xref: /openbmc/linux/fs/jbd2/journal.c (revision e23feb16)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 		  unsigned int line, const char *fmt, ...)
109 {
110 	struct va_format vaf;
111 	va_list args;
112 
113 	if (level > jbd2_journal_enable_debug)
114 		return;
115 	va_start(args, fmt);
116 	vaf.fmt = fmt;
117 	vaf.va = &args;
118 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 	va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123 
124 /* Checksumming functions */
125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 		return 1;
129 
130 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132 
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135 	__u32 csum;
136 	__be32 old_csum;
137 
138 	old_csum = sb->s_checksum;
139 	sb->s_checksum = 0;
140 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 	sb->s_checksum = old_csum;
142 
143 	return cpu_to_be32(csum);
144 }
145 
146 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
149 		return 1;
150 
151 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153 
154 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
157 		return;
158 
159 	sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161 
162 /*
163  * Helper function used to manage commit timeouts
164  */
165 
166 static void commit_timeout(unsigned long __data)
167 {
168 	struct task_struct * p = (struct task_struct *) __data;
169 
170 	wake_up_process(p);
171 }
172 
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188 
189 static int kjournald2(void *arg)
190 {
191 	journal_t *journal = arg;
192 	transaction_t *transaction;
193 
194 	/*
195 	 * Set up an interval timer which can be used to trigger a commit wakeup
196 	 * after the commit interval expires
197 	 */
198 	setup_timer(&journal->j_commit_timer, commit_timeout,
199 			(unsigned long)current);
200 
201 	set_freezable();
202 
203 	/* Record that the journal thread is running */
204 	journal->j_task = current;
205 	wake_up(&journal->j_wait_done_commit);
206 
207 	/*
208 	 * And now, wait forever for commit wakeup events.
209 	 */
210 	write_lock(&journal->j_state_lock);
211 
212 loop:
213 	if (journal->j_flags & JBD2_UNMOUNT)
214 		goto end_loop;
215 
216 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 		journal->j_commit_sequence, journal->j_commit_request);
218 
219 	if (journal->j_commit_sequence != journal->j_commit_request) {
220 		jbd_debug(1, "OK, requests differ\n");
221 		write_unlock(&journal->j_state_lock);
222 		del_timer_sync(&journal->j_commit_timer);
223 		jbd2_journal_commit_transaction(journal);
224 		write_lock(&journal->j_state_lock);
225 		goto loop;
226 	}
227 
228 	wake_up(&journal->j_wait_done_commit);
229 	if (freezing(current)) {
230 		/*
231 		 * The simpler the better. Flushing journal isn't a
232 		 * good idea, because that depends on threads that may
233 		 * be already stopped.
234 		 */
235 		jbd_debug(1, "Now suspending kjournald2\n");
236 		write_unlock(&journal->j_state_lock);
237 		try_to_freeze();
238 		write_lock(&journal->j_state_lock);
239 	} else {
240 		/*
241 		 * We assume on resume that commits are already there,
242 		 * so we don't sleep
243 		 */
244 		DEFINE_WAIT(wait);
245 		int should_sleep = 1;
246 
247 		prepare_to_wait(&journal->j_wait_commit, &wait,
248 				TASK_INTERRUPTIBLE);
249 		if (journal->j_commit_sequence != journal->j_commit_request)
250 			should_sleep = 0;
251 		transaction = journal->j_running_transaction;
252 		if (transaction && time_after_eq(jiffies,
253 						transaction->t_expires))
254 			should_sleep = 0;
255 		if (journal->j_flags & JBD2_UNMOUNT)
256 			should_sleep = 0;
257 		if (should_sleep) {
258 			write_unlock(&journal->j_state_lock);
259 			schedule();
260 			write_lock(&journal->j_state_lock);
261 		}
262 		finish_wait(&journal->j_wait_commit, &wait);
263 	}
264 
265 	jbd_debug(1, "kjournald2 wakes\n");
266 
267 	/*
268 	 * Were we woken up by a commit wakeup event?
