xref: /openbmc/linux/fs/jbd2/journal.c (revision f3956ebb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570  * calling process is not within transaction.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  *
575  * This is used for forcing out undo-protected data which contains
576  * bitmaps, when the fs is running out of space.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 	int ret;
581 
582 	ret = __jbd2_journal_force_commit(journal);
583 	return ret > 0;
584 }
585 
586 /**
587  * jbd2_journal_force_commit() - force any uncommitted transactions
588  * @journal: journal to force
589  *
590  * Caller want unconditional commit. We can only force the running transaction
591  * if we don't have an active handle, otherwise, we will deadlock.
592  */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 	int ret;
596 
597 	J_ASSERT(!current->journal_info);
598 	ret = __jbd2_journal_force_commit(journal);
599 	if (ret > 0)
600 		ret = 0;
601 	return ret;
602 }
603 
604 /*
605  * Start a commit of the current running transaction (if any).  Returns true
606  * if a transaction is going to be committed (or is currently already
607  * committing), and fills its tid in at *ptid
608  */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 	int ret = 0;
612 
613 	write_lock(&journal->j_state_lock);
614 	if (journal->j_running_transaction) {
615 		tid_t tid = journal->j_running_transaction->t_tid;
616 
617 		__jbd2_log_start_commit(journal, tid);
618 		/* There's a running transaction and we've just made sure
619 		 * it's commit has been scheduled. */
620 		if (ptid)
621 			*ptid = tid;
622 		ret = 1;
623 	} else if (journal->j_committing_transaction) {
624 		/*
625 		 * If commit has been started, then we have to wait for
626 		 * completion of that transaction.
627 		 */
628 		if (ptid)
629 			*ptid = journal->j_committing_transaction->t_tid;
630 		ret = 1;
631 	}
632 	write_unlock(&journal->j_state_lock);
633 	return ret;
634 }
635 
636 /*
637  * Return 1 if a given transaction has not yet sent barrier request
638  * connected with a transaction commit. If 0 is returned, transaction
639  * may or may not have sent the barrier. Used to avoid sending barrier
640  * twice in common cases.
641  */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 	int ret = 0;
645 	transaction_t *commit_trans;
646 
647 	if (!(journal->j_flags & JBD2_BARRIER))
648 		return 0;
649 	read_lock(&journal->j_state_lock);
650 	/* Transaction already committed? */
651 	if (tid_geq(journal->j_commit_sequence, tid))
652 		goto out;
653 	commit_trans = journal->j_committing_transaction;
654 	if (!commit_trans || commit_trans->t_tid != tid) {
655 		ret = 1;
656 		goto out;
657 	}
658 	/*
659 	 * Transaction is being committed and we already proceeded to
660 	 * submitting a flush to fs partition?
661 	 */
662 	if (journal->j_fs_dev != journal->j_dev) {
663 		if (!commit_trans->t_need_data_flush ||
664 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665 			goto out;
666 	} else {
667 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 			goto out;
669 	}
670 	ret = 1;
671 out:
672 	read_unlock(&journal->j_state_lock);
673 	return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676 
677 /*
678  * Wait for a specified commit to complete.
679  * The caller may not hold the journal lock.
680  */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 	int err = 0;
684 
685 	read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 	/*
688 	 * Some callers make sure transaction is already committing and in that
689 	 * case we cannot block on open handles anymore. So don't warn in that
690 	 * case.
691 	 */
692 	if (tid_gt(tid, journal->j_commit_sequence) &&
693 	    (!journal->j_committing_transaction ||
694 	     journal->j_committing_transaction->t_tid != tid)) {
695 		read_unlock(&journal->j_state_lock);
696 		jbd2_might_wait_for_commit(journal);
697 		read_lock(&journal->j_state_lock);
698 	}
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 	if (!tid_geq(journal->j_commit_request, tid)) {
702 		printk(KERN_ERR
703 		       "%s: error: j_commit_request=%u, tid=%u\n",
704 		       __func__, journal->j_commit_request, tid);
705 	}
706 #endif
707 	while (tid_gt(tid, journal->j_commit_sequence)) {
708 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 				  tid, journal->j_commit_sequence);
710 		read_unlock(&journal->j_state_lock);
711 		wake_up(&journal->j_wait_commit);
712 		wait_event(journal->j_wait_done_commit,
713 				!tid_gt(tid, journal->j_commit_sequence));
714 		read_lock(&journal->j_state_lock);
715 	}
716 	read_unlock(&journal->j_state_lock);
717 
718 	if (unlikely(is_journal_aborted(journal)))
719 		err = -EIO;
720 	return err;
721 }
722 
723 /*
724  * Start a fast commit. If there's an ongoing fast or full commit wait for
725  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726  * if a fast commit is not needed, either because there's an already a commit
727  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728  * commit has yet been performed.
729  */
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 	if (unlikely(is_journal_aborted(journal)))
733 		return -EIO;
734 	/*
735 	 * Fast commits only allowed if at least one full commit has
736 	 * been processed.
737 	 */
738 	if (!journal->j_stats.ts_tid)
739 		return -EINVAL;
740 
741 	write_lock(&journal->j_state_lock);
742 	if (tid <= journal->j_commit_sequence) {
743 		write_unlock(&journal->j_state_lock);
744 		return -EALREADY;
745 	}
746 
747 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 		DEFINE_WAIT(wait);
750 
751 		prepare_to_wait(&journal->j_fc_wait, &wait,
752 				TASK_UNINTERRUPTIBLE);
753 		write_unlock(&journal->j_state_lock);
754 		schedule();
755 		finish_wait(&journal->j_fc_wait, &wait);
756 		return -EALREADY;
757 	}
758 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 	write_unlock(&journal->j_state_lock);
760 
761 	return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764 
765 /*
766  * Stop a fast commit. If fallback is set, this function starts commit of
767  * TID tid before any other fast commit can start.
768  */
769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 	if (journal->j_fc_cleanup_callback)
772 		journal->j_fc_cleanup_callback(journal, 0);
773 	write_lock(&journal->j_state_lock);
774 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 	if (fallback)
776 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 	write_unlock(&journal->j_state_lock);
778 	wake_up(&journal->j_fc_wait);
779 	if (fallback)
780 		return jbd2_complete_transaction(journal, tid);
781 	return 0;
782 }
783 
784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 	return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789 
790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 	tid_t tid;
793 
794 	read_lock(&journal->j_state_lock);
795 	tid = journal->j_running_transaction ?
796 		journal->j_running_transaction->t_tid : 0;
797 	read_unlock(&journal->j_state_lock);
798 	return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801 
802 /* Return 1 when transaction with given tid has already committed. */
803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 	int ret = 1;
806 
807 	read_lock(&journal->j_state_lock);
808 	if (journal->j_running_transaction &&
809 	    journal->j_running_transaction->t_tid == tid)
810 		ret = 0;
811 	if (journal->j_committing_transaction &&
812 	    journal->j_committing_transaction->t_tid == tid)
813 		ret = 0;
814 	read_unlock(&journal->j_state_lock);
815 	return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818 
819 /*
820  * When this function returns the transaction corresponding to tid
821  * will be completed.  If the transaction has currently running, start
822  * committing that transaction before waiting for it to complete.  If
823  * the transaction id is stale, it is by definition already completed,
824  * so just return SUCCESS.
825  */
826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 	int	need_to_wait = 1;
829 
830 	read_lock(&journal->j_state_lock);
831 	if (journal->j_running_transaction &&
832 	    journal->j_running_transaction->t_tid == tid) {
833 		if (journal->j_commit_request != tid) {
834 			/* transaction not yet started, so request it */
835 			read_unlock(&journal->j_state_lock);
836 			jbd2_log_start_commit(journal, tid);
837 			goto wait_commit;
838 		}
839 	} else if (!(journal->j_committing_transaction &&
840 		     journal->j_committing_transaction->t_tid == tid))
841 		need_to_wait = 0;
842 	read_unlock(&journal->j_state_lock);
843 	if (!need_to_wait)
844 		return 0;
845 wait_commit:
846 	return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849 
850 /*
851  * Log buffer allocation routines:
852  */
853 
854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 	unsigned long blocknr;
857 
858 	write_lock(&journal->j_state_lock);
859 	J_ASSERT(journal->j_free > 1);
860 
861 	blocknr = journal->j_head;
862 	journal->j_head++;
863 	journal->j_free--;
864 	if (journal->j_head == journal->j_last)
865 		journal->j_head = journal->j_first;
866 	write_unlock(&journal->j_state_lock);
867 	return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869 
870 /* Map one fast commit buffer for use by the file system */
871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 	unsigned long long pblock;
874 	unsigned long blocknr;
875 	int ret = 0;
876 	struct buffer_head *bh;
877 	int fc_off;
878 
879 	*bh_out = NULL;
880 
881 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 		fc_off = journal->j_fc_off;
883 		blocknr = journal->j_fc_first + fc_off;
884 		journal->j_fc_off++;
885 	} else {
886 		ret = -EINVAL;
887 	}
888 
889 	if (ret)
890 		return ret;
891 
892 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 	if (ret)
894 		return ret;
895 
896 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 	if (!bh)
898 		return -ENOMEM;
899 
900 
901 	journal->j_fc_wbuf[fc_off] = bh;
902 
903 	*bh_out = bh;
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908 
909 /*
910  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911  * for completion.
912  */
913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 	struct buffer_head *bh;
916 	int i, j_fc_off;
917 
918 	j_fc_off = journal->j_fc_off;
919 
920 	/*
921 	 * Wait in reverse order to minimize chances of us being woken up before
922 	 * all IOs have completed
923 	 */
924 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 		bh = journal->j_fc_wbuf[i];
926 		wait_on_buffer(bh);
927 		put_bh(bh);
928 		journal->j_fc_wbuf[i] = NULL;
929 		if (unlikely(!buffer_uptodate(bh)))
930 			return -EIO;
931 	}
932 
933 	return 0;
934 }
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
936 
937 int jbd2_fc_release_bufs(journal_t *journal)
938 {
939 	struct buffer_head *bh;
940 	int i, j_fc_off;
941 
942 	j_fc_off = journal->j_fc_off;
943 
944 	for (i = j_fc_off - 1; i >= 0; i--) {
945 		bh = journal->j_fc_wbuf[i];
946 		if (!bh)
947 			break;
948 		put_bh(bh);
949 		journal->j_fc_wbuf[i] = NULL;
950 	}
951 
952 	return 0;
953 }
954 EXPORT_SYMBOL(jbd2_fc_release_bufs);
955 
956 /*
957  * Conversion of logical to physical block numbers for the journal
958  *
959  * On external journals the journal blocks are identity-mapped, so
960  * this is a no-op.  If needed, we can use j_blk_offset - everything is
961  * ready.
