xref: /openbmc/linux/fs/jbd2/journal.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101 
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104 		  unsigned int line, const char *fmt, ...)
105 {
106 	struct va_format vaf;
107 	va_list args;
108 
109 	if (level > jbd2_journal_enable_debug)
110 		return;
111 	va_start(args, fmt);
112 	vaf.fmt = fmt;
113 	vaf.va = &args;
114 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115 	va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119 
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123 	if (!jbd2_journal_has_csum_v2or3_feature(j))
124 		return 1;
125 
126 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128 
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131 	__u32 csum;
132 	__be32 old_csum;
133 
134 	old_csum = sb->s_checksum;
135 	sb->s_checksum = 0;
136 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137 	sb->s_checksum = old_csum;
138 
139 	return cpu_to_be32(csum);
140 }
141 
142 /*
143  * Helper function used to manage commit timeouts
144  */
145 
146 static void commit_timeout(struct timer_list *t)
147 {
148 	journal_t *journal = from_timer(journal, t, j_commit_timer);
149 
150 	wake_up_process(journal->j_task);
151 }
152 
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168 
169 static int kjournald2(void *arg)
170 {
171 	journal_t *journal = arg;
172 	transaction_t *transaction;
173 
174 	/*
175 	 * Set up an interval timer which can be used to trigger a commit wakeup
176 	 * after the commit interval expires
177 	 */
178 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179 
180 	set_freezable();
181 
182 	/* Record that the journal thread is running */
183 	journal->j_task = current;
184 	wake_up(&journal->j_wait_done_commit);
185 
186 	/*
187 	 * Make sure that no allocations from this kernel thread will ever
188 	 * recurse to the fs layer because we are responsible for the
189 	 * transaction commit and any fs involvement might get stuck waiting for
190 	 * the trasn. commit.
191 	 */
192 	memalloc_nofs_save();
193 
194 	/*
195 	 * And now, wait forever for commit wakeup events.
196 	 */
197 	write_lock(&journal->j_state_lock);
198 
199 loop:
200 	if (journal->j_flags & JBD2_UNMOUNT)
201 		goto end_loop;
202 
203 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204 		journal->j_commit_sequence, journal->j_commit_request);
205 
206 	if (journal->j_commit_sequence != journal->j_commit_request) {
207 		jbd_debug(1, "OK, requests differ\n");
208 		write_unlock(&journal->j_state_lock);
209 		del_timer_sync(&journal->j_commit_timer);
210 		jbd2_journal_commit_transaction(journal);
211 		write_lock(&journal->j_state_lock);
212 		goto loop;
213 	}
214 
215 	wake_up(&journal->j_wait_done_commit);
216 	if (freezing(current)) {
217 		/*
218 		 * The simpler the better. Flushing journal isn't a
219 		 * good idea, because that depends on threads that may
220 		 * be already stopped.
221 		 */
222 		jbd_debug(1, "Now suspending kjournald2\n");
223 		write_unlock(&journal->j_state_lock);
224 		try_to_freeze();
225 		write_lock(&journal->j_state_lock);
226 	} else {
227 		/*
228 		 * We assume on resume that commits are already there,
229 		 * so we don't sleep
230 		 */
231 		DEFINE_WAIT(wait);
232 		int should_sleep = 1;
233 
234 		prepare_to_wait(&journal->j_wait_commit, &wait,
235 				TASK_INTERRUPTIBLE);
236 		if (journal->j_commit_sequence != journal->j_commit_request)
237 			should_sleep = 0;
238 		transaction = journal->j_running_transaction;
239 		if (transaction && time_after_eq(jiffies,
240 						transaction->t_expires))
241 			should_sleep = 0;
242 		if (journal->j_flags & JBD2_UNMOUNT)
243 			should_sleep = 0;
244 		if (should_sleep) {
245 			write_unlock(&journal->j_state_lock);
246 			schedule();
247 			write_lock(&journal->j_state_lock);
248 		}
249 		finish_wait(&journal->j_wait_commit, &wait);
250 	}
251 
252 	jbd_debug(1, "kjournald2 wakes\n");
253 
254 	/*
255 	 * Were we woken up by a commit wakeup event?
256 	 */
257 	transaction = journal->j_running_transaction;
258 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259 		journal->j_commit_request = transaction->t_tid;
260 		jbd_debug(1, "woke because of timeout\n");
261 	}
262 	goto loop;
263 
264 end_loop:
265 	del_timer_sync(&journal->j_commit_timer);
266 	journal->j_task = NULL;
267 	wake_up(&journal->j_wait_done_commit);
268 	jbd_debug(1, "Journal thread exiting.\n");
269 	write_unlock(&journal->j_state_lock);
270 	return 0;
271 }
272 
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275 	struct task_struct *t;
276 
277 	t = kthread_run(kjournald2, journal, "jbd2/%s",
278 			journal->j_devname);
279 	if (IS_ERR(t))
280 		return PTR_ERR(t);
281 
282 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283 	return 0;
284 }
285 
286 static void journal_kill_thread(journal_t *journal)
287 {
288 	write_lock(&journal->j_state_lock);
289 	journal->j_flags |= JBD2_UNMOUNT;
290 
291 	while (journal->j_task) {
292 		write_unlock(&journal->j_state_lock);
293 		wake_up(&journal->j_wait_commit);
294 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295 		write_lock(&journal->j_state_lock);
296 	}
297 	write_unlock(&journal->j_state_lock);
298 }
299 
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334 
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336 				  struct journal_head  *jh_in,
337 				  struct buffer_head **bh_out,
338 				  sector_t blocknr)
339 {
340 	int need_copy_out = 0;
341 	int done_copy_out = 0;
342 	int do_escape = 0;
343 	char *mapped_data;
344 	struct buffer_head *new_bh;
345 	struct page *new_page;
346 	unsigned int new_offset;
347 	struct buffer_head *bh_in = jh2bh(jh_in);
348 	journal_t *journal = transaction->t_journal;
349 
350 	/*
351 	 * The buffer really shouldn't be locked: only the current committing
352 	 * transaction is allowed to write it, so nobody else is allowed
353 	 * to do any IO.
354 	 *
355 	 * akpm: except if we're journalling data, and write() output is
356 	 * also part of a shared mapping, and another thread has
357 	 * decided to launch a writepage() against this buffer.
358 	 */
359 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360 
361 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362 
363 	/* keep subsequent assertions sane */
364 	atomic_set(&new_bh->b_count, 1);
365 
366 	jbd_lock_bh_state(bh_in);
367 repeat:
368 	/*
369 	 * If a new transaction has already done a buffer copy-out, then
370 	 * we use that version of the data for the commit.
371 	 */
372 	if (jh_in->b_frozen_data) {
373 		done_copy_out = 1;
374 		new_page = virt_to_page(jh_in->b_frozen_data);
375 		new_offset = offset_in_page(jh_in->b_frozen_data);
376 	} else {
377 		new_page = jh2bh(jh_in)->b_page;
378 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379 	}
380 
381 	mapped_data = kmap_atomic(new_page);
382 	/*
383 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
384 	 * before checking for escaping, as the trigger may modify the magic
385 	 * offset.  If a copy-out happens afterwards, it will have the correct
386 	 * data in the buffer.
387 	 */
388 	if (!done_copy_out)
389 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390 					   jh_in->b_triggers);
391 
392 	/*
393 	 * Check for escaping
394 	 */
395 	if (*((__be32 *)(mapped_data + new_offset)) ==
396 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397 		need_copy_out = 1;
398 		do_escape = 1;
399 	}
400 	kunmap_atomic(mapped_data);
401 
402 	/*
403 	 * Do we need to do a data copy?
404 	 */
405 	if (need_copy_out && !done_copy_out) {
406 		char *tmp;
407 
408 		jbd_unlock_bh_state(bh_in);
409 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410 		if (!tmp) {
411 			brelse(new_bh);
412 			return -ENOMEM;
413 		}
414 		jbd_lock_bh_state(bh_in);
415 		if (jh_in->b_frozen_data) {
416 			jbd2_free(tmp, bh_in->b_size);
417 			goto repeat;
418 		}
419 
420 		jh_in->b_frozen_data = tmp;
421 		mapped_data = kmap_atomic(new_page);
422 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423 		kunmap_atomic(mapped_data);
424 
425 		new_page = virt_to_page(tmp);
426 		new_offset = offset_in_page(tmp);
427 		done_copy_out = 1;
428 
429 		/*
430 		 * This isn't strictly necessary, as we're using frozen
431 		 * data for the escaping, but it keeps consistency with
432 		 * b_frozen_data usage.
433 		 */
434 		jh_in->b_frozen_triggers = jh_in->b_triggers;
435 	}
436 
437 	/*
438 	 * Did we need to do an escaping?  Now we've done all the
439 	 * copying, we can finally do so.
440 	 */
441 	if (do_escape) {
442 		mapped_data = kmap_atomic(new_page);
443 		*((unsigned int *)(mapped_data + new_offset)) = 0;
444 		kunmap_atomic(mapped_data);
445 	}
446 
447 	set_bh_page(new_bh, new_page, new_offset);
448 	new_bh->b_size = bh_in->b_size;
449 	new_bh->b_bdev = journal->j_dev;
450 	new_bh->b_blocknr = blocknr;
451 	new_bh->b_private = bh_in;
452 	set_buffer_mapped(new_bh);
453 	set_buffer_dirty(new_bh);
454 
455 	*bh_out = new_bh;
456 
457 	/*
458 	 * The to-be-written buffer needs to get moved to the io queue,
459 	 * and the original buffer whose contents we are shadowing or
460 	 * copying is moved to the transaction's shadow queue.