269 	 */
270 	transaction = journal->j_running_transaction;
271 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 		journal->j_commit_request = transaction->t_tid;
273 		jbd_debug(1, "woke because of timeout\n");
274 	}
275 	goto loop;
276 
277 end_loop:
278 	write_unlock(&journal->j_state_lock);
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	return 0;
284 }
285 
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288 	struct task_struct *t;
289 
290 	t = kthread_run(kjournald2, journal, "jbd2/%s",
291 			journal->j_devname);
292 	if (IS_ERR(t))
293 		return PTR_ERR(t);
294 
295 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 	return 0;
297 }
298 
299 static void journal_kill_thread(journal_t *journal)
300 {
301 	write_lock(&journal->j_state_lock);
302 	journal->j_flags |= JBD2_UNMOUNT;
303 
304 	while (journal->j_task) {
305 		wake_up(&journal->j_wait_commit);
306 		write_unlock(&journal->j_state_lock);
307 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 		write_lock(&journal->j_state_lock);
309 	}
310 	write_unlock(&journal->j_state_lock);
311 }
312 
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  *
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347 
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 				  struct journal_head  *jh_in,
350 				  struct buffer_head **bh_out,
351 				  sector_t blocknr)
352 {
353 	int need_copy_out = 0;
354 	int done_copy_out = 0;
355 	int do_escape = 0;
356 	char *mapped_data;
357 	struct buffer_head *new_bh;
358 	struct page *new_page;
359 	unsigned int new_offset;
360 	struct buffer_head *bh_in = jh2bh(jh_in);
361 	journal_t *journal = transaction->t_journal;
362 
363 	/*
364 	 * The buffer really shouldn't be locked: only the current committing
365 	 * transaction is allowed to write it, so nobody else is allowed
366 	 * to do any IO.
367 	 *
368 	 * akpm: except if we're journalling data, and write() output is
369 	 * also part of a shared mapping, and another thread has
370 	 * decided to launch a writepage() against this buffer.
371 	 */
372 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373 
374 retry_alloc:
375 	new_bh = alloc_buffer_head(GFP_NOFS);
376 	if (!new_bh) {
377 		/*
378 		 * Failure is not an option, but __GFP_NOFAIL is going
379 		 * away; so we retry ourselves here.
380 		 */
381 		congestion_wait(BLK_RW_ASYNC, HZ/50);
382 		goto retry_alloc;
383 	}
384 
385 	/* keep subsequent assertions sane */
386 	atomic_set(&new_bh->b_count, 1);
387 
388 	jbd_lock_bh_state(bh_in);
389 repeat:
390 	/*
391 	 * If a new transaction has already done a buffer copy-out, then
392 	 * we use that version of the data for the commit.
393 	 */
394 	if (jh_in->b_frozen_data) {
395 		done_copy_out = 1;
396 		new_page = virt_to_page(jh_in->b_frozen_data);
397 		new_offset = offset_in_page(jh_in->b_frozen_data);
398 	} else {
399 		new_page = jh2bh(jh_in)->b_page;
400 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 	}
402 
403 	mapped_data = kmap_atomic(new_page);
404 	/*
405 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406 	 * before checking for escaping, as the trigger may modify the magic
407 	 * offset.  If a copy-out happens afterwards, it will have the correct
408 	 * data in the buffer.
409 	 */
410 	if (!done_copy_out)
411 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 					   jh_in->b_triggers);
413 
414 	/*
415 	 * Check for escaping
416 	 */
417 	if (*((__be32 *)(mapped_data + new_offset)) ==
418 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 		need_copy_out = 1;
420 		do_escape = 1;
421 	}
422 	kunmap_atomic(mapped_data);
423 
424 	/*
425 	 * Do we need to do a data copy?
426 	 */
427 	if (need_copy_out && !done_copy_out) {
428 		char *tmp;
429 
430 		jbd_unlock_bh_state(bh_in);
431 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 		if (!tmp) {
433 			brelse(new_bh);
434 			return -ENOMEM;
435 		}
436 		jbd_lock_bh_state(bh_in);
437 		if (jh_in->b_frozen_data) {
438 			jbd2_free(tmp, bh_in->b_size);
439 			goto repeat;
440 		}
441 
442 		jh_in->b_frozen_data = tmp;
443 		mapped_data = kmap_atomic(new_page);
444 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 		kunmap_atomic(mapped_data);
446 
447 		new_page = virt_to_page(tmp);
448 		new_offset = offset_in_page(tmp);
449 		done_copy_out = 1;
450 
451 		/*
452 		 * This isn't strictly necessary, as we're using frozen
453 		 * data for the escaping, but it keeps consistency with
454 		 * b_frozen_data usage.
