1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 93 atomic_read(&journal->j_reserved_credits)); 94 atomic_set(&transaction->t_handle_count, 0); 95 INIT_LIST_HEAD(&transaction->t_inode_list); 96 INIT_LIST_HEAD(&transaction->t_private_list); 97 98 /* Set up the commit timer for the new transaction. */ 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 100 add_timer(&journal->j_commit_timer); 101 102 J_ASSERT(journal->j_running_transaction == NULL); 103 journal->j_running_transaction = transaction; 104 transaction->t_max_wait = 0; 105 transaction->t_start = jiffies; 106 transaction->t_requested = 0; 107 108 return transaction; 109 } 110 111 /* 112 * Handle management. 113 * 114 * A handle_t is an object which represents a single atomic update to a 115 * filesystem, and which tracks all of the modifications which form part 116 * of that one update. 117 */ 118 119 /* 120 * Update transaction's maximum wait time, if debugging is enabled. 121 * 122 * In order for t_max_wait to be reliable, it must be protected by a 123 * lock. But doing so will mean that start_this_handle() can not be 124 * run in parallel on SMP systems, which limits our scalability. So 125 * unless debugging is enabled, we no longer update t_max_wait, which 126 * means that maximum wait time reported by the jbd2_run_stats 127 * tracepoint will always be zero. 128 */ 129 static inline void update_t_max_wait(transaction_t *transaction, 130 unsigned long ts) 131 { 132 #ifdef CONFIG_JBD2_DEBUG 133 if (jbd2_journal_enable_debug && 134 time_after(transaction->t_start, ts)) { 135 ts = jbd2_time_diff(ts, transaction->t_start); 136 spin_lock(&transaction->t_handle_lock); 137 if (ts > transaction->t_max_wait) 138 transaction->t_max_wait = ts; 139 spin_unlock(&transaction->t_handle_lock); 140 } 141 #endif 142 } 143 144 /* 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit 146 * if needed. The function expects running transaction to exist and releases 147 * j_state_lock. 148 */ 149 static void wait_transaction_locked(journal_t *journal) 150 __releases(journal->j_state_lock) 151 { 152 DEFINE_WAIT(wait); 153 int need_to_start; 154 tid_t tid = journal->j_running_transaction->t_tid; 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 157 TASK_UNINTERRUPTIBLE); 158 need_to_start = !tid_geq(journal->j_commit_request, tid); 159 read_unlock(&journal->j_state_lock); 160 if (need_to_start) 161 jbd2_log_start_commit(journal, tid); 162 schedule(); 163 finish_wait(&journal->j_wait_transaction_locked, &wait); 164 } 165 166 static void sub_reserved_credits(journal_t *journal, int blocks) 167 { 168 atomic_sub(blocks, &journal->j_reserved_credits); 169 wake_up(&journal->j_wait_reserved); 170 } 171 172 /* 173 * Wait until we can add credits for handle to the running transaction. Called 174 * with j_state_lock held for reading. Returns 0 if handle joined the running 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 176 * caller must retry. 177 */ 178 static int add_transaction_credits(journal_t *journal, int blocks, 179 int rsv_blocks) 180 { 181 transaction_t *t = journal->j_running_transaction; 182 int needed; 183 int total = blocks + rsv_blocks; 184 185 /* 186 * If the current transaction is locked down for commit, wait 187 * for the lock to be released. 188 */ 189 if (t->t_state == T_LOCKED) { 190 wait_transaction_locked(journal); 191 return 1; 192 } 193 194 /* 195 * If there is not enough space left in the log to write all 196 * potential buffers requested by this operation, we need to 197 * stall pending a log checkpoint to free some more log space. 198 */ 199 needed = atomic_add_return(total, &t->t_outstanding_credits); 200 if (needed > journal->j_max_transaction_buffers) { 201 /* 202 * If the current transaction is already too large, 203 * then start to commit it: we can then go back and 204 * attach this handle to a new transaction. 205 */ 206 atomic_sub(total, &t->t_outstanding_credits); 207 wait_transaction_locked(journal); 208 return 1; 209 } 210 211 /* 212 * The commit code assumes that it can get enough log space 213 * without forcing a checkpoint. This is *critical* for 214 * correctness: a checkpoint of a buffer which is also 215 * associated with a committing transaction creates a deadlock, 216 * so commit simply cannot force through checkpoints. 217 * 218 * We must therefore ensure the necessary space in the journal 219 * *before* starting to dirty potentially checkpointed buffers 220 * in the new transaction. 221 */ 222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) { 223 atomic_sub(total, &t->t_outstanding_credits); 224 read_unlock(&journal->j_state_lock); 225 write_lock(&journal->j_state_lock); 226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) 227 __jbd2_log_wait_for_space(journal); 228 write_unlock(&journal->j_state_lock); 229 return 1; 230 } 231 232 /* No reservation? We are done... */ 233 if (!rsv_blocks) 234 return 0; 235 236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 237 /* We allow at most half of a transaction to be reserved */ 238 if (needed > journal->j_max_transaction_buffers / 2) { 239 sub_reserved_credits(journal, rsv_blocks); 240 atomic_sub(total, &t->t_outstanding_credits); 241 read_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_reserved, 243 atomic_read(&journal->j_reserved_credits) + rsv_blocks 244 <= journal->j_max_transaction_buffers / 2); 245 return 1; 246 } 247 return 0; 248 } 249 250 /* 251 * start_this_handle: Given a handle, deal with any locking or stalling 252 * needed to make sure that there is enough journal space for the handle 253 * to begin. Attach the handle to a transaction and set up the 254 * transaction's buffer credits. 255 */ 256 257 static int start_this_handle(journal_t *journal, handle_t *handle, 258 gfp_t gfp_mask) 259 { 260 transaction_t *transaction, *new_transaction = NULL; 261 int blocks = handle->h_buffer_credits; 262 int rsv_blocks = 0; 263 unsigned long ts = jiffies; 264 265 /* 266 * 1/2 of transaction can be reserved so we can practically handle 267 * only 1/2 of maximum transaction size per operation 268 */ 269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) { 270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 271 current->comm, blocks, 272 journal->j_max_transaction_buffers / 2); 273 return -ENOSPC; 274 } 275 276 if (handle->h_rsv_handle) 277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits; 278 279 alloc_transaction: 280 if (!journal->j_running_transaction) { 281 new_transaction = kmem_cache_zalloc(transaction_cache, 282 gfp_mask); 283 if (!new_transaction) { 284 /* 285 * If __GFP_FS is not present, then we may be 286 * being called from inside the fs writeback 287 * layer, so we MUST NOT fail. Since 288 * __GFP_NOFAIL is going away, we will arrange 289 * to retry the allocation ourselves. 290 */ 291 if ((gfp_mask & __GFP_FS) == 0) { 292 congestion_wait(BLK_RW_ASYNC, HZ/50); 293 goto alloc_transaction; 294 } 295 return -ENOMEM; 296 } 297 } 298 299 jbd_debug(3, "New handle %p going live.\n", handle); 300 301 /* 302 * We need to hold j_state_lock until t_updates has been incremented, 303 * for proper journal barrier handling 304 */ 305 repeat: 306 read_lock(&journal->j_state_lock); 307 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 308 if (is_journal_aborted(journal) || 309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 310 read_unlock(&journal->j_state_lock); 311 jbd2_journal_free_transaction(new_transaction); 312 return -EROFS; 313 } 314 315 /* 316 * Wait on the journal's transaction barrier if necessary. Specifically 317 * we allow reserved handles to proceed because otherwise commit could 318 * deadlock on page writeback not being able to complete. 319 */ 320 if (!handle->h_reserved && journal->j_barrier_count) { 321 read_unlock(&journal->j_state_lock); 322 wait_event(journal->j_wait_transaction_locked, 323 journal->j_barrier_count == 0); 324 goto repeat; 325 } 326 327 if (!journal->j_running_transaction) { 328 read_unlock(&journal->j_state_lock); 329 if (!new_transaction) 330 goto alloc_transaction; 331 write_lock(&journal->j_state_lock); 332 if (!journal->j_running_transaction && 333 (handle->h_reserved || !journal->j_barrier_count)) { 334 jbd2_get_transaction(journal, new_transaction); 335 new_transaction = NULL; 336 } 337 write_unlock(&journal->j_state_lock); 338 goto repeat; 339 } 340 341 transaction = journal->j_running_transaction; 342 343 if (!handle->h_reserved) { 344 /* We may have dropped j_state_lock - restart in that case */ 345 if (add_transaction_credits(journal, blocks, rsv_blocks)) 346 goto repeat; 347 } else { 348 /* 349 * We have handle reserved so we are allowed to join T_LOCKED 350 * transaction and we don't have to check for transaction size 351 * and journal space. 352 */ 353 sub_reserved_credits(journal, blocks); 354 handle->h_reserved = 0; 355 } 356 357 /* OK, account for the buffers that this operation expects to 358 * use and add the handle to the running transaction. 359 */ 360 update_t_max_wait(transaction, ts); 361 handle->h_transaction = transaction; 362 handle->h_requested_credits = blocks; 363 handle->h_start_jiffies = jiffies; 364 atomic_inc(&transaction->t_updates); 365 atomic_inc(&transaction->t_handle_count); 366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 367 handle, blocks, 368 atomic_read(&transaction->t_outstanding_credits), 369 jbd2_log_space_left(journal)); 370 read_unlock(&journal->j_state_lock); 371 current->journal_info = handle; 372 373 lock_map_acquire(&handle->h_lockdep_map); 374 jbd2_journal_free_transaction(new_transaction); 375 return 0; 376 } 377 378 static struct lock_class_key jbd2_handle_key; 379 380 /* Allocate a new handle. This should probably be in a slab... */ 381 static handle_t *new_handle(int nblocks) 382 { 383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 384 if (!handle) 385 return NULL; 386 handle->h_buffer_credits = nblocks; 387 handle->h_ref = 1; 388 389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 390 &jbd2_handle_key, 0); 391 392 return handle; 393 } 394 395 /** 396 * handle_t *jbd2_journal_start() - Obtain a new handle. 