xref: /openbmc/linux/fs/jbd2/revoke.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #include <linux/hash.h>
96 #endif
97 
98 static struct kmem_cache *jbd2_revoke_record_cache;
99 static struct kmem_cache *jbd2_revoke_table_cache;
100 
101 /* Each revoke record represents one single revoked block.  During
102    journal replay, this involves recording the transaction ID of the
103    last transaction to revoke this block. */
104 
105 struct jbd2_revoke_record_s
106 {
107 	struct list_head  hash;
108 	tid_t		  sequence;	/* Used for recovery only */
109 	unsigned long long	  blocknr;
110 };
111 
112 
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
115 {
116 	/* It is conceivable that we might want a larger hash table
117 	 * for recovery.  Must be a power of two. */
118 	int		  hash_size;
119 	int		  hash_shift;
120 	struct list_head *hash_table;
121 };
122 
123 
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 				    struct list_head *,
127 				    struct buffer_head **, int *,
128 				    struct jbd2_revoke_record_s *, int);
129 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130 #endif
131 
132 /* Utility functions to maintain the revoke table */
133 
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 	return hash_64(block, journal->j_revoke->hash_shift);
137 }
138 
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 			      tid_t seq)
141 {
142 	struct list_head *hash_list;
143 	struct jbd2_revoke_record_s *record;
144 	gfp_t gfp_mask = GFP_NOFS;
145 
146 	if (journal_oom_retry)
147 		gfp_mask |= __GFP_NOFAIL;
148 	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149 	if (!record)
150 		return -ENOMEM;
151 
152 	record->sequence = seq;
153 	record->blocknr = blocknr;
154 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155 	spin_lock(&journal->j_revoke_lock);
156 	list_add(&record->hash, hash_list);
157 	spin_unlock(&journal->j_revoke_lock);
158 	return 0;
159 }
160 
161 /* Find a revoke record in the journal's hash table. */
162 
163 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164 						      unsigned long long blocknr)
165 {
166 	struct list_head *hash_list;
167 	struct jbd2_revoke_record_s *record;
168 
169 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
170 
171 	spin_lock(&journal->j_revoke_lock);
172 	record = (struct jbd2_revoke_record_s *) hash_list->next;
173 	while (&(record->hash) != hash_list) {
174 		if (record->blocknr == blocknr) {
175 			spin_unlock(&journal->j_revoke_lock);
176 			return record;
177 		}
178 		record = (struct jbd2_revoke_record_s *) record->hash.next;
179 	}
180 	spin_unlock(&journal->j_revoke_lock);
181 	return NULL;
182 }
183 
184 void jbd2_journal_destroy_revoke_caches(void)
185 {
186 	if (jbd2_revoke_record_cache) {
187 		kmem_cache_destroy(jbd2_revoke_record_cache);
188 		jbd2_revoke_record_cache = NULL;
189 	}
190 	if (jbd2_revoke_table_cache) {
191 		kmem_cache_destroy(jbd2_revoke_table_cache);
192 		jbd2_revoke_table_cache = NULL;
193 	}
194 }
195 
196 int __init jbd2_journal_init_revoke_caches(void)
197 {
198 	J_ASSERT(!jbd2_revoke_record_cache);
199 	J_ASSERT(!jbd2_revoke_table_cache);
200 
201 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203 	if (!jbd2_revoke_record_cache)
204 		goto record_cache_failure;
205 
206 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207 					     SLAB_TEMPORARY);
208 	if (!jbd2_revoke_table_cache)
209 		goto table_cache_failure;
210 	return 0;
211 table_cache_failure:
212 	jbd2_journal_destroy_revoke_caches();
213 record_cache_failure:
214 		return -ENOMEM;
215 }
216 
217 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218 {
219 	int shift = 0;
220 	int tmp = hash_size;
221 	struct jbd2_revoke_table_s *table;
222 
223 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224 	if (!table)
225 		goto out;
226 
227 	while((tmp >>= 1UL) != 0UL)
228 		shift++;
229 
230 	table->hash_size = hash_size;
231 	table->hash_shift = shift;
232 	table->hash_table =
233 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234 	if (!table->hash_table) {
235 		kmem_cache_free(jbd2_revoke_table_cache, table);
236 		table = NULL;
237 		goto out;
238 	}
239 
240 	for (tmp = 0; tmp < hash_size; tmp++)
241 		INIT_LIST_HEAD(&table->hash_table[tmp]);
242 
243 out:
244 	return table;
245 }
246 
247 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
248 {
249 	int i;
250 	struct list_head *hash_list;
251 
252 	for (i = 0; i < table->hash_size; i++) {
253 		hash_list = &table->hash_table[i];
254 		J_ASSERT(list_empty(hash_list));
255 	}
256 
257 	kfree(table->hash_table);