461 	 */
462 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463 	spin_lock(&journal->j_list_lock);
464 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465 	spin_unlock(&journal->j_list_lock);
466 	set_buffer_shadow(bh_in);
467 	jbd_unlock_bh_state(bh_in);
468 
469 	return do_escape | (done_copy_out << 1);
470 }
471 
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476 
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483 	/* Return if the txn has already requested to be committed */
484 	if (journal->j_commit_request == target)
485 		return 0;
486 
487 	/*
488 	 * The only transaction we can possibly wait upon is the
489 	 * currently running transaction (if it exists).  Otherwise,
490 	 * the target tid must be an old one.
491 	 */
492 	if (journal->j_running_transaction &&
493 	    journal->j_running_transaction->t_tid == target) {
494 		/*
495 		 * We want a new commit: OK, mark the request and wakeup the
496 		 * commit thread.  We do _not_ do the commit ourselves.
497 		 */
498 
499 		journal->j_commit_request = target;
500 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501 			  journal->j_commit_request,
502 			  journal->j_commit_sequence);
503 		journal->j_running_transaction->t_requested = jiffies;
504 		wake_up(&journal->j_wait_commit);
505 		return 1;
506 	} else if (!tid_geq(journal->j_commit_request, target))
507 		/* This should never happen, but if it does, preserve
508 		   the evidence before kjournald goes into a loop and
509 		   increments j_commit_sequence beyond all recognition. */
510 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511 			  journal->j_commit_request,
512 			  journal->j_commit_sequence,
513 			  target, journal->j_running_transaction ?
514 			  journal->j_running_transaction->t_tid : 0);
515 	return 0;
516 }
517 
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520 	int ret;
521 
522 	write_lock(&journal->j_state_lock);
523 	ret = __jbd2_log_start_commit(journal, tid);
524 	write_unlock(&journal->j_state_lock);
525 	return ret;
526 }
527 
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537 	transaction_t *transaction = NULL;
538 	tid_t tid;
539 	int need_to_start = 0, ret = 0;
540 
541 	read_lock(&journal->j_state_lock);
542 	if (journal->j_running_transaction && !current->journal_info) {
543 		transaction = journal->j_running_transaction;
544 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545 			need_to_start = 1;
546 	} else if (journal->j_committing_transaction)
547 		transaction = journal->j_committing_transaction;
548 
549 	if (!transaction) {
550 		/* Nothing to commit */
551 		read_unlock(&journal->j_state_lock);
552 		return 0;
553 	}
554 	tid = transaction->t_tid;
555 	read_unlock(&journal->j_state_lock);
556 	if (need_to_start)
557 		jbd2_log_start_commit(journal, tid);
558 	ret = jbd2_log_wait_commit(journal, tid);
559 	if (!ret)
560 		ret = 1;
561 
562 	return ret;
563 }
564 
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575 	int ret;
576 
577 	ret = __jbd2_journal_force_commit(journal);
578 	return ret > 0;
579 }
580 
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590 	int ret;
591 
592 	J_ASSERT(!current->journal_info);
593 	ret = __jbd2_journal_force_commit(journal);
594 	if (ret > 0)
595 		ret = 0;
596 	return ret;
597 }
598 
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606 	int ret = 0;
607 
608 	write_lock(&journal->j_state_lock);
609 	if (journal->j_running_transaction) {
610 		tid_t tid = journal->j_running_transaction->t_tid;
611 
612 		__jbd2_log_start_commit(journal, tid);
613 		/* There's a running transaction and we've just made sure
614 		 * it's commit has been scheduled. */
615 		if (ptid)
616 			*ptid = tid;
617 		ret = 1;
618 	} else if (journal->j_committing_transaction) {
619 		/*
620 		 * If commit has been started, then we have to wait for
621 		 * completion of that transaction.
622 		 */
623 		if (ptid)
624 			*ptid = journal->j_committing_transaction->t_tid;
625 		ret = 1;
626 	}
627 	write_unlock(&journal->j_state_lock);
628 	return ret;
629 }
630 
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639 	int ret = 0;
640 	transaction_t *commit_trans;
641 
642 	if (!(journal->j_flags & JBD2_BARRIER))
643 		return 0;
644 	read_lock(&journal->j_state_lock);
645 	/* Transaction already committed? */
646 	if (tid_geq(journal->j_commit_sequence, tid))
647 		goto out;
648 	commit_trans = journal->j_committing_transaction;
649 	if (!commit_trans || commit_trans->t_tid != tid) {
650 		ret = 1;
651 		goto out;
652 	}
653 	/*
654 	 * Transaction is being committed and we already proceeded to
655 	 * submitting a flush to fs partition?
656 	 */
657 	if (journal->j_fs_dev != journal->j_dev) {
658 		if (!commit_trans->t_need_data_flush ||
659 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
660 			goto out;
661 	} else {
662 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663 			goto out;
664 	}
665 	ret = 1;
666 out:
667 	read_unlock(&journal->j_state_lock);
668 	return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671 
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678 	int err = 0;
679 
680 	read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682 	/*
683 	 * Some callers make sure transaction is already committing and in that
684 	 * case we cannot block on open handles anymore. So don't warn in that
685 	 * case.
686 	 */
687 	if (tid_gt(tid, journal->j_commit_sequence) &&
688 	    (!journal->j_committing_transaction ||
689 	     journal->j_committing_transaction->t_tid != tid)) {
690 		read_unlock(&journal->j_state_lock);
691 		jbd2_might_wait_for_commit(journal);
692 		read_lock(&journal->j_state_lock);
693 	}
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696 	if (!tid_geq(journal->j_commit_request, tid)) {
697 		printk(KERN_ERR
698 		       "%s: error: j_commit_request=%u, tid=%u\n",
699 		       __func__, journal->j_commit_request, tid);
700 	}
701 #endif
702 	while (tid_gt(tid, journal->j_commit_sequence)) {
703 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704 				  tid, journal->j_commit_sequence);
705 		read_unlock(&journal->j_state_lock);
706 		wake_up(&journal->j_wait_commit);
707 		wait_event(journal->j_wait_done_commit,
708 				!tid_gt(tid, journal->j_commit_sequence));
709 		read_lock(&journal->j_state_lock);
710 	}
711 	read_unlock(&journal->j_state_lock);
712 
713 	if (unlikely(is_journal_aborted(journal)))
714 		err = -EIO;
715 	return err;
716 }
717 
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721 	int ret = 1;
722 
723 	read_lock(&journal->j_state_lock);
724 	if (journal->j_running_transaction &&
725 	    journal->j_running_transaction->t_tid == tid)
726 		ret = 0;
727 	if (journal->j_committing_transaction &&
728 	    journal->j_committing_transaction->t_tid == tid)
729 		ret = 0;
730 	read_unlock(&journal->j_state_lock);
731 	return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734 
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744 	int	need_to_wait = 1;
745 
746 	read_lock(&journal->j_state_lock);
747 	if (journal->j_running_transaction &&
748 	    journal->j_running_transaction->t_tid == tid) {
749 		if (journal->j_commit_request != tid) {
750 			/* transaction not yet started, so request it */
751 			read_unlock(&journal->j_state_lock);
752 			jbd2_log_start_commit(journal, tid);
753 			goto wait_commit;
754 		}
755 	} else if (!(journal->j_committing_transaction &&
756 		     journal->j_committing_transaction->t_tid == tid))
757 		need_to_wait = 0;
758 	read_unlock(&journal->j_state_lock);
759 	if (!need_to_wait)
760 		return 0;
761 wait_commit:
762 	return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765 
766 /*
767  * Log buffer allocation routines:
768  */
769 
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772 	unsigned long blocknr;
773 
774 	write_lock(&journal->j_state_lock);
775 	J_ASSERT(journal->j_free > 1);
776 
777 	blocknr = journal->j_head;
778 	journal->j_head++;
779 	journal->j_free--;
780 	if (journal->j_head == journal->j_last)
781 		journal->j_head = journal->j_first;
782 	write_unlock(&journal->j_state_lock);
783 	return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785 
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794 		 unsigned long long *retp)
795 {
796 	int err = 0;
797 	unsigned long long ret;
798 
799 	if (journal->j_inode) {
800 		ret = bmap(journal->j_inode, blocknr);
801 		if (ret)
802 			*retp = ret;
803 		else {
804 			printk(KERN_ALERT "%s: journal block not found "
805 					"at offset %lu on %s\n",
806 			       __func__, blocknr, journal->j_devname);
807 			err = -EIO;
808 			__journal_abort_soft(journal, err);
809 		}
810 	} else {
811 		*retp = blocknr; /* +journal->j_blk_offset */
812 	}
813 	return err;
814 }
815 
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829 	journal_t *journal = transaction->t_journal;
830 	struct buffer_head *bh;
831 	unsigned long long blocknr;
832 	journal_header_t *header;
833 	int err;
834 
835 	err = jbd2_journal_next_log_block(journal, &blocknr);
836 
837 	if (err)
838 		return NULL;
839 
840 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841 	if (!bh)
842 		return NULL;
843 	lock_buffer(bh);
844 	memset(bh->b_data, 0, journal->j_blocksize);
845 	header = (journal_header_t *)bh->b_data;
846 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847 	header->h_blocktype = cpu_to_be32(type);
848 	header->h_sequence = cpu_to_be32(transaction->t_tid);
849 	set_buffer_uptodate(bh);
850 	unlock_buffer(bh);
851 	BUFFER_TRACE(bh, "return this buffer");
852 	return bh;
853 }
854 
855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
856 {
857 	struct jbd2_journal_block_tail *tail;
858 	__u32 csum;
859 
860 	if (!jbd2_journal_has_csum_v2or3(j))
861 		return;
862 
863 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864 			sizeof(struct jbd2_journal_block_tail));
865 	tail->t_checksum = 0;
866 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867 	tail->t_checksum = cpu_to_be32(csum);
868 }
869 
870 /*
871  * Return tid of the oldest transaction in the journal and block in the journal
872  * where the transaction starts.
873  *
874  * If the journal is now empty, return which will be the next transaction ID
875  * we will write and where will that transaction start.
876  *
877  * The return value is 0 if journal tail cannot be pushed any further, 1 if
878  * it can.
