xref: /openbmc/linux/fs/jbd2/transaction.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
80 static void jbd2_get_transaction(journal_t *journal,
81 				transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits,
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_handle_count, 0);
93 	INIT_LIST_HEAD(&transaction->t_inode_list);
94 	INIT_LIST_HEAD(&transaction->t_private_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146 	__releases(journal->j_state_lock)
147 {
148 	DEFINE_WAIT(wait);
149 	int need_to_start;
150 	tid_t tid = journal->j_running_transaction->t_tid;
151 
152 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153 			TASK_UNINTERRUPTIBLE);
154 	need_to_start = !tid_geq(journal->j_commit_request, tid);
155 	read_unlock(&journal->j_state_lock);
156 	if (need_to_start)
157 		jbd2_log_start_commit(journal, tid);
158 	jbd2_might_wait_for_commit(journal);
159 	schedule();
160 	finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162 
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
168 static void wait_transaction_switching(journal_t *journal)
169 	__releases(journal->j_state_lock)
170 {
171 	DEFINE_WAIT(wait);
172 
173 	if (WARN_ON(!journal->j_running_transaction ||
174 		    journal->j_running_transaction->t_state != T_SWITCH))
175 		return;
176 	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	read_unlock(&journal->j_state_lock);
179 	/*
180 	 * We don't call jbd2_might_wait_for_commit() here as there's no
181 	 * waiting for outstanding handles happening anymore in T_SWITCH state
182 	 * and handling of reserved handles actually relies on that for
183 	 * correctness.
184 	 */
185 	schedule();
186 	finish_wait(&journal->j_wait_transaction_locked, &wait);
187 }
188 
189 static void sub_reserved_credits(journal_t *journal, int blocks)
190 {
191 	atomic_sub(blocks, &journal->j_reserved_credits);
192 	wake_up(&journal->j_wait_reserved);
193 }
194 
195 /*
196  * Wait until we can add credits for handle to the running transaction.  Called
197  * with j_state_lock held for reading. Returns 0 if handle joined the running
198  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
199  * caller must retry.
200  */
201 static int add_transaction_credits(journal_t *journal, int blocks,
202 				   int rsv_blocks)
203 {
204 	transaction_t *t = journal->j_running_transaction;
205 	int needed;
206 	int total = blocks + rsv_blocks;
207 
208 	/*
209 	 * If the current transaction is locked down for commit, wait
210 	 * for the lock to be released.
211 	 */
212 	if (t->t_state != T_RUNNING) {
213 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
214 		wait_transaction_locked(journal);
215 		return 1;
216 	}
217 
218 	/*
219 	 * If there is not enough space left in the log to write all
220 	 * potential buffers requested by this operation, we need to
221 	 * stall pending a log checkpoint to free some more log space.
222 	 */
223 	needed = atomic_add_return(total, &t->t_outstanding_credits);
224 	if (needed > journal->j_max_transaction_buffers) {
225 		/*
226 		 * If the current transaction is already too large,
227 		 * then start to commit it: we can then go back and
228 		 * attach this handle to a new transaction.
229 		 */
230 		atomic_sub(total, &t->t_outstanding_credits);
231 
232 		/*
233 		 * Is the number of reserved credits in the current transaction too
234 		 * big to fit this handle? Wait until reserved credits are freed.
235 		 */
236 		if (atomic_read(&journal->j_reserved_credits) + total >
237 		    journal->j_max_transaction_buffers) {
238 			read_unlock(&journal->j_state_lock);
239 			jbd2_might_wait_for_commit(journal);
240 			wait_event(journal->j_wait_reserved,
241 				   atomic_read(&journal->j_reserved_credits) + total <=
242 				   journal->j_max_transaction_buffers);
243 			return 1;
244 		}
245 
246 		wait_transaction_locked(journal);
247 		return 1;
248 	}
249 
250 	/*
251 	 * The commit code assumes that it can get enough log space
252 	 * without forcing a checkpoint.  This is *critical* for
253 	 * correctness: a checkpoint of a buffer which is also
254 	 * associated with a committing transaction creates a deadlock,
255 	 * so commit simply cannot force through checkpoints.
256 	 *
257 	 * We must therefore ensure the necessary space in the journal
258 	 * *before* starting to dirty potentially checkpointed buffers
259 	 * in the new transaction.
260 	 */
261 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
262 		atomic_sub(total, &t->t_outstanding_credits);
263 		read_unlock(&journal->j_state_lock);
264 		jbd2_might_wait_for_commit(journal);
265 		write_lock(&journal->j_state_lock);
266 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
267 			__jbd2_log_wait_for_space(journal);
268 		write_unlock(&journal->j_state_lock);
269 		return 1;
270 	}
271 
272 	/* No reservation? We are done... */
273 	if (!rsv_blocks)
274 		return 0;
275 
276 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
277 	/* We allow at most half of a transaction to be reserved */
278 	if (needed > journal->j_max_transaction_buffers / 2) {
279 		sub_reserved_credits(journal, rsv_blocks);
280 		atomic_sub(total, &t->t_outstanding_credits);
281 		read_unlock(&journal->j_state_lock);
282 		jbd2_might_wait_for_commit(journal);
283 		wait_event(journal->j_wait_reserved,
284 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
285 			 <= journal->j_max_transaction_buffers / 2);
286 		return 1;
287 	}
288 	return 0;
289 }
290 
291 /*
292  * start_this_handle: Given a handle, deal with any locking or stalling
293  * needed to make sure that there is enough journal space for the handle
294  * to begin.  Attach the handle to a transaction and set up the
295  * transaction's buffer credits.
296  */
297 
298 static int start_this_handle(journal_t *journal, handle_t *handle,
299 			     gfp_t gfp_mask)
300 {
301 	transaction_t	*transaction, *new_transaction = NULL;
302 	int		blocks = handle->h_buffer_credits;
303 	int		rsv_blocks = 0;
304 	unsigned long ts = jiffies;
305 
306 	if (handle->h_rsv_handle)
307 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
308 
309 	/*
310 	 * Limit the number of reserved credits to 1/2 of maximum transaction
311 	 * size and limit the number of total credits to not exceed maximum
312 	 * transaction size per operation.
313 	 */
314 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
315 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
316 		printk(KERN_ERR "JBD2: %s wants too many credits "
317 		       "credits:%d rsv_credits:%d max:%d\n",
318 		       current->comm, blocks, rsv_blocks,
319 		       journal->j_max_transaction_buffers);
320 		WARN_ON(1);
321 		return -ENOSPC;
322 	}
323 
324 alloc_transaction:
325 	if (!journal->j_running_transaction) {
326 		/*
327 		 * If __GFP_FS is not present, then we may be being called from
328 		 * inside the fs writeback layer, so we MUST NOT fail.
329 		 */
330 		if ((gfp_mask & __GFP_FS) == 0)
331 			gfp_mask |= __GFP_NOFAIL;
332 		new_transaction = kmem_cache_zalloc(transaction_cache,
333 						    gfp_mask);
334 		if (!new_transaction)
335 			return -ENOMEM;
336 	}
337 
338 	jbd_debug(3, "New handle %p going live.\n", handle);
339 
340 	/*
341 	 * We need to hold j_state_lock until t_updates has been incremented,
342 	 * for proper journal barrier handling
343 	 */
344 repeat:
345 	read_lock(&journal->j_state_lock);
346 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
347 	if (is_journal_aborted(journal) ||
348 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
349 		read_unlock(&journal->j_state_lock);
350 		jbd2_journal_free_transaction(new_transaction);
351 		return -EROFS;
352 	}
353 
354 	/*
355 	 * Wait on the journal's transaction barrier if necessary. Specifically
356 	 * we allow reserved handles to proceed because otherwise commit could
357 	 * deadlock on page writeback not being able to complete.
358 	 */
359 	if (!handle->h_reserved && journal->j_barrier_count) {
360 		read_unlock(&journal->j_state_lock);
361 		wait_event(journal->j_wait_transaction_locked,
362 				journal->j_barrier_count == 0);
363 		goto repeat;
364 	}
365 
366 	if (!journal->j_running_transaction) {
367 		read_unlock(&journal->j_state_lock);
368 		if (!new_transaction)
369 			goto alloc_transaction;
370 		write_lock(&journal->j_state_lock);
371 		if (!journal->j_running_transaction &&
372 		    (handle->h_reserved || !journal->j_barrier_count)) {
373 			jbd2_get_transaction(journal, new_transaction);
374 			new_transaction = NULL;
375 		}
376 		write_unlock(&journal->j_state_lock);
377 		goto repeat;
378 	}
379 
380 	transaction = journal->j_running_transaction;
381 
382 	if (!handle->h_reserved) {
383 		/* We may have dropped j_state_lock - restart in that case */
384 		if (add_transaction_credits(journal, blocks, rsv_blocks))
385 			goto repeat;
386 	} else {
387 		/*
388 		 * We have handle reserved so we are allowed to join T_LOCKED
389 		 * transaction and we don't have to check for transaction size
390 		 * and journal space. But we still have to wait while running
391 		 * transaction is being switched to a committing one as it
392 		 * won't wait for any handles anymore.
393 		 */
394 		if (transaction->t_state == T_SWITCH) {
395 			wait_transaction_switching(journal);
396 			goto repeat;
397 		}
398 		sub_reserved_credits(journal, blocks);
399 		handle->h_reserved = 0;
400 	}
401 
402 	/* OK, account for the buffers that this operation expects to
403 	 * use and add the handle to the running transaction.
404 	 */
405 	update_t_max_wait(transaction, ts);
406 	handle->h_transaction = transaction;
407 	handle->h_requested_credits = blocks;
408 	handle->h_start_jiffies = jiffies;
409 	atomic_inc(&transaction->t_updates);
410 	atomic_inc(&transaction->t_handle_count);
411 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
412 		  handle, blocks,
413 		  atomic_read(&transaction->t_outstanding_credits),
414 		  jbd2_log_space_left(journal));
415 	read_unlock(&journal->j_state_lock);
416 	current->journal_info = handle;
417 
418 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
419 	jbd2_journal_free_transaction(new_transaction);
420 	/*
421 	 * Ensure that no allocations done while the transaction is open are
422 	 * going to recurse back to the fs layer.
423 	 */
424 	handle->saved_alloc_context = memalloc_nofs_save();
425 	return 0;
426 }
427 
428 /* Allocate a new handle.  This should probably be in a slab... */
429 static handle_t *new_handle(int nblocks)
430 {
431 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
432 	if (!handle)
433 		return NULL;
434 	handle->h_buffer_credits = nblocks;
435 	handle->h_ref = 1;
436 
437 	return handle;
438 }
439 
440 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
441 			      gfp_t gfp_mask, unsigned int type,
442 			      unsigned int line_no)
443 {
444 	handle_t *handle = journal_current_handle();
445 	int err;
446 
447 	if (!journal)
448 		return ERR_PTR(-EROFS);
449 
450 	if (handle) {
451 		J_ASSERT(handle->h_transaction->t_journal == journal);
452 		handle->h_ref++;
453 		return handle;
454 	}
455 
456 	handle = new_handle(nblocks);
457 	if (!handle)
458 		return ERR_PTR(-ENOMEM);
459 	if (rsv_blocks) {
460 		handle_t *rsv_handle;
461 
462 		rsv_handle = new_handle(rsv_blocks);
463 		if (!rsv_handle) {
464 			jbd2_free_handle(handle);
465 			return ERR_PTR(-ENOMEM);
466 		}
467 		rsv_handle->h_reserved = 1;
468 		rsv_handle->h_journal = journal;
469 		handle->h_rsv_handle = rsv_handle;
470 	}
471 
472 	err = start_this_handle(journal, handle, gfp_mask);
473 	if (err < 0) {
474 		if (handle->h_rsv_handle)
475 			jbd2_free_handle(handle->h_rsv_handle);
476 		jbd2_free_handle(handle);
477 		return ERR_PTR(err);
478 	}
479 	handle->h_type = type;
480 	handle->h_line_no = line_no;
481 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
482 				handle->h_transaction->t_tid, type,
483 				line_no, nblocks);
484 
485 	return handle;
486 }
487 EXPORT_SYMBOL(jbd2__journal_start);
488 
489 
490 /**
491  * handle_t *jbd2_journal_start() - Obtain a new handle.
