xref: /openbmc/linux/fs/jbd2/journal.c (revision fd589a8f)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/jbd2.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/page.h>
48 
49 EXPORT_SYMBOL(jbd2_journal_start);
50 EXPORT_SYMBOL(jbd2_journal_restart);
51 EXPORT_SYMBOL(jbd2_journal_extend);
52 EXPORT_SYMBOL(jbd2_journal_stop);
53 EXPORT_SYMBOL(jbd2_journal_lock_updates);
54 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
55 EXPORT_SYMBOL(jbd2_journal_get_write_access);
56 EXPORT_SYMBOL(jbd2_journal_get_create_access);
57 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
58 EXPORT_SYMBOL(jbd2_journal_set_triggers);
59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
60 EXPORT_SYMBOL(jbd2_journal_release_buffer);
61 EXPORT_SYMBOL(jbd2_journal_forget);
62 #if 0
63 EXPORT_SYMBOL(journal_sync_buffer);
64 #endif
65 EXPORT_SYMBOL(jbd2_journal_flush);
66 EXPORT_SYMBOL(jbd2_journal_revoke);
67 
68 EXPORT_SYMBOL(jbd2_journal_init_dev);
69 EXPORT_SYMBOL(jbd2_journal_init_inode);
70 EXPORT_SYMBOL(jbd2_journal_update_format);
71 EXPORT_SYMBOL(jbd2_journal_check_used_features);
72 EXPORT_SYMBOL(jbd2_journal_check_available_features);
73 EXPORT_SYMBOL(jbd2_journal_set_features);
74 EXPORT_SYMBOL(jbd2_journal_load);
75 EXPORT_SYMBOL(jbd2_journal_destroy);
76 EXPORT_SYMBOL(jbd2_journal_abort);
77 EXPORT_SYMBOL(jbd2_journal_errno);
78 EXPORT_SYMBOL(jbd2_journal_ack_err);
79 EXPORT_SYMBOL(jbd2_journal_clear_err);
80 EXPORT_SYMBOL(jbd2_log_wait_commit);
81 EXPORT_SYMBOL(jbd2_journal_start_commit);
82 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
83 EXPORT_SYMBOL(jbd2_journal_wipe);
84 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
85 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
86 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
87 EXPORT_SYMBOL(jbd2_journal_force_commit);
88 EXPORT_SYMBOL(jbd2_journal_file_inode);
89 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
90 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
91 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
92 
93 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
94 static void __journal_abort_soft (journal_t *journal, int errno);
95 
96 /*
97  * Helper function used to manage commit timeouts
98  */
99 
100 static void commit_timeout(unsigned long __data)
101 {
102 	struct task_struct * p = (struct task_struct *) __data;
103 
104 	wake_up_process(p);
105 }
106 
107 /*
108  * kjournald2: The main thread function used to manage a logging device
109  * journal.
110  *
111  * This kernel thread is responsible for two things:
112  *
113  * 1) COMMIT:  Every so often we need to commit the current state of the
114  *    filesystem to disk.  The journal thread is responsible for writing
115  *    all of the metadata buffers to disk.
116  *
117  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
118  *    of the data in that part of the log has been rewritten elsewhere on
119  *    the disk.  Flushing these old buffers to reclaim space in the log is
120  *    known as checkpointing, and this thread is responsible for that job.
121  */
122 
123 static int kjournald2(void *arg)
124 {
125 	journal_t *journal = arg;
126 	transaction_t *transaction;
127 
128 	/*
129 	 * Set up an interval timer which can be used to trigger a commit wakeup
130 	 * after the commit interval expires
131 	 */
132 	setup_timer(&journal->j_commit_timer, commit_timeout,
133 			(unsigned long)current);
134 
135 	/* Record that the journal thread is running */
136 	journal->j_task = current;
137 	wake_up(&journal->j_wait_done_commit);
138 
139 	printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, "
140 	       "commit interval %ld seconds\n", current->pid,
141 	       journal->j_devname, journal->j_commit_interval / HZ);
142 
143 	/*
144 	 * And now, wait forever for commit wakeup events.
145 	 */
146 	spin_lock(&journal->j_state_lock);
147 
148 loop:
149 	if (journal->j_flags & JBD2_UNMOUNT)
150 		goto end_loop;
151 
152 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
153 		journal->j_commit_sequence, journal->j_commit_request);
154 
155 	if (journal->j_commit_sequence != journal->j_commit_request) {
156 		jbd_debug(1, "OK, requests differ\n");
157 		spin_unlock(&journal->j_state_lock);
158 		del_timer_sync(&journal->j_commit_timer);
159 		jbd2_journal_commit_transaction(journal);
160 		spin_lock(&journal->j_state_lock);
161 		goto loop;
162 	}
163 
164 	wake_up(&journal->j_wait_done_commit);
165 	if (freezing(current)) {
166 		/*
167 		 * The simpler the better. Flushing journal isn't a
168 		 * good idea, because that depends on threads that may
169 		 * be already stopped.
170 		 */
171 		jbd_debug(1, "Now suspending kjournald2\n");
172 		spin_unlock(&journal->j_state_lock);
173 		refrigerator();
174 		spin_lock(&journal->j_state_lock);
175 	} else {
176 		/*
177 		 * We assume on resume that commits are already there,
178 		 * so we don't sleep
179 		 */
180 		DEFINE_WAIT(wait);
181 		int should_sleep = 1;
182 
183 		prepare_to_wait(&journal->j_wait_commit, &wait,
184 				TASK_INTERRUPTIBLE);
185 		if (journal->j_commit_sequence != journal->j_commit_request)
186 			should_sleep = 0;
187 		transaction = journal->j_running_transaction;
188 		if (transaction && time_after_eq(jiffies,
189 						transaction->t_expires))
190 			should_sleep = 0;
191 		if (journal->j_flags & JBD2_UNMOUNT)
192 			should_sleep = 0;
193 		if (should_sleep) {
194 			spin_unlock(&journal->j_state_lock);
195 			schedule();
196 			spin_lock(&journal->j_state_lock);
197 		}
198 		finish_wait(&journal->j_wait_commit, &wait);
199 	}
200 
201 	jbd_debug(1, "kjournald2 wakes\n");
202 
203 	/*
204 	 * Were we woken up by a commit wakeup event?
205 	 */
206 	transaction = journal->j_running_transaction;
207 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
208 		journal->j_commit_request = transaction->t_tid;
209 		jbd_debug(1, "woke because of timeout\n");
210 	}
211 	goto loop;
212 
213 end_loop:
214 	spin_unlock(&journal->j_state_lock);
215 	del_timer_sync(&journal->j_commit_timer);
216 	journal->j_task = NULL;
217 	wake_up(&journal->j_wait_done_commit);
218 	jbd_debug(1, "Journal thread exiting.\n");
219 	return 0;
220 }
221 
222 static int jbd2_journal_start_thread(journal_t *journal)
223 {
224 	struct task_struct *t;
225 
226 	t = kthread_run(kjournald2, journal, "kjournald2");
227 	if (IS_ERR(t))
228 		return PTR_ERR(t);
229 
230 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
231 	return 0;
232 }
233 
234 static void journal_kill_thread(journal_t *journal)
235 {
236 	spin_lock(&journal->j_state_lock);
237 	journal->j_flags |= JBD2_UNMOUNT;
238 
239 	while (journal->j_task) {
240 		wake_up(&journal->j_wait_commit);
241 		spin_unlock(&journal->j_state_lock);
242 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
243 		spin_lock(&journal->j_state_lock);
244 	}
245 	spin_unlock(&journal->j_state_lock);
246 }
247 
248 /*
249  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
250  *
251  * Writes a metadata buffer to a given disk block.  The actual IO is not
252  * performed but a new buffer_head is constructed which labels the data
253  * to be written with the correct destination disk block.
254  *
255  * Any magic-number escaping which needs to be done will cause a
256  * copy-out here.  If the buffer happens to start with the
257  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
258  * magic number is only written to the log for descripter blocks.  In
259  * this case, we copy the data and replace the first word with 0, and we
260  * return a result code which indicates that this buffer needs to be
261  * marked as an escaped buffer in the corresponding log descriptor
262  * block.  The missing word can then be restored when the block is read
263  * during recovery.
264  *
265  * If the source buffer has already been modified by a new transaction
266  * since we took the last commit snapshot, we use the frozen copy of
267  * that data for IO.  If we end up using the existing buffer_head's data
268  * for the write, then we *have* to lock the buffer to prevent anyone
269  * else from using and possibly modifying it while the IO is in
270  * progress.
271  *
272  * The function returns a pointer to the buffer_heads to be used for IO.
273  *
274  * We assume that the journal has already been locked in this function.
275  *
276  * Return value:
277  *  <0: Error
278  * >=0: Finished OK
279  *
280  * On success:
281  * Bit 0 set == escape performed on the data
282  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
283  */
284 
285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
286 				  struct journal_head  *jh_in,
287 				  struct journal_head **jh_out,
288 				  unsigned long long blocknr)
289 {
290 	int need_copy_out = 0;
291 	int done_copy_out = 0;
292 	int do_escape = 0;
293 	char *mapped_data;
294 	struct buffer_head *new_bh;
295 	struct journal_head *new_jh;
296 	struct page *new_page;
297 	unsigned int new_offset;
298 	struct buffer_head *bh_in = jh2bh(jh_in);
299 	struct jbd2_buffer_trigger_type *triggers;
300 	journal_t *journal = transaction->t_journal;
301 
302 	/*
303 	 * The buffer really shouldn't be locked: only the current committing
304 	 * transaction is allowed to write it, so nobody else is allowed
305 	 * to do any IO.
306 	 *
307 	 * akpm: except if we're journalling data, and write() output is
308 	 * also part of a shared mapping, and another thread has
309 	 * decided to launch a writepage() against this buffer.
