xref: /openbmc/linux/fs/jbd2/revoke.c (revision b627b4ed)
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * Revoke information on buffers is a tri-state value:
51  *
52  * RevokeValid clear:	no cached revoke status, need to look it up
53  * RevokeValid set, Revoked clear:
54  *			buffer has not been revoked, and cancel_revoke
55  *			need do nothing.
56  * RevokeValid set, Revoked set:
57  *			buffer has been revoked.
58  *
59  * Locking rules:
60  * We keep two hash tables of revoke records. One hashtable belongs to the
61  * running transaction (is pointed to by journal->j_revoke), the other one
62  * belongs to the committing transaction. Accesses to the second hash table
63  * happen only from the kjournald and no other thread touches this table.  Also
64  * journal_switch_revoke_table() which switches which hashtable belongs to the
65  * running and which to the committing transaction is called only from
66  * kjournald. Therefore we need no locks when accessing the hashtable belonging
67  * to the committing transaction.
68  *
69  * All users operating on the hash table belonging to the running transaction
70  * have a handle to the transaction. Therefore they are safe from kjournald
71  * switching hash tables under them. For operations on the lists of entries in
72  * the hash table j_revoke_lock is used.
73  *
74  * Finally, also replay code uses the hash tables but at this moment noone else
75  * can touch them (filesystem isn't mounted yet) and hence no locking is
76  * needed.
77  */
78 
79 #ifndef __KERNEL__
80 #include "jfs_user.h"
81 #else
82 #include <linux/time.h>
83 #include <linux/fs.h>
84 #include <linux/jbd2.h>
85 #include <linux/errno.h>
86 #include <linux/slab.h>
87 #include <linux/list.h>
88 #include <linux/init.h>
89 #endif
90 #include <linux/log2.h>
91 
92 static struct kmem_cache *jbd2_revoke_record_cache;
93 static struct kmem_cache *jbd2_revoke_table_cache;
94 
95 /* Each revoke record represents one single revoked block.  During
96    journal replay, this involves recording the transaction ID of the
97    last transaction to revoke this block. */
98 
99 struct jbd2_revoke_record_s
100 {
101 	struct list_head  hash;
102 	tid_t		  sequence;	/* Used for recovery only */
103 	unsigned long long	  blocknr;
104 };
105 
106 
107 /* The revoke table is just a simple hash table of revoke records. */
108 struct jbd2_revoke_table_s
109 {
110 	/* It is conceivable that we might want a larger hash table
111 	 * for recovery.  Must be a power of two. */
112 	int		  hash_size;
113 	int		  hash_shift;
114 	struct list_head *hash_table;
115 };
116 
117 
118 #ifdef __KERNEL__
119 static void write_one_revoke_record(journal_t *, transaction_t *,
120 				    struct journal_head **, int *,
121 				    struct jbd2_revoke_record_s *);
122 static void flush_descriptor(journal_t *, struct journal_head *, int);
123 #endif
124 
125 /* Utility functions to maintain the revoke table */
126 
127 /* Borrowed from buffer.c: this is a tried and tested block hash function */
128 static inline int hash(journal_t *journal, unsigned long long block)
129 {
130 	struct jbd2_revoke_table_s *table = journal->j_revoke;
131 	int hash_shift = table->hash_shift;
132 	int hash = (int)block ^ (int)((block >> 31) >> 1);
133 
134 	return ((hash << (hash_shift - 6)) ^
135 		(hash >> 13) ^
136 		(hash << (hash_shift - 12))) & (table->hash_size - 1);
137 }
138 
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 			      tid_t seq)
141 {
142 	struct list_head *hash_list;
143 	struct jbd2_revoke_record_s *record;
144 
145 repeat:
146 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
147 	if (!record)
148 		goto oom;
149 
150 	record->sequence = seq;
151 	record->blocknr = blocknr;
152 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153 	spin_lock(&journal->j_revoke_lock);
154 	list_add(&record->hash, hash_list);
155 	spin_unlock(&journal->j_revoke_lock);
156 	return 0;
157 
158 oom:
159 	if (!journal_oom_retry)
160 		return -ENOMEM;
161 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162 	yield();
163 	goto repeat;
164 }
165 
166 /* Find a revoke record in the journal's hash table. */
167 
168 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
