xref: /openbmc/linux/fs/jbd2/revoke.c (revision a17922de)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/revoke.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6  *
7  * Copyright 2000 Red Hat corp --- All Rights Reserved
8  *
9  * Journal revoke routines for the generic filesystem journaling code;
10  * part of the ext2fs journaling system.
11  *
12  * Revoke is the mechanism used to prevent old log records for deleted
13  * metadata from being replayed on top of newer data using the same
14  * blocks.  The revoke mechanism is used in two separate places:
15  *
16  * + Commit: during commit we write the entire list of the current
17  *   transaction's revoked blocks to the journal
18  *
19  * + Recovery: during recovery we record the transaction ID of all
20  *   revoked blocks.  If there are multiple revoke records in the log
21  *   for a single block, only the last one counts, and if there is a log
22  *   entry for a block beyond the last revoke, then that log entry still
23  *   gets replayed.
24  *
25  * We can get interactions between revokes and new log data within a
26  * single transaction:
27  *
28  * Block is revoked and then journaled:
29  *   The desired end result is the journaling of the new block, so we
30  *   cancel the revoke before the transaction commits.
31  *
32  * Block is journaled and then revoked:
33  *   The revoke must take precedence over the write of the block, so we
34  *   need either to cancel the journal entry or to write the revoke
35  *   later in the log than the log block.  In this case, we choose the
36  *   latter: journaling a block cancels any revoke record for that block
37  *   in the current transaction, so any revoke for that block in the
38  *   transaction must have happened after the block was journaled and so
39  *   the revoke must take precedence.
40  *
41  * Block is revoked and then written as data:
42  *   The data write is allowed to succeed, but the revoke is _not_
43  *   cancelled.  We still need to prevent old log records from
44  *   overwriting the new data.  We don't even need to clear the revoke
45  *   bit here.
46  *
47  * We cache revoke status of a buffer in the current transaction in b_states
48  * bits.  As the name says, revokevalid flag indicates that the cached revoke
49  * status of a buffer is valid and we can rely on the cached status.
50  *
51  * Revoke information on buffers is a tri-state value:
52  *
53  * RevokeValid clear:	no cached revoke status, need to look it up
54  * RevokeValid set, Revoked clear:
55  *			buffer has not been revoked, and cancel_revoke
56  *			need do nothing.
57  * RevokeValid set, Revoked set:
58  *			buffer has been revoked.
59  *
60  * Locking rules:
61  * We keep two hash tables of revoke records. One hashtable belongs to the
62  * running transaction (is pointed to by journal->j_revoke), the other one
63  * belongs to the committing transaction. Accesses to the second hash table
64  * happen only from the kjournald and no other thread touches this table.  Also
65  * journal_switch_revoke_table() which switches which hashtable belongs to the
66  * running and which to the committing transaction is called only from
67  * kjournald. Therefore we need no locks when accessing the hashtable belonging
68  * to the committing transaction.
69  *
70  * All users operating on the hash table belonging to the running transaction
71  * have a handle to the transaction. Therefore they are safe from kjournald
72  * switching hash tables under them. For operations on the lists of entries in
73  * the hash table j_revoke_lock is used.
74  *
75  * Finally, also replay code uses the hash tables but at this moment no one else
76  * can touch them (filesystem isn't mounted yet) and hence no locking is
77  * needed.
