xref: /openbmc/linux/fs/jbd2/journal.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 	int ret;
579 
580 	ret = __jbd2_journal_force_commit(journal);
581 	return ret > 0;
582 }
583 
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593 	int ret;
594 
595 	J_ASSERT(!current->journal_info);
596 	ret = __jbd2_journal_force_commit(journal);
597 	if (ret > 0)
598 		ret = 0;
599 	return ret;
600 }
601 
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609 	int ret = 0;
610 
611 	write_lock(&journal->j_state_lock);
612 	if (journal->j_running_transaction) {
613 		tid_t tid = journal->j_running_transaction->t_tid;
614 
615 		__jbd2_log_start_commit(journal, tid);
616 		/* There's a running transaction and we've just made sure
617 		 * it's commit has been scheduled. */
618 		if (ptid)
619 			*ptid = tid;
620 		ret = 1;
621 	} else if (journal->j_committing_transaction) {
622 		/*
623 		 * If commit has been started, then we have to wait for
624 		 * completion of that transaction.
625 		 */
626 		if (ptid)
627 			*ptid = journal->j_committing_transaction->t_tid;
628 		ret = 1;
629 	}
630 	write_unlock(&journal->j_state_lock);
631 	return ret;
632 }
633 
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642 	int ret = 0;
643 	transaction_t *commit_trans;
644 
645 	if (!(journal->j_flags & JBD2_BARRIER))
646 		return 0;
647 	read_lock(&journal->j_state_lock);
648 	/* Transaction already committed? */
649 	if (tid_geq(journal->j_commit_sequence, tid))
650 		goto out;
651 	commit_trans = journal->j_committing_transaction;
652 	if (!commit_trans || commit_trans->t_tid != tid) {
653 		ret = 1;
654 		goto out;
655 	}
656 	/*
657 	 * Transaction is being committed and we already proceeded to
658 	 * submitting a flush to fs partition?
659 	 */
660 	if (journal->j_fs_dev != journal->j_dev) {
661 		if (!commit_trans->t_need_data_flush ||
662 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
663 			goto out;
664 	} else {
665 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666 			goto out;
667 	}
668 	ret = 1;
669 out:
670 	read_unlock(&journal->j_state_lock);
671 	return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674 
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681 	int err = 0;
682 
683 	read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685 	/*
686 	 * Some callers make sure transaction is already committing and in that
687 	 * case we cannot block on open handles anymore. So don't warn in that
688 	 * case.
689 	 */
690 	if (tid_gt(tid, journal->j_commit_sequence) &&
691 	    (!journal->j_committing_transaction ||
692 	     journal->j_committing_transaction->t_tid != tid)) {
693 		read_unlock(&journal->j_state_lock);
694 		jbd2_might_wait_for_commit(journal);
695 		read_lock(&journal->j_state_lock);
696 	}
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699 	if (!tid_geq(journal->j_commit_request, tid)) {
700 		printk(KERN_ERR
701 		       "%s: error: j_commit_request=%u, tid=%u\n",
702 		       __func__, journal->j_commit_request, tid);
703 	}
704 #endif
705 	while (tid_gt(tid, journal->j_commit_sequence)) {
706 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
707 				  tid, journal->j_commit_sequence);
708 		read_unlock(&journal->j_state_lock);
709 		wake_up(&journal->j_wait_commit);
710 		wait_event(journal->j_wait_done_commit,
711 				!tid_gt(tid, journal->j_commit_sequence));
712 		read_lock(&journal->j_state_lock);
713 	}
714 	read_unlock(&journal->j_state_lock);
715 
716 	if (unlikely(is_journal_aborted(journal)))
717 		err = -EIO;
718 	return err;
719 }
720 
721 /*
722  * Start a fast commit. If there's an ongoing fast or full commit wait for
723  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
724  * if a fast commit is not needed, either because there's an already a commit
725  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
726  * commit has yet been performed.
727  */
728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
729 {
730 	/*
731 	 * Fast commits only allowed if at least one full commit has
732 	 * been processed.
733 	 */
734 	if (!journal->j_stats.ts_tid)
735 		return -EINVAL;
736 
737 	if (tid <= journal->j_commit_sequence)
738 		return -EALREADY;
739 
740 	write_lock(&journal->j_state_lock);
741 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
742 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
743 		DEFINE_WAIT(wait);
744 
745 		prepare_to_wait(&journal->j_fc_wait, &wait,
746 				TASK_UNINTERRUPTIBLE);
747 		write_unlock(&journal->j_state_lock);
748 		schedule();
749 		finish_wait(&journal->j_fc_wait, &wait);
750 		return -EALREADY;
751 	}
752 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
753 	write_unlock(&journal->j_state_lock);
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL(jbd2_fc_begin_commit);
758 
759 /*
760  * Stop a fast commit. If fallback is set, this function starts commit of
761  * TID tid before any other fast commit can start.
762  */
763 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
764 {
765 	if (journal->j_fc_cleanup_callback)
766 		journal->j_fc_cleanup_callback(journal, 0);
767 	write_lock(&journal->j_state_lock);
768 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
769 	if (fallback)
770 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
771 	write_unlock(&journal->j_state_lock);
772 	wake_up(&journal->j_fc_wait);
773 	if (fallback)
774 		return jbd2_complete_transaction(journal, tid);
775 	return 0;
776 }
777 
778 int jbd2_fc_end_commit(journal_t *journal)
779 {
780 	return __jbd2_fc_end_commit(journal, 0, 0);
781 }
782 EXPORT_SYMBOL(jbd2_fc_end_commit);
783 
784 int jbd2_fc_end_commit_fallback(journal_t *journal, tid_t tid)
785 {
786 	return __jbd2_fc_end_commit(journal, tid, 1);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
789 
790 /* Return 1 when transaction with given tid has already committed. */
791 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
792 {
793 	int ret = 1;
794 
795 	read_lock(&journal->j_state_lock);
796 	if (journal->j_running_transaction &&
797 	    journal->j_running_transaction->t_tid == tid)
798 		ret = 0;
799 	if (journal->j_committing_transaction &&
800 	    journal->j_committing_transaction->t_tid == tid)
801 		ret = 0;
802 	read_unlock(&journal->j_state_lock);
803 	return ret;
804 }
805 EXPORT_SYMBOL(jbd2_transaction_committed);
806 
807 /*
808  * When this function returns the transaction corresponding to tid
809  * will be completed.  If the transaction has currently running, start
810  * committing that transaction before waiting for it to complete.  If
811  * the transaction id is stale, it is by definition already completed,
812  * so just return SUCCESS.
813  */
814 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
815 {
816 	int	need_to_wait = 1;
817 
818 	read_lock(&journal->j_state_lock);
819 	if (journal->j_running_transaction &&
820 	    journal->j_running_transaction->t_tid == tid) {
821 		if (journal->j_commit_request != tid) {
822 			/* transaction not yet started, so request it */
823 			read_unlock(&journal->j_state_lock);
824 			jbd2_log_start_commit(journal, tid);
825 			goto wait_commit;
826 		}
827 	} else if (!(journal->j_committing_transaction &&
828 		     journal->j_committing_transaction->t_tid == tid))
829 		need_to_wait = 0;
830 	read_unlock(&journal->j_state_lock);
831 	if (!need_to_wait)
832 		return 0;
833 wait_commit:
834 	return jbd2_log_wait_commit(journal, tid);
835 }
836 EXPORT_SYMBOL(jbd2_complete_transaction);
837 
838 /*
839  * Log buffer allocation routines:
840  */
841 
842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
843 {
844 	unsigned long blocknr;
845 
846 	write_lock(&journal->j_state_lock);
847 	J_ASSERT(journal->j_free > 1);
848 
849 	blocknr = journal->j_head;
850 	journal->j_head++;
851 	journal->j_free--;
852 	if (journal->j_head == journal->j_last)
853 		journal->j_head = journal->j_first;
854 	write_unlock(&journal->j_state_lock);
855 	return jbd2_journal_bmap(journal, blocknr, retp);
856 }
857 
858 /* Map one fast commit buffer for use by the file system */
859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
860 {
861 	unsigned long long pblock;
862 	unsigned long blocknr;
863 	int ret = 0;
864 	struct buffer_head *bh;
865 	int fc_off;
866 
867 	*bh_out = NULL;
868 	write_lock(&journal->j_state_lock);
869 
870 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
871 		fc_off = journal->j_fc_off;
872 		blocknr = journal->j_fc_first + fc_off;
873 		journal->j_fc_off++;
874 	} else {
875 		ret = -EINVAL;
876 	}
877 	write_unlock(&journal->j_state_lock);
878 
879 	if (ret)
880 		return ret;
881 
882 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
883 	if (ret)
884 		return ret;
885 
886 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
887 	if (!bh)
888 		return -ENOMEM;
889 
890 	lock_buffer(bh);
891 
892 	clear_buffer_uptodate(bh);
893 	set_buffer_dirty(bh);
894 	unlock_buffer(bh);
895 	journal->j_fc_wbuf[fc_off] = bh;
896 
897 	*bh_out = bh;
898 
899 	return 0;
900 }
901 EXPORT_SYMBOL(jbd2_fc_get_buf);
902 
903 /*
904  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
905  * for completion.
906  */
907 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
908 {
909 	struct buffer_head *bh;
910 	int i, j_fc_off;
911 
912 	read_lock(&journal->j_state_lock);
913 	j_fc_off = journal->j_fc_off;
914 	read_unlock(&journal->j_state_lock);
915 
916 	/*
917 	 * Wait in reverse order to minimize chances of us being woken up before
918 	 * all IOs have completed
919 	 */
920 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
921 		bh = journal->j_fc_wbuf[i];
922 		wait_on_buffer(bh);
923 		put_bh(bh);
924 		journal->j_fc_wbuf[i] = NULL;
925 		if (unlikely(!buffer_uptodate(bh)))
926 			return -EIO;
927 	}
928 
929 	return 0;
930 }
931 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
932 
933 /*
934  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
935  * for completion.
