1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 spin_lock_init(&transaction->t_handle_lock); 89 atomic_set(&transaction->t_updates, 0); 90 atomic_set(&transaction->t_outstanding_credits, 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_handle_count, 0); 93 INIT_LIST_HEAD(&transaction->t_inode_list); 94 INIT_LIST_HEAD(&transaction->t_private_list); 95 96 /* Set up the commit timer for the new transaction. */ 97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 98 add_timer(&journal->j_commit_timer); 99 100 J_ASSERT(journal->j_running_transaction == NULL); 101 journal->j_running_transaction = transaction; 102 transaction->t_max_wait = 0; 103 transaction->t_start = jiffies; 104 transaction->t_requested = 0; 105 } 106 107 /* 108 * Handle management. 109 * 110 * A handle_t is an object which represents a single atomic update to a 111 * filesystem, and which tracks all of the modifications which form part 112 * of that one update. 113 */ 114 115 /* 116 * Update transaction's maximum wait time, if debugging is enabled. 117 * 118 * In order for t_max_wait to be reliable, it must be protected by a 119 * lock. But doing so will mean that start_this_handle() can not be 120 * run in parallel on SMP systems, which limits our scalability. So 121 * unless debugging is enabled, we no longer update t_max_wait, which 122 * means that maximum wait time reported by the jbd2_run_stats 123 * tracepoint will always be zero. 124 */ 125 static inline void update_t_max_wait(transaction_t *transaction, 126 unsigned long ts) 127 { 128 #ifdef CONFIG_JBD2_DEBUG 129 if (jbd2_journal_enable_debug && 130 time_after(transaction->t_start, ts)) { 131 ts = jbd2_time_diff(ts, transaction->t_start); 132 spin_lock(&transaction->t_handle_lock); 133 if (ts > transaction->t_max_wait) 134 transaction->t_max_wait = ts; 135 spin_unlock(&transaction->t_handle_lock); 136 } 137 #endif 138 } 139 140 /* 141 * Wait until running transaction passes to T_FLUSH state and new transaction 142 * can thus be started. Also starts the commit if needed. The function expects 143 * running transaction to exist and releases j_state_lock. 144 */ 145 static void wait_transaction_locked(journal_t *journal) 146 __releases(journal->j_state_lock) 147 { 148 DEFINE_WAIT(wait); 149 int need_to_start; 150 tid_t tid = journal->j_running_transaction->t_tid; 151 152 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 153 TASK_UNINTERRUPTIBLE); 154 need_to_start = !tid_geq(journal->j_commit_request, tid); 155 read_unlock(&journal->j_state_lock); 156 if (need_to_start) 157 jbd2_log_start_commit(journal, tid); 158 jbd2_might_wait_for_commit(journal); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 } 162 163 /* 164 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 165 * state and new transaction can thus be started. The function releases 166 * j_state_lock. 167 */ 168 static void wait_transaction_switching(journal_t *journal) 169 __releases(journal->j_state_lock) 170 { 171 DEFINE_WAIT(wait); 172 173 if (WARN_ON(!journal->j_running_transaction || 174 journal->j_running_transaction->t_state != T_SWITCH)) 175 return; 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 read_unlock(&journal->j_state_lock); 179 /* 180 * We don't call jbd2_might_wait_for_commit() here as there's no 181 * waiting for outstanding handles happening anymore in T_SWITCH state 182 * and handling of reserved handles actually relies on that for 183 * correctness. 184 */ 185 schedule(); 186 finish_wait(&journal->j_wait_transaction_locked, &wait); 187 } 188 189 static void sub_reserved_credits(journal_t *journal, int blocks) 190 { 191 atomic_sub(blocks, &journal->j_reserved_credits); 192 wake_up(&journal->j_wait_reserved); 193 } 194 195 /* 196 * Wait until we can add credits for handle to the running transaction. Called 197 * with j_state_lock held for reading. Returns 0 if handle joined the running 198 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 199 * caller must retry. 200 */ 201 static int add_transaction_credits(journal_t *journal, int blocks, 202 int rsv_blocks) 203 { 204 transaction_t *t = journal->j_running_transaction; 205 int needed; 206 int total = blocks + rsv_blocks; 207 208 /* 209 * If the current transaction is locked down for commit, wait 210 * for the lock to be released. 211 */ 212 if (t->t_state != T_RUNNING) { 213 WARN_ON_ONCE(t->t_state >= T_FLUSH); 214 wait_transaction_locked(journal); 215 return 1; 216 } 217 218 /* 219 * If there is not enough space left in the log to write all 220 * potential buffers requested by this operation, we need to 221 * stall pending a log checkpoint to free some more log space. 222 */ 223 needed = atomic_add_return(total, &t->t_outstanding_credits); 224 if (needed > journal->j_max_transaction_buffers) { 225 /* 226 * If the current transaction is already too large, 227 * then start to commit it: we can then go back and 228 * attach this handle to a new transaction. 229 */ 230 atomic_sub(total, &t->t_outstanding_credits); 231 232 /* 233 * Is the number of reserved credits in the current transaction too 234 * big to fit this handle? Wait until reserved credits are freed. 235 */ 236 if (atomic_read(&journal->j_reserved_credits) + total > 237 journal->j_max_transaction_buffers) { 238 read_unlock(&journal->j_state_lock); 239 jbd2_might_wait_for_commit(journal); 240 wait_event(journal->j_wait_reserved, 241 atomic_read(&journal->j_reserved_credits) + total <= 242 journal->j_max_transaction_buffers); 243 return 1; 244 } 245 246 wait_transaction_locked(journal); 247 return 1; 248 } 249 250 /* 251 * The commit code assumes that it can get enough log space 252 * without forcing a checkpoint. This is *critical* for 253 * correctness: a checkpoint of a buffer which is also 254 * associated with a committing transaction creates a deadlock, 255 * so commit simply cannot force through checkpoints. 256 * 257 * We must therefore ensure the necessary space in the journal 258 * *before* starting to dirty potentially checkpointed buffers 259 * in the new transaction. 260 */ 261 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 262 atomic_sub(total, &t->t_outstanding_credits); 263 read_unlock(&journal->j_state_lock); 264 jbd2_might_wait_for_commit(journal); 265 write_lock(&journal->j_state_lock); 266 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 267 __jbd2_log_wait_for_space(journal); 268 write_unlock(&journal->j_state_lock); 269 return 1; 270 } 271 272 /* No reservation? We are done... */ 273 if (!rsv_blocks) 274 return 0; 275 276 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 277 /* We allow at most half of a transaction to be reserved */ 278 if (needed > journal->j_max_transaction_buffers / 2) { 279 sub_reserved_credits(journal, rsv_blocks); 280 atomic_sub(total, &t->t_outstanding_credits); 281 read_unlock(&journal->j_state_lock); 282 jbd2_might_wait_for_commit(journal); 283 wait_event(journal->j_wait_reserved, 284 atomic_read(&journal->j_reserved_credits) + rsv_blocks 285 <= journal->j_max_transaction_buffers / 2); 286 return 1; 287 } 288 return 0; 289 } 290 291 /* 292 * start_this_handle: Given a handle, deal with any locking or stalling 293 * needed to make sure that there is enough journal space for the handle 294 * to begin. Attach the handle to a transaction and set up the 295 * transaction's buffer credits. 296 */ 297 298 static int start_this_handle(journal_t *journal, handle_t *handle, 299 gfp_t gfp_mask) 300 { 301 transaction_t *transaction, *new_transaction = NULL; 302 int blocks = handle->h_buffer_credits; 303 int rsv_blocks = 0; 304 unsigned long ts = jiffies; 305 306 if (handle->h_rsv_handle) 307 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 308 309 /* 310 * Limit the number of reserved credits to 1/2 of maximum transaction 311 * size and limit the number of total credits to not exceed maximum 312 * transaction size per operation. 313 */ 314 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 315 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 316 printk(KERN_ERR "JBD2: %s wants too many credits " 317 "credits:%d rsv_credits:%d max:%d\n", 318 current->comm, blocks, rsv_blocks, 319 journal->j_max_transaction_buffers); 320 WARN_ON(1); 321 return -ENOSPC; 322 } 323 324 alloc_transaction: 325 if (!journal->j_running_transaction) { 326 /* 327 * If __GFP_FS is not present, then we may be being called from 328 * inside the fs writeback layer, so we MUST NOT fail. 329 */ 330 if ((gfp_mask & __GFP_FS) == 0) 331 gfp_mask |= __GFP_NOFAIL; 332 new_transaction = kmem_cache_zalloc(transaction_cache, 333 gfp_mask); 334 if (!new_transaction) 335 return -ENOMEM; 336 } 337 338 jbd_debug(3, "New handle %p going live.\n", handle); 339 340 /* 341 * We need to hold j_state_lock until t_updates has been incremented, 342 * for proper journal barrier handling 343 */ 344 repeat: 345 read_lock(&journal->j_state_lock); 346 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 347 if (is_journal_aborted(journal) || 348 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 349 read_unlock(&journal->j_state_lock); 350 jbd2_journal_free_transaction(new_transaction); 351 return -EROFS; 352 } 353 354 /* 355 * Wait on the journal's transaction barrier if necessary. Specifically 356 * we allow reserved handles to proceed because otherwise commit could 357 * deadlock on page writeback not being able to complete. 358 */ 359 if (!handle->h_reserved && journal->j_barrier_count) { 360 read_unlock(&journal->j_state_lock); 361 wait_event(journal->j_wait_transaction_locked, 362 journal->j_barrier_count == 0); 363 goto repeat; 364 } 365 366 if (!journal->j_running_transaction) { 367 read_unlock(&journal->j_state_lock); 368 if (!new_transaction) 369 goto alloc_transaction; 370 write_lock(&journal->j_state_lock); 371 if (!journal->j_running_transaction && 372 (handle->h_reserved || !journal->j_barrier_count)) { 373 jbd2_get_transaction(journal, new_transaction); 374 new_transaction = NULL; 375 } 376 write_unlock(&journal->j_state_lock); 377 goto repeat; 378 } 379 380 transaction = journal->j_running_transaction; 381 382 if (!handle->h_reserved) { 383 /* We may have dropped j_state_lock - restart in that case */ 384 if (add_transaction_credits(journal, blocks, rsv_blocks)) 385 goto repeat; 386 } else { 387 /* 388 * We have handle reserved so we are allowed to join T_LOCKED 389 * transaction and we don't have to check for transaction size 390 * and journal space. But we still have to wait while running 391 * transaction is being switched to a committing one as it 392 * won't wait for any handles anymore. 393 */ 394 if (transaction->t_state == T_SWITCH) { 395 wait_transaction_switching(journal); 396 goto repeat; 397 } 398 sub_reserved_credits(journal, blocks); 399 handle->h_reserved = 0; 400 } 401 402 /* OK, account for the buffers that this operation expects to 403 * use and add the handle to the running transaction. 