 1583 * case where a single process is doing a stream of sync 1584 * writes. No point in waiting for joiners in that case. 1585 * 1586 * Setting max_batch_time to 0 disables this completely. 1587 */ 1588 pid = current->pid; 1589 if (handle->h_sync && journal->j_last_sync_writer != pid && 1590 journal->j_max_batch_time) { 1591 u64 commit_time, trans_time; 1592 1593 journal->j_last_sync_writer = pid; 1594 1595 read_lock(&journal->j_state_lock); 1596 commit_time = journal->j_average_commit_time; 1597 read_unlock(&journal->j_state_lock); 1598 1599 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1600 transaction->t_start_time)); 1601 1602 commit_time = max_t(u64, commit_time, 1603 1000*journal->j_min_batch_time); 1604 commit_time = min_t(u64, commit_time, 1605 1000*journal->j_max_batch_time); 1606 1607 if (trans_time < commit_time) { 1608 ktime_t expires = ktime_add_ns(ktime_get(), 1609 commit_time); 1610 set_current_state(TASK_UNINTERRUPTIBLE); 1611 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1612 } 1613 } 1614 1615 if (handle->h_sync) 1616 transaction->t_synchronous_commit = 1; 1617 current->journal_info = NULL; 1618 atomic_sub(handle->h_buffer_credits, 1619 &transaction->t_outstanding_credits); 1620 1621 /* 1622 * If the handle is marked SYNC, we need to set another commit 1623 * going! We also want to force a commit if the current 1624 * transaction is occupying too much of the log, or if the 1625 * transaction is too old now. 1626 */ 1627 if (handle->h_sync || 1628 (atomic_read(&transaction->t_outstanding_credits) > 1629 journal->j_max_transaction_buffers) || 1630 time_after_eq(jiffies, transaction->t_expires)) { 1631 /* Do this even for aborted journals: an abort still 1632 * completes the commit thread, it just doesn't write 1633 * anything to disk. */ 1634 1635 jbd_debug(2, "transaction too old, requesting commit for " 1636 "handle %p\n", handle); 1637 /* This is non-blocking */ 1638 jbd2_log_start_commit(journal, transaction->t_tid); 1639 1640 /* 1641 * Special case: JBD2_SYNC synchronous updates require us 1642 * to wait for the commit to complete. 1643 */ 1644 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1645 wait_for_commit = 1; 1646 } 1647 1648 /* 1649 * Once we drop t_updates, if it goes to zero the transaction 1650 * could start committing on us and eventually disappear. So 1651 * once we do this, we must not dereference transaction 1652 * pointer again. 1653 */ 1654 tid = transaction->t_tid; 1655 if (atomic_dec_and_test(&transaction->t_updates)) { 1656 wake_up(&journal->j_wait_updates); 1657 if (journal->j_barrier_count) 1658 wake_up(&journal->j_wait_transaction_locked); 1659 } 1660 1661 if (wait_for_commit) 1662 err = jbd2_log_wait_commit(journal, tid); 1663 1664 lock_map_release(&handle->h_lockdep_map); 1665 1666 if (handle->h_rsv_handle) 1667 jbd2_journal_free_reserved(handle->h_rsv_handle); 1668 free_and_exit: 1669 jbd2_free_handle(handle); 1670 return err; 1671 } 1672 1673 /* 1674 * 1675 * List management code snippets: various functions for manipulating the 1676 * transaction buffer lists. 1677 * 1678 */ 1679 1680 /* 1681 * Append a buffer to a transaction list, given the transaction's list head 1682 * pointer. 1683 * 1684 * j_list_lock is held. 1685 * 1686 * jbd_lock_bh_state(jh2bh(jh)) is held. 1687 */ 1688 1689 static inline void 1690 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1691 { 1692 if (!*list) { 1693 jh->b_tnext = jh->b_tprev = jh; 1694 *list = jh; 1695 } else { 1696 /* Insert at the tail of the list to preserve order */ 1697 struct journal_head *first = *list, *last = first->b_tprev; 1698 jh->b_tprev = last; 1699 jh->b_tnext = first; 1700 last->b_tnext = first->b_tprev = jh; 1701 } 1702 } 1703 1704 /* 1705 * Remove a buffer from a transaction list, given the transaction's list 1706 * head pointer. 