936  */
937 int jbd2_fc_release_bufs(journal_t *journal)
938 {
939 	struct buffer_head *bh;
940 	int i, j_fc_off;
941 
942 	read_lock(&journal->j_state_lock);
943 	j_fc_off = journal->j_fc_off;
944 	read_unlock(&journal->j_state_lock);
945 
946 	/*
947 	 * Wait in reverse order to minimize chances of us being woken up before
948 	 * all IOs have completed
949 	 */
950 	for (i = j_fc_off - 1; i >= 0; i--) {
951 		bh = journal->j_fc_wbuf[i];
952 		if (!bh)
953 			break;
954 		put_bh(bh);
955 		journal->j_fc_wbuf[i] = NULL;
956 	}
957 
958 	return 0;
959 }
960 EXPORT_SYMBOL(jbd2_fc_release_bufs);
961 
962 /*
963  * Conversion of logical to physical block numbers for the journal
964  *
965  * On external journals the journal blocks are identity-mapped, so
966  * this is a no-op.  If needed, we can use j_blk_offset - everything is
967  * ready.
968  */
969 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
970 		 unsigned long long *retp)
971 {
972 	int err = 0;
973 	unsigned long long ret;
974 	sector_t block = 0;
975 
976 	if (journal->j_inode) {
977 		block = blocknr;
978 		ret = bmap(journal->j_inode, &block);
979 
980 		if (ret || !block) {
981 			printk(KERN_ALERT "%s: journal block not found "
982 					"at offset %lu on %s\n",
983 			       __func__, blocknr, journal->j_devname);
984 			err = -EIO;
985 			jbd2_journal_abort(journal, err);
986 		} else {
987 			*retp = block;
988 		}
989 
990 	} else {
991 		*retp = blocknr; /* +journal->j_blk_offset */
992 	}
993 	return err;
994 }
995 
996 /*
997  * We play buffer_head aliasing tricks to write data/metadata blocks to
998  * the journal without copying their contents, but for journal
999  * descriptor blocks we do need to generate bona fide buffers.
1000  *
1001  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1002  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1003  * But we don't bother doing that, so there will be coherency problems with
1004  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1005  */
1006 struct buffer_head *
1007 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1008 {
1009 	journal_t *journal = transaction->t_journal;
1010 	struct buffer_head *bh;
1011 	unsigned long long blocknr;
1012 	journal_header_t *header;
1013 	int err;
1014 
1015 	err = jbd2_journal_next_log_block(journal, &blocknr);
1016 
1017 	if (err)
1018 		return NULL;
1019 
1020 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1021 	if (!bh)
1022 		return NULL;
1023 	atomic_dec(&transaction->t_outstanding_credits);
1024 	lock_buffer(bh);
1025 	memset(bh->b_data, 0, journal->j_blocksize);
1026 	header = (journal_header_t *)bh->b_data;
1027 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1028 	header->h_blocktype = cpu_to_be32(type);
1029 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1030 	set_buffer_uptodate(bh);
1031 	unlock_buffer(bh);
1032 	BUFFER_TRACE(bh, "return this buffer");
1033 	return bh;
1034 }
1035 
1036 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1037 {
1038 	struct jbd2_journal_block_tail *tail;
1039 	__u32 csum;
1040 
1041 	if (!jbd2_journal_has_csum_v2or3(j))
1042 		return;
1043 
1044 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1045 			sizeof(struct jbd2_journal_block_tail));
1046 	tail->t_checksum = 0;
1047 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1048 	tail->t_checksum = cpu_to_be32(csum);
1049 }
1050 
1051 /*
1052  * Return tid of the oldest transaction in the journal and block in the journal
1053  * where the transaction starts.
1054  *
1055  * If the journal is now empty, return which will be the next transaction ID
1056  * we will write and where will that transaction start.
1057  *
1058  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1059  * it can.
1060  */
1061 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1062 			      unsigned long *block)
1063 {
1064 	transaction_t *transaction;
1065 	int ret;
1066 
1067 	read_lock(&journal->j_state_lock);
1068 	spin_lock(&journal->j_list_lock);
1069 	transaction = journal->j_checkpoint_transactions;
1070 	if (transaction) {
1071 		*tid = transaction->t_tid;
1072 		*block = transaction->t_log_start;
1073 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1074 		*tid = transaction->t_tid;
1075 		*block = transaction->t_log_start;
1076 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1077 		*tid = transaction->t_tid;
1078 		*block = journal->j_head;
1079 	} else {
1080 		*tid = journal->j_transaction_sequence;
1081 		*block = journal->j_head;
1082 	}
1083 	ret = tid_gt(*tid, journal->j_tail_sequence);
1084 	spin_unlock(&journal->j_list_lock);
1085 	read_unlock(&journal->j_state_lock);
1086 
1087 	return ret;
1088 }
1089 
1090 /*
1091  * Update information in journal structure and in on disk journal superblock
1092  * about log tail. This function does not check whether information passed in
1093  * really pushes log tail further. It's responsibility of the caller to make
1094  * sure provided log tail information is valid (e.g. by holding
1095  * j_checkpoint_mutex all the time between computing log tail and calling this
1096  * function as is the case with jbd2_cleanup_journal_tail()).
1097  *
1098  * Requires j_checkpoint_mutex
1099  */
1100 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1101 {
1102 	unsigned long freed;
1103 	int ret;
1104 
1105 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1106 
1107 	/*
1108 	 * We cannot afford for write to remain in drive's caches since as
1109 	 * soon as we update j_tail, next transaction can start reusing journal
1110 	 * space and if we lose sb update during power failure we'd replay
1111 	 * old transaction with possibly newly overwritten data.
1112 	 */
1113 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1114 					      REQ_SYNC | REQ_FUA);
1115 	if (ret)
1116 		goto out;
1117 
1118 	write_lock(&journal->j_state_lock);
1119 	freed = block - journal->j_tail;
1120 	if (block < journal->j_tail)
1121 		freed += journal->j_last - journal->j_first;
1122 
1123 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1124 	jbd_debug(1,
1125 		  "Cleaning journal tail from %u to %u (offset %lu), "
1126 		  "freeing %lu\n",
1127 		  journal->j_tail_sequence, tid, block, freed);
1128 
1129 	journal->j_free += freed;
1130 	journal->j_tail_sequence = tid;
1131 	journal->j_tail = block;
1132 	write_unlock(&journal->j_state_lock);
1133 
1134 out:
1135 	return ret;
1136 }
1137 
1138 /*
1139  * This is a variation of __jbd2_update_log_tail which checks for validity of
1140  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1141  * with other threads updating log tail.