310 	 */
311 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
312 
313 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
314 	/* keep subsequent assertions sane */
315 	new_bh->b_state = 0;
316 	init_buffer(new_bh, NULL, NULL);
317 	atomic_set(&new_bh->b_count, 1);
318 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
319 
320 	/*
321 	 * If a new transaction has already done a buffer copy-out, then
322 	 * we use that version of the data for the commit.
323 	 */
324 	jbd_lock_bh_state(bh_in);
325 repeat:
326 	if (jh_in->b_frozen_data) {
327 		done_copy_out = 1;
328 		new_page = virt_to_page(jh_in->b_frozen_data);
329 		new_offset = offset_in_page(jh_in->b_frozen_data);
330 		triggers = jh_in->b_frozen_triggers;
331 	} else {
332 		new_page = jh2bh(jh_in)->b_page;
333 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
334 		triggers = jh_in->b_triggers;
335 	}
336 
337 	mapped_data = kmap_atomic(new_page, KM_USER0);
338 	/*
339 	 * Fire any commit trigger.  Do this before checking for escaping,
340 	 * as the trigger may modify the magic offset.  If a copy-out
341 	 * happens afterwards, it will have the correct data in the buffer.
342 	 */
343 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
344 				   triggers);
345 
346 	/*
347 	 * Check for escaping
348 	 */
349 	if (*((__be32 *)(mapped_data + new_offset)) ==
350 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
351 		need_copy_out = 1;
352 		do_escape = 1;
353 	}
354 	kunmap_atomic(mapped_data, KM_USER0);
355 
356 	/*
357 	 * Do we need to do a data copy?
358 	 */
359 	if (need_copy_out && !done_copy_out) {
360 		char *tmp;
361 
362 		jbd_unlock_bh_state(bh_in);
363 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
364 		jbd_lock_bh_state(bh_in);
365 		if (jh_in->b_frozen_data) {
366 			jbd2_free(tmp, bh_in->b_size);
367 			goto repeat;
368 		}
369 
370 		jh_in->b_frozen_data = tmp;
371 		mapped_data = kmap_atomic(new_page, KM_USER0);
372 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
373 		kunmap_atomic(mapped_data, KM_USER0);
374 
375 		new_page = virt_to_page(tmp);
376 		new_offset = offset_in_page(tmp);
377 		done_copy_out = 1;
378 
379 		/*
380 		 * This isn't strictly necessary, as we're using frozen
381 		 * data for the escaping, but it keeps consistency with
382 		 * b_frozen_data usage.
383 		 */
384 		jh_in->b_frozen_triggers = jh_in->b_triggers;
385 	}
386 
387 	/*
388 	 * Did we need to do an escaping?  Now we've done all the
389 	 * copying, we can finally do so.
390 	 */
391 	if (do_escape) {
392 		mapped_data = kmap_atomic(new_page, KM_USER0);
393 		*((unsigned int *)(mapped_data + new_offset)) = 0;
394 		kunmap_atomic(mapped_data, KM_USER0);
395 	}
396 
397 	set_bh_page(new_bh, new_page, new_offset);
398 	new_jh->b_transaction = NULL;
399 	new_bh->b_size = jh2bh(jh_in)->b_size;
400 	new_bh->b_bdev = transaction->t_journal->j_dev;
401 	new_bh->b_blocknr = blocknr;
402 	set_buffer_mapped(new_bh);
403 	set_buffer_dirty(new_bh);
404 
405 	*jh_out = new_jh;
406 
407 	/*
408 	 * The to-be-written buffer needs to get moved to the io queue,
409 	 * and the original buffer whose contents we are shadowing or
410 	 * copying is moved to the transaction's shadow queue.
411 	 */
412 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
413 	spin_lock(&journal->j_list_lock);
414 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
415 	spin_unlock(&journal->j_list_lock);
416 	jbd_unlock_bh_state(bh_in);
417 
418 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
419 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
420 
421 	return do_escape | (done_copy_out << 1);
422 }
423 
424 /*
425  * Allocation code for the journal file.  Manage the space left in the
426  * journal, so that we can begin checkpointing when appropriate.
427  */
428 
429 /*
430  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
431  *
432  * Called with the journal already locked.
433  *
434  * Called under j_state_lock
435  */
436 
437 int __jbd2_log_space_left(journal_t *journal)
438 {
439 	int left = journal->j_free;
440 
441 	assert_spin_locked(&journal->j_state_lock);
442 
443 	/*
444 	 * Be pessimistic here about the number of those free blocks which
445 	 * might be required for log descriptor control blocks.
446 	 */
447 
448 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
449 
450 	left -= MIN_LOG_RESERVED_BLOCKS;
451 
452 	if (left <= 0)
453 		return 0;
454 	left -= (left >> 3);
455 	return left;
456 }
457 
458 /*
459  * Called under j_state_lock.  Returns true if a transaction commit was started.
460  */
461 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
462 {
463 	/*
464 	 * Are we already doing a recent enough commit?
465 	 */
466 	if (!tid_geq(journal->j_commit_request, target)) {
467 		/*
468 		 * We want a new commit: OK, mark the request and wakup the
469 		 * commit thread.  We do _not_ do the commit ourselves.
470 		 */
471 
472 		journal->j_commit_request = target;
473 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
474 			  journal->j_commit_request,
475 			  journal->j_commit_sequence);
476 		wake_up(&journal->j_wait_commit);
477 		return 1;
478 	}
479 	return 0;
480 }
481 
482 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
483 {
484 	int ret;
485 
486 	spin_lock(&journal->j_state_lock);
487 	ret = __jbd2_log_start_commit(journal, tid);
488 	spin_unlock(&journal->j_state_lock);
489 	return ret;
490 }
491 
492 /*
493  * Force and wait upon a commit if the calling process is not within
494  * transaction.  This is used for forcing out undo-protected data which contains
495  * bitmaps, when the fs is running out of space.
496  *
497  * We can only force the running transaction if we don't have an active handle;
498  * otherwise, we will deadlock.
499  *
500  * Returns true if a transaction was started.
501  */
502 int jbd2_journal_force_commit_nested(journal_t *journal)
503 {
504 	transaction_t *transaction = NULL;
505 	tid_t tid;
506 
507 	spin_lock(&journal->j_state_lock);
508 	if (journal->j_running_transaction && !current->journal_info) {
509 		transaction = journal->j_running_transaction;
510 		__jbd2_log_start_commit(journal, transaction->t_tid);
511 	} else if (journal->j_committing_transaction)
512 		transaction = journal->j_committing_transaction;
513 
514 	if (!transaction) {
515 		spin_unlock(&journal->j_state_lock);
516 		return 0;	/* Nothing to retry */
517 	}
518 
519 	tid = transaction->t_tid;
520 	spin_unlock(&journal->j_state_lock);
521 	jbd2_log_wait_commit(journal, tid);
522 	return 1;
523 }
524 
525 /*
526  * Start a commit of the current running transaction (if any).  Returns true
527  * if a transaction is going to be committed (or is currently already
528  * committing), and fills its tid in at *ptid
529  */
530 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
531 {
532 	int ret = 0;
533 
534 	spin_lock(&journal->j_state_lock);
535 	if (journal->j_running_transaction) {
536 		tid_t tid = journal->j_running_transaction->t_tid;
537 
538 		__jbd2_log_start_commit(journal, tid);
539 		/* There's a running transaction and we've just made sure
540 		 * it's commit has been scheduled. */
541 		if (ptid)
542 			*ptid = tid;
543 		ret = 1;
544 	} else if (journal->j_committing_transaction) {
545 		/*
546 		 * If ext3_write_super() recently started a commit, then we
547 		 * have to wait for completion of that transaction
548 		 */
549 		if (ptid)
550 			*ptid = journal->j_committing_transaction->t_tid;
551 		ret = 1;
552 	}
553 	spin_unlock(&journal->j_state_lock);
554 	return ret;
555 }
556 
557 /*
558  * Wait for a specified commit to complete.
559  * The caller may not hold the journal lock.
560  */
561 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
562 {
563 	int err = 0;
564 
565 #ifdef CONFIG_JBD2_DEBUG
566 	spin_lock(&journal->j_state_lock);
567 	if (!tid_geq(journal->j_commit_request, tid)) {
568 		printk(KERN_EMERG
569 		       "%s: error: j_commit_request=%d, tid=%d\n",
570 		       __func__, journal->j_commit_request, tid);
571 	}
572 	spin_unlock(&journal->j_state_lock);
573 #endif
574 	spin_lock(&journal->j_state_lock);
575 	while (tid_gt(tid, journal->j_commit_sequence)) {
576 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
577 				  tid, journal->j_commit_sequence);
578 		wake_up(&journal->j_wait_commit);
579 		spin_unlock(&journal->j_state_lock);
580 		wait_event(journal->j_wait_done_commit,
581 				!tid_gt(tid, journal->j_commit_sequence));
582 		spin_lock(&journal->j_state_lock);
583 	}
584 	spin_unlock(&journal->j_state_lock);
585 
586 	if (unlikely(is_journal_aborted(journal))) {
587 		printk(KERN_EMERG "journal commit I/O error\n");
588 		err = -EIO;
589 	}
590 	return err;
591 }
592 
593 /*
594  * Log buffer allocation routines:
595  */
596 
597 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
598 {
599 	unsigned long blocknr;
600 
601 	spin_lock(&journal->j_state_lock);
602 	J_ASSERT(journal->j_free > 1);
603 
604 	blocknr = journal->j_head;
605 	journal->j_head++;
606 	journal->j_free--;
607 	if (journal->j_head == journal->j_last)
608 		journal->j_head = journal->j_first;
609 	spin_unlock(&journal->j_state_lock);
610 	return jbd2_journal_bmap(journal, blocknr, retp);
611 }
612 
613 /*
614  * Conversion of logical to physical block numbers for the journal
615  *
616  * On external journals the journal blocks are identity-mapped, so
617  * this is a no-op.  If needed, we can use j_blk_offset - everything is
618  * ready.