1707 * 1708 * Called with j_list_lock held, and the journal may not be locked. 1709 * 1710 * jbd_lock_bh_state(jh2bh(jh)) is held. 1711 */ 1712 1713 static inline void 1714 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1715 { 1716 if (*list == jh) { 1717 *list = jh->b_tnext; 1718 if (*list == jh) 1719 *list = NULL; 1720 } 1721 jh->b_tprev->b_tnext = jh->b_tnext; 1722 jh->b_tnext->b_tprev = jh->b_tprev; 1723 } 1724 1725 /* 1726 * Remove a buffer from the appropriate transaction list. 1727 * 1728 * Note that this function can *change* the value of 1729 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1730 * t_reserved_list. If the caller is holding onto a copy of one of these 1731 * pointers, it could go bad. Generally the caller needs to re-read the 1732 * pointer from the transaction_t. 1733 * 1734 * Called under j_list_lock. 1735 */ 1736 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1737 { 1738 struct journal_head **list = NULL; 1739 transaction_t *transaction; 1740 struct buffer_head *bh = jh2bh(jh); 1741 1742 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1743 transaction = jh->b_transaction; 1744 if (transaction) 1745 assert_spin_locked(&transaction->t_journal->j_list_lock); 1746 1747 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1748 if (jh->b_jlist != BJ_None) 1749 J_ASSERT_JH(jh, transaction != NULL); 1750 1751 switch (jh->b_jlist) { 1752 case BJ_None: 1753 return; 1754 case BJ_Metadata: 1755 transaction->t_nr_buffers--; 1756 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1757 list = &transaction->t_buffers; 1758 break; 1759 case BJ_Forget: 1760 list = &transaction->t_forget; 1761 break; 1762 case BJ_Shadow: 1763 list = &transaction->t_shadow_list; 1764 break; 1765 case BJ_Reserved: 1766 list = &transaction->t_reserved_list; 1767 break; 1768 } 1769 1770 __blist_del_buffer(list, jh); 1771 jh->b_jlist = BJ_None; 1772 if (test_clear_buffer_jbddirty(bh)) 1773 mark_buffer_dirty(bh); /* Expose it to the VM */ 1774 } 1775 1776 /* 1777 * Remove buffer from all transactions. 1778 * 1779 * Called with bh_state lock and j_list_lock 1780 * 1781 * jh and bh may be already freed when this function returns. 1782 */ 1783 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1784 { 1785 __jbd2_journal_temp_unlink_buffer(jh); 1786 jh->b_transaction = NULL; 1787 jbd2_journal_put_journal_head(jh); 1788 } 1789 1790 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1791 { 1792 struct buffer_head *bh = jh2bh(jh); 1793 1794 /* Get reference so that buffer cannot be freed before we unlock it */ 1795 get_bh(bh); 1796 jbd_lock_bh_state(bh); 1797 spin_lock(&journal->j_list_lock); 1798 __jbd2_journal_unfile_buffer(jh); 1799 spin_unlock(&journal->j_list_lock); 1800 jbd_unlock_bh_state(bh); 1801 __brelse(bh); 1802 } 1803 1804 /* 1805 * Called from jbd2_journal_try_to_free_buffers(). 1806 * 1807 * Called under jbd_lock_bh_state(bh) 1808 */ 1809 static void 1810 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1811 { 1812 struct journal_head *jh; 1813 1814 jh = bh2jh(bh); 1815 1816 if (buffer_locked(bh) || buffer_dirty(bh)) 1817 goto out; 1818 1819 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1820 goto out; 1821 1822 spin_lock(&journal->j_list_lock); 1823 if (jh->b_cp_transaction != NULL) { 1824 /* written-back checkpointed metadata buffer */ 1825 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1826 __jbd2_journal_remove_checkpoint(jh); 1827 } 1828 spin_unlock(&journal->j_list_lock); 1829 out: 1830 return; 1831 } 1832 1833 /** 1834 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1835 * @journal: journal for operation 1836 * @page: to try and free 1837 * @gfp_mask: we use the mask to detect how hard should we try to release 1838 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1839 * release the buffers. 