455 		 */
456 		jh_in->b_frozen_triggers = jh_in->b_triggers;
457 	}
458 
459 	/*
460 	 * Did we need to do an escaping?  Now we've done all the
461 	 * copying, we can finally do so.
462 	 */
463 	if (do_escape) {
464 		mapped_data = kmap_atomic(new_page);
465 		*((unsigned int *)(mapped_data + new_offset)) = 0;
466 		kunmap_atomic(mapped_data);
467 	}
468 
469 	set_bh_page(new_bh, new_page, new_offset);
470 	new_bh->b_size = bh_in->b_size;
471 	new_bh->b_bdev = journal->j_dev;
472 	new_bh->b_blocknr = blocknr;
473 	new_bh->b_private = bh_in;
474 	set_buffer_mapped(new_bh);
475 	set_buffer_dirty(new_bh);
476 
477 	*bh_out = new_bh;
478 
479 	/*
480 	 * The to-be-written buffer needs to get moved to the io queue,
481 	 * and the original buffer whose contents we are shadowing or
482 	 * copying is moved to the transaction's shadow queue.
483 	 */
484 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 	spin_lock(&journal->j_list_lock);
486 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 	spin_unlock(&journal->j_list_lock);
488 	set_buffer_shadow(bh_in);
489 	jbd_unlock_bh_state(bh_in);
490 
491 	return do_escape | (done_copy_out << 1);
492 }
493 
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498 
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 	/* Return if the txn has already requested to be committed */
506 	if (journal->j_commit_request == target)
507 		return 0;
508 
509 	/*
510 	 * The only transaction we can possibly wait upon is the
511 	 * currently running transaction (if it exists).  Otherwise,
512 	 * the target tid must be an old one.
513 	 */
514 	if (journal->j_running_transaction &&
515 	    journal->j_running_transaction->t_tid == target) {
516 		/*
517 		 * We want a new commit: OK, mark the request and wakeup the
518 		 * commit thread.  We do _not_ do the commit ourselves.
519 		 */
520 
521 		journal->j_commit_request = target;
522 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 			  journal->j_commit_request,
524 			  journal->j_commit_sequence);
525 		journal->j_running_transaction->t_requested = jiffies;
526 		wake_up(&journal->j_wait_commit);
527 		return 1;
528 	} else if (!tid_geq(journal->j_commit_request, target))
529 		/* This should never happen, but if it does, preserve
530 		   the evidence before kjournald goes into a loop and
531 		   increments j_commit_sequence beyond all recognition. */
532 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 			  journal->j_commit_request,
534 			  journal->j_commit_sequence,
535 			  target, journal->j_running_transaction ?
536 			  journal->j_running_transaction->t_tid : 0);
537 	return 0;
538 }
539 
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 	int ret;
543 
544 	write_lock(&journal->j_state_lock);
545 	ret = __jbd2_log_start_commit(journal, tid);
546 	write_unlock(&journal->j_state_lock);
547 	return ret;
548 }
549 
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 	transaction_t *transaction = NULL;
560 	tid_t tid;
561 	int need_to_start = 0, ret = 0;
562 
563 	read_lock(&journal->j_state_lock);
564 	if (journal->j_running_transaction && !current->journal_info) {
565 		transaction = journal->j_running_transaction;
566 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 			need_to_start = 1;
568 	} else if (journal->j_committing_transaction)
569 		transaction = journal->j_committing_transaction;
570 
571 	if (!transaction) {
572 		/* Nothing to commit */
573 		read_unlock(&journal->j_state_lock);
574 		return 0;
575 	}
576 	tid = transaction->t_tid;
577 	read_unlock(&journal->j_state_lock);
578 	if (need_to_start)
579 		jbd2_log_start_commit(journal, tid);
580 	ret = jbd2_log_wait_commit(journal, tid);
581 	if (!ret)
582 		ret = 1;
583 
584 	return ret;
585 }
586 
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 	int ret;
598 
599 	ret = __jbd2_journal_force_commit(journal);
600 	return ret > 0;
601 }
602 
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 	int ret;
613 
614 	J_ASSERT(!current->journal_info);
615 	ret = __jbd2_journal_force_commit(journal);
616 	if (ret > 0)
617 		ret = 0;
618 	return ret;
619 }
620 
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 	int ret = 0;
629 
630 	write_lock(&journal->j_state_lock);
631 	if (journal->j_running_transaction) {
632 		tid_t tid = journal->j_running_transaction->t_tid;
633 
634 		__jbd2_log_start_commit(journal, tid);
635 		/* There's a running transaction and we've just made sure
636 		 * it's commit has been scheduled. */
637 		if (ptid)
638 			*ptid = tid;
639 		ret = 1;
640 	} else if (journal->j_committing_transaction) {
641 		/*
642 		 * If commit has been started, then we have to wait for
643 		 * completion of that transaction.