619  */
620 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
621 		 unsigned long long *retp)
622 {
623 	int err = 0;
624 	unsigned long long ret;
625 
626 	if (journal->j_inode) {
627 		ret = bmap(journal->j_inode, blocknr);
628 		if (ret)
629 			*retp = ret;
630 		else {
631 			printk(KERN_ALERT "%s: journal block not found "
632 					"at offset %lu on %s\n",
633 			       __func__, blocknr, journal->j_devname);
634 			err = -EIO;
635 			__journal_abort_soft(journal, err);
636 		}
637 	} else {
638 		*retp = blocknr; /* +journal->j_blk_offset */
639 	}
640 	return err;
641 }
642 
643 /*
644  * We play buffer_head aliasing tricks to write data/metadata blocks to
645  * the journal without copying their contents, but for journal
646  * descriptor blocks we do need to generate bona fide buffers.
647  *
648  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
649  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
650  * But we don't bother doing that, so there will be coherency problems with
651  * mmaps of blockdevs which hold live JBD-controlled filesystems.
652  */
653 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
654 {
655 	struct buffer_head *bh;
656 	unsigned long long blocknr;
657 	int err;
658 
659 	err = jbd2_journal_next_log_block(journal, &blocknr);
660 
661 	if (err)
662 		return NULL;
663 
664 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
665 	if (!bh)
666 		return NULL;
667 	lock_buffer(bh);
668 	memset(bh->b_data, 0, journal->j_blocksize);
669 	set_buffer_uptodate(bh);
670 	unlock_buffer(bh);
671 	BUFFER_TRACE(bh, "return this buffer");
672 	return jbd2_journal_add_journal_head(bh);
673 }
674 
675 struct jbd2_stats_proc_session {
676 	journal_t *journal;
677 	struct transaction_stats_s *stats;
678 	int start;
679 	int max;
680 };
681 
682 static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s,
683 					struct transaction_stats_s *ts,
684 					int first)
685 {
686 	if (ts == s->stats + s->max)
687 		ts = s->stats;
688 	if (!first && ts == s->stats + s->start)
689 		return NULL;
690 	while (ts->ts_type == 0) {
691 		ts++;
692 		if (ts == s->stats + s->max)
693 			ts = s->stats;
694 		if (ts == s->stats + s->start)
695 			return NULL;
696 	}
697 	return ts;
698 
699 }
700 
701 static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos)
702 {
703 	struct jbd2_stats_proc_session *s = seq->private;
704 	struct transaction_stats_s *ts;
705 	int l = *pos;
706 
707 	if (l == 0)
708 		return SEQ_START_TOKEN;
709 	ts = jbd2_history_skip_empty(s, s->stats + s->start, 1);
710 	if (!ts)
711 		return NULL;
712 	l--;
713 	while (l) {
714 		ts = jbd2_history_skip_empty(s, ++ts, 0);
715 		if (!ts)
716 			break;
717 		l--;
718 	}
719 	return ts;
720 }
721 
722 static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos)
723 {
724 	struct jbd2_stats_proc_session *s = seq->private;
725 	struct transaction_stats_s *ts = v;
726 
727 	++*pos;
728 	if (v == SEQ_START_TOKEN)
729 		return jbd2_history_skip_empty(s, s->stats + s->start, 1);
730 	else
731 		return jbd2_history_skip_empty(s, ++ts, 0);
732 }
733 
734 static int jbd2_seq_history_show(struct seq_file *seq, void *v)
735 {
736 	struct transaction_stats_s *ts = v;
737 	if (v == SEQ_START_TOKEN) {
738 		seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s "
739 				"%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid",
740 				"wait", "run", "lock", "flush", "log", "hndls",
741 				"block", "inlog", "ctime", "write", "drop",
742 				"close");
743 		return 0;
744 	}
745 	if (ts->ts_type == JBD2_STATS_RUN)
746 		seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u "
747 				"%-6lu %-5lu %-5lu\n", "R", ts->ts_tid,
748 				jiffies_to_msecs(ts->u.run.rs_wait),
749 				jiffies_to_msecs(ts->u.run.rs_running),
750 				jiffies_to_msecs(ts->u.run.rs_locked),
751 				jiffies_to_msecs(ts->u.run.rs_flushing),
752 				jiffies_to_msecs(ts->u.run.rs_logging),
753 				ts->u.run.rs_handle_count,
754 				ts->u.run.rs_blocks,
755 				ts->u.run.rs_blocks_logged);
756 	else if (ts->ts_type == JBD2_STATS_CHECKPOINT)
757 		seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n",
758 				"C", ts->ts_tid, " ",
759 				jiffies_to_msecs(ts->u.chp.cs_chp_time),
760 				ts->u.chp.cs_written, ts->u.chp.cs_dropped,
761 				ts->u.chp.cs_forced_to_close);
762 	else
763 		J_ASSERT(0);
764 	return 0;
765 }
766 
767 static void jbd2_seq_history_stop(struct seq_file *seq, void *v)
768 {
769 }
770 
771 static struct seq_operations jbd2_seq_history_ops = {
772 	.start  = jbd2_seq_history_start,
773 	.next   = jbd2_seq_history_next,
774 	.stop   = jbd2_seq_history_stop,
775 	.show   = jbd2_seq_history_show,
776 };
777 
778 static int jbd2_seq_history_open(struct inode *inode, struct file *file)
779 {
780 	journal_t *journal = PDE(inode)->data;
781 	struct jbd2_stats_proc_session *s;
782 	int rc, size;
783 
784 	s = kmalloc(sizeof(*s), GFP_KERNEL);
785 	if (s == NULL)
786 		return -ENOMEM;
787 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
788 	s->stats = kmalloc(size, GFP_KERNEL);
789 	if (s->stats == NULL) {
790 		kfree(s);
791 		return -ENOMEM;
792 	}
793 	spin_lock(&journal->j_history_lock);
794 	memcpy(s->stats, journal->j_history, size);
795 	s->max = journal->j_history_max;
796 	s->start = journal->j_history_cur % s->max;
797 	spin_unlock(&journal->j_history_lock);
798 
799 	rc = seq_open(file, &jbd2_seq_history_ops);
800 	if (rc == 0) {
801 		struct seq_file *m = file->private_data;
802 		m->private = s;
803 	} else {
804 		kfree(s->stats);
805 		kfree(s);
806 	}
807 	return rc;
808 
809 }
810 
811 static int jbd2_seq_history_release(struct inode *inode, struct file *file)
812 {
813 	struct seq_file *seq = file->private_data;
814 	struct jbd2_stats_proc_session *s = seq->private;
815 
816 	kfree(s->stats);
817 	kfree(s);
818 	return seq_release(inode, file);
819 }
820 
821 static struct file_operations jbd2_seq_history_fops = {
822 	.owner		= THIS_MODULE,
823 	.open           = jbd2_seq_history_open,
824 	.read           = seq_read,
825 	.llseek         = seq_lseek,
826 	.release        = jbd2_seq_history_release,
827 };
828 
829 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
830 {
831 	return *pos ? NULL : SEQ_START_TOKEN;
832 }
833 
834 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
835 {
836 	return NULL;
837 }
838 
839 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
840 {
841 	struct jbd2_stats_proc_session *s = seq->private;
842 
843 	if (v != SEQ_START_TOKEN)
844 		return 0;
845 	seq_printf(seq, "%lu transaction, each upto %u blocks\n",
846 			s->stats->ts_tid,
847 			s->journal->j_max_transaction_buffers);
848 	if (s->stats->ts_tid == 0)
849 		return 0;
850 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
851 	    jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid));
852 	seq_printf(seq, "  %ums running transaction\n",
853 	    jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid));
854 	seq_printf(seq, "  %ums transaction was being locked\n",
855 	    jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid));
856 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
857 	    jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid));
858 	seq_printf(seq, "  %ums logging transaction\n",
859 	    jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid));
860 	seq_printf(seq, "  %lluus average transaction commit time\n",
861 		   div_u64(s->journal->j_average_commit_time, 1000));
862 	seq_printf(seq, "  %lu handles per transaction\n",
863 	    s->stats->u.run.rs_handle_count / s->stats->ts_tid);
864 	seq_printf(seq, "  %lu blocks per transaction\n",
865 	    s->stats->u.run.rs_blocks / s->stats->ts_tid);
866 	seq_printf(seq, "  %lu logged blocks per transaction\n",
867 	    s->stats->u.run.rs_blocks_logged / s->stats->ts_tid);
868 	return 0;
869 }
870 
871 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
872 {
873 }
874 
875 static struct seq_operations jbd2_seq_info_ops = {
876 	.start  = jbd2_seq_info_start,
877 	.next   = jbd2_seq_info_next,
878 	.stop   = jbd2_seq_info_stop,
879 	.show   = jbd2_seq_info_show,
880 };
881 
882 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
883 {
884 	journal_t *journal = PDE(inode)->data;
885 	struct jbd2_stats_proc_session *s;
886 	int rc, size;
887 
888 	s = kmalloc(sizeof(*s), GFP_KERNEL);
889 	if (s == NULL)
890 		return -ENOMEM;
891 	size = sizeof(struct transaction_stats_s);
892 	s->stats = kmalloc(size, GFP_KERNEL);
893 	if (s->stats == NULL) {
894 		kfree(s);
895 		return -ENOMEM;
896 	}
897 	spin_lock(&journal->j_history_lock);
898 	memcpy(s->stats, &journal->j_stats, size);
899 	s->journal = journal;
900 	spin_unlock(&journal->j_history_lock);
901 
902 	rc = seq_open(file, &jbd2_seq_info_ops);
903 	if (rc == 0) {
904 		struct seq_file *m = file->private_data;
905 		m->private = s;
906 	} else {
907 		kfree(s->stats);
908 		kfree(s);
909 	}
910 	return rc;
911 
912 }
913 
914 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
915 {
916 	struct seq_file *seq = file->private_data;
917 	struct jbd2_stats_proc_session *s = seq->private;
918 	kfree(s->stats);
919 	kfree(s);
920 	return seq_release(inode, file);
921 }
922 
923 static struct file_operations jbd2_seq_info_fops = {
924 	.owner		= THIS_MODULE,
925 	.open           = jbd2_seq_info_open,
926 	.read           = seq_read,
927 	.llseek         = seq_lseek,
928 	.release        = jbd2_seq_info_release,
929 };
930 
931 static struct proc_dir_entry *proc_jbd2_stats;
932 
933 static void jbd2_stats_proc_init(journal_t *journal)
934 {
935 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
936 	if (journal->j_proc_entry) {
937 		proc_create_data("history", S_IRUGO, journal->j_proc_entry,
938 				 &jbd2_seq_history_fops, journal);
939 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