1142  */
1143 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1144 {
1145 	mutex_lock_io(&journal->j_checkpoint_mutex);
1146 	if (tid_gt(tid, journal->j_tail_sequence))
1147 		__jbd2_update_log_tail(journal, tid, block);
1148 	mutex_unlock(&journal->j_checkpoint_mutex);
1149 }
1150 
1151 struct jbd2_stats_proc_session {
1152 	journal_t *journal;
1153 	struct transaction_stats_s *stats;
1154 	int start;
1155 	int max;
1156 };
1157 
1158 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1159 {
1160 	return *pos ? NULL : SEQ_START_TOKEN;
1161 }
1162 
1163 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1164 {
1165 	(*pos)++;
1166 	return NULL;
1167 }
1168 
1169 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1170 {
1171 	struct jbd2_stats_proc_session *s = seq->private;
1172 
1173 	if (v != SEQ_START_TOKEN)
1174 		return 0;
1175 	seq_printf(seq, "%lu transactions (%lu requested), "
1176 		   "each up to %u blocks\n",
1177 		   s->stats->ts_tid, s->stats->ts_requested,
1178 		   s->journal->j_max_transaction_buffers);
1179 	if (s->stats->ts_tid == 0)
1180 		return 0;
1181 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums request delay\n",
1184 	    (s->stats->ts_requested == 0) ? 0 :
1185 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1186 			     s->stats->ts_requested));
1187 	seq_printf(seq, "  %ums running transaction\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1189 	seq_printf(seq, "  %ums transaction was being locked\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1191 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1192 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1193 	seq_printf(seq, "  %ums logging transaction\n",
1194 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1195 	seq_printf(seq, "  %lluus average transaction commit time\n",
1196 		   div_u64(s->journal->j_average_commit_time, 1000));
1197 	seq_printf(seq, "  %lu handles per transaction\n",
1198 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1199 	seq_printf(seq, "  %lu blocks per transaction\n",
1200 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1201 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1202 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1203 	return 0;
1204 }
1205 
1206 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1207 {
1208 }
1209 
1210 static const struct seq_operations jbd2_seq_info_ops = {
1211 	.start  = jbd2_seq_info_start,
1212 	.next   = jbd2_seq_info_next,
1213 	.stop   = jbd2_seq_info_stop,
1214 	.show   = jbd2_seq_info_show,
1215 };
1216 
1217 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1218 {
1219 	journal_t *journal = PDE_DATA(inode);
1220 	struct jbd2_stats_proc_session *s;
1221 	int rc, size;
1222 
1223 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1224 	if (s == NULL)
1225 		return -ENOMEM;
1226 	size = sizeof(struct transaction_stats_s);
1227 	s->stats = kmalloc(size, GFP_KERNEL);
1228 	if (s->stats == NULL) {
1229 		kfree(s);
1230 		return -ENOMEM;
1231 	}
1232 	spin_lock(&journal->j_history_lock);
1233 	memcpy(s->stats, &journal->j_stats, size);
1234 	s->journal = journal;
1235 	spin_unlock(&journal->j_history_lock);
1236 
1237 	rc = seq_open(file, &jbd2_seq_info_ops);
1238 	if (rc == 0) {
1239 		struct seq_file *m = file->private_data;
1240 		m->private = s;
1241 	} else {
1242 		kfree(s->stats);
1243 		kfree(s);
1244 	}
1245 	return rc;
1246 
1247 }
1248 
1249 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1250 {
1251 	struct seq_file *seq = file->private_data;
1252 	struct jbd2_stats_proc_session *s = seq->private;
1253 	kfree(s->stats);
1254 	kfree(s);
1255 	return seq_release(inode, file);
1256 }
1257 
1258 static const struct proc_ops jbd2_info_proc_ops = {
1259 	.proc_open	= jbd2_seq_info_open,
1260 	.proc_read	= seq_read,
1261 	.proc_lseek	= seq_lseek,
1262 	.proc_release	= jbd2_seq_info_release,
1263 };
1264 
1265 static struct proc_dir_entry *proc_jbd2_stats;
1266 
1267 static void jbd2_stats_proc_init(journal_t *journal)
1268 {
1269 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1270 	if (journal->j_proc_entry) {
1271 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1272 				 &jbd2_info_proc_ops, journal);
1273 	}
1274 }
1275 
1276 static void jbd2_stats_proc_exit(journal_t *journal)
1277 {
1278 	remove_proc_entry("info", journal->j_proc_entry);
1279 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1280 }
1281 
1282 /* Minimum size of descriptor tag */
1283 static int jbd2_min_tag_size(void)
1284 {
1285 	/*
1286 	 * Tag with 32-bit block numbers does not use last four bytes of the
1287 	 * structure
1288 	 */
1289 	return sizeof(journal_block_tag_t) - 4;
1290 }
1291 
1292 /*
1293  * Management for journal control blocks: functions to create and
1294  * destroy journal_t structures, and to initialise and read existing
1295  * journal blocks from disk.  */
1296 
1297 /* First: create and setup a journal_t object in memory.  We initialise
1298  * very few fields yet: that has to wait until we have created the
1299  * journal structures from from scratch, or loaded them from disk. */
1300 
1301 static journal_t *journal_init_common(struct block_device *bdev,
1302 			struct block_device *fs_dev,
1303 			unsigned long long start, int len, int blocksize)
1304 {
1305 	static struct lock_class_key jbd2_trans_commit_key;
1306 	journal_t *journal;
1307 	int err;
1308 	struct buffer_head *bh;
1309 	int n;
1310 
1311 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1312 	if (!journal)
1313 		return NULL;
1314 
1315 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1316 	init_waitqueue_head(&journal->j_wait_done_commit);
1317 	init_waitqueue_head(&journal->j_wait_commit);
1318 	init_waitqueue_head(&journal->j_wait_updates);
1319 	init_waitqueue_head(&journal->j_wait_reserved);
1320 	init_waitqueue_head(&journal->j_fc_wait);
1321 	mutex_init(&journal->j_abort_mutex);
1322 	mutex_init(&journal->j_barrier);
1323 	mutex_init(&journal->j_checkpoint_mutex);
1324 	spin_lock_init(&journal->j_revoke_lock);
1325 	spin_lock_init(&journal->j_list_lock);
1326 	rwlock_init(&journal->j_state_lock);
1327 
1328 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1329 	journal->j_min_batch_time = 0;
1330 	journal->j_max_batch_time = 15000; /* 15ms */
1331 	atomic_set(&journal->j_reserved_credits, 0);
1332 
1333 	/* The journal is marked for error until we succeed with recovery! */
1334 	journal->j_flags = JBD2_ABORT;
1335 
1336 	/* Set up a default-sized revoke table for the new mount. */
1337 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1338 	if (err)
1339 		goto err_cleanup;
1340 
1341 	spin_lock_init(&journal->j_history_lock);
1342 
1343 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1344 			 &jbd2_trans_commit_key, 0);
1345 
1346 	/* journal descriptor can store up to n blocks -bzzz */
1347 	journal->j_blocksize = blocksize;
1348 	journal->j_dev = bdev;
1349 	journal->j_fs_dev = fs_dev;
1350 	journal->j_blk_offset = start;
1351 	journal->j_maxlen = len;
1352 	/* We need enough buffers to write out full descriptor block. */
1353 	n = journal->j_blocksize / jbd2_min_tag_size();
1354 	journal->j_wbufsize = n;
1355 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1356 					GFP_KERNEL);
1357 	if (!journal->j_wbuf)
1358 		goto err_cleanup;
1359 
1360 	if (journal->j_fc_wbufsize > 0) {
1361 		journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize,
1362 					sizeof(struct buffer_head *),
1363 					GFP_KERNEL);
1364 		if (!journal->j_fc_wbuf)
1365 			goto err_cleanup;
1366 	}
1367 
1368 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1369 	if (!bh) {
1370 		pr_err("%s: Cannot get buffer for journal superblock\n",
1371 			__func__);
1372 		goto err_cleanup;
1373 	}
1374 	journal->j_sb_buffer = bh;
1375 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1376 
1377 	return journal;
1378 
1379 err_cleanup:
1380 	kfree(journal->j_wbuf);
1381 	kfree(journal->j_fc_wbuf);
1382 	jbd2_journal_destroy_revoke(journal);
1383 	kfree(journal);
1384 	return NULL;
1385 }
1386 
1387 int jbd2_fc_init(journal_t *journal, int num_fc_blks)
1388 {
1389 	journal->j_fc_wbufsize = num_fc_blks;
1390 	journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize,
1391 				sizeof(struct buffer_head *), GFP_KERNEL);
1392 	if (!journal->j_fc_wbuf)
1393 		return -ENOMEM;
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL(jbd2_fc_init);
1397 
1398 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1399  *
1400  * Create a journal structure assigned some fixed set of disk blocks to
1401  * the journal.  We don't actually touch those disk blocks yet, but we
1402  * need to set up all of the mapping information to tell the journaling
1403  * system where the journal blocks are.
1404  *
1405  */
1406 
1407 /**
1408  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1409  *  @bdev: Block device on which to create the journal
1410  *  @fs_dev: Device which hold journalled filesystem for this journal.
1411  *  @start: Block nr Start of journal.
1412  *  @len:  Length of the journal in blocks.
1413  *  @blocksize: blocksize of journalling device
1414  *
1415  *  Returns: a newly created journal_t *
1416  *
1417  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1418  *  range of blocks on an arbitrary block device.
1419  *
1420  */
1421 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1422 			struct block_device *fs_dev,
1423 			unsigned long long start, int len, int blocksize)
1424 {
1425 	journal_t *journal;
1426 
1427 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1428 	if (!journal)
1429 		return NULL;
1430 
1431 	bdevname(journal->j_dev, journal->j_devname);
1432 	strreplace(journal->j_devname, '/', '!');
1433 	jbd2_stats_proc_init(journal);
1434 
1435 	return journal;
1436 }
1437 
1438 /**
1439  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1440  *  @inode: An inode to create the journal in
1441  *
1442  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1443  * the journal.  The inode must exist already, must support bmap() and
1444  * must have all data blocks preallocated.
1445  */
1446 journal_t *jbd2_journal_init_inode(struct inode *inode)
1447 {
1448 	journal_t *journal;
1449 	sector_t blocknr;
1450 	char *p;
1451 	int err = 0;
1452 
1453 	blocknr = 0;
1454 	err = bmap(inode, &blocknr);
1455 
1456 	if (err || !blocknr) {
1457 		pr_err("%s: Cannot locate journal superblock\n",
1458 			__func__);
1459 		return NULL;
1460 	}
1461 
1462 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1463 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1464 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1465 
1466 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1467 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1468 			inode->i_sb->s_blocksize);
1469 	if (!journal)
1470 		return NULL;
1471 
1472 	journal->j_inode = inode;
1473 	bdevname(journal->j_dev, journal->j_devname);
1474 	p = strreplace(journal->j_devname, '/', '!');
1475 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1476 	jbd2_stats_proc_init(journal);
1477 
1478 	return journal;
1479 }
1480 
1481 /*
1482  * If the journal init or create aborts, we need to mark the journal
1483  * superblock as being NULL to prevent the journal destroy from writing
1484  * back a bogus superblock.
1485  */
1486 static void journal_fail_superblock(journal_t *journal)
1487 {
1488 	struct buffer_head *bh = journal->j_sb_buffer;
1489 	brelse(bh);
1490 	journal->j_sb_buffer = NULL;
1491 }
1492 
1493 /*
1494  * Given a journal_t structure, initialise the various fields for
1495  * startup of a new journaling session.  We use this both when creating
1496  * a journal, and after recovering an old journal to reset it for
1497  * subsequent use.
1498  */
1499 
1500 static int journal_reset(journal_t *journal)
1501 {
1502 	journal_superblock_t *sb = journal->j_superblock;
1503 	unsigned long long first, last;
1504 
1505 	first = be32_to_cpu(sb->s_first);
1506 	last = be32_to_cpu(sb->s_maxlen);
1507 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1508 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1509 		       first, last);
1510 		journal_fail_superblock(journal);
1511 		return -EINVAL;
1512 	}
1513 
1514 	journal->j_first = first;
1515 
1516 	if (jbd2_has_feature_fast_commit(journal) &&
1517 	    journal->j_fc_wbufsize > 0) {
1518 		journal->j_fc_last = last;
1519 		journal->j_last = last - journal->j_fc_wbufsize;
1520 		journal->j_fc_first = journal->j_last + 1;
1521 		journal->j_fc_off = 0;
1522 	} else {
1523 		journal->j_last = last;
1524 	}
1525 
1526 	journal->j_head = journal->j_first;
1527 	journal->j_tail = journal->j_first;
1528 	journal->j_free = journal->j_last - journal->j_first;
1529 
1530 	journal->j_tail_sequence = journal->j_transaction_sequence;
1531 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1532 	journal->j_commit_request = journal->j_commit_sequence;
1533 
1534 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1535 
1536 	/*
1537 	 * As a special case, if the on-disk copy is already marked as needing
1538 	 * no recovery (s_start == 0), then we can safely defer the superblock
1539 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1540 	 * attempting a write to a potential-readonly device.