78  */
79 
80 #ifndef __KERNEL__
81 #include "jfs_user.h"
82 #else
83 #include <linux/time.h>
84 #include <linux/fs.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
93 #endif
94 
95 static struct kmem_cache *jbd2_revoke_record_cache;
96 static struct kmem_cache *jbd2_revoke_table_cache;
97 
98 /* Each revoke record represents one single revoked block.  During
99    journal replay, this involves recording the transaction ID of the
100    last transaction to revoke this block. */
101 
102 struct jbd2_revoke_record_s
103 {
104 	struct list_head  hash;
105 	tid_t		  sequence;	/* Used for recovery only */
106 	unsigned long long	  blocknr;
107 };
108 
109 
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
112 {
113 	/* It is conceivable that we might want a larger hash table
114 	 * for recovery.  Must be a power of two. */
115 	int		  hash_size;
116 	int		  hash_shift;
117 	struct list_head *hash_table;
118 };
119 
120 
121 #ifdef __KERNEL__
122 static void write_one_revoke_record(transaction_t *,
123 				    struct list_head *,
124 				    struct buffer_head **, int *,
125 				    struct jbd2_revoke_record_s *);
126 static void flush_descriptor(journal_t *, struct buffer_head *, int);
127 #endif
128 
129 /* Utility functions to maintain the revoke table */
130 
131 static inline int hash(journal_t *journal, unsigned long long block)
132 {
133 	return hash_64(block, journal->j_revoke->hash_shift);
134 }
135 
136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137 			      tid_t seq)
138 {
139 	struct list_head *hash_list;
140 	struct jbd2_revoke_record_s *record;
141 	gfp_t gfp_mask = GFP_NOFS;
142 
143 	if (journal_oom_retry)
144 		gfp_mask |= __GFP_NOFAIL;
145 	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146 	if (!record)
147 		return -ENOMEM;
148 
149 	record->sequence = seq;
150 	record->blocknr = blocknr;
151 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 	spin_lock(&journal->j_revoke_lock);
153 	list_add(&record->hash, hash_list);
154 	spin_unlock(&journal->j_revoke_lock);
155 	return 0;
156 }
157 
158 /* Find a revoke record in the journal's hash table. */
159 
160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161 						      unsigned long long blocknr)
162 {
163 	struct list_head *hash_list;
164 	struct jbd2_revoke_record_s *record;
165 
166 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
167 
168 	spin_lock(&journal->j_revoke_lock);
169 	record = (struct jbd2_revoke_record_s *) hash_list->next;
170 	while (&(record->hash) != hash_list) {
171 		if (record->blocknr == blocknr) {
172 			spin_unlock(&journal->j_revoke_lock);
173 			return record;
174 		}
175 		record = (struct jbd2_revoke_record_s *) record->hash.next;
176 	}
177 	spin_unlock(&journal->j_revoke_lock);
178 	return NULL;
179 }
180 
181 void jbd2_journal_destroy_revoke_caches(void)
182 {
183 	kmem_cache_destroy(jbd2_revoke_record_cache);
184 	jbd2_revoke_record_cache = NULL;
185 	kmem_cache_destroy(jbd2_revoke_table_cache);
186 	jbd2_revoke_table_cache = NULL;
187 }
188 
189 int __init jbd2_journal_init_revoke_caches(void)
190 {
191 	J_ASSERT(!jbd2_revoke_record_cache);
192 	J_ASSERT(!jbd2_revoke_table_cache);
193 
194 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
195 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
196 	if (!jbd2_revoke_record_cache)
197 		goto record_cache_failure;
198 
199 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
200 					     SLAB_TEMPORARY);
201 	if (!jbd2_revoke_table_cache)
202 		goto table_cache_failure;
203 	return 0;
204 table_cache_failure:
205 	jbd2_journal_destroy_revoke_caches();
206 record_cache_failure:
207 		return -ENOMEM;
208 }
209 
210 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
211 {
212 	int shift = 0;
213 	int tmp = hash_size;
214 	struct jbd2_revoke_table_s *table;
215 
216 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
217 	if (!table)
218 		goto out;
219 
220 	while((tmp >>= 1UL) != 0UL)
221 		shift++;
222 
223 	table->hash_size = hash_size;
224 	table->hash_shift = shift;
225 	table->hash_table =
226 		kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL);
227 	if (!table->hash_table) {
228 		kmem_cache_free(jbd2_revoke_table_cache, table);
229 		table = NULL;
230 		goto out;
231 	}
232 
233 	for (tmp = 0; tmp < hash_size; tmp++)
234 		INIT_LIST_HEAD(&table->hash_table[tmp]);
235 
236 out:
237 	return table;
238 }
239 
240 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
241 {
242 	int i;
243 	struct list_head *hash_list;
244 
245 	for (i = 0; i < table->hash_size; i++) {
246 		hash_list = &table->hash_table[i];
247 		J_ASSERT(list_empty(hash_list));
248 	}
