1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/revoke.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 6 * 7 * Copyright 2000 Red Hat corp --- All Rights Reserved 8 * 9 * Journal revoke routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 * 12 * Revoke is the mechanism used to prevent old log records for deleted 13 * metadata from being replayed on top of newer data using the same 14 * blocks. The revoke mechanism is used in two separate places: 15 * 16 * + Commit: during commit we write the entire list of the current 17 * transaction's revoked blocks to the journal 18 * 19 * + Recovery: during recovery we record the transaction ID of all 20 * revoked blocks. If there are multiple revoke records in the log 21 * for a single block, only the last one counts, and if there is a log 22 * entry for a block beyond the last revoke, then that log entry still 23 * gets replayed. 24 * 25 * We can get interactions between revokes and new log data within a 26 * single transaction: 27 * 28 * Block is revoked and then journaled: 29 * The desired end result is the journaling of the new block, so we 30 * cancel the revoke before the transaction commits. 31 * 32 * Block is journaled and then revoked: 33 * The revoke must take precedence over the write of the block, so we 34 * need either to cancel the journal entry or to write the revoke 35 * later in the log than the log block. In this case, we choose the 36 * latter: journaling a block cancels any revoke record for that block 37 * in the current transaction, so any revoke for that block in the 38 * transaction must have happened after the block was journaled and so 39 * the revoke must take precedence. 40 * 41 * Block is revoked and then written as data: 42 * The data write is allowed to succeed, but the revoke is _not_ 43 * cancelled. We still need to prevent old log records from 44 * overwriting the new data. We don't even need to clear the revoke 45 * bit here. 46 * 47 * We cache revoke status of a buffer in the current transaction in b_states 48 * bits. As the name says, revokevalid flag indicates that the cached revoke 49 * status of a buffer is valid and we can rely on the cached status. 50 * 51 * Revoke information on buffers is a tri-state value: 52 * 53 * RevokeValid clear: no cached revoke status, need to look it up 54 * RevokeValid set, Revoked clear: 55 * buffer has not been revoked, and cancel_revoke 56 * need do nothing. 57 * RevokeValid set, Revoked set: 58 * buffer has been revoked. 59 * 60 * Locking rules: 61 * We keep two hash tables of revoke records. One hashtable belongs to the 62 * running transaction (is pointed to by journal->j_revoke), the other one 63 * belongs to the committing transaction. Accesses to the second hash table 64 * happen only from the kjournald and no other thread touches this table. Also 65 * journal_switch_revoke_table() which switches which hashtable belongs to the 66 * running and which to the committing transaction is called only from 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging 68 * to the committing transaction. 69 * 70 * All users operating on the hash table belonging to the running transaction 71 * have a handle to the transaction. Therefore they are safe from kjournald 72 * switching hash tables under them. For operations on the lists of entries in 73 * the hash table j_revoke_lock is used. 74 * 75 * Finally, also replay code uses the hash tables but at this moment no one else 76 * can touch them (filesystem isn't mounted yet) and hence no locking is 77 * needed. 