940 				 &jbd2_seq_info_fops, journal);
941 	}
942 }
943 
944 static void jbd2_stats_proc_exit(journal_t *journal)
945 {
946 	remove_proc_entry("info", journal->j_proc_entry);
947 	remove_proc_entry("history", journal->j_proc_entry);
948 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
949 }
950 
951 static void journal_init_stats(journal_t *journal)
952 {
953 	int size;
954 
955 	if (!proc_jbd2_stats)
956 		return;
957 
958 	journal->j_history_max = 100;
959 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
960 	journal->j_history = kzalloc(size, GFP_KERNEL);
961 	if (!journal->j_history) {
962 		journal->j_history_max = 0;
963 		return;
964 	}
965 	spin_lock_init(&journal->j_history_lock);
966 }
967 
968 /*
969  * Management for journal control blocks: functions to create and
970  * destroy journal_t structures, and to initialise and read existing
971  * journal blocks from disk.  */
972 
973 /* First: create and setup a journal_t object in memory.  We initialise
974  * very few fields yet: that has to wait until we have created the
975  * journal structures from from scratch, or loaded them from disk. */
976 
977 static journal_t * journal_init_common (void)
978 {
979 	journal_t *journal;
980 	int err;
981 
982 	journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
983 	if (!journal)
984 		goto fail;
985 
986 	init_waitqueue_head(&journal->j_wait_transaction_locked);
987 	init_waitqueue_head(&journal->j_wait_logspace);
988 	init_waitqueue_head(&journal->j_wait_done_commit);
989 	init_waitqueue_head(&journal->j_wait_checkpoint);
990 	init_waitqueue_head(&journal->j_wait_commit);
991 	init_waitqueue_head(&journal->j_wait_updates);
992 	mutex_init(&journal->j_barrier);
993 	mutex_init(&journal->j_checkpoint_mutex);
994 	spin_lock_init(&journal->j_revoke_lock);
995 	spin_lock_init(&journal->j_list_lock);
996 	spin_lock_init(&journal->j_state_lock);
997 
998 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
999 	journal->j_min_batch_time = 0;
1000 	journal->j_max_batch_time = 15000; /* 15ms */
1001 
1002 	/* The journal is marked for error until we succeed with recovery! */
1003 	journal->j_flags = JBD2_ABORT;
1004 
1005 	/* Set up a default-sized revoke table for the new mount. */
1006 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1007 	if (err) {
1008 		kfree(journal);
1009 		goto fail;
1010 	}
1011 
1012 	journal_init_stats(journal);
1013 
1014 	return journal;
1015 fail:
1016 	return NULL;
1017 }
1018 
1019 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1020  *
1021  * Create a journal structure assigned some fixed set of disk blocks to
1022  * the journal.  We don't actually touch those disk blocks yet, but we
1023  * need to set up all of the mapping information to tell the journaling
1024  * system where the journal blocks are.
1025  *
1026  */
1027 
1028 /**
1029  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1030  *  @bdev: Block device on which to create the journal
1031  *  @fs_dev: Device which hold journalled filesystem for this journal.
1032  *  @start: Block nr Start of journal.
1033  *  @len:  Length of the journal in blocks.
1034  *  @blocksize: blocksize of journalling device
1035  *
1036  *  Returns: a newly created journal_t *
1037  *
1038  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1039  *  range of blocks on an arbitrary block device.
1040  *
1041  */
1042 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1043 			struct block_device *fs_dev,
1044 			unsigned long long start, int len, int blocksize)
1045 {
1046 	journal_t *journal = journal_init_common();
1047 	struct buffer_head *bh;
1048 	char *p;
1049 	int n;
1050 
1051 	if (!journal)
1052 		return NULL;
1053 
1054 	/* journal descriptor can store up to n blocks -bzzz */
1055 	journal->j_blocksize = blocksize;
1056 	jbd2_stats_proc_init(journal);
1057 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1058 	journal->j_wbufsize = n;
1059 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1060 	if (!journal->j_wbuf) {
1061 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1062 			__func__);
1063 		goto out_err;
1064 	}
1065 	journal->j_dev = bdev;
1066 	journal->j_fs_dev = fs_dev;
1067 	journal->j_blk_offset = start;
1068 	journal->j_maxlen = len;
1069 	bdevname(journal->j_dev, journal->j_devname);
1070 	p = journal->j_devname;
1071 	while ((p = strchr(p, '/')))
1072 		*p = '!';
1073 
1074 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1075 	if (!bh) {
1076 		printk(KERN_ERR
1077 		       "%s: Cannot get buffer for journal superblock\n",
1078 		       __func__);
1079 		goto out_err;
1080 	}
1081 	journal->j_sb_buffer = bh;
1082 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1083 
1084 	return journal;
1085 out_err:
1086 	jbd2_stats_proc_exit(journal);
1087 	kfree(journal);
1088 	return NULL;
1089 }
1090 
1091 /**
1092  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1093  *  @inode: An inode to create the journal in
1094  *
1095  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1096  * the journal.  The inode must exist already, must support bmap() and
1097  * must have all data blocks preallocated.
1098  */
1099 journal_t * jbd2_journal_init_inode (struct inode *inode)
1100 {
1101 	struct buffer_head *bh;
1102 	journal_t *journal = journal_init_common();
1103 	char *p;
1104 	int err;
1105 	int n;
1106 	unsigned long long blocknr;
1107 
1108 	if (!journal)
1109 		return NULL;
1110 
1111 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1112 	journal->j_inode = inode;
1113 	bdevname(journal->j_dev, journal->j_devname);
1114 	p = journal->j_devname;
1115 	while ((p = strchr(p, '/')))
1116 		*p = '!';
1117 	p = journal->j_devname + strlen(journal->j_devname);
1118 	sprintf(p, ":%lu", journal->j_inode->i_ino);
1119 	jbd_debug(1,
1120 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1121 		  journal, inode->i_sb->s_id, inode->i_ino,
1122 		  (long long) inode->i_size,
1123 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1124 
1125 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1126 	journal->j_blocksize = inode->i_sb->s_blocksize;
1127 	jbd2_stats_proc_init(journal);
1128 
1129 	/* journal descriptor can store up to n blocks -bzzz */
1130 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1131 	journal->j_wbufsize = n;
1132 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1133 	if (!journal->j_wbuf) {
1134 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1135 			__func__);
1136 		goto out_err;
1137 	}
1138 
1139 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1140 	/* If that failed, give up */
1141 	if (err) {
1142 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
1143 		       __func__);
1144 		goto out_err;
1145 	}
1146 
1147 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1148 	if (!bh) {
1149 		printk(KERN_ERR
1150 		       "%s: Cannot get buffer for journal superblock\n",
1151 		       __func__);
1152 		goto out_err;
1153 	}
1154 	journal->j_sb_buffer = bh;
1155 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1156 
1157 	return journal;
1158 out_err:
1159 	jbd2_stats_proc_exit(journal);
1160 	kfree(journal);
1161 	return NULL;
1162 }
1163 
1164 /*
1165  * If the journal init or create aborts, we need to mark the journal
1166  * superblock as being NULL to prevent the journal destroy from writing
1167  * back a bogus superblock.
1168  */
1169 static void journal_fail_superblock (journal_t *journal)
1170 {
1171 	struct buffer_head *bh = journal->j_sb_buffer;
1172 	brelse(bh);
1173 	journal->j_sb_buffer = NULL;
1174 }
1175 
1176 /*
1177  * Given a journal_t structure, initialise the various fields for
1178  * startup of a new journaling session.  We use this both when creating
1179  * a journal, and after recovering an old journal to reset it for
1180  * subsequent use.
1181  */
1182 
1183 static int journal_reset(journal_t *journal)
1184 {
1185 	journal_superblock_t *sb = journal->j_superblock;
1186 	unsigned long long first, last;
1187 
1188 	first = be32_to_cpu(sb->s_first);
1189 	last = be32_to_cpu(sb->s_maxlen);
1190 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1191 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1192 		       first, last);
1193 		journal_fail_superblock(journal);
1194 		return -EINVAL;
1195 	}
1196 
1197 	journal->j_first = first;
1198 	journal->j_last = last;
1199 
1200 	journal->j_head = first;
1201 	journal->j_tail = first;
1202 	journal->j_free = last - first;
1203 
1204 	journal->j_tail_sequence = journal->j_transaction_sequence;
1205 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1206 	journal->j_commit_request = journal->j_commit_sequence;
1207 
1208 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1209 
1210 	/* Add the dynamic fields and write it to disk. */
1211 	jbd2_journal_update_superblock(journal, 1);
1212 	return jbd2_journal_start_thread(journal);
1213 }
1214 
1215 /**
1216  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1217  * @journal: The journal to update.
1218  * @wait: Set to '0' if you don't want to wait for IO completion.
1219  *
1220  * Update a journal's dynamic superblock fields and write it to disk,
1221  * optionally waiting for the IO to complete.
1222  */
1223 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1224 {
1225 	journal_superblock_t *sb = journal->j_superblock;
1226 	struct buffer_head *bh = journal->j_sb_buffer;
1227 
1228 	/*
1229 	 * As a special case, if the on-disk copy is already marked as needing
1230 	 * no recovery (s_start == 0) and there are no outstanding transactions
1231 	 * in the filesystem, then we can safely defer the superblock update
1232 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1233 	 * attempting a write to a potential-readonly device.