962  */
963 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
964 		 unsigned long long *retp)
965 {
966 	int err = 0;
967 	unsigned long long ret;
968 	sector_t block = 0;
969 
970 	if (journal->j_inode) {
971 		block = blocknr;
972 		ret = bmap(journal->j_inode, &block);
973 
974 		if (ret || !block) {
975 			printk(KERN_ALERT "%s: journal block not found "
976 					"at offset %lu on %s\n",
977 			       __func__, blocknr, journal->j_devname);
978 			err = -EIO;
979 			jbd2_journal_abort(journal, err);
980 		} else {
981 			*retp = block;
982 		}
983 
984 	} else {
985 		*retp = blocknr; /* +journal->j_blk_offset */
986 	}
987 	return err;
988 }
989 
990 /*
991  * We play buffer_head aliasing tricks to write data/metadata blocks to
992  * the journal without copying their contents, but for journal
993  * descriptor blocks we do need to generate bona fide buffers.
994  *
995  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
996  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
997  * But we don't bother doing that, so there will be coherency problems with
998  * mmaps of blockdevs which hold live JBD-controlled filesystems.
999  */
1000 struct buffer_head *
1001 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1002 {
1003 	journal_t *journal = transaction->t_journal;
1004 	struct buffer_head *bh;
1005 	unsigned long long blocknr;
1006 	journal_header_t *header;
1007 	int err;
1008 
1009 	err = jbd2_journal_next_log_block(journal, &blocknr);
1010 
1011 	if (err)
1012 		return NULL;
1013 
1014 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1015 	if (!bh)
1016 		return NULL;
1017 	atomic_dec(&transaction->t_outstanding_credits);
1018 	lock_buffer(bh);
1019 	memset(bh->b_data, 0, journal->j_blocksize);
1020 	header = (journal_header_t *)bh->b_data;
1021 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1022 	header->h_blocktype = cpu_to_be32(type);
1023 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1024 	set_buffer_uptodate(bh);
1025 	unlock_buffer(bh);
1026 	BUFFER_TRACE(bh, "return this buffer");
1027 	return bh;
1028 }
1029 
1030 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1031 {
1032 	struct jbd2_journal_block_tail *tail;
1033 	__u32 csum;
1034 
1035 	if (!jbd2_journal_has_csum_v2or3(j))
1036 		return;
1037 
1038 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1039 			sizeof(struct jbd2_journal_block_tail));
1040 	tail->t_checksum = 0;
1041 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1042 	tail->t_checksum = cpu_to_be32(csum);
1043 }
1044 
1045 /*
1046  * Return tid of the oldest transaction in the journal and block in the journal
1047  * where the transaction starts.
1048  *
1049  * If the journal is now empty, return which will be the next transaction ID
1050  * we will write and where will that transaction start.
1051  *
1052  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1053  * it can.
1054  */
1055 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1056 			      unsigned long *block)
1057 {
1058 	transaction_t *transaction;
1059 	int ret;
1060 
1061 	read_lock(&journal->j_state_lock);
1062 	spin_lock(&journal->j_list_lock);
1063 	transaction = journal->j_checkpoint_transactions;
1064 	if (transaction) {
1065 		*tid = transaction->t_tid;
1066 		*block = transaction->t_log_start;
1067 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1068 		*tid = transaction->t_tid;
1069 		*block = transaction->t_log_start;
1070 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1071 		*tid = transaction->t_tid;
1072 		*block = journal->j_head;
1073 	} else {
1074 		*tid = journal->j_transaction_sequence;
1075 		*block = journal->j_head;
1076 	}
1077 	ret = tid_gt(*tid, journal->j_tail_sequence);
1078 	spin_unlock(&journal->j_list_lock);
1079 	read_unlock(&journal->j_state_lock);
1080 
1081 	return ret;
1082 }
1083 
1084 /*
1085  * Update information in journal structure and in on disk journal superblock
1086  * about log tail. This function does not check whether information passed in
1087  * really pushes log tail further. It's responsibility of the caller to make
1088  * sure provided log tail information is valid (e.g. by holding
1089  * j_checkpoint_mutex all the time between computing log tail and calling this
1090  * function as is the case with jbd2_cleanup_journal_tail()).
1091  *
1092  * Requires j_checkpoint_mutex
1093  */
1094 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1095 {
1096 	unsigned long freed;
1097 	int ret;
1098 
1099 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1100 
1101 	/*
1102 	 * We cannot afford for write to remain in drive's caches since as
1103 	 * soon as we update j_tail, next transaction can start reusing journal
1104 	 * space and if we lose sb update during power failure we'd replay
1105 	 * old transaction with possibly newly overwritten data.
1106 	 */
1107 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1108 					      REQ_SYNC | REQ_FUA);
1109 	if (ret)
1110 		goto out;
1111 
1112 	write_lock(&journal->j_state_lock);
1113 	freed = block - journal->j_tail;
1114 	if (block < journal->j_tail)
1115 		freed += journal->j_last - journal->j_first;
1116 
1117 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1118 	jbd_debug(1,
1119 		  "Cleaning journal tail from %u to %u (offset %lu), "
1120 		  "freeing %lu\n",
1121 		  journal->j_tail_sequence, tid, block, freed);
1122 
1123 	journal->j_free += freed;
1124 	journal->j_tail_sequence = tid;
1125 	journal->j_tail = block;
1126 	write_unlock(&journal->j_state_lock);
1127 
1128 out:
1129 	return ret;
1130 }
1131 
1132 /*
1133  * This is a variation of __jbd2_update_log_tail which checks for validity of
1134  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1135  * with other threads updating log tail.
1136  */
1137 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1138 {
1139 	mutex_lock_io(&journal->j_checkpoint_mutex);
1140 	if (tid_gt(tid, journal->j_tail_sequence))
1141 		__jbd2_update_log_tail(journal, tid, block);
1142 	mutex_unlock(&journal->j_checkpoint_mutex);
1143 }
1144 
1145 struct jbd2_stats_proc_session {
1146 	journal_t *journal;
1147 	struct transaction_stats_s *stats;
1148 	int start;
1149 	int max;
1150 };
1151 
1152 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1153 {
1154 	return *pos ? NULL : SEQ_START_TOKEN;
1155 }
1156 
1157 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1158 {
1159 	(*pos)++;
1160 	return NULL;
1161 }
1162 
1163 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1164 {
1165 	struct jbd2_stats_proc_session *s = seq->private;
1166 
1167 	if (v != SEQ_START_TOKEN)
1168 		return 0;
1169 	seq_printf(seq, "%lu transactions (%lu requested), "
1170 		   "each up to %u blocks\n",
1171 		   s->stats->ts_tid, s->stats->ts_requested,
1172 		   s->journal->j_max_transaction_buffers);
1173 	if (s->stats->ts_tid == 0)
1174 		return 0;
1175 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1176 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1177 	seq_printf(seq, "  %ums request delay\n",
1178 	    (s->stats->ts_requested == 0) ? 0 :
1179 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1180 			     s->stats->ts_requested));
1181 	seq_printf(seq, "  %ums running transaction\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums transaction was being locked\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1185 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1186 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1187 	seq_printf(seq, "  %ums logging transaction\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1189 	seq_printf(seq, "  %lluus average transaction commit time\n",
1190 		   div_u64(s->journal->j_average_commit_time, 1000));
1191 	seq_printf(seq, "  %lu handles per transaction\n",
1192 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1193 	seq_printf(seq, "  %lu blocks per transaction\n",
1194 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1195 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1196 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1197 	return 0;
1198 }
1199 
1200 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1201 {
1202 }
1203 
1204 static const struct seq_operations jbd2_seq_info_ops = {
1205 	.start  = jbd2_seq_info_start,
1206 	.next   = jbd2_seq_info_next,
1207 	.stop   = jbd2_seq_info_stop,
1208 	.show   = jbd2_seq_info_show,
1209 };
1210 
1211 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1212 {
1213 	journal_t *journal = PDE_DATA(inode);
1214 	struct jbd2_stats_proc_session *s;
1215 	int rc, size;
1216 
1217 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1218 	if (s == NULL)
1219 		return -ENOMEM;
1220 	size = sizeof(struct transaction_stats_s);
1221 	s->stats = kmalloc(size, GFP_KERNEL);
1222 	if (s->stats == NULL) {
1223 		kfree(s);
1224 		return -ENOMEM;
1225 	}
1226 	spin_lock(&journal->j_history_lock);
1227 	memcpy(s->stats, &journal->j_stats, size);
1228 	s->journal = journal;
1229 	spin_unlock(&journal->j_history_lock);
1230 
1231 	rc = seq_open(file, &jbd2_seq_info_ops);
1232 	if (rc == 0) {
1233 		struct seq_file *m = file->private_data;
1234 		m->private = s;
1235 	} else {
1236 		kfree(s->stats);
1237 		kfree(s);
1238 	}
1239 	return rc;
1240 
1241 }
1242 
1243 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1244 {
1245 	struct seq_file *seq = file->private_data;
1246 	struct jbd2_stats_proc_session *s = seq->private;
1247 	kfree(s->stats);
1248 	kfree(s);
1249 	return seq_release(inode, file);
1250 }
1251 
1252 static const struct proc_ops jbd2_info_proc_ops = {
1253 	.proc_open	= jbd2_seq_info_open,
1254 	.proc_read	= seq_read,
1255 	.proc_lseek	= seq_lseek,
1256 	.proc_release	= jbd2_seq_info_release,
1257 };
1258 
1259 static struct proc_dir_entry *proc_jbd2_stats;
1260 
1261 static void jbd2_stats_proc_init(journal_t *journal)
1262 {
1263 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1264 	if (journal->j_proc_entry) {
1265 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1266 				 &jbd2_info_proc_ops, journal);
1267 	}
1268 }
1269 
1270 static void jbd2_stats_proc_exit(journal_t *journal)
1271 {
1272 	remove_proc_entry("info", journal->j_proc_entry);
1273 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1274 }
1275 
1276 /* Minimum size of descriptor tag */
1277 static int jbd2_min_tag_size(void)
1278 {
1279 	/*
1280 	 * Tag with 32-bit block numbers does not use last four bytes of the
1281 	 * structure
1282 	 */
1283 	return sizeof(journal_block_tag_t) - 4;
1284 }
1285 
1286 /**
1287  * jbd2_journal_shrink_scan()
1288  *
1289  * Scan the checkpointed buffer on the checkpoint list and release the
1290  * journal_head.