404 */ 405 update_t_max_wait(transaction, ts); 406 handle->h_transaction = transaction; 407 handle->h_requested_credits = blocks; 408 handle->h_start_jiffies = jiffies; 409 atomic_inc(&transaction->t_updates); 410 atomic_inc(&transaction->t_handle_count); 411 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 412 handle, blocks, 413 atomic_read(&transaction->t_outstanding_credits), 414 jbd2_log_space_left(journal)); 415 read_unlock(&journal->j_state_lock); 416 current->journal_info = handle; 417 418 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 419 jbd2_journal_free_transaction(new_transaction); 420 /* 421 * Ensure that no allocations done while the transaction is open are 422 * going to recurse back to the fs layer. 423 */ 424 handle->saved_alloc_context = memalloc_nofs_save(); 425 return 0; 426 } 427 428 /* Allocate a new handle. This should probably be in a slab... */ 429 static handle_t *new_handle(int nblocks) 430 { 431 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 432 if (!handle) 433 return NULL; 434 handle->h_buffer_credits = nblocks; 435 handle->h_ref = 1; 436 437 return handle; 438 } 439 440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 441 gfp_t gfp_mask, unsigned int type, 442 unsigned int line_no) 443 { 444 handle_t *handle = journal_current_handle(); 445 int err; 446 447 if (!journal) 448 return ERR_PTR(-EROFS); 449 450 if (handle) { 451 J_ASSERT(handle->h_transaction->t_journal == journal); 452 handle->h_ref++; 453 return handle; 454 } 455 456 handle = new_handle(nblocks); 457 if (!handle) 458 return ERR_PTR(-ENOMEM); 459 if (rsv_blocks) { 460 handle_t *rsv_handle; 461 462 rsv_handle = new_handle(rsv_blocks); 463 if (!rsv_handle) { 464 jbd2_free_handle(handle); 465 return ERR_PTR(-ENOMEM); 466 } 467 rsv_handle->h_reserved = 1; 468 rsv_handle->h_journal = journal; 469 handle->h_rsv_handle = rsv_handle; 470 } 471 472 err = start_this_handle(journal, handle, gfp_mask); 473 if (err < 0) { 474 if (handle->h_rsv_handle) 475 jbd2_free_handle(handle->h_rsv_handle); 476 jbd2_free_handle(handle); 477 return ERR_PTR(err); 478 } 479 handle->h_type = type; 480 handle->h_line_no = line_no; 481 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 482 handle->h_transaction->t_tid, type, 483 line_no, nblocks); 484 485 return handle; 486 } 487 EXPORT_SYMBOL(jbd2__journal_start); 488 489 490 /** 491 * handle_t *jbd2_journal_start() - Obtain a new handle. 492 * @journal: Journal to start transaction on. 493 * @nblocks: number of block buffer we might modify 494 * 495 * We make sure that the transaction can guarantee at least nblocks of 496 * modified buffers in the log. We block until the log can guarantee 497 * that much space. Additionally, if rsv_blocks > 0, we also create another 498 * handle with rsv_blocks reserved blocks in the journal. This handle is 499 * is stored in h_rsv_handle. It is not attached to any particular transaction 500 * and thus doesn't block transaction commit. If the caller uses this reserved 501 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 502 * on the parent handle will dispose the reserved one. Reserved handle has to 503 * be converted to a normal handle using jbd2_journal_start_reserved() before 504 * it can be used. 505 * 506 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 507 * on failure. 508 */ 509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 510 { 511 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 512 } 513 EXPORT_SYMBOL(jbd2_journal_start); 514 515 void jbd2_journal_free_reserved(handle_t *handle) 516 { 517 journal_t *journal = handle->h_journal; 518 519 WARN_ON(!handle->h_reserved); 520 sub_reserved_credits(journal, handle->h_buffer_credits); 521 jbd2_free_handle(handle); 522 } 523 EXPORT_SYMBOL(jbd2_journal_free_reserved); 524 525 /** 526 * int jbd2_journal_start_reserved() - start reserved handle 527 * @handle: handle to start 528 * @type: for handle statistics 529 * @line_no: for handle statistics 530 * 531 * Start handle that has been previously reserved with jbd2_journal_reserve(). 532 * This attaches @handle to the running transaction (or creates one if there's 533 * not transaction running). Unlike jbd2_journal_start() this function cannot 534 * block on journal commit, checkpointing, or similar stuff. It can block on 535 * memory allocation or frozen journal though. 536 * 537 * Return 0 on success, non-zero on error - handle is freed in that case. 538 */ 539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 540 unsigned int line_no) 541 { 542 journal_t *journal = handle->h_journal; 543 int ret = -EIO; 544 545 if (WARN_ON(!handle->h_reserved)) { 546 /* Someone passed in normal handle? Just stop it. */ 547 jbd2_journal_stop(handle); 548 return ret; 549 } 550 /* 551 * Usefulness of mixing of reserved and unreserved handles is 552 * questionable. So far nobody seems to need it so just error out. 553 */ 554 if (WARN_ON(current->journal_info)) { 555 jbd2_journal_free_reserved(handle); 556 return ret; 557 } 558 559 handle->h_journal = NULL; 560 /* 561 * GFP_NOFS is here because callers are likely from writeback or 562 * similarly constrained call sites 563 */ 564 ret = start_this_handle(journal, handle, GFP_NOFS); 565 if (ret < 0) { 566 handle->h_journal = journal; 567 jbd2_journal_free_reserved(handle); 568 return ret; 569 } 570 handle->h_type = type; 571 handle->h_line_no = line_no; 572 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 573 handle->h_transaction->t_tid, type, 574 line_no, handle->h_buffer_credits); 575 return 0; 576 } 577 EXPORT_SYMBOL(jbd2_journal_start_reserved); 578 579 /** 580 * int jbd2_journal_extend() - extend buffer credits. 581 * @handle: handle to 'extend' 582 * @nblocks: nr blocks to try to extend by. 583 * 584 * Some transactions, such as large extends and truncates, can be done 585 * atomically all at once or in several stages. The operation requests 586 * a credit for a number of buffer modifications in advance, but can 587 * extend its credit if it needs more. 588 * 589 * jbd2_journal_extend tries to give the running handle more buffer credits. 590 * It does not guarantee that allocation - this is a best-effort only. 591 * The calling process MUST be able to deal cleanly with a failure to 592 * extend here. 593 * 594 * Return 0 on success, non-zero on failure. 595 * 596 * return code < 0 implies an error 597 * return code > 0 implies normal transaction-full status. 598 */ 599 int jbd2_journal_extend(handle_t *handle, int nblocks) 600 { 601 transaction_t *transaction = handle->h_transaction; 602 journal_t *journal; 603 int result; 604 int wanted; 605 606 if (is_handle_aborted(handle)) 607 return -EROFS; 608 journal = transaction->t_journal; 609 610 result = 1; 611 612 read_lock(&journal->j_state_lock); 613 614 /* Don't extend a locked-down transaction! */ 615 if (transaction->t_state != T_RUNNING) { 616 jbd_debug(3, "denied handle %p %d blocks: " 617 "transaction not running\n", handle, nblocks); 618 goto error_out; 619 } 620 621 spin_lock(&transaction->t_handle_lock); 622 wanted = atomic_add_return(nblocks, 623 &transaction->t_outstanding_credits); 624 625 if (wanted > journal->j_max_transaction_buffers) { 626 jbd_debug(3, "denied handle %p %d blocks: " 627 "transaction too large\n", handle, nblocks); 628 atomic_sub(nblocks, &transaction->t_outstanding_credits); 629 goto unlock; 630 } 631 632 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 633 jbd2_log_space_left(journal)) { 634 jbd_debug(3, "denied handle %p %d blocks: " 635 "insufficient log space\n", handle, nblocks); 636 atomic_sub(nblocks, &transaction->t_outstanding_credits); 637 goto unlock; 638 } 639 640 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 641 transaction->t_tid, 642 handle->h_type, handle->h_line_no, 643 handle->h_buffer_credits, 644 nblocks); 645 646 handle->h_buffer_credits += nblocks; 647 handle->h_requested_credits += nblocks; 648 result = 0; 649 650 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 651 unlock: 652 spin_unlock(&transaction->t_handle_lock); 653 error_out: 654 read_unlock(&journal->j_state_lock); 655 return result; 656 } 657 658 659 /** 660 * int jbd2_journal_restart() - restart a handle . 661 * @handle: handle to restart 662 * @nblocks: nr credits requested 663 * @gfp_mask: memory allocation flags (for start_this_handle) 664 * 665 * Restart a handle for a multi-transaction filesystem 666 * operation. 667 * 668 * If the jbd2_journal_extend() call above fails to grant new buffer credits 669 * to a running handle, a call to jbd2_journal_restart will commit the 670 * handle's transaction so far and reattach the handle to a new 671 * transaction capable of guaranteeing the requested number of 672 * credits. We preserve reserved handle if there's any attached to the 673 * passed in handle. 674 */ 675 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 676 { 677 transaction_t *transaction = handle->h_transaction; 678 journal_t *journal; 679 tid_t tid; 680 int need_to_start, ret; 681 682 /* If we've had an abort of any type, don't even think about 683 * actually doing the restart! */ 684 if (is_handle_aborted(handle)) 685 return 0; 686 journal = transaction->t_journal; 687 688 /* 689 * First unlink the handle from its current transaction, and start the 690 * commit on that. 691 */ 692 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 693 J_ASSERT(journal_current_handle() == handle); 694 695 read_lock(&journal->j_state_lock); 696 spin_lock(&transaction->t_handle_lock); 697 atomic_sub(handle->h_buffer_credits, 698 &transaction->t_outstanding_credits); 699 if (handle->h_rsv_handle) { 700 sub_reserved_credits(journal, 701 handle->h_rsv_handle->h_buffer_credits); 702 } 703 if (atomic_dec_and_test(&transaction->t_updates)) 704 wake_up(&journal->j_wait_updates); 705 tid = transaction->t_tid; 706 spin_unlock(&transaction->t_handle_lock); 707 handle->h_transaction = NULL; 708 current->journal_info = NULL; 709 710 jbd_debug(2, "restarting handle %p\n", handle); 711 need_to_start = !tid_geq(journal->j_commit_request, tid); 712 read_unlock(&journal->j_state_lock); 713 if (need_to_start) 714 jbd2_log_start_commit(journal, tid); 715 716 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 717 handle->h_buffer_credits = nblocks; 718 /* 719 * Restore the original nofs context because the journal restart 720 * is basically the same thing as journal stop and start. 721 * start_this_handle will start a new nofs context. 722 */ 723 memalloc_nofs_restore(handle->saved_alloc_context); 724 ret = start_this_handle(journal, handle, gfp_mask); 725 return ret; 726 } 727 EXPORT_SYMBOL(jbd2__journal_restart); 728 729 730 int jbd2_journal_restart(handle_t *handle, int nblocks) 731 { 732 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 733 } 734 EXPORT_SYMBOL(jbd2_journal_restart); 735 736 /** 737 * void jbd2_journal_lock_updates () - establish a transaction barrier. 738 * @journal: Journal to establish a barrier on. 739 * 740 * This locks out any further updates from being started, and blocks 741 * until all existing updates have completed, returning only once the 742 * journal is in a quiescent state with no updates running. 