1234 	 */
1235 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1236 				journal->j_transaction_sequence) {
1237 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1238 			"(start %ld, seq %d, errno %d)\n",
1239 			journal->j_tail, journal->j_tail_sequence,
1240 			journal->j_errno);
1241 		goto out;
1242 	}
1243 
1244 	if (buffer_write_io_error(bh)) {
1245 		/*
1246 		 * Oh, dear.  A previous attempt to write the journal
1247 		 * superblock failed.  This could happen because the
1248 		 * USB device was yanked out.  Or it could happen to
1249 		 * be a transient write error and maybe the block will
1250 		 * be remapped.  Nothing we can do but to retry the
1251 		 * write and hope for the best.
1252 		 */
1253 		printk(KERN_ERR "JBD2: previous I/O error detected "
1254 		       "for journal superblock update for %s.\n",
1255 		       journal->j_devname);
1256 		clear_buffer_write_io_error(bh);
1257 		set_buffer_uptodate(bh);
1258 	}
1259 
1260 	spin_lock(&journal->j_state_lock);
1261 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1262 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1263 
1264 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1265 	sb->s_start    = cpu_to_be32(journal->j_tail);
1266 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1267 	spin_unlock(&journal->j_state_lock);
1268 
1269 	BUFFER_TRACE(bh, "marking dirty");
1270 	mark_buffer_dirty(bh);
1271 	if (wait) {
1272 		sync_dirty_buffer(bh);
1273 		if (buffer_write_io_error(bh)) {
1274 			printk(KERN_ERR "JBD2: I/O error detected "
1275 			       "when updating journal superblock for %s.\n",
1276 			       journal->j_devname);
1277 			clear_buffer_write_io_error(bh);
1278 			set_buffer_uptodate(bh);
1279 		}
1280 	} else
1281 		ll_rw_block(SWRITE, 1, &bh);
1282 
1283 out:
1284 	/* If we have just flushed the log (by marking s_start==0), then
1285 	 * any future commit will have to be careful to update the
1286 	 * superblock again to re-record the true start of the log. */
1287 
1288 	spin_lock(&journal->j_state_lock);
1289 	if (sb->s_start)
1290 		journal->j_flags &= ~JBD2_FLUSHED;
1291 	else
1292 		journal->j_flags |= JBD2_FLUSHED;
1293 	spin_unlock(&journal->j_state_lock);
1294 }
1295 
1296 /*
1297  * Read the superblock for a given journal, performing initial
1298  * validation of the format.
1299  */
1300 
1301 static int journal_get_superblock(journal_t *journal)
1302 {
1303 	struct buffer_head *bh;
1304 	journal_superblock_t *sb;
1305 	int err = -EIO;
1306 
1307 	bh = journal->j_sb_buffer;
1308 
1309 	J_ASSERT(bh != NULL);
1310 	if (!buffer_uptodate(bh)) {
1311 		ll_rw_block(READ, 1, &bh);
1312 		wait_on_buffer(bh);
1313 		if (!buffer_uptodate(bh)) {
1314 			printk (KERN_ERR
1315 				"JBD: IO error reading journal superblock\n");
1316 			goto out;
1317 		}
1318 	}
1319 
1320 	sb = journal->j_superblock;
1321 
1322 	err = -EINVAL;
1323 
1324 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1325 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1326 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1327 		goto out;
1328 	}
1329 
1330 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1331 	case JBD2_SUPERBLOCK_V1:
1332 		journal->j_format_version = 1;
1333 		break;
1334 	case JBD2_SUPERBLOCK_V2:
1335 		journal->j_format_version = 2;
1336 		break;
1337 	default:
1338 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1339 		goto out;
1340 	}
1341 
1342 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1343 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1344 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1345 		printk (KERN_WARNING "JBD: journal file too short\n");
1346 		goto out;
1347 	}
1348 
1349 	return 0;
1350 
1351 out:
1352 	journal_fail_superblock(journal);
1353 	return err;
1354 }
1355 
1356 /*
1357  * Load the on-disk journal superblock and read the key fields into the
1358  * journal_t.
1359  */
1360 
1361 static int load_superblock(journal_t *journal)
1362 {
1363 	int err;
1364 	journal_superblock_t *sb;
1365 
1366 	err = journal_get_superblock(journal);
1367 	if (err)
1368 		return err;
1369 
1370 	sb = journal->j_superblock;
1371 
1372 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1373 	journal->j_tail = be32_to_cpu(sb->s_start);
1374 	journal->j_first = be32_to_cpu(sb->s_first);
1375 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1376 	journal->j_errno = be32_to_cpu(sb->s_errno);
1377 
1378 	return 0;
1379 }
1380 
1381 
1382 /**
1383  * int jbd2_journal_load() - Read journal from disk.
1384  * @journal: Journal to act on.
1385  *
1386  * Given a journal_t structure which tells us which disk blocks contain
1387  * a journal, read the journal from disk to initialise the in-memory
1388  * structures.
1389  */
1390 int jbd2_journal_load(journal_t *journal)
1391 {
1392 	int err;
1393 	journal_superblock_t *sb;
1394 
1395 	err = load_superblock(journal);
1396 	if (err)
1397 		return err;
1398 
1399 	sb = journal->j_superblock;
1400 	/* If this is a V2 superblock, then we have to check the
1401 	 * features flags on it. */
1402 
1403 	if (journal->j_format_version >= 2) {
1404 		if ((sb->s_feature_ro_compat &
1405 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1406 		    (sb->s_feature_incompat &
1407 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1408 			printk (KERN_WARNING
1409 				"JBD: Unrecognised features on journal\n");
1410 			return -EINVAL;
1411 		}
1412 	}
1413 
1414 	/* Let the recovery code check whether it needs to recover any
1415 	 * data from the journal. */
1416 	if (jbd2_journal_recover(journal))
1417 		goto recovery_error;
1418 
1419 	/* OK, we've finished with the dynamic journal bits:
1420 	 * reinitialise the dynamic contents of the superblock in memory
1421 	 * and reset them on disk. */
1422 	if (journal_reset(journal))
1423 		goto recovery_error;
1424 
1425 	journal->j_flags &= ~JBD2_ABORT;
1426 	journal->j_flags |= JBD2_LOADED;
1427 	return 0;
1428 
1429 recovery_error:
1430 	printk (KERN_WARNING "JBD: recovery failed\n");
1431 	return -EIO;
1432 }
1433 
1434 /**
1435  * void jbd2_journal_destroy() - Release a journal_t structure.
1436  * @journal: Journal to act on.
1437  *
1438  * Release a journal_t structure once it is no longer in use by the
1439  * journaled object.
1440  * Return <0 if we couldn't clean up the journal.
1441  */
1442 int jbd2_journal_destroy(journal_t *journal)
1443 {
1444 	int err = 0;
1445 
1446 	/* Wait for the commit thread to wake up and die. */
1447 	journal_kill_thread(journal);
1448 
1449 	/* Force a final log commit */
1450 	if (journal->j_running_transaction)
1451 		jbd2_journal_commit_transaction(journal);
1452 
1453 	/* Force any old transactions to disk */
1454 
1455 	/* Totally anal locking here... */
1456 	spin_lock(&journal->j_list_lock);
1457 	while (journal->j_checkpoint_transactions != NULL) {
1458 		spin_unlock(&journal->j_list_lock);
1459 		mutex_lock(&journal->j_checkpoint_mutex);
1460 		jbd2_log_do_checkpoint(journal);
1461 		mutex_unlock(&journal->j_checkpoint_mutex);
1462 		spin_lock(&journal->j_list_lock);
1463 	}
1464 
1465 	J_ASSERT(journal->j_running_transaction == NULL);
1466 	J_ASSERT(journal->j_committing_transaction == NULL);
1467 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1468 	spin_unlock(&journal->j_list_lock);
1469 
1470 	if (journal->j_sb_buffer) {
1471 		if (!is_journal_aborted(journal)) {
1472 			/* We can now mark the journal as empty. */
1473 			journal->j_tail = 0;
1474 			journal->j_tail_sequence =
1475 				++journal->j_transaction_sequence;
1476 			jbd2_journal_update_superblock(journal, 1);
1477 		} else {
1478 			err = -EIO;
1479 		}
1480 		brelse(journal->j_sb_buffer);
1481 	}
1482 
1483 	if (journal->j_proc_entry)
1484 		jbd2_stats_proc_exit(journal);
1485 	if (journal->j_inode)
1486 		iput(journal->j_inode);
1487 	if (journal->j_revoke)
1488 		jbd2_journal_destroy_revoke(journal);
1489 	kfree(journal->j_wbuf);
1490 	kfree(journal);
1491 
1492 	return err;
1493 }
1494 
1495 
1496 /**
1497  *int jbd2_journal_check_used_features () - Check if features specified are used.
1498  * @journal: Journal to check.
1499  * @compat: bitmask of compatible features
1500  * @ro: bitmask of features that force read-only mount
1501  * @incompat: bitmask of incompatible features
1502  *
1503  * Check whether the journal uses all of a given set of
1504  * features.  Return true (non-zero) if it does.
1505  **/
1506 
1507 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1508 				 unsigned long ro, unsigned long incompat)
1509 {
1510 	journal_superblock_t *sb;
1511 
1512 	if (!compat && !ro && !incompat)
1513 		return 1;
1514 	if (journal->j_format_version == 1)
1515 		return 0;
1516 
1517 	sb = journal->j_superblock;
1518 
1519 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1520 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1521 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1522 		return 1;
1523 
1524 	return 0;
1525 }
1526 
1527 /**
1528  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1529  * @journal: Journal to check.