1291  */
1292 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1293 					      struct shrink_control *sc)
1294 {
1295 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1296 	unsigned long nr_to_scan = sc->nr_to_scan;
1297 	unsigned long nr_shrunk;
1298 	unsigned long count;
1299 
1300 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1301 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1302 
1303 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1304 
1305 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1306 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1307 
1308 	return nr_shrunk;
1309 }
1310 
1311 /**
1312  * jbd2_journal_shrink_count()
1313  *
1314  * Count the number of checkpoint buffers on the checkpoint list.
1315  */
1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 					       struct shrink_control *sc)
1318 {
1319 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 	unsigned long count;
1321 
1322 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324 
1325 	return count;
1326 }
1327 
1328 /*
1329  * Management for journal control blocks: functions to create and
1330  * destroy journal_t structures, and to initialise and read existing
1331  * journal blocks from disk.  */
1332 
1333 /* First: create and setup a journal_t object in memory.  We initialise
1334  * very few fields yet: that has to wait until we have created the
1335  * journal structures from from scratch, or loaded them from disk. */
1336 
1337 static journal_t *journal_init_common(struct block_device *bdev,
1338 			struct block_device *fs_dev,
1339 			unsigned long long start, int len, int blocksize)
1340 {
1341 	static struct lock_class_key jbd2_trans_commit_key;
1342 	journal_t *journal;
1343 	int err;
1344 	struct buffer_head *bh;
1345 	int n;
1346 
1347 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1348 	if (!journal)
1349 		return NULL;
1350 
1351 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1352 	init_waitqueue_head(&journal->j_wait_done_commit);
1353 	init_waitqueue_head(&journal->j_wait_commit);
1354 	init_waitqueue_head(&journal->j_wait_updates);
1355 	init_waitqueue_head(&journal->j_wait_reserved);
1356 	init_waitqueue_head(&journal->j_fc_wait);
1357 	mutex_init(&journal->j_abort_mutex);
1358 	mutex_init(&journal->j_barrier);
1359 	mutex_init(&journal->j_checkpoint_mutex);
1360 	spin_lock_init(&journal->j_revoke_lock);
1361 	spin_lock_init(&journal->j_list_lock);
1362 	rwlock_init(&journal->j_state_lock);
1363 
1364 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1365 	journal->j_min_batch_time = 0;
1366 	journal->j_max_batch_time = 15000; /* 15ms */
1367 	atomic_set(&journal->j_reserved_credits, 0);
1368 
1369 	/* The journal is marked for error until we succeed with recovery! */
1370 	journal->j_flags = JBD2_ABORT;
1371 
1372 	/* Set up a default-sized revoke table for the new mount. */
1373 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1374 	if (err)
1375 		goto err_cleanup;
1376 
1377 	spin_lock_init(&journal->j_history_lock);
1378 
1379 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1380 			 &jbd2_trans_commit_key, 0);
1381 
1382 	/* journal descriptor can store up to n blocks -bzzz */
1383 	journal->j_blocksize = blocksize;
1384 	journal->j_dev = bdev;
1385 	journal->j_fs_dev = fs_dev;
1386 	journal->j_blk_offset = start;
1387 	journal->j_total_len = len;
1388 	/* We need enough buffers to write out full descriptor block. */
1389 	n = journal->j_blocksize / jbd2_min_tag_size();
1390 	journal->j_wbufsize = n;
1391 	journal->j_fc_wbuf = NULL;
1392 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1393 					GFP_KERNEL);
1394 	if (!journal->j_wbuf)
1395 		goto err_cleanup;
1396 
1397 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1398 	if (!bh) {
1399 		pr_err("%s: Cannot get buffer for journal superblock\n",
1400 			__func__);
1401 		goto err_cleanup;
1402 	}
1403 	journal->j_sb_buffer = bh;
1404 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1405 
1406 	journal->j_shrink_transaction = NULL;
1407 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1408 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1409 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1410 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1411 
1412 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1413 		goto err_cleanup;
1414 
1415 	if (register_shrinker(&journal->j_shrinker)) {
1416 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1417 		goto err_cleanup;
1418 	}
1419 	return journal;
1420 
1421 err_cleanup:
1422 	brelse(journal->j_sb_buffer);
1423 	kfree(journal->j_wbuf);
1424 	jbd2_journal_destroy_revoke(journal);
1425 	kfree(journal);
1426 	return NULL;
1427 }
1428 
1429 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1430  *
1431  * Create a journal structure assigned some fixed set of disk blocks to
1432  * the journal.  We don't actually touch those disk blocks yet, but we
1433  * need to set up all of the mapping information to tell the journaling
1434  * system where the journal blocks are.
1435  *
1436  */
1437 
1438 /**
1439  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1440  *  @bdev: Block device on which to create the journal
1441  *  @fs_dev: Device which hold journalled filesystem for this journal.
1442  *  @start: Block nr Start of journal.
1443  *  @len:  Length of the journal in blocks.
1444  *  @blocksize: blocksize of journalling device
1445  *
1446  *  Returns: a newly created journal_t *
1447  *
1448  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1449  *  range of blocks on an arbitrary block device.
1450  *
1451  */
1452 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1453 			struct block_device *fs_dev,
1454 			unsigned long long start, int len, int blocksize)
1455 {
1456 	journal_t *journal;
1457 
1458 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1459 	if (!journal)
1460 		return NULL;
1461 
1462 	bdevname(journal->j_dev, journal->j_devname);
1463 	strreplace(journal->j_devname, '/', '!');
1464 	jbd2_stats_proc_init(journal);
1465 
1466 	return journal;
1467 }
1468 
1469 /**
1470  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1471  *  @inode: An inode to create the journal in
1472  *
1473  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1474  * the journal.  The inode must exist already, must support bmap() and
1475  * must have all data blocks preallocated.
1476  */
1477 journal_t *jbd2_journal_init_inode(struct inode *inode)
1478 {
1479 	journal_t *journal;
1480 	sector_t blocknr;
1481 	char *p;
1482 	int err = 0;
1483 
1484 	blocknr = 0;
1485 	err = bmap(inode, &blocknr);
1486 
1487 	if (err || !blocknr) {
1488 		pr_err("%s: Cannot locate journal superblock\n",
1489 			__func__);
1490 		return NULL;
1491 	}
1492 
1493 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1494 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1495 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1496 
1497 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1498 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1499 			inode->i_sb->s_blocksize);
1500 	if (!journal)
1501 		return NULL;
1502 
1503 	journal->j_inode = inode;
1504 	bdevname(journal->j_dev, journal->j_devname);
1505 	p = strreplace(journal->j_devname, '/', '!');
1506 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1507 	jbd2_stats_proc_init(journal);
1508 
1509 	return journal;
1510 }
1511 
1512 /*
1513  * If the journal init or create aborts, we need to mark the journal
1514  * superblock as being NULL to prevent the journal destroy from writing
1515  * back a bogus superblock.
1516  */
1517 static void journal_fail_superblock(journal_t *journal)
1518 {
1519 	struct buffer_head *bh = journal->j_sb_buffer;
1520 	brelse(bh);
1521 	journal->j_sb_buffer = NULL;
1522 }
1523 
1524 /*
1525  * Given a journal_t structure, initialise the various fields for
1526  * startup of a new journaling session.  We use this both when creating
1527  * a journal, and after recovering an old journal to reset it for
1528  * subsequent use.
1529  */
1530 
1531 static int journal_reset(journal_t *journal)
1532 {
1533 	journal_superblock_t *sb = journal->j_superblock;
1534 	unsigned long long first, last;
1535 
1536 	first = be32_to_cpu(sb->s_first);
1537 	last = be32_to_cpu(sb->s_maxlen);
1538 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1539 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1540 		       first, last);
1541 		journal_fail_superblock(journal);
1542 		return -EINVAL;
1543 	}
1544 
1545 	journal->j_first = first;
1546 	journal->j_last = last;
1547 
1548 	journal->j_head = journal->j_first;
1549 	journal->j_tail = journal->j_first;
1550 	journal->j_free = journal->j_last - journal->j_first;
1551 
1552 	journal->j_tail_sequence = journal->j_transaction_sequence;
1553 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1554 	journal->j_commit_request = journal->j_commit_sequence;
1555 
1556 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1557 
1558 	/*
1559 	 * Now that journal recovery is done, turn fast commits off here. This
1560 	 * way, if fast commit was enabled before the crash but if now FS has
1561 	 * disabled it, we don't enable fast commits.
1562 	 */
1563 	jbd2_clear_feature_fast_commit(journal);
1564 
1565 	/*
1566 	 * As a special case, if the on-disk copy is already marked as needing
1567 	 * no recovery (s_start == 0), then we can safely defer the superblock
1568 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1569 	 * attempting a write to a potential-readonly device.
1570 	 */
1571 	if (sb->s_start == 0) {
1572 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1573 			"(start %ld, seq %u, errno %d)\n",
1574 			journal->j_tail, journal->j_tail_sequence,
1575 			journal->j_errno);
1576 		journal->j_flags |= JBD2_FLUSHED;
1577 	} else {
1578 		/* Lock here to make assertions happy... */
1579 		mutex_lock_io(&journal->j_checkpoint_mutex);
1580 		/*
1581 		 * Update log tail information. We use REQ_FUA since new
1582 		 * transaction will start reusing journal space and so we
1583 		 * must make sure information about current log tail is on
1584 		 * disk before that.
