xref: /openbmc/linux/fs/jbd2/journal.c (revision fcaf99d2)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/page.h>
44 
45 EXPORT_SYMBOL(jbd2_journal_start);
46 EXPORT_SYMBOL(jbd2_journal_restart);
47 EXPORT_SYMBOL(jbd2_journal_extend);
48 EXPORT_SYMBOL(jbd2_journal_stop);
49 EXPORT_SYMBOL(jbd2_journal_lock_updates);
50 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
51 EXPORT_SYMBOL(jbd2_journal_get_write_access);
52 EXPORT_SYMBOL(jbd2_journal_get_create_access);
53 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
54 EXPORT_SYMBOL(jbd2_journal_set_triggers);
55 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
56 EXPORT_SYMBOL(jbd2_journal_release_buffer);
57 EXPORT_SYMBOL(jbd2_journal_forget);
58 #if 0
59 EXPORT_SYMBOL(journal_sync_buffer);
60 #endif
61 EXPORT_SYMBOL(jbd2_journal_flush);
62 EXPORT_SYMBOL(jbd2_journal_revoke);
63 
64 EXPORT_SYMBOL(jbd2_journal_init_dev);
65 EXPORT_SYMBOL(jbd2_journal_init_inode);
66 EXPORT_SYMBOL(jbd2_journal_update_format);
67 EXPORT_SYMBOL(jbd2_journal_check_used_features);
68 EXPORT_SYMBOL(jbd2_journal_check_available_features);
69 EXPORT_SYMBOL(jbd2_journal_set_features);
70 EXPORT_SYMBOL(jbd2_journal_load);
71 EXPORT_SYMBOL(jbd2_journal_destroy);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
84 EXPORT_SYMBOL(jbd2_journal_file_inode);
85 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
86 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
87 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
88 
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 
92 /*
93  * Helper function used to manage commit timeouts
94  */
95 
96 static void commit_timeout(unsigned long __data)
97 {
98 	struct task_struct * p = (struct task_struct *) __data;
99 
100 	wake_up_process(p);
101 }
102 
103 /*
104  * kjournald2: The main thread function used to manage a logging device
105  * journal.
106  *
107  * This kernel thread is responsible for two things:
108  *
109  * 1) COMMIT:  Every so often we need to commit the current state of the
110  *    filesystem to disk.  The journal thread is responsible for writing
111  *    all of the metadata buffers to disk.
112  *
113  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
114  *    of the data in that part of the log has been rewritten elsewhere on
115  *    the disk.  Flushing these old buffers to reclaim space in the log is
116  *    known as checkpointing, and this thread is responsible for that job.
117  */
118 
119 static int kjournald2(void *arg)
120 {
121 	journal_t *journal = arg;
122 	transaction_t *transaction;
123 
124 	/*
125 	 * Set up an interval timer which can be used to trigger a commit wakeup
126 	 * after the commit interval expires
127 	 */
128 	setup_timer(&journal->j_commit_timer, commit_timeout,
129 			(unsigned long)current);
130 
131 	/* Record that the journal thread is running */
132 	journal->j_task = current;
133 	wake_up(&journal->j_wait_done_commit);
134 
135 	printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, "
136 	       "commit interval %ld seconds\n", current->pid,
137 	       journal->j_devname, journal->j_commit_interval / HZ);
138 
139 	/*
140 	 * And now, wait forever for commit wakeup events.
141 	 */
142 	spin_lock(&journal->j_state_lock);
143 
144 loop:
145 	if (journal->j_flags & JBD2_UNMOUNT)
146 		goto end_loop;
147 
148 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149 		journal->j_commit_sequence, journal->j_commit_request);
150 
151 	if (journal->j_commit_sequence != journal->j_commit_request) {
152 		jbd_debug(1, "OK, requests differ\n");
153 		spin_unlock(&journal->j_state_lock);
154 		del_timer_sync(&journal->j_commit_timer);
155 		jbd2_journal_commit_transaction(journal);
156 		spin_lock(&journal->j_state_lock);
157 		goto loop;
158 	}
159 
160 	wake_up(&journal->j_wait_done_commit);
161 	if (freezing(current)) {
162 		/*
163 		 * The simpler the better. Flushing journal isn't a
164 		 * good idea, because that depends on threads that may
165 		 * be already stopped.
166 		 */
167 		jbd_debug(1, "Now suspending kjournald2\n");
168 		spin_unlock(&journal->j_state_lock);
169 		refrigerator();
170 		spin_lock(&journal->j_state_lock);
171 	} else {
172 		/*
173 		 * We assume on resume that commits are already there,
174 		 * so we don't sleep
175 		 */
176 		DEFINE_WAIT(wait);
177 		int should_sleep = 1;
178 
179 		prepare_to_wait(&journal->j_wait_commit, &wait,
180 				TASK_INTERRUPTIBLE);
181 		if (journal->j_commit_sequence != journal->j_commit_request)
182 			should_sleep = 0;
183 		transaction = journal->j_running_transaction;
184 		if (transaction && time_after_eq(jiffies,
185 						transaction->t_expires))
186 			should_sleep = 0;
187 		if (journal->j_flags & JBD2_UNMOUNT)
188 			should_sleep = 0;
189 		if (should_sleep) {
190 			spin_unlock(&journal->j_state_lock);
191 			schedule();
192 			spin_lock(&journal->j_state_lock);
193 		}
194 		finish_wait(&journal->j_wait_commit, &wait);
195 	}
196 
197 	jbd_debug(1, "kjournald2 wakes\n");
198 
199 	/*
200 	 * Were we woken up by a commit wakeup event?
201 	 */
202 	transaction = journal->j_running_transaction;
203 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204 		journal->j_commit_request = transaction->t_tid;
205 		jbd_debug(1, "woke because of timeout\n");
206 	}
207 	goto loop;
208 
209 end_loop:
210 	spin_unlock(&journal->j_state_lock);
211 	del_timer_sync(&journal->j_commit_timer);
212 	journal->j_task = NULL;
213 	wake_up(&journal->j_wait_done_commit);
214 	jbd_debug(1, "Journal thread exiting.\n");
215 	return 0;
216 }
217 
218 static int jbd2_journal_start_thread(journal_t *journal)
219 {
220 	struct task_struct *t;
221 
222 	t = kthread_run(kjournald2, journal, "kjournald2");
223 	if (IS_ERR(t))
224 		return PTR_ERR(t);
225 
226 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227 	return 0;
228 }
229 
230 static void journal_kill_thread(journal_t *journal)
231 {
232 	spin_lock(&journal->j_state_lock);
233 	journal->j_flags |= JBD2_UNMOUNT;
234 
235 	while (journal->j_task) {
236 		wake_up(&journal->j_wait_commit);
237 		spin_unlock(&journal->j_state_lock);
238 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
239 		spin_lock(&journal->j_state_lock);
240 	}
241 	spin_unlock(&journal->j_state_lock);
242 }
243 
244 /*
245  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
246  *
247  * Writes a metadata buffer to a given disk block.  The actual IO is not
248  * performed but a new buffer_head is constructed which labels the data
249  * to be written with the correct destination disk block.
250  *
251  * Any magic-number escaping which needs to be done will cause a
252  * copy-out here.  If the buffer happens to start with the
253  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
254  * magic number is only written to the log for descripter blocks.  In
255  * this case, we copy the data and replace the first word with 0, and we
256  * return a result code which indicates that this buffer needs to be
257  * marked as an escaped buffer in the corresponding log descriptor
258  * block.  The missing word can then be restored when the block is read
259  * during recovery.
260  *
261  * If the source buffer has already been modified by a new transaction
262  * since we took the last commit snapshot, we use the frozen copy of
263  * that data for IO.  If we end up using the existing buffer_head's data
264  * for the write, then we *have* to lock the buffer to prevent anyone
265  * else from using and possibly modifying it while the IO is in
266  * progress.
267  *
268  * The function returns a pointer to the buffer_heads to be used for IO.
269  *
270  * We assume that the journal has already been locked in this function.
271  *
272  * Return value:
273  *  <0: Error
274  * >=0: Finished OK
275  *
276  * On success:
277  * Bit 0 set == escape performed on the data
278  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
279  */
280 
281 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
282 				  struct journal_head  *jh_in,
283 				  struct journal_head **jh_out,
284 				  unsigned long long blocknr)
285 {
286 	int need_copy_out = 0;
287 	int done_copy_out = 0;
288 	int do_escape = 0;
289 	char *mapped_data;
290 	struct buffer_head *new_bh;
291 	struct journal_head *new_jh;
292 	struct page *new_page;
293 	unsigned int new_offset;
294 	struct buffer_head *bh_in = jh2bh(jh_in);
295 	struct jbd2_buffer_trigger_type *triggers;
296 
297 	/*
298 	 * The buffer really shouldn't be locked: only the current committing
299 	 * transaction is allowed to write it, so nobody else is allowed
300 	 * to do any IO.
301 	 *
302 	 * akpm: except if we're journalling data, and write() output is
303 	 * also part of a shared mapping, and another thread has
304 	 * decided to launch a writepage() against this buffer.
305 	 */
306 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
307 
308 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
309 
310 	/*
311 	 * If a new transaction has already done a buffer copy-out, then
312 	 * we use that version of the data for the commit.