1541 	 */
1542 	if (sb->s_start == 0) {
1543 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1544 			"(start %ld, seq %u, errno %d)\n",
1545 			journal->j_tail, journal->j_tail_sequence,
1546 			journal->j_errno);
1547 		journal->j_flags |= JBD2_FLUSHED;
1548 	} else {
1549 		/* Lock here to make assertions happy... */
1550 		mutex_lock_io(&journal->j_checkpoint_mutex);
1551 		/*
1552 		 * Update log tail information. We use REQ_FUA since new
1553 		 * transaction will start reusing journal space and so we
1554 		 * must make sure information about current log tail is on
1555 		 * disk before that.
1556 		 */
1557 		jbd2_journal_update_sb_log_tail(journal,
1558 						journal->j_tail_sequence,
1559 						journal->j_tail,
1560 						REQ_SYNC | REQ_FUA);
1561 		mutex_unlock(&journal->j_checkpoint_mutex);
1562 	}
1563 	return jbd2_journal_start_thread(journal);
1564 }
1565 
1566 /*
1567  * This function expects that the caller will have locked the journal
1568  * buffer head, and will return with it unlocked
1569  */
1570 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1571 {
1572 	struct buffer_head *bh = journal->j_sb_buffer;
1573 	journal_superblock_t *sb = journal->j_superblock;
1574 	int ret;
1575 
1576 	/* Buffer got discarded which means block device got invalidated */
1577 	if (!buffer_mapped(bh)) {
1578 		unlock_buffer(bh);
1579 		return -EIO;
1580 	}
1581 
1582 	trace_jbd2_write_superblock(journal, write_flags);
1583 	if (!(journal->j_flags & JBD2_BARRIER))
1584 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1585 	if (buffer_write_io_error(bh)) {
1586 		/*
1587 		 * Oh, dear.  A previous attempt to write the journal
1588 		 * superblock failed.  This could happen because the
1589 		 * USB device was yanked out.  Or it could happen to
1590 		 * be a transient write error and maybe the block will
1591 		 * be remapped.  Nothing we can do but to retry the
1592 		 * write and hope for the best.
1593 		 */
1594 		printk(KERN_ERR "JBD2: previous I/O error detected "
1595 		       "for journal superblock update for %s.\n",
1596 		       journal->j_devname);
1597 		clear_buffer_write_io_error(bh);
1598 		set_buffer_uptodate(bh);
1599 	}
1600 	if (jbd2_journal_has_csum_v2or3(journal))
1601 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1602 	get_bh(bh);
1603 	bh->b_end_io = end_buffer_write_sync;
1604 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1605 	wait_on_buffer(bh);
1606 	if (buffer_write_io_error(bh)) {
1607 		clear_buffer_write_io_error(bh);
1608 		set_buffer_uptodate(bh);
1609 		ret = -EIO;
1610 	}
1611 	if (ret) {
1612 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1613 		       "journal superblock for %s.\n", ret,
1614 		       journal->j_devname);
1615 		if (!is_journal_aborted(journal))
1616 			jbd2_journal_abort(journal, ret);
1617 	}
1618 
1619 	return ret;
1620 }
1621 
1622 /**
1623  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1624  * @journal: The journal to update.
1625  * @tail_tid: TID of the new transaction at the tail of the log
1626  * @tail_block: The first block of the transaction at the tail of the log
1627  * @write_op: With which operation should we write the journal sb
1628  *
1629  * Update a journal's superblock information about log tail and write it to
1630  * disk, waiting for the IO to complete.
1631  */
1632 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1633 				     unsigned long tail_block, int write_op)
1634 {
1635 	journal_superblock_t *sb = journal->j_superblock;
1636 	int ret;
1637 
1638 	if (is_journal_aborted(journal))
1639 		return -EIO;
1640 
1641 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1642 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1643 		  tail_block, tail_tid);
1644 
1645 	lock_buffer(journal->j_sb_buffer);
1646 	sb->s_sequence = cpu_to_be32(tail_tid);
1647 	sb->s_start    = cpu_to_be32(tail_block);
1648 
1649 	ret = jbd2_write_superblock(journal, write_op);
1650 	if (ret)
1651 		goto out;
1652 
1653 	/* Log is no longer empty */
1654 	write_lock(&journal->j_state_lock);
1655 	WARN_ON(!sb->s_sequence);
1656 	journal->j_flags &= ~JBD2_FLUSHED;
1657 	write_unlock(&journal->j_state_lock);
1658 
1659 out:
1660 	return ret;
1661 }
1662 
1663 /**
1664  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1665  * @journal: The journal to update.
1666  * @write_op: With which operation should we write the journal sb
1667  *
1668  * Update a journal's dynamic superblock fields to show that journal is empty.
1669  * Write updated superblock to disk waiting for IO to complete.
1670  */
1671 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1672 {
1673 	journal_superblock_t *sb = journal->j_superblock;
1674 	bool had_fast_commit = false;
1675 
1676 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1677 	lock_buffer(journal->j_sb_buffer);
1678 	if (sb->s_start == 0) {		/* Is it already empty? */
1679 		unlock_buffer(journal->j_sb_buffer);
1680 		return;
1681 	}
1682 
1683 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1684 		  journal->j_tail_sequence);
1685 
1686 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1687 	sb->s_start    = cpu_to_be32(0);
1688 	if (jbd2_has_feature_fast_commit(journal)) {
1689 		/*
1690 		 * When journal is clean, no need to commit fast commit flag and
1691 		 * make file system incompatible with older kernels.
1692 		 */
1693 		jbd2_clear_feature_fast_commit(journal);
1694 		had_fast_commit = true;
1695 	}
1696 
1697 	jbd2_write_superblock(journal, write_op);
1698 
1699 	if (had_fast_commit)
1700 		jbd2_set_feature_fast_commit(journal);
1701 
1702 	/* Log is no longer empty */
1703 	write_lock(&journal->j_state_lock);
1704 	journal->j_flags |= JBD2_FLUSHED;
1705 	write_unlock(&journal->j_state_lock);
1706 }
1707 
1708 
1709 /**
1710  * jbd2_journal_update_sb_errno() - Update error in the journal.
1711  * @journal: The journal to update.
1712  *
1713  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1714  * to complete.
1715  */
1716 void jbd2_journal_update_sb_errno(journal_t *journal)
1717 {
1718 	journal_superblock_t *sb = journal->j_superblock;
1719 	int errcode;
1720 
1721 	lock_buffer(journal->j_sb_buffer);
1722 	errcode = journal->j_errno;
1723 	if (errcode == -ESHUTDOWN)
1724 		errcode = 0;
1725 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1726 	sb->s_errno    = cpu_to_be32(errcode);
1727 
1728 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1729 }
1730 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1731 
1732 static int journal_revoke_records_per_block(journal_t *journal)
1733 {
1734 	int record_size;
1735 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1736 
1737 	if (jbd2_has_feature_64bit(journal))
1738 		record_size = 8;
1739 	else
1740 		record_size = 4;
1741 
1742 	if (jbd2_journal_has_csum_v2or3(journal))
1743 		space -= sizeof(struct jbd2_journal_block_tail);
1744 	return space / record_size;
1745 }
1746 
1747 /*
1748  * Read the superblock for a given journal, performing initial
1749  * validation of the format.
