1 /* 2 * linux/fs/jbd2/revoke.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 5 * 6 * Copyright 2000 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Journal revoke routines for the generic filesystem journaling code; 13 * part of the ext2fs journaling system. 14 * 15 * Revoke is the mechanism used to prevent old log records for deleted 16 * metadata from being replayed on top of newer data using the same 17 * blocks. The revoke mechanism is used in two separate places: 18 * 19 * + Commit: during commit we write the entire list of the current 20 * transaction's revoked blocks to the journal 21 * 22 * + Recovery: during recovery we record the transaction ID of all 23 * revoked blocks. If there are multiple revoke records in the log 24 * for a single block, only the last one counts, and if there is a log 25 * entry for a block beyond the last revoke, then that log entry still 26 * gets replayed. 27 * 28 * We can get interactions between revokes and new log data within a 29 * single transaction: 30 * 31 * Block is revoked and then journaled: 32 * The desired end result is the journaling of the new block, so we 33 * cancel the revoke before the transaction commits. 34 * 35 * Block is journaled and then revoked: 36 * The revoke must take precedence over the write of the block, so we 37 * need either to cancel the journal entry or to write the revoke 38 * later in the log than the log block. In this case, we choose the 39 * latter: journaling a block cancels any revoke record for that block 40 * in the current transaction, so any revoke for that block in the 41 * transaction must have happened after the block was journaled and so 42 * the revoke must take precedence. 43 * 44 * Block is revoked and then written as data: 45 * The data write is allowed to succeed, but the revoke is _not_ 46 * cancelled. We still need to prevent old log records from 47 * overwriting the new data. We don't even need to clear the revoke 48 * bit here. 49 * 50 * Revoke information on buffers is a tri-state value: 51 * 52 * RevokeValid clear: no cached revoke status, need to look it up 53 * RevokeValid set, Revoked clear: 54 * buffer has not been revoked, and cancel_revoke 55 * need do nothing. 56 * RevokeValid set, Revoked set: 57 * buffer has been revoked. 58 * 59 * Locking rules: 60 * We keep two hash tables of revoke records. One hashtable belongs to the 61 * running transaction (is pointed to by journal->j_revoke), the other one 62 * belongs to the committing transaction. Accesses to the second hash table 63 * happen only from the kjournald and no other thread touches this table. Also 64 * journal_switch_revoke_table() which switches which hashtable belongs to the 65 * running and which to the committing transaction is called only from 66 * kjournald. Therefore we need no locks when accessing the hashtable belonging 67 * to the committing transaction. 68 * 69 * All users operating on the hash table belonging to the running transaction 70 * have a handle to the transaction. Therefore they are safe from kjournald 71 * switching hash tables under them. For operations on the lists of entries in 72 * the hash table j_revoke_lock is used. 73 * 74 * Finally, also replay code uses the hash tables but at this moment noone else 75 * can touch them (filesystem isn't mounted yet) and hence no locking is 76 * needed. 77 */ 78 79 #ifndef __KERNEL__ 80 #include "jfs_user.h" 81 #else 82 #include <linux/time.h> 83 #include <linux/fs.h> 84 #include <linux/jbd2.h> 85 #include <linux/errno.h> 86 #include <linux/slab.h> 87 #include <linux/list.h> 88 #include <linux/init.h> 89 #endif 90 #include <linux/log2.h> 91 92 static struct kmem_cache *jbd2_revoke_record_cache; 93 static struct kmem_cache *jbd2_revoke_table_cache; 94 95 /* Each revoke record represents one single revoked block. During 96 journal replay, this involves recording the transaction ID of the 97 last transaction to revoke this block. */ 98 99 struct jbd2_revoke_record_s 100 { 101 struct list_head hash; 102 tid_t sequence; /* Used for recovery only */ 103 unsigned long long blocknr; 104 }; 105 106 107 /* The revoke table is just a simple hash table of revoke records. */ 108 struct jbd2_revoke_table_s 109 { 110 /* It is conceivable that we might want a larger hash table 111 * for recovery. Must be a power of two. */ 112 int hash_size; 113 int hash_shift; 114 struct list_head *hash_table; 115 }; 116 117 118 #ifdef __KERNEL__ 119 static void write_one_revoke_record(journal_t *, transaction_t *, 120 struct journal_head **, int *, 121 struct jbd2_revoke_record_s *); 122 static void flush_descriptor(journal_t *, struct journal_head *, int); 123 #endif 124 125 /* Utility functions to maintain the revoke table */ 126 127 /* Borrowed from buffer.c: this is a tried and tested block hash function */ 128 static inline int hash(journal_t *journal, unsigned long long block) 129 { 130 struct jbd2_revoke_table_s *table = journal->j_revoke; 131 int hash_shift = table->hash_shift; 132 int hash = (int)block ^ (int)((block >> 31) >> 1); 133 134 return ((hash << (hash_shift - 6)) ^ 135 (hash >> 13) ^ 136 (hash << (hash_shift - 12))) & (table->hash_size - 1); 137 } 138 139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, 140 tid_t seq) 141 { 142 struct list_head *hash_list; 143 struct jbd2_revoke_record_s *record; 144 145 repeat: 146 record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS); 147 if (!record) 148 goto oom; 149 150 record->sequence = seq; 151 record->blocknr = blocknr; 152 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 153 spin_lock(&journal->j_revoke_lock); 154 list_add(&record->hash, hash_list); 155 spin_unlock(&journal->j_revoke_lock); 156 return 0; 157 158 oom: 159 if (!journal_oom_retry) 160 return -ENOMEM; 161 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__); 162 yield(); 163 goto repeat; 164 } 165 166 /* Find a revoke record in the journal's hash table. */ 167 168 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, 169 unsigned long long blocknr) 170 { 171 struct list_head *hash_list; 172 struct jbd2_revoke_record_s *record; 173 174 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; 175 176 spin_lock(&journal->j_revoke_lock); 177 record = (struct jbd2_revoke_record_s *) hash_list->next; 178 while (&(record->hash) != hash_list) { 179 if (record->blocknr == blocknr) { 180 spin_unlock(&journal->j_revoke_lock); 181 return record; 182 } 183 record = (struct jbd2_revoke_record_s *) record->hash.next; 184 } 185 spin_unlock(&journal->j_revoke_lock); 186 return NULL; 187 } 188 189 void jbd2_journal_destroy_revoke_caches(void) 190 { 191 if (jbd2_revoke_record_cache) { 192 kmem_cache_destroy(jbd2_revoke_record_cache); 193 jbd2_revoke_record_cache = NULL; 194 } 195 if (jbd2_revoke_table_cache) { 196 kmem_cache_destroy(jbd2_revoke_table_cache); 197 jbd2_revoke_table_cache = NULL; 198 } 199 } 200 201 int __init jbd2_journal_init_revoke_caches(void) 202 { 203 J_ASSERT(!jbd2_revoke_record_cache); 204 J_ASSERT(!jbd2_revoke_table_cache); 205 206 jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record", 207 sizeof(struct jbd2_revoke_record_s), 208 0, 209 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 210 NULL); 211 if (!jbd2_revoke_record_cache) 212 goto record_cache_failure; 213 214 jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table", 215 sizeof(struct jbd2_revoke_table_s), 216 0, SLAB_TEMPORARY, NULL); 217 if (!jbd2_revoke_table_cache) 218 goto table_cache_failure; 219 return 0; 220 table_cache_failure: 221 jbd2_journal_destroy_revoke_caches(); 222 record_cache_failure: 223 return -ENOMEM; 224 } 225 226 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) 227 { 228 int shift = 0; 229 int tmp = hash_size; 230 struct jbd2_revoke_table_s *table; 231 232 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); 233 if (!table) 234 goto out; 235 236 while((tmp >>= 1UL) != 0UL) 237 shift++; 238 239 table->hash_size = hash_size; 240 table->hash_shift = shift; 241 table->hash_table = 242 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); 243 if (!table->hash_table) { 244 kmem_cache_free(jbd2_revoke_table_cache, table); 245 table = NULL; 246 goto out; 247 } 248 249 for (tmp = 0; tmp < hash_size; tmp++) 250 INIT_LIST_HEAD(&table->hash_table[tmp]); 251 252 out: 253 return table; 254 } 255 256 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) 257 { 258 int i; 259 struct list_head *hash_list; 260 261 for (i = 0; i < table->hash_size; i++) { 262 hash_list = &table->hash_table[i]; 263 J_ASSERT(list_empty(hash_list)); 264 } 265 266 kfree(table->hash_table); 267 kmem_cache_free(jbd2_revoke_table_cache, table); 268 } 269 270 /* Initialise the revoke table for a given journal to a given size. */ 271 int jbd2_journal_init_revoke(journal_t *journal, int hash_size) 272 { 273 J_ASSERT(journal->j_revoke_table[0] == NULL); 274 J_ASSERT(is_power_of_2(hash_size)); 275 276 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); 