879  */
880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881 			      unsigned long *block)
882 {
883 	transaction_t *transaction;
884 	int ret;
885 
886 	read_lock(&journal->j_state_lock);
887 	spin_lock(&journal->j_list_lock);
888 	transaction = journal->j_checkpoint_transactions;
889 	if (transaction) {
890 		*tid = transaction->t_tid;
891 		*block = transaction->t_log_start;
892 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
893 		*tid = transaction->t_tid;
894 		*block = transaction->t_log_start;
895 	} else if ((transaction = journal->j_running_transaction) != NULL) {
896 		*tid = transaction->t_tid;
897 		*block = journal->j_head;
898 	} else {
899 		*tid = journal->j_transaction_sequence;
900 		*block = journal->j_head;
901 	}
902 	ret = tid_gt(*tid, journal->j_tail_sequence);
903 	spin_unlock(&journal->j_list_lock);
904 	read_unlock(&journal->j_state_lock);
905 
906 	return ret;
907 }
908 
909 /*
910  * Update information in journal structure and in on disk journal superblock
911  * about log tail. This function does not check whether information passed in
912  * really pushes log tail further. It's responsibility of the caller to make
913  * sure provided log tail information is valid (e.g. by holding
914  * j_checkpoint_mutex all the time between computing log tail and calling this
915  * function as is the case with jbd2_cleanup_journal_tail()).
916  *
917  * Requires j_checkpoint_mutex
918  */
919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
920 {
921 	unsigned long freed;
922 	int ret;
923 
924 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
925 
926 	/*
927 	 * We cannot afford for write to remain in drive's caches since as
928 	 * soon as we update j_tail, next transaction can start reusing journal
929 	 * space and if we lose sb update during power failure we'd replay
930 	 * old transaction with possibly newly overwritten data.
931 	 */
932 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933 					      REQ_SYNC | REQ_FUA);
934 	if (ret)
935 		goto out;
936 
937 	write_lock(&journal->j_state_lock);
938 	freed = block - journal->j_tail;
939 	if (block < journal->j_tail)
940 		freed += journal->j_last - journal->j_first;
941 
942 	trace_jbd2_update_log_tail(journal, tid, block, freed);
943 	jbd_debug(1,
944 		  "Cleaning journal tail from %u to %u (offset %lu), "
945 		  "freeing %lu\n",
946 		  journal->j_tail_sequence, tid, block, freed);
947 
948 	journal->j_free += freed;
949 	journal->j_tail_sequence = tid;
950 	journal->j_tail = block;
951 	write_unlock(&journal->j_state_lock);
952 
953 out:
954 	return ret;
955 }
956 
957 /*
958  * This is a variation of __jbd2_update_log_tail which checks for validity of
959  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960  * with other threads updating log tail.
961  */
962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
963 {
964 	mutex_lock_io(&journal->j_checkpoint_mutex);
965 	if (tid_gt(tid, journal->j_tail_sequence))
966 		__jbd2_update_log_tail(journal, tid, block);
967 	mutex_unlock(&journal->j_checkpoint_mutex);
968 }
969 
970 struct jbd2_stats_proc_session {
971 	journal_t *journal;
972 	struct transaction_stats_s *stats;
973 	int start;
974 	int max;
975 };
976 
977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
978 {
979 	return *pos ? NULL : SEQ_START_TOKEN;
980 }
981 
982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 {
984 	return NULL;
985 }
986 
987 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
988 {
989 	struct jbd2_stats_proc_session *s = seq->private;
990 
991 	if (v != SEQ_START_TOKEN)
992 		return 0;
993 	seq_printf(seq, "%lu transactions (%lu requested), "
994 		   "each up to %u blocks\n",
995 		   s->stats->ts_tid, s->stats->ts_requested,
996 		   s->journal->j_max_transaction_buffers);
997 	if (s->stats->ts_tid == 0)
998 		return 0;
999 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1000 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1001 	seq_printf(seq, "  %ums request delay\n",
1002 	    (s->stats->ts_requested == 0) ? 0 :
1003 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1004 			     s->stats->ts_requested));
1005 	seq_printf(seq, "  %ums running transaction\n",
1006 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1007 	seq_printf(seq, "  %ums transaction was being locked\n",
1008 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1009 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1010 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1011 	seq_printf(seq, "  %ums logging transaction\n",
1012 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1013 	seq_printf(seq, "  %lluus average transaction commit time\n",
1014 		   div_u64(s->journal->j_average_commit_time, 1000));
1015 	seq_printf(seq, "  %lu handles per transaction\n",
1016 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1017 	seq_printf(seq, "  %lu blocks per transaction\n",
1018 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1019 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1020 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1021 	return 0;
1022 }
1023 
1024 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1025 {
1026 }
1027 
1028 static const struct seq_operations jbd2_seq_info_ops = {
1029 	.start  = jbd2_seq_info_start,
1030 	.next   = jbd2_seq_info_next,
1031 	.stop   = jbd2_seq_info_stop,
1032 	.show   = jbd2_seq_info_show,
1033 };
1034 
1035 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1036 {
1037 	journal_t *journal = PDE_DATA(inode);
1038 	struct jbd2_stats_proc_session *s;
1039 	int rc, size;
1040 
1041 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1042 	if (s == NULL)
1043 		return -ENOMEM;
1044 	size = sizeof(struct transaction_stats_s);
1045 	s->stats = kmalloc(size, GFP_KERNEL);
1046 	if (s->stats == NULL) {
1047 		kfree(s);
1048 		return -ENOMEM;
1049 	}
1050 	spin_lock(&journal->j_history_lock);
1051 	memcpy(s->stats, &journal->j_stats, size);
1052 	s->journal = journal;
1053 	spin_unlock(&journal->j_history_lock);
1054 
1055 	rc = seq_open(file, &jbd2_seq_info_ops);
1056 	if (rc == 0) {
1057 		struct seq_file *m = file->private_data;
1058 		m->private = s;
1059 	} else {
1060 		kfree(s->stats);
1061 		kfree(s);
1062 	}
1063 	return rc;
1064 
1065 }
1066 
1067 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1068 {
1069 	struct seq_file *seq = file->private_data;
1070 	struct jbd2_stats_proc_session *s = seq->private;
1071 	kfree(s->stats);
1072 	kfree(s);
1073 	return seq_release(inode, file);
1074 }
1075 
1076 static const struct file_operations jbd2_seq_info_fops = {
1077 	.owner		= THIS_MODULE,
1078 	.open           = jbd2_seq_info_open,
1079 	.read           = seq_read,
1080 	.llseek         = seq_lseek,
1081 	.release        = jbd2_seq_info_release,
1082 };
1083 
1084 static struct proc_dir_entry *proc_jbd2_stats;
1085 
1086 static void jbd2_stats_proc_init(journal_t *journal)
1087 {
1088 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1089 	if (journal->j_proc_entry) {
1090 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1091 				 &jbd2_seq_info_fops, journal);
1092 	}
1093 }
1094 
1095 static void jbd2_stats_proc_exit(journal_t *journal)
1096 {
1097 	remove_proc_entry("info", journal->j_proc_entry);
1098 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1099 }
1100 
1101 /*
1102  * Management for journal control blocks: functions to create and
1103  * destroy journal_t structures, and to initialise and read existing
1104  * journal blocks from disk.  */
1105 
1106 /* First: create and setup a journal_t object in memory.  We initialise
1107  * very few fields yet: that has to wait until we have created the
1108  * journal structures from from scratch, or loaded them from disk. */
1109 
1110 static journal_t *journal_init_common(struct block_device *bdev,
1111 			struct block_device *fs_dev,
1112 			unsigned long long start, int len, int blocksize)
1113 {
1114 	static struct lock_class_key jbd2_trans_commit_key;
1115 	journal_t *journal;
1116 	int err;
1117 	struct buffer_head *bh;
1118 	int n;
1119 
1120 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1121 	if (!journal)
1122 		return NULL;
1123 
1124 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1125 	init_waitqueue_head(&journal->j_wait_done_commit);
1126 	init_waitqueue_head(&journal->j_wait_commit);
1127 	init_waitqueue_head(&journal->j_wait_updates);
1128 	init_waitqueue_head(&journal->j_wait_reserved);
1129 	mutex_init(&journal->j_barrier);
1130 	mutex_init(&journal->j_checkpoint_mutex);
1131 	spin_lock_init(&journal->j_revoke_lock);
1132 	spin_lock_init(&journal->j_list_lock);
1133 	rwlock_init(&journal->j_state_lock);
1134 
1135 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1136 	journal->j_min_batch_time = 0;
1137 	journal->j_max_batch_time = 15000; /* 15ms */
1138 	atomic_set(&journal->j_reserved_credits, 0);
1139 
1140 	/* The journal is marked for error until we succeed with recovery! */
1141 	journal->j_flags = JBD2_ABORT;
1142 
1143 	/* Set up a default-sized revoke table for the new mount. */
1144 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1145 	if (err)
1146 		goto err_cleanup;
1147 
1148 	spin_lock_init(&journal->j_history_lock);
1149 
1150 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1151 			 &jbd2_trans_commit_key, 0);
1152 
1153 	/* journal descriptor can store up to n blocks -bzzz */
1154 	journal->j_blocksize = blocksize;
1155 	journal->j_dev = bdev;
1156 	journal->j_fs_dev = fs_dev;
1157 	journal->j_blk_offset = start;
1158 	journal->j_maxlen = len;
1159 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160 	journal->j_wbufsize = n;
1161 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1162 					GFP_KERNEL);
1163 	if (!journal->j_wbuf)
1164 		goto err_cleanup;
1165 
1166 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1167 	if (!bh) {
1168 		pr_err("%s: Cannot get buffer for journal superblock\n",
1169 			__func__);
1170 		goto err_cleanup;
1171 	}
1172 	journal->j_sb_buffer = bh;
1173 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1174 
1175 	return journal;
1176 
1177 err_cleanup:
1178 	kfree(journal->j_wbuf);
1179 	jbd2_journal_destroy_revoke(journal);
1180 	kfree(journal);
1181 	return NULL;
1182 }
1183 
1184 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1185  *
1186  * Create a journal structure assigned some fixed set of disk blocks to
1187  * the journal.  We don't actually touch those disk blocks yet, but we
1188  * need to set up all of the mapping information to tell the journaling
1189  * system where the journal blocks are.