1750  */
1751 static int journal_get_superblock(journal_t *journal)
1752 {
1753 	struct buffer_head *bh;
1754 	journal_superblock_t *sb;
1755 	int err = -EIO;
1756 
1757 	bh = journal->j_sb_buffer;
1758 
1759 	J_ASSERT(bh != NULL);
1760 	if (!buffer_uptodate(bh)) {
1761 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1762 		wait_on_buffer(bh);
1763 		if (!buffer_uptodate(bh)) {
1764 			printk(KERN_ERR
1765 				"JBD2: IO error reading journal superblock\n");
1766 			goto out;
1767 		}
1768 	}
1769 
1770 	if (buffer_verified(bh))
1771 		return 0;
1772 
1773 	sb = journal->j_superblock;
1774 
1775 	err = -EINVAL;
1776 
1777 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1778 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1779 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1780 		goto out;
1781 	}
1782 
1783 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1784 	case JBD2_SUPERBLOCK_V1:
1785 		journal->j_format_version = 1;
1786 		break;
1787 	case JBD2_SUPERBLOCK_V2:
1788 		journal->j_format_version = 2;
1789 		break;
1790 	default:
1791 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1792 		goto out;
1793 	}
1794 
1795 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1796 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1797 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1798 		printk(KERN_WARNING "JBD2: journal file too short\n");
1799 		goto out;
1800 	}
1801 
1802 	if (be32_to_cpu(sb->s_first) == 0 ||
1803 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1804 		printk(KERN_WARNING
1805 			"JBD2: Invalid start block of journal: %u\n",
1806 			be32_to_cpu(sb->s_first));
1807 		goto out;
1808 	}
1809 
1810 	if (jbd2_has_feature_csum2(journal) &&
1811 	    jbd2_has_feature_csum3(journal)) {
1812 		/* Can't have checksum v2 and v3 at the same time! */
1813 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1814 		       "at the same time!\n");
1815 		goto out;
1816 	}
1817 
1818 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1819 	    jbd2_has_feature_checksum(journal)) {
1820 		/* Can't have checksum v1 and v2 on at the same time! */
1821 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1822 		       "at the same time!\n");
1823 		goto out;
1824 	}
1825 
1826 	if (!jbd2_verify_csum_type(journal, sb)) {
1827 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1828 		goto out;
1829 	}
1830 
1831 	/* Load the checksum driver */
1832 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1833 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1834 		if (IS_ERR(journal->j_chksum_driver)) {
1835 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1836 			err = PTR_ERR(journal->j_chksum_driver);
1837 			journal->j_chksum_driver = NULL;
1838 			goto out;
1839 		}
1840 	}
1841 
1842 	if (jbd2_journal_has_csum_v2or3(journal)) {
1843 		/* Check superblock checksum */
1844 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1845 			printk(KERN_ERR "JBD2: journal checksum error\n");
1846 			err = -EFSBADCRC;
1847 			goto out;
1848 		}
1849 
1850 		/* Precompute checksum seed for all metadata */
1851 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1852 						   sizeof(sb->s_uuid));
1853 	}
1854 
1855 	journal->j_revoke_records_per_block =
1856 				journal_revoke_records_per_block(journal);
1857 	set_buffer_verified(bh);
1858 
1859 	return 0;
1860 
1861 out:
1862 	journal_fail_superblock(journal);
1863 	return err;
1864 }
1865 
1866 /*
1867  * Load the on-disk journal superblock and read the key fields into the
1868  * journal_t.
1869  */
1870 
1871 static int load_superblock(journal_t *journal)
1872 {
1873 	int err;
1874 	journal_superblock_t *sb;
1875 
1876 	err = journal_get_superblock(journal);
1877 	if (err)
1878 		return err;
1879 
1880 	sb = journal->j_superblock;
1881 
1882 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1883 	journal->j_tail = be32_to_cpu(sb->s_start);
1884 	journal->j_first = be32_to_cpu(sb->s_first);
1885 	journal->j_errno = be32_to_cpu(sb->s_errno);
1886 
1887 	if (jbd2_has_feature_fast_commit(journal) &&
1888 	    journal->j_fc_wbufsize > 0) {
1889 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1890 		journal->j_last = journal->j_fc_last - journal->j_fc_wbufsize;
1891 		journal->j_fc_first = journal->j_last + 1;
1892 		journal->j_fc_off = 0;
1893 	} else {
1894 		journal->j_last = be32_to_cpu(sb->s_maxlen);
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 
1901 /**
1902  * int jbd2_journal_load() - Read journal from disk.
1903  * @journal: Journal to act on.
1904  *
1905  * Given a journal_t structure which tells us which disk blocks contain
1906  * a journal, read the journal from disk to initialise the in-memory
1907  * structures.
1908  */
1909 int jbd2_journal_load(journal_t *journal)
1910 {
1911 	int err;
1912 	journal_superblock_t *sb;
1913 
1914 	err = load_superblock(journal);
1915 	if (err)
1916 		return err;
1917 
1918 	sb = journal->j_superblock;
1919 	/* If this is a V2 superblock, then we have to check the
1920 	 * features flags on it. */
1921 
1922 	if (journal->j_format_version >= 2) {
1923 		if ((sb->s_feature_ro_compat &
1924 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1925 		    (sb->s_feature_incompat &
1926 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1927 			printk(KERN_WARNING
1928 				"JBD2: Unrecognised features on journal\n");
1929 			return -EINVAL;
1930 		}
1931 	}
1932 
1933 	/*
1934 	 * Create a slab for this blocksize
1935 	 */
1936 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1937 	if (err)
1938 		return err;
1939 
1940 	/* Let the recovery code check whether it needs to recover any
1941 	 * data from the journal. */
1942 	if (jbd2_journal_recover(journal))
1943 		goto recovery_error;
1944 
1945 	if (journal->j_failed_commit) {
1946 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1947 		       "is corrupt.\n", journal->j_failed_commit,
1948 		       journal->j_devname);
1949 		return -EFSCORRUPTED;
1950 	}
1951 	/*
1952 	 * clear JBD2_ABORT flag initialized in journal_init_common
1953 	 * here to update log tail information with the newest seq.
1954 	 */
1955 	journal->j_flags &= ~JBD2_ABORT;
1956 
1957 	if (journal->j_fc_wbufsize > 0)
1958 		jbd2_journal_set_features(journal, 0, 0,
1959 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT);
1960 	/* OK, we've finished with the dynamic journal bits:
1961 	 * reinitialise the dynamic contents of the superblock in memory
1962 	 * and reset them on disk. */
1963 	if (journal_reset(journal))
1964 		goto recovery_error;
1965 
1966 	journal->j_flags |= JBD2_LOADED;
1967 	return 0;
1968 
1969 recovery_error:
1970 	printk(KERN_WARNING "JBD2: recovery failed\n");
1971 	return -EIO;
1972 }
1973 
1974 /**
1975  * void jbd2_journal_destroy() - Release a journal_t structure.
1976  * @journal: Journal to act on.
1977  *
1978  * Release a journal_t structure once it is no longer in use by the
1979  * journaled object.
1980  * Return <0 if we couldn't clean up the journal.
1981  */
1982 int jbd2_journal_destroy(journal_t *journal)
1983 {
1984 	int err = 0;
1985 
1986 	/* Wait for the commit thread to wake up and die. */
1987 	journal_kill_thread(journal);
1988 
1989 	/* Force a final log commit */
1990 	if (journal->j_running_transaction)
1991 		jbd2_journal_commit_transaction(journal);
1992 
1993 	/* Force any old transactions to disk */
1994 
1995 	/* Totally anal locking here... */
1996 	spin_lock(&journal->j_list_lock);
1997 	while (journal->j_checkpoint_transactions != NULL) {
1998 		spin_unlock(&journal->j_list_lock);
1999 		mutex_lock_io(&journal->j_checkpoint_mutex);
2000 		err = jbd2_log_do_checkpoint(journal);
2001 		mutex_unlock(&journal->j_checkpoint_mutex);
2002 		/*
2003 		 * If checkpointing failed, just free the buffers to avoid
2004 		 * looping forever
2005 		 */
2006 		if (err) {
2007 			jbd2_journal_destroy_checkpoint(journal);
2008 			spin_lock(&journal->j_list_lock);
2009 			break;
2010 		}
2011 		spin_lock(&journal->j_list_lock);
2012 	}
2013 
2014 	J_ASSERT(journal->j_running_transaction == NULL);
2015 	J_ASSERT(journal->j_committing_transaction == NULL);
2016 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2017 	spin_unlock(&journal->j_list_lock);
2018 
2019 	if (journal->j_sb_buffer) {
2020 		if (!is_journal_aborted(journal)) {
2021 			mutex_lock_io(&journal->j_checkpoint_mutex);
2022 
2023 			write_lock(&journal->j_state_lock);
2024 			journal->j_tail_sequence =
2025 				++journal->j_transaction_sequence;
2026 			write_unlock(&journal->j_state_lock);
2027 
2028 			jbd2_mark_journal_empty(journal,
2029 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2030 			mutex_unlock(&journal->j_checkpoint_mutex);
2031 		} else
2032 			err = -EIO;
2033 		brelse(journal->j_sb_buffer);
2034 	}
2035 
2036 	if (journal->j_proc_entry)
2037 		jbd2_stats_proc_exit(journal);
2038 	iput(journal->j_inode);
2039 	if (journal->j_revoke)
2040 		jbd2_journal_destroy_revoke(journal);
2041 	if (journal->j_chksum_driver)
2042 		crypto_free_shash(journal->j_chksum_driver);
2043 	if (journal->j_fc_wbufsize > 0)
2044 		kfree(journal->j_fc_wbuf);
2045 	kfree(journal->j_wbuf);
2046 	kfree(journal);
2047 
2048 	return err;
2049 }
2050 
2051 
2052 /**
2053  *int jbd2_journal_check_used_features() - Check if features specified are used.
2054  * @journal: Journal to check.
2055  * @compat: bitmask of compatible features
2056  * @ro: bitmask of features that force read-only mount
2057  * @incompat: bitmask of incompatible features
2058  *
2059  * Check whether the journal uses all of a given set of
2060  * features.  Return true (non-zero) if it does.
2061  **/
2062 
2063 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2064 				 unsigned long ro, unsigned long incompat)
2065 {
2066 	journal_superblock_t *sb;
2067 
2068 	if (!compat && !ro && !incompat)
2069 		return 1;
2070 	/* Load journal superblock if it is not loaded yet. */
2071 	if (journal->j_format_version == 0 &&
2072 	    journal_get_superblock(journal) != 0)
2073 		return 0;
2074 	if (journal->j_format_version == 1)
2075 		return 0;
2076 
2077 	sb = journal->j_superblock;
2078 
2079 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2080 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2081 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2082 		return 1;
2083 
2084 	return 0;
2085 }
2086 
2087 /**
2088  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
2089  * @journal: Journal to check.
2090  * @compat: bitmask of compatible features
2091  * @ro: bitmask of features that force read-only mount
2092  * @incompat: bitmask of incompatible features
2093  *
2094  * Check whether the journaling code supports the use of
2095  * all of a given set of features on this journal.  Return true
2096  * (non-zero) if it can. */
2097 
2098 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2099 				      unsigned long ro, unsigned long incompat)
2100 {
2101 	if (!compat && !ro && !incompat)
2102 		return 1;
2103 
2104 	/* We can support any known requested features iff the
2105 	 * superblock is in version 2.  Otherwise we fail to support any
2106 	 * extended sb features. */
2107 
2108 	if (journal->j_format_version != 2)
2109 		return 0;
2110 
2111 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2112 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2113 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2114 		return 1;
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * int jbd2_journal_set_features() - Mark a given journal feature in the superblock
2121  * @journal: Journal to act on.
