xref: /openbmc/linux/fs/jbd2/revoke.c (revision 275876e2)
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 
97 static struct kmem_cache *jbd2_revoke_record_cache;
98 static struct kmem_cache *jbd2_revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block.  During
101    journal replay, this involves recording the transaction ID of the
102    last transaction to revoke this block. */
103 
104 struct jbd2_revoke_record_s
105 {
106 	struct list_head  hash;
107 	tid_t		  sequence;	/* Used for recovery only */
108 	unsigned long long	  blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd2_revoke_table_s
114 {
115 	/* It is conceivable that we might want a larger hash table
116 	 * for recovery.  Must be a power of two. */
117 	int		  hash_size;
118 	int		  hash_shift;
119 	struct list_head *hash_table;
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 				    struct list_head *,
126 				    struct buffer_head **, int *,
127 				    struct jbd2_revoke_record_s *, int);
128 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129 #endif
130 
131 /* Utility functions to maintain the revoke table */
132 
133 /* Borrowed from buffer.c: this is a tried and tested block hash function */
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 	struct jbd2_revoke_table_s *table = journal->j_revoke;
137 	int hash_shift = table->hash_shift;
138 	int hash = (int)block ^ (int)((block >> 31) >> 1);
139 
140 	return ((hash << (hash_shift - 6)) ^
141 		(hash >> 13) ^
142 		(hash << (hash_shift - 12))) & (table->hash_size - 1);
143 }
144 
145 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
146 			      tid_t seq)
147 {
148 	struct list_head *hash_list;
149 	struct jbd2_revoke_record_s *record;
150 
151 repeat:
152 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
153 	if (!record)
154 		goto oom;
155 
156 	record->sequence = seq;
157 	record->blocknr = blocknr;
158 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
159 	spin_lock(&journal->j_revoke_lock);
160 	list_add(&record->hash, hash_list);
161 	spin_unlock(&journal->j_revoke_lock);
162 	return 0;
163 
164 oom:
165 	if (!journal_oom_retry)
166 		return -ENOMEM;
167 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
168 	yield();
169 	goto repeat;
170 }
171 
172 /* Find a revoke record in the journal's hash table. */
173 
174 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
175 						      unsigned long long blocknr)
176 {
177 	struct list_head *hash_list;
178 	struct jbd2_revoke_record_s *record;
179 
180 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
181 
182 	spin_lock(&journal->j_revoke_lock);
183 	record = (struct jbd2_revoke_record_s *) hash_list->next;
184 	while (&(record->hash) != hash_list) {
185 		if (record->blocknr == blocknr) {
186 			spin_unlock(&journal->j_revoke_lock);
187 			return record;
188 		}
189 		record = (struct jbd2_revoke_record_s *) record->hash.next;
190 	}
191 	spin_unlock(&journal->j_revoke_lock);
192 	return NULL;
193 }
194 
195 void jbd2_journal_destroy_revoke_caches(void)
196 {
197 	if (jbd2_revoke_record_cache) {
198 		kmem_cache_destroy(jbd2_revoke_record_cache);
199 		jbd2_revoke_record_cache = NULL;
200 	}
201 	if (jbd2_revoke_table_cache) {
202 		kmem_cache_destroy(jbd2_revoke_table_cache);
203 		jbd2_revoke_table_cache = NULL;
204 	}
205 }
206 
207 int __init jbd2_journal_init_revoke_caches(void)
208 {
209 	J_ASSERT(!jbd2_revoke_record_cache);
210 	J_ASSERT(!jbd2_revoke_table_cache);
211 
212 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
213 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
214 	if (!jbd2_revoke_record_cache)
215 		goto record_cache_failure;
216 
217 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
218 					     SLAB_TEMPORARY);
219 	if (!jbd2_revoke_table_cache)
220 		goto table_cache_failure;
221 	return 0;
222 table_cache_failure:
223 	jbd2_journal_destroy_revoke_caches();
224 record_cache_failure:
225 		return -ENOMEM;
226 }
227 
228 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
229 {
230 	int shift = 0;
231 	int tmp = hash_size;
232 	struct jbd2_revoke_table_s *table;
233 
234 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
235 	if (!table)
236 		goto out;
237 
238 	while((tmp >>= 1UL) != 0UL)
239 		shift++;
240 
241 	table->hash_size = hash_size;
242 	table->hash_shift = shift;
243 	table->hash_table =
244 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245 	if (!table->hash_table) {
246 		kmem_cache_free(jbd2_revoke_table_cache, table);
247 		table = NULL;
248 		goto out;
249 	}
250 
251 	for (tmp = 0; tmp < hash_size; tmp++)
252 		INIT_LIST_HEAD(&table->hash_table[tmp]);
253 
254 out:
255 	return table;
256 }
257 
258 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
259 {
260 	int i;