1190  *
1191  */
1192 
1193 /**
1194  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1195  *  @bdev: Block device on which to create the journal
1196  *  @fs_dev: Device which hold journalled filesystem for this journal.
1197  *  @start: Block nr Start of journal.
1198  *  @len:  Length of the journal in blocks.
1199  *  @blocksize: blocksize of journalling device
1200  *
1201  *  Returns: a newly created journal_t *
1202  *
1203  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1204  *  range of blocks on an arbitrary block device.
1205  *
1206  */
1207 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1208 			struct block_device *fs_dev,
1209 			unsigned long long start, int len, int blocksize)
1210 {
1211 	journal_t *journal;
1212 
1213 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1214 	if (!journal)
1215 		return NULL;
1216 
1217 	bdevname(journal->j_dev, journal->j_devname);
1218 	strreplace(journal->j_devname, '/', '!');
1219 	jbd2_stats_proc_init(journal);
1220 
1221 	return journal;
1222 }
1223 
1224 /**
1225  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1226  *  @inode: An inode to create the journal in
1227  *
1228  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1229  * the journal.  The inode must exist already, must support bmap() and
1230  * must have all data blocks preallocated.
1231  */
1232 journal_t *jbd2_journal_init_inode(struct inode *inode)
1233 {
1234 	journal_t *journal;
1235 	char *p;
1236 	unsigned long long blocknr;
1237 
1238 	blocknr = bmap(inode, 0);
1239 	if (!blocknr) {
1240 		pr_err("%s: Cannot locate journal superblock\n",
1241 			__func__);
1242 		return NULL;
1243 	}
1244 
1245 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1246 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1247 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1248 
1249 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1250 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1251 			inode->i_sb->s_blocksize);
1252 	if (!journal)
1253 		return NULL;
1254 
1255 	journal->j_inode = inode;
1256 	bdevname(journal->j_dev, journal->j_devname);
1257 	p = strreplace(journal->j_devname, '/', '!');
1258 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1259 	jbd2_stats_proc_init(journal);
1260 
1261 	return journal;
1262 }
1263 
1264 /*
1265  * If the journal init or create aborts, we need to mark the journal
1266  * superblock as being NULL to prevent the journal destroy from writing
1267  * back a bogus superblock.
1268  */
1269 static void journal_fail_superblock (journal_t *journal)
1270 {
1271 	struct buffer_head *bh = journal->j_sb_buffer;
1272 	brelse(bh);
1273 	journal->j_sb_buffer = NULL;
1274 }
1275 
1276 /*
1277  * Given a journal_t structure, initialise the various fields for
1278  * startup of a new journaling session.  We use this both when creating
1279  * a journal, and after recovering an old journal to reset it for
1280  * subsequent use.
1281  */
1282 
1283 static int journal_reset(journal_t *journal)
1284 {
1285 	journal_superblock_t *sb = journal->j_superblock;
1286 	unsigned long long first, last;
1287 
1288 	first = be32_to_cpu(sb->s_first);
1289 	last = be32_to_cpu(sb->s_maxlen);
1290 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1291 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1292 		       first, last);
1293 		journal_fail_superblock(journal);
1294 		return -EINVAL;
1295 	}
1296 
1297 	journal->j_first = first;
1298 	journal->j_last = last;
1299 
1300 	journal->j_head = first;
1301 	journal->j_tail = first;
1302 	journal->j_free = last - first;
1303 
1304 	journal->j_tail_sequence = journal->j_transaction_sequence;
1305 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1306 	journal->j_commit_request = journal->j_commit_sequence;
1307 
1308 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1309 
1310 	/*
1311 	 * As a special case, if the on-disk copy is already marked as needing
1312 	 * no recovery (s_start == 0), then we can safely defer the superblock
1313 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1314 	 * attempting a write to a potential-readonly device.
1315 	 */
1316 	if (sb->s_start == 0) {
1317 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1318 			"(start %ld, seq %u, errno %d)\n",
1319 			journal->j_tail, journal->j_tail_sequence,
1320 			journal->j_errno);
1321 		journal->j_flags |= JBD2_FLUSHED;
1322 	} else {
1323 		/* Lock here to make assertions happy... */
1324 		mutex_lock_io(&journal->j_checkpoint_mutex);
1325 		/*
1326 		 * Update log tail information. We use REQ_FUA since new
1327 		 * transaction will start reusing journal space and so we
1328 		 * must make sure information about current log tail is on
1329 		 * disk before that.
1330 		 */
1331 		jbd2_journal_update_sb_log_tail(journal,
1332 						journal->j_tail_sequence,
1333 						journal->j_tail,
1334 						REQ_SYNC | REQ_FUA);
1335 		mutex_unlock(&journal->j_checkpoint_mutex);
1336 	}
1337 	return jbd2_journal_start_thread(journal);
1338 }
1339 
1340 /*
1341  * This function expects that the caller will have locked the journal
1342  * buffer head, and will return with it unlocked
1343  */
1344 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1345 {
1346 	struct buffer_head *bh = journal->j_sb_buffer;
1347 	journal_superblock_t *sb = journal->j_superblock;
1348 	int ret;
1349 
1350 	/* Buffer got discarded which means block device got invalidated */
1351 	if (!buffer_mapped(bh))
1352 		return -EIO;
1353 
1354 	trace_jbd2_write_superblock(journal, write_flags);
1355 	if (!(journal->j_flags & JBD2_BARRIER))
1356 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1357 	if (buffer_write_io_error(bh)) {
1358 		/*
1359 		 * Oh, dear.  A previous attempt to write the journal
1360 		 * superblock failed.  This could happen because the
1361 		 * USB device was yanked out.  Or it could happen to
1362 		 * be a transient write error and maybe the block will
1363 		 * be remapped.  Nothing we can do but to retry the
1364 		 * write and hope for the best.
1365 		 */
1366 		printk(KERN_ERR "JBD2: previous I/O error detected "
1367 		       "for journal superblock update for %s.\n",
1368 		       journal->j_devname);
1369 		clear_buffer_write_io_error(bh);
1370 		set_buffer_uptodate(bh);
1371 	}
1372 	if (jbd2_journal_has_csum_v2or3(journal))
1373 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1374 	get_bh(bh);
1375 	bh->b_end_io = end_buffer_write_sync;
1376 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1377 	wait_on_buffer(bh);
1378 	if (buffer_write_io_error(bh)) {
1379 		clear_buffer_write_io_error(bh);
1380 		set_buffer_uptodate(bh);
1381 		ret = -EIO;
1382 	}
1383 	if (ret) {
1384 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1385 		       "journal superblock for %s.\n", ret,
1386 		       journal->j_devname);
1387 		jbd2_journal_abort(journal, ret);
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 /**
1394  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395  * @journal: The journal to update.
1396  * @tail_tid: TID of the new transaction at the tail of the log
1397  * @tail_block: The first block of the transaction at the tail of the log
1398  * @write_op: With which operation should we write the journal sb
1399  *
1400  * Update a journal's superblock information about log tail and write it to
1401  * disk, waiting for the IO to complete.
1402  */
1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404 				     unsigned long tail_block, int write_op)
1405 {
1406 	journal_superblock_t *sb = journal->j_superblock;
1407 	int ret;
1408 
1409 	if (is_journal_aborted(journal))
1410 		return -EIO;
1411 
1412 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1413 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1414 		  tail_block, tail_tid);
1415 
1416 	lock_buffer(journal->j_sb_buffer);
1417 	sb->s_sequence = cpu_to_be32(tail_tid);
1418 	sb->s_start    = cpu_to_be32(tail_block);
1419 
1420 	ret = jbd2_write_superblock(journal, write_op);
1421 	if (ret)
1422 		goto out;
1423 
1424 	/* Log is no longer empty */
1425 	write_lock(&journal->j_state_lock);
1426 	WARN_ON(!sb->s_sequence);
1427 	journal->j_flags &= ~JBD2_FLUSHED;
1428 	write_unlock(&journal->j_state_lock);
1429 
1430 out:
1431 	return ret;
1432 }
1433 
1434 /**
1435  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1436  * @journal: The journal to update.
1437  * @write_op: With which operation should we write the journal sb
1438  *
1439  * Update a journal's dynamic superblock fields to show that journal is empty.
1440  * Write updated superblock to disk waiting for IO to complete.
1441  */
1442 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1443 {
1444 	journal_superblock_t *sb = journal->j_superblock;
1445 
1446 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1447 	lock_buffer(journal->j_sb_buffer);
1448 	if (sb->s_start == 0) {		/* Is it already empty? */
1449 		unlock_buffer(journal->j_sb_buffer);
1450 		return;
1451 	}
1452 
1453 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1454 		  journal->j_tail_sequence);
1455 
1456 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1457 	sb->s_start    = cpu_to_be32(0);
1458 
1459 	jbd2_write_superblock(journal, write_op);
1460 
1461 	/* Log is no longer empty */
1462 	write_lock(&journal->j_state_lock);
1463 	journal->j_flags |= JBD2_FLUSHED;
1464 	write_unlock(&journal->j_state_lock);
1465 }
1466 
1467 
1468 /**
1469  * jbd2_journal_update_sb_errno() - Update error in the journal.
1470  * @journal: The journal to update.
1471  *
1472  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1473  * to complete.