644 		 */
645 		if (ptid)
646 			*ptid = journal->j_committing_transaction->t_tid;
647 		ret = 1;
648 	}
649 	write_unlock(&journal->j_state_lock);
650 	return ret;
651 }
652 
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 	int ret = 0;
662 	transaction_t *commit_trans;
663 
664 	if (!(journal->j_flags & JBD2_BARRIER))
665 		return 0;
666 	read_lock(&journal->j_state_lock);
667 	/* Transaction already committed? */
668 	if (tid_geq(journal->j_commit_sequence, tid))
669 		goto out;
670 	commit_trans = journal->j_committing_transaction;
671 	if (!commit_trans || commit_trans->t_tid != tid) {
672 		ret = 1;
673 		goto out;
674 	}
675 	/*
676 	 * Transaction is being committed and we already proceeded to
677 	 * submitting a flush to fs partition?
678 	 */
679 	if (journal->j_fs_dev != journal->j_dev) {
680 		if (!commit_trans->t_need_data_flush ||
681 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682 			goto out;
683 	} else {
684 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 			goto out;
686 	}
687 	ret = 1;
688 out:
689 	read_unlock(&journal->j_state_lock);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693 
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 	int err = 0;
701 
702 	read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 	if (!tid_geq(journal->j_commit_request, tid)) {
705 		printk(KERN_EMERG
706 		       "%s: error: j_commit_request=%d, tid=%d\n",
707 		       __func__, journal->j_commit_request, tid);
708 	}
709 #endif
710 	while (tid_gt(tid, journal->j_commit_sequence)) {
711 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 				  tid, journal->j_commit_sequence);
713 		wake_up(&journal->j_wait_commit);
714 		read_unlock(&journal->j_state_lock);
715 		wait_event(journal->j_wait_done_commit,
716 				!tid_gt(tid, journal->j_commit_sequence));
717 		read_lock(&journal->j_state_lock);
718 	}
719 	read_unlock(&journal->j_state_lock);
720 
721 	if (unlikely(is_journal_aborted(journal))) {
722 		printk(KERN_EMERG "journal commit I/O error\n");
723 		err = -EIO;
724 	}
725 	return err;
726 }
727 
728 /*
729  * When this function returns the transaction corresponding to tid
730  * will be completed.  If the transaction has currently running, start
731  * committing that transaction before waiting for it to complete.  If
732  * the transaction id is stale, it is by definition already completed,
733  * so just return SUCCESS.