169 						      unsigned long long blocknr)
170 {
171 	struct list_head *hash_list;
172 	struct jbd2_revoke_record_s *record;
173 
174 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175 
176 	spin_lock(&journal->j_revoke_lock);
177 	record = (struct jbd2_revoke_record_s *) hash_list->next;
178 	while (&(record->hash) != hash_list) {
179 		if (record->blocknr == blocknr) {
180 			spin_unlock(&journal->j_revoke_lock);
181 			return record;
182 		}
183 		record = (struct jbd2_revoke_record_s *) record->hash.next;
184 	}
185 	spin_unlock(&journal->j_revoke_lock);
186 	return NULL;
187 }
188 
189 void jbd2_journal_destroy_revoke_caches(void)
190 {
191 	if (jbd2_revoke_record_cache) {
192 		kmem_cache_destroy(jbd2_revoke_record_cache);
193 		jbd2_revoke_record_cache = NULL;
194 	}
195 	if (jbd2_revoke_table_cache) {
196 		kmem_cache_destroy(jbd2_revoke_table_cache);
197 		jbd2_revoke_table_cache = NULL;
198 	}
199 }
200 
201 int __init jbd2_journal_init_revoke_caches(void)
202 {
203 	J_ASSERT(!jbd2_revoke_record_cache);
204 	J_ASSERT(!jbd2_revoke_table_cache);
205 
206 	jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record",
207 					   sizeof(struct jbd2_revoke_record_s),
208 					   0,
209 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
210 					   NULL);
211 	if (!jbd2_revoke_record_cache)
212 		goto record_cache_failure;
213 
214 	jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table",
215 					   sizeof(struct jbd2_revoke_table_s),
216 					   0, SLAB_TEMPORARY, NULL);
217 	if (!jbd2_revoke_table_cache)
218 		goto table_cache_failure;
219 	return 0;
220 table_cache_failure:
221 	jbd2_journal_destroy_revoke_caches();
222 record_cache_failure:
223 		return -ENOMEM;
224 }
225 
226 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
227 {
228 	int shift = 0;
229 	int tmp = hash_size;
230 	struct jbd2_revoke_table_s *table;
231 
232 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
233 	if (!table)
234 		goto out;
235 
236 	while((tmp >>= 1UL) != 0UL)
237 		shift++;
238 
239 	table->hash_size = hash_size;
240 	table->hash_shift = shift;
241 	table->hash_table =
242 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
243 	if (!table->hash_table) {
244 		kmem_cache_free(jbd2_revoke_table_cache, table);
245 		table = NULL;
246 		goto out;
247 	}
248 
249 	for (tmp = 0; tmp < hash_size; tmp++)
250 		INIT_LIST_HEAD(&table->hash_table[tmp]);
251 
252 out:
253 	return table;
254 }
255 
256 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
257 {
258 	int i;
259 	struct list_head *hash_list;
260 
261 	for (i = 0; i < table->hash_size; i++) {
262 		hash_list = &table->hash_table[i];
263 		J_ASSERT(list_empty(hash_list));
264 	}
265 
266 	kfree(table->hash_table);
267 	kmem_cache_free(jbd2_revoke_table_cache, table);
268 }
269 
270 /* Initialise the revoke table for a given journal to a given size. */
271 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
272 {
273 	J_ASSERT(journal->j_revoke_table[0] == NULL);
274 	J_ASSERT(is_power_of_2(hash_size));
275 
276 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
277 	if (!journal->j_revoke_table[0])
278 		goto fail0;
279 
280 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
281 	if (!journal->j_revoke_table[1])
282 		goto fail1;
283 
284 	journal->j_revoke = journal->j_revoke_table[1];
285 
286 	spin_lock_init(&journal->j_revoke_lock);
287 
288 	return 0;
289 
290 fail1:
291 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
292 fail0:
293 	return -ENOMEM;
294 }
295 
296 /* Destroy a journal's revoke table.  The table must already be empty! */
297 void jbd2_journal_destroy_revoke(journal_t *journal)
298 {
299 	journal->j_revoke = NULL;
300 	if (journal->j_revoke_table[0])
301 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
302 	if (journal->j_revoke_table[1])
303 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
304 }
305 
306 
307 #ifdef __KERNEL__
308 
309 /*
310  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
311  * prevents the block from being replayed during recovery if we take a
312  * crash after this current transaction commits.  Any subsequent
313  * metadata writes of the buffer in this transaction cancel the
314  * revoke.