1585 		 */
1586 		jbd2_journal_update_sb_log_tail(journal,
1587 						journal->j_tail_sequence,
1588 						journal->j_tail,
1589 						REQ_SYNC | REQ_FUA);
1590 		mutex_unlock(&journal->j_checkpoint_mutex);
1591 	}
1592 	return jbd2_journal_start_thread(journal);
1593 }
1594 
1595 /*
1596  * This function expects that the caller will have locked the journal
1597  * buffer head, and will return with it unlocked
1598  */
1599 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1600 {
1601 	struct buffer_head *bh = journal->j_sb_buffer;
1602 	journal_superblock_t *sb = journal->j_superblock;
1603 	int ret;
1604 
1605 	/* Buffer got discarded which means block device got invalidated */
1606 	if (!buffer_mapped(bh)) {
1607 		unlock_buffer(bh);
1608 		return -EIO;
1609 	}
1610 
1611 	trace_jbd2_write_superblock(journal, write_flags);
1612 	if (!(journal->j_flags & JBD2_BARRIER))
1613 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1614 	if (buffer_write_io_error(bh)) {
1615 		/*
1616 		 * Oh, dear.  A previous attempt to write the journal
1617 		 * superblock failed.  This could happen because the
1618 		 * USB device was yanked out.  Or it could happen to
1619 		 * be a transient write error and maybe the block will
1620 		 * be remapped.  Nothing we can do but to retry the
1621 		 * write and hope for the best.
1622 		 */
1623 		printk(KERN_ERR "JBD2: previous I/O error detected "
1624 		       "for journal superblock update for %s.\n",
1625 		       journal->j_devname);
1626 		clear_buffer_write_io_error(bh);
1627 		set_buffer_uptodate(bh);
1628 	}
1629 	if (jbd2_journal_has_csum_v2or3(journal))
1630 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1631 	get_bh(bh);
1632 	bh->b_end_io = end_buffer_write_sync;
1633 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1634 	wait_on_buffer(bh);
1635 	if (buffer_write_io_error(bh)) {
1636 		clear_buffer_write_io_error(bh);
1637 		set_buffer_uptodate(bh);
1638 		ret = -EIO;
1639 	}
1640 	if (ret) {
1641 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1642 		       "journal superblock for %s.\n", ret,
1643 		       journal->j_devname);
1644 		if (!is_journal_aborted(journal))
1645 			jbd2_journal_abort(journal, ret);
1646 	}
1647 
1648 	return ret;
1649 }
1650 
1651 /**
1652  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1653  * @journal: The journal to update.
1654  * @tail_tid: TID of the new transaction at the tail of the log
1655  * @tail_block: The first block of the transaction at the tail of the log
1656  * @write_op: With which operation should we write the journal sb
1657  *
1658  * Update a journal's superblock information about log tail and write it to
1659  * disk, waiting for the IO to complete.
1660  */
1661 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1662 				     unsigned long tail_block, int write_op)
1663 {
1664 	journal_superblock_t *sb = journal->j_superblock;
1665 	int ret;
1666 
1667 	if (is_journal_aborted(journal))
1668 		return -EIO;
1669 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1670 		jbd2_journal_abort(journal, -EIO);
1671 		return -EIO;
1672 	}
1673 
1674 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1675 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1676 		  tail_block, tail_tid);
1677 
1678 	lock_buffer(journal->j_sb_buffer);
1679 	sb->s_sequence = cpu_to_be32(tail_tid);
1680 	sb->s_start    = cpu_to_be32(tail_block);
1681 
1682 	ret = jbd2_write_superblock(journal, write_op);
1683 	if (ret)
1684 		goto out;
1685 
1686 	/* Log is no longer empty */
1687 	write_lock(&journal->j_state_lock);
1688 	WARN_ON(!sb->s_sequence);
1689 	journal->j_flags &= ~JBD2_FLUSHED;
1690 	write_unlock(&journal->j_state_lock);
1691 
1692 out:
1693 	return ret;
1694 }
1695 
1696 /**
1697  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1698  * @journal: The journal to update.
1699  * @write_op: With which operation should we write the journal sb
1700  *
1701  * Update a journal's dynamic superblock fields to show that journal is empty.
1702  * Write updated superblock to disk waiting for IO to complete.
1703  */
1704 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1705 {
1706 	journal_superblock_t *sb = journal->j_superblock;
1707 	bool had_fast_commit = false;
1708 
1709 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1710 	lock_buffer(journal->j_sb_buffer);
1711 	if (sb->s_start == 0) {		/* Is it already empty? */
1712 		unlock_buffer(journal->j_sb_buffer);
1713 		return;
1714 	}
1715 
1716 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1717 		  journal->j_tail_sequence);
1718 
1719 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1720 	sb->s_start    = cpu_to_be32(0);
1721 	if (jbd2_has_feature_fast_commit(journal)) {
1722 		/*
1723 		 * When journal is clean, no need to commit fast commit flag and
1724 		 * make file system incompatible with older kernels.
1725 		 */
1726 		jbd2_clear_feature_fast_commit(journal);
1727 		had_fast_commit = true;
1728 	}
1729 
1730 	jbd2_write_superblock(journal, write_op);
1731 
1732 	if (had_fast_commit)
1733 		jbd2_set_feature_fast_commit(journal);
1734 
1735 	/* Log is no longer empty */
1736 	write_lock(&journal->j_state_lock);
1737 	journal->j_flags |= JBD2_FLUSHED;
1738 	write_unlock(&journal->j_state_lock);
1739 }
1740 
1741 /**
1742  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1743  * @journal: The journal to erase.
1744  * @flags: A discard/zeroout request is sent for each physically contigous
1745  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1746  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1747  *	to perform.
1748  *
1749  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1750  * will be explicitly written if no hardware offload is available, see
1751  * blkdev_issue_zeroout for more details.
1752  */
1753 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1754 {
1755 	int err = 0;
1756 	unsigned long block, log_offset; /* logical */
1757 	unsigned long long phys_block, block_start, block_stop; /* physical */
1758 	loff_t byte_start, byte_stop, byte_count;
1759 	struct request_queue *q = bdev_get_queue(journal->j_dev);
1760 
1761 	/* flags must be set to either discard or zeroout */
1762 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1763 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1764 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1765 		return -EINVAL;
1766 
1767 	if (!q)
1768 		return -ENXIO;
1769 
1770 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q))
1771 		return -EOPNOTSUPP;
1772 
1773 	/*
1774 	 * lookup block mapping and issue discard/zeroout for each
1775 	 * contiguous region
1776 	 */
1777 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1778 	block_start =  ~0ULL;
1779 	for (block = log_offset; block < journal->j_total_len; block++) {
1780 		err = jbd2_journal_bmap(journal, block, &phys_block);
1781 		if (err) {
1782 			pr_err("JBD2: bad block at offset %lu", block);
1783 			return err;
1784 		}
1785 
1786 		if (block_start == ~0ULL) {
1787 			block_start = phys_block;
1788 			block_stop = block_start - 1;
1789 		}
1790 
1791 		/*
1792 		 * last block not contiguous with current block,
1793 		 * process last contiguous region and return to this block on
1794 		 * next loop
1795 		 */
1796 		if (phys_block != block_stop + 1) {
1797 			block--;
1798 		} else {
1799 			block_stop++;
1800 			/*
1801 			 * if this isn't the last block of journal,
1802 			 * no need to process now because next block may also
1803 			 * be part of this contiguous region
1804 			 */
1805 			if (block != journal->j_total_len - 1)
1806 				continue;
1807 		}
1808 
1809 		/*
1810 		 * end of contiguous region or this is last block of journal,
1811 		 * take care of the region
1812 		 */
1813 		byte_start = block_start * journal->j_blocksize;
1814 		byte_stop = block_stop * journal->j_blocksize;
1815 		byte_count = (block_stop - block_start + 1) *
1816 				journal->j_blocksize;
1817 
1818 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1819 				byte_start, byte_stop);
1820 
1821 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1822 			err = blkdev_issue_discard(journal->j_dev,
1823 					byte_start >> SECTOR_SHIFT,
1824 					byte_count >> SECTOR_SHIFT,
1825 					GFP_NOFS, 0);
1826 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1827 			err = blkdev_issue_zeroout(journal->j_dev,
1828 					byte_start >> SECTOR_SHIFT,
1829 					byte_count >> SECTOR_SHIFT,
1830 					GFP_NOFS, 0);
1831 		}
1832 
1833 		if (unlikely(err != 0)) {
1834 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1835 					err, block_start, block_stop);
1836 			return err;
1837 		}
1838 
1839 		/* reset start and stop after processing a region */
1840 		block_start = ~0ULL;
1841 	}
1842 
1843 	return blkdev_issue_flush(journal->j_dev);
1844 }
1845 
1846 /**
1847  * jbd2_journal_update_sb_errno() - Update error in the journal.
1848  * @journal: The journal to update.
1849  *
1850  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1851  * to complete.
1852  */
1853 void jbd2_journal_update_sb_errno(journal_t *journal)
1854 {
1855 	journal_superblock_t *sb = journal->j_superblock;
1856 	int errcode;
1857 
1858 	lock_buffer(journal->j_sb_buffer);
1859 	errcode = journal->j_errno;
1860 	if (errcode == -ESHUTDOWN)
1861 		errcode = 0;
1862 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1863 	sb->s_errno    = cpu_to_be32(errcode);
1864 
1865 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1866 }
1867 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1868 
1869 static int journal_revoke_records_per_block(journal_t *journal)
1870 {
1871 	int record_size;
1872 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1873 
1874 	if (jbd2_has_feature_64bit(journal))
1875 		record_size = 8;
1876 	else
1877 		record_size = 4;
1878 
1879 	if (jbd2_journal_has_csum_v2or3(journal))
1880 		space -= sizeof(struct jbd2_journal_block_tail);
1881 	return space / record_size;
1882 }
1883 
1884 /*
1885  * Read the superblock for a given journal, performing initial
1886  * validation of the format.