1840 * 1841 * 1842 * For all the buffers on this page, 1843 * if they are fully written out ordered data, move them onto BUF_CLEAN 1844 * so try_to_free_buffers() can reap them. 1845 * 1846 * This function returns non-zero if we wish try_to_free_buffers() 1847 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1848 * We also do it if the page has locked or dirty buffers and the caller wants 1849 * us to perform sync or async writeout. 1850 * 1851 * This complicates JBD locking somewhat. We aren't protected by the 1852 * BKL here. We wish to remove the buffer from its committing or 1853 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1854 * 1855 * This may *change* the value of transaction_t->t_datalist, so anyone 1856 * who looks at t_datalist needs to lock against this function. 1857 * 1858 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1859 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1860 * will come out of the lock with the buffer dirty, which makes it 1861 * ineligible for release here. 1862 * 1863 * Who else is affected by this? hmm... Really the only contender 1864 * is do_get_write_access() - it could be looking at the buffer while 1865 * journal_try_to_free_buffer() is changing its state. But that 1866 * cannot happen because we never reallocate freed data as metadata 1867 * while the data is part of a transaction. Yes? 1868 * 1869 * Return 0 on failure, 1 on success 1870 */ 1871 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1872 struct page *page, gfp_t gfp_mask) 1873 { 1874 struct buffer_head *head; 1875 struct buffer_head *bh; 1876 int ret = 0; 1877 1878 J_ASSERT(PageLocked(page)); 1879 1880 head = page_buffers(page); 1881 bh = head; 1882 do { 1883 struct journal_head *jh; 1884 1885 /* 1886 * We take our own ref against the journal_head here to avoid 1887 * having to add tons of locking around each instance of 1888 * jbd2_journal_put_journal_head(). 1889 */ 1890 jh = jbd2_journal_grab_journal_head(bh); 1891 if (!jh) 1892 continue; 1893 1894 jbd_lock_bh_state(bh); 1895 __journal_try_to_free_buffer(journal, bh); 1896 jbd2_journal_put_journal_head(jh); 1897 jbd_unlock_bh_state(bh); 1898 if (buffer_jbd(bh)) 1899 goto busy; 1900 } while ((bh = bh->b_this_page) != head); 1901 1902 ret = try_to_free_buffers(page); 1903 1904 busy: 1905 return ret; 1906 } 1907 1908 /* 1909 * This buffer is no longer needed. If it is on an older transaction's 1910 * checkpoint list we need to record it on this transaction's forget list 1911 * to pin this buffer (and hence its checkpointing transaction) down until 1912 * this transaction commits. If the buffer isn't on a checkpoint list, we 1913 * release it. 1914 * Returns non-zero if JBD no longer has an interest in the buffer. 1915 * 1916 * Called under j_list_lock. 1917 * 1918 * Called under jbd_lock_bh_state(bh). 1919 */ 1920 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1921 { 1922 int may_free = 1; 1923 struct buffer_head *bh = jh2bh(jh); 1924 1925 if (jh->b_cp_transaction) { 1926 JBUFFER_TRACE(jh, "on running+cp transaction"); 1927 __jbd2_journal_temp_unlink_buffer(jh); 1928 /* 1929 * We don't want to write the buffer anymore, clear the 1930 * bit so that we don't confuse checks in 1931 * __journal_file_buffer 1932 */ 1933 clear_buffer_dirty(bh); 1934 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1935 may_free = 0; 1936 } else { 1937 JBUFFER_TRACE(jh, "on running transaction"); 1938 __jbd2_journal_unfile_buffer(jh); 1939 } 1940 return may_free; 1941 } 1942 1943 /* 1944 * jbd2_journal_invalidatepage 1945 * 1946 * This code is tricky. It has a number of cases to deal with. 1947 * 1948 * There are two invariants which this code relies on: 1949 * 1950 * i_size must be updated on disk before we start calling invalidatepage on the 1951 * data. 1952 * 1953 * This is done in ext3 by defining an ext3_setattr method which 1954 * updates i_size before truncate gets going. By maintaining this 1955 * invariant, we can be sure that it is safe to throw away any buffers 1956 * attached to the current transaction: once the transaction commits, 1957 * we know that the data will not be needed. 