315  *
316  * Note that this call may block --- it is up to the caller to make
317  * sure that there are no further calls to journal_write_metadata
318  * before the revoke is complete.  In ext3, this implies calling the
319  * revoke before clearing the block bitmap when we are deleting
320  * metadata.
321  *
322  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
323  * parameter, but does _not_ forget the buffer_head if the bh was only
324  * found implicitly.
325  *
326  * bh_in may not be a journalled buffer - it may have come off
327  * the hash tables without an attached journal_head.
328  *
329  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
330  * by one.
331  */
332 
333 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
334 		   struct buffer_head *bh_in)
335 {
336 	struct buffer_head *bh = NULL;
337 	journal_t *journal;
338 	struct block_device *bdev;
339 	int err;
340 
341 	might_sleep();
342 	if (bh_in)
343 		BUFFER_TRACE(bh_in, "enter");
344 
345 	journal = handle->h_transaction->t_journal;
346 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
347 		J_ASSERT (!"Cannot set revoke feature!");
348 		return -EINVAL;
349 	}
350 
351 	bdev = journal->j_fs_dev;
352 	bh = bh_in;
353 
354 	if (!bh) {
355 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
356 		if (bh)
357 			BUFFER_TRACE(bh, "found on hash");
358 	}
359 #ifdef JBD2_EXPENSIVE_CHECKING
360 	else {
361 		struct buffer_head *bh2;
362 
363 		/* If there is a different buffer_head lying around in
364 		 * memory anywhere... */
365 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
366 		if (bh2) {
367 			/* ... and it has RevokeValid status... */
368 			if (bh2 != bh && buffer_revokevalid(bh2))
369 				/* ...then it better be revoked too,
370 				 * since it's illegal to create a revoke
371 				 * record against a buffer_head which is
372 				 * not marked revoked --- that would
373 				 * risk missing a subsequent revoke
374 				 * cancel. */
375 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
376 			put_bh(bh2);
377 		}
378 	}
379 #endif
380 
381 	/* We really ought not ever to revoke twice in a row without
382            first having the revoke cancelled: it's illegal to free a
383            block twice without allocating it in between! */
384 	if (bh) {
385 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
386 				 "inconsistent data on disk")) {
387 			if (!bh_in)
388 				brelse(bh);
389 			return -EIO;
390 		}
391 		set_buffer_revoked(bh);
392 		set_buffer_revokevalid(bh);
393 		if (bh_in) {
394 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
395 			jbd2_journal_forget(handle, bh_in);
396 		} else {
397 			BUFFER_TRACE(bh, "call brelse");
398 			__brelse(bh);
399 		}
400 	}
401 
402 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
403 	err = insert_revoke_hash(journal, blocknr,
404 				handle->h_transaction->t_tid);
405 	BUFFER_TRACE(bh_in, "exit");
406 	return err;
407 }
408 
409 /*
410  * Cancel an outstanding revoke.  For use only internally by the
411  * journaling code (called from jbd2_journal_get_write_access).
412  *
413  * We trust buffer_revoked() on the buffer if the buffer is already
414  * being journaled: if there is no revoke pending on the buffer, then we
415  * don't do anything here.
416  *
417  * This would break if it were possible for a buffer to be revoked and
418  * discarded, and then reallocated within the same transaction.  In such
419  * a case we would have lost the revoked bit, but when we arrived here
420  * the second time we would still have a pending revoke to cancel.  So,
421  * do not trust the Revoked bit on buffers unless RevokeValid is also
422  * set.
