1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) 199 return; 200 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 201 TASK_UNINTERRUPTIBLE); 202 read_unlock(&journal->j_state_lock); 203 /* 204 * We don't call jbd2_might_wait_for_commit() here as there's no 205 * waiting for outstanding handles happening anymore in T_SWITCH state 206 * and handling of reserved handles actually relies on that for 207 * correctness. 208 */ 209 schedule(); 210 finish_wait(&journal->j_wait_transaction_locked, &wait); 211 } 212 213 static void sub_reserved_credits(journal_t *journal, int blocks) 214 { 215 atomic_sub(blocks, &journal->j_reserved_credits); 216 wake_up(&journal->j_wait_reserved); 217 } 218 219 /* 220 * Wait until we can add credits for handle to the running transaction. Called 221 * with j_state_lock held for reading. Returns 0 if handle joined the running 222 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 223 * caller must retry. 224 */ 225 static int add_transaction_credits(journal_t *journal, int blocks, 226 int rsv_blocks) 227 { 228 transaction_t *t = journal->j_running_transaction; 229 int needed; 230 int total = blocks + rsv_blocks; 231 232 /* 233 * If the current transaction is locked down for commit, wait 234 * for the lock to be released. 235 */ 236 if (t->t_state != T_RUNNING) { 237 WARN_ON_ONCE(t->t_state >= T_FLUSH); 238 wait_transaction_locked(journal); 239 return 1; 240 } 241 242 /* 243 * If there is not enough space left in the log to write all 244 * potential buffers requested by this operation, we need to 245 * stall pending a log checkpoint to free some more log space. 246 */ 247 needed = atomic_add_return(total, &t->t_outstanding_credits); 248 if (needed > journal->j_max_transaction_buffers) { 249 /* 250 * If the current transaction is already too large, 251 * then start to commit it: we can then go back and 252 * attach this handle to a new transaction. 253 */ 254 atomic_sub(total, &t->t_outstanding_credits); 255 256 /* 257 * Is the number of reserved credits in the current transaction too 258 * big to fit this handle? Wait until reserved credits are freed. 259 */ 260 if (atomic_read(&journal->j_reserved_credits) + total > 261 journal->j_max_transaction_buffers) { 262 read_unlock(&journal->j_state_lock); 263 jbd2_might_wait_for_commit(journal); 264 wait_event(journal->j_wait_reserved, 265 atomic_read(&journal->j_reserved_credits) + total <= 266 journal->j_max_transaction_buffers); 267 return 1; 268 } 269 270 wait_transaction_locked(journal); 271 return 1; 272 } 273 274 /* 275 * The commit code assumes that it can get enough log space 276 * without forcing a checkpoint. This is *critical* for 277 * correctness: a checkpoint of a buffer which is also 278 * associated with a committing transaction creates a deadlock, 279 * so commit simply cannot force through checkpoints. 280 * 281 * We must therefore ensure the necessary space in the journal 282 * *before* starting to dirty potentially checkpointed buffers 283 * in the new transaction. 284 */ 285 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 286 atomic_sub(total, &t->t_outstanding_credits); 287 read_unlock(&journal->j_state_lock); 288 jbd2_might_wait_for_commit(journal); 289 write_lock(&journal->j_state_lock); 290 if (jbd2_log_space_left(journal) < 291 journal->j_max_transaction_buffers) 292 __jbd2_log_wait_for_space(journal); 293 write_unlock(&journal->j_state_lock); 294 return 1; 295 } 296 297 /* No reservation? We are done... */ 298 if (!rsv_blocks) 299 return 0; 300 301 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 302 /* We allow at most half of a transaction to be reserved */ 303 if (needed > journal->j_max_transaction_buffers / 2) { 304 sub_reserved_credits(journal, rsv_blocks); 305 atomic_sub(total, &t->t_outstanding_credits); 306 read_unlock(&journal->j_state_lock); 307 jbd2_might_wait_for_commit(journal); 308 wait_event(journal->j_wait_reserved, 309 atomic_read(&journal->j_reserved_credits) + rsv_blocks 310 <= journal->j_max_transaction_buffers / 2); 311 return 1; 312 } 313 return 0; 314 } 315 316 /* 317 * start_this_handle: Given a handle, deal with any locking or stalling 318 * needed to make sure that there is enough journal space for the handle 319 * to begin. Attach the handle to a transaction and set up the 320 * transaction's buffer credits. 321 */ 322 323 static int start_this_handle(journal_t *journal, handle_t *handle, 324 gfp_t gfp_mask) 325 { 326 transaction_t *transaction, *new_transaction = NULL; 327 int blocks = handle->h_total_credits; 328 int rsv_blocks = 0; 329 unsigned long ts = jiffies; 330 331 if (handle->h_rsv_handle) 332 rsv_blocks = handle->h_rsv_handle->h_total_credits; 333 334 /* 335 * Limit the number of reserved credits to 1/2 of maximum transaction 336 * size and limit the number of total credits to not exceed maximum 337 * transaction size per operation. 338 */ 339 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 340 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 341 printk(KERN_ERR "JBD2: %s wants too many credits " 342 "credits:%d rsv_credits:%d max:%d\n", 343 current->comm, blocks, rsv_blocks, 344 journal->j_max_transaction_buffers); 345 WARN_ON(1); 346 return -ENOSPC; 347 } 348 349 alloc_transaction: 350 if (!journal->j_running_transaction) { 351 /* 352 * If __GFP_FS is not present, then we may be being called from 353 * inside the fs writeback layer, so we MUST NOT fail. 354 */ 355 if ((gfp_mask & __GFP_FS) == 0) 356 gfp_mask |= __GFP_NOFAIL; 357 new_transaction = kmem_cache_zalloc(transaction_cache, 358 gfp_mask); 359 if (!new_transaction) 360 return -ENOMEM; 361 } 362 363 jbd_debug(3, "New handle %p going live.\n", handle); 364 365 /* 366 * We need to hold j_state_lock until t_updates has been incremented, 367 * for proper journal barrier handling 368 */ 369 repeat: 370 read_lock(&journal->j_state_lock); 371 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 372 if (is_journal_aborted(journal) || 373 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 374 read_unlock(&journal->j_state_lock); 375 jbd2_journal_free_transaction(new_transaction); 376 return -EROFS; 377 } 378 379 /* 380 * Wait on the journal's transaction barrier if necessary. Specifically 381 * we allow reserved handles to proceed because otherwise commit could 382 * deadlock on page writeback not being able to complete. 383 */ 384 if (!handle->h_reserved && journal->j_barrier_count) { 385 read_unlock(&journal->j_state_lock); 386 wait_event(journal->j_wait_transaction_locked, 387 journal->j_barrier_count == 0); 388 goto repeat; 389 } 390 391 if (!journal->j_running_transaction) { 392 read_unlock(&journal->j_state_lock); 393 if (!new_transaction) 394 goto alloc_transaction; 395 write_lock(&journal->j_state_lock); 396 if (!journal->j_running_transaction && 397 (handle->h_reserved || !journal->j_barrier_count)) { 398 jbd2_get_transaction(journal, new_transaction); 399 new_transaction = NULL; 400 } 401 write_unlock(&journal->j_state_lock); 402 goto repeat; 403 } 404 405 transaction = journal->j_running_transaction; 406 407 if (!handle->h_reserved) { 408 /* We may have dropped j_state_lock - restart in that case */ 409 if (add_transaction_credits(journal, blocks, rsv_blocks)) 410 goto repeat; 411 } else { 412 /* 413 * We have handle reserved so we are allowed to join T_LOCKED 414 * transaction and we don't have to check for transaction size 415 * and journal space. But we still have to wait while running 416 * transaction is being switched to a committing one as it 417 * won't wait for any handles anymore. 418 */ 419 if (transaction->t_state == T_SWITCH) { 420 wait_transaction_switching(journal); 421 goto repeat; 422 } 423 sub_reserved_credits(journal, blocks); 424 handle->h_reserved = 0; 425 } 426 427 /* OK, account for the buffers that this operation expects to 428 * use and add the handle to the running transaction. 429 */ 430 update_t_max_wait(transaction, ts); 431 handle->h_transaction = transaction; 432 handle->h_requested_credits = blocks; 433 handle->h_revoke_credits_requested = handle->h_revoke_credits; 434 handle->h_start_jiffies = jiffies; 435 atomic_inc(&transaction->t_updates); 436 atomic_inc(&transaction->t_handle_count); 437 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 438 handle, blocks, 439 atomic_read(&transaction->t_outstanding_credits), 440 jbd2_log_space_left(journal)); 441 read_unlock(&journal->j_state_lock); 442 current->journal_info = handle; 443 444 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 445 jbd2_journal_free_transaction(new_transaction); 446 /* 447 * Ensure that no allocations done while the transaction is open are 448 * going to recurse back to the fs layer. 449 */ 450 handle->saved_alloc_context = memalloc_nofs_save(); 451 return 0; 452 } 453 454 /* Allocate a new handle. This should probably be in a slab... */ 455 static handle_t *new_handle(int nblocks) 456 { 457 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 458 if (!handle) 459 return NULL; 460 handle->h_total_credits = nblocks; 461 handle->h_ref = 1; 462 463 return handle; 464 } 465 466 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 467 int revoke_records, gfp_t gfp_mask, 468 unsigned int type, unsigned int line_no) 469 { 470 handle_t *handle = journal_current_handle(); 471 int err; 472 473 if (!journal) 474 return ERR_PTR(-EROFS); 475 476 if (handle) { 477 J_ASSERT(handle->h_transaction->t_journal == journal); 478 handle->h_ref++; 479 return handle; 480 } 481 482 nblocks += DIV_ROUND_UP(revoke_records, 483 journal->j_revoke_records_per_block); 484 handle = new_handle(nblocks); 485 if (!handle) 486 return ERR_PTR(-ENOMEM); 487 if (rsv_blocks) { 488 handle_t *rsv_handle; 489 490 rsv_handle = new_handle(rsv_blocks); 491 if (!rsv_handle) { 492 jbd2_free_handle(handle); 493 return ERR_PTR(-ENOMEM); 494 } 495 rsv_handle->h_reserved = 1; 496 rsv_handle->h_journal = journal; 497 handle->h_rsv_handle = rsv_handle; 498 } 499 handle->h_revoke_credits = revoke_records; 500 501 err = start_this_handle(journal, handle, gfp_mask); 502 if (err < 0) { 503 if (handle->h_rsv_handle) 504 jbd2_free_handle(handle->h_rsv_handle); 505 jbd2_free_handle(handle); 506 return ERR_PTR(err); 507 } 508 handle->h_type = type; 509 handle->h_line_no = line_no; 510 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 511 handle->h_transaction->t_tid, type, 512 line_no, nblocks); 513 514 return handle; 515 } 516 EXPORT_SYMBOL(jbd2__journal_start); 517 518 519 /** 520 * handle_t *jbd2_journal_start() - Obtain a new handle. 