492  * @journal: Journal to start transaction on.
493  * @nblocks: number of block buffer we might modify
494  *
495  * We make sure that the transaction can guarantee at least nblocks of
496  * modified buffers in the log.  We block until the log can guarantee
497  * that much space. Additionally, if rsv_blocks > 0, we also create another
498  * handle with rsv_blocks reserved blocks in the journal. This handle is
499  * is stored in h_rsv_handle. It is not attached to any particular transaction
500  * and thus doesn't block transaction commit. If the caller uses this reserved
501  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
502  * on the parent handle will dispose the reserved one. Reserved handle has to
503  * be converted to a normal handle using jbd2_journal_start_reserved() before
504  * it can be used.
505  *
506  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
507  * on failure.
508  */
509 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
510 {
511 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
512 }
513 EXPORT_SYMBOL(jbd2_journal_start);
514 
515 void jbd2_journal_free_reserved(handle_t *handle)
516 {
517 	journal_t *journal = handle->h_journal;
518 
519 	WARN_ON(!handle->h_reserved);
520 	sub_reserved_credits(journal, handle->h_buffer_credits);
521 	jbd2_free_handle(handle);
522 }
523 EXPORT_SYMBOL(jbd2_journal_free_reserved);
524 
525 /**
526  * int jbd2_journal_start_reserved() - start reserved handle
527  * @handle: handle to start
528  * @type: for handle statistics
529  * @line_no: for handle statistics
530  *
531  * Start handle that has been previously reserved with jbd2_journal_reserve().
532  * This attaches @handle to the running transaction (or creates one if there's
533  * not transaction running). Unlike jbd2_journal_start() this function cannot
534  * block on journal commit, checkpointing, or similar stuff. It can block on
535  * memory allocation or frozen journal though.
536  *
537  * Return 0 on success, non-zero on error - handle is freed in that case.
538  */
539 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
540 				unsigned int line_no)
541 {
542 	journal_t *journal = handle->h_journal;
543 	int ret = -EIO;
544 
545 	if (WARN_ON(!handle->h_reserved)) {
546 		/* Someone passed in normal handle? Just stop it. */
547 		jbd2_journal_stop(handle);
548 		return ret;
549 	}
550 	/*
551 	 * Usefulness of mixing of reserved and unreserved handles is
552 	 * questionable. So far nobody seems to need it so just error out.
553 	 */
554 	if (WARN_ON(current->journal_info)) {
555 		jbd2_journal_free_reserved(handle);
556 		return ret;
557 	}
558 
559 	handle->h_journal = NULL;
560 	/*
561 	 * GFP_NOFS is here because callers are likely from writeback or
562 	 * similarly constrained call sites
563 	 */
564 	ret = start_this_handle(journal, handle, GFP_NOFS);
565 	if (ret < 0) {
566 		handle->h_journal = journal;
567 		jbd2_journal_free_reserved(handle);
568 		return ret;
569 	}
570 	handle->h_type = type;
571 	handle->h_line_no = line_no;
572 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
573 				handle->h_transaction->t_tid, type,
574 				line_no, handle->h_buffer_credits);
575 	return 0;
576 }
577 EXPORT_SYMBOL(jbd2_journal_start_reserved);
578 
579 /**
580  * int jbd2_journal_extend() - extend buffer credits.
581  * @handle:  handle to 'extend'
582  * @nblocks: nr blocks to try to extend by.
583  *
584  * Some transactions, such as large extends and truncates, can be done
585  * atomically all at once or in several stages.  The operation requests
586  * a credit for a number of buffer modifications in advance, but can
587  * extend its credit if it needs more.
588  *
589  * jbd2_journal_extend tries to give the running handle more buffer credits.
590  * It does not guarantee that allocation - this is a best-effort only.
591  * The calling process MUST be able to deal cleanly with a failure to
592  * extend here.
593  *
594  * Return 0 on success, non-zero on failure.
595  *
596  * return code < 0 implies an error
597  * return code > 0 implies normal transaction-full status.
598  */
599 int jbd2_journal_extend(handle_t *handle, int nblocks)
600 {
601 	transaction_t *transaction = handle->h_transaction;
602 	journal_t *journal;
603 	int result;
604 	int wanted;
605 
606 	if (is_handle_aborted(handle))
607 		return -EROFS;
608 	journal = transaction->t_journal;
609 
610 	result = 1;
611 
612 	read_lock(&journal->j_state_lock);
613 
614 	/* Don't extend a locked-down transaction! */
615 	if (transaction->t_state != T_RUNNING) {
616 		jbd_debug(3, "denied handle %p %d blocks: "
617 			  "transaction not running\n", handle, nblocks);
618 		goto error_out;
619 	}
620 
621 	spin_lock(&transaction->t_handle_lock);
622 	wanted = atomic_add_return(nblocks,
623 				   &transaction->t_outstanding_credits);
624 
625 	if (wanted > journal->j_max_transaction_buffers) {
626 		jbd_debug(3, "denied handle %p %d blocks: "
627 			  "transaction too large\n", handle, nblocks);
628 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
629 		goto unlock;
630 	}
631 
632 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
633 	    jbd2_log_space_left(journal)) {
634 		jbd_debug(3, "denied handle %p %d blocks: "
635 			  "insufficient log space\n", handle, nblocks);
636 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
637 		goto unlock;
638 	}
639 
640 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
641 				 transaction->t_tid,
642 				 handle->h_type, handle->h_line_no,
643 				 handle->h_buffer_credits,
644 				 nblocks);
645 
646 	handle->h_buffer_credits += nblocks;
647 	handle->h_requested_credits += nblocks;
648 	result = 0;
649 
650 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
651 unlock:
652 	spin_unlock(&transaction->t_handle_lock);
653 error_out:
654 	read_unlock(&journal->j_state_lock);
655 	return result;
656 }
657 
658 
659 /**
660  * int jbd2_journal_restart() - restart a handle .
661  * @handle:  handle to restart
662  * @nblocks: nr credits requested
663  * @gfp_mask: memory allocation flags (for start_this_handle)
664  *
665  * Restart a handle for a multi-transaction filesystem
666  * operation.
667  *
668  * If the jbd2_journal_extend() call above fails to grant new buffer credits
669  * to a running handle, a call to jbd2_journal_restart will commit the
670  * handle's transaction so far and reattach the handle to a new
671  * transaction capable of guaranteeing the requested number of
672  * credits. We preserve reserved handle if there's any attached to the
673  * passed in handle.
674  */
675 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
676 {
677 	transaction_t *transaction = handle->h_transaction;
678 	journal_t *journal;
679 	tid_t		tid;
680 	int		need_to_start, ret;
681 
682 	/* If we've had an abort of any type, don't even think about
683 	 * actually doing the restart! */
684 	if (is_handle_aborted(handle))
685 		return 0;
686 	journal = transaction->t_journal;
687 
688 	/*
689 	 * First unlink the handle from its current transaction, and start the
690 	 * commit on that.
691 	 */
692 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
693 	J_ASSERT(journal_current_handle() == handle);
694 
695 	read_lock(&journal->j_state_lock);
696 	spin_lock(&transaction->t_handle_lock);
697 	atomic_sub(handle->h_buffer_credits,
698 		   &transaction->t_outstanding_credits);
699 	if (handle->h_rsv_handle) {
700 		sub_reserved_credits(journal,
701 				     handle->h_rsv_handle->h_buffer_credits);
702 	}
703 	if (atomic_dec_and_test(&transaction->t_updates))
704 		wake_up(&journal->j_wait_updates);
705 	tid = transaction->t_tid;
706 	spin_unlock(&transaction->t_handle_lock);
707 	handle->h_transaction = NULL;
708 	current->journal_info = NULL;
709 
710 	jbd_debug(2, "restarting handle %p\n", handle);
711 	need_to_start = !tid_geq(journal->j_commit_request, tid);
712 	read_unlock(&journal->j_state_lock);
713 	if (need_to_start)
714 		jbd2_log_start_commit(journal, tid);
715 
716 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
717 	handle->h_buffer_credits = nblocks;
718 	/*
719 	 * Restore the original nofs context because the journal restart
720 	 * is basically the same thing as journal stop and start.
721 	 * start_this_handle will start a new nofs context.
722 	 */
723 	memalloc_nofs_restore(handle->saved_alloc_context);
724 	ret = start_this_handle(journal, handle, gfp_mask);
725 	return ret;
726 }
727 EXPORT_SYMBOL(jbd2__journal_restart);
728 
729 
730 int jbd2_journal_restart(handle_t *handle, int nblocks)
731 {
732 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
733 }
734 EXPORT_SYMBOL(jbd2_journal_restart);
735 
736 /**
737  * void jbd2_journal_lock_updates () - establish a transaction barrier.
738  * @journal:  Journal to establish a barrier on.
739  *
740  * This locks out any further updates from being started, and blocks
741  * until all existing updates have completed, returning only once the
742  * journal is in a quiescent state with no updates running.
743  *
744  * The journal lock should not be held on entry.
745  */
746 void jbd2_journal_lock_updates(journal_t *journal)
747 {
748 	DEFINE_WAIT(wait);
749 
750 	jbd2_might_wait_for_commit(journal);
751 
752 	write_lock(&journal->j_state_lock);
753 	++journal->j_barrier_count;
754 
755 	/* Wait until there are no reserved handles */
756 	if (atomic_read(&journal->j_reserved_credits)) {
757 		write_unlock(&journal->j_state_lock);
758 		wait_event(journal->j_wait_reserved,
759 			   atomic_read(&journal->j_reserved_credits) == 0);
760 		write_lock(&journal->j_state_lock);
761 	}
762 
763 	/* Wait until there are no running updates */
764 	while (1) {
765 		transaction_t *transaction = journal->j_running_transaction;
766 
767 		if (!transaction)
768 			break;
769 
770 		spin_lock(&transaction->t_handle_lock);
771 		prepare_to_wait(&journal->j_wait_updates, &wait,
772 				TASK_UNINTERRUPTIBLE);
773 		if (!atomic_read(&transaction->t_updates)) {
774 			spin_unlock(&transaction->t_handle_lock);
775 			finish_wait(&journal->j_wait_updates, &wait);
776 			break;
777 		}
778 		spin_unlock(&transaction->t_handle_lock);
779 		write_unlock(&journal->j_state_lock);
780 		schedule();
781 		finish_wait(&journal->j_wait_updates, &wait);
782 		write_lock(&journal->j_state_lock);
783 	}
784 	write_unlock(&journal->j_state_lock);
785 
786 	/*
787 	 * We have now established a barrier against other normal updates, but
788 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
789 	 * to make sure that we serialise special journal-locked operations
790 	 * too.