397 * @journal: Journal to start transaction on. 398 * @nblocks: number of block buffer we might modify 399 * 400 * We make sure that the transaction can guarantee at least nblocks of 401 * modified buffers in the log. We block until the log can guarantee 402 * that much space. Additionally, if rsv_blocks > 0, we also create another 403 * handle with rsv_blocks reserved blocks in the journal. This handle is 404 * is stored in h_rsv_handle. It is not attached to any particular transaction 405 * and thus doesn't block transaction commit. If the caller uses this reserved 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 407 * on the parent handle will dispose the reserved one. Reserved handle has to 408 * be converted to a normal handle using jbd2_journal_start_reserved() before 409 * it can be used. 410 * 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 412 * on failure. 413 */ 414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 415 gfp_t gfp_mask, unsigned int type, 416 unsigned int line_no) 417 { 418 handle_t *handle = journal_current_handle(); 419 int err; 420 421 if (!journal) 422 return ERR_PTR(-EROFS); 423 424 if (handle) { 425 J_ASSERT(handle->h_transaction->t_journal == journal); 426 handle->h_ref++; 427 return handle; 428 } 429 430 handle = new_handle(nblocks); 431 if (!handle) 432 return ERR_PTR(-ENOMEM); 433 if (rsv_blocks) { 434 handle_t *rsv_handle; 435 436 rsv_handle = new_handle(rsv_blocks); 437 if (!rsv_handle) { 438 jbd2_free_handle(handle); 439 return ERR_PTR(-ENOMEM); 440 } 441 rsv_handle->h_reserved = 1; 442 rsv_handle->h_journal = journal; 443 handle->h_rsv_handle = rsv_handle; 444 } 445 446 err = start_this_handle(journal, handle, gfp_mask); 447 if (err < 0) { 448 if (handle->h_rsv_handle) 449 jbd2_free_handle(handle->h_rsv_handle); 450 jbd2_free_handle(handle); 451 return ERR_PTR(err); 452 } 453 handle->h_type = type; 454 handle->h_line_no = line_no; 455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 456 handle->h_transaction->t_tid, type, 457 line_no, nblocks); 458 return handle; 459 } 460 EXPORT_SYMBOL(jbd2__journal_start); 461 462 463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 464 { 465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0); 466 } 467 EXPORT_SYMBOL(jbd2_journal_start); 468 469 void jbd2_journal_free_reserved(handle_t *handle) 470 { 471 journal_t *journal = handle->h_journal; 472 473 WARN_ON(!handle->h_reserved); 474 sub_reserved_credits(journal, handle->h_buffer_credits); 475 jbd2_free_handle(handle); 476 } 477 EXPORT_SYMBOL(jbd2_journal_free_reserved); 478 479 /** 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle 481 * @handle: handle to start 482 * 483 * Start handle that has been previously reserved with jbd2_journal_reserve(). 484 * This attaches @handle to the running transaction (or creates one if there's 485 * not transaction running). Unlike jbd2_journal_start() this function cannot 486 * block on journal commit, checkpointing, or similar stuff. It can block on 487 * memory allocation or frozen journal though. 488 * 489 * Return 0 on success, non-zero on error - handle is freed in that case. 490 */ 491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 492 unsigned int line_no) 493 { 494 journal_t *journal = handle->h_journal; 495 int ret = -EIO; 496 497 if (WARN_ON(!handle->h_reserved)) { 498 /* Someone passed in normal handle? Just stop it. */ 499 jbd2_journal_stop(handle); 500 return ret; 501 } 502 /* 503 * Usefulness of mixing of reserved and unreserved handles is 504 * questionable. So far nobody seems to need it so just error out. 505 */ 506 if (WARN_ON(current->journal_info)) { 507 jbd2_journal_free_reserved(handle); 508 return ret; 509 } 510 511 handle->h_journal = NULL; 512 /* 513 * GFP_NOFS is here because callers are likely from writeback or 514 * similarly constrained call sites 515 */ 516 ret = start_this_handle(journal, handle, GFP_NOFS); 517 if (ret < 0) { 518 jbd2_journal_free_reserved(handle); 519 return ret; 520 } 521 handle->h_type = type; 522 handle->h_line_no = line_no; 523 return 0; 524 } 525 EXPORT_SYMBOL(jbd2_journal_start_reserved); 526 527 /** 528 * int jbd2_journal_extend() - extend buffer credits. 529 * @handle: handle to 'extend' 530 * @nblocks: nr blocks to try to extend by. 531 * 532 * Some transactions, such as large extends and truncates, can be done 533 * atomically all at once or in several stages. The operation requests 534 * a credit for a number of buffer modications in advance, but can 535 * extend its credit if it needs more. 536 * 537 * jbd2_journal_extend tries to give the running handle more buffer credits. 538 * It does not guarantee that allocation - this is a best-effort only. 539 * The calling process MUST be able to deal cleanly with a failure to 540 * extend here. 541 * 542 * Return 0 on success, non-zero on failure. 543 * 544 * return code < 0 implies an error 545 * return code > 0 implies normal transaction-full status. 546 */ 547 int jbd2_journal_extend(handle_t *handle, int nblocks) 548 { 549 transaction_t *transaction = handle->h_transaction; 550 journal_t *journal; 551 int result; 552 int wanted; 553 554 if (is_handle_aborted(handle)) 555 return -EROFS; 556 journal = transaction->t_journal; 557 558 result = 1; 559 560 read_lock(&journal->j_state_lock); 561 562 /* Don't extend a locked-down transaction! */ 563 if (transaction->t_state != T_RUNNING) { 564 jbd_debug(3, "denied handle %p %d blocks: " 565 "transaction not running\n", handle, nblocks); 566 goto error_out; 567 } 568 569 spin_lock(&transaction->t_handle_lock); 570 wanted = atomic_add_return(nblocks, 571 &transaction->t_outstanding_credits); 572 573 if (wanted > journal->j_max_transaction_buffers) { 574 jbd_debug(3, "denied handle %p %d blocks: " 575 "transaction too large\n", handle, nblocks); 576 atomic_sub(nblocks, &transaction->t_outstanding_credits); 577 goto unlock; 578 } 579 580 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) > 581 jbd2_log_space_left(journal)) { 582 jbd_debug(3, "denied handle %p %d blocks: " 583 "insufficient log space\n", handle, nblocks); 584 atomic_sub(nblocks, &transaction->t_outstanding_credits); 585 goto unlock; 586 } 587 588 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 589 transaction->t_tid, 590 handle->h_type, handle->h_line_no, 591 handle->h_buffer_credits, 592 nblocks); 593 594 handle->h_buffer_credits += nblocks; 595 handle->h_requested_credits += nblocks; 596 result = 0; 597 598 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 599 unlock: 600 spin_unlock(&transaction->t_handle_lock); 601 error_out: 602 read_unlock(&journal->j_state_lock); 603 return result; 604 } 605 606 607 /** 608 * int jbd2_journal_restart() - restart a handle . 609 * @handle: handle to restart 610 * @nblocks: nr credits requested 611 * 612 * Restart a handle for a multi-transaction filesystem 613 * operation. 614 * 615 * If the jbd2_journal_extend() call above fails to grant new buffer credits 616 * to a running handle, a call to jbd2_journal_restart will commit the 617 * handle's transaction so far and reattach the handle to a new 618 * transaction capabable of guaranteeing the requested number of 619 * credits. We preserve reserved handle if there's any attached to the 620 * passed in handle. 621 */ 622 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 623 { 624 transaction_t *transaction = handle->h_transaction; 625 journal_t *journal; 626 tid_t tid; 627 int need_to_start, ret; 628 629 /* If we've had an abort of any type, don't even think about 630 * actually doing the restart! */ 631 if (is_handle_aborted(handle)) 632 return 0; 633 journal = transaction->t_journal; 634 635 /* 636 * First unlink the handle from its current transaction, and start the 637 * commit on that. 638 */ 639 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 640 J_ASSERT(journal_current_handle() == handle); 641 642 read_lock(&journal->j_state_lock); 643 spin_lock(&transaction->t_handle_lock); 644 atomic_sub(handle->h_buffer_credits, 645 &transaction->t_outstanding_credits); 646 if (handle->h_rsv_handle) { 647 sub_reserved_credits(journal, 648 handle->h_rsv_handle->h_buffer_credits); 649 } 650 if (atomic_dec_and_test(&transaction->t_updates)) 651 wake_up(&journal->j_wait_updates); 652 tid = transaction->t_tid; 653 spin_unlock(&transaction->t_handle_lock); 654 handle->h_transaction = NULL; 655 current->journal_info = NULL; 656 657 jbd_debug(2, "restarting handle %p\n", handle); 658 need_to_start = !tid_geq(journal->j_commit_request, tid); 659 read_unlock(&journal->j_state_lock); 660 if (need_to_start) 661 jbd2_log_start_commit(journal, tid); 662 663 lock_map_release(&handle->h_lockdep_map); 664 handle->h_buffer_credits = nblocks; 665 ret = start_this_handle(journal, handle, gfp_mask); 666 return ret; 667 } 668 EXPORT_SYMBOL(jbd2__journal_restart); 669 670 671 int jbd2_journal_restart(handle_t *handle, int nblocks) 672 { 673 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 674 } 675 EXPORT_SYMBOL(jbd2_journal_restart); 676 677 /** 678 * void jbd2_journal_lock_updates () - establish a transaction barrier. 679 * @journal: Journal to establish a barrier on. 680 * 681 * This locks out any further updates from being started, and blocks 682 * until all existing updates have completed, returning only once the 683 * journal is in a quiescent state with no updates running. 684 * 685 * The journal lock should not be held on entry. 