249 
250 	kfree(table->hash_table);
251 	kmem_cache_free(jbd2_revoke_table_cache, table);
252 }
253 
254 /* Initialise the revoke table for a given journal to a given size. */
255 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
256 {
257 	J_ASSERT(journal->j_revoke_table[0] == NULL);
258 	J_ASSERT(is_power_of_2(hash_size));
259 
260 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
261 	if (!journal->j_revoke_table[0])
262 		goto fail0;
263 
264 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
265 	if (!journal->j_revoke_table[1])
266 		goto fail1;
267 
268 	journal->j_revoke = journal->j_revoke_table[1];
269 
270 	spin_lock_init(&journal->j_revoke_lock);
271 
272 	return 0;
273 
274 fail1:
275 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
276 	journal->j_revoke_table[0] = NULL;
277 fail0:
278 	return -ENOMEM;
279 }
280 
281 /* Destroy a journal's revoke table.  The table must already be empty! */
282 void jbd2_journal_destroy_revoke(journal_t *journal)
283 {
284 	journal->j_revoke = NULL;
285 	if (journal->j_revoke_table[0])
286 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
287 	if (journal->j_revoke_table[1])
288 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
289 }
290 
291 
292 #ifdef __KERNEL__
293 
294 /*
295  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
296  * prevents the block from being replayed during recovery if we take a
297  * crash after this current transaction commits.  Any subsequent
298  * metadata writes of the buffer in this transaction cancel the
299  * revoke.
300  *
301  * Note that this call may block --- it is up to the caller to make
302  * sure that there are no further calls to journal_write_metadata
303  * before the revoke is complete.  In ext3, this implies calling the
304  * revoke before clearing the block bitmap when we are deleting
305  * metadata.
306  *
307  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
308  * parameter, but does _not_ forget the buffer_head if the bh was only
309  * found implicitly.
310  *
311  * bh_in may not be a journalled buffer - it may have come off
312  * the hash tables without an attached journal_head.
313  *
314  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
315  * by one.
316  */
317 
318 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
319 		   struct buffer_head *bh_in)
320 {
321 	struct buffer_head *bh = NULL;
322 	journal_t *journal;
323 	struct block_device *bdev;
324 	int err;
325 
326 	might_sleep();
327 	if (bh_in)
328 		BUFFER_TRACE(bh_in, "enter");
329 
330 	journal = handle->h_transaction->t_journal;
331 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
332 		J_ASSERT (!"Cannot set revoke feature!");
333 		return -EINVAL;
334 	}
335 
336 	bdev = journal->j_fs_dev;
337 	bh = bh_in;
338 
339 	if (!bh) {
340 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
341 		if (bh)
342 			BUFFER_TRACE(bh, "found on hash");
343 	}
344 #ifdef JBD2_EXPENSIVE_CHECKING
345 	else {
346 		struct buffer_head *bh2;
347 
348 		/* If there is a different buffer_head lying around in
349 		 * memory anywhere... */
350 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
351 		if (bh2) {
352 			/* ... and it has RevokeValid status... */
353 			if (bh2 != bh && buffer_revokevalid(bh2))
354 				/* ...then it better be revoked too,
355 				 * since it's illegal to create a revoke
356 				 * record against a buffer_head which is
357 				 * not marked revoked --- that would
358 				 * risk missing a subsequent revoke
359 				 * cancel. */
360 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
361 			put_bh(bh2);
362 		}
363 	}
364 #endif
365 
366 	/* We really ought not ever to revoke twice in a row without
367            first having the revoke cancelled: it's illegal to free a
368            block twice without allocating it in between! */
369 	if (bh) {
370 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
371 				 "inconsistent data on disk")) {
372 			if (!bh_in)
373 				brelse(bh);
374 			return -EIO;
375 		}
376 		set_buffer_revoked(bh);
377 		set_buffer_revokevalid(bh);
378 		if (bh_in) {
379 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
380 			jbd2_journal_forget(handle, bh_in);
381 		} else {
382 			BUFFER_TRACE(bh, "call brelse");
383 			__brelse(bh);
384 		}
385 	}
386 
387 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
388 	err = insert_revoke_hash(journal, blocknr,
389 				handle->h_transaction->t_tid);
390 	BUFFER_TRACE(bh_in, "exit");
391 	return err;
392 }
393 
394 /*
395  * Cancel an outstanding revoke.  For use only internally by the
396  * journaling code (called from jbd2_journal_get_write_access).