791 	 */
792 	mutex_lock(&journal->j_barrier);
793 }
794 
795 /**
796  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
797  * @journal:  Journal to release the barrier on.
798  *
799  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
800  *
801  * Should be called without the journal lock held.
802  */
803 void jbd2_journal_unlock_updates (journal_t *journal)
804 {
805 	J_ASSERT(journal->j_barrier_count != 0);
806 
807 	mutex_unlock(&journal->j_barrier);
808 	write_lock(&journal->j_state_lock);
809 	--journal->j_barrier_count;
810 	write_unlock(&journal->j_state_lock);
811 	wake_up(&journal->j_wait_transaction_locked);
812 }
813 
814 static void warn_dirty_buffer(struct buffer_head *bh)
815 {
816 	printk(KERN_WARNING
817 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
818 	       "There's a risk of filesystem corruption in case of system "
819 	       "crash.\n",
820 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
821 }
822 
823 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
824 static void jbd2_freeze_jh_data(struct journal_head *jh)
825 {
826 	struct page *page;
827 	int offset;
828 	char *source;
829 	struct buffer_head *bh = jh2bh(jh);
830 
831 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
832 	page = bh->b_page;
833 	offset = offset_in_page(bh->b_data);
834 	source = kmap_atomic(page);
835 	/* Fire data frozen trigger just before we copy the data */
836 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
837 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
838 	kunmap_atomic(source);
839 
840 	/*
841 	 * Now that the frozen data is saved off, we need to store any matching
842 	 * triggers.
843 	 */
844 	jh->b_frozen_triggers = jh->b_triggers;
845 }
846 
847 /*
848  * If the buffer is already part of the current transaction, then there
849  * is nothing we need to do.  If it is already part of a prior
850  * transaction which we are still committing to disk, then we need to
851  * make sure that we do not overwrite the old copy: we do copy-out to
852  * preserve the copy going to disk.  We also account the buffer against
853  * the handle's metadata buffer credits (unless the buffer is already
854  * part of the transaction, that is).
855  *
856  */
857 static int
858 do_get_write_access(handle_t *handle, struct journal_head *jh,
859 			int force_copy)
860 {
861 	struct buffer_head *bh;
862 	transaction_t *transaction = handle->h_transaction;
863 	journal_t *journal;
864 	int error;
865 	char *frozen_buffer = NULL;
866 	unsigned long start_lock, time_lock;
867 
868 	if (is_handle_aborted(handle))
869 		return -EROFS;
870 	journal = transaction->t_journal;
871 
872 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
873 
874 	JBUFFER_TRACE(jh, "entry");
875 repeat:
876 	bh = jh2bh(jh);
877 
878 	/* @@@ Need to check for errors here at some point. */
879 
880  	start_lock = jiffies;
881 	lock_buffer(bh);
882 	jbd_lock_bh_state(bh);
883 
884 	/* If it takes too long to lock the buffer, trace it */
885 	time_lock = jbd2_time_diff(start_lock, jiffies);
886 	if (time_lock > HZ/10)
887 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
888 			jiffies_to_msecs(time_lock));
889 
890 	/* We now hold the buffer lock so it is safe to query the buffer
891 	 * state.  Is the buffer dirty?
892 	 *
893 	 * If so, there are two possibilities.  The buffer may be
894 	 * non-journaled, and undergoing a quite legitimate writeback.
895 	 * Otherwise, it is journaled, and we don't expect dirty buffers
896 	 * in that state (the buffers should be marked JBD_Dirty
897 	 * instead.)  So either the IO is being done under our own
898 	 * control and this is a bug, or it's a third party IO such as
899 	 * dump(8) (which may leave the buffer scheduled for read ---
900 	 * ie. locked but not dirty) or tune2fs (which may actually have
901 	 * the buffer dirtied, ugh.)  */
902 
903 	if (buffer_dirty(bh)) {
904 		/*
905 		 * First question: is this buffer already part of the current
906 		 * transaction or the existing committing transaction?
907 		 */
908 		if (jh->b_transaction) {
909 			J_ASSERT_JH(jh,
910 				jh->b_transaction == transaction ||
911 				jh->b_transaction ==
912 					journal->j_committing_transaction);
913 			if (jh->b_next_transaction)
914 				J_ASSERT_JH(jh, jh->b_next_transaction ==
915 							transaction);
916 			warn_dirty_buffer(bh);
917 		}
918 		/*
919 		 * In any case we need to clean the dirty flag and we must
920 		 * do it under the buffer lock to be sure we don't race
921 		 * with running write-out.
922 		 */
923 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
924 		clear_buffer_dirty(bh);
925 		set_buffer_jbddirty(bh);
926 	}
927 
928 	unlock_buffer(bh);
929 
930 	error = -EROFS;
931 	if (is_handle_aborted(handle)) {
932 		jbd_unlock_bh_state(bh);
933 		goto out;
934 	}
935 	error = 0;
936 
937 	/*
938 	 * The buffer is already part of this transaction if b_transaction or
939 	 * b_next_transaction points to it
940 	 */
941 	if (jh->b_transaction == transaction ||
942 	    jh->b_next_transaction == transaction)
943 		goto done;
944 
945 	/*
946 	 * this is the first time this transaction is touching this buffer,
947 	 * reset the modified flag
948 	 */
949 	jh->b_modified = 0;
950 
951 	/*
952 	 * If the buffer is not journaled right now, we need to make sure it
953 	 * doesn't get written to disk before the caller actually commits the
954 	 * new data
955 	 */
956 	if (!jh->b_transaction) {
957 		JBUFFER_TRACE(jh, "no transaction");
958 		J_ASSERT_JH(jh, !jh->b_next_transaction);
959 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
960 		/*
961 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
962 		 * visible before attaching it to the running transaction.
963 		 * Paired with barrier in jbd2_write_access_granted()
964 		 */
965 		smp_wmb();
966 		spin_lock(&journal->j_list_lock);
967 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
968 		spin_unlock(&journal->j_list_lock);
969 		goto done;
970 	}
971 	/*
972 	 * If there is already a copy-out version of this buffer, then we don't
973 	 * need to make another one
974 	 */
975 	if (jh->b_frozen_data) {
976 		JBUFFER_TRACE(jh, "has frozen data");
977 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
978 		goto attach_next;
979 	}
980 
981 	JBUFFER_TRACE(jh, "owned by older transaction");
982 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
983 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
984 
985 	/*
986 	 * There is one case we have to be very careful about.  If the
987 	 * committing transaction is currently writing this buffer out to disk
988 	 * and has NOT made a copy-out, then we cannot modify the buffer
989 	 * contents at all right now.  The essence of copy-out is that it is
990 	 * the extra copy, not the primary copy, which gets journaled.  If the
991 	 * primary copy is already going to disk then we cannot do copy-out
992 	 * here.
993 	 */
994 	if (buffer_shadow(bh)) {
995 		JBUFFER_TRACE(jh, "on shadow: sleep");
996 		jbd_unlock_bh_state(bh);
997 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
998 		goto repeat;
999 	}
1000 
1001 	/*
1002 	 * Only do the copy if the currently-owning transaction still needs it.
1003 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1004 	 * past that stage (here we use the fact that BH_Shadow is set under
1005 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1006 	 * point we know the buffer doesn't have BH_Shadow set).
1007 	 *
1008 	 * Subtle point, though: if this is a get_undo_access, then we will be
1009 	 * relying on the frozen_data to contain the new value of the
1010 	 * committed_data record after the transaction, so we HAVE to force the
1011 	 * frozen_data copy in that case.
1012 	 */
1013 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1014 		JBUFFER_TRACE(jh, "generate frozen data");
1015 		if (!frozen_buffer) {
1016 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1017 			jbd_unlock_bh_state(bh);
1018 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1019 						   GFP_NOFS | __GFP_NOFAIL);
1020 			goto repeat;
1021 		}
1022 		jh->b_frozen_data = frozen_buffer;
1023 		frozen_buffer = NULL;
1024 		jbd2_freeze_jh_data(jh);
1025 	}
1026 attach_next:
1027 	/*
1028 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1029 	 * before attaching it to the running transaction. Paired with barrier
1030 	 * in jbd2_write_access_granted()
1031 	 */
1032 	smp_wmb();
1033 	jh->b_next_transaction = transaction;
1034 
1035 done:
1036 	jbd_unlock_bh_state(bh);
1037 
1038 	/*
1039 	 * If we are about to journal a buffer, then any revoke pending on it is
1040 	 * no longer valid
1041 	 */
1042 	jbd2_journal_cancel_revoke(handle, jh);
1043 
1044 out:
1045 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1046 		jbd2_free(frozen_buffer, bh->b_size);
1047 
1048 	JBUFFER_TRACE(jh, "exit");
1049 	return error;
1050 }
1051 
1052 /* Fast check whether buffer is already attached to the required transaction */
1053 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1054 							bool undo)
1055 {
1056 	struct journal_head *jh;
1057 	bool ret = false;
1058 
1059 	/* Dirty buffers require special handling... */
1060 	if (buffer_dirty(bh))
1061 		return false;
1062 
1063 	/*
1064 	 * RCU protects us from dereferencing freed pages. So the checks we do
1065 	 * are guaranteed not to oops. However the jh slab object can get freed
1066 	 * & reallocated while we work with it. So we have to be careful. When
1067 	 * we see jh attached to the running transaction, we know it must stay
1068 	 * so until the transaction is committed. Thus jh won't be freed and
1069 	 * will be attached to the same bh while we run.  However it can
1070 	 * happen jh gets freed, reallocated, and attached to the transaction
1071 	 * just after we get pointer to it from bh. So we have to be careful
1072 	 * and recheck jh still belongs to our bh before we return success.
1073 	 */
1074 	rcu_read_lock();
1075 	if (!buffer_jbd(bh))
1076 		goto out;
1077 	/* This should be bh2jh() but that doesn't work with inline functions */
1078 	jh = READ_ONCE(bh->b_private);
1079 	if (!jh)
1080 		goto out;
1081 	/* For undo access buffer must have data copied */
1082 	if (undo && !jh->b_committed_data)
1083 		goto out;
1084 	if (jh->b_transaction != handle->h_transaction &&
1085 	    jh->b_next_transaction != handle->h_transaction)
1086 		goto out;
1087 	/*
1088 	 * There are two reasons for the barrier here:
1089 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1090 	 * detect when jh went through free, realloc, attach to transaction
1091 	 * while we were checking. Paired with implicit barrier in that path.
1092 	 * 2) So that access to bh done after jbd2_write_access_granted()
1093 	 * doesn't get reordered and see inconsistent state of concurrent
1094 	 * do_get_write_access().
1095 	 */
1096 	smp_mb();
1097 	if (unlikely(jh->b_bh != bh))
1098 		goto out;
1099 	ret = true;
1100 out:
1101 	rcu_read_unlock();
1102 	return ret;
1103 }
1104 
1105 /**
1106  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1107  * @handle: transaction to add buffer modifications to
1108  * @bh:     bh to be used for metadata writes
1109  *
1110  * Returns: error code or 0 on success.