743 * 744 * The journal lock should not be held on entry. 745 */ 746 void jbd2_journal_lock_updates(journal_t *journal) 747 { 748 DEFINE_WAIT(wait); 749 750 jbd2_might_wait_for_commit(journal); 751 752 write_lock(&journal->j_state_lock); 753 ++journal->j_barrier_count; 754 755 /* Wait until there are no reserved handles */ 756 if (atomic_read(&journal->j_reserved_credits)) { 757 write_unlock(&journal->j_state_lock); 758 wait_event(journal->j_wait_reserved, 759 atomic_read(&journal->j_reserved_credits) == 0); 760 write_lock(&journal->j_state_lock); 761 } 762 763 /* Wait until there are no running updates */ 764 while (1) { 765 transaction_t *transaction = journal->j_running_transaction; 766 767 if (!transaction) 768 break; 769 770 spin_lock(&transaction->t_handle_lock); 771 prepare_to_wait(&journal->j_wait_updates, &wait, 772 TASK_UNINTERRUPTIBLE); 773 if (!atomic_read(&transaction->t_updates)) { 774 spin_unlock(&transaction->t_handle_lock); 775 finish_wait(&journal->j_wait_updates, &wait); 776 break; 777 } 778 spin_unlock(&transaction->t_handle_lock); 779 write_unlock(&journal->j_state_lock); 780 schedule(); 781 finish_wait(&journal->j_wait_updates, &wait); 782 write_lock(&journal->j_state_lock); 783 } 784 write_unlock(&journal->j_state_lock); 785 786 /* 787 * We have now established a barrier against other normal updates, but 788 * we also need to barrier against other jbd2_journal_lock_updates() calls 789 * to make sure that we serialise special journal-locked operations 790 * too. 791 */ 792 mutex_lock(&journal->j_barrier); 793 } 794 795 /** 796 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 797 * @journal: Journal to release the barrier on. 798 * 799 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 800 * 801 * Should be called without the journal lock held. 802 */ 803 void jbd2_journal_unlock_updates (journal_t *journal) 804 { 805 J_ASSERT(journal->j_barrier_count != 0); 806 807 mutex_unlock(&journal->j_barrier); 808 write_lock(&journal->j_state_lock); 809 --journal->j_barrier_count; 810 write_unlock(&journal->j_state_lock); 811 wake_up(&journal->j_wait_transaction_locked); 812 } 813 814 static void warn_dirty_buffer(struct buffer_head *bh) 815 { 816 printk(KERN_WARNING 817 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 818 "There's a risk of filesystem corruption in case of system " 819 "crash.\n", 820 bh->b_bdev, (unsigned long long)bh->b_blocknr); 821 } 822 823 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 824 static void jbd2_freeze_jh_data(struct journal_head *jh) 825 { 826 struct page *page; 827 int offset; 828 char *source; 829 struct buffer_head *bh = jh2bh(jh); 830 831 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 832 page = bh->b_page; 833 offset = offset_in_page(bh->b_data); 834 source = kmap_atomic(page); 835 /* Fire data frozen trigger just before we copy the data */ 836 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 837 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 838 kunmap_atomic(source); 839 840 /* 841 * Now that the frozen data is saved off, we need to store any matching 842 * triggers. 843 */ 844 jh->b_frozen_triggers = jh->b_triggers; 845 } 846 847 /* 848 * If the buffer is already part of the current transaction, then there 849 * is nothing we need to do. If it is already part of a prior 850 * transaction which we are still committing to disk, then we need to 851 * make sure that we do not overwrite the old copy: we do copy-out to 852 * preserve the copy going to disk. We also account the buffer against 853 * the handle's metadata buffer credits (unless the buffer is already 854 * part of the transaction, that is). 855 * 856 */ 857 static int 858 do_get_write_access(handle_t *handle, struct journal_head *jh, 859 int force_copy) 860 { 861 struct buffer_head *bh; 862 transaction_t *transaction = handle->h_transaction; 863 journal_t *journal; 864 int error; 865 char *frozen_buffer = NULL; 866 unsigned long start_lock, time_lock; 867 868 if (is_handle_aborted(handle)) 869 return -EROFS; 870 journal = transaction->t_journal; 871 872 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 873 874 JBUFFER_TRACE(jh, "entry"); 875 repeat: 876 bh = jh2bh(jh); 877 878 /* @@@ Need to check for errors here at some point. */ 879 880 start_lock = jiffies; 881 lock_buffer(bh); 882 jbd_lock_bh_state(bh); 883 884 /* If it takes too long to lock the buffer, trace it */ 885 time_lock = jbd2_time_diff(start_lock, jiffies); 886 if (time_lock > HZ/10) 887 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 888 jiffies_to_msecs(time_lock)); 889 890 /* We now hold the buffer lock so it is safe to query the buffer 891 * state. Is the buffer dirty? 892 * 893 * If so, there are two possibilities. The buffer may be 894 * non-journaled, and undergoing a quite legitimate writeback. 895 * Otherwise, it is journaled, and we don't expect dirty buffers 896 * in that state (the buffers should be marked JBD_Dirty 897 * instead.) So either the IO is being done under our own 898 * control and this is a bug, or it's a third party IO such as 899 * dump(8) (which may leave the buffer scheduled for read --- 900 * ie. locked but not dirty) or tune2fs (which may actually have 901 * the buffer dirtied, ugh.) */ 902 903 if (buffer_dirty(bh)) { 904 /* 905 * First question: is this buffer already part of the current 906 * transaction or the existing committing transaction? 907 */ 908 if (jh->b_transaction) { 909 J_ASSERT_JH(jh, 910 jh->b_transaction == transaction || 911 jh->b_transaction == 912 journal->j_committing_transaction); 913 if (jh->b_next_transaction) 914 J_ASSERT_JH(jh, jh->b_next_transaction == 915 transaction); 916 warn_dirty_buffer(bh); 917 } 918 /* 919 * In any case we need to clean the dirty flag and we must 920 * do it under the buffer lock to be sure we don't race 921 * with running write-out. 922 */ 923 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 924 clear_buffer_dirty(bh); 925 set_buffer_jbddirty(bh); 926 } 927 928 unlock_buffer(bh); 929 930 error = -EROFS; 931 if (is_handle_aborted(handle)) { 932 jbd_unlock_bh_state(bh); 933 goto out; 934 } 935 error = 0; 936 937 /* 938 * The buffer is already part of this transaction if b_transaction or 939 * b_next_transaction points to it 940 */ 941 if (jh->b_transaction == transaction || 942 jh->b_next_transaction == transaction) 943 goto done; 944 945 /* 946 * this is the first time this transaction is touching this buffer, 947 * reset the modified flag 948 */ 949 jh->b_modified = 0; 950 951 /* 952 * If the buffer is not journaled right now, we need to make sure it 953 * doesn't get written to disk before the caller actually commits the 954 * new data 955 */ 956 if (!jh->b_transaction) { 957 JBUFFER_TRACE(jh, "no transaction"); 958 J_ASSERT_JH(jh, !jh->b_next_transaction); 959 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 960 /* 961 * Make sure all stores to jh (b_modified, b_frozen_data) are 962 * visible before attaching it to the running transaction. 963 * Paired with barrier in jbd2_write_access_granted() 964 */ 965 smp_wmb(); 966 spin_lock(&journal->j_list_lock); 967 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 968 spin_unlock(&journal->j_list_lock); 969 goto done; 970 } 971 /* 972 * If there is already a copy-out version of this buffer, then we don't 973 * need to make another one 974 */ 975 if (jh->b_frozen_data) { 976 JBUFFER_TRACE(jh, "has frozen data"); 977 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 978 goto attach_next; 979 } 980 981 JBUFFER_TRACE(jh, "owned by older transaction"); 982 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 983 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 984 985 /* 986 * There is one case we have to be very careful about. If the 987 * committing transaction is currently writing this buffer out to disk 988 * and has NOT made a copy-out, then we cannot modify the buffer 989 * contents at all right now. The essence of copy-out is that it is 990 * the extra copy, not the primary copy, which gets journaled. If the 991 * primary copy is already going to disk then we cannot do copy-out 992 * here. 993 */ 994 if (buffer_shadow(bh)) { 995 JBUFFER_TRACE(jh, "on shadow: sleep"); 996 jbd_unlock_bh_state(bh); 997 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 998 goto repeat; 999 } 1000 1001 /* 1002 * Only do the copy if the currently-owning transaction still needs it. 1003 * If buffer isn't on BJ_Metadata list, the committing transaction is 1004 * past that stage (here we use the fact that BH_Shadow is set under 1005 * bh_state lock together with refiling to BJ_Shadow list and at this 1006 * point we know the buffer doesn't have BH_Shadow set). 1007 * 1008 * Subtle point, though: if this is a get_undo_access, then we will be 1009 * relying on the frozen_data to contain the new value of the 1010 * committed_data record after the transaction, so we HAVE to force the 1011 * frozen_data copy in that case. 1012 */ 1013 if (jh->b_jlist == BJ_Metadata || force_copy) { 1014 JBUFFER_TRACE(jh, "generate frozen data"); 1015 if (!frozen_buffer) { 1016 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1017 jbd_unlock_bh_state(bh); 1018 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1019 GFP_NOFS | __GFP_NOFAIL); 1020 goto repeat; 1021 } 1022 jh->b_frozen_data = frozen_buffer; 1023 frozen_buffer = NULL; 1024 jbd2_freeze_jh_data(jh); 1025 } 1026 attach_next: 1027 /* 1028 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1029 * before attaching it to the running transaction. Paired with barrier 1030 * in jbd2_write_access_granted() 1031 */ 1032 smp_wmb(); 1033 jh->b_next_transaction = transaction; 1034 1035 done: 1036 jbd_unlock_bh_state(bh); 1037 1038 /* 1039 * If we are about to journal a buffer, then any revoke pending on it is 1040 * no longer valid 1041 */ 1042 jbd2_journal_cancel_revoke(handle, jh); 1043 1044 out: 1045 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1046 jbd2_free(frozen_buffer, bh->b_size); 1047 1048 JBUFFER_TRACE(jh, "exit"); 1049 return error; 1050 } 1051 1052 /* Fast check whether buffer is already attached to the required transaction */ 1053 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1054 bool undo) 1055 { 1056 struct journal_head *jh; 1057 bool ret = false; 1058 1059 /* Dirty buffers require special handling... */ 1060 if (buffer_dirty(bh)) 1061 return false; 1062 1063 /* 1064 * RCU protects us from dereferencing freed pages. So the checks we do 1065 * are guaranteed not to oops. However the jh slab object can get freed 1066 * & reallocated while we work with it. So we have to be careful. When 1067 * we see jh attached to the running transaction, we know it must stay 1068 * so until the transaction is committed. Thus jh won't be freed and 1069 * will be attached to the same bh while we run. However it can 1070 * happen jh gets freed, reallocated, and attached to the transaction 1071 * just after we get pointer to it from bh. So we have to be careful 1072 * and recheck jh still belongs to our bh before we return success. 