1530  * @compat: bitmask of compatible features
1531  * @ro: bitmask of features that force read-only mount
1532  * @incompat: bitmask of incompatible features
1533  *
1534  * Check whether the journaling code supports the use of
1535  * all of a given set of features on this journal.  Return true
1536  * (non-zero) if it can. */
1537 
1538 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1539 				      unsigned long ro, unsigned long incompat)
1540 {
1541 	journal_superblock_t *sb;
1542 
1543 	if (!compat && !ro && !incompat)
1544 		return 1;
1545 
1546 	sb = journal->j_superblock;
1547 
1548 	/* We can support any known requested features iff the
1549 	 * superblock is in version 2.  Otherwise we fail to support any
1550 	 * extended sb features. */
1551 
1552 	if (journal->j_format_version != 2)
1553 		return 0;
1554 
1555 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1556 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1557 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1558 		return 1;
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1565  * @journal: Journal to act on.
1566  * @compat: bitmask of compatible features
1567  * @ro: bitmask of features that force read-only mount
1568  * @incompat: bitmask of incompatible features
1569  *
1570  * Mark a given journal feature as present on the
1571  * superblock.  Returns true if the requested features could be set.
1572  *
1573  */
1574 
1575 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1576 			  unsigned long ro, unsigned long incompat)
1577 {
1578 	journal_superblock_t *sb;
1579 
1580 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1581 		return 1;
1582 
1583 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1584 		return 0;
1585 
1586 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1587 		  compat, ro, incompat);
1588 
1589 	sb = journal->j_superblock;
1590 
1591 	sb->s_feature_compat    |= cpu_to_be32(compat);
1592 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1593 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1594 
1595 	return 1;
1596 }
1597 
1598 /*
1599  * jbd2_journal_clear_features () - Clear a given journal feature in the
1600  * 				    superblock
1601  * @journal: Journal to act on.
1602  * @compat: bitmask of compatible features
1603  * @ro: bitmask of features that force read-only mount
1604  * @incompat: bitmask of incompatible features
1605  *
1606  * Clear a given journal feature as present on the
1607  * superblock.
1608  */
1609 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1610 				unsigned long ro, unsigned long incompat)
1611 {
1612 	journal_superblock_t *sb;
1613 
1614 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1615 		  compat, ro, incompat);
1616 
1617 	sb = journal->j_superblock;
1618 
1619 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1620 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1621 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1622 }
1623 EXPORT_SYMBOL(jbd2_journal_clear_features);
1624 
1625 /**
1626  * int jbd2_journal_update_format () - Update on-disk journal structure.
1627  * @journal: Journal to act on.
1628  *
1629  * Given an initialised but unloaded journal struct, poke about in the
1630  * on-disk structure to update it to the most recent supported version.
1631  */
1632 int jbd2_journal_update_format (journal_t *journal)
1633 {
1634 	journal_superblock_t *sb;
1635 	int err;
1636 
1637 	err = journal_get_superblock(journal);
1638 	if (err)
1639 		return err;
1640 
1641 	sb = journal->j_superblock;
1642 
1643 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1644 	case JBD2_SUPERBLOCK_V2:
1645 		return 0;
1646 	case JBD2_SUPERBLOCK_V1:
1647 		return journal_convert_superblock_v1(journal, sb);
1648 	default:
1649 		break;
1650 	}
1651 	return -EINVAL;
1652 }
1653 
1654 static int journal_convert_superblock_v1(journal_t *journal,
1655 					 journal_superblock_t *sb)
1656 {
1657 	int offset, blocksize;
1658 	struct buffer_head *bh;
1659 
1660 	printk(KERN_WARNING
1661 		"JBD: Converting superblock from version 1 to 2.\n");
1662 
1663 	/* Pre-initialise new fields to zero */
1664 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1665 	blocksize = be32_to_cpu(sb->s_blocksize);
1666 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1667 
1668 	sb->s_nr_users = cpu_to_be32(1);
1669 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1670 	journal->j_format_version = 2;
1671 
1672 	bh = journal->j_sb_buffer;
1673 	BUFFER_TRACE(bh, "marking dirty");
1674 	mark_buffer_dirty(bh);
1675 	sync_dirty_buffer(bh);
1676 	return 0;
1677 }
1678 
1679 
1680 /**
1681  * int jbd2_journal_flush () - Flush journal
1682  * @journal: Journal to act on.
1683  *
1684  * Flush all data for a given journal to disk and empty the journal.
1685  * Filesystems can use this when remounting readonly to ensure that
1686  * recovery does not need to happen on remount.
1687  */
1688 
1689 int jbd2_journal_flush(journal_t *journal)
1690 {
1691 	int err = 0;
1692 	transaction_t *transaction = NULL;
1693 	unsigned long old_tail;
1694 
1695 	spin_lock(&journal->j_state_lock);
1696 
1697 	/* Force everything buffered to the log... */
1698 	if (journal->j_running_transaction) {
1699 		transaction = journal->j_running_transaction;
1700 		__jbd2_log_start_commit(journal, transaction->t_tid);
1701 	} else if (journal->j_committing_transaction)
1702 		transaction = journal->j_committing_transaction;
1703 
1704 	/* Wait for the log commit to complete... */
1705 	if (transaction) {
1706 		tid_t tid = transaction->t_tid;
1707 
1708 		spin_unlock(&journal->j_state_lock);
1709 		jbd2_log_wait_commit(journal, tid);
1710 	} else {
1711 		spin_unlock(&journal->j_state_lock);
1712 	}
1713 
1714 	/* ...and flush everything in the log out to disk. */
1715 	spin_lock(&journal->j_list_lock);
1716 	while (!err && journal->j_checkpoint_transactions != NULL) {
1717 		spin_unlock(&journal->j_list_lock);
1718 		mutex_lock(&journal->j_checkpoint_mutex);
1719 		err = jbd2_log_do_checkpoint(journal);
1720 		mutex_unlock(&journal->j_checkpoint_mutex);
1721 		spin_lock(&journal->j_list_lock);
1722 	}
1723 	spin_unlock(&journal->j_list_lock);
1724 
1725 	if (is_journal_aborted(journal))
1726 		return -EIO;
1727 
1728 	jbd2_cleanup_journal_tail(journal);
1729 
1730 	/* Finally, mark the journal as really needing no recovery.
1731 	 * This sets s_start==0 in the underlying superblock, which is
1732 	 * the magic code for a fully-recovered superblock.  Any future
1733 	 * commits of data to the journal will restore the current
1734 	 * s_start value. */
1735 	spin_lock(&journal->j_state_lock);
1736 	old_tail = journal->j_tail;
1737 	journal->j_tail = 0;
1738 	spin_unlock(&journal->j_state_lock);
1739 	jbd2_journal_update_superblock(journal, 1);
1740 	spin_lock(&journal->j_state_lock);
1741 	journal->j_tail = old_tail;
1742 
1743 	J_ASSERT(!journal->j_running_transaction);
1744 	J_ASSERT(!journal->j_committing_transaction);
1745 	J_ASSERT(!journal->j_checkpoint_transactions);
1746 	J_ASSERT(journal->j_head == journal->j_tail);
1747 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1748 	spin_unlock(&journal->j_state_lock);
1749 	return 0;
1750 }
1751 
1752 /**
1753  * int jbd2_journal_wipe() - Wipe journal contents
1754  * @journal: Journal to act on.
1755  * @write: flag (see below)
1756  *
1757  * Wipe out all of the contents of a journal, safely.  This will produce
1758  * a warning if the journal contains any valid recovery information.
1759  * Must be called between journal_init_*() and jbd2_journal_load().
1760  *
1761  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1762  * we merely suppress recovery.
1763  */
1764 
1765 int jbd2_journal_wipe(journal_t *journal, int write)
1766 {
1767 	journal_superblock_t *sb;
1768 	int err = 0;
1769 
1770 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1771 
1772 	err = load_superblock(journal);
1773 	if (err)
1774 		return err;
1775 
1776 	sb = journal->j_superblock;
1777 
1778 	if (!journal->j_tail)
1779 		goto no_recovery;
1780 
1781 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1782 		write ? "Clearing" : "Ignoring");
1783 
1784 	err = jbd2_journal_skip_recovery(journal);
1785 	if (write)
1786 		jbd2_journal_update_superblock(journal, 1);
1787 
1788  no_recovery:
1789 	return err;
1790 }
1791 
1792 /*
1793  * Journal abort has very specific semantics, which we describe
1794  * for journal abort.
1795  *
1796  * Two internal functions, which provide abort to the jbd layer
1797  * itself are here.
1798  */
1799 
1800 /*
1801  * Quick version for internal journal use (doesn't lock the journal).
1802  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1803  * and don't attempt to make any other journal updates.
1804  */
1805 void __jbd2_journal_abort_hard(journal_t *journal)
1806 {
1807 	transaction_t *transaction;
1808 
1809 	if (journal->j_flags & JBD2_ABORT)
1810 		return;
1811 
1812 	printk(KERN_ERR "Aborting journal on device %s.\n",
1813 	       journal->j_devname);
1814 
1815 	spin_lock(&journal->j_state_lock);
1816 	journal->j_flags |= JBD2_ABORT;
1817 	transaction = journal->j_running_transaction;
1818 	if (transaction)
1819 		__jbd2_log_start_commit(journal, transaction->t_tid);
1820 	spin_unlock(&journal->j_state_lock);
1821 }
1822 
1823 /* Soft abort: record the abort error status in the journal superblock,
1824  * but don't do any other IO. */
1825 static void __journal_abort_soft (journal_t *journal, int errno)
1826 {
1827 	if (journal->j_flags & JBD2_ABORT)
1828 		return;
1829 
1830 	if (!journal->j_errno)
1831 		journal->j_errno = errno;
1832 
1833 	__jbd2_journal_abort_hard(journal);
1834 
1835 	if (errno)
1836 		jbd2_journal_update_superblock(journal, 1);
1837 }
1838 
1839 /**
1840  * void jbd2_journal_abort () - Shutdown the journal immediately.
1841  * @journal: the journal to shutdown.
1842  * @errno:   an error number to record in the journal indicating
1843  *           the reason for the shutdown.