78 */ 79 80 #ifndef __KERNEL__ 81 #include "jfs_user.h" 82 #else 83 #include <linux/time.h> 84 #include <linux/fs.h> 85 #include <linux/jbd2.h> 86 #include <linux/errno.h> 87 #include <linux/slab.h> 88 #include <linux/list.h> 89 #include <linux/init.h> 90 #include <linux/bio.h> 91 #include <linux/log2.h> 92 #include <linux/hash.h> 93 #endif 94 95 static struct kmem_cache *jbd2_revoke_record_cache; 96 static struct kmem_cache *jbd2_revoke_table_cache; 97 98 /* Each revoke record represents one single revoked block. During 99 journal replay, this involves recording the transaction ID of the 100 last transaction to revoke this block. */ 101 102 struct jbd2_revoke_record_s 103 { 104 struct list_head hash; 105 tid_t sequence; /* Used for recovery only */ 106 unsigned long long blocknr; 107 }; 108 109 110 /* The revoke table is just a simple hash table of revoke records. */ 111 struct jbd2_revoke_table_s 112 { 113 /* It is conceivable that we might want a larger hash table 114 * for recovery. Must be a power of two. */ 115 int hash_size; 116 int hash_shift; 117 struct list_head *hash_table; 118 }; 119 120 121 #ifdef __KERNEL__ 122 static void write_one_revoke_record(transaction_t *, 123 struct list_head *, 124 struct buffer_head **, int *, 125 struct jbd2_revoke_record_s *); 126 static void flush_descriptor(journal_t *, struct buffer_head *, int); 127 #endif 128 129 /* Utility functions to maintain the revoke table */ 130 131 static inline int hash(journal_t *journal, unsigned long long block) 132 { 133 return hash_64(block, journal->j_revoke->hash_shift); 134 } 135 136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 137 tid_t seq) 138 { 139 struct list_head *hash_list; 140 struct jbd2_revoke_record_s *record; 141 gfp_t gfp_mask = GFP_NOFS; 142 143 if (journal_oom_retry) 144 gfp_mask |= __GFP_NOFAIL; 145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); 146 if (!record) 147 return -ENOMEM; 148 149 record->sequence = seq; 150 record->blocknr = blocknr; 151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 152 spin_lock(&journal->j_revoke_lock); 153 list_add(&record->hash, hash_list); 154 spin_unlock(&journal->j_revoke_lock); 155 return 0; 156 } 157 158 /* Find a revoke record in the journal's hash table. */ 159 160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 161 unsigned long long blocknr) 162 { 163 struct list_head *hash_list; 164 struct jbd2_revoke_record_s *record; 165 166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 167 168 spin_lock(&journal->j_revoke_lock); 169 record = (struct jbd2_revoke_record_s *) hash_list->next; 170 while (&(record->hash) != hash_list) { 171 if (record->blocknr == blocknr) { 172 spin_unlock(&journal->j_revoke_lock); 173 return record; 174 } 175 record = (struct jbd2_revoke_record_s *) record->hash.next; 176 } 177 spin_unlock(&journal->j_revoke_lock); 178 return NULL; 179 } 180 181 void jbd2_journal_destroy_revoke_caches(void) 182 { 183 if (jbd2_revoke_record_cache) { 184 kmem_cache_destroy(jbd2_revoke_record_cache); 185 jbd2_revoke_record_cache = NULL; 186 } 187 if (jbd2_revoke_table_cache) { 188 kmem_cache_destroy(jbd2_revoke_table_cache); 189 jbd2_revoke_table_cache = NULL; 190 } 191 } 192 193 int __init jbd2_journal_init_revoke_caches(void) 194 { 195 J_ASSERT(!jbd2_revoke_record_cache); 196 J_ASSERT(!jbd2_revoke_table_cache); 197 198 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, 199 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); 200 if (!jbd2_revoke_record_cache) 201 goto record_cache_failure; 202 203 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, 204 SLAB_TEMPORARY); 205 if (!jbd2_revoke_table_cache) 206 goto table_cache_failure; 207 return 0; 208 table_cache_failure: 209 jbd2_journal_destroy_revoke_caches(); 210 record_cache_failure: 211 return -ENOMEM; 212 } 213 214 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 215 { 216 int shift = 0; 217 int tmp = hash_size; 218 struct jbd2_revoke_table_s *table; 219 220 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 221 if (!table) 222 goto out; 223 224 while((tmp >>= 1UL) != 0UL) 225 shift++; 226 227 table->hash_size = hash_size; 228 