xref: /openbmc/linux/fs/jbd2/journal.c (revision f7d84fa7)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61 
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77 
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104 
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107 
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 		  unsigned int line, const char *fmt, ...)
111 {
112 	struct va_format vaf;
113 	va_list args;
114 
115 	if (level > jbd2_journal_enable_debug)
116 		return;
117 	va_start(args, fmt);
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121 	va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125 
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129 	if (!jbd2_journal_has_csum_v2or3_feature(j))
130 		return 1;
131 
132 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134 
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137 	__u32 csum;
138 	__be32 old_csum;
139 
140 	old_csum = sb->s_checksum;
141 	sb->s_checksum = 0;
142 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 	sb->s_checksum = old_csum;
144 
145 	return cpu_to_be32(csum);
146 }
147 
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150 	if (!jbd2_journal_has_csum_v2or3(j))
151 		return 1;
152 
153 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155 
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158 	if (!jbd2_journal_has_csum_v2or3(j))
159 		return;
160 
161 	sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163 
164 /*
165  * Helper function used to manage commit timeouts
166  */
167 
168 static void commit_timeout(unsigned long __data)
169 {
170 	struct task_struct * p = (struct task_struct *) __data;
171 
172 	wake_up_process(p);
173 }
174 
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190 
191 static int kjournald2(void *arg)
192 {
193 	journal_t *journal = arg;
194 	transaction_t *transaction;
195 
196 	/*
197 	 * Set up an interval timer which can be used to trigger a commit wakeup
198 	 * after the commit interval expires
199 	 */
200 	setup_timer(&journal->j_commit_timer, commit_timeout,
201 			(unsigned long)current);
202 
203 	set_freezable();
204 
205 	/* Record that the journal thread is running */
206 	journal->j_task = current;
207 	wake_up(&journal->j_wait_done_commit);
208 
209 	/*
210 	 * Make sure that no allocations from this kernel thread will ever
211 	 * recurse to the fs layer because we are responsible for the
212 	 * transaction commit and any fs involvement might get stuck waiting for
213 	 * the trasn. commit.
214 	 */
215 	memalloc_nofs_save();
216 
217 	/*
218 	 * And now, wait forever for commit wakeup events.
219 	 */
220 	write_lock(&journal->j_state_lock);
221 
222 loop:
223 	if (journal->j_flags & JBD2_UNMOUNT)
224 		goto end_loop;
225 
226 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
227 		journal->j_commit_sequence, journal->j_commit_request);
228 
229 	if (journal->j_commit_sequence != journal->j_commit_request) {
230 		jbd_debug(1, "OK, requests differ\n");
231 		write_unlock(&journal->j_state_lock);
232 		del_timer_sync(&journal->j_commit_timer);
233 		jbd2_journal_commit_transaction(journal);
234 		write_lock(&journal->j_state_lock);
235 		goto loop;
236 	}
237 
238 	wake_up(&journal->j_wait_done_commit);
239 	if (freezing(current)) {
240 		/*
241 		 * The simpler the better. Flushing journal isn't a
242 		 * good idea, because that depends on threads that may
243 		 * be already stopped.
244 		 */
245 		jbd_debug(1, "Now suspending kjournald2\n");
246 		write_unlock(&journal->j_state_lock);
247 		try_to_freeze();
248 		write_lock(&journal->j_state_lock);
249 	} else {
250 		/*
251 		 * We assume on resume that commits are already there,
252 		 * so we don't sleep
253 		 */
254 		DEFINE_WAIT(wait);
255 		int should_sleep = 1;
256 
257 		prepare_to_wait(&journal->j_wait_commit, &wait,
258 				TASK_INTERRUPTIBLE);
259 		if (journal->j_commit_sequence != journal->j_commit_request)
260 			should_sleep = 0;
261 		transaction = journal->j_running_transaction;
262 		if (transaction && time_after_eq(jiffies,
263 						transaction->t_expires))
264 			should_sleep = 0;
265 		if (journal->j_flags & JBD2_UNMOUNT)
266 			should_sleep = 0;
267 		if (should_sleep) {
268 			write_unlock(&journal->j_state_lock);
269 			schedule();
270 			write_lock(&journal->j_state_lock);
271 		}
272 		finish_wait(&journal->j_wait_commit, &wait);
273 	}
274 
275 	jbd_debug(1, "kjournald2 wakes\n");
276 
277 	/*
278 	 * Were we woken up by a commit wakeup event?
279 	 */
280 	transaction = journal->j_running_transaction;
281 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
282 		journal->j_commit_request = transaction->t_tid;
283 		jbd_debug(1, "woke because of timeout\n");
284 	}
285 	goto loop;
286 
287 end_loop:
288 	del_timer_sync(&journal->j_commit_timer);
289 	journal->j_task = NULL;
290 	wake_up(&journal->j_wait_done_commit);
291 	jbd_debug(1, "Journal thread exiting.\n");
292 	write_unlock(&journal->j_state_lock);
293 	return 0;
294 }
295 
296 static int jbd2_journal_start_thread(journal_t *journal)
297 {
298 	struct task_struct *t;
299 
300 	t = kthread_run(kjournald2, journal, "jbd2/%s",
301 			journal->j_devname);
302 	if (IS_ERR(t))
303 		return PTR_ERR(t);
304 
305 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
306 	return 0;
307 }
308 
309 static void journal_kill_thread(journal_t *journal)
310 {
311 	write_lock(&journal->j_state_lock);
312 	journal->j_flags |= JBD2_UNMOUNT;
313 
314 	while (journal->j_task) {
315 		write_unlock(&journal->j_state_lock);
316 		wake_up(&journal->j_wait_commit);
317 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
318 		write_lock(&journal->j_state_lock);
319 	}
320 	write_unlock(&journal->j_state_lock);
321 }
322 
323 /*
324  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
325  *
326  * Writes a metadata buffer to a given disk block.  The actual IO is not
327  * performed but a new buffer_head is constructed which labels the data
328  * to be written with the correct destination disk block.
329  *
330  * Any magic-number escaping which needs to be done will cause a
331  * copy-out here.  If the buffer happens to start with the
332  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
333  * magic number is only written to the log for descripter blocks.  In
334  * this case, we copy the data and replace the first word with 0, and we
335  * return a result code which indicates that this buffer needs to be
336  * marked as an escaped buffer in the corresponding log descriptor
337  * block.  The missing word can then be restored when the block is read
338  * during recovery.
339  *
340  * If the source buffer has already been modified by a new transaction
341  * since we took the last commit snapshot, we use the frozen copy of
342  * that data for IO. If we end up using the existing buffer_head's data
343  * for the write, then we have to make sure nobody modifies it while the
344  * IO is in progress. do_get_write_access() handles this.
345  *
346  * The function returns a pointer to the buffer_head to be used for IO.
347  *
348  *
349  * Return value:
350  *  <0: Error
351  * >=0: Finished OK
352  *
353  * On success:
354  * Bit 0 set == escape performed on the data
355  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
356  */
357 
358 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
359 				  struct journal_head  *jh_in,
360 				  struct buffer_head **bh_out,
361 				  sector_t blocknr)
362 {
363 	int need_copy_out = 0;
364 	int done_copy_out = 0;
365 	int do_escape = 0;
366 	char *mapped_data;
367 	struct buffer_head *new_bh;
368 	struct page *new_page;
369 	unsigned int new_offset;
370 	struct buffer_head *bh_in = jh2bh(jh_in);
371 	journal_t *journal = transaction->t_journal;
372 
373 	/*
374 	 * The buffer really shouldn't be locked: only the current committing
375 	 * transaction is allowed to write it, so nobody else is allowed
376 	 * to do any IO.
377 	 *
378 	 * akpm: except if we're journalling data, and write() output is
379 	 * also part of a shared mapping, and another thread has
380 	 * decided to launch a writepage() against this buffer.
381 	 */
382 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
383 
384 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
385 
386 	/* keep subsequent assertions sane */
387 	atomic_set(&new_bh->b_count, 1);
388 
389 	jbd_lock_bh_state(bh_in);
390 repeat:
391 	/*
392 	 * If a new transaction has already done a buffer copy-out, then
393 	 * we use that version of the data for the commit.
394 	 */
395 	if (jh_in->b_frozen_data) {
396 		done_copy_out = 1;
397 		new_page = virt_to_page(jh_in->b_frozen_data);
398 		new_offset = offset_in_page(jh_in->b_frozen_data);
399 	} else {
400 		new_page = jh2bh(jh_in)->b_page;
401 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
402 	}
403 
404 	mapped_data = kmap_atomic(new_page);
405 	/*
406 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
407 	 * before checking for escaping, as the trigger may modify the magic
408 	 * offset.  If a copy-out happens afterwards, it will have the correct
409 	 * data in the buffer.
410 	 */
411 	if (!done_copy_out)
412 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
413 					   jh_in->b_triggers);
414 
415 	/*
416 	 * Check for escaping
417 	 */
418 	if (*((__be32 *)(mapped_data + new_offset)) ==
419 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
420 		need_copy_out = 1;
421 		do_escape = 1;
422 	}
423 	kunmap_atomic(mapped_data);
424 
425 	/*
426 	 * Do we need to do a data copy?
427 	 */
428 	if (need_copy_out && !done_copy_out) {
429 		char *tmp;
430 
431 		jbd_unlock_bh_state(bh_in);
432 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
433 		if (!tmp) {
434 			brelse(new_bh);
435 			return -ENOMEM;
436 		}
437 		jbd_lock_bh_state(bh_in);
438 		if (jh_in->b_frozen_data) {
439 			jbd2_free(tmp, bh_in->b_size);
440 			goto repeat;
441 		}
442 
443 		jh_in->b_frozen_data = tmp;
444 		mapped_data = kmap_atomic(new_page);
445 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
446 		kunmap_atomic(mapped_data);
447 
448 		new_page = virt_to_page(tmp);
449 		new_offset = offset_in_page(tmp);
450 		done_copy_out = 1;
451 
452 		/*
453 		 * This isn't strictly necessary, as we're using frozen
454 		 * data for the escaping, but it keeps consistency with
455 		 * b_frozen_data usage.
456 		 */
457 		jh_in->b_frozen_triggers = jh_in->b_triggers;
458 	}
459 
460 	/*
461 	 * Did we need to do an escaping?  Now we've done all the
462 	 * copying, we can finally do so.
