1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/jbd2.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/page.h> 48 49 EXPORT_SYMBOL(jbd2_journal_start); 50 EXPORT_SYMBOL(jbd2_journal_restart); 51 EXPORT_SYMBOL(jbd2_journal_extend); 52 EXPORT_SYMBOL(jbd2_journal_stop); 53 EXPORT_SYMBOL(jbd2_journal_lock_updates); 54 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 55 EXPORT_SYMBOL(jbd2_journal_get_write_access); 56 EXPORT_SYMBOL(jbd2_journal_get_create_access); 57 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 58 EXPORT_SYMBOL(jbd2_journal_set_triggers); 59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 60 EXPORT_SYMBOL(jbd2_journal_release_buffer); 61 EXPORT_SYMBOL(jbd2_journal_forget); 62 #if 0 63 EXPORT_SYMBOL(journal_sync_buffer); 64 #endif 65 EXPORT_SYMBOL(jbd2_journal_flush); 66 EXPORT_SYMBOL(jbd2_journal_revoke); 67 68 EXPORT_SYMBOL(jbd2_journal_init_dev); 69 EXPORT_SYMBOL(jbd2_journal_init_inode); 70 EXPORT_SYMBOL(jbd2_journal_update_format); 71 EXPORT_SYMBOL(jbd2_journal_check_used_features); 72 EXPORT_SYMBOL(jbd2_journal_check_available_features); 73 EXPORT_SYMBOL(jbd2_journal_set_features); 74 EXPORT_SYMBOL(jbd2_journal_load); 75 EXPORT_SYMBOL(jbd2_journal_destroy); 76 EXPORT_SYMBOL(jbd2_journal_abort); 77 EXPORT_SYMBOL(jbd2_journal_errno); 78 EXPORT_SYMBOL(jbd2_journal_ack_err); 79 EXPORT_SYMBOL(jbd2_journal_clear_err); 80 EXPORT_SYMBOL(jbd2_log_wait_commit); 81 EXPORT_SYMBOL(jbd2_journal_start_commit); 82 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 83 EXPORT_SYMBOL(jbd2_journal_wipe); 84 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 85 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 86 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 87 EXPORT_SYMBOL(jbd2_journal_force_commit); 88 EXPORT_SYMBOL(jbd2_journal_file_inode); 89 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 90 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 91 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 92 93 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 94 static void __journal_abort_soft (journal_t *journal, int errno); 95 96 /* 97 * Helper function used to manage commit timeouts 98 */ 99 100 static void commit_timeout(unsigned long __data) 101 { 102 struct task_struct * p = (struct task_struct *) __data; 103 104 wake_up_process(p); 105 } 106 107 /* 108 * kjournald2: The main thread function used to manage a logging device 109 * journal. 110 * 111 * This kernel thread is responsible for two things: 112 * 113 * 1) COMMIT: Every so often we need to commit the current state of the 114 * filesystem to disk. The journal thread is responsible for writing 115 * all of the metadata buffers to disk. 116 * 117 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 118 * of the data in that part of the log has been rewritten elsewhere on 119 * the disk. Flushing these old buffers to reclaim space in the log is 120 * known as checkpointing, and this thread is responsible for that job. 121 */ 122 123 static int kjournald2(void *arg) 124 { 125 journal_t *journal = arg; 126 transaction_t *transaction; 127 128 /* 129 * Set up an interval timer which can be used to trigger a commit wakeup 130 * after the commit interval expires 131 */ 132 setup_timer(&journal->j_commit_timer, commit_timeout, 133 (unsigned long)current); 134 135 /* Record that the journal thread is running */ 136 journal->j_task = current; 137 wake_up(&journal->j_wait_done_commit); 138 139 printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, " 140 "commit interval %ld seconds\n", current->pid, 141 journal->j_devname, journal->j_commit_interval / HZ); 142 143 /* 144 * And now, wait forever for commit wakeup events. 145 */ 146 spin_lock(&journal->j_state_lock); 147 148 loop: 149 if (journal->j_flags & JBD2_UNMOUNT) 150 goto end_loop; 151 152 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 153 journal->j_commit_sequence, journal->j_commit_request); 154 155 if (journal->j_commit_sequence != journal->j_commit_request) { 156 jbd_debug(1, "OK, requests differ\n"); 157 spin_unlock(&journal->j_state_lock); 158 del_timer_sync(&journal->j_commit_timer); 159 jbd2_journal_commit_transaction(journal); 160 spin_lock(&journal->j_state_lock); 161 goto loop; 162 } 163 164 wake_up(&journal->j_wait_done_commit); 165 if (freezing(current)) { 166 /* 167 * The simpler the better. Flushing journal isn't a 168 * good idea, because that depends on threads that may 169 * be already stopped. 170 */ 171 jbd_debug(1, "Now suspending kjournald2\n"); 172 spin_unlock(&journal->j_state_lock); 173 refrigerator(); 174 spin_lock(&journal->j_state_lock); 175 } else { 176 /* 177 * We assume on resume that commits are already there, 178 * so we don't sleep 179 */ 180 DEFINE_WAIT(wait); 181 int should_sleep = 1; 182 183 prepare_to_wait(&journal->j_wait_commit, &wait, 184 TASK_INTERRUPTIBLE); 185 if (journal->j_commit_sequence != journal->j_commit_request) 186 should_sleep = 0; 187 transaction = journal->j_running_transaction; 188 if (transaction && time_after_eq(jiffies, 189 transaction->t_expires)) 190 should_sleep = 0; 191 if (journal->j_flags & JBD2_UNMOUNT) 192 should_sleep = 0; 193 if (should_sleep) { 194 spin_unlock(&journal->j_state_lock); 195 schedule(); 196 spin_lock(&journal->j_state_lock); 197 } 198 finish_wait(&journal->j_wait_commit, &wait); 199 } 200 201 jbd_debug(1, "kjournald2 wakes\n"); 202 203 /* 204 * Were we woken up by a commit wakeup event? 205 */ 206 transaction = journal->j_running_transaction; 207 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 208 journal->j_commit_request = transaction->t_tid; 209 jbd_debug(1, "woke because of timeout\n"); 210 } 211 goto loop; 212 213 end_loop: 214 spin_unlock(&journal->j_state_lock); 215 del_timer_sync(&journal->j_commit_timer); 216 journal->j_task = NULL; 217 wake_up(&journal->j_wait_done_commit); 218 jbd_debug(1, "Journal thread exiting.\n"); 219 return 0; 220 } 221 222 static int jbd2_journal_start_thread(journal_t *journal) 223 { 224 struct task_struct *t; 225 226 t = kthread_run(kjournald2, journal, "kjournald2"); 227 if (IS_ERR(t)) 228 return PTR_ERR(t); 229 230 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 231 return 0; 232 } 233 234 static void journal_kill_thread(journal_t *journal) 235 { 236 spin_lock(&journal->j_state_lock); 237 journal->j_flags |= JBD2_UNMOUNT; 238 239 while (journal->j_task) { 240 wake_up(&journal->j_wait_commit); 241 spin_unlock(&journal->j_state_lock); 242 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 243 spin_lock(&journal->j_state_lock); 244 } 245 spin_unlock(&journal->j_state_lock); 246 } 247 248 /* 249 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 250 * 251 * Writes a metadata buffer to a given disk block. The actual IO is not 252 * performed but a new buffer_head is constructed which labels the data 253 * to be written with the correct destination disk block. 254 * 255 * Any magic-number escaping which needs to be done will cause a 256 * copy-out here. If the buffer happens to start with the 257 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 258 * magic number is only written to the log for descripter blocks. In 259 * this case, we copy the data and replace the first word with 0, and we 260 * return a result code which indicates that this buffer needs to be 261 * marked as an escaped buffer in the corresponding log descriptor 262 * block. The missing word can then be restored when the block is read 263 * during recovery. 264 * 265 * If the source buffer has already been modified by a new transaction 266 * since we took the last commit snapshot, we use the frozen copy of 267 * that data for IO. If we end up using the existing buffer_head's data 268 * for the write, then we *have* to lock the buffer to prevent anyone 269 * else from using and possibly modifying it while the IO is in 270 * progress. 271 * 272 * The function returns a pointer to the buffer_heads to be used for IO. 273 * 274 * We assume that the journal has already been locked in this function. 275 * 276 * Return value: 277 * <0: Error 278 * >=0: Finished OK 279 * 280 * On success: 281 * Bit 0 set == escape performed on the data 282 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 283 */ 284 285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 286 struct journal_head *jh_in, 287 struct journal_head **jh_out, 288 unsigned long long blocknr) 289 { 290 int need_copy_out = 0; 291 int done_copy_out = 0; 292 int do_escape = 0; 293 char *mapped_data; 294 struct buffer_head *new_bh; 295 struct journal_head *new_jh; 296 struct page *new_page; 297 unsigned int new_offset; 298 struct buffer_head *bh_in = jh2bh(jh_in); 299 struct jbd2_buffer_trigger_type *triggers; 300 journal_t *journal = transaction->t_journal; 301 302 /* 303 * The buffer really shouldn't be locked: only the current committing 304 * transaction is allowed to write it, so nobody else is allowed 305 * to do any IO. 306 * 307 * akpm: except if we're journalling data, and write() output is 308 * also part of a shared mapping, and another thread has 309 * decided to launch a writepage() against this buffer. 