1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/revoke.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 6 * 7 * Copyright 2000 Red Hat corp --- All Rights Reserved 8 * 9 * Journal revoke routines for the generic filesystem journaling code; 10 * part of the ext2fs journaling system. 11 * 12 * Revoke is the mechanism used to prevent old log records for deleted 13 * metadata from being replayed on top of newer data using the same 14 * blocks. The revoke mechanism is used in two separate places: 15 * 16 * + Commit: during commit we write the entire list of the current 17 * transaction's revoked blocks to the journal 18 * 19 * + Recovery: during recovery we record the transaction ID of all 20 * revoked blocks. If there are multiple revoke records in the log 21 * for a single block, only the last one counts, and if there is a log 22 * entry for a block beyond the last revoke, then that log entry still 23 * gets replayed. 24 * 25 * We can get interactions between revokes and new log data within a 26 * single transaction: 27 * 28 * Block is revoked and then journaled: 29 * The desired end result is the journaling of the new block, so we 30 * cancel the revoke before the transaction commits. 31 * 32 * Block is journaled and then revoked: 33 * The revoke must take precedence over the write of the block, so we 34 * need either to cancel the journal entry or to write the revoke 35 * later in the log than the log block. In this case, we choose the 36 * latter: journaling a block cancels any revoke record for that block 37 * in the current transaction, so any revoke for that block in the 38 * transaction must have happened after the block was journaled and so 39 * the revoke must take precedence. 40 * 41 * Block is revoked and then written as data: 42 * The data write is allowed to succeed, but the revoke is _not_ 43 * cancelled. We still need to prevent old log records from 44 * overwriting the new data. We don't even need to clear the revoke 45 * bit here. 46 * 47 * We cache revoke status of a buffer in the current transaction in b_states 48 * bits. As the name says, revokevalid flag indicates that the cached revoke 49 * status of a buffer is valid and we can rely on the cached status. 50 * 51 * Revoke information on buffers is a tri-state value: 52 * 53 * RevokeValid clear: no cached revoke status, need to look it up 54 * RevokeValid set, Revoked clear: 55 * buffer has not been revoked, and cancel_revoke 56 * need do nothing. 57 * RevokeValid set, Revoked set: 58 * buffer has been revoked. 59 * 60 * Locking rules: 61 * We keep two hash tables of revoke records. One hashtable belongs to the 62 * running transaction (is pointed to by journal->j_revoke), the other one 63 * belongs to the committing transaction. Accesses to the second hash table 64 * happen only from the kjournald and no other thread touches this table. Also 65 * journal_switch_revoke_table() which switches which hashtable belongs to the 66 * running and which to the committing transaction is called only from 67 * kjournald. Therefore we need no locks when accessing the hashtable belonging 68 * to the committing transaction. 69 * 70 * All users operating on the hash table belonging to the running transaction 71 * have a handle to the transaction. Therefore they are safe from kjournald 72 * switching hash tables under them. For operations on the lists of entries in 73 * the hash table j_revoke_lock is used. 74 * 75 * Finally, also replay code uses the hash tables but at this moment no one else 76 * can touch them (filesystem isn't mounted yet) and hence no locking is 77 * needed. 