1958 * 1959 * Note however that we can *not* throw away data belonging to the 1960 * previous, committing transaction! 1961 * 1962 * Any disk blocks which *are* part of the previous, committing 1963 * transaction (and which therefore cannot be discarded immediately) are 1964 * not going to be reused in the new running transaction 1965 * 1966 * The bitmap committed_data images guarantee this: any block which is 1967 * allocated in one transaction and removed in the next will be marked 1968 * as in-use in the committed_data bitmap, so cannot be reused until 1969 * the next transaction to delete the block commits. This means that 1970 * leaving committing buffers dirty is quite safe: the disk blocks 1971 * cannot be reallocated to a different file and so buffer aliasing is 1972 * not possible. 1973 * 1974 * 1975 * The above applies mainly to ordered data mode. In writeback mode we 1976 * don't make guarantees about the order in which data hits disk --- in 1977 * particular we don't guarantee that new dirty data is flushed before 1978 * transaction commit --- so it is always safe just to discard data 1979 * immediately in that mode. --sct 1980 */ 1981 1982 /* 1983 * The journal_unmap_buffer helper function returns zero if the buffer 1984 * concerned remains pinned as an anonymous buffer belonging to an older 1985 * transaction. 1986 * 1987 * We're outside-transaction here. Either or both of j_running_transaction 1988 * and j_committing_transaction may be NULL. 1989 */ 1990 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1991 int partial_page) 1992 { 1993 transaction_t *transaction; 1994 struct journal_head *jh; 1995 int may_free = 1; 1996 1997 BUFFER_TRACE(bh, "entry"); 1998 1999 /* 2000 * It is safe to proceed here without the j_list_lock because the 2001 * buffers cannot be stolen by try_to_free_buffers as long as we are 2002 * holding the page lock. --sct 2003 */ 2004 2005 if (!buffer_jbd(bh)) 2006 goto zap_buffer_unlocked; 2007 2008 /* OK, we have data buffer in journaled mode */ 2009 write_lock(&journal->j_state_lock); 2010 jbd_lock_bh_state(bh); 2011 spin_lock(&journal->j_list_lock); 2012 2013 jh = jbd2_journal_grab_journal_head(bh); 2014 if (!jh) 2015 goto zap_buffer_no_jh; 2016 2017 /* 2018 * We cannot remove the buffer from checkpoint lists until the 2019 * transaction adding inode to orphan list (let's call it T) 2020 * is committed. Otherwise if the transaction changing the 2021 * buffer would be cleaned from the journal before T is 2022 * committed, a crash will cause that the correct contents of 2023 * the buffer will be lost. On the other hand we have to 2024 * clear the buffer dirty bit at latest at the moment when the 2025 * transaction marking the buffer as freed in the filesystem 2026 * structures is committed because from that moment on the 2027 * block can be reallocated and used by a different page. 2028 * Since the block hasn't been freed yet but the inode has 2029 * already been added to orphan list, it is safe for us to add 2030 * the buffer to BJ_Forget list of the newest transaction. 