397  *
398  * We trust buffer_revoked() on the buffer if the buffer is already
399  * being journaled: if there is no revoke pending on the buffer, then we
400  * don't do anything here.
401  *
402  * This would break if it were possible for a buffer to be revoked and
403  * discarded, and then reallocated within the same transaction.  In such
404  * a case we would have lost the revoked bit, but when we arrived here
405  * the second time we would still have a pending revoke to cancel.  So,
406  * do not trust the Revoked bit on buffers unless RevokeValid is also
407  * set.
408  */
409 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
410 {
411 	struct jbd2_revoke_record_s *record;
412 	journal_t *journal = handle->h_transaction->t_journal;
413 	int need_cancel;
414 	int did_revoke = 0;	/* akpm: debug */
415 	struct buffer_head *bh = jh2bh(jh);
416 
417 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
418 
419 	/* Is the existing Revoke bit valid?  If so, we trust it, and
420 	 * only perform the full cancel if the revoke bit is set.  If
421 	 * not, we can't trust the revoke bit, and we need to do the
422 	 * full search for a revoke record. */
423 	if (test_set_buffer_revokevalid(bh)) {
424 		need_cancel = test_clear_buffer_revoked(bh);
425 	} else {
426 		need_cancel = 1;
427 		clear_buffer_revoked(bh);
428 	}
429 
430 	if (need_cancel) {
431 		record = find_revoke_record(journal, bh->b_blocknr);
432 		if (record) {
433 			jbd_debug(4, "cancelled existing revoke on "
434 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
435 			spin_lock(&journal->j_revoke_lock);
436 			list_del(&record->hash);
437 			spin_unlock(&journal->j_revoke_lock);
438 			kmem_cache_free(jbd2_revoke_record_cache, record);
439 			did_revoke = 1;
440 		}
441 	}
442 
443 #ifdef JBD2_EXPENSIVE_CHECKING
444 	/* There better not be one left behind by now! */
445 	record = find_revoke_record(journal, bh->b_blocknr);
446 	J_ASSERT_JH(jh, record == NULL);
447 #endif
448 
449 	/* Finally, have we just cleared revoke on an unhashed
450 	 * buffer_head?  If so, we'd better make sure we clear the
451 	 * revoked status on any hashed alias too, otherwise the revoke
452 	 * state machine will get very upset later on. */
453 	if (need_cancel) {
454 		struct buffer_head *bh2;
455 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
456 		if (bh2) {
457 			if (bh2 != bh)
458 				clear_buffer_revoked(bh2);
459 			__brelse(bh2);
460 		}
461 	}
462 	return did_revoke;
463 }
464 
465 /*
466  * journal_clear_revoked_flag clears revoked flag of buffers in
467  * revoke table to reflect there is no revoked buffers in the next
468  * transaction which is going to be started.
469  */
470 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
471 {
472 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
473 	int i = 0;
474 
475 	for (i = 0; i < revoke->hash_size; i++) {
476 		struct list_head *hash_list;
477 		struct list_head *list_entry;
478 		hash_list = &revoke->hash_table[i];
479 
480 		list_for_each(list_entry, hash_list) {
481 			struct jbd2_revoke_record_s *record;
482 			struct buffer_head *bh;
483 			record = (struct jbd2_revoke_record_s *)list_entry;
484 			bh = __find_get_block(journal->j_fs_dev,
485 					      record->blocknr,
486 					      journal->j_blocksize);
487 			if (bh) {
488 				clear_buffer_revoked(bh);
489 				__brelse(bh);
490 			}
491 		}
492 	}
493 }
494 
495 /* journal_switch_revoke table select j_revoke for next transaction
496  * we do not want to suspend any processing until all revokes are
497  * written -bzzz
498  */
499 void jbd2_journal_switch_revoke_table(journal_t *journal)
500 {
501 	int i;
502 
503 	if (journal->j_revoke == journal->j_revoke_table[0])
504 		journal->j_revoke = journal->j_revoke_table[1];
505 	else
506 		journal->j_revoke = journal->j_revoke_table[0];
507 
508 	for (i = 0; i < journal->j_revoke->hash_size; i++)
509 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
510 }
511 
512 /*
513  * Write revoke records to the journal for all entries in the current
514  * revoke hash, deleting the entries as we go.