521 * @journal: Journal to start transaction on. 522 * @nblocks: number of block buffer we might modify 523 * 524 * We make sure that the transaction can guarantee at least nblocks of 525 * modified buffers in the log. We block until the log can guarantee 526 * that much space. Additionally, if rsv_blocks > 0, we also create another 527 * handle with rsv_blocks reserved blocks in the journal. This handle is 528 * stored in h_rsv_handle. It is not attached to any particular transaction 529 * and thus doesn't block transaction commit. If the caller uses this reserved 530 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 531 * on the parent handle will dispose the reserved one. Reserved handle has to 532 * be converted to a normal handle using jbd2_journal_start_reserved() before 533 * it can be used. 534 * 535 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 536 * on failure. 537 */ 538 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 539 { 540 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 541 } 542 EXPORT_SYMBOL(jbd2_journal_start); 543 544 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 545 { 546 journal_t *journal = handle->h_journal; 547 548 WARN_ON(!handle->h_reserved); 549 sub_reserved_credits(journal, handle->h_total_credits); 550 if (t) 551 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 552 } 553 554 void jbd2_journal_free_reserved(handle_t *handle) 555 { 556 journal_t *journal = handle->h_journal; 557 558 /* Get j_state_lock to pin running transaction if it exists */ 559 read_lock(&journal->j_state_lock); 560 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 561 read_unlock(&journal->j_state_lock); 562 jbd2_free_handle(handle); 563 } 564 EXPORT_SYMBOL(jbd2_journal_free_reserved); 565 566 /** 567 * int jbd2_journal_start_reserved() - start reserved handle 568 * @handle: handle to start 569 * @type: for handle statistics 570 * @line_no: for handle statistics 571 * 572 * Start handle that has been previously reserved with jbd2_journal_reserve(). 573 * This attaches @handle to the running transaction (or creates one if there's 574 * not transaction running). Unlike jbd2_journal_start() this function cannot 575 * block on journal commit, checkpointing, or similar stuff. It can block on 576 * memory allocation or frozen journal though. 577 * 578 * Return 0 on success, non-zero on error - handle is freed in that case. 579 */ 580 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 581 unsigned int line_no) 582 { 583 journal_t *journal = handle->h_journal; 584 int ret = -EIO; 585 586 if (WARN_ON(!handle->h_reserved)) { 587 /* Someone passed in normal handle? Just stop it. */ 588 jbd2_journal_stop(handle); 589 return ret; 590 } 591 /* 592 * Usefulness of mixing of reserved and unreserved handles is 593 * questionable. So far nobody seems to need it so just error out. 594 */ 595 if (WARN_ON(current->journal_info)) { 596 jbd2_journal_free_reserved(handle); 597 return ret; 598 } 599 600 handle->h_journal = NULL; 601 /* 602 * GFP_NOFS is here because callers are likely from writeback or 603 * similarly constrained call sites 604 */ 605 ret = start_this_handle(journal, handle, GFP_NOFS); 606 if (ret < 0) { 607 handle->h_journal = journal; 608 jbd2_journal_free_reserved(handle); 609 return ret; 610 } 611 handle->h_type = type; 612 handle->h_line_no = line_no; 613 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 614 handle->h_transaction->t_tid, type, 615 line_no, handle->h_total_credits); 616 return 0; 617 } 618 EXPORT_SYMBOL(jbd2_journal_start_reserved); 619 620 /** 621 * int jbd2_journal_extend() - extend buffer credits. 622 * @handle: handle to 'extend' 623 * @nblocks: nr blocks to try to extend by. 624 * @revoke_records: number of revoke records to try to extend by. 625 * 626 * Some transactions, such as large extends and truncates, can be done 627 * atomically all at once or in several stages. The operation requests 628 * a credit for a number of buffer modifications in advance, but can 629 * extend its credit if it needs more. 630 * 631 * jbd2_journal_extend tries to give the running handle more buffer credits. 632 * It does not guarantee that allocation - this is a best-effort only. 633 * The calling process MUST be able to deal cleanly with a failure to 634 * extend here. 635 * 636 * Return 0 on success, non-zero on failure. 637 * 638 * return code < 0 implies an error 639 * return code > 0 implies normal transaction-full status. 640 */ 641 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 642 { 643 transaction_t *transaction = handle->h_transaction; 644 journal_t *journal; 645 int result; 646 int wanted; 647 648 if (is_handle_aborted(handle)) 649 return -EROFS; 650 journal = transaction->t_journal; 651 652 result = 1; 653 654 read_lock(&journal->j_state_lock); 655 656 /* Don't extend a locked-down transaction! */ 657 if (transaction->t_state != T_RUNNING) { 658 jbd_debug(3, "denied handle %p %d blocks: " 659 "transaction not running\n", handle, nblocks); 660 goto error_out; 661 } 662 663 nblocks += DIV_ROUND_UP( 664 handle->h_revoke_credits_requested + revoke_records, 665 journal->j_revoke_records_per_block) - 666 DIV_ROUND_UP( 667 handle->h_revoke_credits_requested, 668 journal->j_revoke_records_per_block); 669 spin_lock(&transaction->t_handle_lock); 670 wanted = atomic_add_return(nblocks, 671 &transaction->t_outstanding_credits); 672 673 if (wanted > journal->j_max_transaction_buffers) { 674 jbd_debug(3, "denied handle %p %d blocks: " 675 "transaction too large\n", handle, nblocks); 676 atomic_sub(nblocks, &transaction->t_outstanding_credits); 677 goto unlock; 678 } 679 680 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 681 transaction->t_tid, 682 handle->h_type, handle->h_line_no, 683 handle->h_total_credits, 684 nblocks); 685 686 handle->h_total_credits += nblocks; 687 handle->h_requested_credits += nblocks; 688 handle->h_revoke_credits += revoke_records; 689 handle->h_revoke_credits_requested += revoke_records; 690 result = 0; 691 692 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 693 unlock: 694 spin_unlock(&transaction->t_handle_lock); 695 error_out: 696 read_unlock(&journal->j_state_lock); 697 return result; 698 } 699 700 static void stop_this_handle(handle_t *handle) 701 { 702 transaction_t *transaction = handle->h_transaction; 703 journal_t *journal = transaction->t_journal; 704 int revokes; 705 706 J_ASSERT(journal_current_handle() == handle); 707 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 708 current->journal_info = NULL; 709 /* 710 * Subtract necessary revoke descriptor blocks from handle credits. We 711 * take care to account only for revoke descriptor blocks the 712 * transaction will really need as large sequences of transactions with 713 * small numbers of revokes are relatively common. 714 */ 715 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 716 if (revokes) { 717 int t_revokes, revoke_descriptors; 718 int rr_per_blk = journal->j_revoke_records_per_block; 719 720 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 721 > handle->h_total_credits); 722 t_revokes = atomic_add_return(revokes, 723 &transaction->t_outstanding_revokes); 724 revoke_descriptors = 725 DIV_ROUND_UP(t_revokes, rr_per_blk) - 726 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 727 handle->h_total_credits -= revoke_descriptors; 728 } 729 atomic_sub(handle->h_total_credits, 730 &transaction->t_outstanding_credits); 731 if (handle->h_rsv_handle) 732 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 733 transaction); 734 if (atomic_dec_and_test(&transaction->t_updates)) 735 wake_up(&journal->j_wait_updates); 736 737 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 738 /* 739 * Scope of the GFP_NOFS context is over here and so we can restore the 740 * original alloc context. 741 */ 742 memalloc_nofs_restore(handle->saved_alloc_context); 743 } 744 745 /** 746 * int jbd2_journal_restart() - restart a handle . 747 * @handle: handle to restart 748 * @nblocks: nr credits requested 749 * @revoke_records: number of revoke record credits requested 750 * @gfp_mask: memory allocation flags (for start_this_handle) 751 * 752 * Restart a handle for a multi-transaction filesystem 753 * operation. 754 * 755 * If the jbd2_journal_extend() call above fails to grant new buffer credits 756 * to a running handle, a call to jbd2_journal_restart will commit the 757 * handle's transaction so far and reattach the handle to a new 758 * transaction capable of guaranteeing the requested number of 759 * credits. We preserve reserved handle if there's any attached to the 760 * passed in handle. 761 */ 762 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 763 gfp_t gfp_mask) 764 { 765 transaction_t *transaction = handle->h_transaction; 766 journal_t *journal; 767 tid_t tid; 768 int need_to_start; 769 int ret; 770 771 /* If we've had an abort of any type, don't even think about 772 * actually doing the restart! */ 773 if (is_handle_aborted(handle)) 774 return 0; 775 journal = transaction->t_journal; 776 tid = transaction->t_tid; 777 778 /* 779 * First unlink the handle from its current transaction, and start the 780 * commit on that. 781 */ 782 jbd_debug(2, "restarting handle %p\n", handle); 783 stop_this_handle(handle); 784 handle->h_transaction = NULL; 785 786 /* 787 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 788 * get rid of pointless j_state_lock traffic like this. 789 */ 790 read_lock(&journal->j_state_lock); 791 need_to_start = !tid_geq(journal->j_commit_request, tid); 792 read_unlock(&journal->j_state_lock); 793 if (need_to_start) 794 jbd2_log_start_commit(journal, tid); 795 handle->h_total_credits = nblocks + 796 DIV_ROUND_UP(revoke_records, 797 journal->j_revoke_records_per_block); 798 handle->h_revoke_credits = revoke_records; 799 ret = start_this_handle(journal, handle, gfp_mask); 800 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 801 ret ? 0 : handle->h_transaction->t_tid, 802 handle->h_type, handle->h_line_no, 803 handle->h_total_credits); 804 return ret; 805 } 806 EXPORT_SYMBOL(jbd2__journal_restart); 807 808 809 int jbd2_journal_restart(handle_t *handle, int nblocks) 810 { 811 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 812 } 813 EXPORT_SYMBOL(jbd2_journal_restart); 814 815 /** 816 * void jbd2_journal_lock_updates () - establish a transaction barrier. 817 * @journal: Journal to establish a barrier on. 818 * 819 * This locks out any further updates from being started, and blocks 820 * until all existing updates have completed, returning only once the 821 * journal is in a quiescent state with no updates running. 822 * 823 * The journal lock should not be held on entry. 