313 	 */
314 	jbd_lock_bh_state(bh_in);
315 repeat:
316 	if (jh_in->b_frozen_data) {
317 		done_copy_out = 1;
318 		new_page = virt_to_page(jh_in->b_frozen_data);
319 		new_offset = offset_in_page(jh_in->b_frozen_data);
320 		triggers = jh_in->b_frozen_triggers;
321 	} else {
322 		new_page = jh2bh(jh_in)->b_page;
323 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
324 		triggers = jh_in->b_triggers;
325 	}
326 
327 	mapped_data = kmap_atomic(new_page, KM_USER0);
328 	/*
329 	 * Fire any commit trigger.  Do this before checking for escaping,
330 	 * as the trigger may modify the magic offset.  If a copy-out
331 	 * happens afterwards, it will have the correct data in the buffer.
332 	 */
333 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
334 				   triggers);
335 
336 	/*
337 	 * Check for escaping
338 	 */
339 	if (*((__be32 *)(mapped_data + new_offset)) ==
340 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
341 		need_copy_out = 1;
342 		do_escape = 1;
343 	}
344 	kunmap_atomic(mapped_data, KM_USER0);
345 
346 	/*
347 	 * Do we need to do a data copy?
348 	 */
349 	if (need_copy_out && !done_copy_out) {
350 		char *tmp;
351 
352 		jbd_unlock_bh_state(bh_in);
353 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
354 		jbd_lock_bh_state(bh_in);
355 		if (jh_in->b_frozen_data) {
356 			jbd2_free(tmp, bh_in->b_size);
357 			goto repeat;
358 		}
359 
360 		jh_in->b_frozen_data = tmp;
361 		mapped_data = kmap_atomic(new_page, KM_USER0);
362 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
363 		kunmap_atomic(mapped_data, KM_USER0);
364 
365 		new_page = virt_to_page(tmp);
366 		new_offset = offset_in_page(tmp);
367 		done_copy_out = 1;
368 
369 		/*
370 		 * This isn't strictly necessary, as we're using frozen
371 		 * data for the escaping, but it keeps consistency with
372 		 * b_frozen_data usage.
373 		 */
374 		jh_in->b_frozen_triggers = jh_in->b_triggers;
375 	}
376 
377 	/*
378 	 * Did we need to do an escaping?  Now we've done all the
379 	 * copying, we can finally do so.
380 	 */
381 	if (do_escape) {
382 		mapped_data = kmap_atomic(new_page, KM_USER0);
383 		*((unsigned int *)(mapped_data + new_offset)) = 0;
384 		kunmap_atomic(mapped_data, KM_USER0);
385 	}
386 
387 	/* keep subsequent assertions sane */
388 	new_bh->b_state = 0;
389 	init_buffer(new_bh, NULL, NULL);
390 	atomic_set(&new_bh->b_count, 1);
391 	jbd_unlock_bh_state(bh_in);
392 
393 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
394 
395 	set_bh_page(new_bh, new_page, new_offset);
396 	new_jh->b_transaction = NULL;
397 	new_bh->b_size = jh2bh(jh_in)->b_size;
398 	new_bh->b_bdev = transaction->t_journal->j_dev;
399 	new_bh->b_blocknr = blocknr;
400 	set_buffer_mapped(new_bh);
401 	set_buffer_dirty(new_bh);
402 
403 	*jh_out = new_jh;
404 
405 	/*
406 	 * The to-be-written buffer needs to get moved to the io queue,
407 	 * and the original buffer whose contents we are shadowing or
408 	 * copying is moved to the transaction's shadow queue.
409 	 */
410 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
411 	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
412 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
413 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
414 
415 	return do_escape | (done_copy_out << 1);
416 }
417 
418 /*
419  * Allocation code for the journal file.  Manage the space left in the
420  * journal, so that we can begin checkpointing when appropriate.
421  */
422 
423 /*
424  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
425  *
426  * Called with the journal already locked.
427  *
428  * Called under j_state_lock
429  */
430 
431 int __jbd2_log_space_left(journal_t *journal)
432 {
433 	int left = journal->j_free;
434 
435 	assert_spin_locked(&journal->j_state_lock);
436 
437 	/*
438 	 * Be pessimistic here about the number of those free blocks which
439 	 * might be required for log descriptor control blocks.
440 	 */
441 
442 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
443 
444 	left -= MIN_LOG_RESERVED_BLOCKS;
445 
446 	if (left <= 0)
447 		return 0;
448 	left -= (left >> 3);
449 	return left;
450 }
451 
452 /*
453  * Called under j_state_lock.  Returns true if a transaction commit was started.
454  */
455 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
456 {
457 	/*
458 	 * Are we already doing a recent enough commit?
459 	 */
460 	if (!tid_geq(journal->j_commit_request, target)) {
461 		/*
462 		 * We want a new commit: OK, mark the request and wakup the
463 		 * commit thread.  We do _not_ do the commit ourselves.
464 		 */
465 
466 		journal->j_commit_request = target;
467 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
468 			  journal->j_commit_request,
469 			  journal->j_commit_sequence);
470 		wake_up(&journal->j_wait_commit);
471 		return 1;
472 	}
473 	return 0;
474 }
475 
476 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
477 {
478 	int ret;
479 
480 	spin_lock(&journal->j_state_lock);
481 	ret = __jbd2_log_start_commit(journal, tid);
482 	spin_unlock(&journal->j_state_lock);
483 	return ret;
484 }
485 
486 /*
487  * Force and wait upon a commit if the calling process is not within
488  * transaction.  This is used for forcing out undo-protected data which contains
489  * bitmaps, when the fs is running out of space.
490  *
491  * We can only force the running transaction if we don't have an active handle;
492  * otherwise, we will deadlock.
493  *
494  * Returns true if a transaction was started.
495  */
496 int jbd2_journal_force_commit_nested(journal_t *journal)
497 {
498 	transaction_t *transaction = NULL;
499 	tid_t tid;
500 
501 	spin_lock(&journal->j_state_lock);
502 	if (journal->j_running_transaction && !current->journal_info) {
503 		transaction = journal->j_running_transaction;
504 		__jbd2_log_start_commit(journal, transaction->t_tid);
505 	} else if (journal->j_committing_transaction)
506 		transaction = journal->j_committing_transaction;
507 
508 	if (!transaction) {
509 		spin_unlock(&journal->j_state_lock);
510 		return 0;	/* Nothing to retry */
511 	}
512 
513 	tid = transaction->t_tid;
514 	spin_unlock(&journal->j_state_lock);
515 	jbd2_log_wait_commit(journal, tid);
516 	return 1;
517 }
518 
519 /*
520  * Start a commit of the current running transaction (if any).  Returns true
521  * if a transaction is going to be committed (or is currently already
522  * committing), and fills its tid in at *ptid
523  */
524 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
525 {
526 	int ret = 0;
527 
528 	spin_lock(&journal->j_state_lock);
529 	if (journal->j_running_transaction) {
530 		tid_t tid = journal->j_running_transaction->t_tid;
531 
532 		__jbd2_log_start_commit(journal, tid);
533 		/* There's a running transaction and we've just made sure
534 		 * it's commit has been scheduled. */
535 		if (ptid)
536 			*ptid = tid;
537 		ret = 1;
538 	} else if (journal->j_committing_transaction) {
539 		/*
540 		 * If ext3_write_super() recently started a commit, then we
541 		 * have to wait for completion of that transaction
542 		 */
543 		if (ptid)
544 			*ptid = journal->j_committing_transaction->t_tid;
545 		ret = 1;
546 	}
547 	spin_unlock(&journal->j_state_lock);
548 	return ret;
549 }
550 
551 /*
552  * Wait for a specified commit to complete.
553  * The caller may not hold the journal lock.
554  */
555 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
556 {
557 	int err = 0;
558 
559 #ifdef CONFIG_JBD2_DEBUG
560 	spin_lock(&journal->j_state_lock);
561 	if (!tid_geq(journal->j_commit_request, tid)) {
562 		printk(KERN_EMERG
563 		       "%s: error: j_commit_request=%d, tid=%d\n",
564 		       __func__, journal->j_commit_request, tid);
565 	}
566 	spin_unlock(&journal->j_state_lock);
567 #endif
568 	spin_lock(&journal->j_state_lock);
569 	while (tid_gt(tid, journal->j_commit_sequence)) {
570 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
571 				  tid, journal->j_commit_sequence);
572 		wake_up(&journal->j_wait_commit);
573 		spin_unlock(&journal->j_state_lock);
574 		wait_event(journal->j_wait_done_commit,
575 				!tid_gt(tid, journal->j_commit_sequence));
576 		spin_lock(&journal->j_state_lock);
577 	}
578 	spin_unlock(&journal->j_state_lock);
579 
580 	if (unlikely(is_journal_aborted(journal))) {
581 		printk(KERN_EMERG "journal commit I/O error\n");
582 		err = -EIO;
583 	}
584 	return err;
585 }
586 
587 /*
588  * Log buffer allocation routines:
589  */
590 
591 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
592 {
593 	unsigned long blocknr;
594 
595 	spin_lock(&journal->j_state_lock);
596 	J_ASSERT(journal->j_free > 1);
597 
598 	blocknr = journal->j_head;
599 	journal->j_head++;
600 	journal->j_free--;
601 	if (journal->j_head == journal->j_last)
602 		journal->j_head = journal->j_first;
603 	spin_unlock(&journal->j_state_lock);
604 	return jbd2_journal_bmap(journal, blocknr, retp);
605 }
606 
607 /*
608  * Conversion of logical to physical block numbers for the journal
609  *
610  * On external journals the journal blocks are identity-mapped, so
611  * this is a no-op.  If needed, we can use j_blk_offset - everything is
612  * ready.