78 */ 79 80 #ifndef __KERNEL__ 81 #include "jfs_user.h" 82 #else 83 #include <linux/time.h> 84 #include <linux/fs.h> 85 #include <linux/jbd2.h> 86 #include <linux/errno.h> 87 #include <linux/slab.h> 88 #include <linux/list.h> 89 #include <linux/init.h> 90 #include <linux/bio.h> 91 #include <linux/log2.h> 92 #include <linux/hash.h> 93 #endif 94 95 static struct kmem_cache *jbd2_revoke_record_cache; 96 static struct kmem_cache *jbd2_revoke_table_cache; 97 98 /* Each revoke record represents one single revoked block. During 99 journal replay, this involves recording the transaction ID of the 100 last transaction to revoke this block. */ 101 102 struct jbd2_revoke_record_s 103 { 104 struct list_head hash; 105 tid_t sequence; /* Used for recovery only */ 106 unsigned long long blocknr; 107 }; 108 109 110 /* The revoke table is just a simple hash table of revoke records. */ 111 struct jbd2_revoke_table_s 112 { 113 /* It is conceivable that we might want a larger hash table 114 * for recovery. Must be a power of two. */ 115 int hash_size; 116 int hash_shift; 117 struct list_head *hash_table; 118 }; 119 120 121 #ifdef __KERNEL__ 122 static void write_one_revoke_record(transaction_t *, 123 struct list_head *, 124 struct buffer_head **, int *, 125 struct jbd2_revoke_record_s *); 126 static void flush_descriptor(journal_t *, struct buffer_head *, int); 127 #endif 128 129 /* Utility functions to maintain the revoke table */ 130 131 static inline int hash(journal_t *journal, unsigned long long block) 132 { 133 return hash_64(block, journal->j_revoke->hash_shift); 134 } 135 136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 137 tid_t seq) 138 { 139 struct list_head *hash_list; 140 struct jbd2_revoke_record_s *record; 141 gfp_t gfp_mask = GFP_NOFS; 142 143 if (journal_oom_retry) 144 gfp_mask |= __GFP_NOFAIL; 145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask); 146 if (!record) 147 return -ENOMEM; 148 149 record->sequence = seq; 150 record->blocknr = blocknr; 151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 152 spin_lock(&journal->j_revoke_lock); 153 list_add(&record->hash, hash_list); 154 spin_unlock(&journal->j_revoke_lock); 155 return 0; 156 } 157 158 /* Find a revoke record in the journal's hash table. */ 159 160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 161 unsigned long long blocknr) 162 { 163 struct list_head *hash_list; 164 struct jbd2_revoke_record_s *record; 165 166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 167 168 spin_lock(&journal->j_revoke_lock); 169 record = (struct jbd2_revoke_record_s *) hash_list->next; 170 while (&(record->hash) != hash_list) { 171 if (record->blocknr == blocknr) { 172 spin_unlock(&journal->j_revoke_lock); 173 return record; 174 } 175 record = (struct jbd2_revoke_record_s *) record->hash.next; 176 } 177 spin_unlock(&journal->j_revoke_lock); 178 return NULL; 179 } 180 181 void jbd2_journal_destroy_revoke_caches(void) 182 { 183 kmem_cache_destroy(jbd2_revoke_record_cache); 184 jbd2_revoke_record_cache = NULL; 185 kmem_cache_destroy(jbd2_revoke_table_cache); 186 jbd2_revoke_table_cache = NULL; 187 } 188 189 int __init jbd2_journal_init_revoke_caches(void) 190 { 191 J_ASSERT(!jbd2_revoke_record_cache); 192 J_ASSERT(!jbd2_revoke_table_cache); 193 194 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s, 195 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY); 196 if (!jbd2_revoke_record_cache) 197 goto record_cache_failure; 198 199 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s, 200 SLAB_TEMPORARY); 201 if (!jbd2_revoke_table_cache) 202 goto table_cache_failure; 203 return 0; 204 table_cache_failure: 205 jbd2_journal_destroy_revoke_caches(); 206 record_cache_failure: 207 return -ENOMEM; 208 } 209 210 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 211 { 212 int shift = 0; 213 int tmp = hash_size; 214 struct jbd2_revoke_table_s *table; 215 216 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 217 if (!table) 218 goto out; 219 220 while((tmp >>= 1UL) != 0UL) 221 shift++; 222 223 table->hash_size = hash_size; 224 table->hash_shift = shift; 225 table->hash_table = 226 kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL); 227 if (!table->hash_table) { 228 kmem_cache_free(jbd2_revoke_table_cache, table); 229 table = NULL; 230 goto out; 231 } 232 233 for (tmp = 0; tmp < hash_size; tmp++) 234 INIT_LIST_HEAD(&table->hash_table[tmp]); 235 236 out: 237 return table; 238 } 239 240 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 241 { 242 int i; 243 struct list_head *hash_list; 244 245 for (i = 0; i < table->hash_size; i++) { 246 hash_list = &table->hash_table[i]; 247 J_ASSERT(list_empty(hash_list)); 248 } 249 250 kfree(table->hash_table); 251 kmem_cache_free(jbd2_revoke_table_cache, table); 252 } 253 254 /* Initialise the revoke table for a given journal to a given size. */ 255 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 256 { 257 J_ASSERT(journal->j_revoke_table[0] == NULL); 258 J_ASSERT(is_power_of_2(hash_size)); 259 260 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 261 if (!journal->j_revoke_table[0]) 262 goto fail0; 263 264 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 265 if (!journal->j_revoke_table[1]) 266 goto fail1; 267 268 journal->j_revoke = journal->j_revoke_table[1]; 269 270 spin_lock_init(&journal->j_revoke_lock); 271 272 return 0; 273 274 fail1: 275 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 276 journal->j_revoke_table[0] = NULL; 277 fail0: 278 return -ENOMEM; 279 } 280 281 /* Destroy a journal's revoke table. The table must already be empty! */ 282 void jbd2_journal_destroy_revoke(journal_t *journal) 283 { 284 journal->j_revoke = NULL; 285 if (journal->j_revoke_table[0]) 286 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 287 if (journal->j_revoke_table[1]) 288 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 289 } 290 291 292 #ifdef __KERNEL__ 293 294 /* 295 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 296 * prevents the block from being replayed during recovery if we take a 297 * crash after this current transaction commits. Any subsequent 298 * metadata writes of the buffer in this transaction cancel the 299 * revoke. 300 * 301 * Note that this call may block --- it is up to the caller to make 302 * sure that there are no further calls to journal_write_metadata 303 * before the revoke is complete. In ext3, this implies calling the 304 * revoke before clearing the block bitmap when we are deleting 305 * metadata. 306 * 307 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 308 * parameter, but does _not_ forget the buffer_head if the bh was only 309 * found implicitly. 310 * 311 * bh_in may not be a journalled buffer - it may have come off 312 * the hash tables without an attached journal_head. 313 * 314 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 315 * by one. 316 */ 317 318 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 319 struct buffer_head *bh_in) 320 { 321 struct buffer_head *bh = NULL; 322 journal_t *journal; 323 struct block_device *bdev; 324 int err; 325 326 might_sleep(); 327 if (bh_in) 328 BUFFER_TRACE(bh_in, "enter"); 329 330 journal = handle->h_transaction->t_journal; 331 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 332 J_ASSERT (!"Cannot set revoke feature!"); 333 return -EINVAL; 334 } 335 336 bdev = journal->j_fs_dev; 337 bh = bh_in; 338 339 if (!bh) { 340 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 341 if (bh) 342 BUFFER_TRACE(bh, "found on hash"); 343 } 344 #ifdef JBD2_EXPENSIVE_CHECKING 345 else { 346 struct buffer_head *bh2; 347 348 /* If there is a different buffer_head lying around in 349 * memory anywhere... */ 350 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 351 if (bh2) { 352 /* ... and it has RevokeValid status... */ 353 if (bh2 != bh && buffer_revokevalid(bh2)) 354 /* ...then it better be revoked too, 355 * since it's illegal to create a revoke 