1474  */
1475 void jbd2_journal_update_sb_errno(journal_t *journal)
1476 {
1477 	journal_superblock_t *sb = journal->j_superblock;
1478 	int errcode;
1479 
1480 	lock_buffer(journal->j_sb_buffer);
1481 	errcode = journal->j_errno;
1482 	if (errcode == -ESHUTDOWN)
1483 		errcode = 0;
1484 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1485 	sb->s_errno    = cpu_to_be32(errcode);
1486 
1487 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1488 }
1489 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1490 
1491 /*
1492  * Read the superblock for a given journal, performing initial
1493  * validation of the format.
1494  */
1495 static int journal_get_superblock(journal_t *journal)
1496 {
1497 	struct buffer_head *bh;
1498 	journal_superblock_t *sb;
1499 	int err = -EIO;
1500 
1501 	bh = journal->j_sb_buffer;
1502 
1503 	J_ASSERT(bh != NULL);
1504 	if (!buffer_uptodate(bh)) {
1505 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1506 		wait_on_buffer(bh);
1507 		if (!buffer_uptodate(bh)) {
1508 			printk(KERN_ERR
1509 				"JBD2: IO error reading journal superblock\n");
1510 			goto out;
1511 		}
1512 	}
1513 
1514 	if (buffer_verified(bh))
1515 		return 0;
1516 
1517 	sb = journal->j_superblock;
1518 
1519 	err = -EINVAL;
1520 
1521 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1522 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1523 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1524 		goto out;
1525 	}
1526 
1527 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1528 	case JBD2_SUPERBLOCK_V1:
1529 		journal->j_format_version = 1;
1530 		break;
1531 	case JBD2_SUPERBLOCK_V2:
1532 		journal->j_format_version = 2;
1533 		break;
1534 	default:
1535 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1536 		goto out;
1537 	}
1538 
1539 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1540 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1541 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1542 		printk(KERN_WARNING "JBD2: journal file too short\n");
1543 		goto out;
1544 	}
1545 
1546 	if (be32_to_cpu(sb->s_first) == 0 ||
1547 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1548 		printk(KERN_WARNING
1549 			"JBD2: Invalid start block of journal: %u\n",
1550 			be32_to_cpu(sb->s_first));
1551 		goto out;
1552 	}
1553 
1554 	if (jbd2_has_feature_csum2(journal) &&
1555 	    jbd2_has_feature_csum3(journal)) {
1556 		/* Can't have checksum v2 and v3 at the same time! */
1557 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1558 		       "at the same time!\n");
1559 		goto out;
1560 	}
1561 
1562 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1563 	    jbd2_has_feature_checksum(journal)) {
1564 		/* Can't have checksum v1 and v2 on at the same time! */
1565 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1566 		       "at the same time!\n");
1567 		goto out;
1568 	}
1569 
1570 	if (!jbd2_verify_csum_type(journal, sb)) {
1571 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1572 		goto out;
1573 	}
1574 
1575 	/* Load the checksum driver */
1576 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1577 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1578 		if (IS_ERR(journal->j_chksum_driver)) {
1579 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1580 			err = PTR_ERR(journal->j_chksum_driver);
1581 			journal->j_chksum_driver = NULL;
1582 			goto out;
1583 		}
1584 	}
1585 
1586 	if (jbd2_journal_has_csum_v2or3(journal)) {
1587 		/* Check superblock checksum */
1588 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1589 			printk(KERN_ERR "JBD2: journal checksum error\n");
1590 			err = -EFSBADCRC;
1591 			goto out;
1592 		}
1593 
1594 		/* Precompute checksum seed for all metadata */
1595 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1596 						   sizeof(sb->s_uuid));
1597 	}
1598 
1599 	set_buffer_verified(bh);
1600 
1601 	return 0;
1602 
1603 out:
1604 	journal_fail_superblock(journal);
1605 	return err;
1606 }
1607 
1608 /*
1609  * Load the on-disk journal superblock and read the key fields into the
1610  * journal_t.
1611  */
1612 
1613 static int load_superblock(journal_t *journal)
1614 {
1615 	int err;
1616 	journal_superblock_t *sb;
1617 
1618 	err = journal_get_superblock(journal);
1619 	if (err)
1620 		return err;
1621 
1622 	sb = journal->j_superblock;
1623 
1624 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625 	journal->j_tail = be32_to_cpu(sb->s_start);
1626 	journal->j_first = be32_to_cpu(sb->s_first);
1627 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1628 	journal->j_errno = be32_to_cpu(sb->s_errno);
1629 
1630 	return 0;
1631 }
1632 
1633 
1634 /**
1635  * int jbd2_journal_load() - Read journal from disk.
1636  * @journal: Journal to act on.
1637  *
1638  * Given a journal_t structure which tells us which disk blocks contain
1639  * a journal, read the journal from disk to initialise the in-memory
1640  * structures.
1641  */
1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644 	int err;
1645 	journal_superblock_t *sb;
1646 
1647 	err = load_superblock(journal);
1648 	if (err)
1649 		return err;
1650 
1651 	sb = journal->j_superblock;
1652 	/* If this is a V2 superblock, then we have to check the
1653 	 * features flags on it. */
1654 
1655 	if (journal->j_format_version >= 2) {
1656 		if ((sb->s_feature_ro_compat &
1657 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658 		    (sb->s_feature_incompat &
1659 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660 			printk(KERN_WARNING
1661 				"JBD2: Unrecognised features on journal\n");
1662 			return -EINVAL;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * Create a slab for this blocksize
1668 	 */
1669 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670 	if (err)
1671 		return err;
1672 
1673 	/* Let the recovery code check whether it needs to recover any
1674 	 * data from the journal. */
1675 	if (jbd2_journal_recover(journal))
1676 		goto recovery_error;
1677 
1678 	if (journal->j_failed_commit) {
1679 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680 		       "is corrupt.\n", journal->j_failed_commit,
1681 		       journal->j_devname);
1682 		return -EFSCORRUPTED;
1683 	}
1684 
1685 	/* OK, we've finished with the dynamic journal bits:
1686 	 * reinitialise the dynamic contents of the superblock in memory
1687 	 * and reset them on disk. */
1688 	if (journal_reset(journal))
1689 		goto recovery_error;
1690 
1691 	journal->j_flags &= ~JBD2_ABORT;
1692 	journal->j_flags |= JBD2_LOADED;
1693 	return 0;
1694 
1695 recovery_error:
1696 	printk(KERN_WARNING "JBD2: recovery failed\n");
1697 	return -EIO;
1698 }
1699 
1700 /**
1701  * void jbd2_journal_destroy() - Release a journal_t structure.
1702  * @journal: Journal to act on.
1703  *
1704  * Release a journal_t structure once it is no longer in use by the
1705  * journaled object.
1706  * Return <0 if we couldn't clean up the journal.
1707  */
1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710 	int err = 0;
1711 
1712 	/* Wait for the commit thread to wake up and die. */
1713 	journal_kill_thread(journal);
1714 
1715 	/* Force a final log commit */
1716 	if (journal->j_running_transaction)
1717 		jbd2_journal_commit_transaction(journal);
1718 
1719 	/* Force any old transactions to disk */
1720 
1721 	/* Totally anal locking here... */
1722 	spin_lock(&journal->j_list_lock);
1723 	while (journal->j_checkpoint_transactions != NULL) {
1724 		spin_unlock(&journal->j_list_lock);
1725 		mutex_lock_io(&journal->j_checkpoint_mutex);
1726 		err = jbd2_log_do_checkpoint(journal);
1727 		mutex_unlock(&journal->j_checkpoint_mutex);
1728 		/*
1729 		 * If checkpointing failed, just free the buffers to avoid
1730 		 * looping forever
1731 		 */
1732 		if (err) {
1733 			jbd2_journal_destroy_checkpoint(journal);
1734 			spin_lock(&journal->j_list_lock);
1735 			break;
1736 		}
1737 		spin_lock(&journal->j_list_lock);
1738 	}
1739 
1740 	J_ASSERT(journal->j_running_transaction == NULL);
1741 	J_ASSERT(journal->j_committing_transaction == NULL);
1742 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743 	spin_unlock(&journal->j_list_lock);
1744 
1745 	if (journal->j_sb_buffer) {
1746 		if (!is_journal_aborted(journal)) {
1747 			mutex_lock_io(&journal->j_checkpoint_mutex);
1748 
1749 			write_lock(&journal->j_state_lock);
1750 			journal->j_tail_sequence =
1751 				++journal->j_transaction_sequence;
1752 			write_unlock(&journal->j_state_lock);
1753 
1754 			jbd2_mark_journal_empty(journal,
1755 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1756 			mutex_unlock(&journal->j_checkpoint_mutex);
1757 		} else
1758 			err = -EIO;
1759 		brelse(journal->j_sb_buffer);
1760 	}
1761 
1762 	if (journal->j_proc_entry)
1763 		jbd2_stats_proc_exit(journal);
1764 	iput(journal->j_inode);
1765 	if (journal->j_revoke)
1766 		jbd2_journal_destroy_revoke(journal);
1767 	if (journal->j_chksum_driver)
1768 		crypto_free_shash(journal->j_chksum_driver);
1769 	kfree(journal->j_wbuf);
1770 	kfree(journal);
1771 
1772 	return err;
1773 }
1774 
1775 
1776 /**
1777  *int jbd2_journal_check_used_features () - Check if features specified are used.
1778  * @journal: Journal to check.
1779  * @compat: bitmask of compatible features
1780  * @ro: bitmask of features that force read-only mount
1781  * @incompat: bitmask of incompatible features
1782  *
1783  * Check whether the journal uses all of a given set of
1784  * features.  Return true (non-zero) if it does.
1785  **/
1786 
1787 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1788 				 unsigned long ro, unsigned long incompat)
1789 {
1790 	journal_superblock_t *sb;
1791 
1792 	if (!compat && !ro && !incompat)
1793 		return 1;
1794 	/* Load journal superblock if it is not loaded yet. */
1795 	if (journal->j_format_version == 0 &&
1796 	    journal_get_superblock(journal) != 0)
1797 		return 0;
1798 	if (journal->j_format_version == 1)
1799 		return 0;
1800 
1801 	sb = journal->j_superblock;
1802 
1803 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1804 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1805 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1806 		return 1;
1807 
1808 	return 0;
1809 }
1810 
1811 /**
1812  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1813  * @journal: Journal to check.