613  */
614 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
615 		 unsigned long long *retp)
616 {
617 	int err = 0;
618 	unsigned long long ret;
619 
620 	if (journal->j_inode) {
621 		ret = bmap(journal->j_inode, blocknr);
622 		if (ret)
623 			*retp = ret;
624 		else {
625 			printk(KERN_ALERT "%s: journal block not found "
626 					"at offset %lu on %s\n",
627 			       __func__, blocknr, journal->j_devname);
628 			err = -EIO;
629 			__journal_abort_soft(journal, err);
630 		}
631 	} else {
632 		*retp = blocknr; /* +journal->j_blk_offset */
633 	}
634 	return err;
635 }
636 
637 /*
638  * We play buffer_head aliasing tricks to write data/metadata blocks to
639  * the journal without copying their contents, but for journal
640  * descriptor blocks we do need to generate bona fide buffers.
641  *
642  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
643  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
644  * But we don't bother doing that, so there will be coherency problems with
645  * mmaps of blockdevs which hold live JBD-controlled filesystems.
646  */
647 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
648 {
649 	struct buffer_head *bh;
650 	unsigned long long blocknr;
651 	int err;
652 
653 	err = jbd2_journal_next_log_block(journal, &blocknr);
654 
655 	if (err)
656 		return NULL;
657 
658 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
659 	if (!bh)
660 		return NULL;
661 	lock_buffer(bh);
662 	memset(bh->b_data, 0, journal->j_blocksize);
663 	set_buffer_uptodate(bh);
664 	unlock_buffer(bh);
665 	BUFFER_TRACE(bh, "return this buffer");
666 	return jbd2_journal_add_journal_head(bh);
667 }
668 
669 struct jbd2_stats_proc_session {
670 	journal_t *journal;
671 	struct transaction_stats_s *stats;
672 	int start;
673 	int max;
674 };
675 
676 static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s,
677 					struct transaction_stats_s *ts,
678 					int first)
679 {
680 	if (ts == s->stats + s->max)
681 		ts = s->stats;
682 	if (!first && ts == s->stats + s->start)
683 		return NULL;
684 	while (ts->ts_type == 0) {
685 		ts++;
686 		if (ts == s->stats + s->max)
687 			ts = s->stats;
688 		if (ts == s->stats + s->start)
689 			return NULL;
690 	}
691 	return ts;
692 
693 }
694 
695 static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos)
696 {
697 	struct jbd2_stats_proc_session *s = seq->private;
698 	struct transaction_stats_s *ts;
699 	int l = *pos;
700 
701 	if (l == 0)
702 		return SEQ_START_TOKEN;
703 	ts = jbd2_history_skip_empty(s, s->stats + s->start, 1);
704 	if (!ts)
705 		return NULL;
706 	l--;
707 	while (l) {
708 		ts = jbd2_history_skip_empty(s, ++ts, 0);
709 		if (!ts)
710 			break;
711 		l--;
712 	}
713 	return ts;
714 }
715 
716 static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos)
717 {
718 	struct jbd2_stats_proc_session *s = seq->private;
719 	struct transaction_stats_s *ts = v;
720 
721 	++*pos;
722 	if (v == SEQ_START_TOKEN)
723 		return jbd2_history_skip_empty(s, s->stats + s->start, 1);
724 	else
725 		return jbd2_history_skip_empty(s, ++ts, 0);
726 }
727 
728 static int jbd2_seq_history_show(struct seq_file *seq, void *v)
729 {
730 	struct transaction_stats_s *ts = v;
731 	if (v == SEQ_START_TOKEN) {
732 		seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s "
733 				"%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid",
734 				"wait", "run", "lock", "flush", "log", "hndls",
735 				"block", "inlog", "ctime", "write", "drop",
736 				"close");
737 		return 0;
738 	}
739 	if (ts->ts_type == JBD2_STATS_RUN)
740 		seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u "
741 				"%-6lu %-5lu %-5lu\n", "R", ts->ts_tid,
742 				jiffies_to_msecs(ts->u.run.rs_wait),
743 				jiffies_to_msecs(ts->u.run.rs_running),
744 				jiffies_to_msecs(ts->u.run.rs_locked),
745 				jiffies_to_msecs(ts->u.run.rs_flushing),
746 				jiffies_to_msecs(ts->u.run.rs_logging),
747 				ts->u.run.rs_handle_count,
748 				ts->u.run.rs_blocks,
749 				ts->u.run.rs_blocks_logged);
750 	else if (ts->ts_type == JBD2_STATS_CHECKPOINT)
751 		seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n",
752 				"C", ts->ts_tid, " ",
753 				jiffies_to_msecs(ts->u.chp.cs_chp_time),
754 				ts->u.chp.cs_written, ts->u.chp.cs_dropped,
755 				ts->u.chp.cs_forced_to_close);
756 	else
757 		J_ASSERT(0);
758 	return 0;
759 }
760 
761 static void jbd2_seq_history_stop(struct seq_file *seq, void *v)
762 {
763 }
764 
765 static struct seq_operations jbd2_seq_history_ops = {
766 	.start  = jbd2_seq_history_start,
767 	.next   = jbd2_seq_history_next,
768 	.stop   = jbd2_seq_history_stop,
769 	.show   = jbd2_seq_history_show,
770 };
771 
772 static int jbd2_seq_history_open(struct inode *inode, struct file *file)
773 {
774 	journal_t *journal = PDE(inode)->data;
775 	struct jbd2_stats_proc_session *s;
776 	int rc, size;
777 
778 	s = kmalloc(sizeof(*s), GFP_KERNEL);
779 	if (s == NULL)
780 		return -ENOMEM;
781 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
782 	s->stats = kmalloc(size, GFP_KERNEL);
783 	if (s->stats == NULL) {
784 		kfree(s);
785 		return -ENOMEM;
786 	}
787 	spin_lock(&journal->j_history_lock);
788 	memcpy(s->stats, journal->j_history, size);
789 	s->max = journal->j_history_max;
790 	s->start = journal->j_history_cur % s->max;
791 	spin_unlock(&journal->j_history_lock);
792 
793 	rc = seq_open(file, &jbd2_seq_history_ops);
794 	if (rc == 0) {
795 		struct seq_file *m = file->private_data;
796 		m->private = s;
797 	} else {
798 		kfree(s->stats);
799 		kfree(s);
800 	}
801 	return rc;
802 
803 }
804 
805 static int jbd2_seq_history_release(struct inode *inode, struct file *file)
806 {
807 	struct seq_file *seq = file->private_data;
808 	struct jbd2_stats_proc_session *s = seq->private;
809 
810 	kfree(s->stats);
811 	kfree(s);
812 	return seq_release(inode, file);
813 }
814 
815 static struct file_operations jbd2_seq_history_fops = {
816 	.owner		= THIS_MODULE,
817 	.open           = jbd2_seq_history_open,
818 	.read           = seq_read,
819 	.llseek         = seq_lseek,
820 	.release        = jbd2_seq_history_release,
821 };
822 
823 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
824 {
825 	return *pos ? NULL : SEQ_START_TOKEN;
826 }
827 
828 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
829 {
830 	return NULL;
831 }
832 
833 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
834 {
835 	struct jbd2_stats_proc_session *s = seq->private;
836 
837 	if (v != SEQ_START_TOKEN)
838 		return 0;
839 	seq_printf(seq, "%lu transaction, each upto %u blocks\n",
840 			s->stats->ts_tid,
841 			s->journal->j_max_transaction_buffers);
842 	if (s->stats->ts_tid == 0)
843 		return 0;
844 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
845 	    jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid));
846 	seq_printf(seq, "  %ums running transaction\n",
847 	    jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid));
848 	seq_printf(seq, "  %ums transaction was being locked\n",
849 	    jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid));
850 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
851 	    jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid));
852 	seq_printf(seq, "  %ums logging transaction\n",
853 	    jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid));
854 	seq_printf(seq, "  %lluus average transaction commit time\n",
855 		   div_u64(s->journal->j_average_commit_time, 1000));
856 	seq_printf(seq, "  %lu handles per transaction\n",
857 	    s->stats->u.run.rs_handle_count / s->stats->ts_tid);
858 	seq_printf(seq, "  %lu blocks per transaction\n",
859 	    s->stats->u.run.rs_blocks / s->stats->ts_tid);
860 	seq_printf(seq, "  %lu logged blocks per transaction\n",
861 	    s->stats->u.run.rs_blocks_logged / s->stats->ts_tid);
862 	return 0;
863 }
864 
865 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
866 {
867 }
868 
869 static struct seq_operations jbd2_seq_info_ops = {
870 	.start  = jbd2_seq_info_start,
871 	.next   = jbd2_seq_info_next,
872 	.stop   = jbd2_seq_info_stop,
873 	.show   = jbd2_seq_info_show,
874 };
875 
876 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
877 {
878 	journal_t *journal = PDE(inode)->data;
879 	struct jbd2_stats_proc_session *s;
880 	int rc, size;
881 
882 	s = kmalloc(sizeof(*s), GFP_KERNEL);
883 	if (s == NULL)
884 		return -ENOMEM;
885 	size = sizeof(struct transaction_stats_s);
886 	s->stats = kmalloc(size, GFP_KERNEL);
887 	if (s->stats == NULL) {
888 		kfree(s);
889 		return -ENOMEM;
890 	}
891 	spin_lock(&journal->j_history_lock);
892 	memcpy(s->stats, &journal->j_stats, size);
893 	s->journal = journal;
894 	spin_unlock(&journal->j_history_lock);
895 
896 	rc = seq_open(file, &jbd2_seq_info_ops);
897 	if (rc == 0) {
898 		struct seq_file *m = file->private_data;
899 		m->private = s;
900 	} else {
901 		kfree(s->stats);
902 		kfree(s);
903 	}
904 	return rc;
905 
906 }
907 
908 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
909 {
910 	struct seq_file *seq = file->private_data;
911 	struct jbd2_stats_proc_session *s = seq->private;
912 	kfree(s->stats);
913 	kfree(s);
914 	return seq_release(inode, file);
915 }
916 
917 static struct file_operations jbd2_seq_info_fops = {
918 	.owner		= THIS_MODULE,
919 	.open           = jbd2_seq_info_open,