2031 * 2032 * Also we have to clear buffer_mapped flag of a truncated buffer 2033 * because the buffer_head may be attached to the page straddling 2034 * i_size (can happen only when blocksize < pagesize) and thus the 2035 * buffer_head can be reused when the file is extended again. So we end 2036 * up keeping around invalidated buffers attached to transactions' 2037 * BJ_Forget list just to stop checkpointing code from cleaning up 2038 * the transaction this buffer was modified in. 2039 */ 2040 transaction = jh->b_transaction; 2041 if (transaction == NULL) { 2042 /* First case: not on any transaction. If it 2043 * has no checkpoint link, then we can zap it: 2044 * it's a writeback-mode buffer so we don't care 2045 * if it hits disk safely. */ 2046 if (!jh->b_cp_transaction) { 2047 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2048 goto zap_buffer; 2049 } 2050 2051 if (!buffer_dirty(bh)) { 2052 /* bdflush has written it. We can drop it now */ 2053 goto zap_buffer; 2054 } 2055 2056 /* OK, it must be in the journal but still not 2057 * written fully to disk: it's metadata or 2058 * journaled data... */ 2059 2060 if (journal->j_running_transaction) { 2061 /* ... and once the current transaction has 2062 * committed, the buffer won't be needed any 2063 * longer. */ 2064 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2065 may_free = __dispose_buffer(jh, 2066 journal->j_running_transaction); 2067 goto zap_buffer; 2068 } else { 2069 /* There is no currently-running transaction. So the 2070 * orphan record which we wrote for this file must have 2071 * passed into commit. We must attach this buffer to 2072 * the committing transaction, if it exists. */ 2073 if (journal->j_committing_transaction) { 2074 JBUFFER_TRACE(jh, "give to committing trans"); 2075 may_free = __dispose_buffer(jh, 2076 journal->j_committing_transaction); 2077 goto zap_buffer; 2078 } else { 2079 /* The orphan record's transaction has 2080 * committed. We can cleanse this buffer */ 2081 clear_buffer_jbddirty(bh); 2082 goto zap_buffer; 2083 } 2084 } 2085 } else if (transaction == journal->j_committing_transaction) { 2086 JBUFFER_TRACE(jh, "on committing transaction"); 2087 /* 2088 * The buffer is committing, we simply cannot touch 2089 * it. If the page is straddling i_size we have to wait 2090 * for commit and try again. 2091 */ 2092 if (partial_page) { 2093 jbd2_journal_put_journal_head(jh); 2094 spin_unlock(&journal->j_list_lock); 2095 jbd_unlock_bh_state(bh); 2096 write_unlock(&journal->j_state_lock); 2097 return -EBUSY; 2098 } 2099 /* 2100 * OK, buffer won't be reachable after truncate. We just set 2101 * j_next_transaction to the running transaction (if there is 2102 * one) and mark buffer as freed so that commit code knows it 2103 * should clear dirty bits when it is done with the buffer. 2104 */ 2105 set_buffer_freed(bh); 2106 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2107 jh->b_next_transaction = journal->j_running_transaction; 2108 jbd2_journal_put_journal_head(jh); 2109 spin_unlock(&journal->j_list_lock); 2110 jbd_unlock_bh_state(bh); 2111 write_unlock(&journal->j_state_lock); 2112 return 0; 2113 } else { 2114 /* Good, the buffer belongs to the running transaction. 2115 * We are writing our own transaction's data, not any 2116 * previous one's, so it is safe to throw it away 2117 * (remember that we expect the filesystem to have set 2118 * i_size already for this truncate so recovery will not 2119 * expose the disk blocks we are discarding here.) */ 2120 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2121 JBUFFER_TRACE(jh, "on running transaction"); 2122 may_free = __dispose_buffer(jh, transaction); 2123 } 2124 2125 zap_buffer: 2126 /* 2127 * This is tricky. Although the buffer is truncated, it may be reused 2128 * if blocksize < pagesize and it is attached to the page straddling 2129 * EOF. Since the buffer might have been added to BJ_Forget list of the 2130 * running transaction, journal_get_write_access() won't clear 2131 * b_modified and credit accounting gets confused. So clear b_modified 2132 * here. 2133 */ 2134 jh->b_modified = 0; 2135 jbd2_journal_put_journal_head(jh); 2136 zap_buffer_no_jh: 2137 spin_unlock(&journal->j_list_lock); 2138 jbd_unlock_bh_state(bh); 2139 write_unlock(&journal->j_state_lock); 2140 zap_buffer_unlocked: 2141 clear_buffer_dirty(bh); 2142 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2143 clear_buffer_mapped(bh); 2144 clear_buffer_req(bh); 2145 clear_buffer_new(bh); 2146 clear_buffer_delay(bh); 2147 clear_buffer_unwritten(bh); 2148 bh->b_bdev = NULL; 2149 return may_free; 2150 } 2151 2152 /** 2153 * void jbd2_journal_invalidatepage() 2154 * @journal: journal to use for flush... 