1111  *
1112  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1113  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1114  */
1115 
1116 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1117 {
1118 	struct journal_head *jh;
1119 	int rc;
1120 
1121 	if (jbd2_write_access_granted(handle, bh, false))
1122 		return 0;
1123 
1124 	jh = jbd2_journal_add_journal_head(bh);
1125 	/* We do not want to get caught playing with fields which the
1126 	 * log thread also manipulates.  Make sure that the buffer
1127 	 * completes any outstanding IO before proceeding. */
1128 	rc = do_get_write_access(handle, jh, 0);
1129 	jbd2_journal_put_journal_head(jh);
1130 	return rc;
1131 }
1132 
1133 
1134 /*
1135  * When the user wants to journal a newly created buffer_head
1136  * (ie. getblk() returned a new buffer and we are going to populate it
1137  * manually rather than reading off disk), then we need to keep the
1138  * buffer_head locked until it has been completely filled with new
1139  * data.  In this case, we should be able to make the assertion that
1140  * the bh is not already part of an existing transaction.
1141  *
1142  * The buffer should already be locked by the caller by this point.
1143  * There is no lock ranking violation: it was a newly created,
1144  * unlocked buffer beforehand. */
1145 
1146 /**
1147  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1148  * @handle: transaction to new buffer to
1149  * @bh: new buffer.
1150  *
1151  * Call this if you create a new bh.
1152  */
1153 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1154 {
1155 	transaction_t *transaction = handle->h_transaction;
1156 	journal_t *journal;
1157 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1158 	int err;
1159 
1160 	jbd_debug(5, "journal_head %p\n", jh);
1161 	err = -EROFS;
1162 	if (is_handle_aborted(handle))
1163 		goto out;
1164 	journal = transaction->t_journal;
1165 	err = 0;
1166 
1167 	JBUFFER_TRACE(jh, "entry");
1168 	/*
1169 	 * The buffer may already belong to this transaction due to pre-zeroing
1170 	 * in the filesystem's new_block code.  It may also be on the previous,
1171 	 * committing transaction's lists, but it HAS to be in Forget state in
1172 	 * that case: the transaction must have deleted the buffer for it to be
1173 	 * reused here.
1174 	 */
1175 	jbd_lock_bh_state(bh);
1176 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1177 		jh->b_transaction == NULL ||
1178 		(jh->b_transaction == journal->j_committing_transaction &&
1179 			  jh->b_jlist == BJ_Forget)));
1180 
1181 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1182 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1183 
1184 	if (jh->b_transaction == NULL) {
1185 		/*
1186 		 * Previous jbd2_journal_forget() could have left the buffer
1187 		 * with jbddirty bit set because it was being committed. When
1188 		 * the commit finished, we've filed the buffer for
1189 		 * checkpointing and marked it dirty. Now we are reallocating
1190 		 * the buffer so the transaction freeing it must have
1191 		 * committed and so it's safe to clear the dirty bit.
1192 		 */
1193 		clear_buffer_dirty(jh2bh(jh));
1194 		/* first access by this transaction */
1195 		jh->b_modified = 0;
1196 
1197 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1198 		spin_lock(&journal->j_list_lock);
1199 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1200 		spin_unlock(&journal->j_list_lock);
1201 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1202 		/* first access by this transaction */
1203 		jh->b_modified = 0;
1204 
1205 		JBUFFER_TRACE(jh, "set next transaction");
1206 		spin_lock(&journal->j_list_lock);
1207 		jh->b_next_transaction = transaction;
1208 		spin_unlock(&journal->j_list_lock);
1209 	}
1210 	jbd_unlock_bh_state(bh);
1211 
1212 	/*
1213 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1214 	 * blocks which contain freed but then revoked metadata.  We need
1215 	 * to cancel the revoke in case we end up freeing it yet again
1216 	 * and the reallocating as data - this would cause a second revoke,
1217 	 * which hits an assertion error.
1218 	 */
1219 	JBUFFER_TRACE(jh, "cancelling revoke");
1220 	jbd2_journal_cancel_revoke(handle, jh);
1221 out:
1222 	jbd2_journal_put_journal_head(jh);
1223 	return err;
1224 }
1225 
1226 /**
1227  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1228  *     non-rewindable consequences
1229  * @handle: transaction
1230  * @bh: buffer to undo
1231  *
1232  * Sometimes there is a need to distinguish between metadata which has
1233  * been committed to disk and that which has not.  The ext3fs code uses
1234  * this for freeing and allocating space, we have to make sure that we
1235  * do not reuse freed space until the deallocation has been committed,
1236  * since if we overwrote that space we would make the delete
1237  * un-rewindable in case of a crash.
1238  *
1239  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1240  * buffer for parts of non-rewindable operations such as delete
1241  * operations on the bitmaps.  The journaling code must keep a copy of
1242  * the buffer's contents prior to the undo_access call until such time
1243  * as we know that the buffer has definitely been committed to disk.
1244  *
1245  * We never need to know which transaction the committed data is part
1246  * of, buffers touched here are guaranteed to be dirtied later and so
1247  * will be committed to a new transaction in due course, at which point
1248  * we can discard the old committed data pointer.
1249  *
1250  * Returns error number or 0 on success.
1251  */
1252 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1253 {
1254 	int err;
1255 	struct journal_head *jh;
1256 	char *committed_data = NULL;
1257 
1258 	if (jbd2_write_access_granted(handle, bh, true))
1259 		return 0;
1260 
1261 	jh = jbd2_journal_add_journal_head(bh);
1262 	JBUFFER_TRACE(jh, "entry");
1263 
1264 	/*
1265 	 * Do this first --- it can drop the journal lock, so we want to
1266 	 * make sure that obtaining the committed_data is done
1267 	 * atomically wrt. completion of any outstanding commits.
1268 	 */
1269 	err = do_get_write_access(handle, jh, 1);
1270 	if (err)
1271 		goto out;
1272 
1273 repeat:
1274 	if (!jh->b_committed_data)
1275 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1276 					    GFP_NOFS|__GFP_NOFAIL);
1277 
1278 	jbd_lock_bh_state(bh);
1279 	if (!jh->b_committed_data) {
1280 		/* Copy out the current buffer contents into the
1281 		 * preserved, committed copy. */
1282 		JBUFFER_TRACE(jh, "generate b_committed data");
1283 		if (!committed_data) {
1284 			jbd_unlock_bh_state(bh);
1285 			goto repeat;
1286 		}
1287 
1288 		jh->b_committed_data = committed_data;
1289 		committed_data = NULL;
1290 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1291 	}
1292 	jbd_unlock_bh_state(bh);
1293 out:
1294 	jbd2_journal_put_journal_head(jh);
1295 	if (unlikely(committed_data))
1296 		jbd2_free(committed_data, bh->b_size);
1297 	return err;
1298 }
1299 
1300 /**
1301  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1302  * @bh: buffer to trigger on
1303  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1304  *
1305  * Set any triggers on this journal_head.  This is always safe, because
1306  * triggers for a committing buffer will be saved off, and triggers for
1307  * a running transaction will match the buffer in that transaction.
1308  *
1309  * Call with NULL to clear the triggers.
1310  */
1311 void jbd2_journal_set_triggers(struct buffer_head *bh,
1312 			       struct jbd2_buffer_trigger_type *type)
1313 {
1314 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1315 
1316 	if (WARN_ON(!jh))
1317 		return;
1318 	jh->b_triggers = type;
1319 	jbd2_journal_put_journal_head(jh);
1320 }
1321 
1322 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1323 				struct jbd2_buffer_trigger_type *triggers)
1324 {
1325 	struct buffer_head *bh = jh2bh(jh);
1326 
1327 	if (!triggers || !triggers->t_frozen)
1328 		return;
1329 
1330 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1331 }
1332 
1333 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1334 			       struct jbd2_buffer_trigger_type *triggers)
1335 {
1336 	if (!triggers || !triggers->t_abort)
1337 		return;
1338 
1339 	triggers->t_abort(triggers, jh2bh(jh));
1340 }
1341 
1342 /**
1343  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1344  * @handle: transaction to add buffer to.
1345  * @bh: buffer to mark
1346  *
1347  * mark dirty metadata which needs to be journaled as part of the current
1348  * transaction.
1349  *
1350  * The buffer must have previously had jbd2_journal_get_write_access()
1351  * called so that it has a valid journal_head attached to the buffer
1352  * head.
1353  *
1354  * The buffer is placed on the transaction's metadata list and is marked
1355  * as belonging to the transaction.
1356  *
1357  * Returns error number or 0 on success.
1358  *
1359  * Special care needs to be taken if the buffer already belongs to the
1360  * current committing transaction (in which case we should have frozen
1361  * data present for that commit).  In that case, we don't relink the
1362  * buffer: that only gets done when the old transaction finally
1363  * completes its commit.
1364  */
1365 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1366 {
1367 	transaction_t *transaction = handle->h_transaction;
1368 	journal_t *journal;
1369 	struct journal_head *jh;
1370 	int ret = 0;
1371 
1372 	if (is_handle_aborted(handle))
1373 		return -EROFS;
1374 	if (!buffer_jbd(bh))
1375 		return -EUCLEAN;
1376 
1377 	/*
1378 	 * We don't grab jh reference here since the buffer must be part
1379 	 * of the running transaction.
1380 	 */
1381 	jh = bh2jh(bh);
1382 	jbd_debug(5, "journal_head %p\n", jh);
1383 	JBUFFER_TRACE(jh, "entry");
1384 
1385 	/*
1386 	 * This and the following assertions are unreliable since we may see jh
1387 	 * in inconsistent state unless we grab bh_state lock. But this is
1388 	 * crucial to catch bugs so let's do a reliable check until the
1389 	 * lockless handling is fully proven.
1390 	 */
1391 	if (jh->b_transaction != transaction &&
1392 	    jh->b_next_transaction != transaction) {
1393 		jbd_lock_bh_state(bh);
1394 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1395 				jh->b_next_transaction == transaction);
1396 		jbd_unlock_bh_state(bh);
1397 	}
1398 	if (jh->b_modified == 1) {
1399 		/* If it's in our transaction it must be in BJ_Metadata list. */
1400 		if (jh->b_transaction == transaction &&
1401 		    jh->b_jlist != BJ_Metadata) {
1402 			jbd_lock_bh_state(bh);
1403 			if (jh->b_transaction == transaction &&
1404 			    jh->b_jlist != BJ_Metadata)
1405 				pr_err("JBD2: assertion failure: h_type=%u "
1406 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1407 				       handle->h_type, handle->h_line_no,
1408 				       (unsigned long long) bh->b_blocknr,
1409 				       jh->b_jlist);
1410 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1411 					jh->b_jlist == BJ_Metadata);
1412 			jbd_unlock_bh_state(bh);
1413 		}
1414 		goto out;
1415 	}
1416 
1417 	journal = transaction->t_journal;
1418 	jbd_lock_bh_state(bh);
1419 
1420 	if (jh->b_modified == 0) {
1421 		/*
1422 		 * This buffer's got modified and becoming part
1423 		 * of the transaction. This needs to be done
1424 		 * once a transaction -bzzz
1425 		 */
1426 		if (handle->h_buffer_credits <= 0) {
1427 			ret = -ENOSPC;
1428 			goto out_unlock_bh;
1429 		}
1430 		jh->b_modified = 1;
1431 		handle->h_buffer_credits--;
1432 	}
1433 
1434 	/*
1435 	 * fastpath, to avoid expensive locking.  If this buffer is already
1436 	 * on the running transaction's metadata list there is nothing to do.