824 */ 825 void jbd2_journal_lock_updates(journal_t *journal) 826 { 827 DEFINE_WAIT(wait); 828 829 jbd2_might_wait_for_commit(journal); 830 831 write_lock(&journal->j_state_lock); 832 ++journal->j_barrier_count; 833 834 /* Wait until there are no reserved handles */ 835 if (atomic_read(&journal->j_reserved_credits)) { 836 write_unlock(&journal->j_state_lock); 837 wait_event(journal->j_wait_reserved, 838 atomic_read(&journal->j_reserved_credits) == 0); 839 write_lock(&journal->j_state_lock); 840 } 841 842 /* Wait until there are no running updates */ 843 while (1) { 844 transaction_t *transaction = journal->j_running_transaction; 845 846 if (!transaction) 847 break; 848 849 spin_lock(&transaction->t_handle_lock); 850 prepare_to_wait(&journal->j_wait_updates, &wait, 851 TASK_UNINTERRUPTIBLE); 852 if (!atomic_read(&transaction->t_updates)) { 853 spin_unlock(&transaction->t_handle_lock); 854 finish_wait(&journal->j_wait_updates, &wait); 855 break; 856 } 857 spin_unlock(&transaction->t_handle_lock); 858 write_unlock(&journal->j_state_lock); 859 schedule(); 860 finish_wait(&journal->j_wait_updates, &wait); 861 write_lock(&journal->j_state_lock); 862 } 863 write_unlock(&journal->j_state_lock); 864 865 /* 866 * We have now established a barrier against other normal updates, but 867 * we also need to barrier against other jbd2_journal_lock_updates() calls 868 * to make sure that we serialise special journal-locked operations 869 * too. 870 */ 871 mutex_lock(&journal->j_barrier); 872 } 873 874 /** 875 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 876 * @journal: Journal to release the barrier on. 877 * 878 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 879 * 880 * Should be called without the journal lock held. 881 */ 882 void jbd2_journal_unlock_updates (journal_t *journal) 883 { 884 J_ASSERT(journal->j_barrier_count != 0); 885 886 mutex_unlock(&journal->j_barrier); 887 write_lock(&journal->j_state_lock); 888 --journal->j_barrier_count; 889 write_unlock(&journal->j_state_lock); 890 wake_up(&journal->j_wait_transaction_locked); 891 } 892 893 static void warn_dirty_buffer(struct buffer_head *bh) 894 { 895 printk(KERN_WARNING 896 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 897 "There's a risk of filesystem corruption in case of system " 898 "crash.\n", 899 bh->b_bdev, (unsigned long long)bh->b_blocknr); 900 } 901 902 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 903 static void jbd2_freeze_jh_data(struct journal_head *jh) 904 { 905 struct page *page; 906 int offset; 907 char *source; 908 struct buffer_head *bh = jh2bh(jh); 909 910 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 911 page = bh->b_page; 912 offset = offset_in_page(bh->b_data); 913 source = kmap_atomic(page); 914 /* Fire data frozen trigger just before we copy the data */ 915 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 916 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 917 kunmap_atomic(source); 918 919 /* 920 * Now that the frozen data is saved off, we need to store any matching 921 * triggers. 922 */ 923 jh->b_frozen_triggers = jh->b_triggers; 924 } 925 926 /* 927 * If the buffer is already part of the current transaction, then there 928 * is nothing we need to do. If it is already part of a prior 929 * transaction which we are still committing to disk, then we need to 930 * make sure that we do not overwrite the old copy: we do copy-out to 931 * preserve the copy going to disk. We also account the buffer against 932 * the handle's metadata buffer credits (unless the buffer is already 933 * part of the transaction, that is). 934 * 935 */ 936 static int 937 do_get_write_access(handle_t *handle, struct journal_head *jh, 938 int force_copy) 939 { 940 struct buffer_head *bh; 941 transaction_t *transaction = handle->h_transaction; 942 journal_t *journal; 943 int error; 944 char *frozen_buffer = NULL; 945 unsigned long start_lock, time_lock; 946 947 journal = transaction->t_journal; 948 949 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 950 951 JBUFFER_TRACE(jh, "entry"); 952 repeat: 953 bh = jh2bh(jh); 954 955 /* @@@ Need to check for errors here at some point. */ 956 957 start_lock = jiffies; 958 lock_buffer(bh); 959 spin_lock(&jh->b_state_lock); 960 961 /* If it takes too long to lock the buffer, trace it */ 962 time_lock = jbd2_time_diff(start_lock, jiffies); 963 if (time_lock > HZ/10) 964 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 965 jiffies_to_msecs(time_lock)); 966 967 /* We now hold the buffer lock so it is safe to query the buffer 968 * state. Is the buffer dirty? 969 * 970 * If so, there are two possibilities. The buffer may be 971 * non-journaled, and undergoing a quite legitimate writeback. 972 * Otherwise, it is journaled, and we don't expect dirty buffers 973 * in that state (the buffers should be marked JBD_Dirty 974 * instead.) So either the IO is being done under our own 975 * control and this is a bug, or it's a third party IO such as 976 * dump(8) (which may leave the buffer scheduled for read --- 977 * ie. locked but not dirty) or tune2fs (which may actually have 978 * the buffer dirtied, ugh.) */ 979 980 if (buffer_dirty(bh)) { 981 /* 982 * First question: is this buffer already part of the current 983 * transaction or the existing committing transaction? 984 */ 985 if (jh->b_transaction) { 986 J_ASSERT_JH(jh, 987 jh->b_transaction == transaction || 988 jh->b_transaction == 989 journal->j_committing_transaction); 990 if (jh->b_next_transaction) 991 J_ASSERT_JH(jh, jh->b_next_transaction == 992 transaction); 993 warn_dirty_buffer(bh); 994 } 995 /* 996 * In any case we need to clean the dirty flag and we must 997 * do it under the buffer lock to be sure we don't race 998 * with running write-out. 999 */ 1000 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1001 clear_buffer_dirty(bh); 1002 set_buffer_jbddirty(bh); 1003 } 1004 1005 unlock_buffer(bh); 1006 1007 error = -EROFS; 1008 if (is_handle_aborted(handle)) { 1009 spin_unlock(&jh->b_state_lock); 1010 goto out; 1011 } 1012 error = 0; 1013 1014 /* 1015 * The buffer is already part of this transaction if b_transaction or 1016 * b_next_transaction points to it 1017 */ 1018 if (jh->b_transaction == transaction || 1019 jh->b_next_transaction == transaction) 1020 goto done; 1021 1022 /* 1023 * this is the first time this transaction is touching this buffer, 1024 * reset the modified flag 1025 */ 1026 jh->b_modified = 0; 1027 1028 /* 1029 * If the buffer is not journaled right now, we need to make sure it 1030 * doesn't get written to disk before the caller actually commits the 1031 * new data 1032 */ 1033 if (!jh->b_transaction) { 1034 JBUFFER_TRACE(jh, "no transaction"); 1035 J_ASSERT_JH(jh, !jh->b_next_transaction); 1036 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1037 /* 1038 * Make sure all stores to jh (b_modified, b_frozen_data) are 1039 * visible before attaching it to the running transaction. 1040 * Paired with barrier in jbd2_write_access_granted() 1041 */ 1042 smp_wmb(); 1043 spin_lock(&journal->j_list_lock); 1044 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1045 spin_unlock(&journal->j_list_lock); 1046 goto done; 1047 } 1048 /* 1049 * If there is already a copy-out version of this buffer, then we don't 1050 * need to make another one 1051 */ 1052 if (jh->b_frozen_data) { 1053 JBUFFER_TRACE(jh, "has frozen data"); 1054 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1055 goto attach_next; 1056 } 1057 1058 JBUFFER_TRACE(jh, "owned by older transaction"); 1059 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1060 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1061 1062 /* 1063 * There is one case we have to be very careful about. If the 1064 * committing transaction is currently writing this buffer out to disk 1065 * and has NOT made a copy-out, then we cannot modify the buffer 1066 * contents at all right now. The essence of copy-out is that it is 1067 * the extra copy, not the primary copy, which gets journaled. If the 1068 * primary copy is already going to disk then we cannot do copy-out 1069 * here. 1070 */ 1071 if (buffer_shadow(bh)) { 1072 JBUFFER_TRACE(jh, "on shadow: sleep"); 1073 spin_unlock(&jh->b_state_lock); 1074 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1075 goto repeat; 1076 } 1077 1078 /* 1079 * Only do the copy if the currently-owning transaction still needs it. 1080 * If buffer isn't on BJ_Metadata list, the committing transaction is 1081 * past that stage (here we use the fact that BH_Shadow is set under 1082 * bh_state lock together with refiling to BJ_Shadow list and at this 1083 * point we know the buffer doesn't have BH_Shadow set). 1084 * 1085 * Subtle point, though: if this is a get_undo_access, then we will be 1086 * relying on the frozen_data to contain the new value of the 1087 * committed_data record after the transaction, so we HAVE to force the 1088 * frozen_data copy in that case. 1089 */ 1090 if (jh->b_jlist == BJ_Metadata || force_copy) { 1091 JBUFFER_TRACE(jh, "generate frozen data"); 1092 if (!frozen_buffer) { 1093 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1094 spin_unlock(&jh->b_state_lock); 1095 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1096 GFP_NOFS | __GFP_NOFAIL); 1097 goto repeat; 1098 } 1099 jh->b_frozen_data = frozen_buffer; 1100 frozen_buffer = NULL; 1101 jbd2_freeze_jh_data(jh); 1102 } 1103 attach_next: 1104 /* 1105 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1106 * before attaching it to the running transaction. Paired with barrier 1107 * in jbd2_write_access_granted() 1108 */ 1109 smp_wmb(); 1110 jh->b_next_transaction = transaction; 1111 1112 done: 1113 spin_unlock(&jh->b_state_lock); 1114 1115 /* 1116 * If we are about to journal a buffer, then any revoke pending on it is 1117 * no longer valid 1118 */ 1119 jbd2_journal_cancel_revoke(handle, jh); 1120 1121 out: 1122 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1123 jbd2_free(frozen_buffer, bh->b_size); 1124 1125 JBUFFER_TRACE(jh, "exit"); 1126 return error; 1127 } 1128 1129 /* Fast check whether buffer is already attached to the required transaction */ 1130 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1131 bool undo) 1132 { 1133 struct journal_head *jh; 1134 bool ret = false; 1135 1136 /* Dirty buffers require special handling... */ 1137 if (buffer_dirty(bh)) 1138 return false; 1139 1140 /* 1141 * RCU protects us from dereferencing freed pages. So the checks we do 1142 * are guaranteed not to oops. However the jh slab object can get freed 1143 * & reallocated while we work with it. So we have to be careful. When 1144 * we see jh attached to the running transaction, we know it must stay 1145 * so until the transaction is committed. Thus jh won't be freed and 1146 * will be attached to the same bh while we run. However it can 1147 * happen jh gets freed, reallocated, and attached to the transaction 1148 * just after we get pointer to it from bh. So we have to be careful 1149 * and recheck jh still belongs to our bh before we return success. 