920 	.read           = seq_read,
921 	.llseek         = seq_lseek,
922 	.release        = jbd2_seq_info_release,
923 };
924 
925 static struct proc_dir_entry *proc_jbd2_stats;
926 
927 static void jbd2_stats_proc_init(journal_t *journal)
928 {
929 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
930 	if (journal->j_proc_entry) {
931 		proc_create_data("history", S_IRUGO, journal->j_proc_entry,
932 				 &jbd2_seq_history_fops, journal);
933 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
934 				 &jbd2_seq_info_fops, journal);
935 	}
936 }
937 
938 static void jbd2_stats_proc_exit(journal_t *journal)
939 {
940 	remove_proc_entry("info", journal->j_proc_entry);
941 	remove_proc_entry("history", journal->j_proc_entry);
942 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
943 }
944 
945 static void journal_init_stats(journal_t *journal)
946 {
947 	int size;
948 
949 	if (!proc_jbd2_stats)
950 		return;
951 
952 	journal->j_history_max = 100;
953 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
954 	journal->j_history = kzalloc(size, GFP_KERNEL);
955 	if (!journal->j_history) {
956 		journal->j_history_max = 0;
957 		return;
958 	}
959 	spin_lock_init(&journal->j_history_lock);
960 }
961 
962 /*
963  * Management for journal control blocks: functions to create and
964  * destroy journal_t structures, and to initialise and read existing
965  * journal blocks from disk.  */
966 
967 /* First: create and setup a journal_t object in memory.  We initialise
968  * very few fields yet: that has to wait until we have created the
969  * journal structures from from scratch, or loaded them from disk. */
970 
971 static journal_t * journal_init_common (void)
972 {
973 	journal_t *journal;
974 	int err;
975 
976 	journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
977 	if (!journal)
978 		goto fail;
979 
980 	init_waitqueue_head(&journal->j_wait_transaction_locked);
981 	init_waitqueue_head(&journal->j_wait_logspace);
982 	init_waitqueue_head(&journal->j_wait_done_commit);
983 	init_waitqueue_head(&journal->j_wait_checkpoint);
984 	init_waitqueue_head(&journal->j_wait_commit);
985 	init_waitqueue_head(&journal->j_wait_updates);
986 	mutex_init(&journal->j_barrier);
987 	mutex_init(&journal->j_checkpoint_mutex);
988 	spin_lock_init(&journal->j_revoke_lock);
989 	spin_lock_init(&journal->j_list_lock);
990 	spin_lock_init(&journal->j_state_lock);
991 
992 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
993 	journal->j_min_batch_time = 0;
994 	journal->j_max_batch_time = 15000; /* 15ms */
995 
996 	/* The journal is marked for error until we succeed with recovery! */
997 	journal->j_flags = JBD2_ABORT;
998 
999 	/* Set up a default-sized revoke table for the new mount. */
1000 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1001 	if (err) {
1002 		kfree(journal);
1003 		goto fail;
1004 	}
1005 
1006 	journal_init_stats(journal);
1007 
1008 	return journal;
1009 fail:
1010 	return NULL;
1011 }
1012 
1013 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1014  *
1015  * Create a journal structure assigned some fixed set of disk blocks to
1016  * the journal.  We don't actually touch those disk blocks yet, but we
1017  * need to set up all of the mapping information to tell the journaling
1018  * system where the journal blocks are.
1019  *
1020  */
1021 
1022 /**
1023  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1024  *  @bdev: Block device on which to create the journal
1025  *  @fs_dev: Device which hold journalled filesystem for this journal.
1026  *  @start: Block nr Start of journal.
1027  *  @len:  Length of the journal in blocks.
1028  *  @blocksize: blocksize of journalling device
1029  *
1030  *  Returns: a newly created journal_t *
1031  *
1032  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1033  *  range of blocks on an arbitrary block device.
1034  *
1035  */
1036 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1037 			struct block_device *fs_dev,
1038 			unsigned long long start, int len, int blocksize)
1039 {
1040 	journal_t *journal = journal_init_common();
1041 	struct buffer_head *bh;
1042 	char *p;
1043 	int n;
1044 
1045 	if (!journal)
1046 		return NULL;
1047 
1048 	/* journal descriptor can store up to n blocks -bzzz */
1049 	journal->j_blocksize = blocksize;
1050 	jbd2_stats_proc_init(journal);
1051 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1052 	journal->j_wbufsize = n;
1053 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1054 	if (!journal->j_wbuf) {
1055 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1056 			__func__);
1057 		goto out_err;
1058 	}
1059 	journal->j_dev = bdev;
1060 	journal->j_fs_dev = fs_dev;
1061 	journal->j_blk_offset = start;
1062 	journal->j_maxlen = len;
1063 	bdevname(journal->j_dev, journal->j_devname);
1064 	p = journal->j_devname;
1065 	while ((p = strchr(p, '/')))
1066 		*p = '!';
1067 
1068 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1069 	if (!bh) {
1070 		printk(KERN_ERR
1071 		       "%s: Cannot get buffer for journal superblock\n",
1072 		       __func__);
1073 		goto out_err;
1074 	}
1075 	journal->j_sb_buffer = bh;
1076 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1077 
1078 	return journal;
1079 out_err:
1080 	jbd2_stats_proc_exit(journal);
1081 	kfree(journal);
1082 	return NULL;
1083 }
1084 
1085 /**
1086  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1087  *  @inode: An inode to create the journal in
1088  *
1089  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1090  * the journal.  The inode must exist already, must support bmap() and
1091  * must have all data blocks preallocated.
1092  */
1093 journal_t * jbd2_journal_init_inode (struct inode *inode)
1094 {
1095 	struct buffer_head *bh;
1096 	journal_t *journal = journal_init_common();
1097 	char *p;
1098 	int err;
1099 	int n;
1100 	unsigned long long blocknr;
1101 
1102 	if (!journal)
1103 		return NULL;
1104 
1105 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1106 	journal->j_inode = inode;
1107 	bdevname(journal->j_dev, journal->j_devname);
1108 	p = journal->j_devname;
1109 	while ((p = strchr(p, '/')))
1110 		*p = '!';
1111 	p = journal->j_devname + strlen(journal->j_devname);
1112 	sprintf(p, ":%lu", journal->j_inode->i_ino);
1113 	jbd_debug(1,
1114 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1115 		  journal, inode->i_sb->s_id, inode->i_ino,
1116 		  (long long) inode->i_size,
1117 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1118 
1119 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1120 	journal->j_blocksize = inode->i_sb->s_blocksize;
1121 	jbd2_stats_proc_init(journal);
1122 
1123 	/* journal descriptor can store up to n blocks -bzzz */
1124 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1125 	journal->j_wbufsize = n;
1126 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1127 	if (!journal->j_wbuf) {
1128 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1129 			__func__);
1130 		goto out_err;
1131 	}
1132 
1133 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1134 	/* If that failed, give up */
1135 	if (err) {
1136 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
1137 		       __func__);
1138 		goto out_err;
1139 	}
1140 
1141 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1142 	if (!bh) {
1143 		printk(KERN_ERR
1144 		       "%s: Cannot get buffer for journal superblock\n",
1145 		       __func__);
1146 		goto out_err;
1147 	}
1148 	journal->j_sb_buffer = bh;
1149 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1150 
1151 	return journal;
1152 out_err:
1153 	jbd2_stats_proc_exit(journal);
1154 	kfree(journal);
1155 	return NULL;
1156 }
1157 
1158 /*
1159  * If the journal init or create aborts, we need to mark the journal
1160  * superblock as being NULL to prevent the journal destroy from writing
1161  * back a bogus superblock.
1162  */
1163 static void journal_fail_superblock (journal_t *journal)
1164 {
1165 	struct buffer_head *bh = journal->j_sb_buffer;
1166 	brelse(bh);
1167 	journal->j_sb_buffer = NULL;
1168 }
1169 
1170 /*
1171  * Given a journal_t structure, initialise the various fields for
1172  * startup of a new journaling session.  We use this both when creating
1173  * a journal, and after recovering an old journal to reset it for
1174  * subsequent use.
1175  */
1176 
1177 static int journal_reset(journal_t *journal)
1178 {
1179 	journal_superblock_t *sb = journal->j_superblock;
1180 	unsigned long long first, last;
1181 
1182 	first = be32_to_cpu(sb->s_first);
1183 	last = be32_to_cpu(sb->s_maxlen);
1184 
1185 	journal->j_first = first;
1186 	journal->j_last = last;
1187 
1188 	journal->j_head = first;
1189 	journal->j_tail = first;
1190 	journal->j_free = last - first;
1191 
1192 	journal->j_tail_sequence = journal->j_transaction_sequence;
1193 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1194 	journal->j_commit_request = journal->j_commit_sequence;
1195 
1196 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1197 
1198 	/* Add the dynamic fields and write it to disk. */
1199 	jbd2_journal_update_superblock(journal, 1);
1200 	return jbd2_journal_start_thread(journal);
1201 }
1202 
1203 /**
1204  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1205  * @journal: The journal to update.