734  */
735 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
736 {
737 	int	need_to_wait = 1;
738 
739 	read_lock(&journal->j_state_lock);
740 	if (journal->j_running_transaction &&
741 	    journal->j_running_transaction->t_tid == tid) {
742 		if (journal->j_commit_request != tid) {
743 			/* transaction not yet started, so request it */
744 			read_unlock(&journal->j_state_lock);
745 			jbd2_log_start_commit(journal, tid);
746 			goto wait_commit;
747 		}
748 	} else if (!(journal->j_committing_transaction &&
749 		     journal->j_committing_transaction->t_tid == tid))
750 		need_to_wait = 0;
751 	read_unlock(&journal->j_state_lock);
752 	if (!need_to_wait)
753 		return 0;
754 wait_commit:
755 	return jbd2_log_wait_commit(journal, tid);
756 }
757 EXPORT_SYMBOL(jbd2_complete_transaction);
758 
759 /*
760  * Log buffer allocation routines:
761  */
762 
763 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
764 {
765 	unsigned long blocknr;
766 
767 	write_lock(&journal->j_state_lock);
768 	J_ASSERT(journal->j_free > 1);
769 
770 	blocknr = journal->j_head;
771 	journal->j_head++;
772 	journal->j_free--;
773 	if (journal->j_head == journal->j_last)
774 		journal->j_head = journal->j_first;
775 	write_unlock(&journal->j_state_lock);
776 	return jbd2_journal_bmap(journal, blocknr, retp);
777 }
778 
779 /*
780  * Conversion of logical to physical block numbers for the journal
781  *
782  * On external journals the journal blocks are identity-mapped, so
783  * this is a no-op.  If needed, we can use j_blk_offset - everything is
784  * ready.
785  */
786 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
787 		 unsigned long long *retp)
788 {
789 	int err = 0;
790 	unsigned long long ret;
791 
792 	if (journal->j_inode) {
793 		ret = bmap(journal->j_inode, blocknr);
794 		if (ret)
795 			*retp = ret;
796 		else {
797 			printk(KERN_ALERT "%s: journal block not found "
798 					"at offset %lu on %s\n",
799 			       __func__, blocknr, journal->j_devname);
800 			err = -EIO;
801 			__journal_abort_soft(journal, err);
802 		}
803 	} else {
804 		*retp = blocknr; /* +journal->j_blk_offset */
805 	}
806 	return err;
807 }
808 
809 /*
810  * We play buffer_head aliasing tricks to write data/metadata blocks to
811  * the journal without copying their contents, but for journal
812  * descriptor blocks we do need to generate bona fide buffers.
813  *
814  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
815  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
816  * But we don't bother doing that, so there will be coherency problems with
817  * mmaps of blockdevs which hold live JBD-controlled filesystems.
818  */
819 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
820 {
821 	struct buffer_head *bh;
822 	unsigned long long blocknr;
823 	int err;
824 
825 	err = jbd2_journal_next_log_block(journal, &blocknr);
826 
827 	if (err)
828 		return NULL;
829 
830 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
831 	if (!bh)
832 		return NULL;
833 	lock_buffer(bh);
834 	memset(bh->b_data, 0, journal->j_blocksize);
835 	set_buffer_uptodate(bh);
836 	unlock_buffer(bh);
837 	BUFFER_TRACE(bh, "return this buffer");
838 	return bh;
839 }
840 
841 /*
842  * Return tid of the oldest transaction in the journal and block in the journal
843  * where the transaction starts.
844  *
845  * If the journal is now empty, return which will be the next transaction ID
846  * we will write and where will that transaction start.
847  *
848  * The return value is 0 if journal tail cannot be pushed any further, 1 if
849  * it can.
850  */
851 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
852 			      unsigned long *block)
853 {
854 	transaction_t *transaction;
855 	int ret;
856 
857 	read_lock(&journal->j_state_lock);
858 	spin_lock(&journal->j_list_lock);
859 	transaction = journal->j_checkpoint_transactions;
860 	if (transaction) {
861 		*tid = transaction->t_tid;
862 		*block = transaction->t_log_start;
863 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
864 		*tid = transaction->t_tid;
865 		*block = transaction->t_log_start;
866 	} else if ((transaction = journal->j_running_transaction) != NULL) {
867 		*tid = transaction->t_tid;
868 		*block = journal->j_head;
869 	} else {
870 		*tid = journal->j_transaction_sequence;
871 		*block = journal->j_head;
872 	}
873 	ret = tid_gt(*tid, journal->j_tail_sequence);
874 	spin_unlock(&journal->j_list_lock);
875 	read_unlock(&journal->j_state_lock);
876 
877 	return ret;
878 }
879 
880 /*
881  * Update information in journal structure and in on disk journal superblock
882  * about log tail. This function does not check whether information passed in
883  * really pushes log tail further. It's responsibility of the caller to make
884  * sure provided log tail information is valid (e.g. by holding
885  * j_checkpoint_mutex all the time between computing log tail and calling this
886  * function as is the case with jbd2_cleanup_journal_tail()).