1437 	 * Nobody can take it off again because there is a handle open.
1438 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1439 	 * result in this test being false, so we go in and take the locks.
1440 	 */
1441 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1442 		JBUFFER_TRACE(jh, "fastpath");
1443 		if (unlikely(jh->b_transaction !=
1444 			     journal->j_running_transaction)) {
1445 			printk(KERN_ERR "JBD2: %s: "
1446 			       "jh->b_transaction (%llu, %p, %u) != "
1447 			       "journal->j_running_transaction (%p, %u)\n",
1448 			       journal->j_devname,
1449 			       (unsigned long long) bh->b_blocknr,
1450 			       jh->b_transaction,
1451 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1452 			       journal->j_running_transaction,
1453 			       journal->j_running_transaction ?
1454 			       journal->j_running_transaction->t_tid : 0);
1455 			ret = -EINVAL;
1456 		}
1457 		goto out_unlock_bh;
1458 	}
1459 
1460 	set_buffer_jbddirty(bh);
1461 
1462 	/*
1463 	 * Metadata already on the current transaction list doesn't
1464 	 * need to be filed.  Metadata on another transaction's list must
1465 	 * be committing, and will be refiled once the commit completes:
1466 	 * leave it alone for now.
1467 	 */
1468 	if (jh->b_transaction != transaction) {
1469 		JBUFFER_TRACE(jh, "already on other transaction");
1470 		if (unlikely(((jh->b_transaction !=
1471 			       journal->j_committing_transaction)) ||
1472 			     (jh->b_next_transaction != transaction))) {
1473 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1474 			       "bad jh for block %llu: "
1475 			       "transaction (%p, %u), "
1476 			       "jh->b_transaction (%p, %u), "
1477 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1478 			       journal->j_devname,
1479 			       (unsigned long long) bh->b_blocknr,
1480 			       transaction, transaction->t_tid,
1481 			       jh->b_transaction,
1482 			       jh->b_transaction ?
1483 			       jh->b_transaction->t_tid : 0,
1484 			       jh->b_next_transaction,
1485 			       jh->b_next_transaction ?
1486 			       jh->b_next_transaction->t_tid : 0,
1487 			       jh->b_jlist);
1488 			WARN_ON(1);
1489 			ret = -EINVAL;
1490 		}
1491 		/* And this case is illegal: we can't reuse another
1492 		 * transaction's data buffer, ever. */
1493 		goto out_unlock_bh;
1494 	}
1495 
1496 	/* That test should have eliminated the following case: */
1497 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1498 
1499 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1500 	spin_lock(&journal->j_list_lock);
1501 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1502 	spin_unlock(&journal->j_list_lock);
1503 out_unlock_bh:
1504 	jbd_unlock_bh_state(bh);
1505 out:
1506 	JBUFFER_TRACE(jh, "exit");
1507 	return ret;
1508 }
1509 
1510 /**
1511  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1512  * @handle: transaction handle
1513  * @bh:     bh to 'forget'
1514  *
1515  * We can only do the bforget if there are no commits pending against the
1516  * buffer.  If the buffer is dirty in the current running transaction we
1517  * can safely unlink it.
1518  *
1519  * bh may not be a journalled buffer at all - it may be a non-JBD
1520  * buffer which came off the hashtable.  Check for this.
1521  *
1522  * Decrements bh->b_count by one.
1523  *
1524  * Allow this call even if the handle has aborted --- it may be part of
1525  * the caller's cleanup after an abort.
1526  */
1527 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1528 {
1529 	transaction_t *transaction = handle->h_transaction;
1530 	journal_t *journal;
1531 	struct journal_head *jh;
1532 	int drop_reserve = 0;
1533 	int err = 0;
1534 	int was_modified = 0;
1535 
1536 	if (is_handle_aborted(handle))
1537 		return -EROFS;
1538 	journal = transaction->t_journal;
1539 
1540 	BUFFER_TRACE(bh, "entry");
1541 
1542 	jbd_lock_bh_state(bh);
1543 
1544 	if (!buffer_jbd(bh))
1545 		goto not_jbd;
1546 	jh = bh2jh(bh);
1547 
1548 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1549 	 * Don't do any jbd operations, and return an error. */
1550 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1551 			 "inconsistent data on disk")) {
1552 		err = -EIO;
1553 		goto not_jbd;
1554 	}
1555 
1556 	/* keep track of whether or not this transaction modified us */
1557 	was_modified = jh->b_modified;
1558 
1559 	/*
1560 	 * The buffer's going from the transaction, we must drop
1561 	 * all references -bzzz
1562 	 */
1563 	jh->b_modified = 0;
1564 
1565 	if (jh->b_transaction == transaction) {
1566 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1567 
1568 		/* If we are forgetting a buffer which is already part
1569 		 * of this transaction, then we can just drop it from
1570 		 * the transaction immediately. */
1571 		clear_buffer_dirty(bh);
1572 		clear_buffer_jbddirty(bh);
1573 
1574 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1575 
1576 		/*
1577 		 * we only want to drop a reference if this transaction
1578 		 * modified the buffer
1579 		 */
1580 		if (was_modified)
1581 			drop_reserve = 1;
1582 
1583 		/*
1584 		 * We are no longer going to journal this buffer.
1585 		 * However, the commit of this transaction is still
1586 		 * important to the buffer: the delete that we are now
1587 		 * processing might obsolete an old log entry, so by
1588 		 * committing, we can satisfy the buffer's checkpoint.
1589 		 *
1590 		 * So, if we have a checkpoint on the buffer, we should
1591 		 * now refile the buffer on our BJ_Forget list so that
1592 		 * we know to remove the checkpoint after we commit.
1593 		 */
1594 
1595 		spin_lock(&journal->j_list_lock);
1596 		if (jh->b_cp_transaction) {
1597 			__jbd2_journal_temp_unlink_buffer(jh);
1598 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1599 		} else {
1600 			__jbd2_journal_unfile_buffer(jh);
1601 			if (!buffer_jbd(bh)) {
1602 				spin_unlock(&journal->j_list_lock);
1603 				goto not_jbd;
1604 			}
1605 		}
1606 		spin_unlock(&journal->j_list_lock);
1607 	} else if (jh->b_transaction) {
1608 		J_ASSERT_JH(jh, (jh->b_transaction ==
1609 				 journal->j_committing_transaction));
1610 		/* However, if the buffer is still owned by a prior
1611 		 * (committing) transaction, we can't drop it yet... */
1612 		JBUFFER_TRACE(jh, "belongs to older transaction");
1613 		/* ... but we CAN drop it from the new transaction through
1614 		 * marking the buffer as freed and set j_next_transaction to
1615 		 * the new transaction, so that not only the commit code
1616 		 * knows it should clear dirty bits when it is done with the
1617 		 * buffer, but also the buffer can be checkpointed only
1618 		 * after the new transaction commits. */
1619 
1620 		set_buffer_freed(bh);
1621 
1622 		if (!jh->b_next_transaction) {
1623 			spin_lock(&journal->j_list_lock);
1624 			jh->b_next_transaction = transaction;
1625 			spin_unlock(&journal->j_list_lock);
1626 		} else {
1627 			J_ASSERT(jh->b_next_transaction == transaction);
1628 
1629 			/*
1630 			 * only drop a reference if this transaction modified
1631 			 * the buffer
1632 			 */
1633 			if (was_modified)
1634 				drop_reserve = 1;
1635 		}
1636 	} else {
1637 		/*
1638 		 * Finally, if the buffer is not belongs to any
1639 		 * transaction, we can just drop it now if it has no
1640 		 * checkpoint.
1641 		 */
1642 		spin_lock(&journal->j_list_lock);
1643 		if (!jh->b_cp_transaction) {
1644 			JBUFFER_TRACE(jh, "belongs to none transaction");
1645 			spin_unlock(&journal->j_list_lock);
1646 			goto not_jbd;
1647 		}
1648 
1649 		/*
1650 		 * Otherwise, if the buffer has been written to disk,
1651 		 * it is safe to remove the checkpoint and drop it.
1652 		 */
1653 		if (!buffer_dirty(bh)) {
1654 			__jbd2_journal_remove_checkpoint(jh);
1655 			spin_unlock(&journal->j_list_lock);
1656 			goto not_jbd;
1657 		}
1658 
1659 		/*
1660 		 * The buffer is still not written to disk, we should
1661 		 * attach this buffer to current transaction so that the
1662 		 * buffer can be checkpointed only after the current
1663 		 * transaction commits.
1664 		 */
1665 		clear_buffer_dirty(bh);
1666 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1667 		spin_unlock(&journal->j_list_lock);
1668 	}
1669 
1670 	jbd_unlock_bh_state(bh);
1671 	__brelse(bh);
1672 drop:
1673 	if (drop_reserve) {
1674 		/* no need to reserve log space for this block -bzzz */
1675 		handle->h_buffer_credits++;
1676 	}
1677 	return err;
1678 
1679 not_jbd:
1680 	jbd_unlock_bh_state(bh);
1681 	__bforget(bh);
1682 	goto drop;
1683 }
1684 
1685 /**
1686  * int jbd2_journal_stop() - complete a transaction
1687  * @handle: transaction to complete.
1688  *
1689  * All done for a particular handle.
1690  *
1691  * There is not much action needed here.  We just return any remaining
1692  * buffer credits to the transaction and remove the handle.  The only
1693  * complication is that we need to start a commit operation if the
1694  * filesystem is marked for synchronous update.
1695  *
1696  * jbd2_journal_stop itself will not usually return an error, but it may
1697  * do so in unusual circumstances.  In particular, expect it to
1698  * return -EIO if a jbd2_journal_abort has been executed since the
1699  * transaction began.
1700  */
1701 int jbd2_journal_stop(handle_t *handle)
1702 {
1703 	transaction_t *transaction = handle->h_transaction;
1704 	journal_t *journal;
1705 	int err = 0, wait_for_commit = 0;
1706 	tid_t tid;
1707 	pid_t pid;
1708 
1709 	if (!transaction) {
1710 		/*
1711 		 * Handle is already detached from the transaction so
1712 		 * there is nothing to do other than decrease a refcount,
1713 		 * or free the handle if refcount drops to zero
1714 		 */
1715 		if (--handle->h_ref > 0) {
1716 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1717 							 handle->h_ref);
1718 			return err;
1719 		} else {
1720 			if (handle->h_rsv_handle)
1721 				jbd2_free_handle(handle->h_rsv_handle);
1722 			goto free_and_exit;
1723 		}
1724 	}
1725 	journal = transaction->t_journal;
1726 
1727 	J_ASSERT(journal_current_handle() == handle);
1728 
1729 	if (is_handle_aborted(handle))
1730 		err = -EIO;
1731 	else
1732 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1733 
1734 	if (--handle->h_ref > 0) {
1735 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1736 			  handle->h_ref);
1737 		return err;
1738 	}
1739 
1740 	jbd_debug(4, "Handle %p going down\n", handle);
1741 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1742 				transaction->t_tid,
1743 				handle->h_type, handle->h_line_no,
1744 				jiffies - handle->h_start_jiffies,
1745 				handle->h_sync, handle->h_requested_credits,
1746 				(handle->h_requested_credits -
1747 				 handle->h_buffer_credits));
1748 
1749 	/*
1750 	 * Implement synchronous transaction batching.  If the handle
1751 	 * was synchronous, don't force a commit immediately.  Let's
1752 	 * yield and let another thread piggyback onto this
1753 	 * transaction.  Keep doing that while new threads continue to
1754 	 * arrive.  It doesn't cost much - we're about to run a commit
1755 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1756 	 * operations by 30x or more...