1206  * @wait: Set to '0' if you don't want to wait for IO completion.
1207  *
1208  * Update a journal's dynamic superblock fields and write it to disk,
1209  * optionally waiting for the IO to complete.
1210  */
1211 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1212 {
1213 	journal_superblock_t *sb = journal->j_superblock;
1214 	struct buffer_head *bh = journal->j_sb_buffer;
1215 
1216 	/*
1217 	 * As a special case, if the on-disk copy is already marked as needing
1218 	 * no recovery (s_start == 0) and there are no outstanding transactions
1219 	 * in the filesystem, then we can safely defer the superblock update
1220 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1221 	 * attempting a write to a potential-readonly device.
1222 	 */
1223 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1224 				journal->j_transaction_sequence) {
1225 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1226 			"(start %ld, seq %d, errno %d)\n",
1227 			journal->j_tail, journal->j_tail_sequence,
1228 			journal->j_errno);
1229 		goto out;
1230 	}
1231 
1232 	if (buffer_write_io_error(bh)) {
1233 		/*
1234 		 * Oh, dear.  A previous attempt to write the journal
1235 		 * superblock failed.  This could happen because the
1236 		 * USB device was yanked out.  Or it could happen to
1237 		 * be a transient write error and maybe the block will
1238 		 * be remapped.  Nothing we can do but to retry the
1239 		 * write and hope for the best.
1240 		 */
1241 		printk(KERN_ERR "JBD2: previous I/O error detected "
1242 		       "for journal superblock update for %s.\n",
1243 		       journal->j_devname);
1244 		clear_buffer_write_io_error(bh);
1245 		set_buffer_uptodate(bh);
1246 	}
1247 
1248 	spin_lock(&journal->j_state_lock);
1249 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1250 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1251 
1252 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1253 	sb->s_start    = cpu_to_be32(journal->j_tail);
1254 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1255 	spin_unlock(&journal->j_state_lock);
1256 
1257 	BUFFER_TRACE(bh, "marking dirty");
1258 	mark_buffer_dirty(bh);
1259 	if (wait) {
1260 		sync_dirty_buffer(bh);
1261 		if (buffer_write_io_error(bh)) {
1262 			printk(KERN_ERR "JBD2: I/O error detected "
1263 			       "when updating journal superblock for %s.\n",
1264 			       journal->j_devname);
1265 			clear_buffer_write_io_error(bh);
1266 			set_buffer_uptodate(bh);
1267 		}
1268 	} else
1269 		ll_rw_block(SWRITE, 1, &bh);
1270 
1271 out:
1272 	/* If we have just flushed the log (by marking s_start==0), then
1273 	 * any future commit will have to be careful to update the
1274 	 * superblock again to re-record the true start of the log. */
1275 
1276 	spin_lock(&journal->j_state_lock);
1277 	if (sb->s_start)
1278 		journal->j_flags &= ~JBD2_FLUSHED;
1279 	else
1280 		journal->j_flags |= JBD2_FLUSHED;
1281 	spin_unlock(&journal->j_state_lock);
1282 }
1283 
1284 /*
1285  * Read the superblock for a given journal, performing initial
1286  * validation of the format.
1287  */
1288 
1289 static int journal_get_superblock(journal_t *journal)
1290 {
1291 	struct buffer_head *bh;
1292 	journal_superblock_t *sb;
1293 	int err = -EIO;
1294 
1295 	bh = journal->j_sb_buffer;
1296 
1297 	J_ASSERT(bh != NULL);
1298 	if (!buffer_uptodate(bh)) {
1299 		ll_rw_block(READ, 1, &bh);
1300 		wait_on_buffer(bh);
1301 		if (!buffer_uptodate(bh)) {
1302 			printk (KERN_ERR
1303 				"JBD: IO error reading journal superblock\n");
1304 			goto out;
1305 		}
1306 	}
1307 
1308 	sb = journal->j_superblock;
1309 
1310 	err = -EINVAL;
1311 
1312 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1313 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1314 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1315 		goto out;
1316 	}
1317 
1318 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1319 	case JBD2_SUPERBLOCK_V1:
1320 		journal->j_format_version = 1;
1321 		break;
1322 	case JBD2_SUPERBLOCK_V2:
1323 		journal->j_format_version = 2;
1324 		break;
1325 	default:
1326 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1327 		goto out;
1328 	}
1329 
1330 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1331 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1332 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1333 		printk (KERN_WARNING "JBD: journal file too short\n");
1334 		goto out;
1335 	}
1336 
1337 	return 0;
1338 
1339 out:
1340 	journal_fail_superblock(journal);
1341 	return err;
1342 }
1343 
1344 /*
1345  * Load the on-disk journal superblock and read the key fields into the
1346  * journal_t.
1347  */
1348 
1349 static int load_superblock(journal_t *journal)
1350 {
1351 	int err;
1352 	journal_superblock_t *sb;
1353 
1354 	err = journal_get_superblock(journal);
1355 	if (err)
1356 		return err;
1357 
1358 	sb = journal->j_superblock;
1359 
1360 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1361 	journal->j_tail = be32_to_cpu(sb->s_start);
1362 	journal->j_first = be32_to_cpu(sb->s_first);
1363 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1364 	journal->j_errno = be32_to_cpu(sb->s_errno);
1365 
1366 	return 0;
1367 }
1368 
1369 
1370 /**
1371  * int jbd2_journal_load() - Read journal from disk.
1372  * @journal: Journal to act on.
1373  *
1374  * Given a journal_t structure which tells us which disk blocks contain
1375  * a journal, read the journal from disk to initialise the in-memory
1376  * structures.
1377  */
1378 int jbd2_journal_load(journal_t *journal)
1379 {
1380 	int err;
1381 	journal_superblock_t *sb;
1382 
1383 	err = load_superblock(journal);
1384 	if (err)
1385 		return err;
1386 
1387 	sb = journal->j_superblock;
1388 	/* If this is a V2 superblock, then we have to check the
1389 	 * features flags on it. */
1390 
1391 	if (journal->j_format_version >= 2) {
1392 		if ((sb->s_feature_ro_compat &
1393 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1394 		    (sb->s_feature_incompat &
1395 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1396 			printk (KERN_WARNING
1397 				"JBD: Unrecognised features on journal\n");
1398 			return -EINVAL;
1399 		}
1400 	}
1401 
1402 	/* Let the recovery code check whether it needs to recover any
1403 	 * data from the journal. */
1404 	if (jbd2_journal_recover(journal))
1405 		goto recovery_error;
1406 
1407 	/* OK, we've finished with the dynamic journal bits:
1408 	 * reinitialise the dynamic contents of the superblock in memory
1409 	 * and reset them on disk. */
1410 	if (journal_reset(journal))
1411 		goto recovery_error;
1412 
1413 	journal->j_flags &= ~JBD2_ABORT;
1414 	journal->j_flags |= JBD2_LOADED;
1415 	return 0;
1416 
1417 recovery_error:
1418 	printk (KERN_WARNING "JBD: recovery failed\n");
1419 	return -EIO;
1420 }
1421 
1422 /**
1423  * void jbd2_journal_destroy() - Release a journal_t structure.
1424  * @journal: Journal to act on.
1425  *
1426  * Release a journal_t structure once it is no longer in use by the
1427  * journaled object.
1428  * Return <0 if we couldn't clean up the journal.
1429  */
1430 int jbd2_journal_destroy(journal_t *journal)
1431 {
1432 	int err = 0;
1433 
1434 	/* Wait for the commit thread to wake up and die. */
1435 	journal_kill_thread(journal);
1436 
1437 	/* Force a final log commit */
1438 	if (journal->j_running_transaction)
1439 		jbd2_journal_commit_transaction(journal);
1440 
1441 	/* Force any old transactions to disk */
1442 
1443 	/* Totally anal locking here... */
1444 	spin_lock(&journal->j_list_lock);
1445 	while (journal->j_checkpoint_transactions != NULL) {
1446 		spin_unlock(&journal->j_list_lock);
1447 		mutex_lock(&journal->j_checkpoint_mutex);
1448 		jbd2_log_do_checkpoint(journal);
1449 		mutex_unlock(&journal->j_checkpoint_mutex);
1450 		spin_lock(&journal->j_list_lock);
1451 	}
1452 
1453 	J_ASSERT(journal->j_running_transaction == NULL);
1454 	J_ASSERT(journal->j_committing_transaction == NULL);
1455 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1456 	spin_unlock(&journal->j_list_lock);
1457 
1458 	if (journal->j_sb_buffer) {
1459 		if (!is_journal_aborted(journal)) {
1460 			/* We can now mark the journal as empty. */
1461 			journal->j_tail = 0;
1462 			journal->j_tail_sequence =
1463 				++journal->j_transaction_sequence;
1464 			jbd2_journal_update_superblock(journal, 1);
1465 		} else {
1466 			err = -EIO;
1467 		}
1468 		brelse(journal->j_sb_buffer);
1469 	}
1470 
1471 	if (journal->j_proc_entry)
1472 		jbd2_stats_proc_exit(journal);
1473 	if (journal->j_inode)
1474 		iput(journal->j_inode);
1475 	if (journal->j_revoke)
1476 		jbd2_journal_destroy_revoke(journal);
1477 	kfree(journal->j_wbuf);
1478 	kfree(journal);
1479 
1480 	return err;
1481 }
1482 
1483 
1484 /**
1485  *int jbd2_journal_check_used_features () - Check if features specified are used.
1486  * @journal: Journal to check.