686 */ 687 void jbd2_journal_lock_updates(journal_t *journal) 688 { 689 DEFINE_WAIT(wait); 690 691 write_lock(&journal->j_state_lock); 692 ++journal->j_barrier_count; 693 694 /* Wait until there are no reserved handles */ 695 if (atomic_read(&journal->j_reserved_credits)) { 696 write_unlock(&journal->j_state_lock); 697 wait_event(journal->j_wait_reserved, 698 atomic_read(&journal->j_reserved_credits) == 0); 699 write_lock(&journal->j_state_lock); 700 } 701 702 /* Wait until there are no running updates */ 703 while (1) { 704 transaction_t *transaction = journal->j_running_transaction; 705 706 if (!transaction) 707 break; 708 709 spin_lock(&transaction->t_handle_lock); 710 prepare_to_wait(&journal->j_wait_updates, &wait, 711 TASK_UNINTERRUPTIBLE); 712 if (!atomic_read(&transaction->t_updates)) { 713 spin_unlock(&transaction->t_handle_lock); 714 finish_wait(&journal->j_wait_updates, &wait); 715 break; 716 } 717 spin_unlock(&transaction->t_handle_lock); 718 write_unlock(&journal->j_state_lock); 719 schedule(); 720 finish_wait(&journal->j_wait_updates, &wait); 721 write_lock(&journal->j_state_lock); 722 } 723 write_unlock(&journal->j_state_lock); 724 725 /* 726 * We have now established a barrier against other normal updates, but 727 * we also need to barrier against other jbd2_journal_lock_updates() calls 728 * to make sure that we serialise special journal-locked operations 729 * too. 730 */ 731 mutex_lock(&journal->j_barrier); 732 } 733 734 /** 735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 736 * @journal: Journal to release the barrier on. 737 * 738 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 739 * 740 * Should be called without the journal lock held. 741 */ 742 void jbd2_journal_unlock_updates (journal_t *journal) 743 { 744 J_ASSERT(journal->j_barrier_count != 0); 745 746 mutex_unlock(&journal->j_barrier); 747 write_lock(&journal->j_state_lock); 748 --journal->j_barrier_count; 749 write_unlock(&journal->j_state_lock); 750 wake_up(&journal->j_wait_transaction_locked); 751 } 752 753 static void warn_dirty_buffer(struct buffer_head *bh) 754 { 755 char b[BDEVNAME_SIZE]; 756 757 printk(KERN_WARNING 758 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 759 "There's a risk of filesystem corruption in case of system " 760 "crash.\n", 761 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 762 } 763 764 /* 765 * If the buffer is already part of the current transaction, then there 766 * is nothing we need to do. If it is already part of a prior 767 * transaction which we are still committing to disk, then we need to 768 * make sure that we do not overwrite the old copy: we do copy-out to 769 * preserve the copy going to disk. We also account the buffer against 770 * the handle's metadata buffer credits (unless the buffer is already 771 * part of the transaction, that is). 772 * 773 */ 774 static int 775 do_get_write_access(handle_t *handle, struct journal_head *jh, 776 int force_copy) 777 { 778 struct buffer_head *bh; 779 transaction_t *transaction = handle->h_transaction; 780 journal_t *journal; 781 int error; 782 char *frozen_buffer = NULL; 783 int need_copy = 0; 784 unsigned long start_lock, time_lock; 785 786 if (is_handle_aborted(handle)) 787 return -EROFS; 788 journal = transaction->t_journal; 789 790 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 791 792 JBUFFER_TRACE(jh, "entry"); 793 repeat: 794 bh = jh2bh(jh); 795 796 /* @@@ Need to check for errors here at some point. */ 797 798 start_lock = jiffies; 799 lock_buffer(bh); 800 jbd_lock_bh_state(bh); 801 802 /* If it takes too long to lock the buffer, trace it */ 803 time_lock = jbd2_time_diff(start_lock, jiffies); 804 if (time_lock > HZ/10) 805 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 806 jiffies_to_msecs(time_lock)); 807 808 /* We now hold the buffer lock so it is safe to query the buffer 809 * state. Is the buffer dirty? 810 * 811 * If so, there are two possibilities. The buffer may be 812 * non-journaled, and undergoing a quite legitimate writeback. 813 * Otherwise, it is journaled, and we don't expect dirty buffers 814 * in that state (the buffers should be marked JBD_Dirty 815 * instead.) So either the IO is being done under our own 816 * control and this is a bug, or it's a third party IO such as 817 * dump(8) (which may leave the buffer scheduled for read --- 818 * ie. locked but not dirty) or tune2fs (which may actually have 819 * the buffer dirtied, ugh.) */ 820 821 if (buffer_dirty(bh)) { 822 /* 823 * First question: is this buffer already part of the current 824 * transaction or the existing committing transaction? 825 */ 826 if (jh->b_transaction) { 827 J_ASSERT_JH(jh, 828 jh->b_transaction == transaction || 829 jh->b_transaction == 830 journal->j_committing_transaction); 831 if (jh->b_next_transaction) 832 J_ASSERT_JH(jh, jh->b_next_transaction == 833 transaction); 834 warn_dirty_buffer(bh); 835 } 836 /* 837 * In any case we need to clean the dirty flag and we must 838 * do it under the buffer lock to be sure we don't race 839 * with running write-out. 840 */ 841 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 842 clear_buffer_dirty(bh); 843 set_buffer_jbddirty(bh); 844 } 845 846 unlock_buffer(bh); 847 848 error = -EROFS; 849 if (is_handle_aborted(handle)) { 850 jbd_unlock_bh_state(bh); 851 goto out; 852 } 853 error = 0; 854 855 /* 856 * The buffer is already part of this transaction if b_transaction or 857 * b_next_transaction points to it 858 */ 859 if (jh->b_transaction == transaction || 860 jh->b_next_transaction == transaction) 861 goto done; 862 863 /* 864 * this is the first time this transaction is touching this buffer, 865 * reset the modified flag 866 */ 867 jh->b_modified = 0; 868 869 /* 870 * If there is already a copy-out version of this buffer, then we don't 871 * need to make another one 872 */ 873 if (jh->b_frozen_data) { 874 JBUFFER_TRACE(jh, "has frozen data"); 875 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 876 jh->b_next_transaction = transaction; 877 goto done; 878 } 879 880 /* Is there data here we need to preserve? */ 881 882 if (jh->b_transaction && jh->b_transaction != transaction) { 883 JBUFFER_TRACE(jh, "owned by older transaction"); 884 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 885 J_ASSERT_JH(jh, jh->b_transaction == 886 journal->j_committing_transaction); 887 888 /* There is one case we have to be very careful about. 889 * If the committing transaction is currently writing 890 * this buffer out to disk and has NOT made a copy-out, 891 * then we cannot modify the buffer contents at all 892 * right now. The essence of copy-out is that it is the 893 * extra copy, not the primary copy, which gets 894 * journaled. If the primary copy is already going to 895 * disk then we cannot do copy-out here. */ 896 897 if (buffer_shadow(bh)) { 898 JBUFFER_TRACE(jh, "on shadow: sleep"); 899 jbd_unlock_bh_state(bh); 900 wait_on_bit_io(&bh->b_state, BH_Shadow, 901 TASK_UNINTERRUPTIBLE); 902 goto repeat; 903 } 904 905 /* 906 * Only do the copy if the currently-owning transaction still 907 * needs it. If buffer isn't on BJ_Metadata list, the 908 * committing transaction is past that stage (here we use the 909 * fact that BH_Shadow is set under bh_state lock together with 910 * refiling to BJ_Shadow list and at this point we know the 911 * buffer doesn't have BH_Shadow set). 912 * 913 * Subtle point, though: if this is a get_undo_access, 914 * then we will be relying on the frozen_data to contain 915 * the new value of the committed_data record after the 916 * transaction, so we HAVE to force the frozen_data copy 917 * in that case. 918 */ 919 if (jh->b_jlist == BJ_Metadata || force_copy) { 920 JBUFFER_TRACE(jh, "generate frozen data"); 921 if (!frozen_buffer) { 922 JBUFFER_TRACE(jh, "allocate memory for buffer"); 923 jbd_unlock_bh_state(bh); 924 frozen_buffer = 925 jbd2_alloc(jh2bh(jh)->b_size, 926 GFP_NOFS); 927 if (!frozen_buffer) { 928 printk(KERN_ERR 929 "%s: OOM for frozen_buffer\n", 930 __func__); 931 JBUFFER_TRACE(jh, "oom!"); 932 error = -ENOMEM; 933 jbd_lock_bh_state(bh); 934 goto done; 935 } 936 goto repeat; 937 } 938 jh->b_frozen_data = frozen_buffer; 939 frozen_buffer = NULL; 940 need_copy = 1; 941 } 942 jh->b_next_transaction = transaction; 943 } 944 945 946 /* 947 * Finally, if the buffer is not journaled right now, we need to make 948 * sure it doesn't get written to disk before the caller actually 949 * commits the new data 950 */ 951 if (!jh->b_transaction) { 952 JBUFFER_TRACE(jh, "no transaction"); 953 J_ASSERT_JH(jh, !jh->b_next_transaction); 954 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 955 spin_lock(&journal->j_list_lock); 956 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 957 spin_unlock(&journal->j_list_lock); 958 } 959 960 done: 961 if (need_copy) { 962 struct page *page; 963 int offset; 964 char *source; 965 966 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 967 "Possible IO failure.\n"); 968 page = jh2bh(jh)->b_page; 969 offset = offset_in_page(jh2bh(jh)->b_data); 970 source = kmap_atomic(page); 971 /* Fire data frozen trigger just before we copy the data */ 972 jbd2_buffer_frozen_trigger(jh, source + offset, 973 jh->b_triggers); 974 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 975 kunmap_atomic(source); 976 977 /* 978 * Now that the frozen data is saved off, we need to store 979 * any matching triggers. 980 */ 981 jh->b_frozen_triggers = jh->b_triggers; 982 } 983 jbd_unlock_bh_state(bh); 984 985 /* 986 * If we are about to journal a buffer, then any revoke pending on it is 987 * no longer valid 988 */ 989 jbd2_journal_cancel_revoke(handle, jh); 990 991 out: 992 if (unlikely(frozen_buffer)) /* It's usually NULL */ 993 jbd2_free(frozen_buffer, bh->b_size); 994 995 JBUFFER_TRACE(jh, "exit"); 996 return error; 997 } 998 999 /** 1000 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 1001 * @handle: transaction to add buffer modifications to 1002 * @bh: bh to be used for metadata writes 1003 * 1004 * Returns an error code or 0 on success. 1005 * 1006 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1007 * because we're write()ing a buffer which is also part of a shared mapping. 