356 * record against a buffer_head which is 357 * not marked revoked --- that would 358 * risk missing a subsequent revoke 359 * cancel. */ 360 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 361 put_bh(bh2); 362 } 363 } 364 #endif 365 366 /* We really ought not ever to revoke twice in a row without 367 first having the revoke cancelled: it's illegal to free a 368 block twice without allocating it in between! */ 369 if (bh) { 370 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 371 "inconsistent data on disk")) { 372 if (!bh_in) 373 brelse(bh); 374 return -EIO; 375 } 376 set_buffer_revoked(bh); 377 set_buffer_revokevalid(bh); 378 if (bh_in) { 379 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 380 jbd2_journal_forget(handle, bh_in); 381 } else { 382 BUFFER_TRACE(bh, "call brelse"); 383 __brelse(bh); 384 } 385 } 386 387 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 388 err = insert_revoke_hash(journal, blocknr, 389 handle->h_transaction->t_tid); 390 BUFFER_TRACE(bh_in, "exit"); 391 return err; 392 } 393 394 /* 395 * Cancel an outstanding revoke. For use only internally by the 396 * journaling code (called from jbd2_journal_get_write_access). 397 * 398 * We trust buffer_revoked() on the buffer if the buffer is already 399 * being journaled: if there is no revoke pending on the buffer, then we 400 * don't do anything here. 401 * 402 * This would break if it were possible for a buffer to be revoked and 403 * discarded, and then reallocated within the same transaction. In such 404 * a case we would have lost the revoked bit, but when we arrived here 405 * the second time we would still have a pending revoke to cancel. So, 406 * do not trust the Revoked bit on buffers unless RevokeValid is also 407 * set. 408 */ 409 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 410 { 411 struct jbd2_revoke_record_s *record; 412 journal_t *journal = handle->h_transaction->t_journal; 413 int need_cancel; 414 int did_revoke = 0; /* akpm: debug */ 415 struct buffer_head *bh = jh2bh(jh); 416 417 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 418 419 /* Is the existing Revoke bit valid? If so, we trust it, and 420 * only perform the full cancel if the revoke bit is set. If 421 * not, we can't trust the revoke bit, and we need to do the 422 * full search for a revoke record. */ 423 if (test_set_buffer_revokevalid(bh)) { 424 need_cancel = test_clear_buffer_revoked(bh); 425 } else { 426 need_cancel = 1; 427 clear_buffer_revoked(bh); 428 } 429 430 if (need_cancel) { 431 record = find_revoke_record(journal, bh->b_blocknr); 432 if (record) { 433 jbd_debug(4, "cancelled existing revoke on " 434 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 435 spin_lock(&journal->j_revoke_lock); 436 list_del(&record->hash); 437 spin_unlock(&journal->j_revoke_lock); 438 kmem_cache_free(jbd2_revoke_record_cache, record); 439 did_revoke = 1; 440 } 441 } 442 443 #ifdef JBD2_EXPENSIVE_CHECKING 444 /* There better not be one left behind by now! */ 445 record = find_revoke_record(journal, bh->b_blocknr); 446 J_ASSERT_JH(jh, record == NULL); 447 #endif 448 449 /* Finally, have we just cleared revoke on an unhashed 450 * buffer_head? If so, we'd better make sure we clear the 451 * revoked status on any hashed alias too, otherwise the revoke 452 * state machine will get very upset later on. */ 453 if (need_cancel) { 454 struct buffer_head *bh2; 455 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 456 if (bh2) { 457 if (bh2 != bh) 458 clear_buffer_revoked(bh2); 459 __brelse(bh2); 460 } 461 } 462 return did_revoke; 463 } 464 465 /* 466 * journal_clear_revoked_flag clears revoked flag of buffers in 467 * revoke table to reflect there is no revoked buffers in the next 468 * transaction which is going to be started. 