261 	struct list_head *hash_list;
262 
263 	for (i = 0; i < table->hash_size; i++) {
264 		hash_list = &table->hash_table[i];
265 		J_ASSERT(list_empty(hash_list));
266 	}
267 
268 	kfree(table->hash_table);
269 	kmem_cache_free(jbd2_revoke_table_cache, table);
270 }
271 
272 /* Initialise the revoke table for a given journal to a given size. */
273 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
274 {
275 	J_ASSERT(journal->j_revoke_table[0] == NULL);
276 	J_ASSERT(is_power_of_2(hash_size));
277 
278 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
279 	if (!journal->j_revoke_table[0])
280 		goto fail0;
281 
282 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
283 	if (!journal->j_revoke_table[1])
284 		goto fail1;
285 
286 	journal->j_revoke = journal->j_revoke_table[1];
287 
288 	spin_lock_init(&journal->j_revoke_lock);
289 
290 	return 0;
291 
292 fail1:
293 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
294 fail0:
295 	return -ENOMEM;
296 }
297 
298 /* Destroy a journal's revoke table.  The table must already be empty! */
299 void jbd2_journal_destroy_revoke(journal_t *journal)
300 {
301 	journal->j_revoke = NULL;
302 	if (journal->j_revoke_table[0])
303 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
304 	if (journal->j_revoke_table[1])
305 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
306 }
307 
308 
309 #ifdef __KERNEL__
310 
311 /*
312  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
313  * prevents the block from being replayed during recovery if we take a
314  * crash after this current transaction commits.  Any subsequent
315  * metadata writes of the buffer in this transaction cancel the
316  * revoke.
317  *
318  * Note that this call may block --- it is up to the caller to make
319  * sure that there are no further calls to journal_write_metadata
320  * before the revoke is complete.  In ext3, this implies calling the
321  * revoke before clearing the block bitmap when we are deleting
322  * metadata.
323  *
324  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
325  * parameter, but does _not_ forget the buffer_head if the bh was only
326  * found implicitly.
327  *
328  * bh_in may not be a journalled buffer - it may have come off
329  * the hash tables without an attached journal_head.
330  *
331  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
332  * by one.
333  */
334 
335 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
336 		   struct buffer_head *bh_in)
337 {
338 	struct buffer_head *bh = NULL;
339 	journal_t *journal;
340 	struct block_device *bdev;
341 	int err;
342 
343 	might_sleep();
344 	if (bh_in)
345 		BUFFER_TRACE(bh_in, "enter");
346 
347 	journal = handle->h_transaction->t_journal;
348 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
349 		J_ASSERT (!"Cannot set revoke feature!");
350 		return -EINVAL;
351 	}
352 
353 	bdev = journal->j_fs_dev;
354 	bh = bh_in;
355 
356 	if (!bh) {
357 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358 		if (bh)
359 			BUFFER_TRACE(bh, "found on hash");
360 	}
361 #ifdef JBD2_EXPENSIVE_CHECKING
362 	else {
363 		struct buffer_head *bh2;
364 
365 		/* If there is a different buffer_head lying around in
366 		 * memory anywhere... */
367 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368 		if (bh2) {
369 			/* ... and it has RevokeValid status... */
370 			if (bh2 != bh && buffer_revokevalid(bh2))
371 				/* ...then it better be revoked too,
372 				 * since it's illegal to create a revoke
373 				 * record against a buffer_head which is
374 				 * not marked revoked --- that would
375 				 * risk missing a subsequent revoke
376 				 * cancel. */
377 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
378 			put_bh(bh2);
379 		}
380 	}
381 #endif
382 
383 	/* We really ought not ever to revoke twice in a row without
384            first having the revoke cancelled: it's illegal to free a
385            block twice without allocating it in between! */
386 	if (bh) {
387 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388 				 "inconsistent data on disk")) {
389 			if (!bh_in)
390 				brelse(bh);
391 			return -EIO;
392 		}
393 		set_buffer_revoked(bh);
394 		set_buffer_revokevalid(bh);
395 		if (bh_in) {
396 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
397 			jbd2_journal_forget(handle, bh_in);
398 		} else {
399 			BUFFER_TRACE(bh, "call brelse");
400 			__brelse(bh);
401 		}
402 	}
403 
404 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
405 	err = insert_revoke_hash(journal, blocknr,
406 				handle->h_transaction->t_tid);
407 	BUFFER_TRACE(bh_in, "exit");
408 	return err;
409 }
410 
411 /*
412  * Cancel an outstanding revoke.  For use only internally by the
413  * journaling code (called from jbd2_journal_get_write_access).