1073 */ 1074 rcu_read_lock(); 1075 if (!buffer_jbd(bh)) 1076 goto out; 1077 /* This should be bh2jh() but that doesn't work with inline functions */ 1078 jh = READ_ONCE(bh->b_private); 1079 if (!jh) 1080 goto out; 1081 /* For undo access buffer must have data copied */ 1082 if (undo && !jh->b_committed_data) 1083 goto out; 1084 if (jh->b_transaction != handle->h_transaction && 1085 jh->b_next_transaction != handle->h_transaction) 1086 goto out; 1087 /* 1088 * There are two reasons for the barrier here: 1089 * 1) Make sure to fetch b_bh after we did previous checks so that we 1090 * detect when jh went through free, realloc, attach to transaction 1091 * while we were checking. Paired with implicit barrier in that path. 1092 * 2) So that access to bh done after jbd2_write_access_granted() 1093 * doesn't get reordered and see inconsistent state of concurrent 1094 * do_get_write_access(). 1095 */ 1096 smp_mb(); 1097 if (unlikely(jh->b_bh != bh)) 1098 goto out; 1099 ret = true; 1100 out: 1101 rcu_read_unlock(); 1102 return ret; 1103 } 1104 1105 /** 1106 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1107 * @handle: transaction to add buffer modifications to 1108 * @bh: bh to be used for metadata writes 1109 * 1110 * Returns: error code or 0 on success. 1111 * 1112 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1113 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1114 */ 1115 1116 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1117 { 1118 struct journal_head *jh; 1119 int rc; 1120 1121 if (jbd2_write_access_granted(handle, bh, false)) 1122 return 0; 1123 1124 jh = jbd2_journal_add_journal_head(bh); 1125 /* We do not want to get caught playing with fields which the 1126 * log thread also manipulates. Make sure that the buffer 1127 * completes any outstanding IO before proceeding. */ 1128 rc = do_get_write_access(handle, jh, 0); 1129 jbd2_journal_put_journal_head(jh); 1130 return rc; 1131 } 1132 1133 1134 /* 1135 * When the user wants to journal a newly created buffer_head 1136 * (ie. getblk() returned a new buffer and we are going to populate it 1137 * manually rather than reading off disk), then we need to keep the 1138 * buffer_head locked until it has been completely filled with new 1139 * data. In this case, we should be able to make the assertion that 1140 * the bh is not already part of an existing transaction. 1141 * 1142 * The buffer should already be locked by the caller by this point. 1143 * There is no lock ranking violation: it was a newly created, 1144 * unlocked buffer beforehand. */ 1145 1146 /** 1147 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1148 * @handle: transaction to new buffer to 1149 * @bh: new buffer. 1150 * 1151 * Call this if you create a new bh. 1152 */ 1153 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1154 { 1155 transaction_t *transaction = handle->h_transaction; 1156 journal_t *journal; 1157 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1158 int err; 1159 1160 jbd_debug(5, "journal_head %p\n", jh); 1161 err = -EROFS; 1162 if (is_handle_aborted(handle)) 1163 goto out; 1164 journal = transaction->t_journal; 1165 err = 0; 1166 1167 JBUFFER_TRACE(jh, "entry"); 1168 /* 1169 * The buffer may already belong to this transaction due to pre-zeroing 1170 * in the filesystem's new_block code. It may also be on the previous, 1171 * committing transaction's lists, but it HAS to be in Forget state in 1172 * that case: the transaction must have deleted the buffer for it to be 1173 * reused here. 1174 */ 1175 jbd_lock_bh_state(bh); 1176 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1177 jh->b_transaction == NULL || 1178 (jh->b_transaction == journal->j_committing_transaction && 1179 jh->b_jlist == BJ_Forget))); 1180 1181 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1182 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1183 1184 if (jh->b_transaction == NULL) { 1185 /* 1186 * Previous jbd2_journal_forget() could have left the buffer 1187 * with jbddirty bit set because it was being committed. When 1188 * the commit finished, we've filed the buffer for 1189 * checkpointing and marked it dirty. Now we are reallocating 1190 * the buffer so the transaction freeing it must have 1191 * committed and so it's safe to clear the dirty bit. 1192 */ 1193 clear_buffer_dirty(jh2bh(jh)); 1194 /* first access by this transaction */ 1195 jh->b_modified = 0; 1196 1197 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1198 spin_lock(&journal->j_list_lock); 1199 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1200 spin_unlock(&journal->j_list_lock); 1201 } else if (jh->b_transaction == journal->j_committing_transaction) { 1202 /* first access by this transaction */ 1203 jh->b_modified = 0; 1204 1205 JBUFFER_TRACE(jh, "set next transaction"); 1206 spin_lock(&journal->j_list_lock); 1207 jh->b_next_transaction = transaction; 1208 spin_unlock(&journal->j_list_lock); 1209 } 1210 jbd_unlock_bh_state(bh); 1211 1212 /* 1213 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1214 * blocks which contain freed but then revoked metadata. We need 1215 * to cancel the revoke in case we end up freeing it yet again 1216 * and the reallocating as data - this would cause a second revoke, 1217 * which hits an assertion error. 1218 */ 1219 JBUFFER_TRACE(jh, "cancelling revoke"); 1220 jbd2_journal_cancel_revoke(handle, jh); 1221 out: 1222 jbd2_journal_put_journal_head(jh); 1223 return err; 1224 } 1225 1226 /** 1227 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1228 * non-rewindable consequences 1229 * @handle: transaction 1230 * @bh: buffer to undo 1231 * 1232 * Sometimes there is a need to distinguish between metadata which has 1233 * been committed to disk and that which has not. The ext3fs code uses 1234 * this for freeing and allocating space, we have to make sure that we 1235 * do not reuse freed space until the deallocation has been committed, 1236 * since if we overwrote that space we would make the delete 1237 * un-rewindable in case of a crash. 1238 * 1239 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1240 * buffer for parts of non-rewindable operations such as delete 1241 * operations on the bitmaps. The journaling code must keep a copy of 1242 * the buffer's contents prior to the undo_access call until such time 1243 * as we know that the buffer has definitely been committed to disk. 1244 * 1245 * We never need to know which transaction the committed data is part 1246 * of, buffers touched here are guaranteed to be dirtied later and so 1247 * will be committed to a new transaction in due course, at which point 1248 * we can discard the old committed data pointer. 1249 * 1250 * Returns error number or 0 on success. 1251 */ 1252 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1253 { 1254 int err; 1255 struct journal_head *jh; 1256 char *committed_data = NULL; 1257 1258 if (jbd2_write_access_granted(handle, bh, true)) 1259 return 0; 1260 1261 jh = jbd2_journal_add_journal_head(bh); 1262 JBUFFER_TRACE(jh, "entry"); 1263 1264 /* 1265 * Do this first --- it can drop the journal lock, so we want to 1266 * make sure that obtaining the committed_data is done 1267 * atomically wrt. completion of any outstanding commits. 1268 */ 1269 err = do_get_write_access(handle, jh, 1); 1270 if (err) 1271 goto out; 1272 1273 repeat: 1274 if (!jh->b_committed_data) 1275 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1276 GFP_NOFS|__GFP_NOFAIL); 1277 1278 jbd_lock_bh_state(bh); 1279 if (!jh->b_committed_data) { 1280 /* Copy out the current buffer contents into the 1281 * preserved, committed copy. */ 1282 JBUFFER_TRACE(jh, "generate b_committed data"); 1283 if (!committed_data) { 1284 jbd_unlock_bh_state(bh); 1285 goto repeat; 1286 } 1287 1288 jh->b_committed_data = committed_data; 1289 committed_data = NULL; 1290 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1291 } 1292 jbd_unlock_bh_state(bh); 1293 out: 1294 jbd2_journal_put_journal_head(jh); 1295 if (unlikely(committed_data)) 1296 jbd2_free(committed_data, bh->b_size); 1297 return err; 1298 } 1299 1300 /** 1301 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1302 * @bh: buffer to trigger on 1303 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1304 * 1305 * Set any triggers on this journal_head. This is always safe, because 1306 * triggers for a committing buffer will be saved off, and triggers for 1307 * a running transaction will match the buffer in that transaction. 1308 * 1309 * Call with NULL to clear the triggers. 1310 */ 1311 void jbd2_journal_set_triggers(struct buffer_head *bh, 1312 struct jbd2_buffer_trigger_type *type) 1313 { 1314 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1315 1316 if (WARN_ON(!jh)) 1317 return; 1318 jh->b_triggers = type; 1319 jbd2_journal_put_journal_head(jh); 1320 } 1321 1322 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1323 struct jbd2_buffer_trigger_type *triggers) 1324 { 1325 struct buffer_head *bh = jh2bh(jh); 1326 1327 if (!triggers || !triggers->t_frozen) 1328 return; 1329 1330 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1331 } 1332 1333 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1334 struct jbd2_buffer_trigger_type *triggers) 1335 { 1336 if (!triggers || !triggers->t_abort) 1337 return; 1338 1339 triggers->t_abort(triggers, jh2bh(jh)); 1340 } 1341 1342 /** 1343 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1344 * @handle: transaction to add buffer to. 1345 * @bh: buffer to mark 1346 * 1347 * mark dirty metadata which needs to be journaled as part of the current 1348 * transaction. 1349 * 1350 * The buffer must have previously had jbd2_journal_get_write_access() 1351 * called so that it has a valid journal_head attached to the buffer 1352 * head. 1353 * 1354 * The buffer is placed on the transaction's metadata list and is marked 1355 * as belonging to the transaction. 1356 * 1357 * Returns error number or 0 on success. 1358 * 1359 * Special care needs to be taken if the buffer already belongs to the 1360 * current committing transaction (in which case we should have frozen 1361 * data present for that commit). In that case, we don't relink the 1362 * buffer: that only gets done when the old transaction finally 1363 * completes its commit. 1364 */ 1365 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1366 { 1367 transaction_t *transaction = handle->h_transaction; 1368 journal_t *journal; 1369 struct journal_head *jh; 1370 int ret = 0; 1371 1372 if (is_handle_aborted(handle)) 1373 return -EROFS; 1374 if (!buffer_jbd(bh)) 1375 return -EUCLEAN; 1376 1377 /* 1378 * We don't grab jh reference here since the buffer must be part 1379 * of the running transaction. 