1757 	 *
1758 	 * We try and optimize the sleep time against what the
1759 	 * underlying disk can do, instead of having a static sleep
1760 	 * time.  This is useful for the case where our storage is so
1761 	 * fast that it is more optimal to go ahead and force a flush
1762 	 * and wait for the transaction to be committed than it is to
1763 	 * wait for an arbitrary amount of time for new writers to
1764 	 * join the transaction.  We achieve this by measuring how
1765 	 * long it takes to commit a transaction, and compare it with
1766 	 * how long this transaction has been running, and if run time
1767 	 * < commit time then we sleep for the delta and commit.  This
1768 	 * greatly helps super fast disks that would see slowdowns as
1769 	 * more threads started doing fsyncs.
1770 	 *
1771 	 * But don't do this if this process was the most recent one
1772 	 * to perform a synchronous write.  We do this to detect the
1773 	 * case where a single process is doing a stream of sync
1774 	 * writes.  No point in waiting for joiners in that case.
1775 	 *
1776 	 * Setting max_batch_time to 0 disables this completely.
1777 	 */
1778 	pid = current->pid;
1779 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1780 	    journal->j_max_batch_time) {
1781 		u64 commit_time, trans_time;
1782 
1783 		journal->j_last_sync_writer = pid;
1784 
1785 		read_lock(&journal->j_state_lock);
1786 		commit_time = journal->j_average_commit_time;
1787 		read_unlock(&journal->j_state_lock);
1788 
1789 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1790 						   transaction->t_start_time));
1791 
1792 		commit_time = max_t(u64, commit_time,
1793 				    1000*journal->j_min_batch_time);
1794 		commit_time = min_t(u64, commit_time,
1795 				    1000*journal->j_max_batch_time);
1796 
1797 		if (trans_time < commit_time) {
1798 			ktime_t expires = ktime_add_ns(ktime_get(),
1799 						       commit_time);
1800 			set_current_state(TASK_UNINTERRUPTIBLE);
1801 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1802 		}
1803 	}
1804 
1805 	if (handle->h_sync)
1806 		transaction->t_synchronous_commit = 1;
1807 	current->journal_info = NULL;
1808 	atomic_sub(handle->h_buffer_credits,
1809 		   &transaction->t_outstanding_credits);
1810 
1811 	/*
1812 	 * If the handle is marked SYNC, we need to set another commit
1813 	 * going!  We also want to force a commit if the current
1814 	 * transaction is occupying too much of the log, or if the
1815 	 * transaction is too old now.
1816 	 */
1817 	if (handle->h_sync ||
1818 	    (atomic_read(&transaction->t_outstanding_credits) >
1819 	     journal->j_max_transaction_buffers) ||
1820 	    time_after_eq(jiffies, transaction->t_expires)) {
1821 		/* Do this even for aborted journals: an abort still
1822 		 * completes the commit thread, it just doesn't write
1823 		 * anything to disk. */
1824 
1825 		jbd_debug(2, "transaction too old, requesting commit for "
1826 					"handle %p\n", handle);
1827 		/* This is non-blocking */
1828 		jbd2_log_start_commit(journal, transaction->t_tid);
1829 
1830 		/*
1831 		 * Special case: JBD2_SYNC synchronous updates require us
1832 		 * to wait for the commit to complete.
1833 		 */
1834 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1835 			wait_for_commit = 1;
1836 	}
1837 
1838 	/*
1839 	 * Once we drop t_updates, if it goes to zero the transaction
1840 	 * could start committing on us and eventually disappear.  So
1841 	 * once we do this, we must not dereference transaction
1842 	 * pointer again.
1843 	 */
1844 	tid = transaction->t_tid;
1845 	if (atomic_dec_and_test(&transaction->t_updates)) {
1846 		wake_up(&journal->j_wait_updates);
1847 		if (journal->j_barrier_count)
1848 			wake_up(&journal->j_wait_transaction_locked);
1849 	}
1850 
1851 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1852 
1853 	if (wait_for_commit)
1854 		err = jbd2_log_wait_commit(journal, tid);
1855 
1856 	if (handle->h_rsv_handle)
1857 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1858 free_and_exit:
1859 	/*
1860 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1861 	 * original alloc context.
1862 	 */
1863 	memalloc_nofs_restore(handle->saved_alloc_context);
1864 	jbd2_free_handle(handle);
1865 	return err;
1866 }
1867 
1868 /*
1869  *
1870  * List management code snippets: various functions for manipulating the
1871  * transaction buffer lists.
1872  *
1873  */
1874 
1875 /*
1876  * Append a buffer to a transaction list, given the transaction's list head
1877  * pointer.
1878  *
1879  * j_list_lock is held.
1880  *
1881  * jbd_lock_bh_state(jh2bh(jh)) is held.
1882  */
1883 
1884 static inline void
1885 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1886 {
1887 	if (!*list) {
1888 		jh->b_tnext = jh->b_tprev = jh;
1889 		*list = jh;
1890 	} else {
1891 		/* Insert at the tail of the list to preserve order */
1892 		struct journal_head *first = *list, *last = first->b_tprev;
1893 		jh->b_tprev = last;
1894 		jh->b_tnext = first;
1895 		last->b_tnext = first->b_tprev = jh;
1896 	}
1897 }
1898 
1899 /*
1900  * Remove a buffer from a transaction list, given the transaction's list
1901  * head pointer.
1902  *
1903  * Called with j_list_lock held, and the journal may not be locked.
1904  *
1905  * jbd_lock_bh_state(jh2bh(jh)) is held.
1906  */
1907 
1908 static inline void
1909 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1910 {
1911 	if (*list == jh) {
1912 		*list = jh->b_tnext;
1913 		if (*list == jh)
1914 			*list = NULL;
1915 	}
1916 	jh->b_tprev->b_tnext = jh->b_tnext;
1917 	jh->b_tnext->b_tprev = jh->b_tprev;
1918 }
1919 
1920 /*
1921  * Remove a buffer from the appropriate transaction list.
1922  *
1923  * Note that this function can *change* the value of
1924  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1925  * t_reserved_list.  If the caller is holding onto a copy of one of these
1926  * pointers, it could go bad.  Generally the caller needs to re-read the
1927  * pointer from the transaction_t.
1928  *
1929  * Called under j_list_lock.
1930  */
1931 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1932 {
1933 	struct journal_head **list = NULL;
1934 	transaction_t *transaction;
1935 	struct buffer_head *bh = jh2bh(jh);
1936 
1937 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1938 	transaction = jh->b_transaction;
1939 	if (transaction)
1940 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1941 
1942 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1943 	if (jh->b_jlist != BJ_None)
1944 		J_ASSERT_JH(jh, transaction != NULL);
1945 
1946 	switch (jh->b_jlist) {
1947 	case BJ_None:
1948 		return;
1949 	case BJ_Metadata:
1950 		transaction->t_nr_buffers--;
1951 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1952 		list = &transaction->t_buffers;
1953 		break;
1954 	case BJ_Forget:
1955 		list = &transaction->t_forget;
1956 		break;
1957 	case BJ_Shadow:
1958 		list = &transaction->t_shadow_list;
1959 		break;
1960 	case BJ_Reserved:
1961 		list = &transaction->t_reserved_list;
1962 		break;
1963 	}
1964 
1965 	__blist_del_buffer(list, jh);
1966 	jh->b_jlist = BJ_None;
1967 	if (transaction && is_journal_aborted(transaction->t_journal))
1968 		clear_buffer_jbddirty(bh);
1969 	else if (test_clear_buffer_jbddirty(bh))
1970 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1971 }
1972 
1973 /*
1974  * Remove buffer from all transactions.
1975  *
1976  * Called with bh_state lock and j_list_lock
1977  *
1978  * jh and bh may be already freed when this function returns.
1979  */
1980 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1981 {
1982 	__jbd2_journal_temp_unlink_buffer(jh);
1983 	jh->b_transaction = NULL;
1984 	jbd2_journal_put_journal_head(jh);
1985 }
1986 
1987 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1988 {
1989 	struct buffer_head *bh = jh2bh(jh);
1990 
1991 	/* Get reference so that buffer cannot be freed before we unlock it */
1992 	get_bh(bh);
1993 	jbd_lock_bh_state(bh);
1994 	spin_lock(&journal->j_list_lock);
1995 	__jbd2_journal_unfile_buffer(jh);
1996 	spin_unlock(&journal->j_list_lock);
1997 	jbd_unlock_bh_state(bh);
1998 	__brelse(bh);
1999 }
2000 
2001 /*
2002  * Called from jbd2_journal_try_to_free_buffers().
2003  *
2004  * Called under jbd_lock_bh_state(bh)
2005  */
2006 static void
2007 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2008 {
2009 	struct journal_head *jh;
2010 
2011 	jh = bh2jh(bh);
2012 
2013 	if (buffer_locked(bh) || buffer_dirty(bh))
2014 		goto out;
2015 
2016 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2017 		goto out;
2018 
2019 	spin_lock(&journal->j_list_lock);
2020 	if (jh->b_cp_transaction != NULL) {
2021 		/* written-back checkpointed metadata buffer */
2022 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2023 		__jbd2_journal_remove_checkpoint(jh);
2024 	}
2025 	spin_unlock(&journal->j_list_lock);
2026 out:
2027 	return;
2028 }
2029 
2030 /**
2031  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2032  * @journal: journal for operation
2033  * @page: to try and free
2034  * @gfp_mask: we use the mask to detect how hard should we try to release
2035  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2036  * code to release the buffers.
2037  *
2038  *
2039  * For all the buffers on this page,
2040  * if they are fully written out ordered data, move them onto BUF_CLEAN
2041  * so try_to_free_buffers() can reap them.
2042  *
2043  * This function returns non-zero if we wish try_to_free_buffers()
2044  * to be called. We do this if the page is releasable by try_to_free_buffers().
2045  * We also do it if the page has locked or dirty buffers and the caller wants
2046  * us to perform sync or async writeout.
2047  *
2048  * This complicates JBD locking somewhat.  We aren't protected by the
2049  * BKL here.  We wish to remove the buffer from its committing or
2050  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2051  *
2052  * This may *change* the value of transaction_t->t_datalist, so anyone
2053  * who looks at t_datalist needs to lock against this function.
2054  *
2055  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2056  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2057  * will come out of the lock with the buffer dirty, which makes it
2058  * ineligible for release here.
2059  *
2060  * Who else is affected by this?  hmm...  Really the only contender
2061  * is do_get_write_access() - it could be looking at the buffer while
2062  * journal_try_to_free_buffer() is changing its state.  But that
2063  * cannot happen because we never reallocate freed data as metadata
2064  * while the data is part of a transaction.  Yes?