277 if (!journal->j_revoke_table[0]) 278 goto fail0; 279 280 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); 281 if (!journal->j_revoke_table[1]) 282 goto fail1; 283 284 journal->j_revoke = journal->j_revoke_table[1]; 285 286 spin_lock_init(&journal->j_revoke_lock); 287 288 return 0; 289 290 fail1: 291 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 292 fail0: 293 return -ENOMEM; 294 } 295 296 /* Destroy a journal's revoke table. The table must already be empty! */ 297 void jbd2_journal_destroy_revoke(journal_t *journal) 298 { 299 journal->j_revoke = NULL; 300 if (journal->j_revoke_table[0]) 301 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); 302 if (journal->j_revoke_table[1]) 303 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); 304 } 305 306 307 #ifdef __KERNEL__ 308 309 /* 310 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This 311 * prevents the block from being replayed during recovery if we take a 312 * crash after this current transaction commits. Any subsequent 313 * metadata writes of the buffer in this transaction cancel the 314 * revoke. 315 * 316 * Note that this call may block --- it is up to the caller to make 317 * sure that there are no further calls to journal_write_metadata 318 * before the revoke is complete. In ext3, this implies calling the 319 * revoke before clearing the block bitmap when we are deleting 320 * metadata. 321 * 322 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a 323 * parameter, but does _not_ forget the buffer_head if the bh was only 324 * found implicitly. 325 * 326 * bh_in may not be a journalled buffer - it may have come off 327 * the hash tables without an attached journal_head. 328 * 329 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count 330 * by one. 331 */ 332 333 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, 334 struct buffer_head *bh_in) 335 { 336 struct buffer_head *bh = NULL; 337 journal_t *journal; 338 struct block_device *bdev; 339 int err; 340 341 might_sleep(); 342 if (bh_in) 343 BUFFER_TRACE(bh_in, "enter"); 344 345 journal = handle->h_transaction->t_journal; 346 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ 347 J_ASSERT (!"Cannot set revoke feature!"); 348 return -EINVAL; 349 } 350 351 bdev = journal->j_fs_dev; 352 bh = bh_in; 353 354 if (!bh) { 355 bh = __find_get_block(bdev, blocknr, journal->j_blocksize); 356 if (bh) 357 BUFFER_TRACE(bh, "found on hash"); 358 } 359 #ifdef JBD2_EXPENSIVE_CHECKING 360 else { 361 struct buffer_head *bh2; 362 363 /* If there is a different buffer_head lying around in 364 * memory anywhere... */ 365 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); 366 if (bh2) { 367 /* ... and it has RevokeValid status... */ 368 if (bh2 != bh && buffer_revokevalid(bh2)) 369 /* ...then it better be revoked too, 370 * since it's illegal to create a revoke 371 * record against a buffer_head which is 372 * not marked revoked --- that would 373 * risk missing a subsequent revoke 374 * cancel. */ 375 J_ASSERT_BH(bh2, buffer_revoked(bh2)); 376 put_bh(bh2); 377 } 378 } 379 #endif 380 381 /* We really ought not ever to revoke twice in a row without 382 first having the revoke cancelled: it's illegal to free a 383 block twice without allocating it in between! */ 384 if (bh) { 385 if (!J_EXPECT_BH(bh, !buffer_revoked(bh), 386 "inconsistent data on disk")) { 387 if (!bh_in) 388 brelse(bh); 389 return -EIO; 390 } 391 set_buffer_revoked(bh); 392 set_buffer_revokevalid(bh); 393 if (bh_in) { 394 BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); 395 jbd2_journal_forget(handle, bh_in); 396 } else { 397 BUFFER_TRACE(bh, "call brelse"); 398 __brelse(bh); 399 } 400 } 401 402 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); 403 err = insert_revoke_hash(journal, blocknr, 404 handle->h_transaction->t_tid); 405 BUFFER_TRACE(bh_in, "exit"); 406 return err; 407 } 408 409 /* 410 * Cancel an outstanding revoke. For use only internally by the 411 * journaling code (called from jbd2_journal_get_write_access). 