table->hash_shift = shift; 229 table->hash_table = 230 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 231 if (!table->hash_table) { 232 kmem_cache_free(jbd2_revoke_table_cache, table); 233 table = NULL; 234 goto out; 235 } 236 237 for (tmp = 0; tmp < hash_size; tmp++) 238 INIT_LIST_HEAD(&table->hash_table[tmp]); 239 240 out: 241 return table; 242 } 243 244 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 245 { 246 int i; 247 struct list_head *hash_list; 248 249 for (i = 0; i < table->hash_size; i++) { 250 hash_list = &table->hash_table[i]; 251 J_ASSERT(list_empty(hash_list)); 252 } 253 254 kfree(table->hash_table); 255 kmem_cache_free(jbd2_revoke_table_cache, table); 256 } 257 258 /* Initialise the revoke table for a given journal to a given size. */ 259 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 260 { 261 J_ASSERT(journal->j_revoke_table[0] == NULL); 262 J_ASSERT(is_power_of_2(hash_size)); 263 264 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 265 if (!journal->j_revoke_table[0]) 266 goto fail0; 267 268 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 269 if (!journal->j_revoke_table[1]) 270 goto fail1; 271 272 journal->j_revoke = journal->j_revoke_table[1]; 273 274 spin_lock_init(&journal->j_revoke_lock); 275 276 return 0; 277 278 fail1: 279 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 280 journal->j_revoke_table[0] = NULL; 281 fail0: 282 return -ENOMEM; 283 } 284 285 /* Destroy a journal's revoke table. The table must already be empty! */ 286 void jbd2_journal_destroy_revoke(journal_t *journal) 287 { 288 journal->j_revoke = NULL; 289 if (journal->j_revoke_table[0]) 290 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 291 if (journal->j_revoke_table[1]) 292 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 293 } 294 295 296 #ifdef __KERNEL__ 297 298 /* 299 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 300 * prevents the block from being replayed during recovery if we take a 301 * crash after this current transaction commits. Any subsequent 302 * metadata writes of the buffer in this transaction cancel the 303 * revoke. 304 * 305 * Note that this call may block --- it is up to the caller to make 306 * sure that there are no further calls to journal_write_metadata 307 * before the revoke is complete. In ext3, this implies calling the 308 * revoke before clearing the block bitmap when we are deleting 309 * metadata. 310 * 311 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 312 * parameter, but does _not_ forget the buffer_head if the bh was only 313 * found implicitly. 314 * 315 * bh_in may not be a journalled buffer - it may have come off 316 * the hash tables without an attached journal_head. 317 * 318 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 319 * by one. 320 */ 321 322 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 323 struct buffer_head *bh_in) 324 { 325 struct buffer_head *bh = NULL; 326 journal_t *journal; 327 struct block_device *bdev; 328 int err; 329 330 might_sleep(); 331 if (bh_in) 332 BUFFER_TRACE(bh_in, "enter"); 333 334 journal = handle->h_transaction->t_journal; 335 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 336 J_ASSERT (!"Cannot set revoke feature!"); 337 return -EINVAL; 338 } 339 340 bdev = journal->j_fs_dev; 341 bh = bh_in; 342 343 if (!bh) { 344 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 345 if (bh) 346 BUFFER_TRACE(bh, "found on hash"); 347 } 348 #ifdef JBD2_EXPENSIVE_CHECKING 349 else { 350 struct buffer_head *bh2; 351 352 /* If there is a different buffer_head lying around in 353 * memory anywhere... */ 354 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 355 if (bh2) { 356 /* ... and it has RevokeValid status... */ 357 if (bh2 != bh && buffer_revokevalid(bh2)) 358 /* ...then it better be revoked too, 359 * since it's illegal to create a