1008 */ 1009 1010 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1011 { 1012 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1013 int rc; 1014 1015 /* We do not want to get caught playing with fields which the 1016 * log thread also manipulates. Make sure that the buffer 1017 * completes any outstanding IO before proceeding. */ 1018 rc = do_get_write_access(handle, jh, 0); 1019 jbd2_journal_put_journal_head(jh); 1020 return rc; 1021 } 1022 1023 1024 /* 1025 * When the user wants to journal a newly created buffer_head 1026 * (ie. getblk() returned a new buffer and we are going to populate it 1027 * manually rather than reading off disk), then we need to keep the 1028 * buffer_head locked until it has been completely filled with new 1029 * data. In this case, we should be able to make the assertion that 1030 * the bh is not already part of an existing transaction. 1031 * 1032 * The buffer should already be locked by the caller by this point. 1033 * There is no lock ranking violation: it was a newly created, 1034 * unlocked buffer beforehand. */ 1035 1036 /** 1037 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 1038 * @handle: transaction to new buffer to 1039 * @bh: new buffer. 1040 * 1041 * Call this if you create a new bh. 1042 */ 1043 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1044 { 1045 transaction_t *transaction = handle->h_transaction; 1046 journal_t *journal; 1047 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1048 int err; 1049 1050 jbd_debug(5, "journal_head %p\n", jh); 1051 err = -EROFS; 1052 if (is_handle_aborted(handle)) 1053 goto out; 1054 journal = transaction->t_journal; 1055 err = 0; 1056 1057 JBUFFER_TRACE(jh, "entry"); 1058 /* 1059 * The buffer may already belong to this transaction due to pre-zeroing 1060 * in the filesystem's new_block code. It may also be on the previous, 1061 * committing transaction's lists, but it HAS to be in Forget state in 1062 * that case: the transaction must have deleted the buffer for it to be 1063 * reused here. 1064 */ 1065 jbd_lock_bh_state(bh); 1066 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1067 jh->b_transaction == NULL || 1068 (jh->b_transaction == journal->j_committing_transaction && 1069 jh->b_jlist == BJ_Forget))); 1070 1071 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1072 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1073 1074 if (jh->b_transaction == NULL) { 1075 /* 1076 * Previous jbd2_journal_forget() could have left the buffer 1077 * with jbddirty bit set because it was being committed. When 1078 * the commit finished, we've filed the buffer for 1079 * checkpointing and marked it dirty. Now we are reallocating 1080 * the buffer so the transaction freeing it must have 1081 * committed and so it's safe to clear the dirty bit. 1082 */ 1083 clear_buffer_dirty(jh2bh(jh)); 1084 /* first access by this transaction */ 1085 jh->b_modified = 0; 1086 1087 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1088 spin_lock(&journal->j_list_lock); 1089 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1090 } else if (jh->b_transaction == journal->j_committing_transaction) { 1091 /* first access by this transaction */ 1092 jh->b_modified = 0; 1093 1094 JBUFFER_TRACE(jh, "set next transaction"); 1095 spin_lock(&journal->j_list_lock); 1096 jh->b_next_transaction = transaction; 1097 } 1098 spin_unlock(&journal->j_list_lock); 1099 jbd_unlock_bh_state(bh); 1100 1101 /* 1102 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1103 * blocks which contain freed but then revoked metadata. We need 1104 * to cancel the revoke in case we end up freeing it yet again 1105 * and the reallocating as data - this would cause a second revoke, 1106 * which hits an assertion error. 1107 */ 1108 JBUFFER_TRACE(jh, "cancelling revoke"); 1109 jbd2_journal_cancel_revoke(handle, jh); 1110 out: 1111 jbd2_journal_put_journal_head(jh); 1112 return err; 1113 } 1114 1115 /** 1116 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1117 * non-rewindable consequences 1118 * @handle: transaction 1119 * @bh: buffer to undo 1120 * 1121 * Sometimes there is a need to distinguish between metadata which has 1122 * been committed to disk and that which has not. The ext3fs code uses 1123 * this for freeing and allocating space, we have to make sure that we 1124 * do not reuse freed space until the deallocation has been committed, 1125 * since if we overwrote that space we would make the delete 1126 * un-rewindable in case of a crash. 1127 * 1128 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1129 * buffer for parts of non-rewindable operations such as delete 1130 * operations on the bitmaps. The journaling code must keep a copy of 1131 * the buffer's contents prior to the undo_access call until such time 1132 * as we know that the buffer has definitely been committed to disk. 1133 * 1134 * We never need to know which transaction the committed data is part 1135 * of, buffers touched here are guaranteed to be dirtied later and so 1136 * will be committed to a new transaction in due course, at which point 1137 * we can discard the old committed data pointer. 1138 * 1139 * Returns error number or 0 on success. 1140 */ 1141 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1142 { 1143 int err; 1144 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1145 char *committed_data = NULL; 1146 1147 JBUFFER_TRACE(jh, "entry"); 1148 1149 /* 1150 * Do this first --- it can drop the journal lock, so we want to 1151 * make sure that obtaining the committed_data is done 1152 * atomically wrt. completion of any outstanding commits. 1153 */ 1154 err = do_get_write_access(handle, jh, 1); 1155 if (err) 1156 goto out; 1157 1158 repeat: 1159 if (!jh->b_committed_data) { 1160 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1161 if (!committed_data) { 1162 printk(KERN_ERR "%s: No memory for committed data\n", 1163 __func__); 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 } 1168 1169 jbd_lock_bh_state(bh); 1170 if (!jh->b_committed_data) { 1171 /* Copy out the current buffer contents into the 1172 * preserved, committed copy. */ 1173 JBUFFER_TRACE(jh, "generate b_committed data"); 1174 if (!committed_data) { 1175 jbd_unlock_bh_state(bh); 1176 goto repeat; 1177 } 1178 1179 jh->b_committed_data = committed_data; 1180 committed_data = NULL; 1181 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1182 } 1183 jbd_unlock_bh_state(bh); 1184 out: 1185 jbd2_journal_put_journal_head(jh); 1186 if (unlikely(committed_data)) 1187 jbd2_free(committed_data, bh->b_size); 1188 return err; 1189 } 1190 1191 /** 1192 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1193 * @bh: buffer to trigger on 1194 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1195 * 1196 * Set any triggers on this journal_head. This is always safe, because 1197 * triggers for a committing buffer will be saved off, and triggers for 1198 * a running transaction will match the buffer in that transaction. 1199 * 1200 * Call with NULL to clear the triggers. 1201 */ 1202 void jbd2_journal_set_triggers(struct buffer_head *bh, 1203 struct jbd2_buffer_trigger_type *type) 1204 { 1205 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1206 1207 if (WARN_ON(!jh)) 1208 return; 1209 jh->b_triggers = type; 1210 jbd2_journal_put_journal_head(jh); 1211 } 1212 1213 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1214 struct jbd2_buffer_trigger_type *triggers) 1215 { 1216 struct buffer_head *bh = jh2bh(jh); 1217 1218 if (!triggers || !triggers->t_frozen) 1219 return; 1220 1221 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1222 } 1223 1224 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1225 struct jbd2_buffer_trigger_type *triggers) 1226 { 1227 if (!triggers || !triggers->t_abort) 1228 return; 1229 1230 triggers->t_abort(triggers, jh2bh(jh)); 1231 } 1232 1233 1234 1235 /** 1236 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1237 * @handle: transaction to add buffer to. 1238 * @bh: buffer to mark 1239 * 1240 * mark dirty metadata which needs to be journaled as part of the current 1241 * transaction. 1242 * 1243 * The buffer must have previously had jbd2_journal_get_write_access() 1244 * called so that it has a valid journal_head attached to the buffer 1245 * head. 1246 * 1247 * The buffer is placed on the transaction's metadata list and is marked 1248 * as belonging to the transaction. 1249 * 1250 * Returns error number or 0 on success. 1251 * 1252 * Special care needs to be taken if the buffer already belongs to the 1253 * current committing transaction (in which case we should have frozen 1254 * data present for that commit). In that case, we don't relink the 1255 * buffer: that only gets done when the old transaction finally 1256 * completes its commit. 1257 */ 1258 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1259 { 1260 transaction_t *transaction = handle->h_transaction; 1261 journal_t *journal; 1262 struct journal_head *jh; 1263 int ret = 0; 1264 1265 if (is_handle_aborted(handle)) 1266 return -EROFS; 1267 journal = transaction->t_journal; 1268 jh = jbd2_journal_grab_journal_head(bh); 1269 if (!jh) { 1270 ret = -EUCLEAN; 1271 goto out; 1272 } 1273 jbd_debug(5, "journal_head %p\n", jh); 1274 JBUFFER_TRACE(jh, "entry"); 1275 1276 jbd_lock_bh_state(bh); 1277 1278 if (jh->b_modified == 0) { 1279 /* 1280 * This buffer's got modified and becoming part 1281 * of the transaction. This needs to be done 1282 * once a transaction -bzzz 1283 */ 1284 jh->b_modified = 1; 1285 if (handle->h_buffer_credits <= 0) { 1286 ret = -ENOSPC; 1287 goto out_unlock_bh; 1288 } 1289 handle->h_buffer_credits--; 1290 } 1291 1292 /* 1293 * fastpath, to avoid expensive locking. If this buffer is already 1294 * on the running transaction's metadata list there is nothing to do. 1295 * Nobody can take it off again because there is a handle open. 1296 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1297 * result in this test being false, so we go in and take the locks. 1298 */ 1299 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1300 JBUFFER_TRACE(jh, "fastpath"); 1301 if (unlikely(jh->b_transaction != 1302 journal->j_running_transaction)) { 1303 printk(KERN_ERR "JBD2: %s: " 1304 "jh->b_transaction (%llu, %p, %u) != " 1305 "journal->j_running_transaction (%p, %u)\n", 1306 journal->j_devname, 1307 (unsigned long long) bh->b_blocknr, 1308 jh->b_transaction, 1309 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1310 journal->j_running_transaction, 1311 journal->j_running_transaction ? 