2155 * @page: page to flush 2156 * @offset: start of the range to invalidate 2157 * @length: length of the range to invalidate 2158 * 2159 * Reap page buffers containing data after in the specified range in page. 2160 * Can return -EBUSY if buffers are part of the committing transaction and 2161 * the page is straddling i_size. Caller then has to wait for current commit 2162 * and try again. 2163 */ 2164 int jbd2_journal_invalidatepage(journal_t *journal, 2165 struct page *page, 2166 unsigned int offset, 2167 unsigned int length) 2168 { 2169 struct buffer_head *head, *bh, *next; 2170 unsigned int stop = offset + length; 2171 unsigned int curr_off = 0; 2172 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2173 int may_free = 1; 2174 int ret = 0; 2175 2176 if (!PageLocked(page)) 2177 BUG(); 2178 if (!page_has_buffers(page)) 2179 return 0; 2180 2181 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2182 2183 /* We will potentially be playing with lists other than just the 2184 * data lists (especially for journaled data mode), so be 2185 * cautious in our locking. */ 2186 2187 head = bh = page_buffers(page); 2188 do { 2189 unsigned int next_off = curr_off + bh->b_size; 2190 next = bh->b_this_page; 2191 2192 if (next_off > stop) 2193 return 0; 2194 2195 if (offset <= curr_off) { 2196 /* This block is wholly outside the truncation point */ 2197 lock_buffer(bh); 2198 ret = journal_unmap_buffer(journal, bh, partial_page); 2199 unlock_buffer(bh); 2200 if (ret < 0) 2201 return ret; 2202 may_free &= ret; 2203 } 2204 curr_off = next_off; 2205 bh = next; 2206 2207 } while (bh != head); 2208 2209 if (!partial_page) { 2210 if (may_free && try_to_free_buffers(page)) 2211 J_ASSERT(!page_has_buffers(page)); 2212 } 2213 return 0; 2214 } 2215 2216 /* 2217 * File a buffer on the given transaction list. 2218 */ 2219 void __jbd2_journal_file_buffer(struct journal_head *jh, 2220 transaction_t *transaction, int jlist) 2221 { 2222 struct journal_head **list = NULL; 2223 int was_dirty = 0; 2224 struct buffer_head *bh = jh2bh(jh); 2225 2226 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2227 assert_spin_locked(&transaction->t_journal->j_list_lock); 2228 2229 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2230 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2231 jh->b_transaction == NULL); 2232 2233 if (jh->b_transaction && jh->b_jlist == jlist) 2234 return; 2235 2236 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2237 jlist == BJ_Shadow || jlist == BJ_Forget) { 2238 /* 2239 * For metadata buffers, we track dirty bit in buffer_jbddirty 2240 * instead of buffer_dirty. We should not see a dirty bit set 2241 * here because we clear it in do_get_write_access but e.g. 2242 * tune2fs can modify the sb and set the dirty bit at any time 2243 * so we try to gracefully handle that. 2244 */ 2245 if (buffer_dirty(bh)) 2246 warn_dirty_buffer(bh); 2247 if (test_clear_buffer_dirty(bh) || 2248 test_clear_buffer_jbddirty(bh)) 2249 was_dirty = 1; 2250 } 2251 2252 if (jh->b_transaction) 2253 __jbd2_journal_temp_unlink_buffer(jh); 2254 else 2255 jbd2_journal_grab_journal_head(bh); 2256 jh->b_transaction = transaction; 2257 2258 switch (jlist) { 2259 case BJ_None: 2260 J_ASSERT_JH(jh, !jh->b_committed_data); 2261 J_ASSERT_JH(jh, !jh->b_frozen_data); 2262 return; 2263 case BJ_Metadata: 2264 