1380 */ 1381 jh = bh2jh(bh); 1382 jbd_debug(5, "journal_head %p\n", jh); 1383 JBUFFER_TRACE(jh, "entry"); 1384 1385 /* 1386 * This and the following assertions are unreliable since we may see jh 1387 * in inconsistent state unless we grab bh_state lock. But this is 1388 * crucial to catch bugs so let's do a reliable check until the 1389 * lockless handling is fully proven. 1390 */ 1391 if (jh->b_transaction != transaction && 1392 jh->b_next_transaction != transaction) { 1393 jbd_lock_bh_state(bh); 1394 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1395 jh->b_next_transaction == transaction); 1396 jbd_unlock_bh_state(bh); 1397 } 1398 if (jh->b_modified == 1) { 1399 /* If it's in our transaction it must be in BJ_Metadata list. */ 1400 if (jh->b_transaction == transaction && 1401 jh->b_jlist != BJ_Metadata) { 1402 jbd_lock_bh_state(bh); 1403 if (jh->b_transaction == transaction && 1404 jh->b_jlist != BJ_Metadata) 1405 pr_err("JBD2: assertion failure: h_type=%u " 1406 "h_line_no=%u block_no=%llu jlist=%u\n", 1407 handle->h_type, handle->h_line_no, 1408 (unsigned long long) bh->b_blocknr, 1409 jh->b_jlist); 1410 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1411 jh->b_jlist == BJ_Metadata); 1412 jbd_unlock_bh_state(bh); 1413 } 1414 goto out; 1415 } 1416 1417 journal = transaction->t_journal; 1418 jbd_lock_bh_state(bh); 1419 1420 if (jh->b_modified == 0) { 1421 /* 1422 * This buffer's got modified and becoming part 1423 * of the transaction. This needs to be done 1424 * once a transaction -bzzz 1425 */ 1426 if (handle->h_buffer_credits <= 0) { 1427 ret = -ENOSPC; 1428 goto out_unlock_bh; 1429 } 1430 jh->b_modified = 1; 1431 handle->h_buffer_credits--; 1432 } 1433 1434 /* 1435 * fastpath, to avoid expensive locking. If this buffer is already 1436 * on the running transaction's metadata list there is nothing to do. 1437 * Nobody can take it off again because there is a handle open. 1438 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1439 * result in this test being false, so we go in and take the locks. 1440 */ 1441 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1442 JBUFFER_TRACE(jh, "fastpath"); 1443 if (unlikely(jh->b_transaction != 1444 journal->j_running_transaction)) { 1445 printk(KERN_ERR "JBD2: %s: " 1446 "jh->b_transaction (%llu, %p, %u) != " 1447 "journal->j_running_transaction (%p, %u)\n", 1448 journal->j_devname, 1449 (unsigned long long) bh->b_blocknr, 1450 jh->b_transaction, 1451 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1452 journal->j_running_transaction, 1453 journal->j_running_transaction ? 1454 journal->j_running_transaction->t_tid : 0); 1455 ret = -EINVAL; 1456 } 1457 goto out_unlock_bh; 1458 } 1459 1460 set_buffer_jbddirty(bh); 1461 1462 /* 1463 * Metadata already on the current transaction list doesn't 1464 * need to be filed. Metadata on another transaction's list must 1465 * be committing, and will be refiled once the commit completes: 1466 * leave it alone for now. 1467 */ 1468 if (jh->b_transaction != transaction) { 1469 JBUFFER_TRACE(jh, "already on other transaction"); 1470 if (unlikely(((jh->b_transaction != 1471 journal->j_committing_transaction)) || 1472 (jh->b_next_transaction != transaction))) { 1473 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1474 "bad jh for block %llu: " 1475 "transaction (%p, %u), " 1476 "jh->b_transaction (%p, %u), " 1477 "jh->b_next_transaction (%p, %u), jlist %u\n", 1478 journal->j_devname, 1479 (unsigned long long) bh->b_blocknr, 1480 transaction, transaction->t_tid, 1481 jh->b_transaction, 1482 jh->b_transaction ? 1483 jh->b_transaction->t_tid : 0, 1484 jh->b_next_transaction, 1485 jh->b_next_transaction ? 1486 jh->b_next_transaction->t_tid : 0, 1487 jh->b_jlist); 1488 WARN_ON(1); 1489 ret = -EINVAL; 1490 } 1491 /* And this case is illegal: we can't reuse another 1492 * transaction's data buffer, ever. */ 1493 goto out_unlock_bh; 1494 } 1495 1496 /* That test should have eliminated the following case: */ 1497 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1498 1499 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1500 spin_lock(&journal->j_list_lock); 1501 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1502 spin_unlock(&journal->j_list_lock); 1503 out_unlock_bh: 1504 jbd_unlock_bh_state(bh); 1505 out: 1506 JBUFFER_TRACE(jh, "exit"); 1507 return ret; 1508 } 1509 1510 /** 1511 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1512 * @handle: transaction handle 1513 * @bh: bh to 'forget' 1514 * 1515 * We can only do the bforget if there are no commits pending against the 1516 * buffer. If the buffer is dirty in the current running transaction we 1517 * can safely unlink it. 1518 * 1519 * bh may not be a journalled buffer at all - it may be a non-JBD 1520 * buffer which came off the hashtable. Check for this. 1521 * 1522 * Decrements bh->b_count by one. 1523 * 1524 * Allow this call even if the handle has aborted --- it may be part of 1525 * the caller's cleanup after an abort. 1526 */ 1527 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1528 { 1529 transaction_t *transaction = handle->h_transaction; 1530 journal_t *journal; 1531 struct journal_head *jh; 1532 int drop_reserve = 0; 1533 int err = 0; 1534 int was_modified = 0; 1535 1536 if (is_handle_aborted(handle)) 1537 return -EROFS; 1538 journal = transaction->t_journal; 1539 1540 BUFFER_TRACE(bh, "entry"); 1541 1542 jbd_lock_bh_state(bh); 1543 1544 if (!buffer_jbd(bh)) 1545 goto not_jbd; 1546 jh = bh2jh(bh); 1547 1548 /* Critical error: attempting to delete a bitmap buffer, maybe? 1549 * Don't do any jbd operations, and return an error. */ 1550 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1551 "inconsistent data on disk")) { 1552 err = -EIO; 1553 goto not_jbd; 1554 } 1555 1556 /* keep track of whether or not this transaction modified us */ 1557 was_modified = jh->b_modified; 1558 1559 /* 1560 * The buffer's going from the transaction, we must drop 1561 * all references -bzzz 1562 */ 1563 jh->b_modified = 0; 1564 1565 if (jh->b_transaction == transaction) { 1566 J_ASSERT_JH(jh, !jh->b_frozen_data); 1567 1568 /* If we are forgetting a buffer which is already part 1569 * of this transaction, then we can just drop it from 1570 * the transaction immediately. */ 1571 clear_buffer_dirty(bh); 1572 clear_buffer_jbddirty(bh); 1573 1574 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1575 1576 /* 1577 * we only want to drop a reference if this transaction 1578 * modified the buffer 1579 */ 1580 if (was_modified) 1581 drop_reserve = 1; 1582 1583 /* 1584 * We are no longer going to journal this buffer. 1585 * However, the commit of this transaction is still 1586 * important to the buffer: the delete that we are now 1587 * processing might obsolete an old log entry, so by 1588 * committing, we can satisfy the buffer's checkpoint. 1589 * 1590 * So, if we have a checkpoint on the buffer, we should 1591 * now refile the buffer on our BJ_Forget list so that 1592 * we know to remove the checkpoint after we commit. 1593 */ 1594 1595 spin_lock(&journal->j_list_lock); 1596 if (jh->b_cp_transaction) { 1597 __jbd2_journal_temp_unlink_buffer(jh); 1598 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1599 } else { 1600 __jbd2_journal_unfile_buffer(jh); 1601 if (!buffer_jbd(bh)) { 1602 spin_unlock(&journal->j_list_lock); 1603 goto not_jbd; 1604 } 1605 } 1606 spin_unlock(&journal->j_list_lock); 1607 } else if (jh->b_transaction) { 1608 J_ASSERT_JH(jh, (jh->b_transaction == 1609 journal->j_committing_transaction)); 1610 /* However, if the buffer is still owned by a prior 1611 * (committing) transaction, we can't drop it yet... */ 1612 JBUFFER_TRACE(jh, "belongs to older transaction"); 1613 /* ... but we CAN drop it from the new transaction through 1614 * marking the buffer as freed and set j_next_transaction to 1615 * the new transaction, so that not only the commit code 1616 * knows it should clear dirty bits when it is done with the 1617 * buffer, but also the buffer can be checkpointed only 1618 * after the new transaction commits. */ 1619 1620 set_buffer_freed(bh); 1621 1622 if (!jh->b_next_transaction) { 1623 spin_lock(&journal->j_list_lock); 1624 jh->b_next_transaction = transaction; 1625 spin_unlock(&journal->j_list_lock); 1626 } else { 1627 J_ASSERT(jh->b_next_transaction == transaction); 1628 1629 /* 1630 * only drop a reference if this transaction modified 1631 * the buffer 1632 */ 1633 if (was_modified) 1634 drop_reserve = 1; 1635 } 1636 } else { 1637 /* 1638 * Finally, if the buffer is not belongs to any 1639 * transaction, we can just drop it now if it has no 1640 * checkpoint. 1641 */ 1642 spin_lock(&journal->j_list_lock); 1643 if (!jh->b_cp_transaction) { 1644 JBUFFER_TRACE(jh, "belongs to none transaction"); 1645 spin_unlock(&journal->j_list_lock); 1646 goto not_jbd; 1647 } 1648 1649 /* 1650 * Otherwise, if the buffer has been written to disk, 1651 * it is safe to remove the checkpoint and drop it. 1652 */ 1653 if (!buffer_dirty(bh)) { 1654 __jbd2_journal_remove_checkpoint(jh); 1655 spin_unlock(&journal->j_list_lock); 1656 goto not_jbd; 1657 } 1658 1659 /* 1660 * The buffer is still not written to disk, we should 1661 * attach this buffer to current transaction so that the 1662 * buffer can be checkpointed only after the current 1663 * transaction commits. 1664 */ 1665 clear_buffer_dirty(bh); 1666 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1667 spin_unlock(&journal->j_list_lock); 1668 } 1669 1670 jbd_unlock_bh_state(bh); 1671 __brelse(bh); 1672 drop: 1673 if (drop_reserve) { 1674 /* no need to reserve log space for this block -bzzz */ 1675 handle->h_buffer_credits++; 1676 } 1677 return err; 1678 1679 not_jbd: 1680 jbd_unlock_bh_state(bh); 1681 __bforget(bh); 1682 goto drop; 1683 } 1684 1685 /** 1686 * int jbd2_journal_stop() - complete a transaction 1687 * @handle: transaction to complete. 1688 * 1689 * All done for a particular handle. 1690 * 1691 * There is not much action needed here. We just return any remaining 1692 * buffer credits to the transaction and remove the handle. The only 1693 * complication is that we need to start a commit operation if the 1694 * filesystem is marked for synchronous update. 1695 * 1696 * jbd2_journal_stop itself will not usually return an error, but it may 1697 * do so in unusual circumstances. In particular, expect it to 1698 * return -EIO if a jbd2_journal_abort has been executed since the 1699 * transaction began. 