2065  *
2066  * Return 0 on failure, 1 on success
2067  */
2068 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2069 				struct page *page, gfp_t gfp_mask)
2070 {
2071 	struct buffer_head *head;
2072 	struct buffer_head *bh;
2073 	int ret = 0;
2074 
2075 	J_ASSERT(PageLocked(page));
2076 
2077 	head = page_buffers(page);
2078 	bh = head;
2079 	do {
2080 		struct journal_head *jh;
2081 
2082 		/*
2083 		 * We take our own ref against the journal_head here to avoid
2084 		 * having to add tons of locking around each instance of
2085 		 * jbd2_journal_put_journal_head().
2086 		 */
2087 		jh = jbd2_journal_grab_journal_head(bh);
2088 		if (!jh)
2089 			continue;
2090 
2091 		jbd_lock_bh_state(bh);
2092 		__journal_try_to_free_buffer(journal, bh);
2093 		jbd2_journal_put_journal_head(jh);
2094 		jbd_unlock_bh_state(bh);
2095 		if (buffer_jbd(bh))
2096 			goto busy;
2097 	} while ((bh = bh->b_this_page) != head);
2098 
2099 	ret = try_to_free_buffers(page);
2100 
2101 busy:
2102 	return ret;
2103 }
2104 
2105 /*
2106  * This buffer is no longer needed.  If it is on an older transaction's
2107  * checkpoint list we need to record it on this transaction's forget list
2108  * to pin this buffer (and hence its checkpointing transaction) down until
2109  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2110  * release it.
2111  * Returns non-zero if JBD no longer has an interest in the buffer.
2112  *
2113  * Called under j_list_lock.
2114  *
2115  * Called under jbd_lock_bh_state(bh).
2116  */
2117 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2118 {
2119 	int may_free = 1;
2120 	struct buffer_head *bh = jh2bh(jh);
2121 
2122 	if (jh->b_cp_transaction) {
2123 		JBUFFER_TRACE(jh, "on running+cp transaction");
2124 		__jbd2_journal_temp_unlink_buffer(jh);
2125 		/*
2126 		 * We don't want to write the buffer anymore, clear the
2127 		 * bit so that we don't confuse checks in
2128 		 * __journal_file_buffer
2129 		 */
2130 		clear_buffer_dirty(bh);
2131 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2132 		may_free = 0;
2133 	} else {
2134 		JBUFFER_TRACE(jh, "on running transaction");
2135 		__jbd2_journal_unfile_buffer(jh);
2136 	}
2137 	return may_free;
2138 }
2139 
2140 /*
2141  * jbd2_journal_invalidatepage
2142  *
2143  * This code is tricky.  It has a number of cases to deal with.
2144  *
2145  * There are two invariants which this code relies on:
2146  *
2147  * i_size must be updated on disk before we start calling invalidatepage on the
2148  * data.
2149  *
2150  *  This is done in ext3 by defining an ext3_setattr method which
2151  *  updates i_size before truncate gets going.  By maintaining this
2152  *  invariant, we can be sure that it is safe to throw away any buffers
2153  *  attached to the current transaction: once the transaction commits,
2154  *  we know that the data will not be needed.
2155  *
2156  *  Note however that we can *not* throw away data belonging to the
2157  *  previous, committing transaction!
2158  *
2159  * Any disk blocks which *are* part of the previous, committing
2160  * transaction (and which therefore cannot be discarded immediately) are
2161  * not going to be reused in the new running transaction
2162  *
2163  *  The bitmap committed_data images guarantee this: any block which is
2164  *  allocated in one transaction and removed in the next will be marked
2165  *  as in-use in the committed_data bitmap, so cannot be reused until
2166  *  the next transaction to delete the block commits.  This means that
2167  *  leaving committing buffers dirty is quite safe: the disk blocks
2168  *  cannot be reallocated to a different file and so buffer aliasing is
2169  *  not possible.
2170  *
2171  *
2172  * The above applies mainly to ordered data mode.  In writeback mode we
2173  * don't make guarantees about the order in which data hits disk --- in
2174  * particular we don't guarantee that new dirty data is flushed before
2175  * transaction commit --- so it is always safe just to discard data
2176  * immediately in that mode.  --sct
2177  */
2178 
2179 /*
2180  * The journal_unmap_buffer helper function returns zero if the buffer
2181  * concerned remains pinned as an anonymous buffer belonging to an older
2182  * transaction.
2183  *
2184  * We're outside-transaction here.  Either or both of j_running_transaction
2185  * and j_committing_transaction may be NULL.
2186  */
2187 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2188 				int partial_page)
2189 {
2190 	transaction_t *transaction;
2191 	struct journal_head *jh;
2192 	int may_free = 1;
2193 
2194 	BUFFER_TRACE(bh, "entry");
2195 
2196 	/*
2197 	 * It is safe to proceed here without the j_list_lock because the
2198 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2199 	 * holding the page lock. --sct
2200 	 */
2201 
2202 	if (!buffer_jbd(bh))
2203 		goto zap_buffer_unlocked;
2204 
2205 	/* OK, we have data buffer in journaled mode */
2206 	write_lock(&journal->j_state_lock);
2207 	jbd_lock_bh_state(bh);
2208 	spin_lock(&journal->j_list_lock);
2209 
2210 	jh = jbd2_journal_grab_journal_head(bh);
2211 	if (!jh)
2212 		goto zap_buffer_no_jh;
2213 
2214 	/*
2215 	 * We cannot remove the buffer from checkpoint lists until the
2216 	 * transaction adding inode to orphan list (let's call it T)
2217 	 * is committed.  Otherwise if the transaction changing the
2218 	 * buffer would be cleaned from the journal before T is
2219 	 * committed, a crash will cause that the correct contents of
2220 	 * the buffer will be lost.  On the other hand we have to
2221 	 * clear the buffer dirty bit at latest at the moment when the
2222 	 * transaction marking the buffer as freed in the filesystem
2223 	 * structures is committed because from that moment on the
2224 	 * block can be reallocated and used by a different page.
2225 	 * Since the block hasn't been freed yet but the inode has
2226 	 * already been added to orphan list, it is safe for us to add
2227 	 * the buffer to BJ_Forget list of the newest transaction.
2228 	 *
2229 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2230 	 * because the buffer_head may be attached to the page straddling
2231 	 * i_size (can happen only when blocksize < pagesize) and thus the
2232 	 * buffer_head can be reused when the file is extended again. So we end
2233 	 * up keeping around invalidated buffers attached to transactions'
2234 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2235 	 * the transaction this buffer was modified in.
2236 	 */
2237 	transaction = jh->b_transaction;
2238 	if (transaction == NULL) {
2239 		/* First case: not on any transaction.  If it
2240 		 * has no checkpoint link, then we can zap it:
2241 		 * it's a writeback-mode buffer so we don't care
2242 		 * if it hits disk safely. */
2243 		if (!jh->b_cp_transaction) {
2244 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2245 			goto zap_buffer;
2246 		}
2247 
2248 		if (!buffer_dirty(bh)) {
2249 			/* bdflush has written it.  We can drop it now */
2250 			__jbd2_journal_remove_checkpoint(jh);
2251 			goto zap_buffer;
2252 		}
2253 
2254 		/* OK, it must be in the journal but still not
2255 		 * written fully to disk: it's metadata or
2256 		 * journaled data... */
2257 
2258 		if (journal->j_running_transaction) {
2259 			/* ... and once the current transaction has
2260 			 * committed, the buffer won't be needed any
2261 			 * longer. */
2262 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2263 			may_free = __dispose_buffer(jh,
2264 					journal->j_running_transaction);
2265 			goto zap_buffer;
2266 		} else {
2267 			/* There is no currently-running transaction. So the
2268 			 * orphan record which we wrote for this file must have
2269 			 * passed into commit.  We must attach this buffer to
2270 			 * the committing transaction, if it exists. */
2271 			if (journal->j_committing_transaction) {
2272 				JBUFFER_TRACE(jh, "give to committing trans");
2273 				may_free = __dispose_buffer(jh,
2274 					journal->j_committing_transaction);
2275 				goto zap_buffer;
2276 			} else {
2277 				/* The orphan record's transaction has
2278 				 * committed.  We can cleanse this buffer */
2279 				clear_buffer_jbddirty(bh);
2280 				__jbd2_journal_remove_checkpoint(jh);
2281 				goto zap_buffer;
2282 			}
2283 		}
2284 	} else if (transaction == journal->j_committing_transaction) {
2285 		JBUFFER_TRACE(jh, "on committing transaction");
2286 		/*
2287 		 * The buffer is committing, we simply cannot touch
2288 		 * it. If the page is straddling i_size we have to wait
2289 		 * for commit and try again.
2290 		 */
2291 		if (partial_page) {
2292 			jbd2_journal_put_journal_head(jh);
2293 			spin_unlock(&journal->j_list_lock);
2294 			jbd_unlock_bh_state(bh);
2295 			write_unlock(&journal->j_state_lock);
2296 			return -EBUSY;
2297 		}
2298 		/*
2299 		 * OK, buffer won't be reachable after truncate. We just set
2300 		 * j_next_transaction to the running transaction (if there is
2301 		 * one) and mark buffer as freed so that commit code knows it
2302 		 * should clear dirty bits when it is done with the buffer.
2303 		 */
2304 		set_buffer_freed(bh);
2305 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2306 			jh->b_next_transaction = journal->j_running_transaction;
2307 		jbd2_journal_put_journal_head(jh);
2308 		spin_unlock(&journal->j_list_lock);
2309 		jbd_unlock_bh_state(bh);
2310 		write_unlock(&journal->j_state_lock);
2311 		return 0;
2312 	} else {
2313 		/* Good, the buffer belongs to the running transaction.
2314 		 * We are writing our own transaction's data, not any
2315 		 * previous one's, so it is safe to throw it away
2316 		 * (remember that we expect the filesystem to have set
2317 		 * i_size already for this truncate so recovery will not
2318 		 * expose the disk blocks we are discarding here.) */
2319 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2320 		JBUFFER_TRACE(jh, "on running transaction");
2321 		may_free = __dispose_buffer(jh, transaction);
2322 	}
2323 
2324 zap_buffer:
2325 	/*
2326 	 * This is tricky. Although the buffer is truncated, it may be reused
2327 	 * if blocksize < pagesize and it is attached to the page straddling
2328 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2329 	 * running transaction, journal_get_write_access() won't clear
2330 	 * b_modified and credit accounting gets confused. So clear b_modified
2331 	 * here.
2332 	 */
2333 	jh->b_modified = 0;
2334 	jbd2_journal_put_journal_head(jh);
2335 zap_buffer_no_jh:
2336 	spin_unlock(&journal->j_list_lock);
2337 	jbd_unlock_bh_state(bh);
2338 	write_unlock(&journal->j_state_lock);
2339 zap_buffer_unlocked:
2340 	clear_buffer_dirty(bh);
2341 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2342 	clear_buffer_mapped(bh);
2343 	clear_buffer_req(bh);
2344 	clear_buffer_new(bh);
2345 	clear_buffer_delay(bh);
2346 	clear_buffer_unwritten(bh);
2347 	bh->b_bdev = NULL;
2348 	return may_free;
2349 }
2350 
2351 /**
2352  * void jbd2_journal_invalidatepage()
2353  * @journal: journal to use for flush...
2354  * @page:    page to flush
2355  * @offset:  start of the range to invalidate
2356  * @length:  length of the range to invalidate
2357  *
2358  * Reap page buffers containing data after in the specified range in page.