2122  * @compat: bitmask of compatible features
2123  * @ro: bitmask of features that force read-only mount
2124  * @incompat: bitmask of incompatible features
2125  *
2126  * Mark a given journal feature as present on the
2127  * superblock.  Returns true if the requested features could be set.
2128  *
2129  */
2130 
2131 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2132 			  unsigned long ro, unsigned long incompat)
2133 {
2134 #define INCOMPAT_FEATURE_ON(f) \
2135 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2136 #define COMPAT_FEATURE_ON(f) \
2137 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2138 	journal_superblock_t *sb;
2139 
2140 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2141 		return 1;
2142 
2143 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2144 		return 0;
2145 
2146 	/* If enabling v2 checksums, turn on v3 instead */
2147 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2148 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2149 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2150 	}
2151 
2152 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2153 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2154 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2155 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2156 
2157 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2158 		  compat, ro, incompat);
2159 
2160 	sb = journal->j_superblock;
2161 
2162 	/* Load the checksum driver if necessary */
2163 	if ((journal->j_chksum_driver == NULL) &&
2164 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2165 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2166 		if (IS_ERR(journal->j_chksum_driver)) {
2167 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2168 			journal->j_chksum_driver = NULL;
2169 			return 0;
2170 		}
2171 		/* Precompute checksum seed for all metadata */
2172 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2173 						   sizeof(sb->s_uuid));
2174 	}
2175 
2176 	lock_buffer(journal->j_sb_buffer);
2177 
2178 	/* If enabling v3 checksums, update superblock */
2179 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2180 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2181 		sb->s_feature_compat &=
2182 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2183 	}
2184 
2185 	/* If enabling v1 checksums, downgrade superblock */
2186 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2187 		sb->s_feature_incompat &=
2188 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2189 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2190 
2191 	sb->s_feature_compat    |= cpu_to_be32(compat);
2192 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2193 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2194 	unlock_buffer(journal->j_sb_buffer);
2195 	journal->j_revoke_records_per_block =
2196 				journal_revoke_records_per_block(journal);
2197 
2198 	return 1;
2199 #undef COMPAT_FEATURE_ON
2200 #undef INCOMPAT_FEATURE_ON
2201 }
2202 
2203 /*
2204  * jbd2_journal_clear_features () - Clear a given journal feature in the
2205  * 				    superblock
2206  * @journal: Journal to act on.
2207  * @compat: bitmask of compatible features
2208  * @ro: bitmask of features that force read-only mount
2209  * @incompat: bitmask of incompatible features
2210  *
2211  * Clear a given journal feature as present on the
2212  * superblock.
2213  */
2214 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2215 				unsigned long ro, unsigned long incompat)
2216 {
2217 	journal_superblock_t *sb;
2218 
2219 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2220 		  compat, ro, incompat);
2221 
2222 	sb = journal->j_superblock;
2223 
2224 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2225 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2226 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2227 	journal->j_revoke_records_per_block =
2228 				journal_revoke_records_per_block(journal);
2229 }
2230 EXPORT_SYMBOL(jbd2_journal_clear_features);
2231 
2232 /**
2233  * int jbd2_journal_flush () - Flush journal
2234  * @journal: Journal to act on.
2235  *
2236  * Flush all data for a given journal to disk and empty the journal.
2237  * Filesystems can use this when remounting readonly to ensure that
2238  * recovery does not need to happen on remount.
2239  */
2240 
2241 int jbd2_journal_flush(journal_t *journal)
2242 {
2243 	int err = 0;
2244 	transaction_t *transaction = NULL;
2245 
2246 	write_lock(&journal->j_state_lock);
2247 
2248 	/* Force everything buffered to the log... */
2249 	if (journal->j_running_transaction) {
2250 		transaction = journal->j_running_transaction;
2251 		__jbd2_log_start_commit(journal, transaction->t_tid);
2252 	} else if (journal->j_committing_transaction)
2253 		transaction = journal->j_committing_transaction;
2254 
2255 	/* Wait for the log commit to complete... */
2256 	if (transaction) {
2257 		tid_t tid = transaction->t_tid;
2258 
2259 		write_unlock(&journal->j_state_lock);
2260 		jbd2_log_wait_commit(journal, tid);
2261 	} else {
2262 		write_unlock(&journal->j_state_lock);
2263 	}
2264 
2265 	/* ...and flush everything in the log out to disk. */
2266 	spin_lock(&journal->j_list_lock);
2267 	while (!err && journal->j_checkpoint_transactions != NULL) {
2268 		spin_unlock(&journal->j_list_lock);
2269 		mutex_lock_io(&journal->j_checkpoint_mutex);
2270 		err = jbd2_log_do_checkpoint(journal);
2271 		mutex_unlock(&journal->j_checkpoint_mutex);
2272 		spin_lock(&journal->j_list_lock);
2273 	}
2274 	spin_unlock(&journal->j_list_lock);
2275 
2276 	if (is_journal_aborted(journal))
2277 		return -EIO;
2278 
2279 	mutex_lock_io(&journal->j_checkpoint_mutex);
2280 	if (!err) {
2281 		err = jbd2_cleanup_journal_tail(journal);
2282 		if (err < 0) {
2283 			mutex_unlock(&journal->j_checkpoint_mutex);
2284 			goto out;
2285 		}
2286 		err = 0;
2287 	}
2288 
2289 	/* Finally, mark the journal as really needing no recovery.
2290 	 * This sets s_start==0 in the underlying superblock, which is
2291 	 * the magic code for a fully-recovered superblock.  Any future
2292 	 * commits of data to the journal will restore the current
2293 	 * s_start value. */
2294 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2295 	mutex_unlock(&journal->j_checkpoint_mutex);
2296 	write_lock(&journal->j_state_lock);
2297 	J_ASSERT(!journal->j_running_transaction);
2298 	J_ASSERT(!journal->j_committing_transaction);
2299 	J_ASSERT(!journal->j_checkpoint_transactions);
2300 	J_ASSERT(journal->j_head == journal->j_tail);
2301 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2302 	write_unlock(&journal->j_state_lock);
2303 out:
2304 	return err;
2305 }
2306 
2307 /**
2308  * int jbd2_journal_wipe() - Wipe journal contents
2309  * @journal: Journal to act on.
2310  * @write: flag (see below)
2311  *
2312  * Wipe out all of the contents of a journal, safely.  This will produce
2313  * a warning if the journal contains any valid recovery information.
2314  * Must be called between journal_init_*() and jbd2_journal_load().
2315  *
2316  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2317  * we merely suppress recovery.
2318  */
2319 
2320 int jbd2_journal_wipe(journal_t *journal, int write)
2321 {
2322 	int err = 0;
2323 
2324 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2325 
2326 	err = load_superblock(journal);
2327 	if (err)
2328 		return err;
2329 
2330 	if (!journal->j_tail)
2331 		goto no_recovery;
2332 
2333 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2334 		write ? "Clearing" : "Ignoring");
2335 
2336 	err = jbd2_journal_skip_recovery(journal);
2337 	if (write) {
2338 		/* Lock to make assertions happy... */
2339 		mutex_lock_io(&journal->j_checkpoint_mutex);
2340 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2341 		mutex_unlock(&journal->j_checkpoint_mutex);
2342 	}
2343 
2344  no_recovery:
2345 	return err;
2346 }
2347 
2348 /**
2349  * void jbd2_journal_abort () - Shutdown the journal immediately.
2350  * @journal: the journal to shutdown.
2351  * @errno:   an error number to record in the journal indicating
2352  *           the reason for the shutdown.
2353  *
2354  * Perform a complete, immediate shutdown of the ENTIRE
2355  * journal (not of a single transaction).  This operation cannot be
2356  * undone without closing and reopening the journal.
2357  *
2358  * The jbd2_journal_abort function is intended to support higher level error
2359  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2360  * mode.
2361  *
2362  * Journal abort has very specific semantics.  Any existing dirty,
2363  * unjournaled buffers in the main filesystem will still be written to
2364  * disk by bdflush, but the journaling mechanism will be suspended
2365  * immediately and no further transaction commits will be honoured.
2366  *
2367  * Any dirty, journaled buffers will be written back to disk without
2368  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2369  * filesystem, but we _do_ attempt to leave as much data as possible
2370  * behind for fsck to use for cleanup.
2371  *
2372  * Any attempt to get a new transaction handle on a journal which is in
2373  * ABORT state will just result in an -EROFS error return.  A
2374  * jbd2_journal_stop on an existing handle will return -EIO if we have
2375  * entered abort state during the update.
2376  *
2377  * Recursive transactions are not disturbed by journal abort until the
2378  * final jbd2_journal_stop, which will receive the -EIO error.
2379  *
2380  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2381  * which will be recorded (if possible) in the journal superblock.  This
2382  * allows a client to record failure conditions in the middle of a
2383  * transaction without having to complete the transaction to record the
2384  * failure to disk.  ext3_error, for example, now uses this
2385  * functionality.
2386  *
2387  */
2388 
2389 void jbd2_journal_abort(journal_t *journal, int errno)
2390 {
2391 	transaction_t *transaction;
2392 
2393 	/*
2394 	 * Lock the aborting procedure until everything is done, this avoid
2395 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2396 	 * ensure panic after the error info is written into journal's
2397 	 * superblock.