revoke 360 * record against a buffer_head which is 361 * not marked revoked --- that would 362 * risk missing a subsequent revoke 363 * cancel. */ 364 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 365 put_bh(bh2); 366 } 367 } 368 #endif 369 370 /* We really ought not ever to revoke twice in a row without 371 first having the revoke cancelled: it's illegal to free a 372 block twice without allocating it in between! */ 373 if (bh) { 374 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 375 "inconsistent data on disk")) { 376 if (!bh_in) 377 brelse(bh); 378 return -EIO; 379 } 380 set_buffer_revoked(bh); 381 set_buffer_revokevalid(bh); 382 if (bh_in) { 383 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 384 jbd2_journal_forget(handle, bh_in); 385 } else { 386 BUFFER_TRACE(bh, "call brelse"); 387 __brelse(bh); 388 } 389 } 390 391 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 392 err = insert_revoke_hash(journal, blocknr, 393 handle->h_transaction->t_tid); 394 BUFFER_TRACE(bh_in, "exit"); 395 return err; 396 } 397 398 /* 399 * Cancel an outstanding revoke. For use only internally by the 400 * journaling code (called from jbd2_journal_get_write_access). 401 * 402 * We trust buffer_revoked() on the buffer if the buffer is already 403 * being journaled: if there is no revoke pending on the buffer, then we 404 * don't do anything here. 405 * 406 * This would break if it were possible for a buffer to be revoked and 407 * discarded, and then reallocated within the same transaction. In such 408 * a case we would have lost the revoked bit, but when we arrived here 409 * the second time we would still have a pending revoke to cancel. So, 410 * do not trust the Revoked bit on buffers unless RevokeValid is also 411 * set. 412 */ 413 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 414 { 415 struct jbd2_revoke_record_s *record; 416 journal_t *journal = handle->h_transaction->t_journal; 417 int need_cancel; 418 int did_revoke = 0; /* akpm: debug */ 419 struct buffer_head *bh = jh2bh(jh); 420 421 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 422 423 /* Is the existing Revoke bit valid? If so, we trust it, and 424 * only perform the full cancel if the revoke bit is set. If 425 * not, we can't trust the revoke bit, and we need to do the 426 * full search for a revoke record. */ 427 if (test_set_buffer_revokevalid(bh)) { 428 need_cancel = test_clear_buffer_revoked(bh); 429 } else { 430 need_cancel = 1; 431 clear_buffer_revoked(bh); 432 } 433 434 if (need_cancel) { 435 record = find_revoke_record(journal, bh->b_blocknr); 436 if (record) { 437 jbd_debug(4, "cancelled existing revoke on " 438 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 439 spin_lock(&journal->j_revoke_lock); 440 list_del(&record->hash); 441 spin_unlock(&journal->j_revoke_lock); 442 kmem_cache_free(jbd2_revoke_record_cache, record); 443 did_revoke = 1; 444 } 445 } 446 447 #ifdef JBD2_EXPENSIVE_CHECKING 448 /* There better not be one left behind by now! */ 449 record = find_revoke_record(journal, bh->b_blocknr); 450 J_ASSERT_JH(jh, record == NULL); 451 #endif 452 453 /* Finally, have we just cleared revoke on an unhashed 454 * buffer_head? If so, we'd better make sure we clear the 455 * revoked status on any hashed alias too, otherwise the revoke 456 * state machine will get very upset later on. */ 457 if (need_cancel) { 458 struct buffer_head *bh2; 459 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 460 if (bh2) { 461 if (bh2 != bh) 462 clear_buffer_revoked(bh2); 463 __brelse(bh2); 464 } 465 } 466 return did_revoke; 467 } 468 469 /* 470 * journal_clear_revoked_flag clears revoked flag of buffers in 471 * revoke table to reflect there is no revoked buffers in the next 472 * transaction which is going to be started. 