1844  *
1845  * Perform a complete, immediate shutdown of the ENTIRE
1846  * journal (not of a single transaction).  This operation cannot be
1847  * undone without closing and reopening the journal.
1848  *
1849  * The jbd2_journal_abort function is intended to support higher level error
1850  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1851  * mode.
1852  *
1853  * Journal abort has very specific semantics.  Any existing dirty,
1854  * unjournaled buffers in the main filesystem will still be written to
1855  * disk by bdflush, but the journaling mechanism will be suspended
1856  * immediately and no further transaction commits will be honoured.
1857  *
1858  * Any dirty, journaled buffers will be written back to disk without
1859  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1860  * filesystem, but we _do_ attempt to leave as much data as possible
1861  * behind for fsck to use for cleanup.
1862  *
1863  * Any attempt to get a new transaction handle on a journal which is in
1864  * ABORT state will just result in an -EROFS error return.  A
1865  * jbd2_journal_stop on an existing handle will return -EIO if we have
1866  * entered abort state during the update.
1867  *
1868  * Recursive transactions are not disturbed by journal abort until the
1869  * final jbd2_journal_stop, which will receive the -EIO error.
1870  *
1871  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1872  * which will be recorded (if possible) in the journal superblock.  This
1873  * allows a client to record failure conditions in the middle of a
1874  * transaction without having to complete the transaction to record the
1875  * failure to disk.  ext3_error, for example, now uses this
1876  * functionality.
1877  *
1878  * Errors which originate from within the journaling layer will NOT
1879  * supply an errno; a null errno implies that absolutely no further
1880  * writes are done to the journal (unless there are any already in
1881  * progress).
1882  *
1883  */
1884 
1885 void jbd2_journal_abort(journal_t *journal, int errno)
1886 {
1887 	__journal_abort_soft(journal, errno);
1888 }
1889 
1890 /**
1891  * int jbd2_journal_errno () - returns the journal's error state.
1892  * @journal: journal to examine.
1893  *
1894  * This is the errno number set with jbd2_journal_abort(), the last
1895  * time the journal was mounted - if the journal was stopped
1896  * without calling abort this will be 0.
1897  *
1898  * If the journal has been aborted on this mount time -EROFS will
1899  * be returned.
1900  */
1901 int jbd2_journal_errno(journal_t *journal)
1902 {
1903 	int err;
1904 
1905 	spin_lock(&journal->j_state_lock);
1906 	if (journal->j_flags & JBD2_ABORT)
1907 		err = -EROFS;
1908 	else
1909 		err = journal->j_errno;
1910 	spin_unlock(&journal->j_state_lock);
1911 	return err;
1912 }
1913 
1914 /**
1915  * int jbd2_journal_clear_err () - clears the journal's error state
1916  * @journal: journal to act on.
1917  *
1918  * An error must be cleared or acked to take a FS out of readonly
1919  * mode.
1920  */
1921 int jbd2_journal_clear_err(journal_t *journal)
1922 {
1923 	int err = 0;
1924 
1925 	spin_lock(&journal->j_state_lock);
1926 	if (journal->j_flags & JBD2_ABORT)
1927 		err = -EROFS;
1928 	else
1929 		journal->j_errno = 0;
1930 	spin_unlock(&journal->j_state_lock);
1931 	return err;
1932 }
1933 
1934 /**
1935  * void jbd2_journal_ack_err() - Ack journal err.
1936  * @journal: journal to act on.
1937  *
1938  * An error must be cleared or acked to take a FS out of readonly
1939  * mode.
1940  */
1941 void jbd2_journal_ack_err(journal_t *journal)
1942 {
1943 	spin_lock(&journal->j_state_lock);
1944 	if (journal->j_errno)
1945 		journal->j_flags |= JBD2_ACK_ERR;
1946 	spin_unlock(&journal->j_state_lock);
1947 }
1948 
1949 int jbd2_journal_blocks_per_page(struct inode *inode)
1950 {
1951 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1952 }
1953 
1954 /*
1955  * helper functions to deal with 32 or 64bit block numbers.
1956  */
1957 size_t journal_tag_bytes(journal_t *journal)
1958 {
1959 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1960 		return JBD2_TAG_SIZE64;
1961 	else
1962 		return JBD2_TAG_SIZE32;
1963 }
1964 
1965 /*
1966  * Journal_head storage management
1967  */
1968 static struct kmem_cache *jbd2_journal_head_cache;
1969 #ifdef CONFIG_JBD2_DEBUG
1970 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1971 #endif
1972 
1973 static int journal_init_jbd2_journal_head_cache(void)
1974 {
1975 	int retval;
1976 
1977 	J_ASSERT(jbd2_journal_head_cache == NULL);
1978 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1979 				sizeof(struct journal_head),
1980 				0,		/* offset */
1981 				SLAB_TEMPORARY,	/* flags */
1982 				NULL);		/* ctor */
1983 	retval = 0;
1984 	if (!jbd2_journal_head_cache) {
1985 		retval = -ENOMEM;
1986 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1987 	}
1988 	return retval;
1989 }
1990 
1991 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1992 {
1993 	if (jbd2_journal_head_cache) {
1994 		kmem_cache_destroy(jbd2_journal_head_cache);
1995 		jbd2_journal_head_cache = NULL;
1996 	}
1997 }
1998 
1999 /*
2000  * journal_head splicing and dicing
2001  */
2002 static struct journal_head *journal_alloc_journal_head(void)
2003 {
2004 	struct journal_head *ret;
2005 	static unsigned long last_warning;
2006 
2007 #ifdef CONFIG_JBD2_DEBUG
2008 	atomic_inc(&nr_journal_heads);
2009 #endif
2010 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2011 	if (!ret) {
2012 		jbd_debug(1, "out of memory for journal_head\n");
2013 		if (time_after(jiffies, last_warning + 5*HZ)) {
2014 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
2015 			       __func__);
2016 			last_warning = jiffies;
2017 		}
2018 		while (!ret) {
2019 			yield();
2020 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2021 		}
2022 	}
2023 	return ret;
2024 }
2025 
2026 static void journal_free_journal_head(struct journal_head *jh)
2027 {
2028 #ifdef CONFIG_JBD2_DEBUG
2029 	atomic_dec(&nr_journal_heads);
2030 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2031 #endif
2032 	kmem_cache_free(jbd2_journal_head_cache, jh);
2033 }
2034 
2035 /*
2036  * A journal_head is attached to a buffer_head whenever JBD has an
2037  * interest in the buffer.
2038  *
2039  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2040  * is set.  This bit is tested in core kernel code where we need to take
2041  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2042  * there.
2043  *
2044  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2045  *
2046  * When a buffer has its BH_JBD bit set it is immune from being released by
2047  * core kernel code, mainly via ->b_count.
2048  *
2049  * A journal_head may be detached from its buffer_head when the journal_head's
2050  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2051  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2052  * journal_head can be dropped if needed.
2053  *
2054  * Various places in the kernel want to attach a journal_head to a buffer_head
2055  * _before_ attaching the journal_head to a transaction.  To protect the
2056  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2057  * journal_head's b_jcount refcount by one.  The caller must call
2058  * jbd2_journal_put_journal_head() to undo this.
2059  *
2060  * So the typical usage would be:
2061  *
2062  *	(Attach a journal_head if needed.  Increments b_jcount)
2063  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2064  *	...
2065  *	jh->b_transaction = xxx;
2066  *	jbd2_journal_put_journal_head(jh);
2067  *
2068  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2069  * because it has a non-zero b_transaction.
2070  */
2071 
2072 /*
2073  * Give a buffer_head a journal_head.
2074  *
2075  * Doesn't need the journal lock.
2076  * May sleep.
2077  */
2078 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2079 {
2080 	struct journal_head *jh;
2081 	struct journal_head *new_jh = NULL;
2082 
2083 repeat:
2084 	if (!buffer_jbd(bh)) {
2085 		new_jh = journal_alloc_journal_head();
2086 		memset(new_jh, 0, sizeof(*new_jh));
2087 	}
2088 
2089 	jbd_lock_bh_journal_head(bh);
2090 	if (buffer_jbd(bh)) {
2091 		jh = bh2jh(bh);
2092 	} else {
2093 		J_ASSERT_BH(bh,
2094 			(atomic_read(&bh->b_count) > 0) ||
2095 			(bh->b_page && bh->b_page->mapping));
2096 
2097 		if (!new_jh) {
2098 			jbd_unlock_bh_journal_head(bh);
2099 			goto repeat;
2100 		}
2101 
2102 		jh = new_jh;
2103 		new_jh = NULL;		/* We consumed it */
2104 		set_buffer_jbd(bh);
2105 		bh->b_private = jh;
2106 		jh->b_bh = bh;
2107 		get_bh(bh);
2108 		BUFFER_TRACE(bh, "added journal_head");
2109 	}
2110 	jh->b_jcount++;
2111 	jbd_unlock_bh_journal_head(bh);
2112 	if (new_jh)
2113 		journal_free_journal_head(new_jh);
2114 	return bh->b_private;
2115 }
2116 
2117 /*
2118  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2119  * having a journal_head, return NULL
2120  */
2121 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2122 {
2123 	struct journal_head *jh = NULL;
2124 
2125 	jbd_lock_bh_journal_head(bh);
2126 	if (buffer_jbd(bh)) {
2127 		jh = bh2jh(bh);
2128 		jh->b_jcount++;
2129 	}
2130 	jbd_unlock_bh_journal_head(bh);
2131 	return jh;
2132 }
2133 
2134 static void __journal_remove_journal_head(struct buffer_head *bh)
2135 {
2136 	struct journal_head *jh = bh2jh(bh);
2137 
2138 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2139 
2140 	get_bh(bh);
2141 	if (jh->b_jcount == 0) {
2142 		if (jh->b_transaction == NULL &&
2143 				jh->b_next_transaction == NULL &&
2144 				jh->b_cp_transaction == NULL) {
2145 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2146 			J_ASSERT_BH(bh, buffer_jbd(bh));
2147 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2148 			BUFFER_TRACE(bh, "remove journal_head");
2149 			if (jh->b_frozen_data) {
2150 				printk(KERN_WARNING "%s: freeing "
2151 						"b_frozen_data\n",
2152 						__func__);
2153 				jbd2_free(jh->b_frozen_data, bh->b_size);
2154 			}
2155 			if (jh->b_committed_data) {
2156 				printk(KERN_WARNING "%s: freeing "
2157 						"b_committed_data\n",
2158 						__func__);
2159 				jbd2_free(jh->b_committed_data, bh->b_size);
2160 			}
2161 			bh->b_private = NULL;
2162 			jh->b_bh = NULL;	/* debug, really */
2163 			clear_buffer_jbd(bh);
2164 			__brelse(bh);
2165 			journal_free_journal_head(jh);
2166 		} else {
2167 			BUFFER_TRACE(bh, "journal_head was locked");
2168 		}
2169 	}
2170 }
2171 
2172 /*
2173  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2174  * and has a zero b_jcount then remove and release its journal_head.   If we did
2175  * see that the buffer is not used by any transaction we also "logically"
2176  * decrement ->b_count.