2398 	 */
2399 	mutex_lock(&journal->j_abort_mutex);
2400 	/*
2401 	 * ESHUTDOWN always takes precedence because a file system check
2402 	 * caused by any other journal abort error is not required after
2403 	 * a shutdown triggered.
2404 	 */
2405 	write_lock(&journal->j_state_lock);
2406 	if (journal->j_flags & JBD2_ABORT) {
2407 		int old_errno = journal->j_errno;
2408 
2409 		write_unlock(&journal->j_state_lock);
2410 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2411 			journal->j_errno = errno;
2412 			jbd2_journal_update_sb_errno(journal);
2413 		}
2414 		mutex_unlock(&journal->j_abort_mutex);
2415 		return;
2416 	}
2417 
2418 	/*
2419 	 * Mark the abort as occurred and start current running transaction
2420 	 * to release all journaled buffer.
2421 	 */
2422 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2423 
2424 	journal->j_flags |= JBD2_ABORT;
2425 	journal->j_errno = errno;
2426 	transaction = journal->j_running_transaction;
2427 	if (transaction)
2428 		__jbd2_log_start_commit(journal, transaction->t_tid);
2429 	write_unlock(&journal->j_state_lock);
2430 
2431 	/*
2432 	 * Record errno to the journal super block, so that fsck and jbd2
2433 	 * layer could realise that a filesystem check is needed.
2434 	 */
2435 	jbd2_journal_update_sb_errno(journal);
2436 	mutex_unlock(&journal->j_abort_mutex);
2437 }
2438 
2439 /**
2440  * int jbd2_journal_errno () - returns the journal's error state.
2441  * @journal: journal to examine.
2442  *
2443  * This is the errno number set with jbd2_journal_abort(), the last
2444  * time the journal was mounted - if the journal was stopped
2445  * without calling abort this will be 0.
2446  *
2447  * If the journal has been aborted on this mount time -EROFS will
2448  * be returned.
2449  */
2450 int jbd2_journal_errno(journal_t *journal)
2451 {
2452 	int err;
2453 
2454 	read_lock(&journal->j_state_lock);
2455 	if (journal->j_flags & JBD2_ABORT)
2456 		err = -EROFS;
2457 	else
2458 		err = journal->j_errno;
2459 	read_unlock(&journal->j_state_lock);
2460 	return err;
2461 }
2462 
2463 /**
2464  * int jbd2_journal_clear_err () - clears the journal's error state
2465  * @journal: journal to act on.
2466  *
2467  * An error must be cleared or acked to take a FS out of readonly
2468  * mode.
2469  */
2470 int jbd2_journal_clear_err(journal_t *journal)
2471 {
2472 	int err = 0;
2473 
2474 	write_lock(&journal->j_state_lock);
2475 	if (journal->j_flags & JBD2_ABORT)
2476 		err = -EROFS;
2477 	else
2478 		journal->j_errno = 0;
2479 	write_unlock(&journal->j_state_lock);
2480 	return err;
2481 }
2482 
2483 /**
2484  * void jbd2_journal_ack_err() - Ack journal err.
2485  * @journal: journal to act on.
2486  *
2487  * An error must be cleared or acked to take a FS out of readonly
2488  * mode.
2489  */
2490 void jbd2_journal_ack_err(journal_t *journal)
2491 {
2492 	write_lock(&journal->j_state_lock);
2493 	if (journal->j_errno)
2494 		journal->j_flags |= JBD2_ACK_ERR;
2495 	write_unlock(&journal->j_state_lock);
2496 }
2497 
2498 int jbd2_journal_blocks_per_page(struct inode *inode)
2499 {
2500 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2501 }
2502 
2503 /*
2504  * helper functions to deal with 32 or 64bit block numbers.
2505  */
2506 size_t journal_tag_bytes(journal_t *journal)
2507 {
2508 	size_t sz;
2509 
2510 	if (jbd2_has_feature_csum3(journal))
2511 		return sizeof(journal_block_tag3_t);
2512 
2513 	sz = sizeof(journal_block_tag_t);
2514 
2515 	if (jbd2_has_feature_csum2(journal))
2516 		sz += sizeof(__u16);
2517 
2518 	if (jbd2_has_feature_64bit(journal))
2519 		return sz;
2520 	else
2521 		return sz - sizeof(__u32);
2522 }
2523 
2524 /*
2525  * JBD memory management
2526  *
2527  * These functions are used to allocate block-sized chunks of memory
2528  * used for making copies of buffer_head data.  Very often it will be
2529  * page-sized chunks of data, but sometimes it will be in
2530  * sub-page-size chunks.  (For example, 16k pages on Power systems
2531  * with a 4k block file system.)  For blocks smaller than a page, we
2532  * use a SLAB allocator.  There are slab caches for each block size,
2533  * which are allocated at mount time, if necessary, and we only free
2534  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2535  * this reason we don't need to a mutex to protect access to
2536  * jbd2_slab[] allocating or releasing memory; only in
2537  * jbd2_journal_create_slab().
2538  */
2539 #define JBD2_MAX_SLABS 8
2540 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2541 
2542 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2543 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2544 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2545 };
2546 
2547 
2548 static void jbd2_journal_destroy_slabs(void)
2549 {
2550 	int i;
2551 
2552 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2553 		kmem_cache_destroy(jbd2_slab[i]);
2554 		jbd2_slab[i] = NULL;
2555 	}
2556 }
2557 
2558 static int jbd2_journal_create_slab(size_t size)
2559 {
2560 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2561 	int i = order_base_2(size) - 10;
2562 	size_t slab_size;
2563 
2564 	if (size == PAGE_SIZE)
2565 		return 0;
2566 
2567 	if (i >= JBD2_MAX_SLABS)
2568 		return -EINVAL;
2569 
2570 	if (unlikely(i < 0))
2571 		i = 0;
2572 	mutex_lock(&jbd2_slab_create_mutex);
2573 	if (jbd2_slab[i]) {
2574 		mutex_unlock(&jbd2_slab_create_mutex);
2575 		return 0;	/* Already created */
2576 	}
2577 
2578 	slab_size = 1 << (i+10);
2579 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2580 					 slab_size, 0, NULL);
2581 	mutex_unlock(&jbd2_slab_create_mutex);
2582 	if (!jbd2_slab[i]) {
2583 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2584 		return -ENOMEM;
2585 	}
2586 	return 0;
2587 }
2588 
2589 static struct kmem_cache *get_slab(size_t size)
2590 {
2591 	int i = order_base_2(size) - 10;
2592 
2593 	BUG_ON(i >= JBD2_MAX_SLABS);
2594 	if (unlikely(i < 0))
2595 		i = 0;
2596 	BUG_ON(jbd2_slab[i] == NULL);
2597 	return jbd2_slab[i];
2598 }
2599 
2600 void *jbd2_alloc(size_t size, gfp_t flags)
2601 {
2602 	void *ptr;
2603 
2604 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2605 
2606 	if (size < PAGE_SIZE)
2607 		ptr = kmem_cache_alloc(get_slab(size), flags);
2608 	else
2609 		ptr = (void *)__get_free_pages(flags, get_order(size));
2610 
2611 	/* Check alignment; SLUB has gotten this wrong in the past,
2612 	 * and this can lead to user data corruption! */
2613 	BUG_ON(((unsigned long) ptr) & (size-1));
2614 
2615 	return ptr;
2616 }
2617 
2618 void jbd2_free(void *ptr, size_t size)
2619 {
2620 	if (size < PAGE_SIZE)
2621 		kmem_cache_free(get_slab(size), ptr);
2622 	else
2623 		free_pages((unsigned long)ptr, get_order(size));
2624 };
2625 
2626 /*
2627  * Journal_head storage management
2628  */
2629 static struct kmem_cache *jbd2_journal_head_cache;
2630 #ifdef CONFIG_JBD2_DEBUG
2631 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2632 #endif
2633 
2634 static int __init jbd2_journal_init_journal_head_cache(void)
2635 {
2636 	J_ASSERT(!jbd2_journal_head_cache);
2637 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2638 				sizeof(struct journal_head),
2639 				0,		/* offset */
2640 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2641 				NULL);		/* ctor */
2642 	if (!jbd2_journal_head_cache) {
2643 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2644 		return -ENOMEM;
2645 	}
2646 	return 0;
2647 }
2648 
2649 static void jbd2_journal_destroy_journal_head_cache(void)
2650 {
2651 	kmem_cache_destroy(jbd2_journal_head_cache);
2652 	jbd2_journal_head_cache = NULL;
2653 }
2654 
2655 /*
2656  * journal_head splicing and dicing
2657  */
2658 static struct journal_head *journal_alloc_journal_head(void)
2659 {
2660 	struct journal_head *ret;
2661 
2662 #ifdef CONFIG_JBD2_DEBUG
2663 	atomic_inc(&nr_journal_heads);
2664 #endif
2665 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2666 	if (!ret) {
2667 		jbd_debug(1, "out of memory for journal_head\n");
2668 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2669 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2670 				GFP_NOFS | __GFP_NOFAIL);
2671 	}
2672 	if (ret)
2673 		spin_lock_init(&ret->b_state_lock);
2674 	return ret;
2675 }
2676 
2677 static void journal_free_journal_head(struct journal_head *jh)
2678 {
2679 #ifdef CONFIG_JBD2_DEBUG
2680 	atomic_dec(&nr_journal_heads);
2681 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2682 #endif
2683 	kmem_cache_free(jbd2_journal_head_cache, jh);
2684 }
2685 
2686 /*
2687  * A journal_head is attached to a buffer_head whenever JBD has an
2688  * interest in the buffer.