1814  * @compat: bitmask of compatible features
1815  * @ro: bitmask of features that force read-only mount
1816  * @incompat: bitmask of incompatible features
1817  *
1818  * Check whether the journaling code supports the use of
1819  * all of a given set of features on this journal.  Return true
1820  * (non-zero) if it can. */
1821 
1822 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1823 				      unsigned long ro, unsigned long incompat)
1824 {
1825 	if (!compat && !ro && !incompat)
1826 		return 1;
1827 
1828 	/* We can support any known requested features iff the
1829 	 * superblock is in version 2.  Otherwise we fail to support any
1830 	 * extended sb features. */
1831 
1832 	if (journal->j_format_version != 2)
1833 		return 0;
1834 
1835 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1836 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1837 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1838 		return 1;
1839 
1840 	return 0;
1841 }
1842 
1843 /**
1844  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1845  * @journal: Journal to act on.
1846  * @compat: bitmask of compatible features
1847  * @ro: bitmask of features that force read-only mount
1848  * @incompat: bitmask of incompatible features
1849  *
1850  * Mark a given journal feature as present on the
1851  * superblock.  Returns true if the requested features could be set.
1852  *
1853  */
1854 
1855 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1856 			  unsigned long ro, unsigned long incompat)
1857 {
1858 #define INCOMPAT_FEATURE_ON(f) \
1859 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1860 #define COMPAT_FEATURE_ON(f) \
1861 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1862 	journal_superblock_t *sb;
1863 
1864 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1865 		return 1;
1866 
1867 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1868 		return 0;
1869 
1870 	/* If enabling v2 checksums, turn on v3 instead */
1871 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1872 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1873 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1874 	}
1875 
1876 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1877 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1878 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1879 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1880 
1881 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1882 		  compat, ro, incompat);
1883 
1884 	sb = journal->j_superblock;
1885 
1886 	/* Load the checksum driver if necessary */
1887 	if ((journal->j_chksum_driver == NULL) &&
1888 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1889 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1890 		if (IS_ERR(journal->j_chksum_driver)) {
1891 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1892 			journal->j_chksum_driver = NULL;
1893 			return 0;
1894 		}
1895 		/* Precompute checksum seed for all metadata */
1896 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1897 						   sizeof(sb->s_uuid));
1898 	}
1899 
1900 	lock_buffer(journal->j_sb_buffer);
1901 
1902 	/* If enabling v3 checksums, update superblock */
1903 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1904 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1905 		sb->s_feature_compat &=
1906 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1907 	}
1908 
1909 	/* If enabling v1 checksums, downgrade superblock */
1910 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911 		sb->s_feature_incompat &=
1912 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914 
1915 	sb->s_feature_compat    |= cpu_to_be32(compat);
1916 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1918 	unlock_buffer(journal->j_sb_buffer);
1919 
1920 	return 1;
1921 #undef COMPAT_FEATURE_ON
1922 #undef INCOMPAT_FEATURE_ON
1923 }
1924 
1925 /*
1926  * jbd2_journal_clear_features () - Clear a given journal feature in the
1927  * 				    superblock
1928  * @journal: Journal to act on.
1929  * @compat: bitmask of compatible features
1930  * @ro: bitmask of features that force read-only mount
1931  * @incompat: bitmask of incompatible features
1932  *
1933  * Clear a given journal feature as present on the
1934  * superblock.
1935  */
1936 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1937 				unsigned long ro, unsigned long incompat)
1938 {
1939 	journal_superblock_t *sb;
1940 
1941 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1942 		  compat, ro, incompat);
1943 
1944 	sb = journal->j_superblock;
1945 
1946 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1947 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1948 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1949 }
1950 EXPORT_SYMBOL(jbd2_journal_clear_features);
1951 
1952 /**
1953  * int jbd2_journal_flush () - Flush journal
1954  * @journal: Journal to act on.
1955  *
1956  * Flush all data for a given journal to disk and empty the journal.
1957  * Filesystems can use this when remounting readonly to ensure that
1958  * recovery does not need to happen on remount.
1959  */
1960 
1961 int jbd2_journal_flush(journal_t *journal)
1962 {
1963 	int err = 0;
1964 	transaction_t *transaction = NULL;
1965 
1966 	write_lock(&journal->j_state_lock);
1967 
1968 	/* Force everything buffered to the log... */
1969 	if (journal->j_running_transaction) {
1970 		transaction = journal->j_running_transaction;
1971 		__jbd2_log_start_commit(journal, transaction->t_tid);
1972 	} else if (journal->j_committing_transaction)
1973 		transaction = journal->j_committing_transaction;
1974 
1975 	/* Wait for the log commit to complete... */
1976 	if (transaction) {
1977 		tid_t tid = transaction->t_tid;
1978 
1979 		write_unlock(&journal->j_state_lock);
1980 		jbd2_log_wait_commit(journal, tid);
1981 	} else {
1982 		write_unlock(&journal->j_state_lock);
1983 	}
1984 
1985 	/* ...and flush everything in the log out to disk. */
1986 	spin_lock(&journal->j_list_lock);
1987 	while (!err && journal->j_checkpoint_transactions != NULL) {
1988 		spin_unlock(&journal->j_list_lock);
1989 		mutex_lock_io(&journal->j_checkpoint_mutex);
1990 		err = jbd2_log_do_checkpoint(journal);
1991 		mutex_unlock(&journal->j_checkpoint_mutex);
1992 		spin_lock(&journal->j_list_lock);
1993 	}
1994 	spin_unlock(&journal->j_list_lock);
1995 
1996 	if (is_journal_aborted(journal))
1997 		return -EIO;
1998 
1999 	mutex_lock_io(&journal->j_checkpoint_mutex);
2000 	if (!err) {
2001 		err = jbd2_cleanup_journal_tail(journal);
2002 		if (err < 0) {
2003 			mutex_unlock(&journal->j_checkpoint_mutex);
2004 			goto out;
2005 		}
2006 		err = 0;
2007 	}
2008 
2009 	/* Finally, mark the journal as really needing no recovery.
2010 	 * This sets s_start==0 in the underlying superblock, which is
2011 	 * the magic code for a fully-recovered superblock.  Any future
2012 	 * commits of data to the journal will restore the current
2013 	 * s_start value. */
2014 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2015 	mutex_unlock(&journal->j_checkpoint_mutex);
2016 	write_lock(&journal->j_state_lock);
2017 	J_ASSERT(!journal->j_running_transaction);
2018 	J_ASSERT(!journal->j_committing_transaction);
2019 	J_ASSERT(!journal->j_checkpoint_transactions);
2020 	J_ASSERT(journal->j_head == journal->j_tail);
2021 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2022 	write_unlock(&journal->j_state_lock);
2023 out:
2024 	return err;
2025 }
2026 
2027 /**
2028  * int jbd2_journal_wipe() - Wipe journal contents
2029  * @journal: Journal to act on.
2030  * @write: flag (see below)
2031  *
2032  * Wipe out all of the contents of a journal, safely.  This will produce
2033  * a warning if the journal contains any valid recovery information.
2034  * Must be called between journal_init_*() and jbd2_journal_load().
2035  *
2036  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2037  * we merely suppress recovery.
2038  */
2039 
2040 int jbd2_journal_wipe(journal_t *journal, int write)
2041 {
2042 	int err = 0;
2043 
2044 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2045 
2046 	err = load_superblock(journal);
2047 	if (err)
2048 		return err;
2049 
2050 	if (!journal->j_tail)
2051 		goto no_recovery;
2052 
2053 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2054 		write ? "Clearing" : "Ignoring");
2055 
2056 	err = jbd2_journal_skip_recovery(journal);
2057 	if (write) {
2058 		/* Lock to make assertions happy... */
2059 		mutex_lock_io(&journal->j_checkpoint_mutex);
2060 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2061 		mutex_unlock(&journal->j_checkpoint_mutex);
2062 	}
2063 
2064  no_recovery:
2065 	return err;
2066 }
2067 
2068 /*
2069  * Journal abort has very specific semantics, which we describe
2070  * for journal abort.
2071  *
2072  * Two internal functions, which provide abort to the jbd layer
2073  * itself are here.
2074  */
2075 
2076 /*
2077  * Quick version for internal journal use (doesn't lock the journal).
2078  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2079  * and don't attempt to make any other journal updates.
2080  */
2081 void __jbd2_journal_abort_hard(journal_t *journal)
2082 {
2083 	transaction_t *transaction;
2084 
2085 	if (journal->j_flags & JBD2_ABORT)
2086 		return;
2087 
2088 	printk(KERN_ERR "Aborting journal on device %s.\n",
2089 	       journal->j_devname);
2090 
2091 	write_lock(&journal->j_state_lock);
2092 	journal->j_flags |= JBD2_ABORT;
2093 	transaction = journal->j_running_transaction;
2094 	if (transaction)
2095 		__jbd2_log_start_commit(journal, transaction->t_tid);
2096 	write_unlock(&journal->j_state_lock);
2097 }
2098 
2099 /* Soft abort: record the abort error status in the journal superblock,
2100  * but don't do any other IO. */
2101 static void __journal_abort_soft (journal_t *journal, int errno)
2102 {
2103 	int old_errno;
2104 
2105 	write_lock(&journal->j_state_lock);
2106 	old_errno = journal->j_errno;
2107 	if (!journal->j_errno || errno == -ESHUTDOWN)
2108 		journal->j_errno = errno;
2109 
2110 	if (journal->j_flags & JBD2_ABORT) {
2111 		write_unlock(&journal->j_state_lock);
2112 		if (!old_errno && old_errno != -ESHUTDOWN &&
2113 		    errno == -ESHUTDOWN)
2114 			jbd2_journal_update_sb_errno(journal);
2115 		return;
2116 	}
2117 	write_unlock(&journal->j_state_lock);
2118 
2119 	__jbd2_journal_abort_hard(journal);
2120 
2121 	if (errno) {
2122 		jbd2_journal_update_sb_errno(journal);
2123 		write_lock(&journal->j_state_lock);
2124 		journal->j_flags |= JBD2_REC_ERR;
2125 		write_unlock(&journal->j_state_lock);
2126 	}
2127 }
2128 
2129 /**
2130  * void jbd2_journal_abort () - Shutdown the journal immediately.