1887  */
1888 static int journal_get_superblock(journal_t *journal)
1889 {
1890 	struct buffer_head *bh;
1891 	journal_superblock_t *sb;
1892 	int err = -EIO;
1893 
1894 	bh = journal->j_sb_buffer;
1895 
1896 	J_ASSERT(bh != NULL);
1897 	if (!buffer_uptodate(bh)) {
1898 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1899 		wait_on_buffer(bh);
1900 		if (!buffer_uptodate(bh)) {
1901 			printk(KERN_ERR
1902 				"JBD2: IO error reading journal superblock\n");
1903 			goto out;
1904 		}
1905 	}
1906 
1907 	if (buffer_verified(bh))
1908 		return 0;
1909 
1910 	sb = journal->j_superblock;
1911 
1912 	err = -EINVAL;
1913 
1914 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1915 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1916 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1917 		goto out;
1918 	}
1919 
1920 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1921 	case JBD2_SUPERBLOCK_V1:
1922 		journal->j_format_version = 1;
1923 		break;
1924 	case JBD2_SUPERBLOCK_V2:
1925 		journal->j_format_version = 2;
1926 		break;
1927 	default:
1928 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1929 		goto out;
1930 	}
1931 
1932 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1933 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1934 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1935 		printk(KERN_WARNING "JBD2: journal file too short\n");
1936 		goto out;
1937 	}
1938 
1939 	if (be32_to_cpu(sb->s_first) == 0 ||
1940 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1941 		printk(KERN_WARNING
1942 			"JBD2: Invalid start block of journal: %u\n",
1943 			be32_to_cpu(sb->s_first));
1944 		goto out;
1945 	}
1946 
1947 	if (jbd2_has_feature_csum2(journal) &&
1948 	    jbd2_has_feature_csum3(journal)) {
1949 		/* Can't have checksum v2 and v3 at the same time! */
1950 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1951 		       "at the same time!\n");
1952 		goto out;
1953 	}
1954 
1955 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1956 	    jbd2_has_feature_checksum(journal)) {
1957 		/* Can't have checksum v1 and v2 on at the same time! */
1958 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1959 		       "at the same time!\n");
1960 		goto out;
1961 	}
1962 
1963 	if (!jbd2_verify_csum_type(journal, sb)) {
1964 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1965 		goto out;
1966 	}
1967 
1968 	/* Load the checksum driver */
1969 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1970 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1971 		if (IS_ERR(journal->j_chksum_driver)) {
1972 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1973 			err = PTR_ERR(journal->j_chksum_driver);
1974 			journal->j_chksum_driver = NULL;
1975 			goto out;
1976 		}
1977 	}
1978 
1979 	if (jbd2_journal_has_csum_v2or3(journal)) {
1980 		/* Check superblock checksum */
1981 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1982 			printk(KERN_ERR "JBD2: journal checksum error\n");
1983 			err = -EFSBADCRC;
1984 			goto out;
1985 		}
1986 
1987 		/* Precompute checksum seed for all metadata */
1988 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1989 						   sizeof(sb->s_uuid));
1990 	}
1991 
1992 	journal->j_revoke_records_per_block =
1993 				journal_revoke_records_per_block(journal);
1994 	set_buffer_verified(bh);
1995 
1996 	return 0;
1997 
1998 out:
1999 	journal_fail_superblock(journal);
2000 	return err;
2001 }
2002 
2003 /*
2004  * Load the on-disk journal superblock and read the key fields into the
2005  * journal_t.
2006  */
2007 
2008 static int load_superblock(journal_t *journal)
2009 {
2010 	int err;
2011 	journal_superblock_t *sb;
2012 	int num_fc_blocks;
2013 
2014 	err = journal_get_superblock(journal);
2015 	if (err)
2016 		return err;
2017 
2018 	sb = journal->j_superblock;
2019 
2020 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2021 	journal->j_tail = be32_to_cpu(sb->s_start);
2022 	journal->j_first = be32_to_cpu(sb->s_first);
2023 	journal->j_errno = be32_to_cpu(sb->s_errno);
2024 	journal->j_last = be32_to_cpu(sb->s_maxlen);
2025 
2026 	if (jbd2_has_feature_fast_commit(journal)) {
2027 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2028 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2029 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2030 			journal->j_last = journal->j_fc_last - num_fc_blocks;
2031 		journal->j_fc_first = journal->j_last + 1;
2032 		journal->j_fc_off = 0;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 
2039 /**
2040  * jbd2_journal_load() - Read journal from disk.
2041  * @journal: Journal to act on.
2042  *
2043  * Given a journal_t structure which tells us which disk blocks contain
2044  * a journal, read the journal from disk to initialise the in-memory
2045  * structures.
2046  */
2047 int jbd2_journal_load(journal_t *journal)
2048 {
2049 	int err;
2050 	journal_superblock_t *sb;
2051 
2052 	err = load_superblock(journal);
2053 	if (err)
2054 		return err;
2055 
2056 	sb = journal->j_superblock;
2057 	/* If this is a V2 superblock, then we have to check the
2058 	 * features flags on it. */
2059 
2060 	if (journal->j_format_version >= 2) {
2061 		if ((sb->s_feature_ro_compat &
2062 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2063 		    (sb->s_feature_incompat &
2064 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2065 			printk(KERN_WARNING
2066 				"JBD2: Unrecognised features on journal\n");
2067 			return -EINVAL;
2068 		}
2069 	}
2070 
2071 	/*
2072 	 * Create a slab for this blocksize
2073 	 */
2074 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2075 	if (err)
2076 		return err;
2077 
2078 	/* Let the recovery code check whether it needs to recover any
2079 	 * data from the journal. */
2080 	if (jbd2_journal_recover(journal))
2081 		goto recovery_error;
2082 
2083 	if (journal->j_failed_commit) {
2084 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2085 		       "is corrupt.\n", journal->j_failed_commit,
2086 		       journal->j_devname);
2087 		return -EFSCORRUPTED;
2088 	}
2089 	/*
2090 	 * clear JBD2_ABORT flag initialized in journal_init_common
2091 	 * here to update log tail information with the newest seq.
2092 	 */
2093 	journal->j_flags &= ~JBD2_ABORT;
2094 
2095 	/* OK, we've finished with the dynamic journal bits:
2096 	 * reinitialise the dynamic contents of the superblock in memory
2097 	 * and reset them on disk. */
2098 	if (journal_reset(journal))
2099 		goto recovery_error;
2100 
2101 	journal->j_flags |= JBD2_LOADED;
2102 	return 0;
2103 
2104 recovery_error:
2105 	printk(KERN_WARNING "JBD2: recovery failed\n");
2106 	return -EIO;
2107 }
2108 
2109 /**
2110  * jbd2_journal_destroy() - Release a journal_t structure.
2111  * @journal: Journal to act on.
2112  *
2113  * Release a journal_t structure once it is no longer in use by the
2114  * journaled object.
2115  * Return <0 if we couldn't clean up the journal.
2116  */
2117 int jbd2_journal_destroy(journal_t *journal)
2118 {
2119 	int err = 0;
2120 
2121 	/* Wait for the commit thread to wake up and die. */
2122 	journal_kill_thread(journal);
2123 
2124 	/* Force a final log commit */
2125 	if (journal->j_running_transaction)
2126 		jbd2_journal_commit_transaction(journal);
2127 
2128 	/* Force any old transactions to disk */
2129 
2130 	/* Totally anal locking here... */
2131 	spin_lock(&journal->j_list_lock);
2132 	while (journal->j_checkpoint_transactions != NULL) {
2133 		spin_unlock(&journal->j_list_lock);
2134 		mutex_lock_io(&journal->j_checkpoint_mutex);
2135 		err = jbd2_log_do_checkpoint(journal);
2136 		mutex_unlock(&journal->j_checkpoint_mutex);
2137 		/*
2138 		 * If checkpointing failed, just free the buffers to avoid
2139 		 * looping forever
2140 		 */
2141 		if (err) {
2142 			jbd2_journal_destroy_checkpoint(journal);
2143 			spin_lock(&journal->j_list_lock);
2144 			break;
2145 		}
2146 		spin_lock(&journal->j_list_lock);
2147 	}
2148 
2149 	J_ASSERT(journal->j_running_transaction == NULL);
2150 	J_ASSERT(journal->j_committing_transaction == NULL);
2151 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2152 	spin_unlock(&journal->j_list_lock);
2153 
2154 	/*
2155 	 * OK, all checkpoint transactions have been checked, now check the
2156 	 * write out io error flag and abort the journal if some buffer failed
2157 	 * to write back to the original location, otherwise the filesystem
2158 	 * may become inconsistent.
2159 	 */
2160 	if (!is_journal_aborted(journal) &&
2161 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2162 		jbd2_journal_abort(journal, -EIO);
2163 
2164 	if (journal->j_sb_buffer) {
2165 		if (!is_journal_aborted(journal)) {
2166 			mutex_lock_io(&journal->j_checkpoint_mutex);
2167 
2168 			write_lock(&journal->j_state_lock);
2169 			journal->j_tail_sequence =
2170 				++journal->j_transaction_sequence;
2171 			write_unlock(&journal->j_state_lock);
2172 
2173 			jbd2_mark_journal_empty(journal,
2174 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2175 			mutex_unlock(&journal->j_checkpoint_mutex);
2176 		} else
2177 			err = -EIO;
2178 		brelse(journal->j_sb_buffer);
2179 	}
2180 
2181 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2182 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2183 		unregister_shrinker(&journal->j_shrinker);
2184 	}
2185 	if (journal->j_proc_entry)
2186 		jbd2_stats_proc_exit(journal);
2187 	iput(journal->j_inode);
2188 	if (journal->j_revoke)
2189 		jbd2_journal_destroy_revoke(journal);
2190 	if (journal->j_chksum_driver)
2191 		crypto_free_shash(journal->j_chksum_driver);
2192 	kfree(journal->j_fc_wbuf);
2193 	kfree(journal->j_wbuf);
2194 	kfree(journal);
2195 
2196 	return err;
2197 }
2198 
2199 
2200 /**
2201  * jbd2_journal_check_used_features() - Check if features specified are used.
2202  * @journal: Journal to check.
2203  * @compat: bitmask of compatible features
2204  * @ro: bitmask of features that force read-only mount
2205  * @incompat: bitmask of incompatible features
2206  *
2207  * Check whether the journal uses all of a given set of
2208  * features.  Return true (non-zero) if it does.
2209  **/
2210 
2211 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2212 				 unsigned long ro, unsigned long incompat)
2213 {
2214 	journal_superblock_t *sb;
2215 
2216 	if (!compat && !ro && !incompat)
2217 		return 1;
2218 	/* Load journal superblock if it is not loaded yet. */
2219 	if (journal->j_format_version == 0 &&
2220 	    journal_get_superblock(journal) != 0)
2221 		return 0;
2222 	if (journal->j_format_version == 1)
2223 		return 0;
2224 
2225 	sb = journal->j_superblock;
2226 
2227 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2228 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2229 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2230 		return 1;
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2237  * @journal: Journal to check.