2359  * Can return -EBUSY if buffers are part of the committing transaction and
2360  * the page is straddling i_size. Caller then has to wait for current commit
2361  * and try again.
2362  */
2363 int jbd2_journal_invalidatepage(journal_t *journal,
2364 				struct page *page,
2365 				unsigned int offset,
2366 				unsigned int length)
2367 {
2368 	struct buffer_head *head, *bh, *next;
2369 	unsigned int stop = offset + length;
2370 	unsigned int curr_off = 0;
2371 	int partial_page = (offset || length < PAGE_SIZE);
2372 	int may_free = 1;
2373 	int ret = 0;
2374 
2375 	if (!PageLocked(page))
2376 		BUG();
2377 	if (!page_has_buffers(page))
2378 		return 0;
2379 
2380 	BUG_ON(stop > PAGE_SIZE || stop < length);
2381 
2382 	/* We will potentially be playing with lists other than just the
2383 	 * data lists (especially for journaled data mode), so be
2384 	 * cautious in our locking. */
2385 
2386 	head = bh = page_buffers(page);
2387 	do {
2388 		unsigned int next_off = curr_off + bh->b_size;
2389 		next = bh->b_this_page;
2390 
2391 		if (next_off > stop)
2392 			return 0;
2393 
2394 		if (offset <= curr_off) {
2395 			/* This block is wholly outside the truncation point */
2396 			lock_buffer(bh);
2397 			ret = journal_unmap_buffer(journal, bh, partial_page);
2398 			unlock_buffer(bh);
2399 			if (ret < 0)
2400 				return ret;
2401 			may_free &= ret;
2402 		}
2403 		curr_off = next_off;
2404 		bh = next;
2405 
2406 	} while (bh != head);
2407 
2408 	if (!partial_page) {
2409 		if (may_free && try_to_free_buffers(page))
2410 			J_ASSERT(!page_has_buffers(page));
2411 	}
2412 	return 0;
2413 }
2414 
2415 /*
2416  * File a buffer on the given transaction list.
2417  */
2418 void __jbd2_journal_file_buffer(struct journal_head *jh,
2419 			transaction_t *transaction, int jlist)
2420 {
2421 	struct journal_head **list = NULL;
2422 	int was_dirty = 0;
2423 	struct buffer_head *bh = jh2bh(jh);
2424 
2425 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2426 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2427 
2428 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2429 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2430 				jh->b_transaction == NULL);
2431 
2432 	if (jh->b_transaction && jh->b_jlist == jlist)
2433 		return;
2434 
2435 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2436 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2437 		/*
2438 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2439 		 * instead of buffer_dirty. We should not see a dirty bit set
2440 		 * here because we clear it in do_get_write_access but e.g.
2441 		 * tune2fs can modify the sb and set the dirty bit at any time
2442 		 * so we try to gracefully handle that.
2443 		 */
2444 		if (buffer_dirty(bh))
2445 			warn_dirty_buffer(bh);
2446 		if (test_clear_buffer_dirty(bh) ||
2447 		    test_clear_buffer_jbddirty(bh))
2448 			was_dirty = 1;
2449 	}
2450 
2451 	if (jh->b_transaction)
2452 		__jbd2_journal_temp_unlink_buffer(jh);
2453 	else
2454 		jbd2_journal_grab_journal_head(bh);
2455 	jh->b_transaction = transaction;
2456 
2457 	switch (jlist) {
2458 	case BJ_None:
2459 		J_ASSERT_JH(jh, !jh->b_committed_data);
2460 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2461 		return;
2462 	case BJ_Metadata:
2463 		transaction->t_nr_buffers++;
2464 		list = &transaction->t_buffers;
2465 		break;
2466 	case BJ_Forget:
2467 		list = &transaction->t_forget;
2468 		break;
2469 	case BJ_Shadow:
2470 		list = &transaction->t_shadow_list;
2471 		break;
2472 	case BJ_Reserved:
2473 		list = &transaction->t_reserved_list;
2474 		break;
2475 	}
2476 
2477 	__blist_add_buffer(list, jh);
2478 	jh->b_jlist = jlist;
2479 
2480 	if (was_dirty)
2481 		set_buffer_jbddirty(bh);
2482 }
2483 
2484 void jbd2_journal_file_buffer(struct journal_head *jh,
2485 				transaction_t *transaction, int jlist)
2486 {
2487 	jbd_lock_bh_state(jh2bh(jh));
2488 	spin_lock(&transaction->t_journal->j_list_lock);
2489 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2490 	spin_unlock(&transaction->t_journal->j_list_lock);
2491 	jbd_unlock_bh_state(jh2bh(jh));
2492 }
2493 
2494 /*
2495  * Remove a buffer from its current buffer list in preparation for
2496  * dropping it from its current transaction entirely.  If the buffer has
2497  * already started to be used by a subsequent transaction, refile the
2498  * buffer on that transaction's metadata list.
2499  *
2500  * Called under j_list_lock
2501  * Called under jbd_lock_bh_state(jh2bh(jh))
2502  *
2503  * jh and bh may be already free when this function returns
2504  */
2505 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2506 {
2507 	int was_dirty, jlist;
2508 	struct buffer_head *bh = jh2bh(jh);
2509 
2510 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2511 	if (jh->b_transaction)
2512 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2513 
2514 	/* If the buffer is now unused, just drop it. */
2515 	if (jh->b_next_transaction == NULL) {
2516 		__jbd2_journal_unfile_buffer(jh);
2517 		return;
2518 	}
2519 
2520 	/*
2521 	 * It has been modified by a later transaction: add it to the new
2522 	 * transaction's metadata list.
2523 	 */
2524 
2525 	was_dirty = test_clear_buffer_jbddirty(bh);
2526 	__jbd2_journal_temp_unlink_buffer(jh);
2527 	/*
2528 	 * We set b_transaction here because b_next_transaction will inherit
2529 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2530 	 * take a new one.
2531 	 */
2532 	jh->b_transaction = jh->b_next_transaction;
2533 	jh->b_next_transaction = NULL;
2534 	if (buffer_freed(bh))
2535 		jlist = BJ_Forget;
2536 	else if (jh->b_modified)
2537 		jlist = BJ_Metadata;
2538 	else
2539 		jlist = BJ_Reserved;
2540 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2541 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2542 
2543 	if (was_dirty)
2544 		set_buffer_jbddirty(bh);
2545 }
2546 
2547 /*
2548  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2549  * bh reference so that we can safely unlock bh.
2550  *
2551  * The jh and bh may be freed by this call.
2552  */
2553 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2554 {
2555 	struct buffer_head *bh = jh2bh(jh);
2556 
2557 	/* Get reference so that buffer cannot be freed before we unlock it */
2558 	get_bh(bh);
2559 	jbd_lock_bh_state(bh);
2560 	spin_lock(&journal->j_list_lock);
2561 	__jbd2_journal_refile_buffer(jh);
2562 	jbd_unlock_bh_state(bh);
2563 	spin_unlock(&journal->j_list_lock);
2564 	__brelse(bh);
2565 }
2566 
2567 /*
2568  * File inode in the inode list of the handle's transaction
2569  */
2570 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2571 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2572 {
2573 	transaction_t *transaction = handle->h_transaction;
2574 	journal_t *journal;
2575 
2576 	if (is_handle_aborted(handle))
2577 		return -EROFS;
2578 	journal = transaction->t_journal;
2579 
2580 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2581 			transaction->t_tid);
2582 
2583 	spin_lock(&journal->j_list_lock);
2584 	jinode->i_flags |= flags;
2585 
2586 	if (jinode->i_dirty_end) {
2587 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2588 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2589 	} else {
2590 		jinode->i_dirty_start = start_byte;
2591 		jinode->i_dirty_end = end_byte;
2592 	}
2593 
2594 	/* Is inode already attached where we need it? */
2595 	if (jinode->i_transaction == transaction ||
2596 	    jinode->i_next_transaction == transaction)
2597 		goto done;
2598 
2599 	/*
2600 	 * We only ever set this variable to 1 so the test is safe. Since
2601 	 * t_need_data_flush is likely to be set, we do the test to save some
2602 	 * cacheline bouncing
2603 	 */
2604 	if (!transaction->t_need_data_flush)
2605 		transaction->t_need_data_flush = 1;
2606 	/* On some different transaction's list - should be
2607 	 * the committing one */
2608 	if (jinode->i_transaction) {
2609 		J_ASSERT(jinode->i_next_transaction == NULL);
2610 		J_ASSERT(jinode->i_transaction ==
2611 					journal->j_committing_transaction);
2612 		jinode->i_next_transaction = transaction;
2613 		goto done;
2614 	}
2615 	/* Not on any transaction list... */
2616 	J_ASSERT(!jinode->i_next_transaction);
2617 	jinode->i_transaction = transaction;
2618 	list_add(&jinode->i_list, &transaction->t_inode_list);
2619 done:
2620 	spin_unlock(&journal->j_list_lock);
2621 
2622 	return 0;
2623 }
2624 
2625 int jbd2_journal_inode_ranged_write(handle_t *handle,
2626 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2627 {
2628 	return jbd2_journal_file_inode(handle, jinode,
2629 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2630 			start_byte + length - 1);
2631 }
2632 
2633 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2634 		loff_t start_byte, loff_t length)
2635 {
2636 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2637 			start_byte, start_byte + length - 1);
2638 }
2639 
2640 /*
2641  * File truncate and transaction commit interact with each other in a
2642  * non-trivial way.  If a transaction writing data block A is
2643  * committing, we cannot discard the data by truncate until we have
2644  * written them.  Otherwise if we crashed after the transaction with
2645  * write has committed but before the transaction with truncate has
2646  * committed, we could see stale data in block A.  This function is a
2647  * helper to solve this problem.  It starts writeout of the truncated
2648  * part in case it is in the committing transaction.
2649  *
2650  * Filesystem code must call this function when inode is journaled in
2651  * ordered mode before truncation happens and after the inode has been
2652  * placed on orphan list with the new inode size. The second condition
2653  * avoids the race that someone writes new data and we start
2654  * committing the transaction after this function has been called but
2655  * before a transaction for truncate is started (and furthermore it
2656  * allows us to optimize the case where the addition to orphan list
2657  * happens in the same transaction as write --- we don't have to write
2658  * any data in such case).
2659  */
2660 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2661 					struct jbd2_inode *jinode,
2662 					loff_t new_size)
2663 {
2664 	transaction_t *inode_trans, *commit_trans;
2665 	int ret = 0;
2666 
2667 	/* This is a quick check to avoid locking if not necessary */
2668 	if (!jinode->i_transaction)
2669 		goto out;
2670 	/* Locks are here just to force reading of recent values, it is
2671 	 * enough that the transaction was not committing before we started
2672 	 * a transaction adding the inode to orphan list */
2673 	read_lock(&journal->j_state_lock);
2674 	commit_trans = journal->j_committing_transaction;
2675 	read_unlock(&journal->j_state_lock);
2676 	spin_lock(&journal->j_list_lock);
2677 	inode_trans = jinode->i_transaction;
2678 	spin_unlock(&journal->j_list_lock);
2679 	if (inode_trans == commit_trans) {
2680 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2681 			new_size, LLONG_MAX);
2682 		if (ret)
2683 			jbd2_journal_abort(journal, ret);
2684 	}
2685 out:
2686 	return ret;
2687 }
2688