1487  * @compat: bitmask of compatible features
1488  * @ro: bitmask of features that force read-only mount
1489  * @incompat: bitmask of incompatible features
1490  *
1491  * Check whether the journal uses all of a given set of
1492  * features.  Return true (non-zero) if it does.
1493  **/
1494 
1495 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1496 				 unsigned long ro, unsigned long incompat)
1497 {
1498 	journal_superblock_t *sb;
1499 
1500 	if (!compat && !ro && !incompat)
1501 		return 1;
1502 	if (journal->j_format_version == 1)
1503 		return 0;
1504 
1505 	sb = journal->j_superblock;
1506 
1507 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1508 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1509 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1510 		return 1;
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1517  * @journal: Journal to check.
1518  * @compat: bitmask of compatible features
1519  * @ro: bitmask of features that force read-only mount
1520  * @incompat: bitmask of incompatible features
1521  *
1522  * Check whether the journaling code supports the use of
1523  * all of a given set of features on this journal.  Return true
1524  * (non-zero) if it can. */
1525 
1526 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1527 				      unsigned long ro, unsigned long incompat)
1528 {
1529 	journal_superblock_t *sb;
1530 
1531 	if (!compat && !ro && !incompat)
1532 		return 1;
1533 
1534 	sb = journal->j_superblock;
1535 
1536 	/* We can support any known requested features iff the
1537 	 * superblock is in version 2.  Otherwise we fail to support any
1538 	 * extended sb features. */
1539 
1540 	if (journal->j_format_version != 2)
1541 		return 0;
1542 
1543 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1544 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1545 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1546 		return 1;
1547 
1548 	return 0;
1549 }
1550 
1551 /**
1552  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1553  * @journal: Journal to act on.
1554  * @compat: bitmask of compatible features
1555  * @ro: bitmask of features that force read-only mount
1556  * @incompat: bitmask of incompatible features
1557  *
1558  * Mark a given journal feature as present on the
1559  * superblock.  Returns true if the requested features could be set.
1560  *
1561  */
1562 
1563 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1564 			  unsigned long ro, unsigned long incompat)
1565 {
1566 	journal_superblock_t *sb;
1567 
1568 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1569 		return 1;
1570 
1571 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1572 		return 0;
1573 
1574 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1575 		  compat, ro, incompat);
1576 
1577 	sb = journal->j_superblock;
1578 
1579 	sb->s_feature_compat    |= cpu_to_be32(compat);
1580 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1581 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1582 
1583 	return 1;
1584 }
1585 
1586 /*
1587  * jbd2_journal_clear_features () - Clear a given journal feature in the
1588  * 				    superblock
1589  * @journal: Journal to act on.
1590  * @compat: bitmask of compatible features
1591  * @ro: bitmask of features that force read-only mount
1592  * @incompat: bitmask of incompatible features
1593  *
1594  * Clear a given journal feature as present on the
1595  * superblock.
1596  */
1597 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1598 				unsigned long ro, unsigned long incompat)
1599 {
1600 	journal_superblock_t *sb;
1601 
1602 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1603 		  compat, ro, incompat);
1604 
1605 	sb = journal->j_superblock;
1606 
1607 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1608 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1609 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1610 }
1611 EXPORT_SYMBOL(jbd2_journal_clear_features);
1612 
1613 /**
1614  * int jbd2_journal_update_format () - Update on-disk journal structure.
1615  * @journal: Journal to act on.
1616  *
1617  * Given an initialised but unloaded journal struct, poke about in the
1618  * on-disk structure to update it to the most recent supported version.
1619  */
1620 int jbd2_journal_update_format (journal_t *journal)
1621 {
1622 	journal_superblock_t *sb;
1623 	int err;
1624 
1625 	err = journal_get_superblock(journal);
1626 	if (err)
1627 		return err;
1628 
1629 	sb = journal->j_superblock;
1630 
1631 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1632 	case JBD2_SUPERBLOCK_V2:
1633 		return 0;
1634 	case JBD2_SUPERBLOCK_V1:
1635 		return journal_convert_superblock_v1(journal, sb);
1636 	default:
1637 		break;
1638 	}
1639 	return -EINVAL;
1640 }
1641 
1642 static int journal_convert_superblock_v1(journal_t *journal,
1643 					 journal_superblock_t *sb)
1644 {
1645 	int offset, blocksize;
1646 	struct buffer_head *bh;
1647 
1648 	printk(KERN_WARNING
1649 		"JBD: Converting superblock from version 1 to 2.\n");
1650 
1651 	/* Pre-initialise new fields to zero */
1652 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1653 	blocksize = be32_to_cpu(sb->s_blocksize);
1654 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1655 
1656 	sb->s_nr_users = cpu_to_be32(1);
1657 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1658 	journal->j_format_version = 2;
1659 
1660 	bh = journal->j_sb_buffer;
1661 	BUFFER_TRACE(bh, "marking dirty");
1662 	mark_buffer_dirty(bh);
1663 	sync_dirty_buffer(bh);
1664 	return 0;
1665 }
1666 
1667 
1668 /**
1669  * int jbd2_journal_flush () - Flush journal
1670  * @journal: Journal to act on.
1671  *
1672  * Flush all data for a given journal to disk and empty the journal.
1673  * Filesystems can use this when remounting readonly to ensure that
1674  * recovery does not need to happen on remount.
1675  */
1676 
1677 int jbd2_journal_flush(journal_t *journal)
1678 {
1679 	int err = 0;
1680 	transaction_t *transaction = NULL;
1681 	unsigned long old_tail;
1682 
1683 	spin_lock(&journal->j_state_lock);
1684 
1685 	/* Force everything buffered to the log... */
1686 	if (journal->j_running_transaction) {
1687 		transaction = journal->j_running_transaction;
1688 		__jbd2_log_start_commit(journal, transaction->t_tid);
1689 	} else if (journal->j_committing_transaction)
1690 		transaction = journal->j_committing_transaction;
1691 
1692 	/* Wait for the log commit to complete... */
1693 	if (transaction) {
1694 		tid_t tid = transaction->t_tid;
1695 
1696 		spin_unlock(&journal->j_state_lock);
1697 		jbd2_log_wait_commit(journal, tid);
1698 	} else {
1699 		spin_unlock(&journal->j_state_lock);
1700 	}
1701 
1702 	/* ...and flush everything in the log out to disk. */
1703 	spin_lock(&journal->j_list_lock);
1704 	while (!err && journal->j_checkpoint_transactions != NULL) {
1705 		spin_unlock(&journal->j_list_lock);
1706 		mutex_lock(&journal->j_checkpoint_mutex);
1707 		err = jbd2_log_do_checkpoint(journal);
1708 		mutex_unlock(&journal->j_checkpoint_mutex);
1709 		spin_lock(&journal->j_list_lock);
1710 	}
1711 	spin_unlock(&journal->j_list_lock);
1712 
1713 	if (is_journal_aborted(journal))
1714 		return -EIO;
1715 
1716 	jbd2_cleanup_journal_tail(journal);
1717 
1718 	/* Finally, mark the journal as really needing no recovery.
1719 	 * This sets s_start==0 in the underlying superblock, which is
1720 	 * the magic code for a fully-recovered superblock.  Any future
1721 	 * commits of data to the journal will restore the current
1722 	 * s_start value. */
1723 	spin_lock(&journal->j_state_lock);
1724 	old_tail = journal->j_tail;
1725 	journal->j_tail = 0;
1726 	spin_unlock(&journal->j_state_lock);
1727 	jbd2_journal_update_superblock(journal, 1);
1728 	spin_lock(&journal->j_state_lock);
1729 	journal->j_tail = old_tail;
1730 
1731 	J_ASSERT(!journal->j_running_transaction);
1732 	J_ASSERT(!journal->j_committing_transaction);
1733 	J_ASSERT(!journal->j_checkpoint_transactions);
1734 	J_ASSERT(journal->j_head == journal->j_tail);
1735 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1736 	spin_unlock(&journal->j_state_lock);
1737 	return 0;
1738 }
1739 
1740 /**
1741  * int jbd2_journal_wipe() - Wipe journal contents
1742  * @journal: Journal to act on.
1743  * @write: flag (see below)
1744  *
1745  * Wipe out all of the contents of a journal, safely.  This will produce
1746  * a warning if the journal contains any valid recovery information.
1747  * Must be called between journal_init_*() and jbd2_journal_load().
1748  *
1749  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1750  * we merely suppress recovery.
1751  */
1752 
1753 int jbd2_journal_wipe(journal_t *journal, int write)
1754 {
1755 	journal_superblock_t *sb;
1756 	int err = 0;
1757 
1758 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1759 
1760 	err = load_superblock(journal);
1761 	if (err)
1762 		return err;
1763 
1764 	sb = journal->j_superblock;
1765 
1766 	if (!journal->j_tail)
1767 		goto no_recovery;
1768 
1769 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1770 		write ? "Clearing" : "Ignoring");
1771 
1772 	err = jbd2_journal_skip_recovery(journal);
1773 	if (write)
1774 		jbd2_journal_update_superblock(journal, 1);
1775 
1776  no_recovery:
1777 	return err;
1778 }
1779 
1780 /*
1781  * Journal abort has very specific semantics, which we describe
1782  * for journal abort.
1783  *
1784  * Two internal functions, which provide abort to the jbd layer
1785  * itself are here.
1786  */
1787 
1788 /*
1789  * Quick version for internal journal use (doesn't lock the journal).
1790  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1791  * and don't attempt to make any other journal updates.