310 */ 311 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 312 313 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 314 /* keep subsequent assertions sane */ 315 new_bh->b_state = 0; 316 init_buffer(new_bh, NULL, NULL); 317 atomic_set(&new_bh->b_count, 1); 318 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 319 320 /* 321 * If a new transaction has already done a buffer copy-out, then 322 * we use that version of the data for the commit. 323 */ 324 jbd_lock_bh_state(bh_in); 325 repeat: 326 if (jh_in->b_frozen_data) { 327 done_copy_out = 1; 328 new_page = virt_to_page(jh_in->b_frozen_data); 329 new_offset = offset_in_page(jh_in->b_frozen_data); 330 triggers = jh_in->b_frozen_triggers; 331 } else { 332 new_page = jh2bh(jh_in)->b_page; 333 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 334 triggers = jh_in->b_triggers; 335 } 336 337 mapped_data = kmap_atomic(new_page, KM_USER0); 338 /* 339 * Fire any commit trigger. Do this before checking for escaping, 340 * as the trigger may modify the magic offset. If a copy-out 341 * happens afterwards, it will have the correct data in the buffer. 342 */ 343 jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset, 344 triggers); 345 346 /* 347 * Check for escaping 348 */ 349 if (*((__be32 *)(mapped_data + new_offset)) == 350 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 351 need_copy_out = 1; 352 do_escape = 1; 353 } 354 kunmap_atomic(mapped_data, KM_USER0); 355 356 /* 357 * Do we need to do a data copy? 358 */ 359 if (need_copy_out && !done_copy_out) { 360 char *tmp; 361 362 jbd_unlock_bh_state(bh_in); 363 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 364 jbd_lock_bh_state(bh_in); 365 if (jh_in->b_frozen_data) { 366 jbd2_free(tmp, bh_in->b_size); 367 goto repeat; 368 } 369 370 jh_in->b_frozen_data = tmp; 371 mapped_data = kmap_atomic(new_page, KM_USER0); 372 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 373 kunmap_atomic(mapped_data, KM_USER0); 374 375 new_page = virt_to_page(tmp); 376 new_offset = offset_in_page(tmp); 377 done_copy_out = 1; 378 379 /* 380 * This isn't strictly necessary, as we're using frozen 381 * data for the escaping, but it keeps consistency with 382 * b_frozen_data usage. 383 */ 384 jh_in->b_frozen_triggers = jh_in->b_triggers; 385 } 386 387 /* 388 * Did we need to do an escaping? Now we've done all the 389 * copying, we can finally do so. 390 */ 391 if (do_escape) { 392 mapped_data = kmap_atomic(new_page, KM_USER0); 393 *((unsigned int *)(mapped_data + new_offset)) = 0; 394 kunmap_atomic(mapped_data, KM_USER0); 395 } 396 397 set_bh_page(new_bh, new_page, new_offset); 398 new_jh->b_transaction = NULL; 399 new_bh->b_size = jh2bh(jh_in)->b_size; 400 new_bh->b_bdev = transaction->t_journal->j_dev; 401 new_bh->b_blocknr = blocknr; 402 set_buffer_mapped(new_bh); 403 set_buffer_dirty(new_bh); 404 405 *jh_out = new_jh; 406 407 /* 408 * The to-be-written buffer needs to get moved to the io queue, 409 * and the original buffer whose contents we are shadowing or 410 * copying is moved to the transaction's shadow queue. 411 */ 412 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 413 spin_lock(&journal->j_list_lock); 414 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 415 spin_unlock(&journal->j_list_lock); 416 jbd_unlock_bh_state(bh_in); 417 418 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 419 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 420 421 return do_escape | (done_copy_out << 1); 422 } 423 424 /* 425 * Allocation code for the journal file. Manage the space left in the 426 * journal, so that we can begin checkpointing when appropriate. 427 */ 428 429 /* 430 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 431 * 432 * Called with the journal already locked. 433 * 434 * Called under j_state_lock 435 */ 436 437 int __jbd2_log_space_left(journal_t *journal) 438 { 439 int left = journal->j_free; 440 441 assert_spin_locked(&journal->j_state_lock); 442 443 /* 444 * Be pessimistic here about the number of those free blocks which 445 * might be required for log descriptor control blocks. 446 */ 447 448 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 449 450 left -= MIN_LOG_RESERVED_BLOCKS; 451 452 if (left <= 0) 453 return 0; 454 left -= (left >> 3); 455 return left; 456 } 457 458 /* 459 * Called under j_state_lock. Returns true if a transaction commit was started. 460 */ 461 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 462 { 463 /* 464 * Are we already doing a recent enough commit? 465 */ 466 if (!tid_geq(journal->j_commit_request, target)) { 467 /* 468 * We want a new commit: OK, mark the request and wakup the 469 * commit thread. We do _not_ do the commit ourselves. 470 */ 471 472 journal->j_commit_request = target; 473 jbd_debug(1, "JBD: requesting commit %d/%d\n", 474 journal->j_commit_request, 475 journal->j_commit_sequence); 476 wake_up(&journal->j_wait_commit); 477 return 1; 478 } 479 return 0; 480 } 481 482 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 483 { 484 int ret; 485 486 spin_lock(&journal->j_state_lock); 487 ret = __jbd2_log_start_commit(journal, tid); 488 spin_unlock(&journal->j_state_lock); 489 return ret; 490 } 491 492 /* 493 * Force and wait upon a commit if the calling process is not within 494 * transaction. This is used for forcing out undo-protected data which contains 495 * bitmaps, when the fs is running out of space. 496 * 497 * We can only force the running transaction if we don't have an active handle; 498 * otherwise, we will deadlock. 499 * 500 * Returns true if a transaction was started. 501 */ 502 int jbd2_journal_force_commit_nested(journal_t *journal) 503 { 504 transaction_t *transaction = NULL; 505 tid_t tid; 506 507 spin_lock(&journal->j_state_lock); 508 if (journal->j_running_transaction && !current->journal_info) { 509 transaction = journal->j_running_transaction; 510 __jbd2_log_start_commit(journal, transaction->t_tid); 511 } else if (journal->j_committing_transaction) 512 transaction = journal->j_committing_transaction; 513 514 if (!transaction) { 515 spin_unlock(&journal->j_state_lock); 516 return 0; /* Nothing to retry */ 517 } 518 519 tid = transaction->t_tid; 520 spin_unlock(&journal->j_state_lock); 521 jbd2_log_wait_commit(journal, tid); 522 return 1; 523 } 524 525 /* 526 * Start a commit of the current running transaction (if any). Returns true 527 * if a transaction is going to be committed (or is currently already 528 * committing), and fills its tid in at *ptid 529 */ 530 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 531 { 532 int ret = 0; 533 534 spin_lock(&journal->j_state_lock); 535 if (journal->j_running_transaction) { 536 tid_t tid = journal->j_running_transaction->t_tid; 537 538 __jbd2_log_start_commit(journal, tid); 539 /* There's a running transaction and we've just made sure 540 * it's commit has been scheduled. */ 541 if (ptid) 542 *ptid = tid; 543 ret = 1; 544 } else if (journal->j_committing_transaction) { 545 /* 546 * If ext3_write_super() recently started a commit, then we 547 * have to wait for completion of that transaction 548 */ 549 if (ptid) 550 *ptid = journal->j_committing_transaction->t_tid; 551 ret = 1; 552 } 553 spin_unlock(&journal->j_state_lock); 554 return ret; 555 } 556 557 /* 558 * Wait for a specified commit to complete. 559 * The caller may not hold the journal lock. 560 */ 561 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 562 { 563 int err = 0; 564 565 #ifdef CONFIG_JBD2_DEBUG 566 spin_lock(&journal->j_state_lock); 567 if (!tid_geq(journal->j_commit_request, tid)) { 568 printk(KERN_EMERG 569 "%s: error: j_commit_request=%d, tid=%d\n", 570 __func__, journal->j_commit_request, tid); 571 } 572 spin_unlock(&journal->j_state_lock); 573 #endif 574 spin_lock(&journal->j_state_lock); 575 while (tid_gt(tid, journal->j_commit_sequence)) { 576 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 577 tid, journal->j_commit_sequence); 578 wake_up(&journal->j_wait_commit); 579 spin_unlock(&journal->j_state_lock); 580 wait_event(journal->j_wait_done_commit, 581 !tid_gt(tid, journal->j_commit_sequence)); 582 spin_lock(&journal->j_state_lock); 583 } 584 spin_unlock(&journal->j_state_lock); 585 586 if (unlikely(is_journal_aborted(journal))) { 587 printk(KERN_EMERG "journal commit I/O error\n"); 588 err = -EIO; 589 } 590 return err; 591 } 592 593 /* 594 * Log buffer allocation routines: 595 */ 596 597 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 598 { 599 unsigned long blocknr; 600 601 spin_lock(&journal->j_state_lock); 602 J_ASSERT(journal->j_free > 1); 603 604 blocknr = journal->j_head; 605 journal->j_head++; 606 journal->j_free--; 607 if (journal->j_head == journal->j_last) 608 journal->j_head = journal->j_first; 609 spin_unlock(&journal->j_state_lock); 610 return jbd2_journal_bmap(journal, blocknr, retp); 611 } 612 613 /* 614 * Conversion of logical to physical block numbers for the journal 615 * 616 * On external journals the journal blocks are identity-mapped, so 617 * this is a no-op. If needed, we can use j_blk_offset - everything is 618 * ready. 