1700 */ 1701 int jbd2_journal_stop(handle_t *handle) 1702 { 1703 transaction_t *transaction = handle->h_transaction; 1704 journal_t *journal; 1705 int err = 0, wait_for_commit = 0; 1706 tid_t tid; 1707 pid_t pid; 1708 1709 if (!transaction) { 1710 /* 1711 * Handle is already detached from the transaction so 1712 * there is nothing to do other than decrease a refcount, 1713 * or free the handle if refcount drops to zero 1714 */ 1715 if (--handle->h_ref > 0) { 1716 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1717 handle->h_ref); 1718 return err; 1719 } else { 1720 if (handle->h_rsv_handle) 1721 jbd2_free_handle(handle->h_rsv_handle); 1722 goto free_and_exit; 1723 } 1724 } 1725 journal = transaction->t_journal; 1726 1727 J_ASSERT(journal_current_handle() == handle); 1728 1729 if (is_handle_aborted(handle)) 1730 err = -EIO; 1731 else 1732 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1733 1734 if (--handle->h_ref > 0) { 1735 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1736 handle->h_ref); 1737 return err; 1738 } 1739 1740 jbd_debug(4, "Handle %p going down\n", handle); 1741 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1742 transaction->t_tid, 1743 handle->h_type, handle->h_line_no, 1744 jiffies - handle->h_start_jiffies, 1745 handle->h_sync, handle->h_requested_credits, 1746 (handle->h_requested_credits - 1747 handle->h_buffer_credits)); 1748 1749 /* 1750 * Implement synchronous transaction batching. If the handle 1751 * was synchronous, don't force a commit immediately. Let's 1752 * yield and let another thread piggyback onto this 1753 * transaction. Keep doing that while new threads continue to 1754 * arrive. It doesn't cost much - we're about to run a commit 1755 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1756 * operations by 30x or more... 1757 * 1758 * We try and optimize the sleep time against what the 1759 * underlying disk can do, instead of having a static sleep 1760 * time. This is useful for the case where our storage is so 1761 * fast that it is more optimal to go ahead and force a flush 1762 * and wait for the transaction to be committed than it is to 1763 * wait for an arbitrary amount of time for new writers to 1764 * join the transaction. We achieve this by measuring how 1765 * long it takes to commit a transaction, and compare it with 1766 * how long this transaction has been running, and if run time 1767 * < commit time then we sleep for the delta and commit. This 1768 * greatly helps super fast disks that would see slowdowns as 1769 * more threads started doing fsyncs. 1770 * 1771 * But don't do this if this process was the most recent one 1772 * to perform a synchronous write. We do this to detect the 1773 * case where a single process is doing a stream of sync 1774 * writes. No point in waiting for joiners in that case. 1775 * 1776 * Setting max_batch_time to 0 disables this completely. 1777 */ 1778 pid = current->pid; 1779 if (handle->h_sync && journal->j_last_sync_writer != pid && 1780 journal->j_max_batch_time) { 1781 u64 commit_time, trans_time; 1782 1783 journal->j_last_sync_writer = pid; 1784 1785 read_lock(&journal->j_state_lock); 1786 commit_time = journal->j_average_commit_time; 1787 read_unlock(&journal->j_state_lock); 1788 1789 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1790 transaction->t_start_time)); 1791 1792 commit_time = max_t(u64, commit_time, 1793 1000*journal->j_min_batch_time); 1794 commit_time = min_t(u64, commit_time, 1795 1000*journal->j_max_batch_time); 1796 1797 if (trans_time < commit_time) { 1798 ktime_t expires = ktime_add_ns(ktime_get(), 1799 commit_time); 1800 set_current_state(TASK_UNINTERRUPTIBLE); 1801 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1802 } 1803 } 1804 1805 if (handle->h_sync) 1806 transaction->t_synchronous_commit = 1; 1807 current->journal_info = NULL; 1808 atomic_sub(handle->h_buffer_credits, 1809 &transaction->t_outstanding_credits); 1810 1811 /* 1812 * If the handle is marked SYNC, we need to set another commit 1813 * going! We also want to force a commit if the current 1814 * transaction is occupying too much of the log, or if the 1815 * transaction is too old now. 1816 */ 1817 if (handle->h_sync || 1818 (atomic_read(&transaction->t_outstanding_credits) > 1819 journal->j_max_transaction_buffers) || 1820 time_after_eq(jiffies, transaction->t_expires)) { 1821 /* Do this even for aborted journals: an abort still 1822 * completes the commit thread, it just doesn't write 1823 * anything to disk. */ 1824 1825 jbd_debug(2, "transaction too old, requesting commit for " 1826 "handle %p\n", handle); 1827 /* This is non-blocking */ 1828 jbd2_log_start_commit(journal, transaction->t_tid); 1829 1830 /* 1831 * Special case: JBD2_SYNC synchronous updates require us 1832 * to wait for the commit to complete. 1833 */ 1834 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1835 wait_for_commit = 1; 1836 } 1837 1838 /* 1839 * Once we drop t_updates, if it goes to zero the transaction 1840 * could start committing on us and eventually disappear. So 1841 * once we do this, we must not dereference transaction 1842 * pointer again. 1843 */ 1844 tid = transaction->t_tid; 1845 if (atomic_dec_and_test(&transaction->t_updates)) { 1846 wake_up(&journal->j_wait_updates); 1847 if (journal->j_barrier_count) 1848 wake_up(&journal->j_wait_transaction_locked); 1849 } 1850 1851 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_); 1852 1853 if (wait_for_commit) 1854 err = jbd2_log_wait_commit(journal, tid); 1855 1856 if (handle->h_rsv_handle) 1857 jbd2_journal_free_reserved(handle->h_rsv_handle); 1858 free_and_exit: 1859 /* 1860 * Scope of the GFP_NOFS context is over here and so we can restore the 1861 * original alloc context. 1862 */ 1863 memalloc_nofs_restore(handle->saved_alloc_context); 1864 jbd2_free_handle(handle); 1865 return err; 1866 } 1867 1868 /* 1869 * 1870 * List management code snippets: various functions for manipulating the 1871 * transaction buffer lists. 1872 * 1873 */ 1874 1875 /* 1876 * Append a buffer to a transaction list, given the transaction's list head 1877 * pointer. 1878 * 1879 * j_list_lock is held. 1880 * 1881 * jbd_lock_bh_state(jh2bh(jh)) is held. 1882 */ 1883 1884 static inline void 1885 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1886 { 1887 if (!*list) { 1888 jh->b_tnext = jh->b_tprev = jh; 1889 *list = jh; 1890 } else { 1891 /* Insert at the tail of the list to preserve order */ 1892 struct journal_head *first = *list, *last = first->b_tprev; 1893 jh->b_tprev = last; 1894 jh->b_tnext = first; 1895 last->b_tnext = first->b_tprev = jh; 1896 } 1897 } 1898 1899 /* 1900 * Remove a buffer from a transaction list, given the transaction's list 1901 * head pointer. 1902 * 1903 * Called with j_list_lock held, and the journal may not be locked. 1904 * 1905 * jbd_lock_bh_state(jh2bh(jh)) is held. 1906 */ 1907 1908 static inline void 1909 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1910 { 1911 if (*list == jh) { 1912 *list = jh->b_tnext; 1913 if (*list == jh) 1914 *list = NULL; 1915 } 1916 jh->b_tprev->b_tnext = jh->b_tnext; 1917 jh->b_tnext->b_tprev = jh->b_tprev; 1918 } 1919 1920 /* 1921 * Remove a buffer from the appropriate transaction list. 1922 * 1923 * Note that this function can *change* the value of 1924 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1925 * t_reserved_list. If the caller is holding onto a copy of one of these 1926 * pointers, it could go bad. Generally the caller needs to re-read the 1927 * pointer from the transaction_t. 1928 * 1929 * Called under j_list_lock. 1930 */ 1931 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1932 { 1933 struct journal_head **list = NULL; 1934 transaction_t *transaction; 1935 struct buffer_head *bh = jh2bh(jh); 1936 1937 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1938 transaction = jh->b_transaction; 1939 if (transaction) 1940 assert_spin_locked(&transaction->t_journal->j_list_lock); 1941 1942 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1943 if (jh->b_jlist != BJ_None) 1944 J_ASSERT_JH(jh, transaction != NULL); 1945 1946 switch (jh->b_jlist) { 1947 case BJ_None: 1948 return; 1949 case BJ_Metadata: 1950 transaction->t_nr_buffers--; 1951 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1952 list = &transaction->t_buffers; 1953 break; 1954 case BJ_Forget: 1955 list = &transaction->t_forget; 1956 break; 1957 case BJ_Shadow: 1958 list = &transaction->t_shadow_list; 1959 break; 1960 case BJ_Reserved: 1961 list = &transaction->t_reserved_list; 1962 break; 1963 } 1964 1965 __blist_del_buffer(list, jh); 1966 jh->b_jlist = BJ_None; 1967 if (transaction && is_journal_aborted(transaction->t_journal)) 1968 clear_buffer_jbddirty(bh); 1969 else if (test_clear_buffer_jbddirty(bh)) 1970 mark_buffer_dirty(bh); /* Expose it to the VM */ 1971 } 1972 1973 /* 1974 * Remove buffer from all transactions. 1975 * 1976 * Called with bh_state lock and j_list_lock 1977 * 1978 * jh and bh may be already freed when this function returns. 1979 */ 1980 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1981 { 1982 __jbd2_journal_temp_unlink_buffer(jh); 1983 jh->b_transaction = NULL; 1984 jbd2_journal_put_journal_head(jh); 1985 } 1986 1987 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1988 { 1989 struct buffer_head *bh = jh2bh(jh); 1990 1991 /* Get reference so that buffer cannot be freed before we unlock it */ 1992 get_bh(bh); 1993 jbd_lock_bh_state(bh); 1994 spin_lock(&journal->j_list_lock); 1995 __jbd2_journal_unfile_buffer(jh); 1996 spin_unlock(&journal->j_list_lock); 1997 jbd_unlock_bh_state(bh); 1998 __brelse(bh); 1999 } 2000 2001 /* 2002 * Called from jbd2_journal_try_to_free_buffers(). 2003 * 2004 * Called under jbd_lock_bh_state(bh) 2005 */ 2006 static void 2007 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2008 { 2009 struct journal_head *jh; 2010 2011 jh = bh2jh(bh); 2012 2013 if (buffer_locked(bh) || buffer_dirty(bh)) 2014 goto out; 2015 2016 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2017 goto out; 2018 2019 spin_lock(&journal->j_list_lock); 2020 if (jh->b_cp_transaction != NULL) { 2021 /* written-back checkpointed metadata buffer */ 2022 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2023 __jbd2_journal_remove_checkpoint(jh); 2024 } 2025 spin_unlock(&journal->j_list_lock); 2026 out: 2027 return; 2028 } 2029 2030 /** 2031 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2032 * @journal: journal for operation 2033 * @page: to try and free 2034 * @gfp_mask: we use the mask to detect how hard should we try to release 2035 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2036 * code to release the buffers. 2037 * 2038 * 2039 * For all the buffers on this page, 2040 * if they are fully written out ordered data, move them onto BUF_CLEAN 2041 * so try_to_free_buffers() can reap them. 2042 * 2043 * This function returns non-zero if we wish try_to_free_buffers() 2044 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2045 * We also do it if the page has locked or dirty buffers and the caller wants 2046 * us to perform sync or async writeout. 2047 * 2048 * This complicates JBD locking somewhat. We aren't protected by the 2049 * BKL here. We wish to remove the buffer from its committing or 2050 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2051 * 2052 * This may *change* the value of transaction_t->t_datalist, so anyone 2053 * who looks at t_datalist needs to lock against this function. 