412 * 413 * We trust buffer_revoked() on the buffer if the buffer is already 414 * being journaled: if there is no revoke pending on the buffer, then we 415 * don't do anything here. 416 * 417 * This would break if it were possible for a buffer to be revoked and 418 * discarded, and then reallocated within the same transaction. In such 419 * a case we would have lost the revoked bit, but when we arrived here 420 * the second time we would still have a pending revoke to cancel. So, 421 * do not trust the Revoked bit on buffers unless RevokeValid is also 422 * set. 423 */ 424 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) 425 { 426 struct jbd2_revoke_record_s *record; 427 journal_t *journal = handle->h_transaction->t_journal; 428 int need_cancel; 429 int did_revoke = 0; /* akpm: debug */ 430 struct buffer_head *bh = jh2bh(jh); 431 432 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); 433 434 /* Is the existing Revoke bit valid? If so, we trust it, and 435 * only perform the full cancel if the revoke bit is set. If 436 * not, we can't trust the revoke bit, and we need to do the 437 * full search for a revoke record. */ 438 if (test_set_buffer_revokevalid(bh)) { 439 need_cancel = test_clear_buffer_revoked(bh); 440 } else { 441 need_cancel = 1; 442 clear_buffer_revoked(bh); 443 } 444 445 if (need_cancel) { 446 record = find_revoke_record(journal, bh->b_blocknr); 447 if (record) { 448 jbd_debug(4, "cancelled existing revoke on " 449 "blocknr %llu\n", (unsigned long long)bh->b_blocknr); 450 spin_lock(&journal->j_revoke_lock); 451 list_del(&record->hash); 452 spin_unlock(&journal->j_revoke_lock); 453 kmem_cache_free(jbd2_revoke_record_cache, record); 454 did_revoke = 1; 455 } 456 } 457 458 #ifdef JBD2_EXPENSIVE_CHECKING 459 /* There better not be one left behind by now! */ 460 record = find_revoke_record(journal, bh->b_blocknr); 461 J_ASSERT_JH(jh, record == NULL); 462 #endif 463 464 /* Finally, have we just cleared revoke on an unhashed 465 * buffer_head? If so, we'd better make sure we clear the 466 * revoked status on any hashed alias too, otherwise the revoke 467 * state machine will get very upset later on. */ 468 if (need_cancel) { 469 struct buffer_head *bh2; 470 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); 471 if (bh2) { 472 if (bh2 != bh) 473 clear_buffer_revoked(bh2); 474 __brelse(bh2); 475 } 476 } 477 return did_revoke; 478 } 479 480 /* journal_switch_revoke table select j_revoke for next transaction 481 * we do not want to suspend any processing until all revokes are 482 * written -bzzz 483 */ 484 void jbd2_journal_switch_revoke_table(journal_t *journal) 485 { 486 int i; 487 488 if (journal->j_revoke == journal->j_revoke_table[0]) 489 journal->j_revoke = journal->j_revoke_table[1]; 490 else 491 journal->j_revoke = journal->j_revoke_table[0]; 492 493 for (i = 0; i < journal->j_revoke->hash_size; i++) 494 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); 495 } 496 497 /* 498 * Write revoke records to the journal for all entries in the current 499 * revoke hash, deleting the entries as we go. 500 */ 501 void jbd2_journal_write_revoke_records(journal_t *journal, 502 transaction_t *transaction) 503 { 504 struct journal_head *descriptor; 505 struct jbd2_revoke_record_s *record; 506 struct jbd2_revoke_table_s *revoke; 507 struct list_head *hash_list; 508 int i, offset, count; 509 510 descriptor = NULL; 511 offset = 0; 512 count = 0; 513 514 /* select revoke table for committing transaction */ 515 revoke = journal->j_revoke == journal->j_revoke_table[0] ? 516 journal->j_revoke_table[1] : journal->j_revoke_table[0]; 517 518 for (i = 0; i < revoke->hash_size; i++) { 519 hash_list = &revoke->hash_table[i]; 520 521 while (!list_empty(hash_list)) { 522 record = (struct jbd2_revoke_record_s *) 523 hash_list->next; 524 write_one_revoke_record(journal, transaction, 525 &descriptor, &offset, 526 record); 527 count++; 528 list_del(&record->hash); 529 kmem_cache_free(jbd2_revoke_record_cache, record); 530 } 531 } 532 if (descriptor) 533 flush_descriptor(journal, descriptor, offset); 534 jbd_debug(1, "Wrote %d revoke records\n", count); 535 } 536 537 /* 538 * Write out one revoke record. We need to create a new descriptor 539 * block if the old one is full or if we have not already created one. 540 */ 541 542 static void write_one_revoke_record(journal_t *journal, 543 transaction_t *transaction, 544 struct journal_head **descriptorp, 545 int *offsetp, 546 struct jbd2_revoke_record_s *record) 547 { 548 struct journal_head *descriptor; 549 int offset; 550 journal_header_t *header; 551 552 /* If we are already aborting, this all becomes a noop. We 553 still need to go round the loop in 554 jbd2_journal_write_revoke_records in order to free all of the 555 revoke records: only the IO to the journal is omitted. */ 556 if (is_journal_aborted(journal)) 557 return; 558 559 descriptor = *descriptorp; 560 offset = *offsetp; 561 562 /* Make