619 */ 620 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 621 unsigned long long *retp) 622 { 623 int err = 0; 624 unsigned long long ret; 625 626 if (journal->j_inode) { 627 ret = bmap(journal->j_inode, blocknr); 628 if (ret) 629 *retp = ret; 630 else { 631 printk(KERN_ALERT "%s: journal block not found " 632 "at offset %lu on %s\n", 633 __func__, blocknr, journal->j_devname); 634 err = -EIO; 635 __journal_abort_soft(journal, err); 636 } 637 } else { 638 *retp = blocknr; /* +journal->j_blk_offset */ 639 } 640 return err; 641 } 642 643 /* 644 * We play buffer_head aliasing tricks to write data/metadata blocks to 645 * the journal without copying their contents, but for journal 646 * descriptor blocks we do need to generate bona fide buffers. 647 * 648 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 649 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 650 * But we don't bother doing that, so there will be coherency problems with 651 * mmaps of blockdevs which hold live JBD-controlled filesystems. 652 */ 653 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 654 { 655 struct buffer_head *bh; 656 unsigned long long blocknr; 657 int err; 658 659 err = jbd2_journal_next_log_block(journal, &blocknr); 660 661 if (err) 662 return NULL; 663 664 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 665 if (!bh) 666 return NULL; 667 lock_buffer(bh); 668 memset(bh->b_data, 0, journal->j_blocksize); 669 set_buffer_uptodate(bh); 670 unlock_buffer(bh); 671 BUFFER_TRACE(bh, "return this buffer"); 672 return jbd2_journal_add_journal_head(bh); 673 } 674 675 struct jbd2_stats_proc_session { 676 journal_t *journal; 677 struct transaction_stats_s *stats; 678 int start; 679 int max; 680 }; 681 682 static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s, 683 struct transaction_stats_s *ts, 684 int first) 685 { 686 if (ts == s->stats + s->max) 687 ts = s->stats; 688 if (!first && ts == s->stats + s->start) 689 return NULL; 690 while (ts->ts_type == 0) { 691 ts++; 692 if (ts == s->stats + s->max) 693 ts = s->stats; 694 if (ts == s->stats + s->start) 695 return NULL; 696 } 697 return ts; 698 699 } 700 701 static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos) 702 { 703 struct jbd2_stats_proc_session *s = seq->private; 704 struct transaction_stats_s *ts; 705 int l = *pos; 706 707 if (l == 0) 708 return SEQ_START_TOKEN; 709 ts = jbd2_history_skip_empty(s, s->stats + s->start, 1); 710 if (!ts) 711 return NULL; 712 l--; 713 while (l) { 714 ts = jbd2_history_skip_empty(s, ++ts, 0); 715 if (!ts) 716 break; 717 l--; 718 } 719 return ts; 720 } 721 722 static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos) 723 { 724 struct jbd2_stats_proc_session *s = seq->private; 725 struct transaction_stats_s *ts = v; 726 727 ++*pos; 728 if (v == SEQ_START_TOKEN) 729 return jbd2_history_skip_empty(s, s->stats + s->start, 1); 730 else 731 return jbd2_history_skip_empty(s, ++ts, 0); 732 } 733 734 static int jbd2_seq_history_show(struct seq_file *seq, void *v) 735 { 736 struct transaction_stats_s *ts = v; 737 if (v == SEQ_START_TOKEN) { 738 seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s " 739 "%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid", 740 "wait", "run", "lock", "flush", "log", "hndls", 741 "block", "inlog", "ctime", "write", "drop", 742 "close"); 743 return 0; 744 } 745 if (ts->ts_type == JBD2_STATS_RUN) 746 seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u " 747 "%-6lu %-5lu %-5lu\n", "R", ts->ts_tid, 748 jiffies_to_msecs(ts->u.run.rs_wait), 749 jiffies_to_msecs(ts->u.run.rs_running), 750 jiffies_to_msecs(ts->u.run.rs_locked), 751 jiffies_to_msecs(ts->u.run.rs_flushing), 752 jiffies_to_msecs(ts->u.run.rs_logging), 753 ts->u.run.rs_handle_count, 754 ts->u.run.rs_blocks, 755 ts->u.run.rs_blocks_logged); 756 else if (ts->ts_type == JBD2_STATS_CHECKPOINT) 757 seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n", 758 "C", ts->ts_tid, " ", 759 jiffies_to_msecs(ts->u.chp.cs_chp_time), 760 ts->u.chp.cs_written, ts->u.chp.cs_dropped, 761 ts->u.chp.cs_forced_to_close); 762 else 763 J_ASSERT(0); 764 return 0; 765 } 766 767 static void jbd2_seq_history_stop(struct seq_file *seq, void *v) 768 { 769 } 770 771 static struct seq_operations jbd2_seq_history_ops = { 772 .start = jbd2_seq_history_start, 773 .next = jbd2_seq_history_next, 774 .stop = jbd2_seq_history_stop, 775 .show = jbd2_seq_history_show, 776 }; 777 778 static int jbd2_seq_history_open(struct inode *inode, struct file *file) 779 { 780 journal_t *journal = PDE(inode)->data; 781 struct jbd2_stats_proc_session *s; 782 int rc, size; 783 784 s = kmalloc(sizeof(*s), GFP_KERNEL); 785 if (s == NULL) 786 return -ENOMEM; 787 size = sizeof(struct transaction_stats_s) * journal->j_history_max; 788 s->stats = kmalloc(size, GFP_KERNEL); 789 if (s->stats == NULL) { 790 kfree(s); 791 return -ENOMEM; 792 } 793 spin_lock(&journal->j_history_lock); 794 memcpy(s->stats, journal->j_history, size); 795 s->max = journal->j_history_max; 796 s->start = journal->j_history_cur % s->max; 797 spin_unlock(&journal->j_history_lock); 798 799 rc = seq_open(file, &jbd2_seq_history_ops); 800 if (rc == 0) { 801 struct seq_file *m = file->private_data; 802 m->private = s; 803 } else { 804 kfree(s->stats); 805 kfree(s); 806 } 807 return rc; 808 809 } 810 811 static int jbd2_seq_history_release(struct inode *inode, struct file *file) 812 { 813 struct seq_file *seq = file->private_data; 814 struct jbd2_stats_proc_session *s = seq->private; 815 816 kfree(s->stats); 817 kfree(s); 818 return seq_release(inode, file); 819 } 820 821 static struct file_operations jbd2_seq_history_fops = { 822 .owner = THIS_MODULE, 823 .open = jbd2_seq_history_open, 824 .read = seq_read, 825 .llseek = seq_lseek, 826 .release = jbd2_seq_history_release, 827 }; 828 829 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 830 { 831 return *pos ? NULL : SEQ_START_TOKEN; 832 } 833 834 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 835 { 836 return NULL; 837 } 838 839 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 840 { 841 struct jbd2_stats_proc_session *s = seq->private; 842 843 if (v != SEQ_START_TOKEN) 844 return 0; 845 seq_printf(seq, "%lu transaction, each upto %u blocks\n", 846 s->stats->ts_tid, 847 s->journal->j_max_transaction_buffers); 848 if (s->stats->ts_tid == 0) 849 return 0; 850 seq_printf(seq, "average: \n %ums waiting for transaction\n", 851 jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid)); 852 seq_printf(seq, " %ums running transaction\n", 853 jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid)); 854 seq_printf(seq, " %ums transaction was being locked\n", 855 jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid)); 856 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 857 jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid)); 858 seq_printf(seq, " %ums logging transaction\n", 859 jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid)); 860 seq_printf(seq, " %lluus average transaction commit time\n", 861 div_u64(s->journal->j_average_commit_time, 1000)); 862 seq_printf(seq, " %lu handles per transaction\n", 863 s->stats->u.run.rs_handle_count / s->stats->ts_tid); 864 seq_printf(seq, " %lu blocks per transaction\n", 865 s->stats->u.run.rs_blocks / s->stats->ts_tid); 866 seq_printf(seq, " %lu logged blocks per transaction\n", 867 s->stats->u.run.rs_blocks_logged / s->stats->ts_tid); 868 return 0; 869 } 870 871 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 872 { 873 } 874 875 static struct seq_operations jbd2_seq_info_ops = { 876 .start = jbd2_seq_info_start, 877 .next = jbd2_seq_info_next, 878 .stop = jbd2_seq_info_stop, 879 .show = jbd2_seq_info_show, 880 }; 881 882 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 883 { 884 journal_t *journal = PDE(inode)->data; 885 struct jbd2_stats_proc_session *s; 886 int rc, size; 887 888 s = kmalloc(sizeof(*s), GFP_KERNEL); 889 if (s == NULL) 890 return -ENOMEM; 891 size = sizeof(struct transaction_stats_s); 892 s->stats = kmalloc(size, GFP_KERNEL); 893 if (s->stats == NULL) { 894 kfree(s); 895 return -ENOMEM; 896 } 897 spin_lock(&journal->j_history_lock); 898 memcpy(s->stats, &journal->j_stats, size); 899 s->journal = journal; 900 spin_unlock(&journal->j_history_lock); 901 902 rc = seq_open(file, &jbd2_seq_info_ops); 903 if (rc == 0) { 904 struct seq_file *m = file->private_data; 905 m->private = s; 906 } else { 907 kfree(s->stats); 908 kfree(s); 909 } 910 return rc; 911 912 } 913 914 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 915 { 916 struct seq_file *seq = file->private_data; 917 struct jbd2_stats_proc_session *s = seq->private; 918 kfree(s->stats); 919 kfree(s); 920 return seq_release(inode, file); 921 } 922 923 static struct file_operations jbd2_seq_info_fops = { 924 .owner = THIS_MODULE, 925 .open = jbd2_seq_info_open, 926 .read = seq_read, 927 .llseek = seq_lseek, 928 .release = jbd2_seq_info_release, 929 }; 930 931 static struct proc_dir_entry *proc_jbd2_stats; 932 933 static void jbd2_stats_proc_init(journal_t *journal) 934 { 935 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 936 if (journal->j_proc_entry) { 937 proc_create_data("history", S_IRUGO, journal->j_proc_entry, 938 &jbd2_seq_history_fops, journal); 939 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 940 &jbd2_seq_info_fops, journal); 941 } 942 } 943 944 