469 */ 470 void jbd2_clear_buffer_revoked_flags(journal_t *journal) 471 { 472 struct jbd2_revoke_table_s *revoke = journal->j_revoke; 473 int i = 0; 474 475 for (i = 0; i < revoke->hash_size; i++) { 476 struct list_head *hash_list; 477 struct list_head *list_entry; 478 hash_list = &revoke->hash_table[i]; 479 480 list_for_each(list_entry, hash_list) { 481 struct jbd2_revoke_record_s *record; 482 struct buffer_head *bh; 483 record = (struct jbd2_revoke_record_s *)list_entry; 484 bh = __find_get_block(journal->j_fs_dev, 485 record->blocknr, 486 journal->j_blocksize); 487 if (bh) { 488 clear_buffer_revoked(bh); 489 __brelse(bh); 490 } 491 } 492 } 493 } 494 495 /* journal_switch_revoke table select j_revoke for next transaction 496 * we do not want to suspend any processing until all revokes are 497 * written -bzzz 498 */ 499 void jbd2_journal_switch_revoke_table(journal_t *journal) 500 { 501 int i; 502 503 if (journal->j_revoke == journal->j_revoke_table[0]) 504 journal->j_revoke = journal->j_revoke_table[1]; 505 else 506 journal->j_revoke = journal->j_revoke_table[0]; 507 508 for (i = 0; i < journal->j_revoke->hash_size; i++) 509 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 510 } 511 512 /* 513 * Write revoke records to the journal for all entries in the current 514 * revoke hash, deleting the entries as we go. 515 */ 516 void jbd2_journal_write_revoke_records(transaction_t *transaction, 517 struct list_head *log_bufs) 518 { 519 journal_t *journal = transaction->t_journal; 520 struct buffer_head *descriptor; 521 struct jbd2_revoke_record_s *record; 522 struct jbd2_revoke_table_s *revoke; 523 struct list_head *hash_list; 524 int i, offset, count; 525 526 descriptor = NULL; 527 offset = 0; 528 count = 0; 529 530 /* select revoke table for committing transaction */ 531 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 532 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 533 534 for (i = 0; i < revoke->hash_size; i++) { 535 hash_list = &revoke->hash_table[i]; 536 537 while (!list_empty(hash_list)) { 538 record = (struct jbd2_revoke_record_s *) 539 hash_list->next; 540 write_one_revoke_record(transaction, log_bufs, 541 &descriptor, &offset, record); 542 count++; 543 list_del(&record->hash); 544 kmem_cache_free(jbd2_revoke_record_cache, record); 545 } 546 } 547 if (descriptor) 548 flush_descriptor(journal, descriptor, offset); 549 jbd_debug(1, "Wrote %d revoke records\n", count); 550 } 551 552 /* 553 * Write out one revoke record. We need to create a new descriptor 554 * block if the old one is full or if we have not already created one. 555 */ 556 557 static void write_one_revoke_record(transaction_t *transaction, 558 struct list_head *log_bufs, 559 struct buffer_head **descriptorp, 560 int *offsetp, 561 struct jbd2_revoke_record_s *record) 562 { 563 journal_t *journal = transaction->t_journal; 564 int csum_size = 0; 565 struct buffer_head *descriptor; 566 int sz, offset; 567 568 /* If we are already aborting, this all becomes a noop. We 569 still need to go round the loop in 570 jbd2_journal_write_revoke_records in order to free all of the 571 revoke records: only the IO to the journal is omitted. */ 572 if (is_journal_aborted(journal)) 573 return; 574 575 descriptor = *descriptorp; 576 offset = *offsetp; 577 578 /* Do we need to leave space at the end for a checksum? */ 579 if (jbd2_journal_has_csum_v2or3(journal)) 580 csum_size = sizeof(struct jbd2_journal_block_tail); 581 582 if (jbd2_has_feature_64bit(journal)) 583 sz = 8; 584 else 585 sz = 4; 586 587 /* Make sure we have a descriptor with space left for the record */ 588 if (descriptor) { 589 if (offset + sz > journal->j_blocksize - csum_size) { 590 flush_descriptor(journal, descriptor, offset); 591 descriptor = NULL; 592 } 593 } 594 595 if (!descriptor) { 596 descriptor = jbd2_journal_get_descriptor_buffer(transaction, 597 JBD2_REVOKE_BLOCK); 598 if (!descriptor) 599 return; 