1150 */ 1151 rcu_read_lock(); 1152 if (!buffer_jbd(bh)) 1153 goto out; 1154 /* This should be bh2jh() but that doesn't work with inline functions */ 1155 jh = READ_ONCE(bh->b_private); 1156 if (!jh) 1157 goto out; 1158 /* For undo access buffer must have data copied */ 1159 if (undo && !jh->b_committed_data) 1160 goto out; 1161 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1162 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1163 goto out; 1164 /* 1165 * There are two reasons for the barrier here: 1166 * 1) Make sure to fetch b_bh after we did previous checks so that we 1167 * detect when jh went through free, realloc, attach to transaction 1168 * while we were checking. Paired with implicit barrier in that path. 1169 * 2) So that access to bh done after jbd2_write_access_granted() 1170 * doesn't get reordered and see inconsistent state of concurrent 1171 * do_get_write_access(). 1172 */ 1173 smp_mb(); 1174 if (unlikely(jh->b_bh != bh)) 1175 goto out; 1176 ret = true; 1177 out: 1178 rcu_read_unlock(); 1179 return ret; 1180 } 1181 1182 /** 1183 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1184 * @handle: transaction to add buffer modifications to 1185 * @bh: bh to be used for metadata writes 1186 * 1187 * Returns: error code or 0 on success. 1188 * 1189 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1190 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1191 */ 1192 1193 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1194 { 1195 struct journal_head *jh; 1196 int rc; 1197 1198 if (is_handle_aborted(handle)) 1199 return -EROFS; 1200 1201 if (jbd2_write_access_granted(handle, bh, false)) 1202 return 0; 1203 1204 jh = jbd2_journal_add_journal_head(bh); 1205 /* We do not want to get caught playing with fields which the 1206 * log thread also manipulates. Make sure that the buffer 1207 * completes any outstanding IO before proceeding. */ 1208 rc = do_get_write_access(handle, jh, 0); 1209 jbd2_journal_put_journal_head(jh); 1210 return rc; 1211 } 1212 1213 1214 /* 1215 * When the user wants to journal a newly created buffer_head 1216 * (ie. getblk() returned a new buffer and we are going to populate it 1217 * manually rather than reading off disk), then we need to keep the 1218 * buffer_head locked until it has been completely filled with new 1219 * data. In this case, we should be able to make the assertion that 1220 * the bh is not already part of an existing transaction. 1221 * 1222 * The buffer should already be locked by the caller by this point. 1223 * There is no lock ranking violation: it was a newly created, 1224 * unlocked buffer beforehand. */ 1225 1226 /** 1227 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1228 * @handle: transaction to new buffer to 1229 * @bh: new buffer. 1230 * 1231 * Call this if you create a new bh. 1232 */ 1233 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1234 { 1235 transaction_t *transaction = handle->h_transaction; 1236 journal_t *journal; 1237 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1238 int err; 1239 1240 jbd_debug(5, "journal_head %p\n", jh); 1241 err = -EROFS; 1242 if (is_handle_aborted(handle)) 1243 goto out; 1244 journal = transaction->t_journal; 1245 err = 0; 1246 1247 JBUFFER_TRACE(jh, "entry"); 1248 /* 1249 * The buffer may already belong to this transaction due to pre-zeroing 1250 * in the filesystem's new_block code. It may also be on the previous, 1251 * committing transaction's lists, but it HAS to be in Forget state in 1252 * that case: the transaction must have deleted the buffer for it to be 1253 * reused here. 1254 */ 1255 spin_lock(&jh->b_state_lock); 1256 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1257 jh->b_transaction == NULL || 1258 (jh->b_transaction == journal->j_committing_transaction && 1259 jh->b_jlist == BJ_Forget))); 1260 1261 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1262 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1263 1264 if (jh->b_transaction == NULL) { 1265 /* 1266 * Previous jbd2_journal_forget() could have left the buffer 1267 * with jbddirty bit set because it was being committed. When 1268 * the commit finished, we've filed the buffer for 1269 * checkpointing and marked it dirty. Now we are reallocating 1270 * the buffer so the transaction freeing it must have 1271 * committed and so it's safe to clear the dirty bit. 1272 */ 1273 clear_buffer_dirty(jh2bh(jh)); 1274 /* first access by this transaction */ 1275 jh->b_modified = 0; 1276 1277 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1278 spin_lock(&journal->j_list_lock); 1279 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1280 spin_unlock(&journal->j_list_lock); 1281 } else if (jh->b_transaction == journal->j_committing_transaction) { 1282 /* first access by this transaction */ 1283 jh->b_modified = 0; 1284 1285 JBUFFER_TRACE(jh, "set next transaction"); 1286 spin_lock(&journal->j_list_lock); 1287 jh->b_next_transaction = transaction; 1288 spin_unlock(&journal->j_list_lock); 1289 } 1290 spin_unlock(&jh->b_state_lock); 1291 1292 /* 1293 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1294 * blocks which contain freed but then revoked metadata. We need 1295 * to cancel the revoke in case we end up freeing it yet again 1296 * and the reallocating as data - this would cause a second revoke, 1297 * which hits an assertion error. 1298 */ 1299 JBUFFER_TRACE(jh, "cancelling revoke"); 1300 jbd2_journal_cancel_revoke(handle, jh); 1301 out: 1302 jbd2_journal_put_journal_head(jh); 1303 return err; 1304 } 1305 1306 /** 1307 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1308 * non-rewindable consequences 1309 * @handle: transaction 1310 * @bh: buffer to undo 1311 * 1312 * Sometimes there is a need to distinguish between metadata which has 1313 * been committed to disk and that which has not. The ext3fs code uses 1314 * this for freeing and allocating space, we have to make sure that we 1315 * do not reuse freed space until the deallocation has been committed, 1316 * since if we overwrote that space we would make the delete 1317 * un-rewindable in case of a crash. 1318 * 1319 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1320 * buffer for parts of non-rewindable operations such as delete 1321 * operations on the bitmaps. The journaling code must keep a copy of 1322 * the buffer's contents prior to the undo_access call until such time 1323 * as we know that the buffer has definitely been committed to disk. 1324 * 1325 * We never need to know which transaction the committed data is part 1326 * of, buffers touched here are guaranteed to be dirtied later and so 1327 * will be committed to a new transaction in due course, at which point 1328 * we can discard the old committed data pointer. 1329 * 1330 * Returns error number or 0 on success. 1331 */ 1332 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1333 { 1334 int err; 1335 struct journal_head *jh; 1336 char *committed_data = NULL; 1337 1338 if (is_handle_aborted(handle)) 1339 return -EROFS; 1340 1341 if (jbd2_write_access_granted(handle, bh, true)) 1342 return 0; 1343 1344 jh = jbd2_journal_add_journal_head(bh); 1345 JBUFFER_TRACE(jh, "entry"); 1346 1347 /* 1348 * Do this first --- it can drop the journal lock, so we want to 1349 * make sure that obtaining the committed_data is done 1350 * atomically wrt. completion of any outstanding commits. 1351 */ 1352 err = do_get_write_access(handle, jh, 1); 1353 if (err) 1354 goto out; 1355 1356 repeat: 1357 if (!jh->b_committed_data) 1358 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1359 GFP_NOFS|__GFP_NOFAIL); 1360 1361 spin_lock(&jh->b_state_lock); 1362 if (!jh->b_committed_data) { 1363 /* Copy out the current buffer contents into the 1364 * preserved, committed copy. */ 1365 JBUFFER_TRACE(jh, "generate b_committed data"); 1366 if (!committed_data) { 1367 spin_unlock(&jh->b_state_lock); 1368 goto repeat; 1369 } 1370 1371 jh->b_committed_data = committed_data; 1372 committed_data = NULL; 1373 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1374 } 1375 spin_unlock(&jh->b_state_lock); 1376 out: 1377 jbd2_journal_put_journal_head(jh); 1378 if (unlikely(committed_data)) 1379 jbd2_free(committed_data, bh->b_size); 1380 return err; 1381 } 1382 1383 /** 1384 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1385 * @bh: buffer to trigger on 1386 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1387 * 1388 * Set any triggers on this journal_head. This is always safe, because 1389 * triggers for a committing buffer will be saved off, and triggers for 1390 * a running transaction will match the buffer in that transaction. 1391 * 1392 * Call with NULL to clear the triggers. 1393 */ 1394 void jbd2_journal_set_triggers(struct buffer_head *bh, 1395 struct jbd2_buffer_trigger_type *type) 1396 { 1397 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1398 1399 if (WARN_ON(!jh)) 1400 return; 1401 jh->b_triggers = type; 1402 jbd2_journal_put_journal_head(jh); 1403 } 1404 1405 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1406 struct jbd2_buffer_trigger_type *triggers) 1407 { 1408 struct buffer_head *bh = jh2bh(jh); 1409 1410 if (!triggers || !triggers->t_frozen) 1411 return; 1412 1413 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1414 } 1415 1416 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1417 struct jbd2_buffer_trigger_type *triggers) 1418 { 1419 if (!triggers || !triggers->t_abort) 1420 return; 1421 1422 triggers->t_abort(triggers, jh2bh(jh)); 1423 } 1424 1425 /** 1426 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1427 * @handle: transaction to add buffer to. 1428 * @bh: buffer to mark 1429 * 1430 * mark dirty metadata which needs to be journaled as part of the current 1431 * transaction. 1432 * 1433 * The buffer must have previously had jbd2_journal_get_write_access() 1434 * called so that it has a valid journal_head attached to the buffer 1435 * head. 1436 * 1437 * The buffer is placed on the transaction's metadata list and is marked 1438 * as belonging to the transaction. 1439 * 1440 * Returns error number or 0 on success. 1441 * 1442 * Special care needs to be taken if the buffer already belongs to the 1443 * current committing transaction (in which case we should have frozen 1444 * data present for that commit). In that case, we don't relink the 1445 * buffer: that only gets done when the old transaction finally 1446 * completes its commit. 1447 */ 1448 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1449 { 1450 transaction_t *transaction = handle->h_transaction; 1451 journal_t *journal; 1452 struct journal_head *jh; 1453 int ret = 0; 1454 1455 if (is_handle_aborted(handle)) 1456 return -EROFS; 1457 if (!buffer_jbd(bh)) 1458 return -EUCLEAN; 1459 1460 /* 1461 * We don't grab jh reference here since the buffer must be part 1462 * of the running transaction. 