2238  * @compat: bitmask of compatible features
2239  * @ro: bitmask of features that force read-only mount
2240  * @incompat: bitmask of incompatible features
2241  *
2242  * Check whether the journaling code supports the use of
2243  * all of a given set of features on this journal.  Return true
2244  * (non-zero) if it can. */
2245 
2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2247 				      unsigned long ro, unsigned long incompat)
2248 {
2249 	if (!compat && !ro && !incompat)
2250 		return 1;
2251 
2252 	/* We can support any known requested features iff the
2253 	 * superblock is in version 2.  Otherwise we fail to support any
2254 	 * extended sb features. */
2255 
2256 	if (journal->j_format_version != 2)
2257 		return 0;
2258 
2259 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2260 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2261 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2262 		return 1;
2263 
2264 	return 0;
2265 }
2266 
2267 static int
2268 jbd2_journal_initialize_fast_commit(journal_t *journal)
2269 {
2270 	journal_superblock_t *sb = journal->j_superblock;
2271 	unsigned long long num_fc_blks;
2272 
2273 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2274 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2275 		return -ENOSPC;
2276 
2277 	/* Are we called twice? */
2278 	WARN_ON(journal->j_fc_wbuf != NULL);
2279 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2280 				sizeof(struct buffer_head *), GFP_KERNEL);
2281 	if (!journal->j_fc_wbuf)
2282 		return -ENOMEM;
2283 
2284 	journal->j_fc_wbufsize = num_fc_blks;
2285 	journal->j_fc_last = journal->j_last;
2286 	journal->j_last = journal->j_fc_last - num_fc_blks;
2287 	journal->j_fc_first = journal->j_last + 1;
2288 	journal->j_fc_off = 0;
2289 	journal->j_free = journal->j_last - journal->j_first;
2290 	journal->j_max_transaction_buffers =
2291 		jbd2_journal_get_max_txn_bufs(journal);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2298  * @journal: Journal to act on.
2299  * @compat: bitmask of compatible features
2300  * @ro: bitmask of features that force read-only mount
2301  * @incompat: bitmask of incompatible features
2302  *
2303  * Mark a given journal feature as present on the
2304  * superblock.  Returns true if the requested features could be set.
2305  *
2306  */
2307 
2308 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2309 			  unsigned long ro, unsigned long incompat)
2310 {
2311 #define INCOMPAT_FEATURE_ON(f) \
2312 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2313 #define COMPAT_FEATURE_ON(f) \
2314 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2315 	journal_superblock_t *sb;
2316 
2317 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2318 		return 1;
2319 
2320 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2321 		return 0;
2322 
2323 	/* If enabling v2 checksums, turn on v3 instead */
2324 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2325 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2326 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2327 	}
2328 
2329 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2330 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2331 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2332 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2333 
2334 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2335 		  compat, ro, incompat);
2336 
2337 	sb = journal->j_superblock;
2338 
2339 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2340 		if (jbd2_journal_initialize_fast_commit(journal)) {
2341 			pr_err("JBD2: Cannot enable fast commits.\n");
2342 			return 0;
2343 		}
2344 	}
2345 
2346 	/* Load the checksum driver if necessary */
2347 	if ((journal->j_chksum_driver == NULL) &&
2348 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2349 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2350 		if (IS_ERR(journal->j_chksum_driver)) {
2351 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2352 			journal->j_chksum_driver = NULL;
2353 			return 0;
2354 		}
2355 		/* Precompute checksum seed for all metadata */
2356 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2357 						   sizeof(sb->s_uuid));
2358 	}
2359 
2360 	lock_buffer(journal->j_sb_buffer);
2361 
2362 	/* If enabling v3 checksums, update superblock */
2363 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2364 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2365 		sb->s_feature_compat &=
2366 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2367 	}
2368 
2369 	/* If enabling v1 checksums, downgrade superblock */
2370 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2371 		sb->s_feature_incompat &=
2372 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2373 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2374 
2375 	sb->s_feature_compat    |= cpu_to_be32(compat);
2376 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2377 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2378 	unlock_buffer(journal->j_sb_buffer);
2379 	journal->j_revoke_records_per_block =
2380 				journal_revoke_records_per_block(journal);
2381 
2382 	return 1;
2383 #undef COMPAT_FEATURE_ON
2384 #undef INCOMPAT_FEATURE_ON
2385 }
2386 
2387 /*
2388  * jbd2_journal_clear_features() - Clear a given journal feature in the
2389  * 				    superblock
2390  * @journal: Journal to act on.
2391  * @compat: bitmask of compatible features
2392  * @ro: bitmask of features that force read-only mount
2393  * @incompat: bitmask of incompatible features
2394  *
2395  * Clear a given journal feature as present on the
2396  * superblock.
2397  */
2398 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2399 				unsigned long ro, unsigned long incompat)
2400 {
2401 	journal_superblock_t *sb;
2402 
2403 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2404 		  compat, ro, incompat);
2405 
2406 	sb = journal->j_superblock;
2407 
2408 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2409 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2410 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2411 	journal->j_revoke_records_per_block =
2412 				journal_revoke_records_per_block(journal);
2413 }
2414 EXPORT_SYMBOL(jbd2_journal_clear_features);
2415 
2416 /**
2417  * jbd2_journal_flush() - Flush journal
2418  * @journal: Journal to act on.
2419  * @flags: optional operation on the journal blocks after the flush (see below)
2420  *
2421  * Flush all data for a given journal to disk and empty the journal.
2422  * Filesystems can use this when remounting readonly to ensure that
2423  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2424  * can be issued on the journal blocks after flushing.
2425  *
2426  * flags:
2427  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2428  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2429  */
2430 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2431 {
2432 	int err = 0;
2433 	transaction_t *transaction = NULL;
2434 
2435 	write_lock(&journal->j_state_lock);
2436 
2437 	/* Force everything buffered to the log... */
2438 	if (journal->j_running_transaction) {
2439 		transaction = journal->j_running_transaction;
2440 		__jbd2_log_start_commit(journal, transaction->t_tid);
2441 	} else if (journal->j_committing_transaction)
2442 		transaction = journal->j_committing_transaction;
2443 
2444 	/* Wait for the log commit to complete... */
2445 	if (transaction) {
2446 		tid_t tid = transaction->t_tid;
2447 
2448 		write_unlock(&journal->j_state_lock);
2449 		jbd2_log_wait_commit(journal, tid);
2450 	} else {
2451 		write_unlock(&journal->j_state_lock);
2452 	}
2453 
2454 	/* ...and flush everything in the log out to disk. */
2455 	spin_lock(&journal->j_list_lock);
2456 	while (!err && journal->j_checkpoint_transactions != NULL) {
2457 		spin_unlock(&journal->j_list_lock);
2458 		mutex_lock_io(&journal->j_checkpoint_mutex);
2459 		err = jbd2_log_do_checkpoint(journal);
2460 		mutex_unlock(&journal->j_checkpoint_mutex);
2461 		spin_lock(&journal->j_list_lock);
2462 	}
2463 	spin_unlock(&journal->j_list_lock);
2464 
2465 	if (is_journal_aborted(journal))
2466 		return -EIO;
2467 
2468 	mutex_lock_io(&journal->j_checkpoint_mutex);
2469 	if (!err) {
2470 		err = jbd2_cleanup_journal_tail(journal);
2471 		if (err < 0) {
2472 			mutex_unlock(&journal->j_checkpoint_mutex);
2473 			goto out;
2474 		}
2475 		err = 0;
2476 	}
2477 
2478 	/* Finally, mark the journal as really needing no recovery.
2479 	 * This sets s_start==0 in the underlying superblock, which is
2480 	 * the magic code for a fully-recovered superblock.  Any future
2481 	 * commits of data to the journal will restore the current
2482 	 * s_start value. */
2483 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2484 
2485 	if (flags)
2486 		err = __jbd2_journal_erase(journal, flags);
2487 
2488 	mutex_unlock(&journal->j_checkpoint_mutex);
2489 	write_lock(&journal->j_state_lock);
2490 	J_ASSERT(!journal->j_running_transaction);
2491 	J_ASSERT(!journal->j_committing_transaction);
2492 	J_ASSERT(!journal->j_checkpoint_transactions);
2493 	J_ASSERT(journal->j_head == journal->j_tail);
2494 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2495 	write_unlock(&journal->j_state_lock);
2496 out:
2497 	return err;
2498 }
2499 
2500 /**
2501  * jbd2_journal_wipe() - Wipe journal contents
2502  * @journal: Journal to act on.
2503  * @write: flag (see below)
2504  *
2505  * Wipe out all of the contents of a journal, safely.  This will produce
2506  * a warning if the journal contains any valid recovery information.
2507  * Must be called between journal_init_*() and jbd2_journal_load().
2508  *
2509  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2510  * we merely suppress recovery.
2511  */
2512 
2513 int jbd2_journal_wipe(journal_t *journal, int write)
2514 {
2515 	int err = 0;
2516 
2517 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2518 
2519 	err = load_superblock(journal);
2520 	if (err)
2521 		return err;
2522 
2523 	if (!journal->j_tail)
2524 		goto no_recovery;
2525 
2526 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2527 		write ? "Clearing" : "Ignoring");
2528 
2529 	err = jbd2_journal_skip_recovery(journal);
2530 	if (write) {
2531 		/* Lock to make assertions happy... */
2532 		mutex_lock_io(&journal->j_checkpoint_mutex);
2533 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2534 		mutex_unlock(&journal->j_checkpoint_mutex);
2535 	}
2536 
2537  no_recovery:
2538 	return err;
2539 }
2540 
2541 /**
2542  * jbd2_journal_abort () - Shutdown the journal immediately.
2543  * @journal: the journal to shutdown.
2544  * @errno:   an error number to record in the journal indicating
2545  *           the reason for the shutdown.
2546  *
2547  * Perform a complete, immediate shutdown of the ENTIRE
2548  * journal (not of a single transaction).  This operation cannot be
2549  * undone without closing and reopening the journal.
2550  *
2551  * The jbd2_journal_abort function is intended to support higher level error
2552  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2553  * mode.
2554  *
2555  * Journal abort has very specific semantics.  Any existing dirty,
2556  * unjournaled buffers in the main filesystem will still be written to
2557  * disk by bdflush, but the journaling mechanism will be suspended
2558  * immediately and no further transaction commits will be honoured.