887  *
888  * Requires j_checkpoint_mutex
889  */
890 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
891 {
892 	unsigned long freed;
893 
894 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
895 
896 	/*
897 	 * We cannot afford for write to remain in drive's caches since as
898 	 * soon as we update j_tail, next transaction can start reusing journal
899 	 * space and if we lose sb update during power failure we'd replay
900 	 * old transaction with possibly newly overwritten data.
901 	 */
902 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
903 	write_lock(&journal->j_state_lock);
904 	freed = block - journal->j_tail;
905 	if (block < journal->j_tail)
906 		freed += journal->j_last - journal->j_first;
907 
908 	trace_jbd2_update_log_tail(journal, tid, block, freed);
909 	jbd_debug(1,
910 		  "Cleaning journal tail from %d to %d (offset %lu), "
911 		  "freeing %lu\n",
912 		  journal->j_tail_sequence, tid, block, freed);
913 
914 	journal->j_free += freed;
915 	journal->j_tail_sequence = tid;
916 	journal->j_tail = block;
917 	write_unlock(&journal->j_state_lock);
918 }
919 
920 /*
921  * This is a variaon of __jbd2_update_log_tail which checks for validity of
922  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
923  * with other threads updating log tail.
924  */
925 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
926 {
927 	mutex_lock(&journal->j_checkpoint_mutex);
928 	if (tid_gt(tid, journal->j_tail_sequence))
929 		__jbd2_update_log_tail(journal, tid, block);
930 	mutex_unlock(&journal->j_checkpoint_mutex);
931 }
932 
933 struct jbd2_stats_proc_session {
934 	journal_t *journal;
935 	struct transaction_stats_s *stats;
936 	int start;
937 	int max;
938 };
939 
940 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
941 {
942 	return *pos ? NULL : SEQ_START_TOKEN;
943 }
944 
945 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
946 {
947 	return NULL;
948 }
949 
950 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
951 {
952 	struct jbd2_stats_proc_session *s = seq->private;
953 
954 	if (v != SEQ_START_TOKEN)
955 		return 0;
956 	seq_printf(seq, "%lu transactions (%lu requested), "
957 		   "each up to %u blocks\n",
958 		   s->stats->ts_tid, s->stats->ts_requested,
959 		   s->journal->j_max_transaction_buffers);
960 	if (s->stats->ts_tid == 0)
961 		return 0;
962 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
963 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
964 	seq_printf(seq, "  %ums request delay\n",
965 	    (s->stats->ts_requested == 0) ? 0 :
966 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
967 			     s->stats->ts_requested));
968 	seq_printf(seq, "  %ums running transaction\n",
969 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
970 	seq_printf(seq, "  %ums transaction was being locked\n",
971 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
972 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
973 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
974 	seq_printf(seq, "  %ums logging transaction\n",
975 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
976 	seq_printf(seq, "  %lluus average transaction commit time\n",
977 		   div_u64(s->journal->j_average_commit_time, 1000));
978 	seq_printf(seq, "  %lu handles per transaction\n",
979 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
980 	seq_printf(seq, "  %lu blocks per transaction\n",
981 	    s->stats->run.rs_blocks / s->stats->ts_tid);
982 	seq_printf(seq, "  %lu logged blocks per transaction\n",
983 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
984 	return 0;
985 }
986 
987 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
988 {
989 }
990 
991 static const struct seq_operations jbd2_seq_info_ops = {
992 	.start  = jbd2_seq_info_start,
993 	.next   = jbd2_seq_info_next,
994 	.stop   = jbd2_seq_info_stop,
995 	.show   = jbd2_seq_info_show,
996 };
997 
998 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
999 {
1000 	journal_t *journal = PDE_DATA(inode);
1001 	struct jbd2_stats_proc_session *s;
1002 	int rc, size;
1003 
1004 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1005 	if (s == NULL)