1463 */ 1464 jh = bh2jh(bh); 1465 jbd_debug(5, "journal_head %p\n", jh); 1466 JBUFFER_TRACE(jh, "entry"); 1467 1468 /* 1469 * This and the following assertions are unreliable since we may see jh 1470 * in inconsistent state unless we grab bh_state lock. But this is 1471 * crucial to catch bugs so let's do a reliable check until the 1472 * lockless handling is fully proven. 1473 */ 1474 if (jh->b_transaction != transaction && 1475 jh->b_next_transaction != transaction) { 1476 spin_lock(&jh->b_state_lock); 1477 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1478 jh->b_next_transaction == transaction); 1479 spin_unlock(&jh->b_state_lock); 1480 } 1481 if (jh->b_modified == 1) { 1482 /* If it's in our transaction it must be in BJ_Metadata list. */ 1483 if (jh->b_transaction == transaction && 1484 jh->b_jlist != BJ_Metadata) { 1485 spin_lock(&jh->b_state_lock); 1486 if (jh->b_transaction == transaction && 1487 jh->b_jlist != BJ_Metadata) 1488 pr_err("JBD2: assertion failure: h_type=%u " 1489 "h_line_no=%u block_no=%llu jlist=%u\n", 1490 handle->h_type, handle->h_line_no, 1491 (unsigned long long) bh->b_blocknr, 1492 jh->b_jlist); 1493 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1494 jh->b_jlist == BJ_Metadata); 1495 spin_unlock(&jh->b_state_lock); 1496 } 1497 goto out; 1498 } 1499 1500 journal = transaction->t_journal; 1501 spin_lock(&jh->b_state_lock); 1502 1503 if (jh->b_modified == 0) { 1504 /* 1505 * This buffer's got modified and becoming part 1506 * of the transaction. This needs to be done 1507 * once a transaction -bzzz 1508 */ 1509 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1510 ret = -ENOSPC; 1511 goto out_unlock_bh; 1512 } 1513 jh->b_modified = 1; 1514 handle->h_total_credits--; 1515 } 1516 1517 /* 1518 * fastpath, to avoid expensive locking. If this buffer is already 1519 * on the running transaction's metadata list there is nothing to do. 1520 * Nobody can take it off again because there is a handle open. 1521 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1522 * result in this test being false, so we go in and take the locks. 1523 */ 1524 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1525 JBUFFER_TRACE(jh, "fastpath"); 1526 if (unlikely(jh->b_transaction != 1527 journal->j_running_transaction)) { 1528 printk(KERN_ERR "JBD2: %s: " 1529 "jh->b_transaction (%llu, %p, %u) != " 1530 "journal->j_running_transaction (%p, %u)\n", 1531 journal->j_devname, 1532 (unsigned long long) bh->b_blocknr, 1533 jh->b_transaction, 1534 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1535 journal->j_running_transaction, 1536 journal->j_running_transaction ? 1537 journal->j_running_transaction->t_tid : 0); 1538 ret = -EINVAL; 1539 } 1540 goto out_unlock_bh; 1541 } 1542 1543 set_buffer_jbddirty(bh); 1544 1545 /* 1546 * Metadata already on the current transaction list doesn't 1547 * need to be filed. Metadata on another transaction's list must 1548 * be committing, and will be refiled once the commit completes: 1549 * leave it alone for now. 1550 */ 1551 if (jh->b_transaction != transaction) { 1552 JBUFFER_TRACE(jh, "already on other transaction"); 1553 if (unlikely(((jh->b_transaction != 1554 journal->j_committing_transaction)) || 1555 (jh->b_next_transaction != transaction))) { 1556 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1557 "bad jh for block %llu: " 1558 "transaction (%p, %u), " 1559 "jh->b_transaction (%p, %u), " 1560 "jh->b_next_transaction (%p, %u), jlist %u\n", 1561 journal->j_devname, 1562 (unsigned long long) bh->b_blocknr, 1563 transaction, transaction->t_tid, 1564 jh->b_transaction, 1565 jh->b_transaction ? 1566 jh->b_transaction->t_tid : 0, 1567 jh->b_next_transaction, 1568 jh->b_next_transaction ? 1569 jh->b_next_transaction->t_tid : 0, 1570 jh->b_jlist); 1571 WARN_ON(1); 1572 ret = -EINVAL; 1573 } 1574 /* And this case is illegal: we can't reuse another 1575 * transaction's data buffer, ever. */ 1576 goto out_unlock_bh; 1577 } 1578 1579 /* That test should have eliminated the following case: */ 1580 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1581 1582 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1583 spin_lock(&journal->j_list_lock); 1584 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1585 spin_unlock(&journal->j_list_lock); 1586 out_unlock_bh: 1587 spin_unlock(&jh->b_state_lock); 1588 out: 1589 JBUFFER_TRACE(jh, "exit"); 1590 return ret; 1591 } 1592 1593 /** 1594 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1595 * @handle: transaction handle 1596 * @bh: bh to 'forget' 1597 * 1598 * We can only do the bforget if there are no commits pending against the 1599 * buffer. If the buffer is dirty in the current running transaction we 1600 * can safely unlink it. 1601 * 1602 * bh may not be a journalled buffer at all - it may be a non-JBD 1603 * buffer which came off the hashtable. Check for this. 1604 * 1605 * Decrements bh->b_count by one. 1606 * 1607 * Allow this call even if the handle has aborted --- it may be part of 1608 * the caller's cleanup after an abort. 1609 */ 1610 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1611 { 1612 transaction_t *transaction = handle->h_transaction; 1613 journal_t *journal; 1614 struct journal_head *jh; 1615 int drop_reserve = 0; 1616 int err = 0; 1617 int was_modified = 0; 1618 1619 if (is_handle_aborted(handle)) 1620 return -EROFS; 1621 journal = transaction->t_journal; 1622 1623 BUFFER_TRACE(bh, "entry"); 1624 1625 jh = jbd2_journal_grab_journal_head(bh); 1626 if (!jh) { 1627 __bforget(bh); 1628 return 0; 1629 } 1630 1631 spin_lock(&jh->b_state_lock); 1632 1633 /* Critical error: attempting to delete a bitmap buffer, maybe? 1634 * Don't do any jbd operations, and return an error. */ 1635 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1636 "inconsistent data on disk")) { 1637 err = -EIO; 1638 goto drop; 1639 } 1640 1641 /* keep track of whether or not this transaction modified us */ 1642 was_modified = jh->b_modified; 1643 1644 /* 1645 * The buffer's going from the transaction, we must drop 1646 * all references -bzzz 1647 */ 1648 jh->b_modified = 0; 1649 1650 if (jh->b_transaction == transaction) { 1651 J_ASSERT_JH(jh, !jh->b_frozen_data); 1652 1653 /* If we are forgetting a buffer which is already part 1654 * of this transaction, then we can just drop it from 1655 * the transaction immediately. */ 1656 clear_buffer_dirty(bh); 1657 clear_buffer_jbddirty(bh); 1658 1659 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1660 1661 /* 1662 * we only want to drop a reference if this transaction 1663 * modified the buffer 1664 */ 1665 if (was_modified) 1666 drop_reserve = 1; 1667 1668 /* 1669 * We are no longer going to journal this buffer. 1670 * However, the commit of this transaction is still 1671 * important to the buffer: the delete that we are now 1672 * processing might obsolete an old log entry, so by 1673 * committing, we can satisfy the buffer's checkpoint. 1674 * 1675 * So, if we have a checkpoint on the buffer, we should 1676 * now refile the buffer on our BJ_Forget list so that 1677 * we know to remove the checkpoint after we commit. 1678 */ 1679 1680 spin_lock(&journal->j_list_lock); 1681 if (jh->b_cp_transaction) { 1682 __jbd2_journal_temp_unlink_buffer(jh); 1683 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1684 } else { 1685 __jbd2_journal_unfile_buffer(jh); 1686 jbd2_journal_put_journal_head(jh); 1687 } 1688 spin_unlock(&journal->j_list_lock); 1689 } else if (jh->b_transaction) { 1690 J_ASSERT_JH(jh, (jh->b_transaction == 1691 journal->j_committing_transaction)); 1692 /* However, if the buffer is still owned by a prior 1693 * (committing) transaction, we can't drop it yet... */ 1694 JBUFFER_TRACE(jh, "belongs to older transaction"); 1695 /* ... but we CAN drop it from the new transaction through 1696 * marking the buffer as freed and set j_next_transaction to 1697 * the new transaction, so that not only the commit code 1698 * knows it should clear dirty bits when it is done with the 1699 * buffer, but also the buffer can be checkpointed only 1700 * after the new transaction commits. */ 1701 1702 set_buffer_freed(bh); 1703 1704 if (!jh->b_next_transaction) { 1705 spin_lock(&journal->j_list_lock); 1706 jh->b_next_transaction = transaction; 1707 spin_unlock(&journal->j_list_lock); 1708 } else { 1709 J_ASSERT(jh->b_next_transaction == transaction); 1710 1711 /* 1712 * only drop a reference if this transaction modified 1713 * the buffer 1714 */ 1715 if (was_modified) 1716 drop_reserve = 1; 1717 } 1718 } else { 1719 /* 1720 * Finally, if the buffer is not belongs to any 1721 * transaction, we can just drop it now if it has no 1722 * checkpoint. 1723 */ 1724 spin_lock(&journal->j_list_lock); 1725 if (!jh->b_cp_transaction) { 1726 JBUFFER_TRACE(jh, "belongs to none transaction"); 1727 spin_unlock(&journal->j_list_lock); 1728 goto drop; 1729 } 1730 1731 /* 1732 * Otherwise, if the buffer has been written to disk, 1733 * it is safe to remove the checkpoint and drop it. 1734 */ 1735 if (!buffer_dirty(bh)) { 1736 __jbd2_journal_remove_checkpoint(jh); 1737 spin_unlock(&journal->j_list_lock); 1738 goto drop; 1739 } 1740 1741 /* 1742 * The buffer is still not written to disk, we should 1743 * attach this buffer to current transaction so that the 1744 * buffer can be checkpointed only after the current 1745 * transaction commits. 1746 */ 1747 clear_buffer_dirty(bh); 1748 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1749 spin_unlock(&journal->j_list_lock); 1750 } 1751 drop: 1752 __brelse(bh); 1753 spin_unlock(&jh->b_state_lock); 1754 jbd2_journal_put_journal_head(jh); 1755 if (drop_reserve) { 1756 /* no need to reserve log space for this block -bzzz */ 1757 handle->h_total_credits++; 1758 } 1759 return err; 1760 } 1761 1762 /** 1763 * int jbd2_journal_stop() - complete a transaction 1764 * @handle: transaction to complete. 1765 * 1766 * All done for a particular handle. 1767 * 1768 * There is not much action needed here. We just return any remaining 1769 * buffer credits to the transaction and remove the handle. The only 1770 * complication is that we need to start a commit operation if the 1771 * filesystem is marked for synchronous update. 1772 * 1773 * jbd2_journal_stop itself will not usually return an error, but it may 1774 * do so in unusual circumstances. In particular, expect it to 1775 * return -EIO if a jbd2_journal_abort has been executed since the 1776 * transaction began. 1777 */ 1778 int jbd2_journal_stop(handle_t *handle) 1779 { 1780 transaction_t *transaction = handle->h_transaction; 1781 journal_t *journal; 1782 int err = 0, wait_for_commit = 0; 1783 tid_t tid; 1784 pid_t pid; 1785 1786 if (--handle->h_ref > 0) { 1787 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1788 handle->h_ref); 1789 if (is_handle_aborted(handle)) 1790 return -EIO; 1791 return 0; 1792 } 1793 if (!transaction) { 1794 /* 1795 * Handle is already detached from the transaction so there is 1796 * nothing to do other than free the handle. 