258 	kmem_cache_free(jbd2_revoke_table_cache, table);
259 }
260 
261 /* Initialise the revoke table for a given journal to a given size. */
262 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
263 {
264 	J_ASSERT(journal->j_revoke_table[0] == NULL);
265 	J_ASSERT(is_power_of_2(hash_size));
266 
267 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268 	if (!journal->j_revoke_table[0])
269 		goto fail0;
270 
271 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272 	if (!journal->j_revoke_table[1])
273 		goto fail1;
274 
275 	journal->j_revoke = journal->j_revoke_table[1];
276 
277 	spin_lock_init(&journal->j_revoke_lock);
278 
279 	return 0;
280 
281 fail1:
282 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283 fail0:
284 	return -ENOMEM;
285 }
286 
287 /* Destroy a journal's revoke table.  The table must already be empty! */
288 void jbd2_journal_destroy_revoke(journal_t *journal)
289 {
290 	journal->j_revoke = NULL;
291 	if (journal->j_revoke_table[0])
292 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293 	if (journal->j_revoke_table[1])
294 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
295 }
296 
297 
298 #ifdef __KERNEL__
299 
300 /*
301  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
302  * prevents the block from being replayed during recovery if we take a
303  * crash after this current transaction commits.  Any subsequent
304  * metadata writes of the buffer in this transaction cancel the
305  * revoke.
306  *
307  * Note that this call may block --- it is up to the caller to make
308  * sure that there are no further calls to journal_write_metadata
309  * before the revoke is complete.  In ext3, this implies calling the
310  * revoke before clearing the block bitmap when we are deleting
311  * metadata.
312  *
313  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314  * parameter, but does _not_ forget the buffer_head if the bh was only
315  * found implicitly.
316  *
317  * bh_in may not be a journalled buffer - it may have come off
318  * the hash tables without an attached journal_head.
319  *
320  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
321  * by one.
322  */
323 
324 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
325 		   struct buffer_head *bh_in)
326 {
327 	struct buffer_head *bh = NULL;
328 	journal_t *journal;
329 	struct block_device *bdev;
330 	int err;
331 
332 	might_sleep();
333 	if (bh_in)
334 		BUFFER_TRACE(bh_in, "enter");
335 
336 	journal = handle->h_transaction->t_journal;
337 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
338 		J_ASSERT (!"Cannot set revoke feature!");
339 		return -EINVAL;
340 	}
341 
342 	bdev = journal->j_fs_dev;
343 	bh = bh_in;
344 
345 	if (!bh) {
346 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
347 		if (bh)
348 			BUFFER_TRACE(bh, "found on hash");
349 	}
350 #ifdef JBD2_EXPENSIVE_CHECKING
351 	else {
352 		struct buffer_head *bh2;
353 
354 		/* If there is a different buffer_head lying around in
355 		 * memory anywhere... */
356 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
357 		if (bh2) {
358 			/* ... and it has RevokeValid status... */
359 			if (bh2 != bh && buffer_revokevalid(bh2))
360 				/* ...then it better be revoked too,
361 				 * since it's illegal to create a revoke
362 				 * record against a buffer_head which is
363 				 * not marked revoked --- that would
364 				 * risk missing a subsequent revoke
365 				 * cancel. */
366 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
367 			put_bh(bh2);
368 		}
369 	}
370 #endif
371 
372 	/* We really ought not ever to revoke twice in a row without
373            first having the revoke cancelled: it's illegal to free a
374            block twice without allocating it in between! */
375 	if (bh) {
376 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
377 				 "inconsistent data on disk")) {
378 			if (!bh_in)
379 				brelse(bh);
380 			return -EIO;
381 		}
382 		set_buffer_revoked(bh);
383 		set_buffer_revokevalid(bh);
384 		if (bh_in) {
385 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
386 			jbd2_journal_forget(handle, bh_in);
387 		} else {
388 			BUFFER_TRACE(bh, "call brelse");
389 			__brelse(bh);
390 		}
391 	}
392 
393 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
394 	err = insert_revoke_hash(journal, blocknr,
395 				handle->h_transaction->t_tid);
396 	BUFFER_TRACE(bh_in, "exit");
397 	return err;
398 }
399 
400 /*
401  * Cancel an outstanding revoke.  For use only internally by the
402  * journaling code (called from jbd2_journal_get_write_access).