transaction->t_nr_buffers++; 2265 list = &transaction->t_buffers; 2266 break; 2267 case BJ_Forget: 2268 list = &transaction->t_forget; 2269 break; 2270 case BJ_Shadow: 2271 list = &transaction->t_shadow_list; 2272 break; 2273 case BJ_Reserved: 2274 list = &transaction->t_reserved_list; 2275 break; 2276 } 2277 2278 __blist_add_buffer(list, jh); 2279 jh->b_jlist = jlist; 2280 2281 if (was_dirty) 2282 set_buffer_jbddirty(bh); 2283 } 2284 2285 void jbd2_journal_file_buffer(struct journal_head *jh, 2286 transaction_t *transaction, int jlist) 2287 { 2288 jbd_lock_bh_state(jh2bh(jh)); 2289 spin_lock(&transaction->t_journal->j_list_lock); 2290 __jbd2_journal_file_buffer(jh, transaction, jlist); 2291 spin_unlock(&transaction->t_journal->j_list_lock); 2292 jbd_unlock_bh_state(jh2bh(jh)); 2293 } 2294 2295 /* 2296 * Remove a buffer from its current buffer list in preparation for 2297 * dropping it from its current transaction entirely. If the buffer has 2298 * already started to be used by a subsequent transaction, refile the 2299 * buffer on that transaction's metadata list. 2300 * 2301 * Called under j_list_lock 2302 * Called under jbd_lock_bh_state(jh2bh(jh)) 2303 * 2304 * jh and bh may be already free when this function returns 2305 */ 2306 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2307 { 2308 int was_dirty, jlist; 2309 struct buffer_head *bh = jh2bh(jh); 2310 2311 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2312 if (jh->b_transaction) 2313 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2314 2315 /* If the buffer is now unused, just drop it. */ 2316 if (jh->b_next_transaction == NULL) { 2317 __jbd2_journal_unfile_buffer(jh); 2318 return; 2319 } 2320 2321 /* 2322 * It has been modified by a later transaction: add it to the new 2323 * transaction's metadata list. 2324 */ 2325 2326 was_dirty = test_clear_buffer_jbddirty(bh); 2327 __jbd2_journal_temp_unlink_buffer(jh); 2328 /* 2329 * We set b_transaction here because b_next_transaction will inherit 2330 * our jh reference and thus __jbd2_journal_file_buffer() must not 2331 * take a new one. 2332 */ 2333 jh->b_transaction = jh->b_next_transaction; 2334 jh->b_next_transaction = NULL; 2335 if (buffer_freed(bh)) 2336 jlist = BJ_Forget; 2337 else if (jh->b_modified) 2338 jlist = BJ_Metadata; 2339 else 2340 jlist = BJ_Reserved; 2341 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2342 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2343 2344 if (was_dirty) 2345 set_buffer_jbddirty(bh); 2346 } 2347 2348 /* 2349 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2350 * bh reference so that we can safely unlock bh. 2351 * 2352 * The jh and bh may be freed by this call. 2353 */ 2354 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2355 { 2356 struct buffer_head *bh = jh2bh(jh); 2357 2358 /* Get reference so that buffer cannot be freed before we unlock it */ 2359 get_bh(bh); 2360 jbd_lock_bh_state(bh); 2361 spin_lock(&journal->j_list_lock); 2362 __jbd2_journal_refile_buffer(jh); 2363 jbd_unlock_bh_state(bh); 2364 spin_unlock(&journal->j_list_lock); 2365 __brelse(bh); 2366 } 2367 2368 /* 2369 * File inode in the inode list of the handle's transaction 2370 */ 2371 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2372 { 2373 transaction_t *transaction = handle->h_transaction; 2374 journal_t *journal; 2375 2376 WARN_ON(!transaction); 2377 if (is_handle_aborted(handle)) 2378 return -EROFS; 2379 journal = transaction->t_journal; 2380 2381 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2382 transaction->t_tid); 2383 2384 /* 2385 * First check whether inode isn't already on the transaction's 2386 * lists without taking the lock. Note that this check is safe 2387 * without the lock as we cannot race with somebody removing inode 2388 * from the transaction. The reason is that we remove