463 	 */
464 	if (do_escape) {
465 		mapped_data = kmap_atomic(new_page);
466 		*((unsigned int *)(mapped_data + new_offset)) = 0;
467 		kunmap_atomic(mapped_data);
468 	}
469 
470 	set_bh_page(new_bh, new_page, new_offset);
471 	new_bh->b_size = bh_in->b_size;
472 	new_bh->b_bdev = journal->j_dev;
473 	new_bh->b_blocknr = blocknr;
474 	new_bh->b_private = bh_in;
475 	set_buffer_mapped(new_bh);
476 	set_buffer_dirty(new_bh);
477 
478 	*bh_out = new_bh;
479 
480 	/*
481 	 * The to-be-written buffer needs to get moved to the io queue,
482 	 * and the original buffer whose contents we are shadowing or
483 	 * copying is moved to the transaction's shadow queue.
484 	 */
485 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
486 	spin_lock(&journal->j_list_lock);
487 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
488 	spin_unlock(&journal->j_list_lock);
489 	set_buffer_shadow(bh_in);
490 	jbd_unlock_bh_state(bh_in);
491 
492 	return do_escape | (done_copy_out << 1);
493 }
494 
495 /*
496  * Allocation code for the journal file.  Manage the space left in the
497  * journal, so that we can begin checkpointing when appropriate.
498  */
499 
500 /*
501  * Called with j_state_lock locked for writing.
502  * Returns true if a transaction commit was started.
503  */
504 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 {
506 	/* Return if the txn has already requested to be committed */
507 	if (journal->j_commit_request == target)
508 		return 0;
509 
510 	/*
511 	 * The only transaction we can possibly wait upon is the
512 	 * currently running transaction (if it exists).  Otherwise,
513 	 * the target tid must be an old one.
514 	 */
515 	if (journal->j_running_transaction &&
516 	    journal->j_running_transaction->t_tid == target) {
517 		/*
518 		 * We want a new commit: OK, mark the request and wakeup the
519 		 * commit thread.  We do _not_ do the commit ourselves.
520 		 */
521 
522 		journal->j_commit_request = target;
523 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
524 			  journal->j_commit_request,
525 			  journal->j_commit_sequence);
526 		journal->j_running_transaction->t_requested = jiffies;
527 		wake_up(&journal->j_wait_commit);
528 		return 1;
529 	} else if (!tid_geq(journal->j_commit_request, target))
530 		/* This should never happen, but if it does, preserve
531 		   the evidence before kjournald goes into a loop and
532 		   increments j_commit_sequence beyond all recognition. */
533 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
534 			  journal->j_commit_request,
535 			  journal->j_commit_sequence,
536 			  target, journal->j_running_transaction ?
537 			  journal->j_running_transaction->t_tid : 0);
538 	return 0;
539 }
540 
541 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
542 {
543 	int ret;
544 
545 	write_lock(&journal->j_state_lock);
546 	ret = __jbd2_log_start_commit(journal, tid);
547 	write_unlock(&journal->j_state_lock);
548 	return ret;
549 }
550 
551 /*
552  * Force and wait any uncommitted transactions.  We can only force the running
553  * transaction if we don't have an active handle, otherwise, we will deadlock.
554  * Returns: <0 in case of error,
555  *           0 if nothing to commit,
556  *           1 if transaction was successfully committed.
557  */
558 static int __jbd2_journal_force_commit(journal_t *journal)
559 {
560 	transaction_t *transaction = NULL;
561 	tid_t tid;
562 	int need_to_start = 0, ret = 0;
563 
564 	read_lock(&journal->j_state_lock);
565 	if (journal->j_running_transaction && !current->journal_info) {
566 		transaction = journal->j_running_transaction;
567 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
568 			need_to_start = 1;
569 	} else if (journal->j_committing_transaction)
570 		transaction = journal->j_committing_transaction;
571 
572 	if (!transaction) {
573 		/* Nothing to commit */
574 		read_unlock(&journal->j_state_lock);
575 		return 0;
576 	}
577 	tid = transaction->t_tid;
578 	read_unlock(&journal->j_state_lock);
579 	if (need_to_start)
580 		jbd2_log_start_commit(journal, tid);
581 	ret = jbd2_log_wait_commit(journal, tid);
582 	if (!ret)
583 		ret = 1;
584 
585 	return ret;
586 }
587 
588 /**
589  * Force and wait upon a commit if the calling process is not within
590  * transaction.  This is used for forcing out undo-protected data which contains
591  * bitmaps, when the fs is running out of space.
592  *
593  * @journal: journal to force
594  * Returns true if progress was made.
595  */
596 int jbd2_journal_force_commit_nested(journal_t *journal)
597 {
598 	int ret;
599 
600 	ret = __jbd2_journal_force_commit(journal);
601 	return ret > 0;
602 }
603 
604 /**
605  * int journal_force_commit() - force any uncommitted transactions
606  * @journal: journal to force
607  *
608  * Caller want unconditional commit. We can only force the running transaction
609  * if we don't have an active handle, otherwise, we will deadlock.
610  */
611 int jbd2_journal_force_commit(journal_t *journal)
612 {
613 	int ret;
614 
615 	J_ASSERT(!current->journal_info);
616 	ret = __jbd2_journal_force_commit(journal);
617 	if (ret > 0)
618 		ret = 0;
619 	return ret;
620 }
621 
622 /*
623  * Start a commit of the current running transaction (if any).  Returns true
624  * if a transaction is going to be committed (or is currently already
625  * committing), and fills its tid in at *ptid
626  */
627 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
628 {
629 	int ret = 0;
630 
631 	write_lock(&journal->j_state_lock);
632 	if (journal->j_running_transaction) {
633 		tid_t tid = journal->j_running_transaction->t_tid;
634 
635 		__jbd2_log_start_commit(journal, tid);
636 		/* There's a running transaction and we've just made sure
637 		 * it's commit has been scheduled. */
638 		if (ptid)
639 			*ptid = tid;
640 		ret = 1;
641 	} else if (journal->j_committing_transaction) {
642 		/*
643 		 * If commit has been started, then we have to wait for
644 		 * completion of that transaction.
645 		 */
646 		if (ptid)
647 			*ptid = journal->j_committing_transaction->t_tid;
648 		ret = 1;
649 	}
650 	write_unlock(&journal->j_state_lock);
651 	return ret;
652 }
653 
654 /*
655  * Return 1 if a given transaction has not yet sent barrier request
656  * connected with a transaction commit. If 0 is returned, transaction
657  * may or may not have sent the barrier. Used to avoid sending barrier
658  * twice in common cases.
659  */
660 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
661 {
662 	int ret = 0;
663 	transaction_t *commit_trans;
664 
665 	if (!(journal->j_flags & JBD2_BARRIER))
666 		return 0;
667 	read_lock(&journal->j_state_lock);
668 	/* Transaction already committed? */
669 	if (tid_geq(journal->j_commit_sequence, tid))
670 		goto out;
671 	commit_trans = journal->j_committing_transaction;
672 	if (!commit_trans || commit_trans->t_tid != tid) {
673 		ret = 1;
674 		goto out;
675 	}
676 	/*
677 	 * Transaction is being committed and we already proceeded to
678 	 * submitting a flush to fs partition?
679 	 */
680 	if (journal->j_fs_dev != journal->j_dev) {
681 		if (!commit_trans->t_need_data_flush ||
682 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
683 			goto out;
684 	} else {
685 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
686 			goto out;
687 	}
688 	ret = 1;
689 out:
690 	read_unlock(&journal->j_state_lock);
691 	return ret;
692 }
693 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
694 
695 /*
696  * Wait for a specified commit to complete.
697  * The caller may not hold the journal lock.
698  */
699 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
700 {
701 	int err = 0;
702 
703 	read_lock(&journal->j_state_lock);
704 #ifdef CONFIG_PROVE_LOCKING
705 	/*
706 	 * Some callers make sure transaction is already committing and in that
707 	 * case we cannot block on open handles anymore. So don't warn in that
708 	 * case.
709 	 */
710 	if (tid_gt(tid, journal->j_commit_sequence) &&
711 	    (!journal->j_committing_transaction ||
712 	     journal->j_committing_transaction->t_tid != tid)) {
713 		read_unlock(&journal->j_state_lock);
714 		jbd2_might_wait_for_commit(journal);
715 		read_lock(&journal->j_state_lock);
716 	}
717 #endif
718 #ifdef CONFIG_JBD2_DEBUG
719 	if (!tid_geq(journal->j_commit_request, tid)) {
720 		printk(KERN_ERR
721 		       "%s: error: j_commit_request=%d, tid=%d\n",
722 		       __func__, journal->j_commit_request, tid);
723 	}
724 #endif
725 	while (tid_gt(tid, journal->j_commit_sequence)) {
726 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
727 				  tid, journal->j_commit_sequence);
728 		read_unlock(&journal->j_state_lock);
729 		wake_up(&journal->j_wait_commit);
730 		wait_event(journal->j_wait_done_commit,
731 				!tid_gt(tid, journal->j_commit_sequence));
732 		read_lock(&journal->j_state_lock);
733 	}
734 	read_unlock(&journal->j_state_lock);
735 
736 	if (unlikely(is_journal_aborted(journal)))
737 		err = -EIO;
738 	return err;
739 }
740 
741 /*
742  * When this function returns the transaction corresponding to tid
743  * will be completed.  If the transaction has currently running, start
744  * committing that transaction before waiting for it to complete.  If
745  * the transaction id is stale, it is by definition already completed,
746  * so just return SUCCESS.