2559  *
2560  * Any dirty, journaled buffers will be written back to disk without
2561  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2562  * filesystem, but we _do_ attempt to leave as much data as possible
2563  * behind for fsck to use for cleanup.
2564  *
2565  * Any attempt to get a new transaction handle on a journal which is in
2566  * ABORT state will just result in an -EROFS error return.  A
2567  * jbd2_journal_stop on an existing handle will return -EIO if we have
2568  * entered abort state during the update.
2569  *
2570  * Recursive transactions are not disturbed by journal abort until the
2571  * final jbd2_journal_stop, which will receive the -EIO error.
2572  *
2573  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2574  * which will be recorded (if possible) in the journal superblock.  This
2575  * allows a client to record failure conditions in the middle of a
2576  * transaction without having to complete the transaction to record the
2577  * failure to disk.  ext3_error, for example, now uses this
2578  * functionality.
2579  *
2580  */
2581 
2582 void jbd2_journal_abort(journal_t *journal, int errno)
2583 {
2584 	transaction_t *transaction;
2585 
2586 	/*
2587 	 * Lock the aborting procedure until everything is done, this avoid
2588 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2589 	 * ensure panic after the error info is written into journal's
2590 	 * superblock.
2591 	 */
2592 	mutex_lock(&journal->j_abort_mutex);
2593 	/*
2594 	 * ESHUTDOWN always takes precedence because a file system check
2595 	 * caused by any other journal abort error is not required after
2596 	 * a shutdown triggered.
2597 	 */
2598 	write_lock(&journal->j_state_lock);
2599 	if (journal->j_flags & JBD2_ABORT) {
2600 		int old_errno = journal->j_errno;
2601 
2602 		write_unlock(&journal->j_state_lock);
2603 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2604 			journal->j_errno = errno;
2605 			jbd2_journal_update_sb_errno(journal);
2606 		}
2607 		mutex_unlock(&journal->j_abort_mutex);
2608 		return;
2609 	}
2610 
2611 	/*
2612 	 * Mark the abort as occurred and start current running transaction
2613 	 * to release all journaled buffer.
2614 	 */
2615 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2616 
2617 	journal->j_flags |= JBD2_ABORT;
2618 	journal->j_errno = errno;
2619 	transaction = journal->j_running_transaction;
2620 	if (transaction)
2621 		__jbd2_log_start_commit(journal, transaction->t_tid);
2622 	write_unlock(&journal->j_state_lock);
2623 
2624 	/*
2625 	 * Record errno to the journal super block, so that fsck and jbd2
2626 	 * layer could realise that a filesystem check is needed.
2627 	 */
2628 	jbd2_journal_update_sb_errno(journal);
2629 	mutex_unlock(&journal->j_abort_mutex);
2630 }
2631 
2632 /**
2633  * jbd2_journal_errno() - returns the journal's error state.
2634  * @journal: journal to examine.
2635  *
2636  * This is the errno number set with jbd2_journal_abort(), the last
2637  * time the journal was mounted - if the journal was stopped
2638  * without calling abort this will be 0.
2639  *
2640  * If the journal has been aborted on this mount time -EROFS will
2641  * be returned.
2642  */
2643 int jbd2_journal_errno(journal_t *journal)
2644 {
2645 	int err;
2646 
2647 	read_lock(&journal->j_state_lock);
2648 	if (journal->j_flags & JBD2_ABORT)
2649 		err = -EROFS;
2650 	else
2651 		err = journal->j_errno;
2652 	read_unlock(&journal->j_state_lock);
2653 	return err;
2654 }
2655 
2656 /**
2657  * jbd2_journal_clear_err() - clears the journal's error state
2658  * @journal: journal to act on.
2659  *
2660  * An error must be cleared or acked to take a FS out of readonly
2661  * mode.
2662  */
2663 int jbd2_journal_clear_err(journal_t *journal)
2664 {
2665 	int err = 0;
2666 
2667 	write_lock(&journal->j_state_lock);
2668 	if (journal->j_flags & JBD2_ABORT)
2669 		err = -EROFS;
2670 	else
2671 		journal->j_errno = 0;
2672 	write_unlock(&journal->j_state_lock);
2673 	return err;
2674 }
2675 
2676 /**
2677  * jbd2_journal_ack_err() - Ack journal err.
2678  * @journal: journal to act on.
2679  *
2680  * An error must be cleared or acked to take a FS out of readonly
2681  * mode.
2682  */
2683 void jbd2_journal_ack_err(journal_t *journal)
2684 {
2685 	write_lock(&journal->j_state_lock);
2686 	if (journal->j_errno)
2687 		journal->j_flags |= JBD2_ACK_ERR;
2688 	write_unlock(&journal->j_state_lock);
2689 }
2690 
2691 int jbd2_journal_blocks_per_page(struct inode *inode)
2692 {
2693 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2694 }
2695 
2696 /*
2697  * helper functions to deal with 32 or 64bit block numbers.
2698  */
2699 size_t journal_tag_bytes(journal_t *journal)
2700 {
2701 	size_t sz;
2702 
2703 	if (jbd2_has_feature_csum3(journal))
2704 		return sizeof(journal_block_tag3_t);
2705 
2706 	sz = sizeof(journal_block_tag_t);
2707 
2708 	if (jbd2_has_feature_csum2(journal))
2709 		sz += sizeof(__u16);
2710 
2711 	if (jbd2_has_feature_64bit(journal))
2712 		return sz;
2713 	else
2714 		return sz - sizeof(__u32);
2715 }
2716 
2717 /*
2718  * JBD memory management
2719  *
2720  * These functions are used to allocate block-sized chunks of memory
2721  * used for making copies of buffer_head data.  Very often it will be
2722  * page-sized chunks of data, but sometimes it will be in
2723  * sub-page-size chunks.  (For example, 16k pages on Power systems
2724  * with a 4k block file system.)  For blocks smaller than a page, we
2725  * use a SLAB allocator.  There are slab caches for each block size,
2726  * which are allocated at mount time, if necessary, and we only free
2727  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2728  * this reason we don't need to a mutex to protect access to
2729  * jbd2_slab[] allocating or releasing memory; only in
2730  * jbd2_journal_create_slab().
2731  */
2732 #define JBD2_MAX_SLABS 8
2733 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2734 
2735 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2736 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2737 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2738 };
2739 
2740 
2741 static void jbd2_journal_destroy_slabs(void)
2742 {
2743 	int i;
2744 
2745 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2746 		kmem_cache_destroy(jbd2_slab[i]);
2747 		jbd2_slab[i] = NULL;
2748 	}
2749 }
2750 
2751 static int jbd2_journal_create_slab(size_t size)
2752 {
2753 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2754 	int i = order_base_2(size) - 10;
2755 	size_t slab_size;
2756 
2757 	if (size == PAGE_SIZE)
2758 		return 0;
2759 
2760 	if (i >= JBD2_MAX_SLABS)
2761 		return -EINVAL;
2762 
2763 	if (unlikely(i < 0))
2764 		i = 0;
2765 	mutex_lock(&jbd2_slab_create_mutex);
2766 	if (jbd2_slab[i]) {
2767 		mutex_unlock(&jbd2_slab_create_mutex);
2768 		return 0;	/* Already created */
2769 	}
2770 
2771 	slab_size = 1 << (i+10);
2772 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2773 					 slab_size, 0, NULL);
2774 	mutex_unlock(&jbd2_slab_create_mutex);
2775 	if (!jbd2_slab[i]) {
2776 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2777 		return -ENOMEM;
2778 	}
2779 	return 0;
2780 }
2781 
2782 static struct kmem_cache *get_slab(size_t size)
2783 {
2784 	int i = order_base_2(size) - 10;
2785 
2786 	BUG_ON(i >= JBD2_MAX_SLABS);
2787 	if (unlikely(i < 0))
2788 		i = 0;
2789 	BUG_ON(jbd2_slab[i] == NULL);
2790 	return jbd2_slab[i];
2791 }
2792 
2793 void *jbd2_alloc(size_t size, gfp_t flags)
2794 {
2795 	void *ptr;
2796 
2797 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2798 
2799 	if (size < PAGE_SIZE)
2800 		ptr = kmem_cache_alloc(get_slab(size), flags);
2801 	else
2802 		ptr = (void *)__get_free_pages(flags, get_order(size));
2803 
2804 	/* Check alignment; SLUB has gotten this wrong in the past,
2805 	 * and this can lead to user data corruption! */
2806 	BUG_ON(((unsigned long) ptr) & (size-1));
2807 
2808 	return ptr;
2809 }
2810 
2811 void jbd2_free(void *ptr, size_t size)
2812 {
2813 	if (size < PAGE_SIZE)
2814 		kmem_cache_free(get_slab(size), ptr);
2815 	else
2816 		free_pages((unsigned long)ptr, get_order(size));
2817 };
2818 
2819 /*
2820  * Journal_head storage management
2821  */
2822 static struct kmem_cache *jbd2_journal_head_cache;
2823 #ifdef CONFIG_JBD2_DEBUG
2824 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2825 #endif
2826 
2827 static int __init jbd2_journal_init_journal_head_cache(void)
2828 {
2829 	J_ASSERT(!jbd2_journal_head_cache);
2830 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2831 				sizeof(struct journal_head),
2832 				0,		/* offset */
2833 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2834 				NULL);		/* ctor */
2835 	if (!jbd2_journal_head_cache) {
2836 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2837 		return -ENOMEM;
2838 	}
2839 	return 0;
2840 }
2841 
2842 static void jbd2_journal_destroy_journal_head_cache(void)
2843 {
2844 	kmem_cache_destroy(jbd2_journal_head_cache);
2845 	jbd2_journal_head_cache = NULL;
2846 }
2847 
2848 /*
2849  * journal_head splicing and dicing
2850  */
2851 static struct journal_head *journal_alloc_journal_head(void)
2852 {
2853 	struct journal_head *ret;
2854 
2855 #ifdef CONFIG_JBD2_DEBUG
2856 	atomic_inc(&nr_journal_heads);
2857 #endif
2858 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2859 	if (!ret) {
2860 		jbd_debug(1, "out of memory for journal_head\n");
2861 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2862 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2863 				GFP_NOFS | __GFP_NOFAIL);
2864 	}
2865 	if (ret)
2866 		spin_lock_init(&ret->b_state_lock);
2867 	return ret;
2868 }
2869 
2870 static void journal_free_journal_head(struct journal_head *jh)
2871 {
2872 #ifdef CONFIG_JBD2_DEBUG
2873 	atomic_dec(&nr_journal_heads);
2874 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2875 #endif
2876 	kmem_cache_free(jbd2_journal_head_cache, jh);
2877 }
2878 
2879 /*
2880  * A journal_head is attached to a buffer_head whenever JBD has an
2881  * interest in the buffer.