1797 */ 1798 memalloc_nofs_restore(handle->saved_alloc_context); 1799 goto free_and_exit; 1800 } 1801 journal = transaction->t_journal; 1802 tid = transaction->t_tid; 1803 1804 if (is_handle_aborted(handle)) 1805 err = -EIO; 1806 1807 jbd_debug(4, "Handle %p going down\n", handle); 1808 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1809 tid, handle->h_type, handle->h_line_no, 1810 jiffies - handle->h_start_jiffies, 1811 handle->h_sync, handle->h_requested_credits, 1812 (handle->h_requested_credits - 1813 handle->h_total_credits)); 1814 1815 /* 1816 * Implement synchronous transaction batching. If the handle 1817 * was synchronous, don't force a commit immediately. Let's 1818 * yield and let another thread piggyback onto this 1819 * transaction. Keep doing that while new threads continue to 1820 * arrive. It doesn't cost much - we're about to run a commit 1821 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1822 * operations by 30x or more... 1823 * 1824 * We try and optimize the sleep time against what the 1825 * underlying disk can do, instead of having a static sleep 1826 * time. This is useful for the case where our storage is so 1827 * fast that it is more optimal to go ahead and force a flush 1828 * and wait for the transaction to be committed than it is to 1829 * wait for an arbitrary amount of time for new writers to 1830 * join the transaction. We achieve this by measuring how 1831 * long it takes to commit a transaction, and compare it with 1832 * how long this transaction has been running, and if run time 1833 * < commit time then we sleep for the delta and commit. This 1834 * greatly helps super fast disks that would see slowdowns as 1835 * more threads started doing fsyncs. 1836 * 1837 * But don't do this if this process was the most recent one 1838 * to perform a synchronous write. We do this to detect the 1839 * case where a single process is doing a stream of sync 1840 * writes. No point in waiting for joiners in that case. 1841 * 1842 * Setting max_batch_time to 0 disables this completely. 1843 */ 1844 pid = current->pid; 1845 if (handle->h_sync && journal->j_last_sync_writer != pid && 1846 journal->j_max_batch_time) { 1847 u64 commit_time, trans_time; 1848 1849 journal->j_last_sync_writer = pid; 1850 1851 read_lock(&journal->j_state_lock); 1852 commit_time = journal->j_average_commit_time; 1853 read_unlock(&journal->j_state_lock); 1854 1855 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1856 transaction->t_start_time)); 1857 1858 commit_time = max_t(u64, commit_time, 1859 1000*journal->j_min_batch_time); 1860 commit_time = min_t(u64, commit_time, 1861 1000*journal->j_max_batch_time); 1862 1863 if (trans_time < commit_time) { 1864 ktime_t expires = ktime_add_ns(ktime_get(), 1865 commit_time); 1866 set_current_state(TASK_UNINTERRUPTIBLE); 1867 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1868 } 1869 } 1870 1871 if (handle->h_sync) 1872 transaction->t_synchronous_commit = 1; 1873 1874 /* 1875 * If the handle is marked SYNC, we need to set another commit 1876 * going! We also want to force a commit if the transaction is too 1877 * old now. 1878 */ 1879 if (handle->h_sync || 1880 time_after_eq(jiffies, transaction->t_expires)) { 1881 /* Do this even for aborted journals: an abort still 1882 * completes the commit thread, it just doesn't write 1883 * anything to disk. */ 1884 1885 jbd_debug(2, "transaction too old, requesting commit for " 1886 "handle %p\n", handle); 1887 /* This is non-blocking */ 1888 jbd2_log_start_commit(journal, tid); 1889 1890 /* 1891 * Special case: JBD2_SYNC synchronous updates require us 1892 * to wait for the commit to complete. 1893 */ 1894 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1895 wait_for_commit = 1; 1896 } 1897 1898 /* 1899 * Once stop_this_handle() drops t_updates, the transaction could start 1900 * committing on us and eventually disappear. So we must not 1901 * dereference transaction pointer again after calling 1902 * stop_this_handle(). 1903 */ 1904 stop_this_handle(handle); 1905 1906 if (wait_for_commit) 1907 err = jbd2_log_wait_commit(journal, tid); 1908 1909 free_and_exit: 1910 if (handle->h_rsv_handle) 1911 jbd2_free_handle(handle->h_rsv_handle); 1912 jbd2_free_handle(handle); 1913 return err; 1914 } 1915 1916 /* 1917 * 1918 * List management code snippets: various functions for manipulating the 1919 * transaction buffer lists. 1920 * 1921 */ 1922 1923 /* 1924 * Append a buffer to a transaction list, given the transaction's list head 1925 * pointer. 1926 * 1927 * j_list_lock is held. 1928 * 1929 * jh->b_state_lock is held. 1930 */ 1931 1932 static inline void 1933 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1934 { 1935 if (!*list) { 1936 jh->b_tnext = jh->b_tprev = jh; 1937 *list = jh; 1938 } else { 1939 /* Insert at the tail of the list to preserve order */ 1940 struct journal_head *first = *list, *last = first->b_tprev; 1941 jh->b_tprev = last; 1942 jh->b_tnext = first; 1943 last->b_tnext = first->b_tprev = jh; 1944 } 1945 } 1946 1947 /* 1948 * Remove a buffer from a transaction list, given the transaction's list 1949 * head pointer. 1950 * 1951 * Called with j_list_lock held, and the journal may not be locked. 1952 * 1953 * jh->b_state_lock is held. 1954 */ 1955 1956 static inline void 1957 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1958 { 1959 if (*list == jh) { 1960 *list = jh->b_tnext; 1961 if (*list == jh) 1962 *list = NULL; 1963 } 1964 jh->b_tprev->b_tnext = jh->b_tnext; 1965 jh->b_tnext->b_tprev = jh->b_tprev; 1966 } 1967 1968 /* 1969 * Remove a buffer from the appropriate transaction list. 1970 * 1971 * Note that this function can *change* the value of 1972 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1973 * t_reserved_list. If the caller is holding onto a copy of one of these 1974 * pointers, it could go bad. Generally the caller needs to re-read the 1975 * pointer from the transaction_t. 1976 * 1977 * Called under j_list_lock. 1978 */ 1979 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1980 { 1981 struct journal_head **list = NULL; 1982 transaction_t *transaction; 1983 struct buffer_head *bh = jh2bh(jh); 1984 1985 lockdep_assert_held(&jh->b_state_lock); 1986 transaction = jh->b_transaction; 1987 if (transaction) 1988 assert_spin_locked(&transaction->t_journal->j_list_lock); 1989 1990 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1991 if (jh->b_jlist != BJ_None) 1992 J_ASSERT_JH(jh, transaction != NULL); 1993 1994 switch (jh->b_jlist) { 1995 case BJ_None: 1996 return; 1997 case BJ_Metadata: 1998 transaction->t_nr_buffers--; 1999 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2000 list = &transaction->t_buffers; 2001 break; 2002 case BJ_Forget: 2003 list = &transaction->t_forget; 2004 break; 2005 case BJ_Shadow: 2006 list = &transaction->t_shadow_list; 2007 break; 2008 case BJ_Reserved: 2009 list = &transaction->t_reserved_list; 2010 break; 2011 } 2012 2013 __blist_del_buffer(list, jh); 2014 jh->b_jlist = BJ_None; 2015 if (transaction && is_journal_aborted(transaction->t_journal)) 2016 clear_buffer_jbddirty(bh); 2017 else if (test_clear_buffer_jbddirty(bh)) 2018 mark_buffer_dirty(bh); /* Expose it to the VM */ 2019 } 2020 2021 /* 2022 * Remove buffer from all transactions. The caller is responsible for dropping 2023 * the jh reference that belonged to the transaction. 2024 * 2025 * Called with bh_state lock and j_list_lock 2026 */ 2027 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2028 { 2029 __jbd2_journal_temp_unlink_buffer(jh); 2030 jh->b_transaction = NULL; 2031 } 2032 2033 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2034 { 2035 struct buffer_head *bh = jh2bh(jh); 2036 2037 /* Get reference so that buffer cannot be freed before we unlock it */ 2038 get_bh(bh); 2039 spin_lock(&jh->b_state_lock); 2040 spin_lock(&journal->j_list_lock); 2041 __jbd2_journal_unfile_buffer(jh); 2042 spin_unlock(&journal->j_list_lock); 2043 spin_unlock(&jh->b_state_lock); 2044 jbd2_journal_put_journal_head(jh); 2045 __brelse(bh); 2046 } 2047 2048 /* 2049 * Called from jbd2_journal_try_to_free_buffers(). 2050 * 2051 * Called under jh->b_state_lock 2052 */ 2053 static void 2054 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2055 { 2056 struct journal_head *jh; 2057 2058 jh = bh2jh(bh); 2059 2060 if (buffer_locked(bh) || buffer_dirty(bh)) 2061 goto out; 2062 2063 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2064 goto out; 2065 2066 spin_lock(&journal->j_list_lock); 2067 if (jh->b_cp_transaction != NULL) { 2068 /* written-back checkpointed metadata buffer */ 2069 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2070 __jbd2_journal_remove_checkpoint(jh); 2071 } 2072 spin_unlock(&journal->j_list_lock); 2073 out: 2074 return; 2075 } 2076 2077 /** 2078 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 2079 * @journal: journal for operation 2080 * @page: to try and free 2081 * @gfp_mask: we use the mask to detect how hard should we try to release 2082 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit 2083 * code to release the buffers. 2084 * 2085 * 2086 * For all the buffers on this page, 2087 * if they are fully written out ordered data, move them onto BUF_CLEAN 2088 * so try_to_free_buffers() can reap them. 2089 * 2090 * This function returns non-zero if we wish try_to_free_buffers() 2091 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2092 * We also do it if the page has locked or dirty buffers and the caller wants 2093 * us to perform sync or async writeout. 2094 * 2095 * This complicates JBD locking somewhat. We aren't protected by the 2096 * BKL here. We wish to remove the buffer from its committing or 2097 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2098 * 2099 * This may *change* the value of transaction_t->t_datalist, so anyone 2100 * who looks at t_datalist needs to lock against this function. 2101 * 2102 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2103 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2104 * will come out of the lock with the buffer dirty, which makes it 2105 * ineligible for release here. 2106 * 2107 * Who else is affected by this? hmm... Really the only contender 2108 * is do_get_write_access() - it could be looking at the buffer while 2109 * journal_try_to_free_buffer() is changing its state. But that 2110 * cannot happen because we never reallocate freed data as metadata 2111 * while the data is part of a transaction. Yes? 2112 * 2113 * Return 0 on failure, 1 on success 2114 */ 2115 int jbd2_journal_try_to_free_buffers(journal_t *journal, 2116 struct page *page, gfp_t gfp_mask) 2117 { 2118 struct buffer_head *head; 2119 struct buffer_head *bh; 2120 int ret = 0; 2121 2122 J_ASSERT(PageLocked(page)); 2123 2124 head = page_buffers(page); 2125 bh = head; 2126 do { 2127 struct journal_head *jh; 2128 2129 /* 2130 * We take our own ref against the journal_head here to avoid 2131 * having to add tons of locking around each instance of 2132 * jbd2_journal_put_journal_head(). 