1792  */
1793 void __jbd2_journal_abort_hard(journal_t *journal)
1794 {
1795 	transaction_t *transaction;
1796 
1797 	if (journal->j_flags & JBD2_ABORT)
1798 		return;
1799 
1800 	printk(KERN_ERR "Aborting journal on device %s.\n",
1801 	       journal->j_devname);
1802 
1803 	spin_lock(&journal->j_state_lock);
1804 	journal->j_flags |= JBD2_ABORT;
1805 	transaction = journal->j_running_transaction;
1806 	if (transaction)
1807 		__jbd2_log_start_commit(journal, transaction->t_tid);
1808 	spin_unlock(&journal->j_state_lock);
1809 }
1810 
1811 /* Soft abort: record the abort error status in the journal superblock,
1812  * but don't do any other IO. */
1813 static void __journal_abort_soft (journal_t *journal, int errno)
1814 {
1815 	if (journal->j_flags & JBD2_ABORT)
1816 		return;
1817 
1818 	if (!journal->j_errno)
1819 		journal->j_errno = errno;
1820 
1821 	__jbd2_journal_abort_hard(journal);
1822 
1823 	if (errno)
1824 		jbd2_journal_update_superblock(journal, 1);
1825 }
1826 
1827 /**
1828  * void jbd2_journal_abort () - Shutdown the journal immediately.
1829  * @journal: the journal to shutdown.
1830  * @errno:   an error number to record in the journal indicating
1831  *           the reason for the shutdown.
1832  *
1833  * Perform a complete, immediate shutdown of the ENTIRE
1834  * journal (not of a single transaction).  This operation cannot be
1835  * undone without closing and reopening the journal.
1836  *
1837  * The jbd2_journal_abort function is intended to support higher level error
1838  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1839  * mode.
1840  *
1841  * Journal abort has very specific semantics.  Any existing dirty,
1842  * unjournaled buffers in the main filesystem will still be written to
1843  * disk by bdflush, but the journaling mechanism will be suspended
1844  * immediately and no further transaction commits will be honoured.
1845  *
1846  * Any dirty, journaled buffers will be written back to disk without
1847  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1848  * filesystem, but we _do_ attempt to leave as much data as possible
1849  * behind for fsck to use for cleanup.
1850  *
1851  * Any attempt to get a new transaction handle on a journal which is in
1852  * ABORT state will just result in an -EROFS error return.  A
1853  * jbd2_journal_stop on an existing handle will return -EIO if we have
1854  * entered abort state during the update.
1855  *
1856  * Recursive transactions are not disturbed by journal abort until the
1857  * final jbd2_journal_stop, which will receive the -EIO error.
1858  *
1859  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1860  * which will be recorded (if possible) in the journal superblock.  This
1861  * allows a client to record failure conditions in the middle of a
1862  * transaction without having to complete the transaction to record the
1863  * failure to disk.  ext3_error, for example, now uses this
1864  * functionality.
1865  *
1866  * Errors which originate from within the journaling layer will NOT
1867  * supply an errno; a null errno implies that absolutely no further
1868  * writes are done to the journal (unless there are any already in
1869  * progress).
1870  *
1871  */
1872 
1873 void jbd2_journal_abort(journal_t *journal, int errno)
1874 {
1875 	__journal_abort_soft(journal, errno);
1876 }
1877 
1878 /**
1879  * int jbd2_journal_errno () - returns the journal's error state.
1880  * @journal: journal to examine.
1881  *
1882  * This is the errno number set with jbd2_journal_abort(), the last
1883  * time the journal was mounted - if the journal was stopped
1884  * without calling abort this will be 0.
1885  *
1886  * If the journal has been aborted on this mount time -EROFS will
1887  * be returned.
1888  */
1889 int jbd2_journal_errno(journal_t *journal)
1890 {
1891 	int err;
1892 
1893 	spin_lock(&journal->j_state_lock);
1894 	if (journal->j_flags & JBD2_ABORT)
1895 		err = -EROFS;
1896 	else
1897 		err = journal->j_errno;
1898 	spin_unlock(&journal->j_state_lock);
1899 	return err;
1900 }
1901 
1902 /**
1903  * int jbd2_journal_clear_err () - clears the journal's error state
1904  * @journal: journal to act on.
1905  *
1906  * An error must be cleared or acked to take a FS out of readonly
1907  * mode.
1908  */
1909 int jbd2_journal_clear_err(journal_t *journal)
1910 {
1911 	int err = 0;
1912 
1913 	spin_lock(&journal->j_state_lock);
1914 	if (journal->j_flags & JBD2_ABORT)
1915 		err = -EROFS;
1916 	else
1917 		journal->j_errno = 0;
1918 	spin_unlock(&journal->j_state_lock);
1919 	return err;
1920 }
1921 
1922 /**
1923  * void jbd2_journal_ack_err() - Ack journal err.
1924  * @journal: journal to act on.
1925  *
1926  * An error must be cleared or acked to take a FS out of readonly
1927  * mode.
1928  */
1929 void jbd2_journal_ack_err(journal_t *journal)
1930 {
1931 	spin_lock(&journal->j_state_lock);
1932 	if (journal->j_errno)
1933 		journal->j_flags |= JBD2_ACK_ERR;
1934 	spin_unlock(&journal->j_state_lock);
1935 }
1936 
1937 int jbd2_journal_blocks_per_page(struct inode *inode)
1938 {
1939 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1940 }
1941 
1942 /*
1943  * helper functions to deal with 32 or 64bit block numbers.
1944  */
1945 size_t journal_tag_bytes(journal_t *journal)
1946 {
1947 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1948 		return JBD2_TAG_SIZE64;
1949 	else
1950 		return JBD2_TAG_SIZE32;
1951 }
1952 
1953 /*
1954  * Journal_head storage management
1955  */
1956 static struct kmem_cache *jbd2_journal_head_cache;
1957 #ifdef CONFIG_JBD2_DEBUG
1958 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1959 #endif
1960 
1961 static int journal_init_jbd2_journal_head_cache(void)
1962 {
1963 	int retval;
1964 
1965 	J_ASSERT(jbd2_journal_head_cache == NULL);
1966 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1967 				sizeof(struct journal_head),
1968 				0,		/* offset */
1969 				SLAB_TEMPORARY,	/* flags */
1970 				NULL);		/* ctor */
1971 	retval = 0;
1972 	if (!jbd2_journal_head_cache) {
1973 		retval = -ENOMEM;
1974 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1975 	}
1976 	return retval;
1977 }
1978 
1979 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1980 {
1981 	if (jbd2_journal_head_cache) {
1982 		kmem_cache_destroy(jbd2_journal_head_cache);
1983 		jbd2_journal_head_cache = NULL;
1984 	}
1985 }
1986 
1987 /*
1988  * journal_head splicing and dicing
1989  */
1990 static struct journal_head *journal_alloc_journal_head(void)
1991 {
1992 	struct journal_head *ret;
1993 	static unsigned long last_warning;
1994 
1995 #ifdef CONFIG_JBD2_DEBUG
1996 	atomic_inc(&nr_journal_heads);
1997 #endif
1998 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1999 	if (!ret) {
2000 		jbd_debug(1, "out of memory for journal_head\n");
2001 		if (time_after(jiffies, last_warning + 5*HZ)) {
2002 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
2003 			       __func__);
2004 			last_warning = jiffies;
2005 		}
2006 		while (!ret) {
2007 			yield();
2008 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2009 		}
2010 	}
2011 	return ret;
2012 }
2013 
2014 static void journal_free_journal_head(struct journal_head *jh)
2015 {
2016 #ifdef CONFIG_JBD2_DEBUG
2017 	atomic_dec(&nr_journal_heads);
2018 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2019 #endif
2020 	kmem_cache_free(jbd2_journal_head_cache, jh);
2021 }
2022 
2023 /*
2024  * A journal_head is attached to a buffer_head whenever JBD has an
2025  * interest in the buffer.
2026  *
2027  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2028  * is set.  This bit is tested in core kernel code where we need to take
2029  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2030  * there.
2031  *
2032  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2033  *
2034  * When a buffer has its BH_JBD bit set it is immune from being released by
2035  * core kernel code, mainly via ->b_count.
2036  *
2037  * A journal_head may be detached from its buffer_head when the journal_head's
2038  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2039  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2040  * journal_head can be dropped if needed.
2041  *
2042  * Various places in the kernel want to attach a journal_head to a buffer_head
2043  * _before_ attaching the journal_head to a transaction.  To protect the
2044  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2045  * journal_head's b_jcount refcount by one.  The caller must call
2046  * jbd2_journal_put_journal_head() to undo this.
2047  *
2048  * So the typical usage would be:
2049  *
2050  *	(Attach a journal_head if needed.  Increments b_jcount)
2051  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2052  *	...
2053  *	jh->b_transaction = xxx;
2054  *	jbd2_journal_put_journal_head(jh);
2055  *
2056  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2057  * because it has a non-zero b_transaction.
2058  */
2059 
2060 /*
2061  * Give a buffer_head a journal_head.
2062  *
2063  * Doesn't need the journal lock.
2064  * May sleep.