1312 journal->j_running_transaction->t_tid : 0); 1313 ret = -EINVAL; 1314 } 1315 goto out_unlock_bh; 1316 } 1317 1318 set_buffer_jbddirty(bh); 1319 1320 /* 1321 * Metadata already on the current transaction list doesn't 1322 * need to be filed. Metadata on another transaction's list must 1323 * be committing, and will be refiled once the commit completes: 1324 * leave it alone for now. 1325 */ 1326 if (jh->b_transaction != transaction) { 1327 JBUFFER_TRACE(jh, "already on other transaction"); 1328 if (unlikely(((jh->b_transaction != 1329 journal->j_committing_transaction)) || 1330 (jh->b_next_transaction != transaction))) { 1331 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1332 "bad jh for block %llu: " 1333 "transaction (%p, %u), " 1334 "jh->b_transaction (%p, %u), " 1335 "jh->b_next_transaction (%p, %u), jlist %u\n", 1336 journal->j_devname, 1337 (unsigned long long) bh->b_blocknr, 1338 transaction, transaction->t_tid, 1339 jh->b_transaction, 1340 jh->b_transaction ? 1341 jh->b_transaction->t_tid : 0, 1342 jh->b_next_transaction, 1343 jh->b_next_transaction ? 1344 jh->b_next_transaction->t_tid : 0, 1345 jh->b_jlist); 1346 WARN_ON(1); 1347 ret = -EINVAL; 1348 } 1349 /* And this case is illegal: we can't reuse another 1350 * transaction's data buffer, ever. */ 1351 goto out_unlock_bh; 1352 } 1353 1354 /* That test should have eliminated the following case: */ 1355 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1356 1357 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1358 spin_lock(&journal->j_list_lock); 1359 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1360 spin_unlock(&journal->j_list_lock); 1361 out_unlock_bh: 1362 jbd_unlock_bh_state(bh); 1363 jbd2_journal_put_journal_head(jh); 1364 out: 1365 JBUFFER_TRACE(jh, "exit"); 1366 return ret; 1367 } 1368 1369 /** 1370 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1371 * @handle: transaction handle 1372 * @bh: bh to 'forget' 1373 * 1374 * We can only do the bforget if there are no commits pending against the 1375 * buffer. If the buffer is dirty in the current running transaction we 1376 * can safely unlink it. 1377 * 1378 * bh may not be a journalled buffer at all - it may be a non-JBD 1379 * buffer which came off the hashtable. Check for this. 1380 * 1381 * Decrements bh->b_count by one. 1382 * 1383 * Allow this call even if the handle has aborted --- it may be part of 1384 * the caller's cleanup after an abort. 1385 */ 1386 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1387 { 1388 transaction_t *transaction = handle->h_transaction; 1389 journal_t *journal; 1390 struct journal_head *jh; 1391 int drop_reserve = 0; 1392 int err = 0; 1393 int was_modified = 0; 1394 1395 if (is_handle_aborted(handle)) 1396 return -EROFS; 1397 journal = transaction->t_journal; 1398 1399 BUFFER_TRACE(bh, "entry"); 1400 1401 jbd_lock_bh_state(bh); 1402 1403 if (!buffer_jbd(bh)) 1404 goto not_jbd; 1405 jh = bh2jh(bh); 1406 1407 /* Critical error: attempting to delete a bitmap buffer, maybe? 1408 * Don't do any jbd operations, and return an error. */ 1409 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1410 "inconsistent data on disk")) { 1411 err = -EIO; 1412 goto not_jbd; 1413 } 1414 1415 /* keep track of whether or not this transaction modified us */ 1416 was_modified = jh->b_modified; 1417 1418 /* 1419 * The buffer's going from the transaction, we must drop 1420 * all references -bzzz 1421 */ 1422 jh->b_modified = 0; 1423 1424 if (jh->b_transaction == transaction) { 1425 J_ASSERT_JH(jh, !jh->b_frozen_data); 1426 1427 /* If we are forgetting a buffer which is already part 1428 * of this transaction, then we can just drop it from 1429 * the transaction immediately. */ 1430 clear_buffer_dirty(bh); 1431 clear_buffer_jbddirty(bh); 1432 1433 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1434 1435 /* 1436 * we only want to drop a reference if this transaction 1437 * modified the buffer 1438 */ 1439 if (was_modified) 1440 drop_reserve = 1; 1441 1442 /* 1443 * We are no longer going to journal this buffer. 1444 * However, the commit of this transaction is still 1445 * important to the buffer: the delete that we are now 1446 * processing might obsolete an old log entry, so by 1447 * committing, we can satisfy the buffer's checkpoint. 1448 * 1449 * So, if we have a checkpoint on the buffer, we should 1450 * now refile the buffer on our BJ_Forget list so that 1451 * we know to remove the checkpoint after we commit. 1452 */ 1453 1454 spin_lock(&journal->j_list_lock); 1455 if (jh->b_cp_transaction) { 1456 __jbd2_journal_temp_unlink_buffer(jh); 1457 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1458 } else { 1459 __jbd2_journal_unfile_buffer(jh); 1460 if (!buffer_jbd(bh)) { 1461 spin_unlock(&journal->j_list_lock); 1462 jbd_unlock_bh_state(bh); 1463 __bforget(bh); 1464 goto drop; 1465 } 1466 } 1467 spin_unlock(&journal->j_list_lock); 1468 } else if (jh->b_transaction) { 1469 J_ASSERT_JH(jh, (jh->b_transaction == 1470 journal->j_committing_transaction)); 1471 /* However, if the buffer is still owned by a prior 1472 * (committing) transaction, we can't drop it yet... */ 1473 JBUFFER_TRACE(jh, "belongs to older transaction"); 1474 /* ... but we CAN drop it from the new transaction if we 1475 * have also modified it since the original commit. */ 1476 1477 if (jh->b_next_transaction) { 1478 J_ASSERT(jh->b_next_transaction == transaction); 1479 spin_lock(&journal->j_list_lock); 1480 jh->b_next_transaction = NULL; 1481 spin_unlock(&journal->j_list_lock); 1482 1483 /* 1484 * only drop a reference if this transaction modified 1485 * the buffer 1486 */ 1487 if (was_modified) 1488 drop_reserve = 1; 1489 } 1490 } 1491 1492 not_jbd: 1493 jbd_unlock_bh_state(bh); 1494 __brelse(bh); 1495 drop: 1496 if (drop_reserve) { 1497 /* no need to reserve log space for this block -bzzz */ 1498 handle->h_buffer_credits++; 1499 } 1500 return err; 1501 } 1502 1503 /** 1504 * int jbd2_journal_stop() - complete a transaction 1505 * @handle: tranaction to complete. 1506 * 1507 * All done for a particular handle. 1508 * 1509 * There is not much action needed here. We just return any remaining 1510 * buffer credits to the transaction and remove the handle. The only 1511 * complication is that we need to start a commit operation if the 1512 * filesystem is marked for synchronous update. 1513 * 1514 * jbd2_journal_stop itself will not usually return an error, but it may 1515 * do so in unusual circumstances. In particular, expect it to 1516 * return -EIO if a jbd2_journal_abort has been executed since the 1517 * transaction began. 1518 */ 1519 int jbd2_journal_stop(handle_t *handle) 1520 { 1521 transaction_t *transaction = handle->h_transaction; 1522 journal_t *journal; 1523 int err = 0, wait_for_commit = 0; 1524 tid_t tid; 1525 pid_t pid; 1526 1527 if (!transaction) { 1528 /* 1529 * Handle is already detached from the transaction so 1530 * there is nothing to do other than decrease a refcount, 1531 * or free the handle if refcount drops to zero 1532 */ 1533 if (--handle->h_ref > 0) { 1534 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1535 handle->h_ref); 1536 return err; 1537 } else { 1538 if (handle->h_rsv_handle) 1539 jbd2_free_handle(handle->h_rsv_handle); 1540 goto free_and_exit; 1541 } 1542 } 1543 journal = transaction->t_journal; 1544 1545 J_ASSERT(journal_current_handle() == handle); 1546 1547 if (is_handle_aborted(handle)) 1548 err = -EIO; 1549 else 1550 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1551 1552 if (--handle->h_ref > 0) { 1553 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1554 handle->h_ref); 1555 return err; 1556 } 1557 1558 jbd_debug(4, "Handle %p going down\n", handle); 1559 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1560 transaction->t_tid, 1561 handle->h_type, handle->h_line_no, 1562 jiffies - handle->h_start_jiffies, 1563 handle->h_sync, handle->h_requested_credits, 1564 (handle->h_requested_credits - 1565 handle->h_buffer_credits)); 1566 1567 /* 1568 * Implement synchronous transaction batching. If the handle 1569 * was synchronous, don't force a commit immediately. Let's 1570 * yield and let another thread piggyback onto this 1571 * transaction. Keep doing that while new threads continue to 1572 * arrive. It doesn't cost much - we're about to run a commit 1573 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1574 * operations by 30x or more... 1575 * 1576 * We try and optimize the sleep time against what the 1577 * underlying disk can do, instead of having a static sleep 1578 * time. This is useful for the case where our storage is so 1579 * fast that it is more optimal to go ahead and force a flush 1580 * and wait for the transaction to be committed than it is to 1581 * wait for an arbitrary amount of time for new writers to 1582 * join the transaction. We achieve this by measuring how 1583 * long it takes to commit a transaction, and compare it with 1584 * how long this transaction has been running, and if run time 1585 * < commit time then we sleep for the delta and commit. This 1586 * greatly helps super fast disks that would see slowdowns as 1587 * more threads started doing fsyncs. 1588 * 1589 * But don't do this if this process was the most recent one 1590 * to perform a synchronous write. We do this to detect the 1591 * case where a single process is doing a stream of sync 1592 * writes. No point in waiting for joiners in that case. 1593 * 1594 * Setting max_batch_time to 0 disables this completely. 