747  */
748 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
749 {
750 	int	need_to_wait = 1;
751 
752 	read_lock(&journal->j_state_lock);
753 	if (journal->j_running_transaction &&
754 	    journal->j_running_transaction->t_tid == tid) {
755 		if (journal->j_commit_request != tid) {
756 			/* transaction not yet started, so request it */
757 			read_unlock(&journal->j_state_lock);
758 			jbd2_log_start_commit(journal, tid);
759 			goto wait_commit;
760 		}
761 	} else if (!(journal->j_committing_transaction &&
762 		     journal->j_committing_transaction->t_tid == tid))
763 		need_to_wait = 0;
764 	read_unlock(&journal->j_state_lock);
765 	if (!need_to_wait)
766 		return 0;
767 wait_commit:
768 	return jbd2_log_wait_commit(journal, tid);
769 }
770 EXPORT_SYMBOL(jbd2_complete_transaction);
771 
772 /*
773  * Log buffer allocation routines:
774  */
775 
776 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
777 {
778 	unsigned long blocknr;
779 
780 	write_lock(&journal->j_state_lock);
781 	J_ASSERT(journal->j_free > 1);
782 
783 	blocknr = journal->j_head;
784 	journal->j_head++;
785 	journal->j_free--;
786 	if (journal->j_head == journal->j_last)
787 		journal->j_head = journal->j_first;
788 	write_unlock(&journal->j_state_lock);
789 	return jbd2_journal_bmap(journal, blocknr, retp);
790 }
791 
792 /*
793  * Conversion of logical to physical block numbers for the journal
794  *
795  * On external journals the journal blocks are identity-mapped, so
796  * this is a no-op.  If needed, we can use j_blk_offset - everything is
797  * ready.
798  */
799 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
800 		 unsigned long long *retp)
801 {
802 	int err = 0;
803 	unsigned long long ret;
804 
805 	if (journal->j_inode) {
806 		ret = bmap(journal->j_inode, blocknr);
807 		if (ret)
808 			*retp = ret;
809 		else {
810 			printk(KERN_ALERT "%s: journal block not found "
811 					"at offset %lu on %s\n",
812 			       __func__, blocknr, journal->j_devname);
813 			err = -EIO;
814 			__journal_abort_soft(journal, err);
815 		}
816 	} else {
817 		*retp = blocknr; /* +journal->j_blk_offset */
818 	}
819 	return err;
820 }
821 
822 /*
823  * We play buffer_head aliasing tricks to write data/metadata blocks to
824  * the journal without copying their contents, but for journal
825  * descriptor blocks we do need to generate bona fide buffers.
826  *
827  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
828  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
829  * But we don't bother doing that, so there will be coherency problems with
830  * mmaps of blockdevs which hold live JBD-controlled filesystems.
831  */
832 struct buffer_head *
833 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
834 {
835 	journal_t *journal = transaction->t_journal;
836 	struct buffer_head *bh;
837 	unsigned long long blocknr;
838 	journal_header_t *header;
839 	int err;
840 
841 	err = jbd2_journal_next_log_block(journal, &blocknr);
842 
843 	if (err)
844 		return NULL;
845 
846 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
847 	if (!bh)
848 		return NULL;
849 	lock_buffer(bh);
850 	memset(bh->b_data, 0, journal->j_blocksize);
851 	header = (journal_header_t *)bh->b_data;
852 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
853 	header->h_blocktype = cpu_to_be32(type);
854 	header->h_sequence = cpu_to_be32(transaction->t_tid);
855 	set_buffer_uptodate(bh);
856 	unlock_buffer(bh);
857 	BUFFER_TRACE(bh, "return this buffer");
858 	return bh;
859 }
860 
861 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
862 {
863 	struct jbd2_journal_block_tail *tail;
864 	__u32 csum;
865 
866 	if (!jbd2_journal_has_csum_v2or3(j))
867 		return;
868 
869 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
870 			sizeof(struct jbd2_journal_block_tail));
871 	tail->t_checksum = 0;
872 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
873 	tail->t_checksum = cpu_to_be32(csum);
874 }
875 
876 /*
877  * Return tid of the oldest transaction in the journal and block in the journal
878  * where the transaction starts.
879  *
880  * If the journal is now empty, return which will be the next transaction ID
881  * we will write and where will that transaction start.
882  *
883  * The return value is 0 if journal tail cannot be pushed any further, 1 if
884  * it can.
885  */
886 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
887 			      unsigned long *block)
888 {
889 	transaction_t *transaction;
890 	int ret;
891 
892 	read_lock(&journal->j_state_lock);
893 	spin_lock(&journal->j_list_lock);
894 	transaction = journal->j_checkpoint_transactions;
895 	if (transaction) {
896 		*tid = transaction->t_tid;
897 		*block = transaction->t_log_start;
898 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
899 		*tid = transaction->t_tid;
900 		*block = transaction->t_log_start;
901 	} else if ((transaction = journal->j_running_transaction) != NULL) {
902 		*tid = transaction->t_tid;
903 		*block = journal->j_head;
904 	} else {
905 		*tid = journal->j_transaction_sequence;
906 		*block = journal->j_head;
907 	}
908 	ret = tid_gt(*tid, journal->j_tail_sequence);
909 	spin_unlock(&journal->j_list_lock);
910 	read_unlock(&journal->j_state_lock);
911 
912 	return ret;
913 }
914 
915 /*
916  * Update information in journal structure and in on disk journal superblock
917  * about log tail. This function does not check whether information passed in
918  * really pushes log tail further. It's responsibility of the caller to make
919  * sure provided log tail information is valid (e.g. by holding
920  * j_checkpoint_mutex all the time between computing log tail and calling this
921  * function as is the case with jbd2_cleanup_journal_tail()).
922  *
923  * Requires j_checkpoint_mutex
924  */
925 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
926 {
927 	unsigned long freed;
928 	int ret;
929 
930 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
931 
932 	/*
933 	 * We cannot afford for write to remain in drive's caches since as
934 	 * soon as we update j_tail, next transaction can start reusing journal
935 	 * space and if we lose sb update during power failure we'd replay
936 	 * old transaction with possibly newly overwritten data.
937 	 */
938 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
939 					      REQ_SYNC | REQ_FUA);
940 	if (ret)
941 		goto out;
942 
943 	write_lock(&journal->j_state_lock);
944 	freed = block - journal->j_tail;
945 	if (block < journal->j_tail)
946 		freed += journal->j_last - journal->j_first;
947 
948 	trace_jbd2_update_log_tail(journal, tid, block, freed);
949 	jbd_debug(1,
950 		  "Cleaning journal tail from %d to %d (offset %lu), "
951 		  "freeing %lu\n",
952 		  journal->j_tail_sequence, tid, block, freed);
953 
954 	journal->j_free += freed;
955 	journal->j_tail_sequence = tid;
956 	journal->j_tail = block;
957 	write_unlock(&journal->j_state_lock);
958 
959 out:
960 	return ret;
961 }
962 
963 /*
964  * This is a variaon of __jbd2_update_log_tail which checks for validity of
965  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
966  * with other threads updating log tail.
967  */
968 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
969 {
970 	mutex_lock_io(&journal->j_checkpoint_mutex);
971 	if (tid_gt(tid, journal->j_tail_sequence))
972 		__jbd2_update_log_tail(journal, tid, block);
973 	mutex_unlock(&journal->j_checkpoint_mutex);
974 }
975 
976 struct jbd2_stats_proc_session {
977 	journal_t *journal;
978 	struct transaction_stats_s *stats;
979 	int start;
980 	int max;
981 };
982 
983 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
984 {
985 	return *pos ? NULL : SEQ_START_TOKEN;
986 }
987 
988 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
989 {
990 	return NULL;
991 }
992 
993 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
994 {
995 	struct jbd2_stats_proc_session *s = seq->private;
996 
997 	if (v != SEQ_START_TOKEN)
998 		return 0;
999 	seq_printf(seq, "%lu transactions (%lu requested), "
1000 		   "each up to %u blocks\n",
1001 		   s->stats->ts_tid, s->stats->ts_requested,
1002 		   s->journal->j_max_transaction_buffers);
1003 	if (s->stats->ts_tid == 0)
1004 		return 0;
1005 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1006 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1007 	seq_printf(seq, "  %ums request delay\n",
1008 	    (s->stats->ts_requested == 0) ? 0 :
1009 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1010 			     s->stats->ts_requested));
1011 	seq_printf(seq, "  %ums running transaction\n",
1012 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1013 	seq_printf(seq, "  %ums transaction was being locked\n",
1014 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1015 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1016 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1017 	seq_printf(seq, "  %ums logging transaction\n",
1018 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1019 	seq_printf(seq, "  %lluus average transaction commit time\n",
1020 		   div_u64(s->journal->j_average_commit_time, 1000));
1021 	seq_printf(seq, "  %lu handles per transaction\n",
1022 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1023 	seq_printf(seq, "  %lu blocks per transaction\n",
1024 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1025 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1026 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1027 	return 0;
1028 }
1029 
1030 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1031 {
1032 }
1033 
1034 static const struct seq_operations jbd2_seq_info_ops = {
1035 	.start  = jbd2_seq_info_start,
1036 	.next   = jbd2_seq_info_next,
1037 	.stop   = jbd2_seq_info_stop,
1038 	.show   = jbd2_seq_info_show,
1039 };
1040 
1041 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1042 {
1043 	journal_t *journal = PDE_DATA(inode);
1044 	struct jbd2_stats_proc_session *s;
1045 	int rc, size;
1046 
1047 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1048 	if (s == NULL)
1049 		return -ENOMEM;
1050 	size = sizeof(struct transaction_stats_s);
1051 	s->stats = kmalloc(size, GFP_KERNEL);
1052 	if (s->stats == NULL) {
1053 		kfree(s);
1054 		return -ENOMEM;
1055 	}
1056 	spin_lock(&journal->j_history_lock);
1057 	memcpy(s->stats, &journal->j_stats, size);
1058 	s->journal = journal;
1059 	spin_unlock(&journal->j_history_lock);
1060 
1061 	rc = seq_open(file, &jbd2_seq_info_ops);
1062 	if (rc == 0) {
1063 		struct seq_file *m = file->private_data;
1064 		m->private = s;
1065 	} else {
1066 		kfree(s->stats);
1067 		kfree(s);
1068 	}
1069 	return rc;
1070 
1071 }
1072 
1073 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1074 {
1075 	struct seq_file *seq = file->private_data;
1076 	struct jbd2_stats_proc_session *s = seq->private;
1077 	kfree(s->stats);
1078 	kfree(s);
1079 	return seq_release(inode, file);
1080 }
1081 
1082 static const struct file_operations jbd2_seq_info_fops = {
1083 	.owner		= THIS_MODULE,
1084 	.open           = jbd2_seq_info_open,