static void jbd2_stats_proc_exit(journal_t *journal) 945 { 946 remove_proc_entry("info", journal->j_proc_entry); 947 remove_proc_entry("history", journal->j_proc_entry); 948 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 949 } 950 951 static void journal_init_stats(journal_t *journal) 952 { 953 int size; 954 955 if (!proc_jbd2_stats) 956 return; 957 958 journal->j_history_max = 100; 959 size = sizeof(struct transaction_stats_s) * journal->j_history_max; 960 journal->j_history = kzalloc(size, GFP_KERNEL); 961 if (!journal->j_history) { 962 journal->j_history_max = 0; 963 return; 964 } 965 spin_lock_init(&journal->j_history_lock); 966 } 967 968 /* 969 * Management for journal control blocks: functions to create and 970 * destroy journal_t structures, and to initialise and read existing 971 * journal blocks from disk. */ 972 973 /* First: create and setup a journal_t object in memory. We initialise 974 * very few fields yet: that has to wait until we have created the 975 * journal structures from from scratch, or loaded them from disk. */ 976 977 static journal_t * journal_init_common (void) 978 { 979 journal_t *journal; 980 int err; 981 982 journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL); 983 if (!journal) 984 goto fail; 985 986 init_waitqueue_head(&journal->j_wait_transaction_locked); 987 init_waitqueue_head(&journal->j_wait_logspace); 988 init_waitqueue_head(&journal->j_wait_done_commit); 989 init_waitqueue_head(&journal->j_wait_checkpoint); 990 init_waitqueue_head(&journal->j_wait_commit); 991 init_waitqueue_head(&journal->j_wait_updates); 992 mutex_init(&journal->j_barrier); 993 mutex_init(&journal->j_checkpoint_mutex); 994 spin_lock_init(&journal->j_revoke_lock); 995 spin_lock_init(&journal->j_list_lock); 996 spin_lock_init(&journal->j_state_lock); 997 998 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 999 journal->j_min_batch_time = 0; 1000 journal->j_max_batch_time = 15000; /* 15ms */ 1001 1002 /* The journal is marked for error until we succeed with recovery! */ 1003 journal->j_flags = JBD2_ABORT; 1004 1005 /* Set up a default-sized revoke table for the new mount. */ 1006 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1007 if (err) { 1008 kfree(journal); 1009 goto fail; 1010 } 1011 1012 journal_init_stats(journal); 1013 1014 return journal; 1015 fail: 1016 return NULL; 1017 } 1018 1019 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1020 * 1021 * Create a journal structure assigned some fixed set of disk blocks to 1022 * the journal. We don't actually touch those disk blocks yet, but we 1023 * need to set up all of the mapping information to tell the journaling 1024 * system where the journal blocks are. 1025 * 1026 */ 1027 1028 /** 1029 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1030 * @bdev: Block device on which to create the journal 1031 * @fs_dev: Device which hold journalled filesystem for this journal. 1032 * @start: Block nr Start of journal. 1033 * @len: Length of the journal in blocks. 1034 * @blocksize: blocksize of journalling device 1035 * 1036 * Returns: a newly created journal_t * 1037 * 1038 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1039 * range of blocks on an arbitrary block device. 1040 * 1041 */ 1042 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1043 struct block_device *fs_dev, 1044 unsigned long long start, int len, int blocksize) 1045 { 1046 journal_t *journal = journal_init_common(); 1047 struct buffer_head *bh; 1048 char *p; 1049 int n; 1050 1051 if (!journal) 1052 return NULL; 1053 1054 /* journal descriptor can store up to n blocks -bzzz */ 1055 journal->j_blocksize = blocksize; 1056 jbd2_stats_proc_init(journal); 1057 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1058 journal->j_wbufsize = n; 1059 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1060 if (!journal->j_wbuf) { 1061 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 1062 __func__); 1063 goto out_err; 1064 } 1065 journal->j_dev = bdev; 1066 journal->j_fs_dev = fs_dev; 1067 journal->j_blk_offset = start; 1068 journal->j_maxlen = len; 1069 bdevname(journal->j_dev, journal->j_devname); 1070 p = journal->j_devname; 1071 while ((p = strchr(p, '/'))) 1072 *p = '!'; 1073 1074 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1075 if (!bh) { 1076 printk(KERN_ERR 1077 "%s: Cannot get buffer for journal superblock\n", 1078 __func__); 1079 goto out_err; 1080 } 1081 journal->j_sb_buffer = bh; 1082 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1083 1084 return journal; 1085 out_err: 1086 jbd2_stats_proc_exit(journal); 1087 kfree(journal); 1088 return NULL; 1089 } 1090 1091 /** 1092 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1093 * @inode: An inode to create the journal in 1094 * 1095 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1096 * the journal. The inode must exist already, must support bmap() and 1097 * must have all data blocks preallocated. 1098 */ 1099 journal_t * jbd2_journal_init_inode (struct inode *inode) 1100 { 1101 struct buffer_head *bh; 1102 journal_t *journal = journal_init_common(); 1103 char *p; 1104 int err; 1105 int n; 1106 unsigned long long blocknr; 1107 1108 if (!journal) 1109 return NULL; 1110 1111 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1112 journal->j_inode = inode; 1113 bdevname(journal->j_dev, journal->j_devname); 1114 p = journal->j_devname; 1115 while ((p = strchr(p, '/'))) 1116 *p = '!'; 1117 p = journal->j_devname + strlen(journal->j_devname); 1118 sprintf(p, ":%lu", journal->j_inode->i_ino); 1119 jbd_debug(1, 1120 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1121 journal, inode->i_sb->s_id, inode->i_ino, 1122 (long long) inode->i_size, 1123 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1124 1125 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1126 journal->j_blocksize = inode->i_sb->s_blocksize; 1127 jbd2_stats_proc_init(journal); 1128 1129 /* journal descriptor can store up to n blocks -bzzz */ 1130 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1131 journal->j_wbufsize = n; 1132 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1133 if (!journal->j_wbuf) { 1134 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 1135 __func__); 1136 goto out_err; 1137 } 1138 1139 err = jbd2_journal_bmap(journal, 0, &blocknr); 1140 /* If that failed, give up */ 1141 if (err) { 1142 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 1143 __func__); 1144 goto out_err; 1145 } 1146 1147 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1148 if (!bh) { 1149 printk(KERN_ERR 1150 "%s: Cannot get buffer for journal superblock\n", 1151 __func__); 1152 goto out_err; 1153 } 1154 journal->j_sb_buffer = bh; 1155 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1156 1157 return journal; 1158 out_err: 1159 jbd2_stats_proc_exit(journal); 1160 kfree(journal); 1161 return NULL; 1162 } 1163 1164 /* 1165 * If the journal init or create aborts, we need to mark the journal 1166 * superblock as being NULL to prevent the journal destroy from writing 1167 * back a bogus superblock. 1168 */ 1169 static void journal_fail_superblock (journal_t *journal) 1170 { 1171 struct buffer_head *bh = journal->j_sb_buffer; 1172 brelse(bh); 1173 journal->j_sb_buffer = NULL; 1174 } 1175 1176 /* 1177 * Given a journal_t structure, initialise the various fields for 1178 * startup of a new journaling session. We use this both when creating 1179 * a journal, and after recovering an old journal to reset it for 1180 * subsequent use. 1181 */ 1182 1183 static int journal_reset(journal_t *journal) 1184 { 1185 journal_superblock_t *sb = journal->j_superblock; 1186 unsigned long long first, last; 1187 1188 first = be32_to_cpu(sb->s_first); 1189 last = be32_to_cpu(sb->s_maxlen); 1190 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1191 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1192 first, last); 1193 journal_fail_superblock(journal); 1194 return -EINVAL; 1195 } 1196 1197 journal->j_first = first; 1198 journal->j_last = last; 1199 1200 journal->j_head = first; 1201 journal->j_tail = first; 1202 journal->j_free = last - first; 1203 1204 journal->j_tail_sequence = journal->j_transaction_sequence; 1205 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1206 journal->j_commit_request = journal->j_commit_sequence; 1207 1208 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1209 1210 /* Add the dynamic fields and write it to disk. */ 1211 jbd2_journal_update_superblock(journal, 1); 1212 return jbd2_journal_start_thread(journal); 1213 } 1214 1215 /** 1216 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1217 * @journal: The journal to update. 1218 * @wait: Set to '0' if you don't want to wait for IO completion. 1219 * 1220 * Update a journal's dynamic superblock fields and write it to disk, 1221 * optionally waiting for the IO to complete. 1222 */ 1223 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1224 { 1225 journal_superblock_t *sb = journal->j_superblock; 1226 struct buffer_head *bh = journal->j_sb_buffer; 1227 1228 /* 1229 * As a special case, if the on-disk copy is already marked as needing 1230 * no recovery (s_start == 0) and there are no outstanding transactions 1231 * in the filesystem, then we can safely defer the superblock update 1232 * until the next commit by setting JBD2_FLUSHED. This avoids 1233 * attempting a write to a potential-readonly device. 