1006 		return -ENOMEM;
1007 	size = sizeof(struct transaction_stats_s);
1008 	s->stats = kmalloc(size, GFP_KERNEL);
1009 	if (s->stats == NULL) {
1010 		kfree(s);
1011 		return -ENOMEM;
1012 	}
1013 	spin_lock(&journal->j_history_lock);
1014 	memcpy(s->stats, &journal->j_stats, size);
1015 	s->journal = journal;
1016 	spin_unlock(&journal->j_history_lock);
1017 
1018 	rc = seq_open(file, &jbd2_seq_info_ops);
1019 	if (rc == 0) {
1020 		struct seq_file *m = file->private_data;
1021 		m->private = s;
1022 	} else {
1023 		kfree(s->stats);
1024 		kfree(s);
1025 	}
1026 	return rc;
1027 
1028 }
1029 
1030 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1031 {
1032 	struct seq_file *seq = file->private_data;
1033 	struct jbd2_stats_proc_session *s = seq->private;
1034 	kfree(s->stats);
1035 	kfree(s);
1036 	return seq_release(inode, file);
1037 }
1038 
1039 static const struct file_operations jbd2_seq_info_fops = {
1040 	.owner		= THIS_MODULE,
1041 	.open           = jbd2_seq_info_open,
1042 	.read           = seq_read,
1043 	.llseek         = seq_lseek,
1044 	.release        = jbd2_seq_info_release,
1045 };
1046 
1047 static struct proc_dir_entry *proc_jbd2_stats;
1048 
1049 static void jbd2_stats_proc_init(journal_t *journal)
1050 {
1051 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1052 	if (journal->j_proc_entry) {
1053 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1054 				 &jbd2_seq_info_fops, journal);
1055 	}
1056 }
1057 
1058 static void jbd2_stats_proc_exit(journal_t *journal)
1059 {
1060 	remove_proc_entry("info", journal->j_proc_entry);
1061 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1062 }
1063 
1064 /*
1065  * Management for journal control blocks: functions to create and
1066  * destroy journal_t structures, and to initialise and read existing
1067  * journal blocks from disk.  */
1068 
1069 /* First: create and setup a journal_t object in memory.  We initialise
1070  * very few fields yet: that has to wait until we have created the
1071  * journal structures from from scratch, or loaded them from disk. */
1072 
1073 static journal_t * journal_init_common (void)
1074 {
1075 	journal_t *journal;
1076 	int err;
1077 
1078 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1079 	if (!journal)
1080 		return NULL;
1081 
1082 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1083 	init_waitqueue_head(&journal->j_wait_done_commit);
1084 	init_waitqueue_head(&journal->j_wait_commit);
1085 	init_waitqueue_head(&journal->j_wait_updates);
1086 	init_waitqueue_head(&journal->j_wait_reserved);
1087 	mutex_init(&journal->j_barrier);
1088 	mutex_init(&journal->j_checkpoint_mutex);
1089 	spin_lock_init(&journal->j_revoke_lock);
1090 	spin_lock_init(&journal->j_list_lock);
1091 	rwlock_init(&journal->j_state_lock);
1092 
1093 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1094 	journal->j_min_batch_time = 0;
1095 	journal->j_max_batch_time = 15000; /* 15ms */
1096 	atomic_set(&journal->j_reserved_credits, 0);
1097 
1098 	/* The journal is marked for error until we succeed with recovery! */
1099 	journal->j_flags = JBD2_ABORT;
1100 
1101 	/* Set up a default-sized revoke table for the new mount. */
1102 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1103 	if (err) {
1104 		kfree(journal);
1105 		return NULL;
1106 	}
1107 
1108 	spin_lock_init(&journal->j_history_lock);
1109 
1110 	return journal;
1111 }
1112 
1113 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1114  *
1115  * Create a journal structure assigned some fixed set of disk blocks to
1116  * the journal.  We don't actually touch those disk blocks yet, but we
1117  * need to set up all of the mapping information to tell the journaling
1118  * system where the journal blocks are.
1119  *
1120  */
1121 
1122 /**
1123  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1124  *  @bdev: Block device on which to create the journal
1125  *  @fs_dev: Device which hold journalled filesystem for this journal.
1126  *  @start: Block nr Start of journal.
1127  *  @len:  Length of the journal in blocks.