423  */
424 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
425 {
426 	struct jbd2_revoke_record_s *record;
427 	journal_t *journal = handle->h_transaction->t_journal;
428 	int need_cancel;
429 	int did_revoke = 0;	/* akpm: debug */
430 	struct buffer_head *bh = jh2bh(jh);
431 
432 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
433 
434 	/* Is the existing Revoke bit valid?  If so, we trust it, and
435 	 * only perform the full cancel if the revoke bit is set.  If
436 	 * not, we can't trust the revoke bit, and we need to do the
437 	 * full search for a revoke record. */
438 	if (test_set_buffer_revokevalid(bh)) {
439 		need_cancel = test_clear_buffer_revoked(bh);
440 	} else {
441 		need_cancel = 1;
442 		clear_buffer_revoked(bh);
443 	}
444 
445 	if (need_cancel) {
446 		record = find_revoke_record(journal, bh->b_blocknr);
447 		if (record) {
448 			jbd_debug(4, "cancelled existing revoke on "
449 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
450 			spin_lock(&journal->j_revoke_lock);
451 			list_del(&record->hash);
452 			spin_unlock(&journal->j_revoke_lock);
453 			kmem_cache_free(jbd2_revoke_record_cache, record);
454 			did_revoke = 1;
455 		}
456 	}
457 
458 #ifdef JBD2_EXPENSIVE_CHECKING
459 	/* There better not be one left behind by now! */
460 	record = find_revoke_record(journal, bh->b_blocknr);
461 	J_ASSERT_JH(jh, record == NULL);
462 #endif
463 
464 	/* Finally, have we just cleared revoke on an unhashed
465 	 * buffer_head?  If so, we'd better make sure we clear the
466 	 * revoked status on any hashed alias too, otherwise the revoke
467 	 * state machine will get very upset later on. */
468 	if (need_cancel) {
469 		struct buffer_head *bh2;
470 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
471 		if (bh2) {
472 			if (bh2 != bh)
473 				clear_buffer_revoked(bh2);
474 			__brelse(bh2);
475 		}
476 	}
477 	return did_revoke;
478 }
479 
480 /* journal_switch_revoke table select j_revoke for next transaction
481  * we do not want to suspend any processing until all revokes are
482  * written -bzzz
483  */
484 void jbd2_journal_switch_revoke_table(journal_t *journal)
485 {
486 	int i;
487 
488 	if (journal->j_revoke == journal->j_revoke_table[0])
489 		journal->j_revoke = journal->j_revoke_table[1];
490 	else
491 		journal->j_revoke = journal->j_revoke_table[0];
492 
493 	for (i = 0; i < journal->j_revoke->hash_size; i++)
494 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
495 }
496 
497 /*
498  * Write revoke records to the journal for all entries in the current
499  * revoke hash, deleting the entries as we go.
500  */
501 void jbd2_journal_write_revoke_records(journal_t *journal,
502 				  transaction_t *transaction)
503 {
504 	struct journal_head *descriptor;
505 	struct jbd2_revoke_record_s *record;
506 	struct jbd2_revoke_table_s *revoke;
507 	struct list_head *hash_list;
508 	int i, offset, count;
509 
510 	descriptor = NULL;
511 	offset = 0;
512 	count = 0;
513 
514 	/* select revoke table for committing transaction */
515 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
516 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
517 
518 	for (i = 0; i < revoke->hash_size; i++) {
519 		hash_list = &revoke->hash_table[i];
520 
521 		while (!list_empty(hash_list)) {
522 			record = (struct jbd2_revoke_record_s *)
523 				hash_list->next;
524 			write_one_revoke_record(journal, transaction,
525 						&descriptor, &offset,
526 						record);
527 			count++;
528 			list_del(&record->hash);
529 			kmem_cache_free(jbd2_revoke_record_cache, record);
530 		}
531 	}
532 	if (descriptor)
533 		flush_descriptor(journal, descriptor, offset);
534 	jbd_debug(1, "Wrote %d revoke records\n", count);
535 }
536 
537 /*
538  * Write out one revoke record.  We need to create a new descriptor
539  * block if the old one is full or if we have not already created one.
540  */
541 
542 static void write_one_revoke_record(journal_t *journal,
543 				    transaction_t *transaction,
544 				    struct journal_head **descriptorp,
545 				    int *offsetp,
546 				    struct jbd2_revoke_record_s *record)
547 {
548 	struct journal_head *descriptor;
549 	int offset;
550 	journal_header_t *header;
551 
552 	/* If we are already aborting, this all becomes a noop.  We
553            still need to go round the loop in
554            jbd2_journal_write_revoke_records in order to free all of the
555            revoke records: only the IO to the journal is omitted. */
556 	if (is_journal_aborted(journal))
557 		return;
558 
559 	descriptor = *descriptorp;
560 	offset = *offsetp;
561 
562 	/* Make sure we have a descriptor with space left for the record */
563 	if (descriptor) {
564 		if (offset == journal->j_blocksize) {
565 			flush_descriptor(journal, descriptor, offset);
566 			descriptor = NULL;
567 		}
568 	}
569 
570 	if (!descriptor) {
571 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
572 		if (!descriptor)
573 			return;
574 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
575 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
576 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
577 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
578 
579 		/* Record it so that we can wait for IO completion later */
580 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
581 		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
582 
583 		offset = sizeof(jbd2_journal_revoke_header_t);
584 		*descriptorp = descriptor;
585 	}
586 
587 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
588 		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
589 			cpu_to_be64(record->blocknr);
590 		offset += 8;
591 
592 	} else {
593 		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
594 			cpu_to_be32(record->blocknr);
595 		offset += 4;
596 	}
597 
598 	*offsetp = offset;
599 }
600 
601 /*
602  * Flush a revoke descriptor out to the journal.  If we are aborting,
603  * this is a noop; otherwise we are generating a buffer which needs to
604  * be waited for during commit, so it has to go onto the appropriate
605  * journal buffer list.