515  */
516 void jbd2_journal_write_revoke_records(transaction_t *transaction,
517 				       struct list_head *log_bufs)
518 {
519 	journal_t *journal = transaction->t_journal;
520 	struct buffer_head *descriptor;
521 	struct jbd2_revoke_record_s *record;
522 	struct jbd2_revoke_table_s *revoke;
523 	struct list_head *hash_list;
524 	int i, offset, count;
525 
526 	descriptor = NULL;
527 	offset = 0;
528 	count = 0;
529 
530 	/* select revoke table for committing transaction */
531 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
532 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
533 
534 	for (i = 0; i < revoke->hash_size; i++) {
535 		hash_list = &revoke->hash_table[i];
536 
537 		while (!list_empty(hash_list)) {
538 			record = (struct jbd2_revoke_record_s *)
539 				hash_list->next;
540 			write_one_revoke_record(transaction, log_bufs,
541 						&descriptor, &offset, record);
542 			count++;
543 			list_del(&record->hash);
544 			kmem_cache_free(jbd2_revoke_record_cache, record);
545 		}
546 	}
547 	if (descriptor)
548 		flush_descriptor(journal, descriptor, offset);
549 	jbd_debug(1, "Wrote %d revoke records\n", count);
550 }
551 
552 /*
553  * Write out one revoke record.  We need to create a new descriptor
554  * block if the old one is full or if we have not already created one.
555  */
556 
557 static void write_one_revoke_record(transaction_t *transaction,
558 				    struct list_head *log_bufs,
559 				    struct buffer_head **descriptorp,
560 				    int *offsetp,
561 				    struct jbd2_revoke_record_s *record)
562 {
563 	journal_t *journal = transaction->t_journal;
564 	int csum_size = 0;
565 	struct buffer_head *descriptor;
566 	int sz, offset;
567 
568 	/* If we are already aborting, this all becomes a noop.  We
569            still need to go round the loop in
570            jbd2_journal_write_revoke_records in order to free all of the
571            revoke records: only the IO to the journal is omitted. */
572 	if (is_journal_aborted(journal))
573 		return;
574 
575 	descriptor = *descriptorp;
576 	offset = *offsetp;
577 
578 	/* Do we need to leave space at the end for a checksum? */
579 	if (jbd2_journal_has_csum_v2or3(journal))
580 		csum_size = sizeof(struct jbd2_journal_block_tail);
581 
582 	if (jbd2_has_feature_64bit(journal))
583 		sz = 8;
584 	else
585 		sz = 4;
586 
587 	/* Make sure we have a descriptor with space left for the record */
588 	if (descriptor) {
589 		if (offset + sz > journal->j_blocksize - csum_size) {
590 			flush_descriptor(journal, descriptor, offset);
591 			descriptor = NULL;
592 		}
593 	}
594 
595 	if (!descriptor) {
596 		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
597 							JBD2_REVOKE_BLOCK);
598 		if (!descriptor)
599 			return;
600 
601 		/* Record it so that we can wait for IO completion later */
602 		BUFFER_TRACE(descriptor, "file in log_bufs");
603 		jbd2_file_log_bh(log_bufs, descriptor);
604 
605 		offset = sizeof(jbd2_journal_revoke_header_t);
606 		*descriptorp = descriptor;
607 	}
608 
609 	if (jbd2_has_feature_64bit(journal))
610 		* ((__be64 *)(&descriptor->b_data[offset])) =
611 			cpu_to_be64(record->blocknr);
612 	else
613 		* ((__be32 *)(&descriptor->b_data[offset])) =
614 			cpu_to_be32(record->blocknr);
615 	offset += sz;
616 
617 	*offsetp = offset;
618 }
619 
620 /*
621  * Flush a revoke descriptor out to the journal.  If we are aborting,
622  * this is a noop; otherwise we are generating a buffer which needs to
623  * be waited for during commit, so it has to go onto the appropriate
624  * journal buffer list.