1085 	.read           = seq_read,
1086 	.llseek         = seq_lseek,
1087 	.release        = jbd2_seq_info_release,
1088 };
1089 
1090 static struct proc_dir_entry *proc_jbd2_stats;
1091 
1092 static void jbd2_stats_proc_init(journal_t *journal)
1093 {
1094 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1095 	if (journal->j_proc_entry) {
1096 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1097 				 &jbd2_seq_info_fops, journal);
1098 	}
1099 }
1100 
1101 static void jbd2_stats_proc_exit(journal_t *journal)
1102 {
1103 	remove_proc_entry("info", journal->j_proc_entry);
1104 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1105 }
1106 
1107 /*
1108  * Management for journal control blocks: functions to create and
1109  * destroy journal_t structures, and to initialise and read existing
1110  * journal blocks from disk.  */
1111 
1112 /* First: create and setup a journal_t object in memory.  We initialise
1113  * very few fields yet: that has to wait until we have created the
1114  * journal structures from from scratch, or loaded them from disk. */
1115 
1116 static journal_t *journal_init_common(struct block_device *bdev,
1117 			struct block_device *fs_dev,
1118 			unsigned long long start, int len, int blocksize)
1119 {
1120 	static struct lock_class_key jbd2_trans_commit_key;
1121 	journal_t *journal;
1122 	int err;
1123 	struct buffer_head *bh;
1124 	int n;
1125 
1126 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1127 	if (!journal)
1128 		return NULL;
1129 
1130 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1131 	init_waitqueue_head(&journal->j_wait_done_commit);
1132 	init_waitqueue_head(&journal->j_wait_commit);
1133 	init_waitqueue_head(&journal->j_wait_updates);
1134 	init_waitqueue_head(&journal->j_wait_reserved);
1135 	mutex_init(&journal->j_barrier);
1136 	mutex_init(&journal->j_checkpoint_mutex);
1137 	spin_lock_init(&journal->j_revoke_lock);
1138 	spin_lock_init(&journal->j_list_lock);
1139 	rwlock_init(&journal->j_state_lock);
1140 
1141 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1142 	journal->j_min_batch_time = 0;
1143 	journal->j_max_batch_time = 15000; /* 15ms */
1144 	atomic_set(&journal->j_reserved_credits, 0);
1145 
1146 	/* The journal is marked for error until we succeed with recovery! */
1147 	journal->j_flags = JBD2_ABORT;
1148 
1149 	/* Set up a default-sized revoke table for the new mount. */
1150 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1151 	if (err)
1152 		goto err_cleanup;
1153 
1154 	spin_lock_init(&journal->j_history_lock);
1155 
1156 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1157 			 &jbd2_trans_commit_key, 0);
1158 
1159 	/* journal descriptor can store up to n blocks -bzzz */
1160 	journal->j_blocksize = blocksize;
1161 	journal->j_dev = bdev;
1162 	journal->j_fs_dev = fs_dev;
1163 	journal->j_blk_offset = start;
1164 	journal->j_maxlen = len;
1165 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1166 	journal->j_wbufsize = n;
1167 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1168 					GFP_KERNEL);
1169 	if (!journal->j_wbuf)
1170 		goto err_cleanup;
1171 
1172 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1173 	if (!bh) {
1174 		pr_err("%s: Cannot get buffer for journal superblock\n",
1175 			__func__);
1176 		goto err_cleanup;
1177 	}
1178 	journal->j_sb_buffer = bh;
1179 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1180 
1181 	return journal;
1182 
1183 err_cleanup:
1184 	kfree(journal->j_wbuf);
1185 	jbd2_journal_destroy_revoke(journal);
1186 	kfree(journal);
1187 	return NULL;
1188 }
1189 
1190 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1191  *
1192  * Create a journal structure assigned some fixed set of disk blocks to
1193  * the journal.  We don't actually touch those disk blocks yet, but we
1194  * need to set up all of the mapping information to tell the journaling
1195  * system where the journal blocks are.
1196  *
1197  */
1198 
1199 /**
1200  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1201  *  @bdev: Block device on which to create the journal
1202  *  @fs_dev: Device which hold journalled filesystem for this journal.
1203  *  @start: Block nr Start of journal.
1204  *  @len:  Length of the journal in blocks.
1205  *  @blocksize: blocksize of journalling device
1206  *
1207  *  Returns: a newly created journal_t *
1208  *
1209  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1210  *  range of blocks on an arbitrary block device.
1211  *
1212  */
1213 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1214 			struct block_device *fs_dev,
1215 			unsigned long long start, int len, int blocksize)
1216 {
1217 	journal_t *journal;
1218 
1219 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1220 	if (!journal)
1221 		return NULL;
1222 
1223 	bdevname(journal->j_dev, journal->j_devname);
1224 	strreplace(journal->j_devname, '/', '!');
1225 	jbd2_stats_proc_init(journal);
1226 
1227 	return journal;
1228 }
1229 
1230 /**
1231  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1232  *  @inode: An inode to create the journal in
1233  *
1234  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1235  * the journal.  The inode must exist already, must support bmap() and
1236  * must have all data blocks preallocated.
1237  */
1238 journal_t *jbd2_journal_init_inode(struct inode *inode)
1239 {
1240 	journal_t *journal;
1241 	char *p;
1242 	unsigned long long blocknr;
1243 
1244 	blocknr = bmap(inode, 0);
1245 	if (!blocknr) {
1246 		pr_err("%s: Cannot locate journal superblock\n",
1247 			__func__);
1248 		return NULL;
1249 	}
1250 
1251 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1252 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1253 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1254 
1255 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1256 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1257 			inode->i_sb->s_blocksize);
1258 	if (!journal)
1259 		return NULL;
1260 
1261 	journal->j_inode = inode;
1262 	bdevname(journal->j_dev, journal->j_devname);
1263 	p = strreplace(journal->j_devname, '/', '!');
1264 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1265 	jbd2_stats_proc_init(journal);
1266 
1267 	return journal;
1268 }
1269 
1270 /*
1271  * If the journal init or create aborts, we need to mark the journal
1272  * superblock as being NULL to prevent the journal destroy from writing
1273  * back a bogus superblock.
1274  */
1275 static void journal_fail_superblock (journal_t *journal)
1276 {
1277 	struct buffer_head *bh = journal->j_sb_buffer;
1278 	brelse(bh);
1279 	journal->j_sb_buffer = NULL;
1280 }
1281 
1282 /*
1283  * Given a journal_t structure, initialise the various fields for
1284  * startup of a new journaling session.  We use this both when creating
1285  * a journal, and after recovering an old journal to reset it for
1286  * subsequent use.
1287  */
1288 
1289 static int journal_reset(journal_t *journal)
1290 {
1291 	journal_superblock_t *sb = journal->j_superblock;
1292 	unsigned long long first, last;
1293 
1294 	first = be32_to_cpu(sb->s_first);
1295 	last = be32_to_cpu(sb->s_maxlen);
1296 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1297 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1298 		       first, last);
1299 		journal_fail_superblock(journal);
1300 		return -EINVAL;
1301 	}
1302 
1303 	journal->j_first = first;
1304 	journal->j_last = last;
1305 
1306 	journal->j_head = first;
1307 	journal->j_tail = first;
1308 	journal->j_free = last - first;
1309 
1310 	journal->j_tail_sequence = journal->j_transaction_sequence;
1311 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1312 	journal->j_commit_request = journal->j_commit_sequence;
1313 
1314 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1315 
1316 	/*
1317 	 * As a special case, if the on-disk copy is already marked as needing
1318 	 * no recovery (s_start == 0), then we can safely defer the superblock
1319 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1320 	 * attempting a write to a potential-readonly device.
1321 	 */
1322 	if (sb->s_start == 0) {
1323 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1324 			"(start %ld, seq %d, errno %d)\n",
1325 			journal->j_tail, journal->j_tail_sequence,
1326 			journal->j_errno);
1327 		journal->j_flags |= JBD2_FLUSHED;
1328 	} else {
1329 		/* Lock here to make assertions happy... */
1330 		mutex_lock_io(&journal->j_checkpoint_mutex);
1331 		/*
1332 		 * Update log tail information. We use REQ_FUA since new
1333 		 * transaction will start reusing journal space and so we
1334 		 * must make sure information about current log tail is on
1335 		 * disk before that.
1336 		 */
1337 		jbd2_journal_update_sb_log_tail(journal,
1338 						journal->j_tail_sequence,
1339 						journal->j_tail,
1340 						REQ_SYNC | REQ_FUA);
1341 		mutex_unlock(&journal->j_checkpoint_mutex);
1342 	}
1343 	return jbd2_journal_start_thread(journal);
1344 }
1345 
1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348 	struct buffer_head *bh = journal->j_sb_buffer;
1349 	journal_superblock_t *sb = journal->j_superblock;
1350 	int ret;
1351 
1352 	trace_jbd2_write_superblock(journal, write_flags);
1353 	if (!(journal->j_flags & JBD2_BARRIER))
1354 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1355 	lock_buffer(bh);
1356 	if (buffer_write_io_error(bh)) {
1357 		/*
1358 		 * Oh, dear.  A previous attempt to write the journal
1359 		 * superblock failed.  This could happen because the
1360 		 * USB device was yanked out.  Or it could happen to
1361 		 * be a transient write error and maybe the block will
1362 		 * be remapped.  Nothing we can do but to retry the
1363 		 * write and hope for the best.
1364 		 */
1365 		printk(KERN_ERR "JBD2: previous I/O error detected "
1366 		       "for journal superblock update for %s.\n",
1367 		       journal->j_devname);
1368 		clear_buffer_write_io_error(bh);
1369 		set_buffer_uptodate(bh);
1370 	}
1371 	jbd2_superblock_csum_set(journal, sb);
1372 	get_bh(bh);
1373 	bh->b_end_io = end_buffer_write_sync;
1374 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1375 	wait_on_buffer(bh);
1376 	if (buffer_write_io_error(bh)) {
1377 		clear_buffer_write_io_error(bh);
1378 		set_buffer_uptodate(bh);
1379 		ret = -EIO;
1380 	}
1381 	if (ret) {
1382 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1383 		       "journal superblock for %s.\n", ret,
1384 		       journal->j_devname);
1385 		jbd2_journal_abort(journal, ret);
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 /**
1392  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1393  * @journal: The journal to update.
1394  * @tail_tid: TID of the new transaction at the tail of the log
1395  * @tail_block: The first block of the transaction at the tail of the log
1396  * @write_op: With which operation should we write the journal sb
1397  *
1398  * Update a journal's superblock information about log tail and write it to
1399  * disk, waiting for the IO to complete.