2065  */
2066 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2067 {
2068 	struct journal_head *jh;
2069 	struct journal_head *new_jh = NULL;
2070 
2071 repeat:
2072 	if (!buffer_jbd(bh)) {
2073 		new_jh = journal_alloc_journal_head();
2074 		memset(new_jh, 0, sizeof(*new_jh));
2075 	}
2076 
2077 	jbd_lock_bh_journal_head(bh);
2078 	if (buffer_jbd(bh)) {
2079 		jh = bh2jh(bh);
2080 	} else {
2081 		J_ASSERT_BH(bh,
2082 			(atomic_read(&bh->b_count) > 0) ||
2083 			(bh->b_page && bh->b_page->mapping));
2084 
2085 		if (!new_jh) {
2086 			jbd_unlock_bh_journal_head(bh);
2087 			goto repeat;
2088 		}
2089 
2090 		jh = new_jh;
2091 		new_jh = NULL;		/* We consumed it */
2092 		set_buffer_jbd(bh);
2093 		bh->b_private = jh;
2094 		jh->b_bh = bh;
2095 		get_bh(bh);
2096 		BUFFER_TRACE(bh, "added journal_head");
2097 	}
2098 	jh->b_jcount++;
2099 	jbd_unlock_bh_journal_head(bh);
2100 	if (new_jh)
2101 		journal_free_journal_head(new_jh);
2102 	return bh->b_private;
2103 }
2104 
2105 /*
2106  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2107  * having a journal_head, return NULL
2108  */
2109 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2110 {
2111 	struct journal_head *jh = NULL;
2112 
2113 	jbd_lock_bh_journal_head(bh);
2114 	if (buffer_jbd(bh)) {
2115 		jh = bh2jh(bh);
2116 		jh->b_jcount++;
2117 	}
2118 	jbd_unlock_bh_journal_head(bh);
2119 	return jh;
2120 }
2121 
2122 static void __journal_remove_journal_head(struct buffer_head *bh)
2123 {
2124 	struct journal_head *jh = bh2jh(bh);
2125 
2126 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2127 
2128 	get_bh(bh);
2129 	if (jh->b_jcount == 0) {
2130 		if (jh->b_transaction == NULL &&
2131 				jh->b_next_transaction == NULL &&
2132 				jh->b_cp_transaction == NULL) {
2133 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2134 			J_ASSERT_BH(bh, buffer_jbd(bh));
2135 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2136 			BUFFER_TRACE(bh, "remove journal_head");
2137 			if (jh->b_frozen_data) {
2138 				printk(KERN_WARNING "%s: freeing "
2139 						"b_frozen_data\n",
2140 						__func__);
2141 				jbd2_free(jh->b_frozen_data, bh->b_size);
2142 			}
2143 			if (jh->b_committed_data) {
2144 				printk(KERN_WARNING "%s: freeing "
2145 						"b_committed_data\n",
2146 						__func__);
2147 				jbd2_free(jh->b_committed_data, bh->b_size);
2148 			}
2149 			bh->b_private = NULL;
2150 			jh->b_bh = NULL;	/* debug, really */
2151 			clear_buffer_jbd(bh);
2152 			__brelse(bh);
2153 			journal_free_journal_head(jh);
2154 		} else {
2155 			BUFFER_TRACE(bh, "journal_head was locked");
2156 		}
2157 	}
2158 }
2159 
2160 /*
2161  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2162  * and has a zero b_jcount then remove and release its journal_head.   If we did
2163  * see that the buffer is not used by any transaction we also "logically"
2164  * decrement ->b_count.
2165  *
2166  * We in fact take an additional increment on ->b_count as a convenience,
2167  * because the caller usually wants to do additional things with the bh
2168  * after calling here.
2169  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2170  * time.  Once the caller has run __brelse(), the buffer is eligible for
2171  * reaping by try_to_free_buffers().
2172  */
2173 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2174 {
2175 	jbd_lock_bh_journal_head(bh);
2176 	__journal_remove_journal_head(bh);
2177 	jbd_unlock_bh_journal_head(bh);
2178 }
2179 
2180 /*
2181  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2182  * release the journal_head from the buffer_head.
2183  */
2184 void jbd2_journal_put_journal_head(struct journal_head *jh)
2185 {
2186 	struct buffer_head *bh = jh2bh(jh);
2187 
2188 	jbd_lock_bh_journal_head(bh);
2189 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2190 	--jh->b_jcount;
2191 	if (!jh->b_jcount && !jh->b_transaction) {
2192 		__journal_remove_journal_head(bh);
2193 		__brelse(bh);
2194 	}
2195 	jbd_unlock_bh_journal_head(bh);
2196 }
2197 
2198 /*
2199  * Initialize jbd inode head
2200  */
2201 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2202 {
2203 	jinode->i_transaction = NULL;
2204 	jinode->i_next_transaction = NULL;
2205 	jinode->i_vfs_inode = inode;
2206 	jinode->i_flags = 0;
2207 	INIT_LIST_HEAD(&jinode->i_list);
2208 }
2209 
2210 /*
2211  * Function to be called before we start removing inode from memory (i.e.,
2212  * clear_inode() is a fine place to be called from). It removes inode from
2213  * transaction's lists.
2214  */
2215 void jbd2_journal_release_jbd_inode(journal_t *journal,
2216 				    struct jbd2_inode *jinode)
2217 {
2218 	int writeout = 0;
2219 
2220 	if (!journal)
2221 		return;
2222 restart:
2223 	spin_lock(&journal->j_list_lock);
2224 	/* Is commit writing out inode - we have to wait */
2225 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2226 		wait_queue_head_t *wq;
2227 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2228 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2229 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2230 		spin_unlock(&journal->j_list_lock);
2231 		schedule();
2232 		finish_wait(wq, &wait.wait);
2233 		goto restart;
2234 	}
2235 
2236 	/* Do we need to wait for data writeback? */
2237 	if (journal->j_committing_transaction == jinode->i_transaction)
2238 		writeout = 1;
2239 	if (jinode->i_transaction) {
2240 		list_del(&jinode->i_list);
2241 		jinode->i_transaction = NULL;
2242 	}
2243 	spin_unlock(&journal->j_list_lock);
2244 }
2245 
2246 /*
2247  * debugfs tunables
2248  */
2249 #ifdef CONFIG_JBD2_DEBUG
2250 u8 jbd2_journal_enable_debug __read_mostly;
2251 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2252 
2253 #define JBD2_DEBUG_NAME "jbd2-debug"
2254 
2255 static struct dentry *jbd2_debugfs_dir;
2256 static struct dentry *jbd2_debug;
2257 
2258 static void __init jbd2_create_debugfs_entry(void)
2259 {
2260 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2261 	if (jbd2_debugfs_dir)
2262 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
2263 					       jbd2_debugfs_dir,
2264 					       &jbd2_journal_enable_debug);
2265 }
2266 
2267 static void __exit jbd2_remove_debugfs_entry(void)
2268 {
2269 	debugfs_remove(jbd2_debug);
2270 	debugfs_remove(jbd2_debugfs_dir);
2271 }
2272 
2273 #else
2274 
2275 static void __init jbd2_create_debugfs_entry(void)
2276 {
2277 }
2278 
2279 static void __exit jbd2_remove_debugfs_entry(void)
2280 {
2281 }
2282 
2283 #endif
2284 
2285 #ifdef CONFIG_PROC_FS
2286 
2287 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2288 
2289 static void __init jbd2_create_jbd_stats_proc_entry(void)
2290 {
2291 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2292 }
2293 
2294 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2295 {
2296 	if (proc_jbd2_stats)
2297 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2298 }
2299 
2300 #else
2301 
2302 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2303 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2304 
2305 #endif
2306 
2307 struct kmem_cache *jbd2_handle_cache;
2308 
2309 static int __init journal_init_handle_cache(void)
2310 {
2311 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2312 				sizeof(handle_t),
2313 				0,		/* offset */
2314 				SLAB_TEMPORARY,	/* flags */
2315 				NULL);		/* ctor */
2316 	if (jbd2_handle_cache == NULL) {
2317 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2318 		return -ENOMEM;
2319 	}
2320 	return 0;
2321 }
2322 
2323 static void jbd2_journal_destroy_handle_cache(void)
2324 {
2325 	if (jbd2_handle_cache)
2326 		kmem_cache_destroy(jbd2_handle_cache);
2327 }
2328 
2329 /*
2330  * Module startup and shutdown
2331  */
2332 
2333 static int __init journal_init_caches(void)
2334 {
2335 	int ret;
2336 
2337 	ret = jbd2_journal_init_revoke_caches();
2338 	if (ret == 0)
2339 		ret = journal_init_jbd2_journal_head_cache();
2340 	if (ret == 0)
2341 		ret = journal_init_handle_cache();
2342 	return ret;
2343 }
2344 
2345 static void jbd2_journal_destroy_caches(void)
2346 {
2347 	jbd2_journal_destroy_revoke_caches();
2348 	jbd2_journal_destroy_jbd2_journal_head_cache();
2349 	jbd2_journal_destroy_handle_cache();
2350 }
2351 
2352 static int __init journal_init(void)
2353 {
2354 	int ret;
2355 
2356 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2357 
2358 	ret = journal_init_caches();
2359 	if (ret == 0) {
2360 		jbd2_create_debugfs_entry();
2361 		jbd2_create_jbd_stats_proc_entry();
2362 	} else {
2363 		jbd2_journal_destroy_caches();
2364 	}
2365 	return ret;
2366 }
2367 
2368 static void __exit journal_exit(void)
2369 {
2370 #ifdef CONFIG_JBD2_DEBUG
2371 	int n = atomic_read(&nr_journal_heads);
2372 	if (n)
2373 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2374 #endif
2375 	jbd2_remove_debugfs_entry();
2376 	jbd2_remove_jbd_stats_proc_entry();
2377 	jbd2_journal_destroy_caches();
2378 }
2379 
2380 MODULE_LICENSE("GPL");
2381 module_init(journal_init);
2382 module_exit(journal_exit);
2383 
2384