403  *
404  * We trust buffer_revoked() on the buffer if the buffer is already
405  * being journaled: if there is no revoke pending on the buffer, then we
406  * don't do anything here.
407  *
408  * This would break if it were possible for a buffer to be revoked and
409  * discarded, and then reallocated within the same transaction.  In such
410  * a case we would have lost the revoked bit, but when we arrived here
411  * the second time we would still have a pending revoke to cancel.  So,
412  * do not trust the Revoked bit on buffers unless RevokeValid is also
413  * set.
414  */
415 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
416 {
417 	struct jbd2_revoke_record_s *record;
418 	journal_t *journal = handle->h_transaction->t_journal;
419 	int need_cancel;
420 	int did_revoke = 0;	/* akpm: debug */
421 	struct buffer_head *bh = jh2bh(jh);
422 
423 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
424 
425 	/* Is the existing Revoke bit valid?  If so, we trust it, and
426 	 * only perform the full cancel if the revoke bit is set.  If
427 	 * not, we can't trust the revoke bit, and we need to do the
428 	 * full search for a revoke record. */
429 	if (test_set_buffer_revokevalid(bh)) {
430 		need_cancel = test_clear_buffer_revoked(bh);
431 	} else {
432 		need_cancel = 1;
433 		clear_buffer_revoked(bh);
434 	}
435 
436 	if (need_cancel) {
437 		record = find_revoke_record(journal, bh->b_blocknr);
438 		if (record) {
439 			jbd_debug(4, "cancelled existing revoke on "
440 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
441 			spin_lock(&journal->j_revoke_lock);
442 			list_del(&record->hash);
443 			spin_unlock(&journal->j_revoke_lock);
444 			kmem_cache_free(jbd2_revoke_record_cache, record);
445 			did_revoke = 1;
446 		}
447 	}
448 
449 #ifdef JBD2_EXPENSIVE_CHECKING
450 	/* There better not be one left behind by now! */
451 	record = find_revoke_record(journal, bh->b_blocknr);
452 	J_ASSERT_JH(jh, record == NULL);
453 #endif
454 
455 	/* Finally, have we just cleared revoke on an unhashed
456 	 * buffer_head?  If so, we'd better make sure we clear the
457 	 * revoked status on any hashed alias too, otherwise the revoke
458 	 * state machine will get very upset later on. */
459 	if (need_cancel) {
460 		struct buffer_head *bh2;
461 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
462 		if (bh2) {
463 			if (bh2 != bh)
464 				clear_buffer_revoked(bh2);
465 			__brelse(bh2);
466 		}
467 	}
468 	return did_revoke;
469 }
470 
471 /*
472  * journal_clear_revoked_flag clears revoked flag of buffers in
473  * revoke table to reflect there is no revoked buffers in the next
474  * transaction which is going to be started.
475  */
476 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
477 {
478 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
479 	int i = 0;
480 
481 	for (i = 0; i < revoke->hash_size; i++) {
482 		struct list_head *hash_list;
483 		struct list_head *list_entry;
484 		hash_list = &revoke->hash_table[i];
485 
486 		list_for_each(list_entry, hash_list) {
487 			struct jbd2_revoke_record_s *record;
488 			struct buffer_head *bh;
489 			record = (struct jbd2_revoke_record_s *)list_entry;
490 			bh = __find_get_block(journal->j_fs_dev,
491 					      record->blocknr,
492 					      journal->j_blocksize);
493 			if (bh) {
494 				clear_buffer_revoked(bh);
495 				__brelse(bh);
496 			}
497 		}
498 	}
499 }
500 
501 /* journal_switch_revoke table select j_revoke for next transaction
502  * we do not want to suspend any processing until all revokes are
503  * written -bzzz
504  */
505 void jbd2_journal_switch_revoke_table(journal_t *journal)
506 {
507 	int i;
508 
509 	if (journal->j_revoke == journal->j_revoke_table[0])
510 		journal->j_revoke = journal->j_revoke_table[1];
511 	else
512 		journal->j_revoke = journal->j_revoke_table[0];
513 
514 	for (i = 0; i < journal->j_revoke->hash_size; i++)
515 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
516 }
517 
518 /*
519  * Write revoke records to the journal for all entries in the current
520  * revoke hash, deleting the entries as we go.