2177  *
2178  * We in fact take an additional increment on ->b_count as a convenience,
2179  * because the caller usually wants to do additional things with the bh
2180  * after calling here.
2181  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2182  * time.  Once the caller has run __brelse(), the buffer is eligible for
2183  * reaping by try_to_free_buffers().
2184  */
2185 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2186 {
2187 	jbd_lock_bh_journal_head(bh);
2188 	__journal_remove_journal_head(bh);
2189 	jbd_unlock_bh_journal_head(bh);
2190 }
2191 
2192 /*
2193  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2194  * release the journal_head from the buffer_head.
2195  */
2196 void jbd2_journal_put_journal_head(struct journal_head *jh)
2197 {
2198 	struct buffer_head *bh = jh2bh(jh);
2199 
2200 	jbd_lock_bh_journal_head(bh);
2201 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2202 	--jh->b_jcount;
2203 	if (!jh->b_jcount && !jh->b_transaction) {
2204 		__journal_remove_journal_head(bh);
2205 		__brelse(bh);
2206 	}
2207 	jbd_unlock_bh_journal_head(bh);
2208 }
2209 
2210 /*
2211  * Initialize jbd inode head
2212  */
2213 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2214 {
2215 	jinode->i_transaction = NULL;
2216 	jinode->i_next_transaction = NULL;
2217 	jinode->i_vfs_inode = inode;
2218 	jinode->i_flags = 0;
2219 	INIT_LIST_HEAD(&jinode->i_list);
2220 }
2221 
2222 /*
2223  * Function to be called before we start removing inode from memory (i.e.,
2224  * clear_inode() is a fine place to be called from). It removes inode from
2225  * transaction's lists.
2226  */
2227 void jbd2_journal_release_jbd_inode(journal_t *journal,
2228 				    struct jbd2_inode *jinode)
2229 {
2230 	int writeout = 0;
2231 
2232 	if (!journal)
2233 		return;
2234 restart:
2235 	spin_lock(&journal->j_list_lock);
2236 	/* Is commit writing out inode - we have to wait */
2237 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2238 		wait_queue_head_t *wq;
2239 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2240 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2241 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2242 		spin_unlock(&journal->j_list_lock);
2243 		schedule();
2244 		finish_wait(wq, &wait.wait);
2245 		goto restart;
2246 	}
2247 
2248 	/* Do we need to wait for data writeback? */
2249 	if (journal->j_committing_transaction == jinode->i_transaction)
2250 		writeout = 1;
2251 	if (jinode->i_transaction) {
2252 		list_del(&jinode->i_list);
2253 		jinode->i_transaction = NULL;
2254 	}
2255 	spin_unlock(&journal->j_list_lock);
2256 }
2257 
2258 /*
2259  * debugfs tunables
2260  */
2261 #ifdef CONFIG_JBD2_DEBUG
2262 u8 jbd2_journal_enable_debug __read_mostly;
2263 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2264 
2265 #define JBD2_DEBUG_NAME "jbd2-debug"
2266 
2267 static struct dentry *jbd2_debugfs_dir;
2268 static struct dentry *jbd2_debug;
2269 
2270 static void __init jbd2_create_debugfs_entry(void)
2271 {
2272 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2273 	if (jbd2_debugfs_dir)
2274 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
2275 					       jbd2_debugfs_dir,
2276 					       &jbd2_journal_enable_debug);
2277 }
2278 
2279 static void __exit jbd2_remove_debugfs_entry(void)
2280 {
2281 	debugfs_remove(jbd2_debug);
2282 	debugfs_remove(jbd2_debugfs_dir);
2283 }
2284 
2285 #else
2286 
2287 static void __init jbd2_create_debugfs_entry(void)
2288 {
2289 }
2290 
2291 static void __exit jbd2_remove_debugfs_entry(void)
2292 {
2293 }
2294 
2295 #endif
2296 
2297 #ifdef CONFIG_PROC_FS
2298 
2299 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2300 
2301 static void __init jbd2_create_jbd_stats_proc_entry(void)
2302 {
2303 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2304 }
2305 
2306 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2307 {
2308 	if (proc_jbd2_stats)
2309 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2310 }
2311 
2312 #else
2313 
2314 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2315 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2316 
2317 #endif
2318 
2319 struct kmem_cache *jbd2_handle_cache;
2320 
2321 static int __init journal_init_handle_cache(void)
2322 {
2323 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2324 				sizeof(handle_t),
2325 				0,		/* offset */
2326 				SLAB_TEMPORARY,	/* flags */
2327 				NULL);		/* ctor */
2328 	if (jbd2_handle_cache == NULL) {
2329 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2330 		return -ENOMEM;
2331 	}
2332 	return 0;
2333 }
2334 
2335 static void jbd2_journal_destroy_handle_cache(void)
2336 {
2337 	if (jbd2_handle_cache)
2338 		kmem_cache_destroy(jbd2_handle_cache);
2339 }
2340 
2341 /*
2342  * Module startup and shutdown
2343  */
2344 
2345 static int __init journal_init_caches(void)
2346 {
2347 	int ret;
2348 
2349 	ret = jbd2_journal_init_revoke_caches();
2350 	if (ret == 0)
2351 		ret = journal_init_jbd2_journal_head_cache();
2352 	if (ret == 0)
2353 		ret = journal_init_handle_cache();
2354 	return ret;
2355 }
2356 
2357 static void jbd2_journal_destroy_caches(void)
2358 {
2359 	jbd2_journal_destroy_revoke_caches();
2360 	jbd2_journal_destroy_jbd2_journal_head_cache();
2361 	jbd2_journal_destroy_handle_cache();
2362 }
2363 
2364 static int __init journal_init(void)
2365 {
2366 	int ret;
2367 
2368 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2369 
2370 	ret = journal_init_caches();
2371 	if (ret == 0) {
2372 		jbd2_create_debugfs_entry();
2373 		jbd2_create_jbd_stats_proc_entry();
2374 	} else {
2375 		jbd2_journal_destroy_caches();
2376 	}
2377 	return ret;
2378 }
2379 
2380 static void __exit journal_exit(void)
2381 {
2382 #ifdef CONFIG_JBD2_DEBUG
2383 	int n = atomic_read(&nr_journal_heads);
2384 	if (n)
2385 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2386 #endif
2387 	jbd2_remove_debugfs_entry();
2388 	jbd2_remove_jbd_stats_proc_entry();
2389 	jbd2_journal_destroy_caches();
2390 }
2391 
2392 /*
2393  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2394  * tracing infrastructure to map a dev_t to a device name.
2395  *
2396  * The caller should use rcu_read_lock() in order to make sure the
2397  * device name stays valid until its done with it.  We use
2398  * rcu_read_lock() as well to make sure we're safe in case the caller
2399  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2400  * nested.
2401  */
2402 struct devname_cache {
2403 	struct rcu_head	rcu;
2404 	dev_t		device;
2405 	char		devname[BDEVNAME_SIZE];
2406 };
2407 #define CACHE_SIZE_BITS 6
2408 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2409 static DEFINE_SPINLOCK(devname_cache_lock);
2410 
2411 static void free_devcache(struct rcu_head *rcu)
2412 {
2413 	kfree(rcu);
2414 }
2415 
2416 const char *jbd2_dev_to_name(dev_t device)
2417 {
2418 	int	i = hash_32(device, CACHE_SIZE_BITS);
2419 	char	*ret;
2420 	struct block_device *bd;
2421 	static struct devname_cache *new_dev;
2422 
2423 	rcu_read_lock();
2424 	if (devcache[i] && devcache[i]->device == device) {
2425 		ret = devcache[i]->devname;
2426 		rcu_read_unlock();
2427 		return ret;
2428 	}
2429 	rcu_read_unlock();
2430 
2431 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2432 	if (!new_dev)
2433 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2434 	spin_lock(&devname_cache_lock);
2435 	if (devcache[i]) {
2436 		if (devcache[i]->device == device) {
2437 			kfree(new_dev);
2438 			ret = devcache[i]->devname;
2439 			spin_unlock(&devname_cache_lock);
2440 			return ret;
2441 		}
2442 		call_rcu(&devcache[i]->rcu, free_devcache);
2443 	}
2444 	devcache[i] = new_dev;
2445 	devcache[i]->device = device;
2446 	bd = bdget(device);
2447 	if (bd) {
2448 		bdevname(bd, devcache[i]->devname);
2449 		bdput(bd);
2450 	} else
2451 		__bdevname(device, devcache[i]->devname);
2452 	ret = devcache[i]->devname;
2453 	spin_unlock(&devname_cache_lock);
2454 	return ret;
2455 }
2456 EXPORT_SYMBOL(jbd2_dev_to_name);
2457 
2458 MODULE_LICENSE("GPL");
2459 module_init(journal_init);
2460 module_exit(journal_exit);
2461 
2462