1400  */
1401 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1402 				     unsigned long tail_block, int write_op)
1403 {
1404 	journal_superblock_t *sb = journal->j_superblock;
1405 	int ret;
1406 
1407 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1408 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1409 		  tail_block, tail_tid);
1410 
1411 	sb->s_sequence = cpu_to_be32(tail_tid);
1412 	sb->s_start    = cpu_to_be32(tail_block);
1413 
1414 	ret = jbd2_write_superblock(journal, write_op);
1415 	if (ret)
1416 		goto out;
1417 
1418 	/* Log is no longer empty */
1419 	write_lock(&journal->j_state_lock);
1420 	WARN_ON(!sb->s_sequence);
1421 	journal->j_flags &= ~JBD2_FLUSHED;
1422 	write_unlock(&journal->j_state_lock);
1423 
1424 out:
1425 	return ret;
1426 }
1427 
1428 /**
1429  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1430  * @journal: The journal to update.
1431  * @write_op: With which operation should we write the journal sb
1432  *
1433  * Update a journal's dynamic superblock fields to show that journal is empty.
1434  * Write updated superblock to disk waiting for IO to complete.
1435  */
1436 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1437 {
1438 	journal_superblock_t *sb = journal->j_superblock;
1439 
1440 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1441 	read_lock(&journal->j_state_lock);
1442 	/* Is it already empty? */
1443 	if (sb->s_start == 0) {
1444 		read_unlock(&journal->j_state_lock);
1445 		return;
1446 	}
1447 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1448 		  journal->j_tail_sequence);
1449 
1450 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1451 	sb->s_start    = cpu_to_be32(0);
1452 	read_unlock(&journal->j_state_lock);
1453 
1454 	jbd2_write_superblock(journal, write_op);
1455 
1456 	/* Log is no longer empty */
1457 	write_lock(&journal->j_state_lock);
1458 	journal->j_flags |= JBD2_FLUSHED;
1459 	write_unlock(&journal->j_state_lock);
1460 }
1461 
1462 
1463 /**
1464  * jbd2_journal_update_sb_errno() - Update error in the journal.
1465  * @journal: The journal to update.
1466  *
1467  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1468  * to complete.
1469  */
1470 void jbd2_journal_update_sb_errno(journal_t *journal)
1471 {
1472 	journal_superblock_t *sb = journal->j_superblock;
1473 
1474 	read_lock(&journal->j_state_lock);
1475 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1476 		  journal->j_errno);
1477 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1478 	read_unlock(&journal->j_state_lock);
1479 
1480 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1481 }
1482 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1483 
1484 /*
1485  * Read the superblock for a given journal, performing initial
1486  * validation of the format.
1487  */
1488 static int journal_get_superblock(journal_t *journal)
1489 {
1490 	struct buffer_head *bh;
1491 	journal_superblock_t *sb;
1492 	int err = -EIO;
1493 
1494 	bh = journal->j_sb_buffer;
1495 
1496 	J_ASSERT(bh != NULL);
1497 	if (!buffer_uptodate(bh)) {
1498 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1499 		wait_on_buffer(bh);
1500 		if (!buffer_uptodate(bh)) {
1501 			printk(KERN_ERR
1502 				"JBD2: IO error reading journal superblock\n");
1503 			goto out;
1504 		}
1505 	}
1506 
1507 	if (buffer_verified(bh))
1508 		return 0;
1509 
1510 	sb = journal->j_superblock;
1511 
1512 	err = -EINVAL;
1513 
1514 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1515 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1516 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1517 		goto out;
1518 	}
1519 
1520 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1521 	case JBD2_SUPERBLOCK_V1:
1522 		journal->j_format_version = 1;
1523 		break;
1524 	case JBD2_SUPERBLOCK_V2:
1525 		journal->j_format_version = 2;
1526 		break;
1527 	default:
1528 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1529 		goto out;
1530 	}
1531 
1532 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1533 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1534 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1535 		printk(KERN_WARNING "JBD2: journal file too short\n");
1536 		goto out;
1537 	}
1538 
1539 	if (be32_to_cpu(sb->s_first) == 0 ||
1540 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1541 		printk(KERN_WARNING
1542 			"JBD2: Invalid start block of journal: %u\n",
1543 			be32_to_cpu(sb->s_first));
1544 		goto out;
1545 	}
1546 
1547 	if (jbd2_has_feature_csum2(journal) &&
1548 	    jbd2_has_feature_csum3(journal)) {
1549 		/* Can't have checksum v2 and v3 at the same time! */
1550 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1551 		       "at the same time!\n");
1552 		goto out;
1553 	}
1554 
1555 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1556 	    jbd2_has_feature_checksum(journal)) {
1557 		/* Can't have checksum v1 and v2 on at the same time! */
1558 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1559 		       "at the same time!\n");
1560 		goto out;
1561 	}
1562 
1563 	if (!jbd2_verify_csum_type(journal, sb)) {
1564 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1565 		goto out;
1566 	}
1567 
1568 	/* Load the checksum driver */
1569 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1570 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1571 		if (IS_ERR(journal->j_chksum_driver)) {
1572 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1573 			err = PTR_ERR(journal->j_chksum_driver);
1574 			journal->j_chksum_driver = NULL;
1575 			goto out;
1576 		}
1577 	}
1578 
1579 	/* Check superblock checksum */
1580 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1581 		printk(KERN_ERR "JBD2: journal checksum error\n");
1582 		err = -EFSBADCRC;
1583 		goto out;
1584 	}
1585 
1586 	/* Precompute checksum seed for all metadata */
1587 	if (jbd2_journal_has_csum_v2or3(journal))
1588 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1589 						   sizeof(sb->s_uuid));
1590 
1591 	set_buffer_verified(bh);
1592 
1593 	return 0;
1594 
1595 out:
1596 	journal_fail_superblock(journal);
1597 	return err;
1598 }
1599 
1600 /*
1601  * Load the on-disk journal superblock and read the key fields into the
1602  * journal_t.
1603  */
1604 
1605 static int load_superblock(journal_t *journal)
1606 {
1607 	int err;
1608 	journal_superblock_t *sb;
1609 
1610 	err = journal_get_superblock(journal);
1611 	if (err)
1612 		return err;
1613 
1614 	sb = journal->j_superblock;
1615 
1616 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1617 	journal->j_tail = be32_to_cpu(sb->s_start);
1618 	journal->j_first = be32_to_cpu(sb->s_first);
1619 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1620 	journal->j_errno = be32_to_cpu(sb->s_errno);
1621 
1622 	return 0;
1623 }
1624 
1625 
1626 /**
1627  * int jbd2_journal_load() - Read journal from disk.
1628  * @journal: Journal to act on.
1629  *
1630  * Given a journal_t structure which tells us which disk blocks contain
1631  * a journal, read the journal from disk to initialise the in-memory
1632  * structures.
1633  */
1634 int jbd2_journal_load(journal_t *journal)
1635 {
1636 	int err;
1637 	journal_superblock_t *sb;
1638 
1639 	err = load_superblock(journal);
1640 	if (err)
1641 		return err;
1642 
1643 	sb = journal->j_superblock;
1644 	/* If this is a V2 superblock, then we have to check the
1645 	 * features flags on it. */
1646 
1647 	if (journal->j_format_version >= 2) {
1648 		if ((sb->s_feature_ro_compat &
1649 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1650 		    (sb->s_feature_incompat &
1651 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1652 			printk(KERN_WARNING
1653 				"JBD2: Unrecognised features on journal\n");
1654 			return -EINVAL;
1655 		}
1656 	}
1657 
1658 	/*
1659 	 * Create a slab for this blocksize
1660 	 */
1661 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1662 	if (err)
1663 		return err;
1664 
1665 	/* Let the recovery code check whether it needs to recover any
1666 	 * data from the journal. */
1667 	if (jbd2_journal_recover(journal))
1668 		goto recovery_error;
1669 
1670 	if (journal->j_failed_commit) {
1671 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1672 		       "is corrupt.\n", journal->j_failed_commit,
1673 		       journal->j_devname);
1674 		return -EFSCORRUPTED;
1675 	}
1676 
1677 	/* OK, we've finished with the dynamic journal bits:
1678 	 * reinitialise the dynamic contents of the superblock in memory
1679 	 * and reset them on disk. */
1680 	if (journal_reset(journal))
1681 		goto recovery_error;
1682 
1683 	journal->j_flags &= ~JBD2_ABORT;
1684 	journal->j_flags |= JBD2_LOADED;
1685 	return 0;
1686 
1687 recovery_error:
1688 	printk(KERN_WARNING "JBD2: recovery failed\n");
1689 	return -EIO;
1690 }
1691 
1692 /**
1693  * void jbd2_journal_destroy() - Release a journal_t structure.
1694  * @journal: Journal to act on.
1695  *
1696  * Release a journal_t structure once it is no longer in use by the
1697  * journaled object.
1698  * Return <0 if we couldn't clean up the journal.
1699  */
1700 int jbd2_journal_destroy(journal_t *journal)
1701 {
1702 	int err = 0;
1703 
1704 	/* Wait for the commit thread to wake up and die. */
1705 	journal_kill_thread(journal);
1706 
1707 	/* Force a final log commit */
1708 	if (journal->j_running_transaction)
1709 		jbd2_journal_commit_transaction(journal);
1710 
1711 	/* Force any old transactions to disk */
1712 
1713 	/* Totally anal locking here... */
1714 	spin_lock(&journal->j_list_lock);
1715 	while (journal->j_checkpoint_transactions != NULL) {
1716 		spin_unlock(&journal->j_list_lock);
1717 		mutex_lock_io(&journal->j_checkpoint_mutex);
1718 		err = jbd2_log_do_checkpoint(journal);
1719 		mutex_unlock(&journal->j_checkpoint_mutex);
1720 		/*
1721 		 * If checkpointing failed, just free the buffers to avoid
1722 		 * looping forever
1723 		 */
1724 		if (err) {
1725 			jbd2_journal_destroy_checkpoint(journal);
1726 			spin_lock(&journal->j_list_lock);
1727 			break;
1728 		}
1729 		spin_lock(&journal->j_list_lock);
1730 	}
1731 
1732 	J_ASSERT(journal->j_running_transaction == NULL);
1733 	J_ASSERT(journal->j_committing_transaction == NULL);
1734 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1735 	spin_unlock(&journal->j_list_lock);
1736 
1737 	if (journal->j_sb_buffer) {
1738 		if (!is_journal_aborted(journal)) {
1739 			mutex_lock_io(&journal->j_checkpoint_mutex);
1740 
1741 			write_lock(&journal->j_state_lock);
1742 			journal->j_tail_sequence =
1743 				++journal->j_transaction_sequence;
1744 			write_unlock(&journal->j_state_lock);
1745 
1746 			jbd2_mark_journal_empty(journal,
1747 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1748 			mutex_unlock(&journal->j_checkpoint_mutex);
1749 		} else
1750 			err = -EIO;
1751 		brelse(journal->j_sb_buffer);
1752 	}
1753 
1754 	if (journal->j_proc_entry)
1755 		jbd2_stats_proc_exit(journal);
1756 	iput(journal->j_inode);
1757 	if (journal->j_revoke)
1758 		jbd2_journal_destroy_revoke(journal);
1759 	if (journal->j_chksum_driver)
1760 		crypto_free_shash(journal->j_chksum_driver);
1761 	kfree(journal->j_wbuf);
1762 	kfree(journal);
1763 
1764 	return err;
1765 }
1766 
1767 
1768 /**
1769  *int jbd2_journal_check_used_features () - Check if features specified are used.