2131  * @journal: the journal to shutdown.
2132  * @errno:   an error number to record in the journal indicating
2133  *           the reason for the shutdown.
2134  *
2135  * Perform a complete, immediate shutdown of the ENTIRE
2136  * journal (not of a single transaction).  This operation cannot be
2137  * undone without closing and reopening the journal.
2138  *
2139  * The jbd2_journal_abort function is intended to support higher level error
2140  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2141  * mode.
2142  *
2143  * Journal abort has very specific semantics.  Any existing dirty,
2144  * unjournaled buffers in the main filesystem will still be written to
2145  * disk by bdflush, but the journaling mechanism will be suspended
2146  * immediately and no further transaction commits will be honoured.
2147  *
2148  * Any dirty, journaled buffers will be written back to disk without
2149  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2150  * filesystem, but we _do_ attempt to leave as much data as possible
2151  * behind for fsck to use for cleanup.
2152  *
2153  * Any attempt to get a new transaction handle on a journal which is in
2154  * ABORT state will just result in an -EROFS error return.  A
2155  * jbd2_journal_stop on an existing handle will return -EIO if we have
2156  * entered abort state during the update.
2157  *
2158  * Recursive transactions are not disturbed by journal abort until the
2159  * final jbd2_journal_stop, which will receive the -EIO error.
2160  *
2161  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2162  * which will be recorded (if possible) in the journal superblock.  This
2163  * allows a client to record failure conditions in the middle of a
2164  * transaction without having to complete the transaction to record the
2165  * failure to disk.  ext3_error, for example, now uses this
2166  * functionality.
2167  *
2168  * Errors which originate from within the journaling layer will NOT
2169  * supply an errno; a null errno implies that absolutely no further
2170  * writes are done to the journal (unless there are any already in
2171  * progress).
2172  *
2173  */
2174 
2175 void jbd2_journal_abort(journal_t *journal, int errno)
2176 {
2177 	__journal_abort_soft(journal, errno);
2178 }
2179 
2180 /**
2181  * int jbd2_journal_errno () - returns the journal's error state.
2182  * @journal: journal to examine.
2183  *
2184  * This is the errno number set with jbd2_journal_abort(), the last
2185  * time the journal was mounted - if the journal was stopped
2186  * without calling abort this will be 0.
2187  *
2188  * If the journal has been aborted on this mount time -EROFS will
2189  * be returned.
2190  */
2191 int jbd2_journal_errno(journal_t *journal)
2192 {
2193 	int err;
2194 
2195 	read_lock(&journal->j_state_lock);
2196 	if (journal->j_flags & JBD2_ABORT)
2197 		err = -EROFS;
2198 	else
2199 		err = journal->j_errno;
2200 	read_unlock(&journal->j_state_lock);
2201 	return err;
2202 }
2203 
2204 /**
2205  * int jbd2_journal_clear_err () - clears the journal's error state
2206  * @journal: journal to act on.
2207  *
2208  * An error must be cleared or acked to take a FS out of readonly
2209  * mode.
2210  */
2211 int jbd2_journal_clear_err(journal_t *journal)
2212 {
2213 	int err = 0;
2214 
2215 	write_lock(&journal->j_state_lock);
2216 	if (journal->j_flags & JBD2_ABORT)
2217 		err = -EROFS;
2218 	else
2219 		journal->j_errno = 0;
2220 	write_unlock(&journal->j_state_lock);
2221 	return err;
2222 }
2223 
2224 /**
2225  * void jbd2_journal_ack_err() - Ack journal err.
2226  * @journal: journal to act on.
2227  *
2228  * An error must be cleared or acked to take a FS out of readonly
2229  * mode.
2230  */
2231 void jbd2_journal_ack_err(journal_t *journal)
2232 {
2233 	write_lock(&journal->j_state_lock);
2234 	if (journal->j_errno)
2235 		journal->j_flags |= JBD2_ACK_ERR;
2236 	write_unlock(&journal->j_state_lock);
2237 }
2238 
2239 int jbd2_journal_blocks_per_page(struct inode *inode)
2240 {
2241 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2242 }
2243 
2244 /*
2245  * helper functions to deal with 32 or 64bit block numbers.
2246  */
2247 size_t journal_tag_bytes(journal_t *journal)
2248 {
2249 	size_t sz;
2250 
2251 	if (jbd2_has_feature_csum3(journal))
2252 		return sizeof(journal_block_tag3_t);
2253 
2254 	sz = sizeof(journal_block_tag_t);
2255 
2256 	if (jbd2_has_feature_csum2(journal))
2257 		sz += sizeof(__u16);
2258 
2259 	if (jbd2_has_feature_64bit(journal))
2260 		return sz;
2261 	else
2262 		return sz - sizeof(__u32);
2263 }
2264 
2265 /*
2266  * JBD memory management
2267  *
2268  * These functions are used to allocate block-sized chunks of memory
2269  * used for making copies of buffer_head data.  Very often it will be
2270  * page-sized chunks of data, but sometimes it will be in
2271  * sub-page-size chunks.  (For example, 16k pages on Power systems
2272  * with a 4k block file system.)  For blocks smaller than a page, we
2273  * use a SLAB allocator.  There are slab caches for each block size,
2274  * which are allocated at mount time, if necessary, and we only free
2275  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2276  * this reason we don't need to a mutex to protect access to
2277  * jbd2_slab[] allocating or releasing memory; only in
2278  * jbd2_journal_create_slab().
2279  */
2280 #define JBD2_MAX_SLABS 8
2281 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2282 
2283 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2284 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2285 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2286 };
2287 
2288 
2289 static void jbd2_journal_destroy_slabs(void)
2290 {
2291 	int i;
2292 
2293 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2294 		kmem_cache_destroy(jbd2_slab[i]);
2295 		jbd2_slab[i] = NULL;
2296 	}
2297 }
2298 
2299 static int jbd2_journal_create_slab(size_t size)
2300 {
2301 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2302 	int i = order_base_2(size) - 10;
2303 	size_t slab_size;
2304 
2305 	if (size == PAGE_SIZE)
2306 		return 0;
2307 
2308 	if (i >= JBD2_MAX_SLABS)
2309 		return -EINVAL;
2310 
2311 	if (unlikely(i < 0))
2312 		i = 0;
2313 	mutex_lock(&jbd2_slab_create_mutex);
2314 	if (jbd2_slab[i]) {
2315 		mutex_unlock(&jbd2_slab_create_mutex);
2316 		return 0;	/* Already created */
2317 	}
2318 
2319 	slab_size = 1 << (i+10);
2320 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2321 					 slab_size, 0, NULL);
2322 	mutex_unlock(&jbd2_slab_create_mutex);
2323 	if (!jbd2_slab[i]) {
2324 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2325 		return -ENOMEM;
2326 	}
2327 	return 0;
2328 }
2329 
2330 static struct kmem_cache *get_slab(size_t size)
2331 {
2332 	int i = order_base_2(size) - 10;
2333 
2334 	BUG_ON(i >= JBD2_MAX_SLABS);
2335 	if (unlikely(i < 0))
2336 		i = 0;
2337 	BUG_ON(jbd2_slab[i] == NULL);
2338 	return jbd2_slab[i];
2339 }
2340 
2341 void *jbd2_alloc(size_t size, gfp_t flags)
2342 {
2343 	void *ptr;
2344 
2345 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2346 
2347 	if (size < PAGE_SIZE)
2348 		ptr = kmem_cache_alloc(get_slab(size), flags);
2349 	else
2350 		ptr = (void *)__get_free_pages(flags, get_order(size));
2351 
2352 	/* Check alignment; SLUB has gotten this wrong in the past,
2353 	 * and this can lead to user data corruption! */
2354 	BUG_ON(((unsigned long) ptr) & (size-1));
2355 
2356 	return ptr;
2357 }
2358 
2359 void jbd2_free(void *ptr, size_t size)
2360 {
2361 	if (size < PAGE_SIZE)
2362 		kmem_cache_free(get_slab(size), ptr);
2363 	else
2364 		free_pages((unsigned long)ptr, get_order(size));
2365 };
2366 
2367 /*
2368  * Journal_head storage management
2369  */
2370 static struct kmem_cache *jbd2_journal_head_cache;
2371 #ifdef CONFIG_JBD2_DEBUG
2372 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2373 #endif
2374 
2375 static int __init jbd2_journal_init_journal_head_cache(void)
2376 {
2377 	J_ASSERT(!jbd2_journal_head_cache);
2378 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2379 				sizeof(struct journal_head),
2380 				0,		/* offset */
2381 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2382 				NULL);		/* ctor */
2383 	if (!jbd2_journal_head_cache) {
2384 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2385 		return -ENOMEM;
2386 	}
2387 	return 0;
2388 }
2389 
2390 static void jbd2_journal_destroy_journal_head_cache(void)
2391 {
2392 	kmem_cache_destroy(jbd2_journal_head_cache);
2393 	jbd2_journal_head_cache = NULL;
2394 }
2395 
2396 /*
2397  * journal_head splicing and dicing
2398  */
2399 static struct journal_head *journal_alloc_journal_head(void)
2400 {
2401 	struct journal_head *ret;
2402 
2403 #ifdef CONFIG_JBD2_DEBUG
2404 	atomic_inc(&nr_journal_heads);
2405 #endif
2406 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2407 	if (!ret) {
2408 		jbd_debug(1, "out of memory for journal_head\n");
2409 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2410 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2411 				GFP_NOFS | __GFP_NOFAIL);
2412 	}
2413 	return ret;
2414 }
2415 
2416 static void journal_free_journal_head(struct journal_head *jh)
2417 {
2418 #ifdef CONFIG_JBD2_DEBUG
2419 	atomic_dec(&nr_journal_heads);
2420 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2421 #endif
2422 	kmem_cache_free(jbd2_journal_head_cache, jh);
2423 }
2424 
2425 /*
2426  * A journal_head is attached to a buffer_head whenever JBD has an
2427  * interest in the buffer.