473 */ 474 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 475 { 476 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 477 int i = 0; 478 479 for (i = 0; i < revoke->hash_size; i++) { 480 struct list_head *hash_list; 481 struct list_head *list_entry; 482 hash_list = &revoke->hash_table[i]; 483 484 list_for_each(list_entry, hash_list) { 485 struct jbd2_revoke_record_s *record; 486 struct buffer_head *bh; 487 record = (struct jbd2_revoke_record_s *)list_entry; 488 bh = __find_get_block(journal->j_fs_dev, 489 record->blocknr, 490 journal->j_blocksize); 491 if (bh) { 492 clear_buffer_revoked(bh); 493 __brelse(bh); 494 } 495 } 496 } 497 } 498 499 /* journal_switch_revoke table select j_revoke for next transaction 500 * we do not want to suspend any processing until all revokes are 501 * written -bzzz 502 */ 503 void jbd2_journal_switch_revoke_table(journal_t *journal) 504 { 505 int i; 506 507 if (journal->j_revoke == journal->j_revoke_table[0]) 508 journal->j_revoke = journal->j_revoke_table[1]; 509 else 510 journal->j_revoke = journal->j_revoke_table[0]; 511 512 for (i = 0; i < journal->j_revoke->hash_size; i++) 513 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 514 } 515 516 /* 517 * Write revoke records to the journal for all entries in the current 518 * revoke hash, deleting the entries as we go. 519 */ 520 void jbd2_journal_write_revoke_records(transaction_t *transaction, 521 struct list_head *log_bufs) 522 { 523 journal_t *journal = transaction->t_journal; 524 struct buffer_head *descriptor; 525 struct jbd2_revoke_record_s *record; 526 struct jbd2_revoke_table_s *revoke; 527 struct list_head *hash_list; 528 int i, offset, count; 529 530 descriptor = NULL; 531 offset = 0; 532 count = 0; 533 534 /* select revoke table for committing transaction */ 535 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 536 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 537 538 for (i = 0; i < revoke->hash_size; i++) { 539 hash_list = &revoke->hash_table[i]; 540 541 while (!list_empty(hash_list)) { 542 record = (struct jbd2_revoke_record_s *) 543 hash_list->next; 544 write_one_revoke_record(transaction, log_bufs, 545 &descriptor, &offset, record); 546 count++; 547 list_del(&record->hash); 548 kmem_cache_free(jbd2_revoke_record_cache, record); 549 } 550 } 551 if (descriptor) 552 flush_descriptor(journal, descriptor, offset); 553 jbd_debug(1, "Wrote %d revoke records\n", count); 554 } 555 556 /* 557 * Write out one revoke record. We need to create a new descriptor 558 * block if the old one is full or if we have not already created one. 559 */ 560 561 static void write_one_revoke_record(transaction_t *transaction, 562 struct list_head *log_bufs, 563 struct buffer_head **descriptorp, 564 int *offsetp, 565 struct jbd2_revoke_record_s *record) 566 { 567 journal_t *journal = transaction->t_journal; 568 int csum_size = 0; 569 struct buffer_head *descriptor; 570 int sz, offset; 571 572 /* If we are already aborting, this all becomes a noop. We 573 still need to go round the loop in 574 jbd2_journal_write_revoke_records in order to free all of the 575 revoke records: only the IO to the journal is omitted. */ 576 if (is_journal_aborted(journal)) 577 return; 578 579 descriptor = *descriptorp; 580 offset = *offsetp; 581 582 /* Do we need to leave space at the end for a checksum? */ 583 if (jbd2_journal_has_csum_v2or3(journal)) 584 csum_size = sizeof(struct jbd2_journal_block_tail); 585 586 if (jbd2_has_feature_64bit(journal)) 587 sz = 8; 588 else 589 sz = 4; 590 591 /* Make sure we have a descriptor with space left for the record */ 592 if (descriptor) { 593 if (offset + sz > journal->j_blocksize - csum_size) { 594 flush_descriptor(journal, descriptor, offset); 595 descriptor = NULL; 596 } 597 } 598 599 if (!descriptor) { 600 descriptor = jbd2_journal_get_descriptor_buffer(transaction, 601 JBD2_REVOKE_BLOCK); 602 if (!descriptor) 603 return; 