1595 */ 1596 pid = current->pid; 1597 if (handle->h_sync && journal->j_last_sync_writer != pid && 1598 journal->j_max_batch_time) { 1599 u64 commit_time, trans_time; 1600 1601 journal->j_last_sync_writer = pid; 1602 1603 read_lock(&journal->j_state_lock); 1604 commit_time = journal->j_average_commit_time; 1605 read_unlock(&journal->j_state_lock); 1606 1607 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1608 transaction->t_start_time)); 1609 1610 commit_time = max_t(u64, commit_time, 1611 1000*journal->j_min_batch_time); 1612 commit_time = min_t(u64, commit_time, 1613 1000*journal->j_max_batch_time); 1614 1615 if (trans_time < commit_time) { 1616 ktime_t expires = ktime_add_ns(ktime_get(), 1617 commit_time); 1618 set_current_state(TASK_UNINTERRUPTIBLE); 1619 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1620 } 1621 } 1622 1623 if (handle->h_sync) 1624 transaction->t_synchronous_commit = 1; 1625 current->journal_info = NULL; 1626 atomic_sub(handle->h_buffer_credits, 1627 &transaction->t_outstanding_credits); 1628 1629 /* 1630 * If the handle is marked SYNC, we need to set another commit 1631 * going! We also want to force a commit if the current 1632 * transaction is occupying too much of the log, or if the 1633 * transaction is too old now. 1634 */ 1635 if (handle->h_sync || 1636 (atomic_read(&transaction->t_outstanding_credits) > 1637 journal->j_max_transaction_buffers) || 1638 time_after_eq(jiffies, transaction->t_expires)) { 1639 /* Do this even for aborted journals: an abort still 1640 * completes the commit thread, it just doesn't write 1641 * anything to disk. */ 1642 1643 jbd_debug(2, "transaction too old, requesting commit for " 1644 "handle %p\n", handle); 1645 /* This is non-blocking */ 1646 jbd2_log_start_commit(journal, transaction->t_tid); 1647 1648 /* 1649 * Special case: JBD2_SYNC synchronous updates require us 1650 * to wait for the commit to complete. 1651 */ 1652 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1653 wait_for_commit = 1; 1654 } 1655 1656 /* 1657 * Once we drop t_updates, if it goes to zero the transaction 1658 * could start committing on us and eventually disappear. So 1659 * once we do this, we must not dereference transaction 1660 * pointer again. 1661 */ 1662 tid = transaction->t_tid; 1663 if (atomic_dec_and_test(&transaction->t_updates)) { 1664 wake_up(&journal->j_wait_updates); 1665 if (journal->j_barrier_count) 1666 wake_up(&journal->j_wait_transaction_locked); 1667 } 1668 1669 if (wait_for_commit) 1670 err = jbd2_log_wait_commit(journal, tid); 1671 1672 lock_map_release(&handle->h_lockdep_map); 1673 1674 if (handle->h_rsv_handle) 1675 jbd2_journal_free_reserved(handle->h_rsv_handle); 1676 free_and_exit: 1677 jbd2_free_handle(handle); 1678 return err; 1679 } 1680 1681 /* 1682 * 1683 * List management code snippets: various functions for manipulating the 1684 * transaction buffer lists. 1685 * 1686 */ 1687 1688 /* 1689 * Append a buffer to a transaction list, given the transaction's list head 1690 * pointer. 1691 * 1692 * j_list_lock is held. 1693 * 1694 * jbd_lock_bh_state(jh2bh(jh)) is held. 1695 */ 1696 1697 static inline void 1698 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1699 { 1700 if (!*list) { 1701 jh->b_tnext = jh->b_tprev = jh; 1702 *list = jh; 1703 } else { 1704 /* Insert at the tail of the list to preserve order */ 1705 struct journal_head *first = *list, *last = first->b_tprev; 1706 jh->b_tprev = last; 1707 jh->b_tnext = first; 1708 last->b_tnext = first->b_tprev = jh; 1709 } 1710 } 1711 1712 /* 1713 * Remove a buffer from a transaction list, given the transaction's list 1714 * head pointer. 1715 * 1716 * Called with j_list_lock held, and the journal may not be locked. 1717 * 1718 * jbd_lock_bh_state(jh2bh(jh)) is held. 1719 */ 1720 1721 static inline void 1722 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1723 { 1724 if (*list == jh) { 1725 *list = jh->b_tnext; 1726 if (*list == jh) 1727 *list = NULL; 1728 } 1729 jh->b_tprev->b_tnext = jh->b_tnext; 1730 jh->b_tnext->b_tprev = jh->b_tprev; 1731 } 1732 1733 /* 1734 * Remove a buffer from the appropriate transaction list. 1735 * 1736 * Note that this function can *change* the value of 1737 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1738 * t_reserved_list. If the caller is holding onto a copy of one of these 1739 * pointers, it could go bad. Generally the caller needs to re-read the 1740 * pointer from the transaction_t. 1741 * 1742 * Called under j_list_lock. 1743 */ 1744 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1745 { 1746 struct journal_head **list = NULL; 1747 transaction_t *transaction; 1748 struct buffer_head *bh = jh2bh(jh); 1749 1750 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1751 transaction = jh->b_transaction; 1752 if (transaction) 1753 assert_spin_locked(&transaction->t_journal->j_list_lock); 1754 1755 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1756 if (jh->b_jlist != BJ_None) 1757 J_ASSERT_JH(jh, transaction != NULL); 1758 1759 switch (jh->b_jlist) { 1760 case BJ_None: 1761 return; 1762 case BJ_Metadata: 1763 transaction->t_nr_buffers--; 1764 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1765 list = &transaction->t_buffers; 1766 break; 1767 case BJ_Forget: 1768 list = &transaction->t_forget; 1769 break; 1770 case BJ_Shadow: 1771 list = &transaction->t_shadow_list; 1772 break; 1773 case BJ_Reserved: 1774 list = &transaction->t_reserved_list; 1775 break; 1776 } 1777 1778 __blist_del_buffer(list, jh); 1779 jh->b_jlist = BJ_None; 1780 if (test_clear_buffer_jbddirty(bh)) 1781 mark_buffer_dirty(bh); /* Expose it to the VM */ 1782 } 1783 1784 /* 1785 * Remove buffer from all transactions. 1786 * 1787 * Called with bh_state lock and j_list_lock 1788 * 1789 * jh and bh may be already freed when this function returns. 1790 */ 1791 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1792 { 1793 __jbd2_journal_temp_unlink_buffer(jh); 1794 jh->b_transaction = NULL; 1795 jbd2_journal_put_journal_head(jh); 1796 } 1797 1798 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1799 { 1800 struct buffer_head *bh = jh2bh(jh); 1801 1802 /* Get reference so that buffer cannot be freed before we unlock it */ 1803 get_bh(bh); 1804 jbd_lock_bh_state(bh); 1805 spin_lock(&journal->j_list_lock); 1806 __jbd2_journal_unfile_buffer(jh); 1807 spin_unlock(&journal->j_list_lock); 1808 jbd_unlock_bh_state(bh); 1809 __brelse(bh); 1810 } 1811 1812 /* 1813 * Called from jbd2_journal_try_to_free_buffers(). 1814 * 1815 * Called under jbd_lock_bh_state(bh) 1816 */ 1817 static void 1818 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1819 { 1820 struct journal_head *jh; 1821 1822 jh = bh2jh(bh); 1823 1824 if (buffer_locked(bh) || buffer_dirty(bh)) 1825 goto out; 1826 1827 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 1828 goto out; 1829 1830 spin_lock(&journal->j_list_lock); 1831 if (jh->b_cp_transaction != NULL) { 1832 /* written-back checkpointed metadata buffer */ 1833 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1834 __jbd2_journal_remove_checkpoint(jh); 1835 } 1836 spin_unlock(&journal->j_list_lock); 1837 out: 1838 return; 1839 } 1840 1841 /** 1842 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1843 * @journal: journal for operation 1844 * @page: to try and free 1845 * @gfp_mask: we use the mask to detect how hard should we try to release 1846 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1847 * release the buffers. 1848 * 1849 * 1850 * For all the buffers on this page, 1851 * if they are fully written out ordered data, move them onto BUF_CLEAN 1852 * so try_to_free_buffers() can reap them. 1853 * 1854 * This function returns non-zero if we wish try_to_free_buffers() 1855 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1856 * We also do it if the page has locked or dirty buffers and the caller wants 1857 * us to perform sync or async writeout. 1858 * 1859 * This complicates JBD locking somewhat. We aren't protected by the 1860 * BKL here. We wish to remove the buffer from its committing or 1861 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1862 * 1863 * This may *change* the value of transaction_t->t_datalist, so anyone 1864 * who looks at t_datalist needs to lock against this function. 1865 * 1866 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1867 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1868 * will come out of the lock with the buffer dirty, which makes it 1869 * ineligible for release here. 1870 * 1871 * Who else is affected by this? hmm... Really the only contender 1872 * is do_get_write_access() - it could be looking at the buffer while 1873 * journal_try_to_free_buffer() is changing its state. But that 1874 * cannot happen because we never reallocate freed data as metadata 1875 * while the data is part of a transaction. Yes? 1876 * 1877 * Return 0 on failure, 1 on success 1878 */ 1879 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1880 struct page *page, gfp_t gfp_mask) 1881 { 1882 struct buffer_head *head; 1883 struct buffer_head *bh; 1884 int ret = 0; 1885 1886 J_ASSERT(PageLocked(page)); 1887 1888 head = page_buffers(page); 1889 bh = head; 1890 do { 1891 struct journal_head *jh; 1892 1893 /* 1894 * We take our own ref against the journal_head here to avoid 1895 * having to add tons of locking around each instance of 1896 * jbd2_journal_put_journal_head(). 1897 */ 1898 jh = jbd2_journal_grab_journal_head(bh); 1899 if (!jh) 1900 continue; 1901 1902 jbd_lock_bh_state(bh); 1903 __journal_try_to_free_buffer(journal, bh); 1904 jbd2_journal_put_journal_head(jh); 1905 jbd_unlock_bh_state(bh); 1906 if (buffer_jbd(bh)) 1907 goto busy; 1908 } while ((bh = bh->b_this_page) != head); 1909 1910 ret = try_to_free_buffers(page); 1911 1912 busy: 1913 return ret; 1914 } 1915 1916 /* 1917 * This buffer is no longer needed. If it is on an older transaction's 1918 * checkpoint list we need to record it on this transaction's forget list 1919 * to pin this buffer (and hence its checkpointing transaction) down until 1920 * this transaction commits. If the buffer isn't on a checkpoint list, we 1921 * release it. 1922 * Returns non-zero if JBD no longer has an interest in the buffer. 1923 * 1924 * Called under j_list_lock. 1925 * 1926 * Called under jbd_lock_bh_state(bh). 