2054 * 2055 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2056 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2057 * will come out of the lock with the buffer dirty, which makes it 2058 * ineligible for release here. 2059 * 2060 * Who else is affected by this? hmm... Really the only contender 2061 * is do_get_write_access() - it could be looking at the buffer while 2062 * journal_try_to_free_buffer() is changing its state. But that 2063 * cannot happen because we never reallocate freed data as metadata 2064 * while the data is part of a transaction. Yes? 2065 * 2066 * Return 0 on failure, 1 on success 2067 */ 2068 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2069 struct page *page, gfp_t gfp_mask) 2070 { 2071 struct buffer_head *head; 2072 struct buffer_head *bh; 2073 int ret = 0; 2074 2075 J_ASSERT(PageLocked(page)); 2076 2077 head = page_buffers(page); 2078 bh = head; 2079 do { 2080 struct journal_head *jh; 2081 2082 /* 2083 * We take our own ref against the journal_head here to avoid 2084 * having to add tons of locking around each instance of 2085 * jbd2_journal_put_journal_head(). 2086 */ 2087 jh = jbd2_journal_grab_journal_head(bh); 2088 if (!jh) 2089 continue; 2090 2091 jbd_lock_bh_state(bh); 2092 __journal_try_to_free_buffer(journal, bh); 2093 jbd2_journal_put_journal_head(jh); 2094 jbd_unlock_bh_state(bh); 2095 if (buffer_jbd(bh)) 2096 goto busy; 2097 } while ((bh = bh->b_this_page) != head); 2098 2099 ret = try_to_free_buffers(page); 2100 2101 busy: 2102 return ret; 2103 } 2104 2105 /* 2106 * This buffer is no longer needed. If it is on an older transaction's 2107 * checkpoint list we need to record it on this transaction's forget list 2108 * to pin this buffer (and hence its checkpointing transaction) down until 2109 * this transaction commits. If the buffer isn't on a checkpoint list, we 2110 * release it. 2111 * Returns non-zero if JBD no longer has an interest in the buffer. 2112 * 2113 * Called under j_list_lock. 2114 * 2115 * Called under jbd_lock_bh_state(bh). 2116 */ 2117 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2118 { 2119 int may_free = 1; 2120 struct buffer_head *bh = jh2bh(jh); 2121 2122 if (jh->b_cp_transaction) { 2123 JBUFFER_TRACE(jh, "on running+cp transaction"); 2124 __jbd2_journal_temp_unlink_buffer(jh); 2125 /* 2126 * We don't want to write the buffer anymore, clear the 2127 * bit so that we don't confuse checks in 2128 * __journal_file_buffer 2129 */ 2130 clear_buffer_dirty(bh); 2131 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2132 may_free = 0; 2133 } else { 2134 JBUFFER_TRACE(jh, "on running transaction"); 2135 __jbd2_journal_unfile_buffer(jh); 2136 } 2137 return may_free; 2138 } 2139 2140 /* 2141 * jbd2_journal_invalidatepage 2142 * 2143 * This code is tricky. It has a number of cases to deal with. 2144 * 2145 * There are two invariants which this code relies on: 2146 * 2147 * i_size must be updated on disk before we start calling invalidatepage on the 2148 * data. 2149 * 2150 * This is done in ext3 by defining an ext3_setattr method which 2151 * updates i_size before truncate gets going. By maintaining this 2152 * invariant, we can be sure that it is safe to throw away any buffers 2153 * attached to the current transaction: once the transaction commits, 2154 * we know that the data will not be needed. 2155 * 2156 * Note however that we can *not* throw away data belonging to the 2157 * previous, committing transaction! 2158 * 2159 * Any disk blocks which *are* part of the previous, committing 2160 * transaction (and which therefore cannot be discarded immediately) are 2161 * not going to be reused in the new running transaction 2162 * 2163 * The bitmap committed_data images guarantee this: any block which is 2164 * allocated in one transaction and removed in the next will be marked 2165 * as in-use in the committed_data bitmap, so cannot be reused until 2166 * the next transaction to delete the block commits. This means that 2167 * leaving committing buffers dirty is quite safe: the disk blocks 2168 * cannot be reallocated to a different file and so buffer aliasing is 2169 * not possible. 2170 * 2171 * 2172 * The above applies mainly to ordered data mode. In writeback mode we 2173 * don't make guarantees about the order in which data hits disk --- in 2174 * particular we don't guarantee that new dirty data is flushed before 2175 * transaction commit --- so it is always safe just to discard data 2176 * immediately in that mode. --sct 2177 */ 2178 2179 /* 2180 * The journal_unmap_buffer helper function returns zero if the buffer 2181 * concerned remains pinned as an anonymous buffer belonging to an older 2182 * transaction. 2183 * 2184 * We're outside-transaction here. Either or both of j_running_transaction 2185 * and j_committing_transaction may be NULL. 2186 */ 2187 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2188 int partial_page) 2189 { 2190 transaction_t *transaction; 2191 struct journal_head *jh; 2192 int may_free = 1; 2193 2194 BUFFER_TRACE(bh, "entry"); 2195 2196 /* 2197 * It is safe to proceed here without the j_list_lock because the 2198 * buffers cannot be stolen by try_to_free_buffers as long as we are 2199 * holding the page lock. --sct 2200 */ 2201 2202 if (!buffer_jbd(bh)) 2203 goto zap_buffer_unlocked; 2204 2205 /* OK, we have data buffer in journaled mode */ 2206 write_lock(&journal->j_state_lock); 2207 jbd_lock_bh_state(bh); 2208 spin_lock(&journal->j_list_lock); 2209 2210 jh = jbd2_journal_grab_journal_head(bh); 2211 if (!jh) 2212 goto zap_buffer_no_jh; 2213 2214 /* 2215 * We cannot remove the buffer from checkpoint lists until the 2216 * transaction adding inode to orphan list (let's call it T) 2217 * is committed. Otherwise if the transaction changing the 2218 * buffer would be cleaned from the journal before T is 2219 * committed, a crash will cause that the correct contents of 2220 * the buffer will be lost. On the other hand we have to 2221 * clear the buffer dirty bit at latest at the moment when the 2222 * transaction marking the buffer as freed in the filesystem 2223 * structures is committed because from that moment on the 2224 * block can be reallocated and used by a different page. 2225 * Since the block hasn't been freed yet but the inode has 2226 * already been added to orphan list, it is safe for us to add 2227 * the buffer to BJ_Forget list of the newest transaction. 2228 * 2229 * Also we have to clear buffer_mapped flag of a truncated buffer 2230 * because the buffer_head may be attached to the page straddling 2231 * i_size (can happen only when blocksize < pagesize) and thus the 2232 * buffer_head can be reused when the file is extended again. So we end 2233 * up keeping around invalidated buffers attached to transactions' 2234 * BJ_Forget list just to stop checkpointing code from cleaning up 2235 * the transaction this buffer was modified in. 2236 */ 2237 transaction = jh->b_transaction; 2238 if (transaction == NULL) { 2239 /* First case: not on any transaction. If it 2240 * has no checkpoint link, then we can zap it: 2241 * it's a writeback-mode buffer so we don't care 2242 * if it hits disk safely. */ 2243 if (!jh->b_cp_transaction) { 2244 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2245 goto zap_buffer; 2246 } 2247 2248 if (!buffer_dirty(bh)) { 2249 /* bdflush has written it. We can drop it now */ 2250 __jbd2_journal_remove_checkpoint(jh); 2251 goto zap_buffer; 2252 } 2253 2254 /* OK, it must be in the journal but still not 2255 * written fully to disk: it's metadata or 2256 * journaled data... */ 2257 2258 if (journal->j_running_transaction) { 2259 /* ... and once the current transaction has 2260 * committed, the buffer won't be needed any 2261 * longer. */ 2262 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2263 may_free = __dispose_buffer(jh, 2264 journal->j_running_transaction); 2265 goto zap_buffer; 2266 } else { 2267 /* There is no currently-running transaction. So the 2268 * orphan record which we wrote for this file must have 2269 * passed into commit. We must attach this buffer to 2270 * the committing transaction, if it exists. */ 2271 if (journal->j_committing_transaction) { 2272 JBUFFER_TRACE(jh, "give to committing trans"); 2273 may_free = __dispose_buffer(jh, 2274 journal->j_committing_transaction); 2275 goto zap_buffer; 2276 } else { 2277 /* The orphan record's transaction has 2278 * committed. We can cleanse this buffer */ 2279 clear_buffer_jbddirty(bh); 2280 __jbd2_journal_remove_checkpoint(jh); 2281 goto zap_buffer; 2282 } 2283 } 2284 } else if (transaction == journal->j_committing_transaction) { 2285 JBUFFER_TRACE(jh, "on committing transaction"); 2286 /* 2287 * The buffer is committing, we simply cannot touch 2288 * it. If the page is straddling i_size we have to wait 2289 * for commit and try again. 2290 */ 2291 if (partial_page) { 2292 jbd2_journal_put_journal_head(jh); 2293 spin_unlock(&journal->j_list_lock); 2294 jbd_unlock_bh_state(bh); 2295 write_unlock(&journal->j_state_lock); 2296 return -EBUSY; 2297 } 2298 /* 2299 * OK, buffer won't be reachable after truncate. We just set 2300 * j_next_transaction to the running transaction (if there is 2301 * one) and mark buffer as freed so that commit code knows it 2302 * should clear dirty bits when it is done with the buffer. 2303 */ 2304 set_buffer_freed(bh); 2305 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2306 jh->b_next_transaction = journal->j_running_transaction; 2307 jbd2_journal_put_journal_head(jh); 2308 spin_unlock(&journal->j_list_lock); 2309 jbd_unlock_bh_state(bh); 2310 write_unlock(&journal->j_state_lock); 2311 return 0; 2312 } else { 2313 /* Good, the buffer belongs to the running transaction. 2314 * We are writing our own transaction's data, not any 2315 * previous one's, so it is safe to throw it away 2316 * (remember that we expect the filesystem to have set 2317 * i_size already for this truncate so recovery will not 2318 * expose the disk blocks we are discarding here.) */ 2319 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2320 JBUFFER_TRACE(jh, "on running transaction"); 2321 may_free = __dispose_buffer(jh, transaction); 2322 } 2323 2324 zap_buffer: 2325 /* 2326 * This is tricky. Although the buffer is truncated, it may be reused 2327 * if blocksize < pagesize and it is attached to the page straddling 2328 * EOF. Since the buffer might have been added to BJ_Forget list of the 2329 * running transaction, journal_get_write_access() won't clear 2330 * b_modified and credit accounting gets confused. So clear b_modified 2331 * here. 2332 */ 2333 jh->b_modified = 0; 2334 jbd2_journal_put_journal_head(jh); 2335 zap_buffer_no_jh: 2336 spin_unlock(&journal->j_list_lock); 2337 jbd_unlock_bh_state(bh); 2338 write_unlock(&journal->j_state_lock); 2339 zap_buffer_unlocked: 2340 clear_buffer_dirty(bh); 2341 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2342 clear_buffer_mapped(bh); 2343 clear_buffer_req(bh); 2344 clear_buffer_new(bh); 2345 clear_buffer_delay(bh); 2346 clear_buffer_unwritten(bh); 2347 bh->b_bdev = NULL; 2348 return may_free; 2349 } 2350 2351 /** 2352 * void jbd2_journal_invalidatepage() 2353 * @journal: journal to use for flush... 