2689  *
2690  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2691  * is set.  This bit is tested in core kernel code where we need to take
2692  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2693  * there.
2694  *
2695  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2696  *
2697  * When a buffer has its BH_JBD bit set it is immune from being released by
2698  * core kernel code, mainly via ->b_count.
2699  *
2700  * A journal_head is detached from its buffer_head when the journal_head's
2701  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2702  * transaction (b_cp_transaction) hold their references to b_jcount.
2703  *
2704  * Various places in the kernel want to attach a journal_head to a buffer_head
2705  * _before_ attaching the journal_head to a transaction.  To protect the
2706  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2707  * journal_head's b_jcount refcount by one.  The caller must call
2708  * jbd2_journal_put_journal_head() to undo this.
2709  *
2710  * So the typical usage would be:
2711  *
2712  *	(Attach a journal_head if needed.  Increments b_jcount)
2713  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2714  *	...
2715  *      (Get another reference for transaction)
2716  *	jbd2_journal_grab_journal_head(bh);
2717  *	jh->b_transaction = xxx;
2718  *	(Put original reference)
2719  *	jbd2_journal_put_journal_head(jh);
2720  */
2721 
2722 /*
2723  * Give a buffer_head a journal_head.
2724  *
2725  * May sleep.
2726  */
2727 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2728 {
2729 	struct journal_head *jh;
2730 	struct journal_head *new_jh = NULL;
2731 
2732 repeat:
2733 	if (!buffer_jbd(bh))
2734 		new_jh = journal_alloc_journal_head();
2735 
2736 	jbd_lock_bh_journal_head(bh);
2737 	if (buffer_jbd(bh)) {
2738 		jh = bh2jh(bh);
2739 	} else {
2740 		J_ASSERT_BH(bh,
2741 			(atomic_read(&bh->b_count) > 0) ||
2742 			(bh->b_page && bh->b_page->mapping));
2743 
2744 		if (!new_jh) {
2745 			jbd_unlock_bh_journal_head(bh);
2746 			goto repeat;
2747 		}
2748 
2749 		jh = new_jh;
2750 		new_jh = NULL;		/* We consumed it */
2751 		set_buffer_jbd(bh);
2752 		bh->b_private = jh;
2753 		jh->b_bh = bh;
2754 		get_bh(bh);
2755 		BUFFER_TRACE(bh, "added journal_head");
2756 	}
2757 	jh->b_jcount++;
2758 	jbd_unlock_bh_journal_head(bh);
2759 	if (new_jh)
2760 		journal_free_journal_head(new_jh);
2761 	return bh->b_private;
2762 }
2763 
2764 /*
2765  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2766  * having a journal_head, return NULL
2767  */
2768 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2769 {
2770 	struct journal_head *jh = NULL;
2771 
2772 	jbd_lock_bh_journal_head(bh);
2773 	if (buffer_jbd(bh)) {
2774 		jh = bh2jh(bh);
2775 		jh->b_jcount++;
2776 	}
2777 	jbd_unlock_bh_journal_head(bh);
2778 	return jh;
2779 }
2780 
2781 static void __journal_remove_journal_head(struct buffer_head *bh)
2782 {
2783 	struct journal_head *jh = bh2jh(bh);
2784 
2785 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2786 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2787 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2788 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2789 	J_ASSERT_BH(bh, buffer_jbd(bh));
2790 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2791 	BUFFER_TRACE(bh, "remove journal_head");
2792 
2793 	/* Unlink before dropping the lock */
2794 	bh->b_private = NULL;
2795 	jh->b_bh = NULL;	/* debug, really */
2796 	clear_buffer_jbd(bh);
2797 }
2798 
2799 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2800 {
2801 	if (jh->b_frozen_data) {
2802 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2803 		jbd2_free(jh->b_frozen_data, b_size);
2804 	}
2805 	if (jh->b_committed_data) {
2806 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2807 		jbd2_free(jh->b_committed_data, b_size);
2808 	}
2809 	journal_free_journal_head(jh);
2810 }
2811 
2812 /*
2813  * Drop a reference on the passed journal_head.  If it fell to zero then
2814  * release the journal_head from the buffer_head.
2815  */
2816 void jbd2_journal_put_journal_head(struct journal_head *jh)
2817 {
2818 	struct buffer_head *bh = jh2bh(jh);
2819 
2820 	jbd_lock_bh_journal_head(bh);
2821 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2822 	--jh->b_jcount;
2823 	if (!jh->b_jcount) {
2824 		__journal_remove_journal_head(bh);
2825 		jbd_unlock_bh_journal_head(bh);
2826 		journal_release_journal_head(jh, bh->b_size);
2827 		__brelse(bh);
2828 	} else {
2829 		jbd_unlock_bh_journal_head(bh);
2830 	}
2831 }
2832 
2833 /*
2834  * Initialize jbd inode head
2835  */
2836 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2837 {
2838 	jinode->i_transaction = NULL;
2839 	jinode->i_next_transaction = NULL;
2840 	jinode->i_vfs_inode = inode;
2841 	jinode->i_flags = 0;
2842 	jinode->i_dirty_start = 0;
2843 	jinode->i_dirty_end = 0;
2844 	INIT_LIST_HEAD(&jinode->i_list);
2845 }
2846 
2847 /*
2848  * Function to be called before we start removing inode from memory (i.e.,
2849  * clear_inode() is a fine place to be called from). It removes inode from
2850  * transaction's lists.
2851  */
2852 void jbd2_journal_release_jbd_inode(journal_t *journal,
2853 				    struct jbd2_inode *jinode)
2854 {
2855 	if (!journal)
2856 		return;
2857 restart:
2858 	spin_lock(&journal->j_list_lock);
2859 	/* Is commit writing out inode - we have to wait */
2860 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2861 		wait_queue_head_t *wq;
2862 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2863 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2864 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2865 		spin_unlock(&journal->j_list_lock);
2866 		schedule();
2867 		finish_wait(wq, &wait.wq_entry);
2868 		goto restart;
2869 	}
2870 
2871 	if (jinode->i_transaction) {
2872 		list_del(&jinode->i_list);
2873 		jinode->i_transaction = NULL;
2874 	}
2875 	spin_unlock(&journal->j_list_lock);
2876 }
2877 
2878 
2879 #ifdef CONFIG_PROC_FS
2880 
2881 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2882 
2883 static void __init jbd2_create_jbd_stats_proc_entry(void)
2884 {
2885 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2886 }
2887 
2888 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2889 {
2890 	if (proc_jbd2_stats)
2891 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2892 }
2893 
2894 #else
2895 
2896 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2897 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2898 
2899 #endif
2900 
2901 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2902 
2903 static int __init jbd2_journal_init_inode_cache(void)
2904 {
2905 	J_ASSERT(!jbd2_inode_cache);
2906 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2907 	if (!jbd2_inode_cache) {
2908 		pr_emerg("JBD2: failed to create inode cache\n");
2909 		return -ENOMEM;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static int __init jbd2_journal_init_handle_cache(void)
2915 {
2916 	J_ASSERT(!jbd2_handle_cache);
2917 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2918 	if (!jbd2_handle_cache) {
2919 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2920 		return -ENOMEM;
2921 	}
2922 	return 0;
2923 }
2924 
2925 static void jbd2_journal_destroy_inode_cache(void)
2926 {
2927 	kmem_cache_destroy(jbd2_inode_cache);
2928 	jbd2_inode_cache = NULL;
2929 }
2930 
2931 static void jbd2_journal_destroy_handle_cache(void)
2932 {
2933 	kmem_cache_destroy(jbd2_handle_cache);
2934 	jbd2_handle_cache = NULL;
2935 }
2936 
2937 /*
2938  * Module startup and shutdown
2939  */
2940 
2941 static int __init journal_init_caches(void)
2942 {
2943 	int ret;
2944 
2945 	ret = jbd2_journal_init_revoke_record_cache();
2946 	if (ret == 0)
2947 		ret = jbd2_journal_init_revoke_table_cache();
2948 	if (ret == 0)
2949 		ret = jbd2_journal_init_journal_head_cache();
2950 	if (ret == 0)
2951 		ret = jbd2_journal_init_handle_cache();
2952 	if (ret == 0)
2953 		ret = jbd2_journal_init_inode_cache();
2954 	if (ret == 0)
2955 		ret = jbd2_journal_init_transaction_cache();
2956 	return ret;
2957 }
2958 
2959 static void jbd2_journal_destroy_caches(void)
2960 {
2961 	jbd2_journal_destroy_revoke_record_cache();
2962 	jbd2_journal_destroy_revoke_table_cache();
2963 	jbd2_journal_destroy_journal_head_cache();
2964 	jbd2_journal_destroy_handle_cache();
2965 	jbd2_journal_destroy_inode_cache();
2966 	jbd2_journal_destroy_transaction_cache();
2967 	jbd2_journal_destroy_slabs();
2968 }
2969 
2970 static int __init journal_init(void)
2971 {
2972 	int ret;
2973 
2974 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2975 
2976 	ret = journal_init_caches();
2977 	if (ret == 0) {
2978 		jbd2_create_jbd_stats_proc_entry();
2979 	} else {
2980 		jbd2_journal_destroy_caches();
2981 	}
2982 	return ret;
2983 }
2984 
2985 static void __exit journal_exit(void)
2986 {
2987 #ifdef CONFIG_JBD2_DEBUG
2988 	int n = atomic_read(&nr_journal_heads);
2989 	if (n)
2990 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2991 #endif
2992 	jbd2_remove_jbd_stats_proc_entry();
2993 	jbd2_journal_destroy_caches();
2994 }
2995 
2996 MODULE_LICENSE("GPL");
2997 module_init(journal_init);
2998 module_exit(journal_exit);
2999 
3000