1234 */ 1235 if (sb->s_start == 0 && journal->j_tail_sequence == 1236 journal->j_transaction_sequence) { 1237 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1238 "(start %ld, seq %d, errno %d)\n", 1239 journal->j_tail, journal->j_tail_sequence, 1240 journal->j_errno); 1241 goto out; 1242 } 1243 1244 if (buffer_write_io_error(bh)) { 1245 /* 1246 * Oh, dear. A previous attempt to write the journal 1247 * superblock failed. This could happen because the 1248 * USB device was yanked out. Or it could happen to 1249 * be a transient write error and maybe the block will 1250 * be remapped. Nothing we can do but to retry the 1251 * write and hope for the best. 1252 */ 1253 printk(KERN_ERR "JBD2: previous I/O error detected " 1254 "for journal superblock update for %s.\n", 1255 journal->j_devname); 1256 clear_buffer_write_io_error(bh); 1257 set_buffer_uptodate(bh); 1258 } 1259 1260 spin_lock(&journal->j_state_lock); 1261 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1262 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1263 1264 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1265 sb->s_start = cpu_to_be32(journal->j_tail); 1266 sb->s_errno = cpu_to_be32(journal->j_errno); 1267 spin_unlock(&journal->j_state_lock); 1268 1269 BUFFER_TRACE(bh, "marking dirty"); 1270 mark_buffer_dirty(bh); 1271 if (wait) { 1272 sync_dirty_buffer(bh); 1273 if (buffer_write_io_error(bh)) { 1274 printk(KERN_ERR "JBD2: I/O error detected " 1275 "when updating journal superblock for %s.\n", 1276 journal->j_devname); 1277 clear_buffer_write_io_error(bh); 1278 set_buffer_uptodate(bh); 1279 } 1280 } else 1281 ll_rw_block(SWRITE, 1, &bh); 1282 1283 out: 1284 /* If we have just flushed the log (by marking s_start==0), then 1285 * any future commit will have to be careful to update the 1286 * superblock again to re-record the true start of the log. */ 1287 1288 spin_lock(&journal->j_state_lock); 1289 if (sb->s_start) 1290 journal->j_flags &= ~JBD2_FLUSHED; 1291 else 1292 journal->j_flags |= JBD2_FLUSHED; 1293 spin_unlock(&journal->j_state_lock); 1294 } 1295 1296 /* 1297 * Read the superblock for a given journal, performing initial 1298 * validation of the format. 1299 */ 1300 1301 static int journal_get_superblock(journal_t *journal) 1302 { 1303 struct buffer_head *bh; 1304 journal_superblock_t *sb; 1305 int err = -EIO; 1306 1307 bh = journal->j_sb_buffer; 1308 1309 J_ASSERT(bh != NULL); 1310 if (!buffer_uptodate(bh)) { 1311 ll_rw_block(READ, 1, &bh); 1312 wait_on_buffer(bh); 1313 if (!buffer_uptodate(bh)) { 1314 printk (KERN_ERR 1315 "JBD: IO error reading journal superblock\n"); 1316 goto out; 1317 } 1318 } 1319 1320 sb = journal->j_superblock; 1321 1322 err = -EINVAL; 1323 1324 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1325 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1326 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1327 goto out; 1328 } 1329 1330 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1331 case JBD2_SUPERBLOCK_V1: 1332 journal->j_format_version = 1; 1333 break; 1334 case JBD2_SUPERBLOCK_V2: 1335 journal->j_format_version = 2; 1336 break; 1337 default: 1338 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1339 goto out; 1340 } 1341 1342 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1343 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1344 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1345 printk (KERN_WARNING "JBD: journal file too short\n"); 1346 goto out; 1347 } 1348 1349 return 0; 1350 1351 out: 1352 journal_fail_superblock(journal); 1353 return err; 1354 } 1355 1356 /* 1357 * Load the on-disk journal superblock and read the key fields into the 1358 * journal_t. 1359 */ 1360 1361 static int load_superblock(journal_t *journal) 1362 { 1363 int err; 1364 journal_superblock_t *sb; 1365 1366 err = journal_get_superblock(journal); 1367 if (err) 1368 return err; 1369 1370 sb = journal->j_superblock; 1371 1372 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1373 journal->j_tail = be32_to_cpu(sb->s_start); 1374 journal->j_first = be32_to_cpu(sb->s_first); 1375 journal->j_last = be32_to_cpu(sb->s_maxlen); 1376 journal->j_errno = be32_to_cpu(sb->s_errno); 1377 1378 return 0; 1379 } 1380 1381 1382 /** 1383 * int jbd2_journal_load() - Read journal from disk. 1384 * @journal: Journal to act on. 1385 * 1386 * Given a journal_t structure which tells us which disk blocks contain 1387 * a journal, read the journal from disk to initialise the in-memory 1388 * structures. 1389 */ 1390 int jbd2_journal_load(journal_t *journal) 1391 { 1392 int err; 1393 journal_superblock_t *sb; 1394 1395 err = load_superblock(journal); 1396 if (err) 1397 return err; 1398 1399 sb = journal->j_superblock; 1400 /* If this is a V2 superblock, then we have to check the 1401 * features flags on it. */ 1402 1403 if (journal->j_format_version >= 2) { 1404 if ((sb->s_feature_ro_compat & 1405 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1406 (sb->s_feature_incompat & 1407 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1408 printk (KERN_WARNING 1409 "JBD: Unrecognised features on journal\n"); 1410 return -EINVAL; 1411 } 1412 } 1413 1414 /* Let the recovery code check whether it needs to recover any 1415 * data from the journal. */ 1416 if (jbd2_journal_recover(journal)) 1417 goto recovery_error; 1418 1419 /* OK, we've finished with the dynamic journal bits: 1420 * reinitialise the dynamic contents of the superblock in memory 1421 * and reset them on disk. */ 1422 if (journal_reset(journal)) 1423 goto recovery_error; 1424 1425 journal->j_flags &= ~JBD2_ABORT; 1426 journal->j_flags |= JBD2_LOADED; 1427 return 0; 1428 1429 recovery_error: 1430 printk (KERN_WARNING "JBD: recovery failed\n"); 1431 return -EIO; 1432 } 1433 1434 /** 1435 * void jbd2_journal_destroy() - Release a journal_t structure. 1436 * @journal: Journal to act on. 1437 * 1438 * Release a journal_t structure once it is no longer in use by the 1439 * journaled object. 1440 * Return <0 if we couldn't clean up the journal. 1441 */ 1442 int jbd2_journal_destroy(journal_t *journal) 1443 { 1444 int err = 0; 1445 1446 /* Wait for the commit thread to wake up and die. */ 1447 journal_kill_thread(journal); 1448 1449 /* Force a final log commit */ 1450 if (journal->j_running_transaction) 1451 jbd2_journal_commit_transaction(journal); 1452 1453 /* Force any old transactions to disk */ 1454 1455 /* Totally anal locking here... */ 1456 spin_lock(&journal->j_list_lock); 1457 while (journal->j_checkpoint_transactions != NULL) { 1458 spin_unlock(&journal->j_list_lock); 1459 mutex_lock(&journal->j_checkpoint_mutex); 1460 jbd2_log_do_checkpoint(journal); 1461 mutex_unlock(&journal->j_checkpoint_mutex); 1462 spin_lock(&journal->j_list_lock); 1463 } 1464 1465 J_ASSERT(journal->j_running_transaction == NULL); 1466 J_ASSERT(journal->j_committing_transaction == NULL); 1467 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1468 spin_unlock(&journal->j_list_lock); 1469 1470 if (journal->j_sb_buffer) { 1471 if (!is_journal_aborted(journal)) { 1472 /* We can now mark the journal as empty. */ 1473 journal->j_tail = 0; 1474 journal->j_tail_sequence = 1475 ++journal->j_transaction_sequence; 1476 jbd2_journal_update_superblock(journal, 1); 1477 } else { 1478 err = -EIO; 1479 } 1480 brelse(journal->j_sb_buffer); 1481 } 1482 1483 if (journal->j_proc_entry) 1484 jbd2_stats_proc_exit(journal); 1485 if (journal->j_inode) 1486 iput(journal->j_inode); 1487 if (journal->j_revoke) 1488 jbd2_journal_destroy_revoke(journal); 1489 kfree(journal->j_wbuf); 1490 kfree(journal); 1491 1492 return err; 1493 } 1494 1495 1496 /** 1497 *int jbd2_journal_check_used_features () - Check if features specified are used. 1498 * @journal: Journal to check. 1499 * @compat: bitmask of compatible features 1500 * @ro: bitmask of features that force read-only mount 1501 * @incompat: bitmask of incompatible features 1502 * 1503 * Check whether the journal uses all of a given set of 1504 * features. Return true (non-zero) if it does. 1505 **/ 1506 1507 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1508 unsigned long ro, unsigned long incompat) 1509 { 1510 journal_superblock_t *sb; 1511 1512 if (!compat && !ro && !incompat) 1513 return 1; 1514 if (journal->j_format_version == 1) 1515 return 0; 1516 1517 sb = journal->j_superblock; 1518 1519 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1520 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1521 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1522 return 1; 1523 1524 return 0; 1525 } 1526 1527 /** 1528 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1529 * @journal: Journal to check. 