sure we have a descriptor with space left for the record */ 563 if (descriptor) { 564 if (offset == journal->j_blocksize) { 565 flush_descriptor(journal, descriptor, offset); 566 descriptor = NULL; 567 } 568 } 569 570 if (!descriptor) { 571 descriptor = jbd2_journal_get_descriptor_buffer(journal); 572 if (!descriptor) 573 return; 574 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0]; 575 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 576 header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK); 577 header->h_sequence = cpu_to_be32(transaction->t_tid); 578 579 /* Record it so that we can wait for IO completion later */ 580 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl"); 581 jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl); 582 583 offset = sizeof(jbd2_journal_revoke_header_t); 584 *descriptorp = descriptor; 585 } 586 587 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) { 588 * ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) = 589 cpu_to_be64(record->blocknr); 590 offset += 8; 591 592 } else { 593 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) = 594 cpu_to_be32(record->blocknr); 595 offset += 4; 596 } 597 598 *offsetp = offset; 599 } 600 601 /* 602 * Flush a revoke descriptor out to the journal. If we are aborting, 603 * this is a noop; otherwise we are generating a buffer which needs to 604 * be waited for during commit, so it has to go onto the appropriate 605 * journal buffer list. 606 */ 607 608 static void flush_descriptor(journal_t *journal, 609 struct journal_head *descriptor, 610 int offset) 611 { 612 jbd2_journal_revoke_header_t *header; 613 struct buffer_head *bh = jh2bh(descriptor); 614 615 if (is_journal_aborted(journal)) { 616 put_bh(bh); 617 return; 618 } 619 620 header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data; 621 header->r_count = cpu_to_be32(offset); 622 set_buffer_jwrite(bh); 623 BUFFER_TRACE(bh, "write"); 624 set_buffer_dirty(bh); 625 ll_rw_block(SWRITE, 1, &bh); 626 } 627 #endif 628 629 /* 630 * Revoke support for recovery. 631 * 632 * Recovery needs to be able to: 633 * 634 * record all revoke records, including the tid of the latest instance 635 * of each revoke in the journal 636 * 637 * check whether a given block in a given transaction should be replayed 638 * (ie. has not been revoked by a revoke record in that or a subsequent 639 * transaction) 640 * 641 * empty the revoke table after recovery. 642 */ 643 644 /* 645 * First, setting revoke records. We create a new revoke record for 646 * every block ever revoked in the log as we scan it for recovery, and 647 * we update the existing records if we find multiple revokes for a 648 * single block. 649 */ 650 651 int jbd2_journal_set_revoke(journal_t *journal, 652 unsigned long long blocknr, 653 tid_t sequence) 654 { 655 struct jbd2_revoke_record_s *record; 656 657 record = find_revoke_record(journal, blocknr); 658 if (record) { 659 /* If we have multiple occurrences, only record the 660 * latest sequence number in the hashed record */ 661 if (tid_gt(sequence, record->sequence)) 662 record->sequence = sequence; 663 return 0; 664 } 665 return insert_revoke_hash(journal, blocknr, sequence); 666 } 667 668 /* 669 * Test revoke records. For a given block referenced in the log, has 670 * that block been revoked? A revoke record with a given transaction 671 * sequence number revokes all blocks in that transaction and earlier 672 * ones, but later transactions still need replayed. 673 */ 674 675 int jbd2_journal_test_revoke(journal_t *journal, 676 unsigned long long blocknr, 677 tid_t sequence) 678 { 679 struct jbd2_revoke_record_s *record; 680 681 record = find_revoke_record(journal, blocknr); 682 if (!record) 683 return 0; 684 if (tid_gt(sequence, record->sequence)) 685 return 0; 686 return 1; 687 } 688 689 /* 690 * Finally, once recovery is over, we need to clear the revoke table so 691 * that it can be reused by the running filesystem. 692 */ 693 694 void jbd2_journal_clear_revoke(journal_t *journal) 695 { 696 int i; 697 struct list_head *hash_list; 698 struct jbd2_revoke_record_s *record; 699 struct jbd2_revoke_table_s *revoke; 700 701 revoke = journal->j_revoke; 702 703 for (i = 0; i < revoke->hash_size; i++) { 704 hash_list = &revoke->hash_table[i]; 705 while (!list_empty(hash_list)) { 706 record = (struct jbd2_revoke_record_s*) hash_list->next; 707 list_del(&record->hash); 708 kmem_cache_free(jbd2_revoke_record_cache, record); 709 } 710 } 711 } 712