inode from the 2389 * transaction only in journal_release_jbd_inode() and when we commit 2390 * the transaction. We are guarded from the first case by holding 2391 * a reference to the inode. We are safe against the second case 2392 * because if jinode->i_transaction == transaction, commit code 2393 * cannot touch the transaction because we hold reference to it, 2394 * and if jinode->i_next_transaction == transaction, commit code 2395 * will only file the inode where we want it. 2396 */ 2397 if (jinode->i_transaction == transaction || 2398 jinode->i_next_transaction == transaction) 2399 return 0; 2400 2401 spin_lock(&journal->j_list_lock); 2402 2403 if (jinode->i_transaction == transaction || 2404 jinode->i_next_transaction == transaction) 2405 goto done; 2406 2407 /* 2408 * We only ever set this variable to 1 so the test is safe. Since 2409 * t_need_data_flush is likely to be set, we do the test to save some 2410 * cacheline bouncing 2411 */ 2412 if (!transaction->t_need_data_flush) 2413 transaction->t_need_data_flush = 1; 2414 /* On some different transaction's list - should be 2415 * the committing one */ 2416 if (jinode->i_transaction) { 2417 J_ASSERT(jinode->i_next_transaction == NULL); 2418 J_ASSERT(jinode->i_transaction == 2419 journal->j_committing_transaction); 2420 jinode->i_next_transaction = transaction; 2421 goto done; 2422 } 2423 /* Not on any transaction list... */ 2424 J_ASSERT(!jinode->i_next_transaction); 2425 jinode->i_transaction = transaction; 2426 list_add(&jinode->i_list, &transaction->t_inode_list); 2427 done: 2428 spin_unlock(&journal->j_list_lock); 2429 2430 return 0; 2431 } 2432 2433 /* 2434 * File truncate and transaction commit interact with each other in a 2435 * non-trivial way. If a transaction writing data block A is 2436 * committing, we cannot discard the data by truncate until we have 2437 * written them. Otherwise if we crashed after the transaction with 2438 * write has committed but before the transaction with truncate has 2439 * committed, we could see stale data in block A. This function is a 2440 * helper to solve this problem. It starts writeout of the truncated 2441 * part in case it is in the committing transaction. 2442 * 2443 * Filesystem code must call this function when inode is journaled in 2444 * ordered mode before truncation happens and after the inode has been 2445 * placed on orphan list with the new inode size. The second condition 2446 * avoids the race that someone writes new data and we start 2447 * committing the transaction after this function has been called but 2448 * before a transaction for truncate is started (and furthermore it 2449 * allows us to optimize the case where the addition to orphan list 2450 * happens in the same transaction as write --- we don't have to write 2451 * any data in such case). 2452 */ 2453 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2454 struct jbd2_inode *jinode, 2455 loff_t new_size) 2456 { 2457 transaction_t *inode_trans, *commit_trans; 2458 int ret = 0; 2459 2460 /* This is a quick check to avoid locking if not necessary */ 2461 if (!jinode->i_transaction) 2462 goto out; 2463 /* Locks are here just to force reading of recent values, it is 2464 * enough that the transaction was not committing before we started 2465 * a transaction adding the inode to orphan list */ 2466 read_lock(&journal->j_state_lock); 2467 commit_trans = journal->j_committing_transaction; 2468 read_unlock(&journal->j_state_lock); 2469 spin_lock(&journal->j_list_lock); 2470 inode_trans = jinode->i_transaction; 2471 spin_unlock(&journal->j_list_lock); 2472 if (inode_trans == commit_trans) { 2473 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2474 new_size, LLONG_MAX); 2475 if (ret) 2476 jbd2_journal_abort(journal, ret); 2477 } 2478 out: 2479 return ret; 2480 } 2481