606  */
607 
608 static void flush_descriptor(journal_t *journal,
609 			     struct journal_head *descriptor,
610 			     int offset)
611 {
612 	jbd2_journal_revoke_header_t *header;
613 	struct buffer_head *bh = jh2bh(descriptor);
614 
615 	if (is_journal_aborted(journal)) {
616 		put_bh(bh);
617 		return;
618 	}
619 
620 	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
621 	header->r_count = cpu_to_be32(offset);
622 	set_buffer_jwrite(bh);
623 	BUFFER_TRACE(bh, "write");
624 	set_buffer_dirty(bh);
625 	ll_rw_block(SWRITE, 1, &bh);
626 }
627 #endif
628 
629 /*
630  * Revoke support for recovery.
631  *
632  * Recovery needs to be able to:
633  *
634  *  record all revoke records, including the tid of the latest instance
635  *  of each revoke in the journal
636  *
637  *  check whether a given block in a given transaction should be replayed
638  *  (ie. has not been revoked by a revoke record in that or a subsequent
639  *  transaction)
640  *
641  *  empty the revoke table after recovery.
642  */
643 
644 /*
645  * First, setting revoke records.  We create a new revoke record for
646  * every block ever revoked in the log as we scan it for recovery, and
647  * we update the existing records if we find multiple revokes for a
648  * single block.
649  */
650 
651 int jbd2_journal_set_revoke(journal_t *journal,
652 		       unsigned long long blocknr,
653 		       tid_t sequence)
654 {
655 	struct jbd2_revoke_record_s *record;
656 
657 	record = find_revoke_record(journal, blocknr);
658 	if (record) {
659 		/* If we have multiple occurrences, only record the
660 		 * latest sequence number in the hashed record */
661 		if (tid_gt(sequence, record->sequence))
662 			record->sequence = sequence;
663 		return 0;
664 	}
665 	return insert_revoke_hash(journal, blocknr, sequence);
666 }
667 
668 /*
669  * Test revoke records.  For a given block referenced in the log, has
670  * that block been revoked?  A revoke record with a given transaction
671  * sequence number revokes all blocks in that transaction and earlier
672  * ones, but later transactions still need replayed.
673  */
674 
675 int jbd2_journal_test_revoke(journal_t *journal,
676 			unsigned long long blocknr,
677 			tid_t sequence)
678 {
679 	struct jbd2_revoke_record_s *record;
680 
681 	record = find_revoke_record(journal, blocknr);
682 	if (!record)
683 		return 0;
684 	if (tid_gt(sequence, record->sequence))
685 		return 0;
686 	return 1;
687 }
688 
689 /*
690  * Finally, once recovery is over, we need to clear the revoke table so
691  * that it can be reused by the running filesystem.
692  */
693 
694 void jbd2_journal_clear_revoke(journal_t *journal)
695 {
696 	int i;
697 	struct list_head *hash_list;
698 	struct jbd2_revoke_record_s *record;
699 	struct jbd2_revoke_table_s *revoke;
700 
701 	revoke = journal->j_revoke;
702 
703 	for (i = 0; i < revoke->hash_size; i++) {
704 		hash_list = &revoke->hash_table[i];
705 		while (!list_empty(hash_list)) {
706 			record = (struct jbd2_revoke_record_s*) hash_list->next;
707 			list_del(&record->hash);
708 			kmem_cache_free(jbd2_revoke_record_cache, record);
709 		}
710 	}
711 }
712