625  */
626 
627 static void flush_descriptor(journal_t *journal,
628 			     struct buffer_head *descriptor,
629 			     int offset)
630 {
631 	jbd2_journal_revoke_header_t *header;
632 
633 	if (is_journal_aborted(journal)) {
634 		put_bh(descriptor);
635 		return;
636 	}
637 
638 	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
639 	header->r_count = cpu_to_be32(offset);
640 	jbd2_descriptor_block_csum_set(journal, descriptor);
641 
642 	set_buffer_jwrite(descriptor);
643 	BUFFER_TRACE(descriptor, "write");
644 	set_buffer_dirty(descriptor);
645 	write_dirty_buffer(descriptor, REQ_SYNC);
646 }
647 #endif
648 
649 /*
650  * Revoke support for recovery.
651  *
652  * Recovery needs to be able to:
653  *
654  *  record all revoke records, including the tid of the latest instance
655  *  of each revoke in the journal
656  *
657  *  check whether a given block in a given transaction should be replayed
658  *  (ie. has not been revoked by a revoke record in that or a subsequent
659  *  transaction)
660  *
661  *  empty the revoke table after recovery.
662  */
663 
664 /*
665  * First, setting revoke records.  We create a new revoke record for
666  * every block ever revoked in the log as we scan it for recovery, and
667  * we update the existing records if we find multiple revokes for a
668  * single block.
669  */
670 
671 int jbd2_journal_set_revoke(journal_t *journal,
672 		       unsigned long long blocknr,
673 		       tid_t sequence)
674 {
675 	struct jbd2_revoke_record_s *record;
676 
677 	record = find_revoke_record(journal, blocknr);
678 	if (record) {
679 		/* If we have multiple occurrences, only record the
680 		 * latest sequence number in the hashed record */
681 		if (tid_gt(sequence, record->sequence))
682 			record->sequence = sequence;
683 		return 0;
684 	}
685 	return insert_revoke_hash(journal, blocknr, sequence);
686 }
687 
688 /*
689  * Test revoke records.  For a given block referenced in the log, has
690  * that block been revoked?  A revoke record with a given transaction
691  * sequence number revokes all blocks in that transaction and earlier
692  * ones, but later transactions still need replayed.
693  */
694 
695 int jbd2_journal_test_revoke(journal_t *journal,
696 			unsigned long long blocknr,
697 			tid_t sequence)
698 {
699 	struct jbd2_revoke_record_s *record;
700 
701 	record = find_revoke_record(journal, blocknr);
702 	if (!record)
703 		return 0;
704 	if (tid_gt(sequence, record->sequence))
705 		return 0;
706 	return 1;
707 }
708 
709 /*
710  * Finally, once recovery is over, we need to clear the revoke table so
711  * that it can be reused by the running filesystem.
712  */
713 
714 void jbd2_journal_clear_revoke(journal_t *journal)
715 {
716 	int i;
717 	struct list_head *hash_list;
718 	struct jbd2_revoke_record_s *record;
719 	struct jbd2_revoke_table_s *revoke;
720 
721 	revoke = journal->j_revoke;
722 
723 	for (i = 0; i < revoke->hash_size; i++) {
724 		hash_list = &revoke->hash_table[i];
725 		while (!list_empty(hash_list)) {
726 			record = (struct jbd2_revoke_record_s*) hash_list->next;
727 			list_del(&record->hash);
728 			kmem_cache_free(jbd2_revoke_record_cache, record);
729 		}
730 	}
731 }
732