1530 * @compat: bitmask of compatible features 1531 * @ro: bitmask of features that force read-only mount 1532 * @incompat: bitmask of incompatible features 1533 * 1534 * Check whether the journaling code supports the use of 1535 * all of a given set of features on this journal. Return true 1536 * (non-zero) if it can. */ 1537 1538 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1539 unsigned long ro, unsigned long incompat) 1540 { 1541 journal_superblock_t *sb; 1542 1543 if (!compat && !ro && !incompat) 1544 return 1; 1545 1546 sb = journal->j_superblock; 1547 1548 /* We can support any known requested features iff the 1549 * superblock is in version 2. Otherwise we fail to support any 1550 * extended sb features. */ 1551 1552 if (journal->j_format_version != 2) 1553 return 0; 1554 1555 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1556 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1557 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1558 return 1; 1559 1560 return 0; 1561 } 1562 1563 /** 1564 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1565 * @journal: Journal to act on. 1566 * @compat: bitmask of compatible features 1567 * @ro: bitmask of features that force read-only mount 1568 * @incompat: bitmask of incompatible features 1569 * 1570 * Mark a given journal feature as present on the 1571 * superblock. Returns true if the requested features could be set. 1572 * 1573 */ 1574 1575 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1576 unsigned long ro, unsigned long incompat) 1577 { 1578 journal_superblock_t *sb; 1579 1580 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1581 return 1; 1582 1583 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1584 return 0; 1585 1586 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1587 compat, ro, incompat); 1588 1589 sb = journal->j_superblock; 1590 1591 sb->s_feature_compat |= cpu_to_be32(compat); 1592 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1593 sb->s_feature_incompat |= cpu_to_be32(incompat); 1594 1595 return 1; 1596 } 1597 1598 /* 1599 * jbd2_journal_clear_features () - Clear a given journal feature in the 1600 * superblock 1601 * @journal: Journal to act on. 1602 * @compat: bitmask of compatible features 1603 * @ro: bitmask of features that force read-only mount 1604 * @incompat: bitmask of incompatible features 1605 * 1606 * Clear a given journal feature as present on the 1607 * superblock. 1608 */ 1609 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1610 unsigned long ro, unsigned long incompat) 1611 { 1612 journal_superblock_t *sb; 1613 1614 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1615 compat, ro, incompat); 1616 1617 sb = journal->j_superblock; 1618 1619 sb->s_feature_compat &= ~cpu_to_be32(compat); 1620 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1621 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1622 } 1623 EXPORT_SYMBOL(jbd2_journal_clear_features); 1624 1625 /** 1626 * int jbd2_journal_update_format () - Update on-disk journal structure. 1627 * @journal: Journal to act on. 1628 * 1629 * Given an initialised but unloaded journal struct, poke about in the 1630 * on-disk structure to update it to the most recent supported version. 1631 */ 1632 int jbd2_journal_update_format (journal_t *journal) 1633 { 1634 journal_superblock_t *sb; 1635 int err; 1636 1637 err = journal_get_superblock(journal); 1638 if (err) 1639 return err; 1640 1641 sb = journal->j_superblock; 1642 1643 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1644 case JBD2_SUPERBLOCK_V2: 1645 return 0; 1646 case JBD2_SUPERBLOCK_V1: 1647 return journal_convert_superblock_v1(journal, sb); 1648 default: 1649 break; 1650 } 1651 return -EINVAL; 1652 } 1653 1654 static int journal_convert_superblock_v1(journal_t *journal, 1655 journal_superblock_t *sb) 1656 { 1657 int offset, blocksize; 1658 struct buffer_head *bh; 1659 1660 printk(KERN_WARNING 1661 "JBD: Converting superblock from version 1 to 2.\n"); 1662 1663 /* Pre-initialise new fields to zero */ 1664 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1665 blocksize = be32_to_cpu(sb->s_blocksize); 1666 memset(&sb->s_feature_compat, 0, blocksize-offset); 1667 1668 sb->s_nr_users = cpu_to_be32(1); 1669 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1670 journal->j_format_version = 2; 1671 1672 bh = journal->j_sb_buffer; 1673 BUFFER_TRACE(bh, "marking dirty"); 1674 mark_buffer_dirty(bh); 1675 sync_dirty_buffer(bh); 1676 return 0; 1677 } 1678 1679 1680 /** 1681 * int jbd2_journal_flush () - Flush journal 1682 * @journal: Journal to act on. 1683 * 1684 * Flush all data for a given journal to disk and empty the journal. 1685 * Filesystems can use this when remounting readonly to ensure that 1686 * recovery does not need to happen on remount. 1687 */ 1688 1689 int jbd2_journal_flush(journal_t *journal) 1690 { 1691 int err = 0; 1692 transaction_t *transaction = NULL; 1693 unsigned long old_tail; 1694 1695 spin_lock(&journal->j_state_lock); 1696 1697 /* Force everything buffered to the log... */ 1698 if (journal->j_running_transaction) { 1699 transaction = journal->j_running_transaction; 1700 __jbd2_log_start_commit(journal, transaction->t_tid); 1701 } else if (journal->j_committing_transaction) 1702 transaction = journal->j_committing_transaction; 1703 1704 /* Wait for the log commit to complete... */ 1705 if (transaction) { 1706 tid_t tid = transaction->t_tid; 1707 1708 spin_unlock(&journal->j_state_lock); 1709 jbd2_log_wait_commit(journal, tid); 1710 } else { 1711 spin_unlock(&journal->j_state_lock); 1712 } 1713 1714 /* ...and flush everything in the log out to disk. */ 1715 spin_lock(&journal->j_list_lock); 1716 while (!err && journal->j_checkpoint_transactions != NULL) { 1717 spin_unlock(&journal->j_list_lock); 1718 mutex_lock(&journal->j_checkpoint_mutex); 1719 err = jbd2_log_do_checkpoint(journal); 1720 mutex_unlock(&journal->j_checkpoint_mutex); 1721 spin_lock(&journal->j_list_lock); 1722 } 1723 spin_unlock(&journal->j_list_lock); 1724 1725 if (is_journal_aborted(journal)) 1726 return -EIO; 1727 1728 jbd2_cleanup_journal_tail(journal); 1729 1730 /* Finally, mark the journal as really needing no recovery. 1731 * This sets s_start==0 in the underlying superblock, which is 1732 * the magic code for a fully-recovered superblock. Any future 1733 * commits of data to the journal will restore the current 1734 * s_start value. */ 1735 spin_lock(&journal->j_state_lock); 1736 old_tail = journal->j_tail; 1737 journal->j_tail = 0; 1738 spin_unlock(&journal->j_state_lock); 1739 jbd2_journal_update_superblock(journal, 1); 1740 spin_lock(&journal->j_state_lock); 1741 journal->j_tail = old_tail; 1742 1743 J_ASSERT(!journal->j_running_transaction); 1744 J_ASSERT(!journal->j_committing_transaction); 1745 J_ASSERT(!journal->j_checkpoint_transactions); 1746 J_ASSERT(journal->j_head == journal->j_tail); 1747 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1748 spin_unlock(&journal->j_state_lock); 1749 return 0; 1750 } 1751 1752 /** 1753 * int jbd2_journal_wipe() - Wipe journal contents 1754 * @journal: Journal to act on. 1755 * @write: flag (see below) 1756 * 1757 * Wipe out all of the contents of a journal, safely. This will produce 1758 * a warning if the journal contains any valid recovery information. 1759 * Must be called between journal_init_*() and jbd2_journal_load(). 1760 * 1761 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1762 * we merely suppress recovery. 1763 */ 1764 1765 int jbd2_journal_wipe(journal_t *journal, int write) 1766 { 1767 journal_superblock_t *sb; 1768 int err = 0; 1769 1770 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1771 1772 err = load_superblock(journal); 1773 if (err) 1774 return err; 1775 1776 sb = journal->j_superblock; 1777 1778 if (!journal->j_tail) 1779 goto no_recovery; 1780 1781 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1782 write ? "Clearing" : "Ignoring"); 1783 1784 err = jbd2_journal_skip_recovery(journal); 1785 if (write) 1786 jbd2_journal_update_superblock(journal, 1); 1787 1788 no_recovery: 1789 return err; 1790 } 1791 1792 /* 1793 * Journal abort has very specific semantics, which we describe 1794 * for journal abort. 1795 * 1796 * Two internal functions, which provide abort to the jbd layer 1797 * itself are here. 1798 */ 1799 1800 /* 1801 * Quick version for internal journal use (doesn't lock the journal). 1802 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1803 * and don't attempt to make any other journal updates. 1804 */ 1805 void __jbd2_journal_abort_hard(journal_t *journal) 1806 { 1807 transaction_t *transaction; 1808 1809 if (journal->j_flags & JBD2_ABORT) 1810 return; 1811 1812 printk(KERN_ERR "Aborting journal on device %s.\n", 1813 journal->j_devname); 1814 1815 spin_lock(&journal->j_state_lock); 1816 journal->j_flags |= JBD2_ABORT; 1817 transaction = journal->j_running_transaction; 1818 if (transaction) 1819 __jbd2_log_start_commit(journal, transaction->t_tid); 1820 spin_unlock(&journal->j_state_lock); 1821 } 1822 1823 /* Soft abort: record the abort error status in the journal superblock, 1824 * but don't do any other IO. */ 1825 static void __journal_abort_soft (journal_t *journal, int errno) 1826 { 1827 if (journal->j_flags & JBD2_ABORT) 1828 return; 1829 1830 if (!journal->j_errno) 1831 journal->j_errno = errno; 1832 1833 __jbd2_journal_abort_hard(journal); 1834 1835 if (errno) 1836 jbd2_journal_update_superblock(journal, 1); 1837 } 1838 1839 /** 1840 * void jbd2_journal_abort () - Shutdown the journal immediately. 