2133 */ 2134 jh = jbd2_journal_grab_journal_head(bh); 2135 if (!jh) 2136 continue; 2137 2138 spin_lock(&jh->b_state_lock); 2139 __journal_try_to_free_buffer(journal, bh); 2140 spin_unlock(&jh->b_state_lock); 2141 jbd2_journal_put_journal_head(jh); 2142 if (buffer_jbd(bh)) 2143 goto busy; 2144 } while ((bh = bh->b_this_page) != head); 2145 2146 ret = try_to_free_buffers(page); 2147 2148 busy: 2149 return ret; 2150 } 2151 2152 /* 2153 * This buffer is no longer needed. If it is on an older transaction's 2154 * checkpoint list we need to record it on this transaction's forget list 2155 * to pin this buffer (and hence its checkpointing transaction) down until 2156 * this transaction commits. If the buffer isn't on a checkpoint list, we 2157 * release it. 2158 * Returns non-zero if JBD no longer has an interest in the buffer. 2159 * 2160 * Called under j_list_lock. 2161 * 2162 * Called under jh->b_state_lock. 2163 */ 2164 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2165 { 2166 int may_free = 1; 2167 struct buffer_head *bh = jh2bh(jh); 2168 2169 if (jh->b_cp_transaction) { 2170 JBUFFER_TRACE(jh, "on running+cp transaction"); 2171 __jbd2_journal_temp_unlink_buffer(jh); 2172 /* 2173 * We don't want to write the buffer anymore, clear the 2174 * bit so that we don't confuse checks in 2175 * __journal_file_buffer 2176 */ 2177 clear_buffer_dirty(bh); 2178 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2179 may_free = 0; 2180 } else { 2181 JBUFFER_TRACE(jh, "on running transaction"); 2182 __jbd2_journal_unfile_buffer(jh); 2183 jbd2_journal_put_journal_head(jh); 2184 } 2185 return may_free; 2186 } 2187 2188 /* 2189 * jbd2_journal_invalidatepage 2190 * 2191 * This code is tricky. It has a number of cases to deal with. 2192 * 2193 * There are two invariants which this code relies on: 2194 * 2195 * i_size must be updated on disk before we start calling invalidatepage on the 2196 * data. 2197 * 2198 * This is done in ext3 by defining an ext3_setattr method which 2199 * updates i_size before truncate gets going. By maintaining this 2200 * invariant, we can be sure that it is safe to throw away any buffers 2201 * attached to the current transaction: once the transaction commits, 2202 * we know that the data will not be needed. 2203 * 2204 * Note however that we can *not* throw away data belonging to the 2205 * previous, committing transaction! 2206 * 2207 * Any disk blocks which *are* part of the previous, committing 2208 * transaction (and which therefore cannot be discarded immediately) are 2209 * not going to be reused in the new running transaction 2210 * 2211 * The bitmap committed_data images guarantee this: any block which is 2212 * allocated in one transaction and removed in the next will be marked 2213 * as in-use in the committed_data bitmap, so cannot be reused until 2214 * the next transaction to delete the block commits. This means that 2215 * leaving committing buffers dirty is quite safe: the disk blocks 2216 * cannot be reallocated to a different file and so buffer aliasing is 2217 * not possible. 2218 * 2219 * 2220 * The above applies mainly to ordered data mode. In writeback mode we 2221 * don't make guarantees about the order in which data hits disk --- in 2222 * particular we don't guarantee that new dirty data is flushed before 2223 * transaction commit --- so it is always safe just to discard data 2224 * immediately in that mode. --sct 2225 */ 2226 2227 /* 2228 * The journal_unmap_buffer helper function returns zero if the buffer 2229 * concerned remains pinned as an anonymous buffer belonging to an older 2230 * transaction. 2231 * 2232 * We're outside-transaction here. Either or both of j_running_transaction 2233 * and j_committing_transaction may be NULL. 2234 */ 2235 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2236 int partial_page) 2237 { 2238 transaction_t *transaction; 2239 struct journal_head *jh; 2240 int may_free = 1; 2241 2242 BUFFER_TRACE(bh, "entry"); 2243 2244 /* 2245 * It is safe to proceed here without the j_list_lock because the 2246 * buffers cannot be stolen by try_to_free_buffers as long as we are 2247 * holding the page lock. --sct 2248 */ 2249 2250 jh = jbd2_journal_grab_journal_head(bh); 2251 if (!jh) 2252 goto zap_buffer_unlocked; 2253 2254 /* OK, we have data buffer in journaled mode */ 2255 write_lock(&journal->j_state_lock); 2256 spin_lock(&jh->b_state_lock); 2257 spin_lock(&journal->j_list_lock); 2258 2259 /* 2260 * We cannot remove the buffer from checkpoint lists until the 2261 * transaction adding inode to orphan list (let's call it T) 2262 * is committed. Otherwise if the transaction changing the 2263 * buffer would be cleaned from the journal before T is 2264 * committed, a crash will cause that the correct contents of 2265 * the buffer will be lost. On the other hand we have to 2266 * clear the buffer dirty bit at latest at the moment when the 2267 * transaction marking the buffer as freed in the filesystem 2268 * structures is committed because from that moment on the 2269 * block can be reallocated and used by a different page. 2270 * Since the block hasn't been freed yet but the inode has 2271 * already been added to orphan list, it is safe for us to add 2272 * the buffer to BJ_Forget list of the newest transaction. 2273 * 2274 * Also we have to clear buffer_mapped flag of a truncated buffer 2275 * because the buffer_head may be attached to the page straddling 2276 * i_size (can happen only when blocksize < pagesize) and thus the 2277 * buffer_head can be reused when the file is extended again. So we end 2278 * up keeping around invalidated buffers attached to transactions' 2279 * BJ_Forget list just to stop checkpointing code from cleaning up 2280 * the transaction this buffer was modified in. 2281 */ 2282 transaction = jh->b_transaction; 2283 if (transaction == NULL) { 2284 /* First case: not on any transaction. If it 2285 * has no checkpoint link, then we can zap it: 2286 * it's a writeback-mode buffer so we don't care 2287 * if it hits disk safely. */ 2288 if (!jh->b_cp_transaction) { 2289 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2290 goto zap_buffer; 2291 } 2292 2293 if (!buffer_dirty(bh)) { 2294 /* bdflush has written it. We can drop it now */ 2295 __jbd2_journal_remove_checkpoint(jh); 2296 goto zap_buffer; 2297 } 2298 2299 /* OK, it must be in the journal but still not 2300 * written fully to disk: it's metadata or 2301 * journaled data... */ 2302 2303 if (journal->j_running_transaction) { 2304 /* ... and once the current transaction has 2305 * committed, the buffer won't be needed any 2306 * longer. */ 2307 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2308 may_free = __dispose_buffer(jh, 2309 journal->j_running_transaction); 2310 goto zap_buffer; 2311 } else { 2312 /* There is no currently-running transaction. So the 2313 * orphan record which we wrote for this file must have 2314 * passed into commit. We must attach this buffer to 2315 * the committing transaction, if it exists. */ 2316 if (journal->j_committing_transaction) { 2317 JBUFFER_TRACE(jh, "give to committing trans"); 2318 may_free = __dispose_buffer(jh, 2319 journal->j_committing_transaction); 2320 goto zap_buffer; 2321 } else { 2322 /* The orphan record's transaction has 2323 * committed. We can cleanse this buffer */ 2324 clear_buffer_jbddirty(bh); 2325 __jbd2_journal_remove_checkpoint(jh); 2326 goto zap_buffer; 2327 } 2328 } 2329 } else if (transaction == journal->j_committing_transaction) { 2330 JBUFFER_TRACE(jh, "on committing transaction"); 2331 /* 2332 * The buffer is committing, we simply cannot touch 2333 * it. If the page is straddling i_size we have to wait 2334 * for commit and try again. 2335 */ 2336 if (partial_page) { 2337 spin_unlock(&journal->j_list_lock); 2338 spin_unlock(&jh->b_state_lock); 2339 write_unlock(&journal->j_state_lock); 2340 jbd2_journal_put_journal_head(jh); 2341 return -EBUSY; 2342 } 2343 /* 2344 * OK, buffer won't be reachable after truncate. We just clear 2345 * b_modified to not confuse transaction credit accounting, and 2346 * set j_next_transaction to the running transaction (if there 2347 * is one) and mark buffer as freed so that commit code knows 2348 * it should clear dirty bits when it is done with the buffer. 2349 */ 2350 set_buffer_freed(bh); 2351 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2352 jh->b_next_transaction = journal->j_running_transaction; 2353 jh->b_modified = 0; 2354 spin_unlock(&journal->j_list_lock); 2355 spin_unlock(&jh->b_state_lock); 2356 write_unlock(&journal->j_state_lock); 2357 jbd2_journal_put_journal_head(jh); 2358 return 0; 2359 } else { 2360 /* Good, the buffer belongs to the running transaction. 2361 * We are writing our own transaction's data, not any 2362 * previous one's, so it is safe to throw it away 2363 * (remember that we expect the filesystem to have set 2364 * i_size already for this truncate so recovery will not 2365 * expose the disk blocks we are discarding here.) */ 2366 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2367 JBUFFER_TRACE(jh, "on running transaction"); 2368 may_free = __dispose_buffer(jh, transaction); 2369 } 2370 2371 zap_buffer: 2372 /* 2373 * This is tricky. Although the buffer is truncated, it may be reused 2374 * if blocksize < pagesize and it is attached to the page straddling 2375 * EOF. Since the buffer might have been added to BJ_Forget list of the 2376 * running transaction, journal_get_write_access() won't clear 2377 * b_modified and credit accounting gets confused. So clear b_modified 2378 * here. 2379 */ 2380 jh->b_modified = 0; 2381 spin_unlock(&journal->j_list_lock); 2382 spin_unlock(&jh->b_state_lock); 2383 write_unlock(&journal->j_state_lock); 2384 jbd2_journal_put_journal_head(jh); 2385 zap_buffer_unlocked: 2386 clear_buffer_dirty(bh); 2387 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2388 clear_buffer_mapped(bh); 2389 clear_buffer_req(bh); 2390 clear_buffer_new(bh); 2391 clear_buffer_delay(bh); 2392 clear_buffer_unwritten(bh); 2393 bh->b_bdev = NULL; 2394 return may_free; 2395 } 2396 2397 /** 2398 * void jbd2_journal_invalidatepage() 2399 * @journal: journal to use for flush... 2400 * @page: page to flush 2401 * @offset: start of the range to invalidate 2402 * @length: length of the range to invalidate 2403 * 2404 * Reap page buffers containing data after in the specified range in page. 2405 * Can return -EBUSY if buffers are part of the committing transaction and 2406 * the page is straddling i_size. Caller then has to wait for current commit 2407 * and try again. 