414  *
415  * We trust buffer_revoked() on the buffer if the buffer is already
416  * being journaled: if there is no revoke pending on the buffer, then we
417  * don't do anything here.
418  *
419  * This would break if it were possible for a buffer to be revoked and
420  * discarded, and then reallocated within the same transaction.  In such
421  * a case we would have lost the revoked bit, but when we arrived here
422  * the second time we would still have a pending revoke to cancel.  So,
423  * do not trust the Revoked bit on buffers unless RevokeValid is also
424  * set.
425  */
426 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427 {
428 	struct jbd2_revoke_record_s *record;
429 	journal_t *journal = handle->h_transaction->t_journal;
430 	int need_cancel;
431 	int did_revoke = 0;	/* akpm: debug */
432 	struct buffer_head *bh = jh2bh(jh);
433 
434 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435 
436 	/* Is the existing Revoke bit valid?  If so, we trust it, and
437 	 * only perform the full cancel if the revoke bit is set.  If
438 	 * not, we can't trust the revoke bit, and we need to do the
439 	 * full search for a revoke record. */
440 	if (test_set_buffer_revokevalid(bh)) {
441 		need_cancel = test_clear_buffer_revoked(bh);
442 	} else {
443 		need_cancel = 1;
444 		clear_buffer_revoked(bh);
445 	}
446 
447 	if (need_cancel) {
448 		record = find_revoke_record(journal, bh->b_blocknr);
449 		if (record) {
450 			jbd_debug(4, "cancelled existing revoke on "
451 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452 			spin_lock(&journal->j_revoke_lock);
453 			list_del(&record->hash);
454 			spin_unlock(&journal->j_revoke_lock);
455 			kmem_cache_free(jbd2_revoke_record_cache, record);
456 			did_revoke = 1;
457 		}
458 	}
459 
460 #ifdef JBD2_EXPENSIVE_CHECKING
461 	/* There better not be one left behind by now! */
462 	record = find_revoke_record(journal, bh->b_blocknr);
463 	J_ASSERT_JH(jh, record == NULL);
464 #endif
465 
466 	/* Finally, have we just cleared revoke on an unhashed
467 	 * buffer_head?  If so, we'd better make sure we clear the
468 	 * revoked status on any hashed alias too, otherwise the revoke
469 	 * state machine will get very upset later on. */
470 	if (need_cancel) {
471 		struct buffer_head *bh2;
472 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473 		if (bh2) {
474 			if (bh2 != bh)
475 				clear_buffer_revoked(bh2);
476 			__brelse(bh2);
477 		}
478 	}
479 	return did_revoke;
480 }
481 
482 /*
483  * journal_clear_revoked_flag clears revoked flag of buffers in
484  * revoke table to reflect there is no revoked buffers in the next
485  * transaction which is going to be started.