600 601 /* Record it so that we can wait for IO completion later */ 602 BUFFER_TRACE(descriptor, "file in log_bufs"); 603 jbd2_file_log_bh(log_bufs, descriptor); 604 605 offset = sizeof(jbd2_journal_revoke_header_t); 606 *descriptorp = descriptor; 607 } 608 609 if (jbd2_has_feature_64bit(journal)) 610 * ((__be64 *)(&descriptor->b_data[offset])) = 611 cpu_to_be64(record->blocknr); 612 else 613 * ((__be32 *)(&descriptor->b_data[offset])) = 614 cpu_to_be32(record->blocknr); 615 offset += sz; 616 617 *offsetp = offset; 618 } 619 620 /* 621 * Flush a revoke descriptor out to the journal. If we are aborting, 622 * this is a noop; otherwise we are generating a buffer which needs to 623 * be waited for during commit, so it has to go onto the appropriate 624 * journal buffer list. 625 */ 626 627 static void flush_descriptor(journal_t *journal, 628 struct buffer_head *descriptor, 629 int offset) 630 { 631 jbd2_journal_revoke_header_t *header; 632 633 if (is_journal_aborted(journal)) { 634 put_bh(descriptor); 635 return; 636 } 637 638 header = (jbd2_journal_revoke_header_t *)descriptor->b_data; 639 header->r_count = cpu_to_be32(offset); 640 jbd2_descriptor_block_csum_set(journal, descriptor); 641 642 set_buffer_jwrite(descriptor); 643 BUFFER_TRACE(descriptor, "write"); 644 set_buffer_dirty(descriptor); 645 write_dirty_buffer(descriptor, REQ_SYNC); 646 } 647 #endif 648 649 /* 650 * Revoke support for recovery. 651 * 652 * Recovery needs to be able to: 653 * 654 * record all revoke records, including the tid of the latest instance 655 * of each revoke in the journal 656 * 657 * check whether a given block in a given transaction should be replayed 658 * (ie. has not been revoked by a revoke record in that or a subsequent 659 * transaction) 660 * 661 * empty the revoke table after recovery. 662 */ 663 664 /* 665 * First, setting revoke records. We create a new revoke record for 666 * every block ever revoked in the log as we scan it for recovery, and 667 * we update the existing records if we find multiple revokes for a 668 * single block. 669 */ 670 671 int jbd2_journal_set_revoke(journal_t *journal, 672 unsigned long long blocknr, 673 tid_t sequence) 674 { 675 struct jbd2_revoke_record_s *record; 676 677 record = find_revoke_record(journal, blocknr); 678 if (record) { 679 /* If we have multiple occurrences, only record the 680 * latest sequence number in the hashed record */ 681 if (tid_gt(sequence, record->sequence)) 682 record->sequence = sequence; 683 return 0; 684 } 685 return insert_revoke_hash(journal, blocknr, sequence); 686 } 687 688 /* 689 * Test revoke records. For a given block referenced in the log, has 690 * that block been revoked? A revoke record with a given transaction 691 * sequence number revokes all blocks in that transaction and earlier 692 * ones, but later transactions still need replayed. 693 */ 694 695 int jbd2_journal_test_revoke(journal_t *journal, 696 unsigned long long blocknr, 697 tid_t sequence) 698 { 699 struct jbd2_revoke_record_s *record; 700 701 record = find_revoke_record(journal, blocknr); 702 if (!record) 703 return 0; 704 if (tid_gt(sequence, record->sequence)) 705 return 0; 706 return 1; 707 } 708 709 /* 710 * Finally, once recovery is over, we need to clear the revoke table so 711 * that it can be reused by the running filesystem. 712 */ 713 714 void jbd2_journal_clear_revoke(journal_t *journal) 715 { 716 int i; 717 struct list_head *hash_list; 718 struct jbd2_revoke_record_s *record; 719 struct jbd2_revoke_table_s *revoke; 720 721 revoke = journal->j_revoke; 722 723 for (i = 0; i < revoke->hash_size; i++) { 724 hash_list = &revoke->hash_table[i]; 725 while (!list_empty(hash_list)) { 726 record = (struct jbd2_revoke_record_s*) hash_list->next; 727 list_del(&record->hash); 728 kmem_cache_free(jbd2_revoke_record_cache, record); 729 } 730 } 731 } 732