604 605 /* Record it so that we can wait for IO completion later */ 606 BUFFER_TRACE(descriptor, "file in log_bufs"); 607 jbd2_file_log_bh(log_bufs, descriptor); 608 609 offset = sizeof(jbd2_journal_revoke_header_t); 610 *descriptorp = descriptor; 611 } 612 613 if (jbd2_has_feature_64bit(journal)) 614 * ((__be64 *)(&descriptor->b_data[offset])) = 615 cpu_to_be64(record->blocknr); 616 else 617 * ((__be32 *)(&descriptor->b_data[offset])) = 618 cpu_to_be32(record->blocknr); 619 offset += sz; 620 621 *offsetp = offset; 622 } 623 624 /* 625 * Flush a revoke descriptor out to the journal. If we are aborting, 626 * this is a noop; otherwise we are generating a buffer which needs to 627 * be waited for during commit, so it has to go onto the appropriate 628 * journal buffer list. 629 */ 630 631 static void flush_descriptor(journal_t *journal, 632 struct buffer_head *descriptor, 633 int offset) 634 { 635 jbd2_journal_revoke_header_t *header; 636 637 if (is_journal_aborted(journal)) { 638 put_bh(descriptor); 639 return; 640 } 641 642 header = (jbd2_journal_revoke_header_t *)descriptor->b_data; 643 header->r_count = cpu_to_be32(offset); 644 jbd2_descriptor_block_csum_set(journal, descriptor); 645 646 set_buffer_jwrite(descriptor); 647 BUFFER_TRACE(descriptor, "write"); 648 set_buffer_dirty(descriptor); 649 write_dirty_buffer(descriptor, REQ_SYNC); 650 } 651 #endif 652 653 /* 654 * Revoke support for recovery. 655 * 656 * Recovery needs to be able to: 657 * 658 * record all revoke records, including the tid of the latest instance 659 * of each revoke in the journal 660 * 661 * check whether a given block in a given transaction should be replayed 662 * (ie. has not been revoked by a revoke record in that or a subsequent 663 * transaction) 664 * 665 * empty the revoke table after recovery. 666 */ 667 668 /* 669 * First, setting revoke records. We create a new revoke record for 670 * every block ever revoked in the log as we scan it for recovery, and 671 * we update the existing records if we find multiple revokes for a 672 * single block. 673 */ 674 675 int jbd2_journal_set_revoke(journal_t *journal, 676 unsigned long long blocknr, 677 tid_t sequence) 678 { 679 struct jbd2_revoke_record_s *record; 680 681 record = find_revoke_record(journal, blocknr); 682 if (record) { 683 /* If we have multiple occurrences, only record the 684 * latest sequence number in the hashed record */ 685 if (tid_gt(sequence, record->sequence)) 686 record->sequence = sequence; 687 return 0; 688 } 689 return insert_revoke_hash(journal, blocknr, sequence); 690 } 691 692 /* 693 * Test revoke records. For a given block referenced in the log, has 694 * that block been revoked? A revoke record with a given transaction 695 * sequence number revokes all blocks in that transaction and earlier 696 * ones, but later transactions still need replayed. 697 */ 698 699 int jbd2_journal_test_revoke(journal_t *journal, 700 unsigned long long blocknr, 701 tid_t sequence) 702 { 703 struct jbd2_revoke_record_s *record; 704 705 record = find_revoke_record(journal, blocknr); 706 if (!record) 707 return 0; 708 if (tid_gt(sequence, record->sequence)) 709 return 0; 710 return 1; 711 } 712 713 /* 714 * Finally, once recovery is over, we need to clear the revoke table so 715 * that it can be reused by the running filesystem. 716 */ 717 718 void jbd2_journal_clear_revoke(journal_t *journal) 719 { 720 int i; 721 struct list_head *hash_list; 722 struct jbd2_revoke_record_s *record; 723 struct jbd2_revoke_table_s *revoke; 724 725 revoke = journal->j_revoke; 726 727 for (i = 0; i < revoke->hash_size; i++) { 728 hash_list = &revoke->hash_table[i]; 729 while (!list_empty(hash_list)) { 730 record = (struct jbd2_revoke_record_s*) hash_list->next; 731 list_del(&record->hash); 732 kmem_cache_free(jbd2_revoke_record_cache, record); 733 } 734 } 735 } 736