486  */
487 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
488 {
489 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
490 	int i = 0;
491 
492 	for (i = 0; i < revoke->hash_size; i++) {
493 		struct list_head *hash_list;
494 		struct list_head *list_entry;
495 		hash_list = &revoke->hash_table[i];
496 
497 		list_for_each(list_entry, hash_list) {
498 			struct jbd2_revoke_record_s *record;
499 			struct buffer_head *bh;
500 			record = (struct jbd2_revoke_record_s *)list_entry;
501 			bh = __find_get_block(journal->j_fs_dev,
502 					      record->blocknr,
503 					      journal->j_blocksize);
504 			if (bh) {
505 				clear_buffer_revoked(bh);
506 				__brelse(bh);
507 			}
508 		}
509 	}
510 }
511 
512 /* journal_switch_revoke table select j_revoke for next transaction
513  * we do not want to suspend any processing until all revokes are
514  * written -bzzz
515  */
516 void jbd2_journal_switch_revoke_table(journal_t *journal)
517 {
518 	int i;
519 
520 	if (journal->j_revoke == journal->j_revoke_table[0])
521 		journal->j_revoke = journal->j_revoke_table[1];
522 	else
523 		journal->j_revoke = journal->j_revoke_table[0];
524 
525 	for (i = 0; i < journal->j_revoke->hash_size; i++)
526 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
527 }
528 
529 /*
530  * Write revoke records to the journal for all entries in the current
531  * revoke hash, deleting the entries as we go.
532  */
533 void jbd2_journal_write_revoke_records(journal_t *journal,
534 				       transaction_t *transaction,
535 				       struct list_head *log_bufs,
536 				       int write_op)
537 {
538 	struct buffer_head *descriptor;
539 	struct jbd2_revoke_record_s *record;
540 	struct jbd2_revoke_table_s *revoke;
541 	struct list_head *hash_list;
542 	int i, offset, count;
543 
544 	descriptor = NULL;
545 	offset = 0;
546 	count = 0;
547 
548 	/* select revoke table for committing transaction */
549 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
550 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
551 
552 	for (i = 0; i < revoke->hash_size; i++) {
553 		hash_list = &revoke->hash_table[i];
554 
555 		while (!list_empty(hash_list)) {
556 			record = (struct jbd2_revoke_record_s *)
557 				hash_list->next;
558 			write_one_revoke_record(journal, transaction, log_bufs,
559 						&descriptor, &offset,
560 						record, write_op);
561 			count++;
562 			list_del(&record->hash);
563 			kmem_cache_free(jbd2_revoke_record_cache, record);
564 		}
565 	}
566 	if (descriptor)
567 		flush_descriptor(journal, descriptor, offset, write_op);
568 	jbd_debug(1, "Wrote %d revoke records\n", count);
569 }
570 
571 /*
572  * Write out one revoke record.  We need to create a new descriptor
573  * block if the old one is full or if we have not already created one.
574  */
575 
576 static void write_one_revoke_record(journal_t *journal,
577 				    transaction_t *transaction,
578 				    struct list_head *log_bufs,
579 				    struct buffer_head **descriptorp,
580 				    int *offsetp,
581 				    struct jbd2_revoke_record_s *record,
582 				    int write_op)
583 {
584 	int csum_size = 0;
585 	struct buffer_head *descriptor;
586 	int offset;
587 	journal_header_t *header;
588 
589 	/* If we are already aborting, this all becomes a noop.  We
590            still need to go round the loop in
591            jbd2_journal_write_revoke_records in order to free all of the
592            revoke records: only the IO to the journal is omitted. */
593 	if (is_journal_aborted(journal))
594 		return;
595 
596 	descriptor = *descriptorp;
597 	offset = *offsetp;
598 
599 	/* Do we need to leave space at the end for a checksum? */
600 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
601 		csum_size = sizeof(struct jbd2_journal_revoke_tail);
602 
603 	/* Make sure we have a descriptor with space left for the record */
604 	if (descriptor) {
605 		if (offset >= journal->j_blocksize - csum_size) {
606 			flush_descriptor(journal, descriptor, offset, write_op);
607 			descriptor = NULL;
608 		}
609 	}
610 
611 	if (!descriptor) {
612 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
613 		if (!descriptor)
614 			return;
615 		header = (journal_header_t *)descriptor->b_data;
616 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
617 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
618 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
619 
620 		/* Record it so that we can wait for IO completion later */
621 		BUFFER_TRACE(descriptor, "file in log_bufs");
622 		jbd2_file_log_bh(log_bufs, descriptor);
623 
624 		offset = sizeof(jbd2_journal_revoke_header_t);
625 		*descriptorp = descriptor;
626 	}
627 
628 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
629 		* ((__be64 *)(&descriptor->b_data[offset])) =
630 			cpu_to_be64(record->blocknr);
631 		offset += 8;
632 
633 	} else {
634 		* ((__be32 *)(&descriptor->b_data[offset])) =
635 			cpu_to_be32(record->blocknr);
636 		offset += 4;
637 	}
638 
639 	*offsetp = offset;
640 }
641 
642 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
643 {
644 	struct jbd2_journal_revoke_tail *tail;
645 	__u32 csum;
646 
647 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
648 		return;
649 
650 	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
651 			sizeof(struct jbd2_journal_revoke_tail));
652 	tail->r_checksum = 0;
653 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
654 	tail->r_checksum = cpu_to_be32(csum);
655 }
656 
657 /*
658  * Flush a revoke descriptor out to the journal.  If we are aborting,
659  * this is a noop; otherwise we are generating a buffer which needs to
660  * be waited for during commit, so it has to go onto the appropriate
661  * journal buffer list.