1841 * @journal: the journal to shutdown. 1842 * @errno: an error number to record in the journal indicating 1843 * the reason for the shutdown. 1844 * 1845 * Perform a complete, immediate shutdown of the ENTIRE 1846 * journal (not of a single transaction). This operation cannot be 1847 * undone without closing and reopening the journal. 1848 * 1849 * The jbd2_journal_abort function is intended to support higher level error 1850 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1851 * mode. 1852 * 1853 * Journal abort has very specific semantics. Any existing dirty, 1854 * unjournaled buffers in the main filesystem will still be written to 1855 * disk by bdflush, but the journaling mechanism will be suspended 1856 * immediately and no further transaction commits will be honoured. 1857 * 1858 * Any dirty, journaled buffers will be written back to disk without 1859 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1860 * filesystem, but we _do_ attempt to leave as much data as possible 1861 * behind for fsck to use for cleanup. 1862 * 1863 * Any attempt to get a new transaction handle on a journal which is in 1864 * ABORT state will just result in an -EROFS error return. A 1865 * jbd2_journal_stop on an existing handle will return -EIO if we have 1866 * entered abort state during the update. 1867 * 1868 * Recursive transactions are not disturbed by journal abort until the 1869 * final jbd2_journal_stop, which will receive the -EIO error. 1870 * 1871 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1872 * which will be recorded (if possible) in the journal superblock. This 1873 * allows a client to record failure conditions in the middle of a 1874 * transaction without having to complete the transaction to record the 1875 * failure to disk. ext3_error, for example, now uses this 1876 * functionality. 1877 * 1878 * Errors which originate from within the journaling layer will NOT 1879 * supply an errno; a null errno implies that absolutely no further 1880 * writes are done to the journal (unless there are any already in 1881 * progress). 1882 * 1883 */ 1884 1885 void jbd2_journal_abort(journal_t *journal, int errno) 1886 { 1887 __journal_abort_soft(journal, errno); 1888 } 1889 1890 /** 1891 * int jbd2_journal_errno () - returns the journal's error state. 1892 * @journal: journal to examine. 1893 * 1894 * This is the errno number set with jbd2_journal_abort(), the last 1895 * time the journal was mounted - if the journal was stopped 1896 * without calling abort this will be 0. 1897 * 1898 * If the journal has been aborted on this mount time -EROFS will 1899 * be returned. 1900 */ 1901 int jbd2_journal_errno(journal_t *journal) 1902 { 1903 int err; 1904 1905 spin_lock(&journal->j_state_lock); 1906 if (journal->j_flags & JBD2_ABORT) 1907 err = -EROFS; 1908 else 1909 err = journal->j_errno; 1910 spin_unlock(&journal->j_state_lock); 1911 return err; 1912 } 1913 1914 /** 1915 * int jbd2_journal_clear_err () - clears the journal's error state 1916 * @journal: journal to act on. 1917 * 1918 * An error must be cleared or acked to take a FS out of readonly 1919 * mode. 1920 */ 1921 int jbd2_journal_clear_err(journal_t *journal) 1922 { 1923 int err = 0; 1924 1925 spin_lock(&journal->j_state_lock); 1926 if (journal->j_flags & JBD2_ABORT) 1927 err = -EROFS; 1928 else 1929 journal->j_errno = 0; 1930 spin_unlock(&journal->j_state_lock); 1931 return err; 1932 } 1933 1934 /** 1935 * void jbd2_journal_ack_err() - Ack journal err. 1936 * @journal: journal to act on. 1937 * 1938 * An error must be cleared or acked to take a FS out of readonly 1939 * mode. 1940 */ 1941 void jbd2_journal_ack_err(journal_t *journal) 1942 { 1943 spin_lock(&journal->j_state_lock); 1944 if (journal->j_errno) 1945 journal->j_flags |= JBD2_ACK_ERR; 1946 spin_unlock(&journal->j_state_lock); 1947 } 1948 1949 int jbd2_journal_blocks_per_page(struct inode *inode) 1950 { 1951 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1952 } 1953 1954 /* 1955 * helper functions to deal with 32 or 64bit block numbers. 1956 */ 1957 size_t journal_tag_bytes(journal_t *journal) 1958 { 1959 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1960 return JBD2_TAG_SIZE64; 1961 else 1962 return JBD2_TAG_SIZE32; 1963 } 1964 1965 /* 1966 * Journal_head storage management 1967 */ 1968 static struct kmem_cache *jbd2_journal_head_cache; 1969 #ifdef CONFIG_JBD2_DEBUG 1970 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1971 #endif 1972 1973 static int journal_init_jbd2_journal_head_cache(void) 1974 { 1975 int retval; 1976 1977 J_ASSERT(jbd2_journal_head_cache == NULL); 1978 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1979 sizeof(struct journal_head), 1980 0, /* offset */ 1981 SLAB_TEMPORARY, /* flags */ 1982 NULL); /* ctor */ 1983 retval = 0; 1984 if (!jbd2_journal_head_cache) { 1985 retval = -ENOMEM; 1986 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1987 } 1988 return retval; 1989 } 1990 1991 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1992 { 1993 if (jbd2_journal_head_cache) { 1994 kmem_cache_destroy(jbd2_journal_head_cache); 1995 jbd2_journal_head_cache = NULL; 1996 } 1997 } 1998 1999 /* 2000 * journal_head splicing and dicing 2001 */ 2002 static struct journal_head *journal_alloc_journal_head(void) 2003 { 2004 struct journal_head *ret; 2005 static unsigned long last_warning; 2006 2007 #ifdef CONFIG_JBD2_DEBUG 2008 atomic_inc(&nr_journal_heads); 2009 #endif 2010 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2011 if (!ret) { 2012 jbd_debug(1, "out of memory for journal_head\n"); 2013 if (time_after(jiffies, last_warning + 5*HZ)) { 2014 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 2015 __func__); 2016 last_warning = jiffies; 2017 } 2018 while (!ret) { 2019 yield(); 2020 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2021 } 2022 } 2023 return ret; 2024 } 2025 2026 static void journal_free_journal_head(struct journal_head *jh) 2027 { 2028 #ifdef CONFIG_JBD2_DEBUG 2029 atomic_dec(&nr_journal_heads); 2030 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2031 #endif 2032 kmem_cache_free(jbd2_journal_head_cache, jh); 2033 } 2034 2035 /* 2036 * A journal_head is attached to a buffer_head whenever JBD has an 2037 * interest in the buffer. 2038 * 2039 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2040 * is set. This bit is tested in core kernel code where we need to take 2041 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2042 * there. 2043 * 2044 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2045 * 2046 * When a buffer has its BH_JBD bit set it is immune from being released by 2047 * core kernel code, mainly via ->b_count. 2048 * 2049 * A journal_head may be detached from its buffer_head when the journal_head's 2050 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 2051 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 2052 * journal_head can be dropped if needed. 2053 * 2054 * Various places in the kernel want to attach a journal_head to a buffer_head 2055 * _before_ attaching the journal_head to a transaction. To protect the 2056 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2057 * journal_head's b_jcount refcount by one. The caller must call 2058 * jbd2_journal_put_journal_head() to undo this. 2059 * 2060 * So the typical usage would be: 2061 * 2062 * (Attach a journal_head if needed. Increments b_jcount) 2063 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2064 * ... 2065 * jh->b_transaction = xxx; 2066 * jbd2_journal_put_journal_head(jh); 2067 * 2068 * Now, the journal_head's b_jcount is zero, but it is safe from being released 2069 * because it has a non-zero b_transaction. 2070 */ 2071 2072 /* 2073 * Give a buffer_head a journal_head. 2074 * 2075 * Doesn't need the journal lock. 2076 * May sleep. 2077 */ 2078 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2079 { 2080 struct journal_head *jh; 2081 struct journal_head *new_jh = NULL; 2082 2083 repeat: 2084 if (!buffer_jbd(bh)) { 2085 new_jh = journal_alloc_journal_head(); 2086 memset(new_jh, 0, sizeof(*new_jh)); 2087 } 2088 2089 jbd_lock_bh_journal_head(bh); 2090 if (buffer_jbd(bh)) { 2091 jh = bh2jh(bh); 2092 } else { 2093 J_ASSERT_BH(bh, 2094 (atomic_read(&bh->b_count) > 0) || 2095 (bh->b_page && bh->b_page->mapping)); 2096 2097 if (!new_jh) { 2098 jbd_unlock_bh_journal_head(bh); 2099 goto repeat; 2100 } 2101 2102 jh = new_jh; 2103 new_jh = NULL; /* We consumed it */ 2104 set_buffer_jbd(bh); 2105 bh->b_private = jh; 2106 jh->b_bh = bh; 2107 get_bh(bh); 2108 BUFFER_TRACE(bh, "added journal_head"); 2109 } 2110 jh->b_jcount++; 2111 jbd_unlock_bh_journal_head(bh); 2112 if (new_jh) 2113 journal_free_journal_head(new_jh); 2114 return bh->b_private; 2115 } 2116 2117 /* 2118 * Grab a ref against this buffer_head's journal_head. If it ended up not 2119 * having a journal_head, return NULL 2120 */ 2121 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2122 { 2123 struct journal_head *jh = NULL; 2124 2125 jbd_lock_bh_journal_head(bh); 2126 if (buffer_jbd(bh)) { 2127 jh = bh2jh(bh); 2128 jh->b_jcount++; 2129 } 2130 jbd_unlock_bh_journal_head(bh); 2131 return jh; 2132 } 2133 2134 static void __journal_remove_journal_head(struct buffer_head *bh) 2135 { 2136 struct journal_head *jh = bh2jh(bh); 2137 2138 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2139 2140 get_bh(bh); 2141 if (jh->b_jcount == 0) { 2142 if (jh->b_transaction == NULL && 2143 jh->b_next_transaction == NULL && 2144 jh->b_cp_transaction == NULL) { 2145 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2146 J_ASSERT_BH(bh, buffer_jbd(bh)); 2147 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2148 BUFFER_TRACE(bh, "remove journal_head"); 2149 if (jh->b_frozen_data) { 2150 printk(KERN_WARNING "%s: freeing " 2151 "b_frozen_data\n", 2152 __func__); 2153 jbd2_free(jh->b_frozen_data, bh->b_size); 2154 } 2155 if (jh->b_committed_data) { 2156 printk(KERN_WARNING "%s: freeing " 2157 "b_committed_data\n", 2158 __func__); 2159 jbd2_free(jh->b_committed_data, bh->b_size); 2160 } 2161 bh->b_private = NULL; 2162 jh->b_bh = NULL; /* debug, really */ 2163 clear_buffer_jbd(bh); 2164 __brelse(bh); 2165 journal_free_journal_head(jh); 2166 } else { 2167 BUFFER_TRACE(bh, "journal_head was locked"); 2168 } 2169 } 2170 } 2171 2172 /* 2173 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2174 * and has a zero b_jcount then remove and release its journal_head. If we did 2175 * see that the buffer is not used by any transaction we also "logically" 2176 * decrement ->b_count. 