2354 * @page: page to flush 2355 * @offset: start of the range to invalidate 2356 * @length: length of the range to invalidate 2357 * 2358 * Reap page buffers containing data after in the specified range in page. 2359 * Can return -EBUSY if buffers are part of the committing transaction and 2360 * the page is straddling i_size. Caller then has to wait for current commit 2361 * and try again. 2362 */ 2363 int jbd2_journal_invalidatepage(journal_t *journal, 2364 struct page *page, 2365 unsigned int offset, 2366 unsigned int length) 2367 { 2368 struct buffer_head *head, *bh, *next; 2369 unsigned int stop = offset + length; 2370 unsigned int curr_off = 0; 2371 int partial_page = (offset || length < PAGE_SIZE); 2372 int may_free = 1; 2373 int ret = 0; 2374 2375 if (!PageLocked(page)) 2376 BUG(); 2377 if (!page_has_buffers(page)) 2378 return 0; 2379 2380 BUG_ON(stop > PAGE_SIZE || stop < length); 2381 2382 /* We will potentially be playing with lists other than just the 2383 * data lists (especially for journaled data mode), so be 2384 * cautious in our locking. */ 2385 2386 head = bh = page_buffers(page); 2387 do { 2388 unsigned int next_off = curr_off + bh->b_size; 2389 next = bh->b_this_page; 2390 2391 if (next_off > stop) 2392 return 0; 2393 2394 if (offset <= curr_off) { 2395 /* This block is wholly outside the truncation point */ 2396 lock_buffer(bh); 2397 ret = journal_unmap_buffer(journal, bh, partial_page); 2398 unlock_buffer(bh); 2399 if (ret < 0) 2400 return ret; 2401 may_free &= ret; 2402 } 2403 curr_off = next_off; 2404 bh = next; 2405 2406 } while (bh != head); 2407 2408 if (!partial_page) { 2409 if (may_free && try_to_free_buffers(page)) 2410 J_ASSERT(!page_has_buffers(page)); 2411 } 2412 return 0; 2413 } 2414 2415 /* 2416 * File a buffer on the given transaction list. 2417 */ 2418 void __jbd2_journal_file_buffer(struct journal_head *jh, 2419 transaction_t *transaction, int jlist) 2420 { 2421 struct journal_head **list = NULL; 2422 int was_dirty = 0; 2423 struct buffer_head *bh = jh2bh(jh); 2424 2425 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2426 assert_spin_locked(&transaction->t_journal->j_list_lock); 2427 2428 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2429 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2430 jh->b_transaction == NULL); 2431 2432 if (jh->b_transaction && jh->b_jlist == jlist) 2433 return; 2434 2435 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2436 jlist == BJ_Shadow || jlist == BJ_Forget) { 2437 /* 2438 * For metadata buffers, we track dirty bit in buffer_jbddirty 2439 * instead of buffer_dirty. We should not see a dirty bit set 2440 * here because we clear it in do_get_write_access but e.g. 2441 * tune2fs can modify the sb and set the dirty bit at any time 2442 * so we try to gracefully handle that. 2443 */ 2444 if (buffer_dirty(bh)) 2445 warn_dirty_buffer(bh); 2446 if (test_clear_buffer_dirty(bh) || 2447 test_clear_buffer_jbddirty(bh)) 2448 was_dirty = 1; 2449 } 2450 2451 if (jh->b_transaction) 2452 __jbd2_journal_temp_unlink_buffer(jh); 2453 else 2454 jbd2_journal_grab_journal_head(bh); 2455 jh->b_transaction = transaction; 2456 2457 switch (jlist) { 2458 case BJ_None: 2459 J_ASSERT_JH(jh, !jh->b_committed_data); 2460 J_ASSERT_JH(jh, !jh->b_frozen_data); 2461 return; 2462 case BJ_Metadata: 2463 transaction->t_nr_buffers++; 2464 list = &transaction->t_buffers; 2465 break; 2466 case BJ_Forget: 2467 list = &transaction->t_forget; 2468 break; 2469 case BJ_Shadow: 2470 list = &transaction->t_shadow_list; 2471 break; 2472 case BJ_Reserved: 2473 list = &transaction->t_reserved_list; 2474 break; 2475 } 2476 2477 __blist_add_buffer(list, jh); 2478 jh->b_jlist = jlist; 2479 2480 if (was_dirty) 2481 set_buffer_jbddirty(bh); 2482 } 2483 2484 void jbd2_journal_file_buffer(struct journal_head *jh, 2485 transaction_t *transaction, int jlist) 2486 { 2487 jbd_lock_bh_state(jh2bh(jh)); 2488 spin_lock(&transaction->t_journal->j_list_lock); 2489 __jbd2_journal_file_buffer(jh, transaction, jlist); 2490 spin_unlock(&transaction->t_journal->j_list_lock); 2491 jbd_unlock_bh_state(jh2bh(jh)); 2492 } 2493 2494 /* 2495 * Remove a buffer from its current buffer list in preparation for 2496 * dropping it from its current transaction entirely. If the buffer has 2497 * already started to be used by a subsequent transaction, refile the 2498 * buffer on that transaction's metadata list. 2499 * 2500 * Called under j_list_lock 2501 * Called under jbd_lock_bh_state(jh2bh(jh)) 2502 * 2503 * jh and bh may be already free when this function returns 2504 */ 2505 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2506 { 2507 int was_dirty, jlist; 2508 struct buffer_head *bh = jh2bh(jh); 2509 2510 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2511 if (jh->b_transaction) 2512 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2513 2514 /* If the buffer is now unused, just drop it. */ 2515 if (jh->b_next_transaction == NULL) { 2516 __jbd2_journal_unfile_buffer(jh); 2517 return; 2518 } 2519 2520 /* 2521 * It has been modified by a later transaction: add it to the new 2522 * transaction's metadata list. 2523 */ 2524 2525 was_dirty = test_clear_buffer_jbddirty(bh); 2526 __jbd2_journal_temp_unlink_buffer(jh); 2527 /* 2528 * We set b_transaction here because b_next_transaction will inherit 2529 * our jh reference and thus __jbd2_journal_file_buffer() must not 2530 * take a new one. 2531 */ 2532 jh->b_transaction = jh->b_next_transaction; 2533 jh->b_next_transaction = NULL; 2534 if (buffer_freed(bh)) 2535 jlist = BJ_Forget; 2536 else if (jh->b_modified) 2537 jlist = BJ_Metadata; 2538 else 2539 jlist = BJ_Reserved; 2540 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2541 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2542 2543 if (was_dirty) 2544 set_buffer_jbddirty(bh); 2545 } 2546 2547 /* 2548 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2549 * bh reference so that we can safely unlock bh. 2550 * 2551 * The jh and bh may be freed by this call. 2552 */ 2553 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2554 { 2555 struct buffer_head *bh = jh2bh(jh); 2556 2557 /* Get reference so that buffer cannot be freed before we unlock it */ 2558 get_bh(bh); 2559 jbd_lock_bh_state(bh); 2560 spin_lock(&journal->j_list_lock); 2561 __jbd2_journal_refile_buffer(jh); 2562 jbd_unlock_bh_state(bh); 2563 spin_unlock(&journal->j_list_lock); 2564 __brelse(bh); 2565 } 2566 2567 /* 2568 * File inode in the inode list of the handle's transaction 2569 */ 2570 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2571 unsigned long flags, loff_t start_byte, loff_t end_byte) 2572 { 2573 transaction_t *transaction = handle->h_transaction; 2574 journal_t *journal; 2575 2576 if (is_handle_aborted(handle)) 2577 return -EROFS; 2578 journal = transaction->t_journal; 2579 2580 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2581 transaction->t_tid); 2582 2583 spin_lock(&journal->j_list_lock); 2584 jinode->i_flags |= flags; 2585 2586 if (jinode->i_dirty_end) { 2587 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2588 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2589 } else { 2590 jinode->i_dirty_start = start_byte; 2591 jinode->i_dirty_end = end_byte; 2592 } 2593 2594 /* Is inode already attached where we need it? */ 2595 if (jinode->i_transaction == transaction || 2596 jinode->i_next_transaction == transaction) 2597 goto done; 2598 2599 /* 2600 * We only ever set this variable to 1 so the test is safe. Since 2601 * t_need_data_flush is likely to be set, we do the test to save some 2602 * cacheline bouncing 2603 */ 2604 if (!transaction->t_need_data_flush) 2605 transaction->t_need_data_flush = 1; 2606 /* On some different transaction's list - should be 2607 * the committing one */ 2608 if (jinode->i_transaction) { 2609 J_ASSERT(jinode->i_next_transaction == NULL); 2610 J_ASSERT(jinode->i_transaction == 2611 journal->j_committing_transaction); 2612 jinode->i_next_transaction = transaction; 2613 goto done; 2614 } 2615 /* Not on any transaction list... */ 2616 J_ASSERT(!jinode->i_next_transaction); 2617 jinode->i_transaction = transaction; 2618 list_add(&jinode->i_list, &transaction->t_inode_list); 2619 done: 2620 spin_unlock(&journal->j_list_lock); 2621 2622 return 0; 2623 } 2624 2625 int jbd2_journal_inode_ranged_write(handle_t *handle, 2626 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2627 { 2628 return jbd2_journal_file_inode(handle, jinode, 2629 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2630 start_byte + length - 1); 2631 } 2632 2633 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2634 loff_t start_byte, loff_t length) 2635 { 2636 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2637 start_byte, start_byte + length - 1); 2638 } 2639 2640 /* 2641 * File truncate and transaction commit interact with each other in a 2642 * non-trivial way. If a transaction writing data block A is 2643 * committing, we cannot discard the data by truncate until we have 2644 * written them. Otherwise if we crashed after the transaction with 2645 * write has committed but before the transaction with truncate has 2646 * committed, we could see stale data in block A. This function is a 2647 * helper to solve this problem. It starts writeout of the truncated 2648 * part in case it is in the committing transaction. 2649 * 2650 * Filesystem code must call this function when inode is journaled in 2651 * ordered mode before truncation happens and after the inode has been 2652 * placed on orphan list with the new inode size. The second condition 2653 * avoids the race that someone writes new data and we start 2654 * committing the transaction after this function has been called but 2655 * before a transaction for truncate is started (and furthermore it 2656 * allows us to optimize the case where the addition to orphan list 2657 * happens in the same transaction as write --- we don't have to write 2658 * any data in such case). 2659 */ 2660 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2661 struct jbd2_inode *jinode, 2662 loff_t new_size) 2663 { 2664 transaction_t *inode_trans, *commit_trans; 2665 int ret = 0; 2666 2667 /* This is a quick check to avoid locking if not necessary */ 2668 if (!jinode->i_transaction) 2669 goto out; 2670 /* Locks are here just to force reading of recent values, it is 2671 * enough that the transaction was not committing before we started 2672 * a transaction adding the inode to orphan list */ 2673 read_lock(&journal->j_state_lock); 2674 commit_trans = journal->j_committing_transaction; 2675 read_unlock(&journal->j_state_lock); 2676 spin_lock(&journal->j_list_lock); 2677 inode_trans = jinode->i_transaction; 2678 spin_unlock(&journal->j_list_lock); 2679 if (inode_trans == commit_trans) { 2680 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2681 new_size, LLONG_MAX); 2682 if (ret) 2683 jbd2_journal_abort(journal, ret); 2684 } 2685 out: 2686 return ret; 2687 } 2688