662  */
663 
664 static void flush_descriptor(journal_t *journal,
665 			     struct buffer_head *descriptor,
666 			     int offset, int write_op)
667 {
668 	jbd2_journal_revoke_header_t *header;
669 
670 	if (is_journal_aborted(journal)) {
671 		put_bh(descriptor);
672 		return;
673 	}
674 
675 	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
676 	header->r_count = cpu_to_be32(offset);
677 	jbd2_revoke_csum_set(journal, descriptor);
678 
679 	set_buffer_jwrite(descriptor);
680 	BUFFER_TRACE(descriptor, "write");
681 	set_buffer_dirty(descriptor);
682 	write_dirty_buffer(descriptor, write_op);
683 }
684 #endif
685 
686 /*
687  * Revoke support for recovery.
688  *
689  * Recovery needs to be able to:
690  *
691  *  record all revoke records, including the tid of the latest instance
692  *  of each revoke in the journal
693  *
694  *  check whether a given block in a given transaction should be replayed
695  *  (ie. has not been revoked by a revoke record in that or a subsequent
696  *  transaction)
697  *
698  *  empty the revoke table after recovery.
699  */
700 
701 /*
702  * First, setting revoke records.  We create a new revoke record for
703  * every block ever revoked in the log as we scan it for recovery, and
704  * we update the existing records if we find multiple revokes for a
705  * single block.
706  */
707 
708 int jbd2_journal_set_revoke(journal_t *journal,
709 		       unsigned long long blocknr,
710 		       tid_t sequence)
711 {
712 	struct jbd2_revoke_record_s *record;
713 
714 	record = find_revoke_record(journal, blocknr);
715 	if (record) {
716 		/* If we have multiple occurrences, only record the
717 		 * latest sequence number in the hashed record */
718 		if (tid_gt(sequence, record->sequence))
719 			record->sequence = sequence;
720 		return 0;
721 	}
722 	return insert_revoke_hash(journal, blocknr, sequence);
723 }
724 
725 /*
726  * Test revoke records.  For a given block referenced in the log, has
727  * that block been revoked?  A revoke record with a given transaction
728  * sequence number revokes all blocks in that transaction and earlier
729  * ones, but later transactions still need replayed.
730  */
731 
732 int jbd2_journal_test_revoke(journal_t *journal,
733 			unsigned long long blocknr,
734 			tid_t sequence)
735 {
736 	struct jbd2_revoke_record_s *record;
737 
738 	record = find_revoke_record(journal, blocknr);
739 	if (!record)
740 		return 0;
741 	if (tid_gt(sequence, record->sequence))
742 		return 0;
743 	return 1;
744 }
745 
746 /*
747  * Finally, once recovery is over, we need to clear the revoke table so
748  * that it can be reused by the running filesystem.
749  */
750 
751 void jbd2_journal_clear_revoke(journal_t *journal)
752 {
753 	int i;
754 	struct list_head *hash_list;
755 	struct jbd2_revoke_record_s *record;
756 	struct jbd2_revoke_table_s *revoke;
757 
758 	revoke = journal->j_revoke;
759 
760 	for (i = 0; i < revoke->hash_size; i++) {
761 		hash_list = &revoke->hash_table[i];
762 		while (!list_empty(hash_list)) {
763 			record = (struct jbd2_revoke_record_s*) hash_list->next;
764 			list_del(&record->hash);
765 			kmem_cache_free(jbd2_revoke_record_cache, record);
766 		}
767 	}
768 }
769