2882  *
2883  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2884  * is set.  This bit is tested in core kernel code where we need to take
2885  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2886  * there.
2887  *
2888  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2889  *
2890  * When a buffer has its BH_JBD bit set it is immune from being released by
2891  * core kernel code, mainly via ->b_count.
2892  *
2893  * A journal_head is detached from its buffer_head when the journal_head's
2894  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2895  * transaction (b_cp_transaction) hold their references to b_jcount.
2896  *
2897  * Various places in the kernel want to attach a journal_head to a buffer_head
2898  * _before_ attaching the journal_head to a transaction.  To protect the
2899  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2900  * journal_head's b_jcount refcount by one.  The caller must call
2901  * jbd2_journal_put_journal_head() to undo this.
2902  *
2903  * So the typical usage would be:
2904  *
2905  *	(Attach a journal_head if needed.  Increments b_jcount)
2906  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2907  *	...
2908  *      (Get another reference for transaction)
2909  *	jbd2_journal_grab_journal_head(bh);
2910  *	jh->b_transaction = xxx;
2911  *	(Put original reference)
2912  *	jbd2_journal_put_journal_head(jh);
2913  */
2914 
2915 /*
2916  * Give a buffer_head a journal_head.
2917  *
2918  * May sleep.
2919  */
2920 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2921 {
2922 	struct journal_head *jh;
2923 	struct journal_head *new_jh = NULL;
2924 
2925 repeat:
2926 	if (!buffer_jbd(bh))
2927 		new_jh = journal_alloc_journal_head();
2928 
2929 	jbd_lock_bh_journal_head(bh);
2930 	if (buffer_jbd(bh)) {
2931 		jh = bh2jh(bh);
2932 	} else {
2933 		J_ASSERT_BH(bh,
2934 			(atomic_read(&bh->b_count) > 0) ||
2935 			(bh->b_page && bh->b_page->mapping));
2936 
2937 		if (!new_jh) {
2938 			jbd_unlock_bh_journal_head(bh);
2939 			goto repeat;
2940 		}
2941 
2942 		jh = new_jh;
2943 		new_jh = NULL;		/* We consumed it */
2944 		set_buffer_jbd(bh);
2945 		bh->b_private = jh;
2946 		jh->b_bh = bh;
2947 		get_bh(bh);
2948 		BUFFER_TRACE(bh, "added journal_head");
2949 	}
2950 	jh->b_jcount++;
2951 	jbd_unlock_bh_journal_head(bh);
2952 	if (new_jh)
2953 		journal_free_journal_head(new_jh);
2954 	return bh->b_private;
2955 }
2956 
2957 /*
2958  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2959  * having a journal_head, return NULL
2960  */
2961 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2962 {
2963 	struct journal_head *jh = NULL;
2964 
2965 	jbd_lock_bh_journal_head(bh);
2966 	if (buffer_jbd(bh)) {
2967 		jh = bh2jh(bh);
2968 		jh->b_jcount++;
2969 	}
2970 	jbd_unlock_bh_journal_head(bh);
2971 	return jh;
2972 }
2973 
2974 static void __journal_remove_journal_head(struct buffer_head *bh)
2975 {
2976 	struct journal_head *jh = bh2jh(bh);
2977 
2978 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2979 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2980 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2981 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2982 	J_ASSERT_BH(bh, buffer_jbd(bh));
2983 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2984 	BUFFER_TRACE(bh, "remove journal_head");
2985 
2986 	/* Unlink before dropping the lock */
2987 	bh->b_private = NULL;
2988 	jh->b_bh = NULL;	/* debug, really */
2989 	clear_buffer_jbd(bh);
2990 }
2991 
2992 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2993 {
2994 	if (jh->b_frozen_data) {
2995 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2996 		jbd2_free(jh->b_frozen_data, b_size);
2997 	}
2998 	if (jh->b_committed_data) {
2999 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3000 		jbd2_free(jh->b_committed_data, b_size);
3001 	}
3002 	journal_free_journal_head(jh);
3003 }
3004 
3005 /*
3006  * Drop a reference on the passed journal_head.  If it fell to zero then
3007  * release the journal_head from the buffer_head.
3008  */
3009 void jbd2_journal_put_journal_head(struct journal_head *jh)
3010 {
3011 	struct buffer_head *bh = jh2bh(jh);
3012 
3013 	jbd_lock_bh_journal_head(bh);
3014 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3015 	--jh->b_jcount;
3016 	if (!jh->b_jcount) {
3017 		__journal_remove_journal_head(bh);
3018 		jbd_unlock_bh_journal_head(bh);
3019 		journal_release_journal_head(jh, bh->b_size);
3020 		__brelse(bh);
3021 	} else {
3022 		jbd_unlock_bh_journal_head(bh);
3023 	}
3024 }
3025 
3026 /*
3027  * Initialize jbd inode head
3028  */
3029 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3030 {
3031 	jinode->i_transaction = NULL;
3032 	jinode->i_next_transaction = NULL;
3033 	jinode->i_vfs_inode = inode;
3034 	jinode->i_flags = 0;
3035 	jinode->i_dirty_start = 0;
3036 	jinode->i_dirty_end = 0;
3037 	INIT_LIST_HEAD(&jinode->i_list);
3038 }
3039 
3040 /*
3041  * Function to be called before we start removing inode from memory (i.e.,
3042  * clear_inode() is a fine place to be called from). It removes inode from
3043  * transaction's lists.
3044  */
3045 void jbd2_journal_release_jbd_inode(journal_t *journal,
3046 				    struct jbd2_inode *jinode)
3047 {
3048 	if (!journal)
3049 		return;
3050 restart:
3051 	spin_lock(&journal->j_list_lock);
3052 	/* Is commit writing out inode - we have to wait */
3053 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3054 		wait_queue_head_t *wq;
3055 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3056 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3057 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3058 		spin_unlock(&journal->j_list_lock);
3059 		schedule();
3060 		finish_wait(wq, &wait.wq_entry);
3061 		goto restart;
3062 	}
3063 
3064 	if (jinode->i_transaction) {
3065 		list_del(&jinode->i_list);
3066 		jinode->i_transaction = NULL;
3067 	}
3068 	spin_unlock(&journal->j_list_lock);
3069 }
3070 
3071 
3072 #ifdef CONFIG_PROC_FS
3073 
3074 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3075 
3076 static void __init jbd2_create_jbd_stats_proc_entry(void)
3077 {
3078 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3079 }
3080 
3081 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3082 {
3083 	if (proc_jbd2_stats)
3084 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3085 }
3086 
3087 #else
3088 
3089 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3090 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3091 
3092 #endif
3093 
3094 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3095 
3096 static int __init jbd2_journal_init_inode_cache(void)
3097 {
3098 	J_ASSERT(!jbd2_inode_cache);
3099 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3100 	if (!jbd2_inode_cache) {
3101 		pr_emerg("JBD2: failed to create inode cache\n");
3102 		return -ENOMEM;
3103 	}
3104 	return 0;
3105 }
3106 
3107 static int __init jbd2_journal_init_handle_cache(void)
3108 {
3109 	J_ASSERT(!jbd2_handle_cache);
3110 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3111 	if (!jbd2_handle_cache) {
3112 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3113 		return -ENOMEM;
3114 	}
3115 	return 0;
3116 }
3117 
3118 static void jbd2_journal_destroy_inode_cache(void)
3119 {
3120 	kmem_cache_destroy(jbd2_inode_cache);
3121 	jbd2_inode_cache = NULL;
3122 }
3123 
3124 static void jbd2_journal_destroy_handle_cache(void)
3125 {
3126 	kmem_cache_destroy(jbd2_handle_cache);
3127 	jbd2_handle_cache = NULL;
3128 }
3129 
3130 /*
3131  * Module startup and shutdown
3132  */
3133 
3134 static int __init journal_init_caches(void)
3135 {
3136 	int ret;
3137 
3138 	ret = jbd2_journal_init_revoke_record_cache();
3139 	if (ret == 0)
3140 		ret = jbd2_journal_init_revoke_table_cache();
3141 	if (ret == 0)
3142 		ret = jbd2_journal_init_journal_head_cache();
3143 	if (ret == 0)
3144 		ret = jbd2_journal_init_handle_cache();
3145 	if (ret == 0)
3146 		ret = jbd2_journal_init_inode_cache();
3147 	if (ret == 0)
3148 		ret = jbd2_journal_init_transaction_cache();
3149 	return ret;
3150 }
3151 
3152 static void jbd2_journal_destroy_caches(void)
3153 {
3154 	jbd2_journal_destroy_revoke_record_cache();
3155 	jbd2_journal_destroy_revoke_table_cache();
3156 	jbd2_journal_destroy_journal_head_cache();
3157 	jbd2_journal_destroy_handle_cache();
3158 	jbd2_journal_destroy_inode_cache();
3159 	jbd2_journal_destroy_transaction_cache();
3160 	jbd2_journal_destroy_slabs();
3161 }
3162 
3163 static int __init journal_init(void)
3164 {
3165 	int ret;
3166 
3167 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3168 
3169 	ret = journal_init_caches();
3170 	if (ret == 0) {
3171 		jbd2_create_jbd_stats_proc_entry();
3172 	} else {
3173 		jbd2_journal_destroy_caches();
3174 	}
3175 	return ret;
3176 }
3177 
3178 static void __exit journal_exit(void)
3179 {
3180 #ifdef CONFIG_JBD2_DEBUG
3181 	int n = atomic_read(&nr_journal_heads);
3182 	if (n)
3183 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3184 #endif
3185 	jbd2_remove_jbd_stats_proc_entry();
3186 	jbd2_journal_destroy_caches();
3187 }
3188 
3189 MODULE_LICENSE("GPL");
3190 module_init(journal_init);
3191 module_exit(journal_exit);
3192 
3193