2428  *
2429  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2430  * is set.  This bit is tested in core kernel code where we need to take
2431  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2432  * there.
2433  *
2434  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2435  *
2436  * When a buffer has its BH_JBD bit set it is immune from being released by
2437  * core kernel code, mainly via ->b_count.
2438  *
2439  * A journal_head is detached from its buffer_head when the journal_head's
2440  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2441  * transaction (b_cp_transaction) hold their references to b_jcount.
2442  *
2443  * Various places in the kernel want to attach a journal_head to a buffer_head
2444  * _before_ attaching the journal_head to a transaction.  To protect the
2445  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2446  * journal_head's b_jcount refcount by one.  The caller must call
2447  * jbd2_journal_put_journal_head() to undo this.
2448  *
2449  * So the typical usage would be:
2450  *
2451  *	(Attach a journal_head if needed.  Increments b_jcount)
2452  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2453  *	...
2454  *      (Get another reference for transaction)
2455  *	jbd2_journal_grab_journal_head(bh);
2456  *	jh->b_transaction = xxx;
2457  *	(Put original reference)
2458  *	jbd2_journal_put_journal_head(jh);
2459  */
2460 
2461 /*
2462  * Give a buffer_head a journal_head.
2463  *
2464  * May sleep.
2465  */
2466 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2467 {
2468 	struct journal_head *jh;
2469 	struct journal_head *new_jh = NULL;
2470 
2471 repeat:
2472 	if (!buffer_jbd(bh))
2473 		new_jh = journal_alloc_journal_head();
2474 
2475 	jbd_lock_bh_journal_head(bh);
2476 	if (buffer_jbd(bh)) {
2477 		jh = bh2jh(bh);
2478 	} else {
2479 		J_ASSERT_BH(bh,
2480 			(atomic_read(&bh->b_count) > 0) ||
2481 			(bh->b_page && bh->b_page->mapping));
2482 
2483 		if (!new_jh) {
2484 			jbd_unlock_bh_journal_head(bh);
2485 			goto repeat;
2486 		}
2487 
2488 		jh = new_jh;
2489 		new_jh = NULL;		/* We consumed it */
2490 		set_buffer_jbd(bh);
2491 		bh->b_private = jh;
2492 		jh->b_bh = bh;
2493 		get_bh(bh);
2494 		BUFFER_TRACE(bh, "added journal_head");
2495 	}
2496 	jh->b_jcount++;
2497 	jbd_unlock_bh_journal_head(bh);
2498 	if (new_jh)
2499 		journal_free_journal_head(new_jh);
2500 	return bh->b_private;
2501 }
2502 
2503 /*
2504  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2505  * having a journal_head, return NULL
2506  */
2507 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2508 {
2509 	struct journal_head *jh = NULL;
2510 
2511 	jbd_lock_bh_journal_head(bh);
2512 	if (buffer_jbd(bh)) {
2513 		jh = bh2jh(bh);
2514 		jh->b_jcount++;
2515 	}
2516 	jbd_unlock_bh_journal_head(bh);
2517 	return jh;
2518 }
2519 
2520 static void __journal_remove_journal_head(struct buffer_head *bh)
2521 {
2522 	struct journal_head *jh = bh2jh(bh);
2523 
2524 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2525 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2526 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2527 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2528 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2529 	J_ASSERT_BH(bh, buffer_jbd(bh));
2530 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2531 	BUFFER_TRACE(bh, "remove journal_head");
2532 	if (jh->b_frozen_data) {
2533 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2534 		jbd2_free(jh->b_frozen_data, bh->b_size);
2535 	}
2536 	if (jh->b_committed_data) {
2537 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2538 		jbd2_free(jh->b_committed_data, bh->b_size);
2539 	}
2540 	bh->b_private = NULL;
2541 	jh->b_bh = NULL;	/* debug, really */
2542 	clear_buffer_jbd(bh);
2543 	journal_free_journal_head(jh);
2544 }
2545 
2546 /*
2547  * Drop a reference on the passed journal_head.  If it fell to zero then
2548  * release the journal_head from the buffer_head.
2549  */
2550 void jbd2_journal_put_journal_head(struct journal_head *jh)
2551 {
2552 	struct buffer_head *bh = jh2bh(jh);
2553 
2554 	jbd_lock_bh_journal_head(bh);
2555 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2556 	--jh->b_jcount;
2557 	if (!jh->b_jcount) {
2558 		__journal_remove_journal_head(bh);
2559 		jbd_unlock_bh_journal_head(bh);
2560 		__brelse(bh);
2561 	} else
2562 		jbd_unlock_bh_journal_head(bh);
2563 }
2564 
2565 /*
2566  * Initialize jbd inode head
2567  */
2568 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2569 {
2570 	jinode->i_transaction = NULL;
2571 	jinode->i_next_transaction = NULL;
2572 	jinode->i_vfs_inode = inode;
2573 	jinode->i_flags = 0;
2574 	jinode->i_dirty_start = 0;
2575 	jinode->i_dirty_end = 0;
2576 	INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578 
2579 /*
2580  * Function to be called before we start removing inode from memory (i.e.,
2581  * clear_inode() is a fine place to be called from). It removes inode from
2582  * transaction's lists.
2583  */
2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585 				    struct jbd2_inode *jinode)
2586 {
2587 	if (!journal)
2588 		return;
2589 restart:
2590 	spin_lock(&journal->j_list_lock);
2591 	/* Is commit writing out inode - we have to wait */
2592 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2593 		wait_queue_head_t *wq;
2594 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2597 		spin_unlock(&journal->j_list_lock);
2598 		schedule();
2599 		finish_wait(wq, &wait.wq_entry);
2600 		goto restart;
2601 	}
2602 
2603 	if (jinode->i_transaction) {
2604 		list_del(&jinode->i_list);
2605 		jinode->i_transaction = NULL;
2606 	}
2607 	spin_unlock(&journal->j_list_lock);
2608 }
2609 
2610 
2611 #ifdef CONFIG_PROC_FS
2612 
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 
2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619 
2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622 	if (proc_jbd2_stats)
2623 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625 
2626 #else
2627 
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630 
2631 #endif
2632 
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634 
2635 static int __init jbd2_journal_init_inode_cache(void)
2636 {
2637 	J_ASSERT(!jbd2_inode_cache);
2638 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2639 	if (!jbd2_inode_cache) {
2640 		pr_emerg("JBD2: failed to create inode cache\n");
2641 		return -ENOMEM;
2642 	}
2643 	return 0;
2644 }
2645 
2646 static int __init jbd2_journal_init_handle_cache(void)
2647 {
2648 	J_ASSERT(!jbd2_handle_cache);
2649 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2650 	if (!jbd2_handle_cache) {
2651 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2652 		return -ENOMEM;
2653 	}
2654 	return 0;
2655 }
2656 
2657 static void jbd2_journal_destroy_inode_cache(void)
2658 {
2659 	kmem_cache_destroy(jbd2_inode_cache);
2660 	jbd2_inode_cache = NULL;
2661 }
2662 
2663 static void jbd2_journal_destroy_handle_cache(void)
2664 {
2665 	kmem_cache_destroy(jbd2_handle_cache);
2666 	jbd2_handle_cache = NULL;
2667 }
2668 
2669 /*
2670  * Module startup and shutdown
2671  */
2672 
2673 static int __init journal_init_caches(void)
2674 {
2675 	int ret;
2676 
2677 	ret = jbd2_journal_init_revoke_record_cache();
2678 	if (ret == 0)
2679 		ret = jbd2_journal_init_revoke_table_cache();
2680 	if (ret == 0)
2681 		ret = jbd2_journal_init_journal_head_cache();
2682 	if (ret == 0)
2683 		ret = jbd2_journal_init_handle_cache();
2684 	if (ret == 0)
2685 		ret = jbd2_journal_init_inode_cache();
2686 	if (ret == 0)
2687 		ret = jbd2_journal_init_transaction_cache();
2688 	return ret;
2689 }
2690 
2691 static void jbd2_journal_destroy_caches(void)
2692 {
2693 	jbd2_journal_destroy_revoke_record_cache();
2694 	jbd2_journal_destroy_revoke_table_cache();
2695 	jbd2_journal_destroy_journal_head_cache();
2696 	jbd2_journal_destroy_handle_cache();
2697 	jbd2_journal_destroy_inode_cache();
2698 	jbd2_journal_destroy_transaction_cache();
2699 	jbd2_journal_destroy_slabs();
2700 }
2701 
2702 static int __init journal_init(void)
2703 {
2704 	int ret;
2705 
2706 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2707 
2708 	ret = journal_init_caches();
2709 	if (ret == 0) {
2710 		jbd2_create_jbd_stats_proc_entry();
2711 	} else {
2712 		jbd2_journal_destroy_caches();
2713 	}
2714 	return ret;
2715 }
2716 
2717 static void __exit journal_exit(void)
2718 {
2719 #ifdef CONFIG_JBD2_DEBUG
2720 	int n = atomic_read(&nr_journal_heads);
2721 	if (n)
2722 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2723 #endif
2724 	jbd2_remove_jbd_stats_proc_entry();
2725 	jbd2_journal_destroy_caches();
2726 }
2727 
2728 MODULE_LICENSE("GPL");
2729 module_init(journal_init);
2730 module_exit(journal_exit);
2731 
2732