1927 */ 1928 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1929 { 1930 int may_free = 1; 1931 struct buffer_head *bh = jh2bh(jh); 1932 1933 if (jh->b_cp_transaction) { 1934 JBUFFER_TRACE(jh, "on running+cp transaction"); 1935 __jbd2_journal_temp_unlink_buffer(jh); 1936 /* 1937 * We don't want to write the buffer anymore, clear the 1938 * bit so that we don't confuse checks in 1939 * __journal_file_buffer 1940 */ 1941 clear_buffer_dirty(bh); 1942 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1943 may_free = 0; 1944 } else { 1945 JBUFFER_TRACE(jh, "on running transaction"); 1946 __jbd2_journal_unfile_buffer(jh); 1947 } 1948 return may_free; 1949 } 1950 1951 /* 1952 * jbd2_journal_invalidatepage 1953 * 1954 * This code is tricky. It has a number of cases to deal with. 1955 * 1956 * There are two invariants which this code relies on: 1957 * 1958 * i_size must be updated on disk before we start calling invalidatepage on the 1959 * data. 1960 * 1961 * This is done in ext3 by defining an ext3_setattr method which 1962 * updates i_size before truncate gets going. By maintaining this 1963 * invariant, we can be sure that it is safe to throw away any buffers 1964 * attached to the current transaction: once the transaction commits, 1965 * we know that the data will not be needed. 1966 * 1967 * Note however that we can *not* throw away data belonging to the 1968 * previous, committing transaction! 1969 * 1970 * Any disk blocks which *are* part of the previous, committing 1971 * transaction (and which therefore cannot be discarded immediately) are 1972 * not going to be reused in the new running transaction 1973 * 1974 * The bitmap committed_data images guarantee this: any block which is 1975 * allocated in one transaction and removed in the next will be marked 1976 * as in-use in the committed_data bitmap, so cannot be reused until 1977 * the next transaction to delete the block commits. This means that 1978 * leaving committing buffers dirty is quite safe: the disk blocks 1979 * cannot be reallocated to a different file and so buffer aliasing is 1980 * not possible. 1981 * 1982 * 1983 * The above applies mainly to ordered data mode. In writeback mode we 1984 * don't make guarantees about the order in which data hits disk --- in 1985 * particular we don't guarantee that new dirty data is flushed before 1986 * transaction commit --- so it is always safe just to discard data 1987 * immediately in that mode. --sct 1988 */ 1989 1990 /* 1991 * The journal_unmap_buffer helper function returns zero if the buffer 1992 * concerned remains pinned as an anonymous buffer belonging to an older 1993 * transaction. 1994 * 1995 * We're outside-transaction here. Either or both of j_running_transaction 1996 * and j_committing_transaction may be NULL. 1997 */ 1998 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1999 int partial_page) 2000 { 2001 transaction_t *transaction; 2002 struct journal_head *jh; 2003 int may_free = 1; 2004 2005 BUFFER_TRACE(bh, "entry"); 2006 2007 /* 2008 * It is safe to proceed here without the j_list_lock because the 2009 * buffers cannot be stolen by try_to_free_buffers as long as we are 2010 * holding the page lock. --sct 2011 */ 2012 2013 if (!buffer_jbd(bh)) 2014 goto zap_buffer_unlocked; 2015 2016 /* OK, we have data buffer in journaled mode */ 2017 write_lock(&journal->j_state_lock); 2018 jbd_lock_bh_state(bh); 2019 spin_lock(&journal->j_list_lock); 2020 2021 jh = jbd2_journal_grab_journal_head(bh); 2022 if (!jh) 2023 goto zap_buffer_no_jh; 2024 2025 /* 2026 * We cannot remove the buffer from checkpoint lists until the 2027 * transaction adding inode to orphan list (let's call it T) 2028 * is committed. Otherwise if the transaction changing the 2029 * buffer would be cleaned from the journal before T is 2030 * committed, a crash will cause that the correct contents of 2031 * the buffer will be lost. On the other hand we have to 2032 * clear the buffer dirty bit at latest at the moment when the 2033 * transaction marking the buffer as freed in the filesystem 2034 * structures is committed because from that moment on the 2035 * block can be reallocated and used by a different page. 2036 * Since the block hasn't been freed yet but the inode has 2037 * already been added to orphan list, it is safe for us to add 2038 * the buffer to BJ_Forget list of the newest transaction. 2039 * 2040 * Also we have to clear buffer_mapped flag of a truncated buffer 2041 * because the buffer_head may be attached to the page straddling 2042 * i_size (can happen only when blocksize < pagesize) and thus the 2043 * buffer_head can be reused when the file is extended again. So we end 2044 * up keeping around invalidated buffers attached to transactions' 2045 * BJ_Forget list just to stop checkpointing code from cleaning up 2046 * the transaction this buffer was modified in. 2047 */ 2048 transaction = jh->b_transaction; 2049 if (transaction == NULL) { 2050 /* First case: not on any transaction. If it 2051 * has no checkpoint link, then we can zap it: 2052 * it's a writeback-mode buffer so we don't care 2053 * if it hits disk safely. */ 2054 if (!jh->b_cp_transaction) { 2055 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2056 goto zap_buffer; 2057 } 2058 2059 if (!buffer_dirty(bh)) { 2060 /* bdflush has written it. We can drop it now */ 2061 goto zap_buffer; 2062 } 2063 2064 /* OK, it must be in the journal but still not 2065 * written fully to disk: it's metadata or 2066 * journaled data... */ 2067 2068 if (journal->j_running_transaction) { 2069 /* ... and once the current transaction has 2070 * committed, the buffer won't be needed any 2071 * longer. */ 2072 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2073 may_free = __dispose_buffer(jh, 2074 journal->j_running_transaction); 2075 goto zap_buffer; 2076 } else { 2077 /* There is no currently-running transaction. So the 2078 * orphan record which we wrote for this file must have 2079 * passed into commit. We must attach this buffer to 2080 * the committing transaction, if it exists. */ 2081 if (journal->j_committing_transaction) { 2082 JBUFFER_TRACE(jh, "give to committing trans"); 2083 may_free = __dispose_buffer(jh, 2084 journal->j_committing_transaction); 2085 goto zap_buffer; 2086 } else { 2087 /* The orphan record's transaction has 2088 * committed. We can cleanse this buffer */ 2089 clear_buffer_jbddirty(bh); 2090 goto zap_buffer; 2091 } 2092 } 2093 } else if (transaction == journal->j_committing_transaction) { 2094 JBUFFER_TRACE(jh, "on committing transaction"); 2095 /* 2096 * The buffer is committing, we simply cannot touch 2097 * it. If the page is straddling i_size we have to wait 2098 * for commit and try again. 2099 */ 2100 if (partial_page) { 2101 jbd2_journal_put_journal_head(jh); 2102 spin_unlock(&journal->j_list_lock); 2103 jbd_unlock_bh_state(bh); 2104 write_unlock(&journal->j_state_lock); 2105 return -EBUSY; 2106 } 2107 /* 2108 * OK, buffer won't be reachable after truncate. We just set 2109 * j_next_transaction to the running transaction (if there is 2110 * one) and mark buffer as freed so that commit code knows it 2111 * should clear dirty bits when it is done with the buffer. 2112 */ 2113 set_buffer_freed(bh); 2114 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2115 jh->b_next_transaction = journal->j_running_transaction; 2116 jbd2_journal_put_journal_head(jh); 2117 spin_unlock(&journal->j_list_lock); 2118 jbd_unlock_bh_state(bh); 2119 write_unlock(&journal->j_state_lock); 2120 return 0; 2121 } else { 2122 /* Good, the buffer belongs to the running transaction. 2123 * We are writing our own transaction's data, not any 2124 * previous one's, so it is safe to throw it away 2125 * (remember that we expect the filesystem to have set 2126 * i_size already for this truncate so recovery will not 2127 * expose the disk blocks we are discarding here.) */ 2128 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2129 JBUFFER_TRACE(jh, "on running transaction"); 2130 may_free = __dispose_buffer(jh, transaction); 2131 } 2132 2133 zap_buffer: 2134 /* 2135 * This is tricky. Although the buffer is truncated, it may be reused 2136 * if blocksize < pagesize and it is attached to the page straddling 2137 * EOF. Since the buffer might have been added to BJ_Forget list of the 2138 * running transaction, journal_get_write_access() won't clear 2139 * b_modified and credit accounting gets confused. So clear b_modified 2140 * here. 2141 */ 2142 jh->b_modified = 0; 2143 jbd2_journal_put_journal_head(jh); 2144 zap_buffer_no_jh: 2145 spin_unlock(&journal->j_list_lock); 2146 jbd_unlock_bh_state(bh); 2147 write_unlock(&journal->j_state_lock); 2148 zap_buffer_unlocked: 2149 clear_buffer_dirty(bh); 2150 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2151 clear_buffer_mapped(bh); 2152 clear_buffer_req(bh); 2153 clear_buffer_new(bh); 2154 clear_buffer_delay(bh); 2155 clear_buffer_unwritten(bh); 2156 bh->b_bdev = NULL; 2157 return may_free; 2158 } 2159 2160 /** 2161 * void jbd2_journal_invalidatepage() 2162 * @journal: journal to use for flush... 2163 * @page: page to flush 2164 * @offset: start of the range to invalidate 2165 * @length: length of the range to invalidate 2166 * 2167 * Reap page buffers containing data after in the specified range in page. 2168 * Can return -EBUSY if buffers are part of the committing transaction and 2169 * the page is straddling i_size. Caller then has to wait for current commit 2170 * and try again. 