1770  * @journal: Journal to check.
1771  * @compat: bitmask of compatible features
1772  * @ro: bitmask of features that force read-only mount
1773  * @incompat: bitmask of incompatible features
1774  *
1775  * Check whether the journal uses all of a given set of
1776  * features.  Return true (non-zero) if it does.
1777  **/
1778 
1779 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1780 				 unsigned long ro, unsigned long incompat)
1781 {
1782 	journal_superblock_t *sb;
1783 
1784 	if (!compat && !ro && !incompat)
1785 		return 1;
1786 	/* Load journal superblock if it is not loaded yet. */
1787 	if (journal->j_format_version == 0 &&
1788 	    journal_get_superblock(journal) != 0)
1789 		return 0;
1790 	if (journal->j_format_version == 1)
1791 		return 0;
1792 
1793 	sb = journal->j_superblock;
1794 
1795 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1796 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1797 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1798 		return 1;
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1805  * @journal: Journal to check.
1806  * @compat: bitmask of compatible features
1807  * @ro: bitmask of features that force read-only mount
1808  * @incompat: bitmask of incompatible features
1809  *
1810  * Check whether the journaling code supports the use of
1811  * all of a given set of features on this journal.  Return true
1812  * (non-zero) if it can. */
1813 
1814 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1815 				      unsigned long ro, unsigned long incompat)
1816 {
1817 	if (!compat && !ro && !incompat)
1818 		return 1;
1819 
1820 	/* We can support any known requested features iff the
1821 	 * superblock is in version 2.  Otherwise we fail to support any
1822 	 * extended sb features. */
1823 
1824 	if (journal->j_format_version != 2)
1825 		return 0;
1826 
1827 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1828 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1829 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1830 		return 1;
1831 
1832 	return 0;
1833 }
1834 
1835 /**
1836  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1837  * @journal: Journal to act on.
1838  * @compat: bitmask of compatible features
1839  * @ro: bitmask of features that force read-only mount
1840  * @incompat: bitmask of incompatible features
1841  *
1842  * Mark a given journal feature as present on the
1843  * superblock.  Returns true if the requested features could be set.
1844  *
1845  */
1846 
1847 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1848 			  unsigned long ro, unsigned long incompat)
1849 {
1850 #define INCOMPAT_FEATURE_ON(f) \
1851 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1852 #define COMPAT_FEATURE_ON(f) \
1853 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1854 	journal_superblock_t *sb;
1855 
1856 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1857 		return 1;
1858 
1859 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1860 		return 0;
1861 
1862 	/* If enabling v2 checksums, turn on v3 instead */
1863 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1864 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1865 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1866 	}
1867 
1868 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1869 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1870 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1871 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1872 
1873 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1874 		  compat, ro, incompat);
1875 
1876 	sb = journal->j_superblock;
1877 
1878 	/* If enabling v3 checksums, update superblock */
1879 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1880 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1881 		sb->s_feature_compat &=
1882 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1883 
1884 		/* Load the checksum driver */
1885 		if (journal->j_chksum_driver == NULL) {
1886 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1887 								      0, 0);
1888 			if (IS_ERR(journal->j_chksum_driver)) {
1889 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1890 				       "driver.\n");
1891 				journal->j_chksum_driver = NULL;
1892 				return 0;
1893 			}
1894 
1895 			/* Precompute checksum seed for all metadata */
1896 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1897 							   sb->s_uuid,
1898 							   sizeof(sb->s_uuid));
1899 		}
1900 	}
1901 
1902 	/* If enabling v1 checksums, downgrade superblock */
1903 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1904 		sb->s_feature_incompat &=
1905 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1906 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1907 
1908 	sb->s_feature_compat    |= cpu_to_be32(compat);
1909 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1910 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1911 
1912 	return 1;
1913 #undef COMPAT_FEATURE_ON
1914 #undef INCOMPAT_FEATURE_ON
1915 }
1916 
1917 /*
1918  * jbd2_journal_clear_features () - Clear a given journal feature in the
1919  * 				    superblock
1920  * @journal: Journal to act on.
1921  * @compat: bitmask of compatible features
1922  * @ro: bitmask of features that force read-only mount
1923  * @incompat: bitmask of incompatible features
1924  *
1925  * Clear a given journal feature as present on the
1926  * superblock.
1927  */
1928 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1929 				unsigned long ro, unsigned long incompat)
1930 {
1931 	journal_superblock_t *sb;
1932 
1933 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1934 		  compat, ro, incompat);
1935 
1936 	sb = journal->j_superblock;
1937 
1938 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1939 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1940 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1941 }
1942 EXPORT_SYMBOL(jbd2_journal_clear_features);
1943 
1944 /**
1945  * int jbd2_journal_flush () - Flush journal
1946  * @journal: Journal to act on.
1947  *
1948  * Flush all data for a given journal to disk and empty the journal.
1949  * Filesystems can use this when remounting readonly to ensure that
1950  * recovery does not need to happen on remount.
1951  */
1952 
1953 int jbd2_journal_flush(journal_t *journal)
1954 {
1955 	int err = 0;
1956 	transaction_t *transaction = NULL;
1957 
1958 	write_lock(&journal->j_state_lock);
1959 
1960 	/* Force everything buffered to the log... */
1961 	if (journal->j_running_transaction) {
1962 		transaction = journal->j_running_transaction;
1963 		__jbd2_log_start_commit(journal, transaction->t_tid);
1964 	} else if (journal->j_committing_transaction)
1965 		transaction = journal->j_committing_transaction;
1966 
1967 	/* Wait for the log commit to complete... */
1968 	if (transaction) {
1969 		tid_t tid = transaction->t_tid;
1970 
1971 		write_unlock(&journal->j_state_lock);
1972 		jbd2_log_wait_commit(journal, tid);
1973 	} else {
1974 		write_unlock(&journal->j_state_lock);
1975 	}
1976 
1977 	/* ...and flush everything in the log out to disk. */
1978 	spin_lock(&journal->j_list_lock);
1979 	while (!err && journal->j_checkpoint_transactions != NULL) {
1980 		spin_unlock(&journal->j_list_lock);
1981 		mutex_lock_io(&journal->j_checkpoint_mutex);
1982 		err = jbd2_log_do_checkpoint(journal);
1983 		mutex_unlock(&journal->j_checkpoint_mutex);
1984 		spin_lock(&journal->j_list_lock);
1985 	}
1986 	spin_unlock(&journal->j_list_lock);
1987 
1988 	if (is_journal_aborted(journal))
1989 		return -EIO;
1990 
1991 	mutex_lock_io(&journal->j_checkpoint_mutex);
1992 	if (!err) {
1993 		err = jbd2_cleanup_journal_tail(journal);
1994 		if (err < 0) {
1995 			mutex_unlock(&journal->j_checkpoint_mutex);
1996 			goto out;
1997 		}
1998 		err = 0;
1999 	}
2000 
2001 	/* Finally, mark the journal as really needing no recovery.
2002 	 * This sets s_start==0 in the underlying superblock, which is
2003 	 * the magic code for a fully-recovered superblock.  Any future
2004 	 * commits of data to the journal will restore the current
2005 	 * s_start value. */
2006 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2007 	mutex_unlock(&journal->j_checkpoint_mutex);
2008 	write_lock(&journal->j_state_lock);
2009 	J_ASSERT(!journal->j_running_transaction);
2010 	J_ASSERT(!journal->j_committing_transaction);
2011 	J_ASSERT(!journal->j_checkpoint_transactions);
2012 	J_ASSERT(journal->j_head == journal->j_tail);
2013 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2014 	write_unlock(&journal->j_state_lock);
2015 out:
2016 	return err;
2017 }
2018 
2019 /**
2020  * int jbd2_journal_wipe() - Wipe journal contents
2021  * @journal: Journal to act on.
2022  * @write: flag (see below)
2023  *
2024  * Wipe out all of the contents of a journal, safely.  This will produce
2025  * a warning if the journal contains any valid recovery information.
2026  * Must be called between journal_init_*() and jbd2_journal_load().
2027  *
2028  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2029  * we merely suppress recovery.
2030  */
2031 
2032 int jbd2_journal_wipe(journal_t *journal, int write)
2033 {
2034 	int err = 0;
2035 
2036 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2037 
2038 	err = load_superblock(journal);
2039 	if (err)
2040 		return err;
2041 
2042 	if (!journal->j_tail)
2043 		goto no_recovery;
2044 
2045 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2046 		write ? "Clearing" : "Ignoring");
2047 
2048 	err = jbd2_journal_skip_recovery(journal);
2049 	if (write) {
2050 		/* Lock to make assertions happy... */
2051 		mutex_lock(&journal->j_checkpoint_mutex);
2052 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2053 		mutex_unlock(&journal->j_checkpoint_mutex);
2054 	}
2055 
2056  no_recovery:
2057 	return err;
2058 }
2059 
2060 /*
2061  * Journal abort has very specific semantics, which we describe
2062  * for journal abort.
2063  *
2064  * Two internal functions, which provide abort to the jbd layer
2065  * itself are here.