2177 * 2178 * We in fact take an additional increment on ->b_count as a convenience, 2179 * because the caller usually wants to do additional things with the bh 2180 * after calling here. 2181 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2182 * time. Once the caller has run __brelse(), the buffer is eligible for 2183 * reaping by try_to_free_buffers(). 2184 */ 2185 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2186 { 2187 jbd_lock_bh_journal_head(bh); 2188 __journal_remove_journal_head(bh); 2189 jbd_unlock_bh_journal_head(bh); 2190 } 2191 2192 /* 2193 * Drop a reference on the passed journal_head. If it fell to zero then try to 2194 * release the journal_head from the buffer_head. 2195 */ 2196 void jbd2_journal_put_journal_head(struct journal_head *jh) 2197 { 2198 struct buffer_head *bh = jh2bh(jh); 2199 2200 jbd_lock_bh_journal_head(bh); 2201 J_ASSERT_JH(jh, jh->b_jcount > 0); 2202 --jh->b_jcount; 2203 if (!jh->b_jcount && !jh->b_transaction) { 2204 __journal_remove_journal_head(bh); 2205 __brelse(bh); 2206 } 2207 jbd_unlock_bh_journal_head(bh); 2208 } 2209 2210 /* 2211 * Initialize jbd inode head 2212 */ 2213 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2214 { 2215 jinode->i_transaction = NULL; 2216 jinode->i_next_transaction = NULL; 2217 jinode->i_vfs_inode = inode; 2218 jinode->i_flags = 0; 2219 INIT_LIST_HEAD(&jinode->i_list); 2220 } 2221 2222 /* 2223 * Function to be called before we start removing inode from memory (i.e., 2224 * clear_inode() is a fine place to be called from). It removes inode from 2225 * transaction's lists. 2226 */ 2227 void jbd2_journal_release_jbd_inode(journal_t *journal, 2228 struct jbd2_inode *jinode) 2229 { 2230 int writeout = 0; 2231 2232 if (!journal) 2233 return; 2234 restart: 2235 spin_lock(&journal->j_list_lock); 2236 /* Is commit writing out inode - we have to wait */ 2237 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2238 wait_queue_head_t *wq; 2239 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2240 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2241 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2242 spin_unlock(&journal->j_list_lock); 2243 schedule(); 2244 finish_wait(wq, &wait.wait); 2245 goto restart; 2246 } 2247 2248 /* Do we need to wait for data writeback? */ 2249 if (journal->j_committing_transaction == jinode->i_transaction) 2250 writeout = 1; 2251 if (jinode->i_transaction) { 2252 list_del(&jinode->i_list); 2253 jinode->i_transaction = NULL; 2254 } 2255 spin_unlock(&journal->j_list_lock); 2256 } 2257 2258 /* 2259 * debugfs tunables 2260 */ 2261 #ifdef CONFIG_JBD2_DEBUG 2262 u8 jbd2_journal_enable_debug __read_mostly; 2263 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2264 2265 #define JBD2_DEBUG_NAME "jbd2-debug" 2266 2267 static struct dentry *jbd2_debugfs_dir; 2268 static struct dentry *jbd2_debug; 2269 2270 static void __init jbd2_create_debugfs_entry(void) 2271 { 2272 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2273 if (jbd2_debugfs_dir) 2274 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO, 2275 jbd2_debugfs_dir, 2276 &jbd2_journal_enable_debug); 2277 } 2278 2279 static void __exit jbd2_remove_debugfs_entry(void) 2280 { 2281 debugfs_remove(jbd2_debug); 2282 debugfs_remove(jbd2_debugfs_dir); 2283 } 2284 2285 #else 2286 2287 static void __init jbd2_create_debugfs_entry(void) 2288 { 2289 } 2290 2291 static void __exit jbd2_remove_debugfs_entry(void) 2292 { 2293 } 2294 2295 #endif 2296 2297 #ifdef CONFIG_PROC_FS 2298 2299 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2300 2301 static void __init jbd2_create_jbd_stats_proc_entry(void) 2302 { 2303 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2304 } 2305 2306 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2307 { 2308 if (proc_jbd2_stats) 2309 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2310 } 2311 2312 #else 2313 2314 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2315 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2316 2317 #endif 2318 2319 struct kmem_cache *jbd2_handle_cache; 2320 2321 static int __init journal_init_handle_cache(void) 2322 { 2323 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2324 sizeof(handle_t), 2325 0, /* offset */ 2326 SLAB_TEMPORARY, /* flags */ 2327 NULL); /* ctor */ 2328 if (jbd2_handle_cache == NULL) { 2329 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2330 return -ENOMEM; 2331 } 2332 return 0; 2333 } 2334 2335 static void jbd2_journal_destroy_handle_cache(void) 2336 { 2337 if (jbd2_handle_cache) 2338 kmem_cache_destroy(jbd2_handle_cache); 2339 } 2340 2341 /* 2342 * Module startup and shutdown 2343 */ 2344 2345 static int __init journal_init_caches(void) 2346 { 2347 int ret; 2348 2349 ret = jbd2_journal_init_revoke_caches(); 2350 if (ret == 0) 2351 ret = journal_init_jbd2_journal_head_cache(); 2352 if (ret == 0) 2353 ret = journal_init_handle_cache(); 2354 return ret; 2355 } 2356 2357 static void jbd2_journal_destroy_caches(void) 2358 { 2359 jbd2_journal_destroy_revoke_caches(); 2360 jbd2_journal_destroy_jbd2_journal_head_cache(); 2361 jbd2_journal_destroy_handle_cache(); 2362 } 2363 2364 static int __init journal_init(void) 2365 { 2366 int ret; 2367 2368 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2369 2370 ret = journal_init_caches(); 2371 if (ret == 0) { 2372 jbd2_create_debugfs_entry(); 2373 jbd2_create_jbd_stats_proc_entry(); 2374 } else { 2375 jbd2_journal_destroy_caches(); 2376 } 2377 return ret; 2378 } 2379 2380 static void __exit journal_exit(void) 2381 { 2382 #ifdef CONFIG_JBD2_DEBUG 2383 int n = atomic_read(&nr_journal_heads); 2384 if (n) 2385 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2386 #endif 2387 jbd2_remove_debugfs_entry(); 2388 jbd2_remove_jbd_stats_proc_entry(); 2389 jbd2_journal_destroy_caches(); 2390 } 2391 2392 /* 2393 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2394 * tracing infrastructure to map a dev_t to a device name. 2395 * 2396 * The caller should use rcu_read_lock() in order to make sure the 2397 * device name stays valid until its done with it. We use 2398 * rcu_read_lock() as well to make sure we're safe in case the caller 2399 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2400 * nested. 2401 */ 2402 struct devname_cache { 2403 struct rcu_head rcu; 2404 dev_t device; 2405 char devname[BDEVNAME_SIZE]; 2406 }; 2407 #define CACHE_SIZE_BITS 6 2408 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2409 static DEFINE_SPINLOCK(devname_cache_lock); 2410 2411 static void free_devcache(struct rcu_head *rcu) 2412 { 2413 kfree(rcu); 2414 } 2415 2416 const char *jbd2_dev_to_name(dev_t device) 2417 { 2418 int i = hash_32(device, CACHE_SIZE_BITS); 2419 char *ret; 2420 struct block_device *bd; 2421 static struct devname_cache *new_dev; 2422 2423 rcu_read_lock(); 2424 if (devcache[i] && devcache[i]->device == device) { 2425 ret = devcache[i]->devname; 2426 rcu_read_unlock(); 2427 return ret; 2428 } 2429 rcu_read_unlock(); 2430 2431 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2432 if (!new_dev) 2433 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2434 spin_lock(&devname_cache_lock); 2435 if (devcache[i]) { 2436 if (devcache[i]->device == device) { 2437 kfree(new_dev); 2438 ret = devcache[i]->devname; 2439 spin_unlock(&devname_cache_lock); 2440 return ret; 2441 } 2442 call_rcu(&devcache[i]->rcu, free_devcache); 2443 } 2444 devcache[i] = new_dev; 2445 devcache[i]->device = device; 2446 bd = bdget(device); 2447 if (bd) { 2448 bdevname(bd, devcache[i]->devname); 2449 bdput(bd); 2450 } else 2451 __bdevname(device, devcache[i]->devname); 2452 ret = devcache[i]->devname; 2453 spin_unlock(&devname_cache_lock); 2454 return ret; 2455 } 2456 EXPORT_SYMBOL(jbd2_dev_to_name); 2457 2458 MODULE_LICENSE("GPL"); 2459 module_init(journal_init); 2460 module_exit(journal_exit); 2461 2462