521  */
522 void jbd2_journal_write_revoke_records(journal_t *journal,
523 				       transaction_t *transaction,
524 				       struct list_head *log_bufs,
525 				       int write_op)
526 {
527 	struct buffer_head *descriptor;
528 	struct jbd2_revoke_record_s *record;
529 	struct jbd2_revoke_table_s *revoke;
530 	struct list_head *hash_list;
531 	int i, offset, count;
532 
533 	descriptor = NULL;
534 	offset = 0;
535 	count = 0;
536 
537 	/* select revoke table for committing transaction */
538 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
539 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
540 
541 	for (i = 0; i < revoke->hash_size; i++) {
542 		hash_list = &revoke->hash_table[i];
543 
544 		while (!list_empty(hash_list)) {
545 			record = (struct jbd2_revoke_record_s *)
546 				hash_list->next;
547 			write_one_revoke_record(journal, transaction, log_bufs,
548 						&descriptor, &offset,
549 						record, write_op);
550 			count++;
551 			list_del(&record->hash);
552 			kmem_cache_free(jbd2_revoke_record_cache, record);
553 		}
554 	}
555 	if (descriptor)
556 		flush_descriptor(journal, descriptor, offset, write_op);
557 	jbd_debug(1, "Wrote %d revoke records\n", count);
558 }
559 
560 /*
561  * Write out one revoke record.  We need to create a new descriptor
562  * block if the old one is full or if we have not already created one.
563  */
564 
565 static void write_one_revoke_record(journal_t *journal,
566 				    transaction_t *transaction,
567 				    struct list_head *log_bufs,
568 				    struct buffer_head **descriptorp,
569 				    int *offsetp,
570 				    struct jbd2_revoke_record_s *record,
571 				    int write_op)
572 {
573 	int csum_size = 0;
574 	struct buffer_head *descriptor;
575 	int sz, offset;
576 	journal_header_t *header;
577 
578 	/* If we are already aborting, this all becomes a noop.  We
579            still need to go round the loop in
580            jbd2_journal_write_revoke_records in order to free all of the
581            revoke records: only the IO to the journal is omitted. */
582 	if (is_journal_aborted(journal))
583 		return;
584 
585 	descriptor = *descriptorp;
586 	offset = *offsetp;
587 
588 	/* Do we need to leave space at the end for a checksum? */
589 	if (jbd2_journal_has_csum_v2or3(journal))
590 		csum_size = sizeof(struct jbd2_journal_revoke_tail);
591 
592 	if (jbd2_has_feature_64bit(journal))
593 		sz = 8;
594 	else
595 		sz = 4;
596 
597 	/* Make sure we have a descriptor with space left for the record */
598 	if (descriptor) {
599 		if (offset + sz > journal->j_blocksize - csum_size) {
600 			flush_descriptor(journal, descriptor, offset, write_op);
601 			descriptor = NULL;
602 		}
603 	}
604 
605 	if (!descriptor) {
606 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
607 		if (!descriptor)
608 			return;
609 		header = (journal_header_t *)descriptor->b_data;
610 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
611 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
612 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
613 
614 		/* Record it so that we can wait for IO completion later */
615 		BUFFER_TRACE(descriptor, "file in log_bufs");
616 		jbd2_file_log_bh(log_bufs, descriptor);
617 
618 		offset = sizeof(jbd2_journal_revoke_header_t);
619 		*descriptorp = descriptor;
620 	}
621 
622 	if (jbd2_has_feature_64bit(journal))
623 		* ((__be64 *)(&descriptor->b_data[offset])) =
624 			cpu_to_be64(record->blocknr);
625 	else
626 		* ((__be32 *)(&descriptor->b_data[offset])) =
627 			cpu_to_be32(record->blocknr);
628 	offset += sz;
629 
630 	*offsetp = offset;
631 }
632 
633 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
634 {
635 	struct jbd2_journal_revoke_tail *tail;
636 	__u32 csum;
637 
638 	if (!jbd2_journal_has_csum_v2or3(j))
639 		return;
640 
641 	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
642 			sizeof(struct jbd2_journal_revoke_tail));
643 	tail->r_checksum = 0;
644 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
645 	tail->r_checksum = cpu_to_be32(csum);
646 }
647 
648 /*
649  * Flush a revoke descriptor out to the journal.  If we are aborting,
650  * this is a noop; otherwise we are generating a buffer which needs to
651  * be waited for during commit, so it has to go onto the appropriate
652  * journal buffer list.