2408 */ 2409 int jbd2_journal_invalidatepage(journal_t *journal, 2410 struct page *page, 2411 unsigned int offset, 2412 unsigned int length) 2413 { 2414 struct buffer_head *head, *bh, *next; 2415 unsigned int stop = offset + length; 2416 unsigned int curr_off = 0; 2417 int partial_page = (offset || length < PAGE_SIZE); 2418 int may_free = 1; 2419 int ret = 0; 2420 2421 if (!PageLocked(page)) 2422 BUG(); 2423 if (!page_has_buffers(page)) 2424 return 0; 2425 2426 BUG_ON(stop > PAGE_SIZE || stop < length); 2427 2428 /* We will potentially be playing with lists other than just the 2429 * data lists (especially for journaled data mode), so be 2430 * cautious in our locking. */ 2431 2432 head = bh = page_buffers(page); 2433 do { 2434 unsigned int next_off = curr_off + bh->b_size; 2435 next = bh->b_this_page; 2436 2437 if (next_off > stop) 2438 return 0; 2439 2440 if (offset <= curr_off) { 2441 /* This block is wholly outside the truncation point */ 2442 lock_buffer(bh); 2443 ret = journal_unmap_buffer(journal, bh, partial_page); 2444 unlock_buffer(bh); 2445 if (ret < 0) 2446 return ret; 2447 may_free &= ret; 2448 } 2449 curr_off = next_off; 2450 bh = next; 2451 2452 } while (bh != head); 2453 2454 if (!partial_page) { 2455 if (may_free && try_to_free_buffers(page)) 2456 J_ASSERT(!page_has_buffers(page)); 2457 } 2458 return 0; 2459 } 2460 2461 /* 2462 * File a buffer on the given transaction list. 2463 */ 2464 void __jbd2_journal_file_buffer(struct journal_head *jh, 2465 transaction_t *transaction, int jlist) 2466 { 2467 struct journal_head **list = NULL; 2468 int was_dirty = 0; 2469 struct buffer_head *bh = jh2bh(jh); 2470 2471 lockdep_assert_held(&jh->b_state_lock); 2472 assert_spin_locked(&transaction->t_journal->j_list_lock); 2473 2474 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2475 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2476 jh->b_transaction == NULL); 2477 2478 if (jh->b_transaction && jh->b_jlist == jlist) 2479 return; 2480 2481 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2482 jlist == BJ_Shadow || jlist == BJ_Forget) { 2483 /* 2484 * For metadata buffers, we track dirty bit in buffer_jbddirty 2485 * instead of buffer_dirty. We should not see a dirty bit set 2486 * here because we clear it in do_get_write_access but e.g. 2487 * tune2fs can modify the sb and set the dirty bit at any time 2488 * so we try to gracefully handle that. 2489 */ 2490 if (buffer_dirty(bh)) 2491 warn_dirty_buffer(bh); 2492 if (test_clear_buffer_dirty(bh) || 2493 test_clear_buffer_jbddirty(bh)) 2494 was_dirty = 1; 2495 } 2496 2497 if (jh->b_transaction) 2498 __jbd2_journal_temp_unlink_buffer(jh); 2499 else 2500 jbd2_journal_grab_journal_head(bh); 2501 jh->b_transaction = transaction; 2502 2503 switch (jlist) { 2504 case BJ_None: 2505 J_ASSERT_JH(jh, !jh->b_committed_data); 2506 J_ASSERT_JH(jh, !jh->b_frozen_data); 2507 return; 2508 case BJ_Metadata: 2509 transaction->t_nr_buffers++; 2510 list = &transaction->t_buffers; 2511 break; 2512 case BJ_Forget: 2513 list = &transaction->t_forget; 2514 break; 2515 case BJ_Shadow: 2516 list = &transaction->t_shadow_list; 2517 break; 2518 case BJ_Reserved: 2519 list = &transaction->t_reserved_list; 2520 break; 2521 } 2522 2523 __blist_add_buffer(list, jh); 2524 jh->b_jlist = jlist; 2525 2526 if (was_dirty) 2527 set_buffer_jbddirty(bh); 2528 } 2529 2530 void jbd2_journal_file_buffer(struct journal_head *jh, 2531 transaction_t *transaction, int jlist) 2532 { 2533 spin_lock(&jh->b_state_lock); 2534 spin_lock(&transaction->t_journal->j_list_lock); 2535 __jbd2_journal_file_buffer(jh, transaction, jlist); 2536 spin_unlock(&transaction->t_journal->j_list_lock); 2537 spin_unlock(&jh->b_state_lock); 2538 } 2539 2540 /* 2541 * Remove a buffer from its current buffer list in preparation for 2542 * dropping it from its current transaction entirely. If the buffer has 2543 * already started to be used by a subsequent transaction, refile the 2544 * buffer on that transaction's metadata list. 2545 * 2546 * Called under j_list_lock 2547 * Called under jh->b_state_lock 2548 * 2549 * When this function returns true, there's no next transaction to refile to 2550 * and the caller has to drop jh reference through 2551 * jbd2_journal_put_journal_head(). 2552 */ 2553 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2554 { 2555 int was_dirty, jlist; 2556 struct buffer_head *bh = jh2bh(jh); 2557 2558 lockdep_assert_held(&jh->b_state_lock); 2559 if (jh->b_transaction) 2560 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2561 2562 /* If the buffer is now unused, just drop it. */ 2563 if (jh->b_next_transaction == NULL) { 2564 __jbd2_journal_unfile_buffer(jh); 2565 return true; 2566 } 2567 2568 /* 2569 * It has been modified by a later transaction: add it to the new 2570 * transaction's metadata list. 2571 */ 2572 2573 was_dirty = test_clear_buffer_jbddirty(bh); 2574 __jbd2_journal_temp_unlink_buffer(jh); 2575 /* 2576 * We set b_transaction here because b_next_transaction will inherit 2577 * our jh reference and thus __jbd2_journal_file_buffer() must not 2578 * take a new one. 2579 */ 2580 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2581 WRITE_ONCE(jh->b_next_transaction, NULL); 2582 if (buffer_freed(bh)) 2583 jlist = BJ_Forget; 2584 else if (jh->b_modified) 2585 jlist = BJ_Metadata; 2586 else 2587 jlist = BJ_Reserved; 2588 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2589 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2590 2591 if (was_dirty) 2592 set_buffer_jbddirty(bh); 2593 return false; 2594 } 2595 2596 /* 2597 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2598 * bh reference so that we can safely unlock bh. 2599 * 2600 * The jh and bh may be freed by this call. 2601 */ 2602 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2603 { 2604 bool drop; 2605 2606 spin_lock(&jh->b_state_lock); 2607 spin_lock(&journal->j_list_lock); 2608 drop = __jbd2_journal_refile_buffer(jh); 2609 spin_unlock(&jh->b_state_lock); 2610 spin_unlock(&journal->j_list_lock); 2611 if (drop) 2612 jbd2_journal_put_journal_head(jh); 2613 } 2614 2615 /* 2616 * File inode in the inode list of the handle's transaction 2617 */ 2618 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2619 unsigned long flags, loff_t start_byte, loff_t end_byte) 2620 { 2621 transaction_t *transaction = handle->h_transaction; 2622 journal_t *journal; 2623 2624 if (is_handle_aborted(handle)) 2625 return -EROFS; 2626 journal = transaction->t_journal; 2627 2628 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2629 transaction->t_tid); 2630 2631 spin_lock(&journal->j_list_lock); 2632 jinode->i_flags |= flags; 2633 2634 if (jinode->i_dirty_end) { 2635 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2636 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2637 } else { 2638 jinode->i_dirty_start = start_byte; 2639 jinode->i_dirty_end = end_byte; 2640 } 2641 2642 /* Is inode already attached where we need it? */ 2643 if (jinode->i_transaction == transaction || 2644 jinode->i_next_transaction == transaction) 2645 goto done; 2646 2647 /* 2648 * We only ever set this variable to 1 so the test is safe. Since 2649 * t_need_data_flush is likely to be set, we do the test to save some 2650 * cacheline bouncing 2651 */ 2652 if (!transaction->t_need_data_flush) 2653 transaction->t_need_data_flush = 1; 2654 /* On some different transaction's list - should be 2655 * the committing one */ 2656 if (jinode->i_transaction) { 2657 J_ASSERT(jinode->i_next_transaction == NULL); 2658 J_ASSERT(jinode->i_transaction == 2659 journal->j_committing_transaction); 2660 jinode->i_next_transaction = transaction; 2661 goto done; 2662 } 2663 /* Not on any transaction list... */ 2664 J_ASSERT(!jinode->i_next_transaction); 2665 jinode->i_transaction = transaction; 2666 list_add(&jinode->i_list, &transaction->t_inode_list); 2667 done: 2668 spin_unlock(&journal->j_list_lock); 2669 2670 return 0; 2671 } 2672 2673 int jbd2_journal_inode_ranged_write(handle_t *handle, 2674 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2675 { 2676 return jbd2_journal_file_inode(handle, jinode, 2677 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2678 start_byte + length - 1); 2679 } 2680 2681 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2682 loff_t start_byte, loff_t length) 2683 { 2684 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2685 start_byte, start_byte + length - 1); 2686 } 2687 2688 /* 2689 * File truncate and transaction commit interact with each other in a 2690 * non-trivial way. If a transaction writing data block A is 2691 * committing, we cannot discard the data by truncate until we have 2692 * written them. Otherwise if we crashed after the transaction with 2693 * write has committed but before the transaction with truncate has 2694 * committed, we could see stale data in block A. This function is a 2695 * helper to solve this problem. It starts writeout of the truncated 2696 * part in case it is in the committing transaction. 2697 * 2698 * Filesystem code must call this function when inode is journaled in 2699 * ordered mode before truncation happens and after the inode has been 2700 * placed on orphan list with the new inode size. The second condition 2701 * avoids the race that someone writes new data and we start 2702 * committing the transaction after this function has been called but 2703 * before a transaction for truncate is started (and furthermore it 2704 * allows us to optimize the case where the addition to orphan list 2705 * happens in the same transaction as write --- we don't have to write 2706 * any data in such case). 2707 */ 2708 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2709 struct jbd2_inode *jinode, 2710 loff_t new_size) 2711 { 2712 transaction_t *inode_trans, *commit_trans; 2713 int ret = 0; 2714 2715 /* This is a quick check to avoid locking if not necessary */ 2716 if (!jinode->i_transaction) 2717 goto out; 2718 /* Locks are here just to force reading of recent values, it is 2719 * enough that the transaction was not committing before we started 2720 * a transaction adding the inode to orphan list */ 2721 read_lock(&journal->j_state_lock); 2722 commit_trans = journal->j_committing_transaction; 2723 read_unlock(&journal->j_state_lock); 2724 spin_lock(&journal->j_list_lock); 2725 inode_trans = jinode->i_transaction; 2726 spin_unlock(&journal->j_list_lock); 2727 if (inode_trans == commit_trans) { 2728 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2729 new_size, LLONG_MAX); 2730 if (ret) 2731 jbd2_journal_abort(journal, ret); 2732 } 2733 out: 2734 return ret; 2735 } 2736