2171 */ 2172 int jbd2_journal_invalidatepage(journal_t *journal, 2173 struct page *page, 2174 unsigned int offset, 2175 unsigned int length) 2176 { 2177 struct buffer_head *head, *bh, *next; 2178 unsigned int stop = offset + length; 2179 unsigned int curr_off = 0; 2180 int partial_page = (offset || length < PAGE_CACHE_SIZE); 2181 int may_free = 1; 2182 int ret = 0; 2183 2184 if (!PageLocked(page)) 2185 BUG(); 2186 if (!page_has_buffers(page)) 2187 return 0; 2188 2189 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 2190 2191 /* We will potentially be playing with lists other than just the 2192 * data lists (especially for journaled data mode), so be 2193 * cautious in our locking. */ 2194 2195 head = bh = page_buffers(page); 2196 do { 2197 unsigned int next_off = curr_off + bh->b_size; 2198 next = bh->b_this_page; 2199 2200 if (next_off > stop) 2201 return 0; 2202 2203 if (offset <= curr_off) { 2204 /* This block is wholly outside the truncation point */ 2205 lock_buffer(bh); 2206 ret = journal_unmap_buffer(journal, bh, partial_page); 2207 unlock_buffer(bh); 2208 if (ret < 0) 2209 return ret; 2210 may_free &= ret; 2211 } 2212 curr_off = next_off; 2213 bh = next; 2214 2215 } while (bh != head); 2216 2217 if (!partial_page) { 2218 if (may_free && try_to_free_buffers(page)) 2219 J_ASSERT(!page_has_buffers(page)); 2220 } 2221 return 0; 2222 } 2223 2224 /* 2225 * File a buffer on the given transaction list. 2226 */ 2227 void __jbd2_journal_file_buffer(struct journal_head *jh, 2228 transaction_t *transaction, int jlist) 2229 { 2230 struct journal_head **list = NULL; 2231 int was_dirty = 0; 2232 struct buffer_head *bh = jh2bh(jh); 2233 2234 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2235 assert_spin_locked(&transaction->t_journal->j_list_lock); 2236 2237 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2238 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2239 jh->b_transaction == NULL); 2240 2241 if (jh->b_transaction && jh->b_jlist == jlist) 2242 return; 2243 2244 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2245 jlist == BJ_Shadow || jlist == BJ_Forget) { 2246 /* 2247 * For metadata buffers, we track dirty bit in buffer_jbddirty 2248 * instead of buffer_dirty. We should not see a dirty bit set 2249 * here because we clear it in do_get_write_access but e.g. 2250 * tune2fs can modify the sb and set the dirty bit at any time 2251 * so we try to gracefully handle that. 2252 */ 2253 if (buffer_dirty(bh)) 2254 warn_dirty_buffer(bh); 2255 if (test_clear_buffer_dirty(bh) || 2256 test_clear_buffer_jbddirty(bh)) 2257 was_dirty = 1; 2258 } 2259 2260 if (jh->b_transaction) 2261 __jbd2_journal_temp_unlink_buffer(jh); 2262 else 2263 jbd2_journal_grab_journal_head(bh); 2264 jh->b_transaction = transaction; 2265 2266 switch (jlist) { 2267 case BJ_None: 2268 J_ASSERT_JH(jh, !jh->b_committed_data); 2269 J_ASSERT_JH(jh, !jh->b_frozen_data); 2270 return; 2271 case BJ_Metadata: 2272 transaction->t_nr_buffers++; 2273 list = &transaction->t_buffers; 2274 break; 2275 case BJ_Forget: 2276 list = &transaction->t_forget; 2277 break; 2278 case BJ_Shadow: 2279 list = &transaction->t_shadow_list; 2280 break; 2281 case BJ_Reserved: 2282 list = &transaction->t_reserved_list; 2283 break; 2284 } 2285 2286 __blist_add_buffer(list, jh); 2287 jh->b_jlist = jlist; 2288 2289 if (was_dirty) 2290 set_buffer_jbddirty(bh); 2291 } 2292 2293 void jbd2_journal_file_buffer(struct journal_head *jh, 2294 transaction_t *transaction, int jlist) 2295 { 2296 jbd_lock_bh_state(jh2bh(jh)); 2297 spin_lock(&transaction->t_journal->j_list_lock); 2298 __jbd2_journal_file_buffer(jh, transaction, jlist); 2299 spin_unlock(&transaction->t_journal->j_list_lock); 2300 jbd_unlock_bh_state(jh2bh(jh)); 2301 } 2302 2303 /* 2304 * Remove a buffer from its current buffer list in preparation for 2305 * dropping it from its current transaction entirely. If the buffer has 2306 * already started to be used by a subsequent transaction, refile the 2307 * buffer on that transaction's metadata list. 2308 * 2309 * Called under j_list_lock 2310 * Called under jbd_lock_bh_state(jh2bh(jh)) 2311 * 2312 * jh and bh may be already free when this function returns 2313 */ 2314 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2315 { 2316 int was_dirty, jlist; 2317 struct buffer_head *bh = jh2bh(jh); 2318 2319 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2320 if (jh->b_transaction) 2321 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2322 2323 /* If the buffer is now unused, just drop it. */ 2324 if (jh->b_next_transaction == NULL) { 2325 __jbd2_journal_unfile_buffer(jh); 2326 return; 2327 } 2328 2329 /* 2330 * It has been modified by a later transaction: add it to the new 2331 * transaction's metadata list. 2332 */ 2333 2334 was_dirty = test_clear_buffer_jbddirty(bh); 2335 __jbd2_journal_temp_unlink_buffer(jh); 2336 /* 2337 * We set b_transaction here because b_next_transaction will inherit 2338 * our jh reference and thus __jbd2_journal_file_buffer() must not 2339 * take a new one. 2340 */ 2341 jh->b_transaction = jh->b_next_transaction; 2342 jh->b_next_transaction = NULL; 2343 if (buffer_freed(bh)) 2344 jlist = BJ_Forget; 2345 else if (jh->b_modified) 2346 jlist = BJ_Metadata; 2347 else 2348 jlist = BJ_Reserved; 2349 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2350 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2351 2352 if (was_dirty) 2353 set_buffer_jbddirty(bh); 2354 } 2355 2356 /* 2357 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2358 * bh reference so that we can safely unlock bh. 2359 * 2360 * The jh and bh may be freed by this call. 2361 */ 2362 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2363 { 2364 struct buffer_head *bh = jh2bh(jh); 2365 2366 /* Get reference so that buffer cannot be freed before we unlock it */ 2367 get_bh(bh); 2368 jbd_lock_bh_state(bh); 2369 spin_lock(&journal->j_list_lock); 2370 __jbd2_journal_refile_buffer(jh); 2371 jbd_unlock_bh_state(bh); 2372 spin_unlock(&journal->j_list_lock); 2373 __brelse(bh); 2374 } 2375 2376 /* 2377 * File inode in the inode list of the handle's transaction 2378 */ 2379 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2380 { 2381 transaction_t *transaction = handle->h_transaction; 2382 journal_t *journal; 2383 2384 if (is_handle_aborted(handle)) 2385 return -EROFS; 2386 journal = transaction->t_journal; 2387 2388 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2389 transaction->t_tid); 2390 2391 /* 2392 * First check whether inode isn't already on the transaction's 2393 * lists without taking the lock. Note that this check is safe 2394 * without the lock as we cannot race with somebody removing inode 2395 * from the transaction. The reason is that we remove inode from the 2396 * transaction only in journal_release_jbd_inode() and when we commit 2397 * the transaction. We are guarded from the first case by holding 2398 * a reference to the inode. We are safe against the second case 2399 * because if jinode->i_transaction == transaction, commit code 2400 * cannot touch the transaction because we hold reference to it, 2401 * and if jinode->i_next_transaction == transaction, commit code 2402 * will only file the inode where we want it. 2403 */ 2404 if (jinode->i_transaction == transaction || 2405 jinode->i_next_transaction == transaction) 2406 return 0; 2407 2408 spin_lock(&journal->j_list_lock); 2409 2410 if (jinode->i_transaction == transaction || 2411 jinode->i_next_transaction == transaction) 2412 goto done; 2413 2414 /* 2415 * We only ever set this variable to 1 so the test is safe. Since 2416 * t_need_data_flush is likely to be set, we do the test to save some 2417 * cacheline bouncing 2418 */ 2419 if (!transaction->t_need_data_flush) 2420 transaction->t_need_data_flush = 1; 2421 /* On some different transaction's list - should be 2422 * the committing one */ 2423 if (jinode->i_transaction) { 2424 J_ASSERT(jinode->i_next_transaction == NULL); 2425 J_ASSERT(jinode->i_transaction == 2426 journal->j_committing_transaction); 2427 jinode->i_next_transaction = transaction; 2428 goto done; 2429 } 2430 /* Not on any transaction list... */ 2431 J_ASSERT(!jinode->i_next_transaction); 2432 jinode->i_transaction = transaction; 2433 list_add(&jinode->i_list, &transaction->t_inode_list); 2434 done: 2435 spin_unlock(&journal->j_list_lock); 2436 2437 return 0; 2438 } 2439 2440 /* 2441 * File truncate and transaction commit interact with each other in a 2442 * non-trivial way. If a transaction writing data block A is 2443 * committing, we cannot discard the data by truncate until we have 2444 * written them. Otherwise if we crashed after the transaction with 2445 * write has committed but before the transaction with truncate has 2446 * committed, we could see stale data in block A. This function is a 2447 * helper to solve this problem. It starts writeout of the truncated 2448 * part in case it is in the committing transaction. 2449 * 2450 * Filesystem code must call this function when inode is journaled in 2451 * ordered mode before truncation happens and after the inode has been 2452 * placed on orphan list with the new inode size. The second condition 2453 * avoids the race that someone writes new data and we start 2454 * committing the transaction after this function has been called but 2455 * before a transaction for truncate is started (and furthermore it 2456 * allows us to optimize the case where the addition to orphan list 2457 * happens in the same transaction as write --- we don't have to write 2458 * any data in such case). 2459 */ 2460 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2461 struct jbd2_inode *jinode, 2462 loff_t new_size) 2463 { 2464 transaction_t *inode_trans, *commit_trans; 2465 int ret = 0; 2466 2467 /* This is a quick check to avoid locking if not necessary */ 2468 if (!jinode->i_transaction) 2469 goto out; 2470 /* Locks are here just to force reading of recent values, it is 2471 * enough that the transaction was not committing before we started 2472 * a transaction adding the inode to orphan list */ 2473 read_lock(&journal->j_state_lock); 2474 commit_trans = journal->j_committing_transaction; 2475 read_unlock(&journal->j_state_lock); 2476 spin_lock(&journal->j_list_lock); 2477 inode_trans = jinode->i_transaction; 2478 spin_unlock(&journal->j_list_lock); 2479 if (inode_trans == commit_trans) { 2480 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2481 new_size, LLONG_MAX); 2482 if (ret) 2483 jbd2_journal_abort(journal, ret); 2484 } 2485 out: 2486 return ret; 2487 } 2488