2066  */
2067 
2068 /*
2069  * Quick version for internal journal use (doesn't lock the journal).
2070  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2071  * and don't attempt to make any other journal updates.
2072  */
2073 void __jbd2_journal_abort_hard(journal_t *journal)
2074 {
2075 	transaction_t *transaction;
2076 
2077 	if (journal->j_flags & JBD2_ABORT)
2078 		return;
2079 
2080 	printk(KERN_ERR "Aborting journal on device %s.\n",
2081 	       journal->j_devname);
2082 
2083 	write_lock(&journal->j_state_lock);
2084 	journal->j_flags |= JBD2_ABORT;
2085 	transaction = journal->j_running_transaction;
2086 	if (transaction)
2087 		__jbd2_log_start_commit(journal, transaction->t_tid);
2088 	write_unlock(&journal->j_state_lock);
2089 }
2090 
2091 /* Soft abort: record the abort error status in the journal superblock,
2092  * but don't do any other IO. */
2093 static void __journal_abort_soft (journal_t *journal, int errno)
2094 {
2095 	if (journal->j_flags & JBD2_ABORT)
2096 		return;
2097 
2098 	if (!journal->j_errno)
2099 		journal->j_errno = errno;
2100 
2101 	__jbd2_journal_abort_hard(journal);
2102 
2103 	if (errno) {
2104 		jbd2_journal_update_sb_errno(journal);
2105 		write_lock(&journal->j_state_lock);
2106 		journal->j_flags |= JBD2_REC_ERR;
2107 		write_unlock(&journal->j_state_lock);
2108 	}
2109 }
2110 
2111 /**
2112  * void jbd2_journal_abort () - Shutdown the journal immediately.
2113  * @journal: the journal to shutdown.
2114  * @errno:   an error number to record in the journal indicating
2115  *           the reason for the shutdown.
2116  *
2117  * Perform a complete, immediate shutdown of the ENTIRE
2118  * journal (not of a single transaction).  This operation cannot be
2119  * undone without closing and reopening the journal.
2120  *
2121  * The jbd2_journal_abort function is intended to support higher level error
2122  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2123  * mode.
2124  *
2125  * Journal abort has very specific semantics.  Any existing dirty,
2126  * unjournaled buffers in the main filesystem will still be written to
2127  * disk by bdflush, but the journaling mechanism will be suspended
2128  * immediately and no further transaction commits will be honoured.
2129  *
2130  * Any dirty, journaled buffers will be written back to disk without
2131  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2132  * filesystem, but we _do_ attempt to leave as much data as possible
2133  * behind for fsck to use for cleanup.
2134  *
2135  * Any attempt to get a new transaction handle on a journal which is in
2136  * ABORT state will just result in an -EROFS error return.  A
2137  * jbd2_journal_stop on an existing handle will return -EIO if we have
2138  * entered abort state during the update.
2139  *
2140  * Recursive transactions are not disturbed by journal abort until the
2141  * final jbd2_journal_stop, which will receive the -EIO error.
2142  *
2143  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2144  * which will be recorded (if possible) in the journal superblock.  This
2145  * allows a client to record failure conditions in the middle of a
2146  * transaction without having to complete the transaction to record the
2147  * failure to disk.  ext3_error, for example, now uses this
2148  * functionality.
2149  *
2150  * Errors which originate from within the journaling layer will NOT
2151  * supply an errno; a null errno implies that absolutely no further
2152  * writes are done to the journal (unless there are any already in
2153  * progress).
2154  *
2155  */
2156 
2157 void jbd2_journal_abort(journal_t *journal, int errno)
2158 {
2159 	__journal_abort_soft(journal, errno);
2160 }
2161 
2162 /**
2163  * int jbd2_journal_errno () - returns the journal's error state.
2164  * @journal: journal to examine.
2165  *
2166  * This is the errno number set with jbd2_journal_abort(), the last
2167  * time the journal was mounted - if the journal was stopped
2168  * without calling abort this will be 0.
2169  *
2170  * If the journal has been aborted on this mount time -EROFS will
2171  * be returned.
2172  */
2173 int jbd2_journal_errno(journal_t *journal)
2174 {
2175 	int err;
2176 
2177 	read_lock(&journal->j_state_lock);
2178 	if (journal->j_flags & JBD2_ABORT)
2179 		err = -EROFS;
2180 	else
2181 		err = journal->j_errno;
2182 	read_unlock(&journal->j_state_lock);
2183 	return err;
2184 }
2185 
2186 /**
2187  * int jbd2_journal_clear_err () - clears the journal's error state
2188  * @journal: journal to act on.
2189  *
2190  * An error must be cleared or acked to take a FS out of readonly
2191  * mode.
2192  */
2193 int jbd2_journal_clear_err(journal_t *journal)
2194 {
2195 	int err = 0;
2196 
2197 	write_lock(&journal->j_state_lock);
2198 	if (journal->j_flags & JBD2_ABORT)
2199 		err = -EROFS;
2200 	else
2201 		journal->j_errno = 0;
2202 	write_unlock(&journal->j_state_lock);
2203 	return err;
2204 }
2205 
2206 /**
2207  * void jbd2_journal_ack_err() - Ack journal err.
2208  * @journal: journal to act on.
2209  *
2210  * An error must be cleared or acked to take a FS out of readonly
2211  * mode.
2212  */
2213 void jbd2_journal_ack_err(journal_t *journal)
2214 {
2215 	write_lock(&journal->j_state_lock);
2216 	if (journal->j_errno)
2217 		journal->j_flags |= JBD2_ACK_ERR;
2218 	write_unlock(&journal->j_state_lock);
2219 }
2220 
2221 int jbd2_journal_blocks_per_page(struct inode *inode)
2222 {
2223 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2224 }
2225 
2226 /*
2227  * helper functions to deal with 32 or 64bit block numbers.
2228  */
2229 size_t journal_tag_bytes(journal_t *journal)
2230 {
2231 	size_t sz;
2232 
2233 	if (jbd2_has_feature_csum3(journal))
2234 		return sizeof(journal_block_tag3_t);
2235 
2236 	sz = sizeof(journal_block_tag_t);
2237 
2238 	if (jbd2_has_feature_csum2(journal))
2239 		sz += sizeof(__u16);
2240 
2241 	if (jbd2_has_feature_64bit(journal))
2242 		return sz;
2243 	else
2244 		return sz - sizeof(__u32);
2245 }
2246 
2247 /*
2248  * JBD memory management
2249  *
2250  * These functions are used to allocate block-sized chunks of memory
2251  * used for making copies of buffer_head data.  Very often it will be
2252  * page-sized chunks of data, but sometimes it will be in
2253  * sub-page-size chunks.  (For example, 16k pages on Power systems
2254  * with a 4k block file system.)  For blocks smaller than a page, we
2255  * use a SLAB allocator.  There are slab caches for each block size,
2256  * which are allocated at mount time, if necessary, and we only free
2257  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2258  * this reason we don't need to a mutex to protect access to
2259  * jbd2_slab[] allocating or releasing memory; only in
2260  * jbd2_journal_create_slab().
2261  */
2262 #define JBD2_MAX_SLABS 8
2263 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2264 
2265 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2266 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2267 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2268 };
2269 
2270 
2271 static void jbd2_journal_destroy_slabs(void)
2272 {
2273 	int i;
2274 
2275 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2276 		if (jbd2_slab[i])
2277 			kmem_cache_destroy(jbd2_slab[i]);
2278 		jbd2_slab[i] = NULL;
2279 	}
2280 }
2281 
2282 static int jbd2_journal_create_slab(size_t size)
2283 {
2284 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2285 	int i = order_base_2(size) - 10;
2286 	size_t slab_size;
2287 
2288 	if (size == PAGE_SIZE)
2289 		return 0;
2290 
2291 	if (i >= JBD2_MAX_SLABS)
2292 		return -EINVAL;
2293 
2294 	if (unlikely(i < 0))
2295 		i = 0;
2296 	mutex_lock(&jbd2_slab_create_mutex);
2297 	if (jbd2_slab[i]) {
2298 		mutex_unlock(&jbd2_slab_create_mutex);
2299 		return 0;	/* Already created */
2300 	}
2301 
2302 	slab_size = 1 << (i+10);
2303 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2304 					 slab_size, 0, NULL);
2305 	mutex_unlock(&jbd2_slab_create_mutex);
2306 	if (!jbd2_slab[i]) {
2307 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2308 		return -ENOMEM;
2309 	}
2310 	return 0;
2311 }
2312 
2313 static struct kmem_cache *get_slab(size_t size)
2314 {
2315 	int i = order_base_2(size) - 10;
2316 
2317 	BUG_ON(i >= JBD2_MAX_SLABS);
2318 	if (unlikely(i < 0))
2319 		i = 0;
2320 	BUG_ON(jbd2_slab[i] == NULL);
2321 	return jbd2_slab[i];
2322 }
2323 
2324 void *jbd2_alloc(size_t size, gfp_t flags)
2325 {
2326 	void *ptr;
2327 
2328 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2329 
2330 	if (size < PAGE_SIZE)
2331 		ptr = kmem_cache_alloc(get_slab(size), flags);
2332 	else
2333 		ptr = (void *)__get_free_pages(flags, get_order(size));
2334 
2335 	/* Check alignment; SLUB has gotten this wrong in the past,
2336 	 * and this can lead to user data corruption! */
2337 	BUG_ON(((unsigned long) ptr) & (size-1));
2338 
2339 	return ptr;
2340 }
2341 
2342 void jbd2_free(void *ptr, size_t size)
2343 {
2344 	if (size < PAGE_SIZE)
2345 		kmem_cache_free(get_slab(size), ptr);
2346 	else
2347 		free_pages((unsigned long)ptr, get_order(size));
2348 };
2349 
2350 /*
2351  * Journal_head storage management
2352  */
2353 static struct kmem_cache *jbd2_journal_head_cache;
2354 #ifdef CONFIG_JBD2_DEBUG
2355 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2356 #endif
2357 
2358 static int jbd2_journal_init_journal_head_cache(void)
2359 {
2360 	int retval;
2361 
2362 	J_ASSERT(jbd2_journal_head_cache == NULL);
2363 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2364 				sizeof(struct journal_head),
2365 				0,		/* offset */
2366 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2367 				NULL);		/* ctor */
2368 	retval = 0;
2369 	if (!jbd2_journal_head_cache) {
2370 		retval = -ENOMEM;
2371 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2372 	}
2373 	return retval;
2374 }
2375 
2376 static void jbd2_journal_destroy_journal_head_cache(void)
2377 {
2378 	if (jbd2_journal_head_cache) {
2379 		kmem_cache_destroy(jbd2_journal_head_cache);
2380 		jbd2_journal_head_cache = NULL;
2381 	}
2382 }
2383 
2384 /*
2385  * journal_head splicing and dicing
2386  */
2387 static struct journal_head *journal_alloc_journal_head(void)
2388 {
2389 	struct journal_head *ret;
2390 
2391 #ifdef CONFIG_JBD2_DEBUG
2392 	atomic_inc(&nr_journal_heads);
2393 #endif
2394 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2395 	if (!ret) {
2396 		jbd_debug(1, "out of memory for journal_head\n");
2397 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2398 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2399 				GFP_NOFS | __GFP_NOFAIL);
2400 	}
2401 	return ret;
2402 }
2403 
2404 static void journal_free_journal_head(struct journal_head *jh)
2405 {
2406 #ifdef CONFIG_JBD2_DEBUG
2407 	atomic_dec(&nr_journal_heads);
2408 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2409 #endif
2410 	kmem_cache_free(jbd2_journal_head_cache, jh);
2411 }
2412 
2413 /*
2414  * A journal_head is attached to a buffer_head whenever JBD has an
2415  * interest in the buffer.