653  */
654 
655 static void flush_descriptor(journal_t *journal,
656 			     struct buffer_head *descriptor,
657 			     int offset, int write_op)
658 {
659 	jbd2_journal_revoke_header_t *header;
660 
661 	if (is_journal_aborted(journal)) {
662 		put_bh(descriptor);
663 		return;
664 	}
665 
666 	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
667 	header->r_count = cpu_to_be32(offset);
668 	jbd2_revoke_csum_set(journal, descriptor);
669 
670 	set_buffer_jwrite(descriptor);
671 	BUFFER_TRACE(descriptor, "write");
672 	set_buffer_dirty(descriptor);
673 	write_dirty_buffer(descriptor, write_op);
674 }
675 #endif
676 
677 /*
678  * Revoke support for recovery.
679  *
680  * Recovery needs to be able to:
681  *
682  *  record all revoke records, including the tid of the latest instance
683  *  of each revoke in the journal
684  *
685  *  check whether a given block in a given transaction should be replayed
686  *  (ie. has not been revoked by a revoke record in that or a subsequent
687  *  transaction)
688  *
689  *  empty the revoke table after recovery.
690  */
691 
692 /*
693  * First, setting revoke records.  We create a new revoke record for
694  * every block ever revoked in the log as we scan it for recovery, and
695  * we update the existing records if we find multiple revokes for a
696  * single block.
697  */
698 
699 int jbd2_journal_set_revoke(journal_t *journal,
700 		       unsigned long long blocknr,
701 		       tid_t sequence)
702 {
703 	struct jbd2_revoke_record_s *record;
704 
705 	record = find_revoke_record(journal, blocknr);
706 	if (record) {
707 		/* If we have multiple occurrences, only record the
708 		 * latest sequence number in the hashed record */
709 		if (tid_gt(sequence, record->sequence))
710 			record->sequence = sequence;
711 		return 0;
712 	}
713 	return insert_revoke_hash(journal, blocknr, sequence);
714 }
715 
716 /*
717  * Test revoke records.  For a given block referenced in the log, has
718  * that block been revoked?  A revoke record with a given transaction
719  * sequence number revokes all blocks in that transaction and earlier
720  * ones, but later transactions still need replayed.
721  */
722 
723 int jbd2_journal_test_revoke(journal_t *journal,
724 			unsigned long long blocknr,
725 			tid_t sequence)
726 {
727 	struct jbd2_revoke_record_s *record;
728 
729 	record = find_revoke_record(journal, blocknr);
730 	if (!record)
731 		return 0;
732 	if (tid_gt(sequence, record->sequence))
733 		return 0;
734 	return 1;
735 }
736 
737 /*
738  * Finally, once recovery is over, we need to clear the revoke table so
739  * that it can be reused by the running filesystem.
740  */
741 
742 void jbd2_journal_clear_revoke(journal_t *journal)
743 {
744 	int i;
745 	struct list_head *hash_list;
746 	struct jbd2_revoke_record_s *record;
747 	struct jbd2_revoke_table_s *revoke;
748 
749 	revoke = journal->j_revoke;
750 
751 	for (i = 0; i < revoke->hash_size; i++) {
752 		hash_list = &revoke->hash_table[i];
753 		while (!list_empty(hash_list)) {
754 			record = (struct jbd2_revoke_record_s*) hash_list->next;
755 			list_del(&record->hash);
756 			kmem_cache_free(jbd2_revoke_record_cache, record);
757 		}
758 	}
759 }
760