2416  *
2417  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2418  * is set.  This bit is tested in core kernel code where we need to take
2419  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2420  * there.
2421  *
2422  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2423  *
2424  * When a buffer has its BH_JBD bit set it is immune from being released by
2425  * core kernel code, mainly via ->b_count.
2426  *
2427  * A journal_head is detached from its buffer_head when the journal_head's
2428  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2429  * transaction (b_cp_transaction) hold their references to b_jcount.
2430  *
2431  * Various places in the kernel want to attach a journal_head to a buffer_head
2432  * _before_ attaching the journal_head to a transaction.  To protect the
2433  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2434  * journal_head's b_jcount refcount by one.  The caller must call
2435  * jbd2_journal_put_journal_head() to undo this.
2436  *
2437  * So the typical usage would be:
2438  *
2439  *	(Attach a journal_head if needed.  Increments b_jcount)
2440  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2441  *	...
2442  *      (Get another reference for transaction)
2443  *	jbd2_journal_grab_journal_head(bh);
2444  *	jh->b_transaction = xxx;
2445  *	(Put original reference)
2446  *	jbd2_journal_put_journal_head(jh);
2447  */
2448 
2449 /*
2450  * Give a buffer_head a journal_head.
2451  *
2452  * May sleep.
2453  */
2454 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2455 {
2456 	struct journal_head *jh;
2457 	struct journal_head *new_jh = NULL;
2458 
2459 repeat:
2460 	if (!buffer_jbd(bh))
2461 		new_jh = journal_alloc_journal_head();
2462 
2463 	jbd_lock_bh_journal_head(bh);
2464 	if (buffer_jbd(bh)) {
2465 		jh = bh2jh(bh);
2466 	} else {
2467 		J_ASSERT_BH(bh,
2468 			(atomic_read(&bh->b_count) > 0) ||
2469 			(bh->b_page && bh->b_page->mapping));
2470 
2471 		if (!new_jh) {
2472 			jbd_unlock_bh_journal_head(bh);
2473 			goto repeat;
2474 		}
2475 
2476 		jh = new_jh;
2477 		new_jh = NULL;		/* We consumed it */
2478 		set_buffer_jbd(bh);
2479 		bh->b_private = jh;
2480 		jh->b_bh = bh;
2481 		get_bh(bh);
2482 		BUFFER_TRACE(bh, "added journal_head");
2483 	}
2484 	jh->b_jcount++;
2485 	jbd_unlock_bh_journal_head(bh);
2486 	if (new_jh)
2487 		journal_free_journal_head(new_jh);
2488 	return bh->b_private;
2489 }
2490 
2491 /*
2492  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2493  * having a journal_head, return NULL
2494  */
2495 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2496 {
2497 	struct journal_head *jh = NULL;
2498 
2499 	jbd_lock_bh_journal_head(bh);
2500 	if (buffer_jbd(bh)) {
2501 		jh = bh2jh(bh);
2502 		jh->b_jcount++;
2503 	}
2504 	jbd_unlock_bh_journal_head(bh);
2505 	return jh;
2506 }
2507 
2508 static void __journal_remove_journal_head(struct buffer_head *bh)
2509 {
2510 	struct journal_head *jh = bh2jh(bh);
2511 
2512 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2513 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2514 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2515 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2516 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2517 	J_ASSERT_BH(bh, buffer_jbd(bh));
2518 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2519 	BUFFER_TRACE(bh, "remove journal_head");
2520 	if (jh->b_frozen_data) {
2521 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2522 		jbd2_free(jh->b_frozen_data, bh->b_size);
2523 	}
2524 	if (jh->b_committed_data) {
2525 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2526 		jbd2_free(jh->b_committed_data, bh->b_size);
2527 	}
2528 	bh->b_private = NULL;
2529 	jh->b_bh = NULL;	/* debug, really */
2530 	clear_buffer_jbd(bh);
2531 	journal_free_journal_head(jh);
2532 }
2533 
2534 /*
2535  * Drop a reference on the passed journal_head.  If it fell to zero then
2536  * release the journal_head from the buffer_head.
2537  */
2538 void jbd2_journal_put_journal_head(struct journal_head *jh)
2539 {
2540 	struct buffer_head *bh = jh2bh(jh);
2541 
2542 	jbd_lock_bh_journal_head(bh);
2543 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2544 	--jh->b_jcount;
2545 	if (!jh->b_jcount) {
2546 		__journal_remove_journal_head(bh);
2547 		jbd_unlock_bh_journal_head(bh);
2548 		__brelse(bh);
2549 	} else
2550 		jbd_unlock_bh_journal_head(bh);
2551 }
2552 
2553 /*
2554  * Initialize jbd inode head
2555  */
2556 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2557 {
2558 	jinode->i_transaction = NULL;
2559 	jinode->i_next_transaction = NULL;
2560 	jinode->i_vfs_inode = inode;
2561 	jinode->i_flags = 0;
2562 	INIT_LIST_HEAD(&jinode->i_list);
2563 }
2564 
2565 /*
2566  * Function to be called before we start removing inode from memory (i.e.,
2567  * clear_inode() is a fine place to be called from). It removes inode from
2568  * transaction's lists.
2569  */
2570 void jbd2_journal_release_jbd_inode(journal_t *journal,
2571 				    struct jbd2_inode *jinode)
2572 {
2573 	if (!journal)
2574 		return;
2575 restart:
2576 	spin_lock(&journal->j_list_lock);
2577 	/* Is commit writing out inode - we have to wait */
2578 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2579 		wait_queue_head_t *wq;
2580 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2581 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2582 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2583 		spin_unlock(&journal->j_list_lock);
2584 		schedule();
2585 		finish_wait(wq, &wait.wait);
2586 		goto restart;
2587 	}
2588 
2589 	if (jinode->i_transaction) {
2590 		list_del(&jinode->i_list);
2591 		jinode->i_transaction = NULL;
2592 	}
2593 	spin_unlock(&journal->j_list_lock);
2594 }
2595 
2596 
2597 #ifdef CONFIG_PROC_FS
2598 
2599 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2600 
2601 static void __init jbd2_create_jbd_stats_proc_entry(void)
2602 {
2603 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2604 }
2605 
2606 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2607 {
2608 	if (proc_jbd2_stats)
2609 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2610 }
2611 
2612 #else
2613 
2614 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2615 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2616 
2617 #endif
2618 
2619 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2620 
2621 static int __init jbd2_journal_init_handle_cache(void)
2622 {
2623 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2624 	if (jbd2_handle_cache == NULL) {
2625 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2626 		return -ENOMEM;
2627 	}
2628 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2629 	if (jbd2_inode_cache == NULL) {
2630 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2631 		kmem_cache_destroy(jbd2_handle_cache);
2632 		return -ENOMEM;
2633 	}
2634 	return 0;
2635 }
2636 
2637 static void jbd2_journal_destroy_handle_cache(void)
2638 {
2639 	if (jbd2_handle_cache)
2640 		kmem_cache_destroy(jbd2_handle_cache);
2641 	if (jbd2_inode_cache)
2642 		kmem_cache_destroy(jbd2_inode_cache);
2643 
2644 }
2645 
2646 /*
2647  * Module startup and shutdown
2648  */
2649 
2650 static int __init journal_init_caches(void)
2651 {
2652 	int ret;
2653 
2654 	ret = jbd2_journal_init_revoke_caches();
2655 	if (ret == 0)
2656 		ret = jbd2_journal_init_journal_head_cache();
2657 	if (ret == 0)
2658 		ret = jbd2_journal_init_handle_cache();
2659 	if (ret == 0)
2660 		ret = jbd2_journal_init_transaction_cache();
2661 	return ret;
2662 }
2663 
2664 static void jbd2_journal_destroy_caches(void)
2665 {
2666 	jbd2_journal_destroy_revoke_caches();
2667 	jbd2_journal_destroy_journal_head_cache();
2668 	jbd2_journal_destroy_handle_cache();
2669 	jbd2_journal_destroy_transaction_cache();
2670 	jbd2_journal_destroy_slabs();
2671 }
2672 
2673 static int __init journal_init(void)
2674 {
2675 	int ret;
2676 
2677 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2678 
2679 	ret = journal_init_caches();
2680 	if (ret == 0) {
2681 		jbd2_create_jbd_stats_proc_entry();
2682 	} else {
2683 		jbd2_journal_destroy_caches();
2684 	}
2685 	return ret;
2686 }
2687 
2688 static void __exit journal_exit(void)
2689 {
2690 #ifdef CONFIG_JBD2_DEBUG
2691 	int n = atomic_read(&nr_journal_heads);
2692 	if (n)
2693 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2694 #endif
2695 	jbd2_remove_jbd_stats_proc_entry();
2696 	jbd2_journal_destroy_caches();
2697 }
2698 
2699 MODULE_LICENSE("GPL");
2700 module_init(journal_init);
2701 module_exit(journal_exit);
2702 
2703