1128  *  @blocksize: blocksize of journalling device
1129  *
1130  *  Returns: a newly created journal_t *
1131  *
1132  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1133  *  range of blocks on an arbitrary block device.
1134  *
1135  */
1136 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1137 			struct block_device *fs_dev,
1138 			unsigned long long start, int len, int blocksize)
1139 {
1140 	journal_t *journal = journal_init_common();
1141 	struct buffer_head *bh;
1142 	char *p;
1143 	int n;
1144 
1145 	if (!journal)
1146 		return NULL;
1147 
1148 	/* journal descriptor can store up to n blocks -bzzz */
1149 	journal->j_blocksize = blocksize;
1150 	journal->j_dev = bdev;
1151 	journal->j_fs_dev = fs_dev;
1152 	journal->j_blk_offset = start;
1153 	journal->j_maxlen = len;
1154 	bdevname(journal->j_dev, journal->j_devname);
1155 	p = journal->j_devname;
1156 	while ((p = strchr(p, '/')))
1157 		*p = '!';
1158 	jbd2_stats_proc_init(journal);
1159 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160 	journal->j_wbufsize = n;
1161 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1162 	if (!journal->j_wbuf) {
1163 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1164 			__func__);
1165 		goto out_err;
1166 	}
1167 
1168 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1169 	if (!bh) {
1170 		printk(KERN_ERR
1171 		       "%s: Cannot get buffer for journal superblock\n",
1172 		       __func__);
1173 		goto out_err;
1174 	}
1175 	journal->j_sb_buffer = bh;
1176 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177 
1178 	return journal;
1179 out_err:
1180 	kfree(journal->j_wbuf);
1181 	jbd2_stats_proc_exit(journal);
1182 	kfree(journal);
1183 	return NULL;
1184 }
1185 
1186 /**
1187  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1188  *  @inode: An inode to create the journal in
1189  *
1190  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1191  * the journal.  The inode must exist already, must support bmap() and
1192  * must have all data blocks preallocated.
1193  */
1194 journal_t * jbd2_journal_init_inode (struct inode *inode)
1195 {
1196 	struct buffer_head *bh;
1197 	journal_t *journal = journal_init_common();
1198 	char *p;
1199 	int err;
1200 	int n;
1201 	unsigned long long blocknr;
1202 
1203 	if (!journal)
1204 		return NULL;
1205 
1206 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1207 	journal->j_inode = inode;
1208 	bdevname(journal->j_dev, journal->j_devname);
1209 	p = journal->j_devname;
1210 	while ((p = strchr(p, '/')))
1211 		*p = '!';
1212 	p = journal->j_devname + strlen(journal->j_devname);
1213 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1214 	jbd_debug(1,
1215 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1216 		  journal, inode->i_sb->s_id, inode->i_ino,
1217 		  (long long) inode->i_size,
1218 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1219 
1220 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1221 	journal->j_blocksize = inode->i_sb->s_blocksize;
1222 	jbd2_stats_proc_init(journal);
1223 
1224 	/* journal descriptor can store up to n blocks -bzzz */
1225 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1226 	journal->j_wbufsize = n;
1227 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1228 	if (!journal->j_wbuf) {
1229 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1230 			__func__);
1231 		goto out_err;
1232 	}
1233 
1234 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1235 	/* If that failed, give up */
1236 	if (err) {
1237 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1238 		       __func__);
1239 		goto out_err;
1240 	}
1241 
1242 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1243 	if (!bh) {
1244 		printk(KERN_ERR
1245 		       "%s: Cannot get buffer for journal superblock\n",
1246 		       __func__);
1247 		goto out_err;
1248 	}
1249 	journal->j_sb_buffer = bh;
1250 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1251 
1252 	return journal;
1253 out_err:
1254 	kfree(journal->j_wbuf);
1255 	jbd2_stats_proc_exit(journal);
1256 	kfree(journal);
1257 	return NULL;
1258 }
1259 
1260 /*
1261  * If the journal init or create aborts, we need to mark the journal
1262  * superblock as being NULL to prevent the journal destroy from writing
1263  * back a bogus superblock.
1264  */
1265 static void journal_fail_superblock (journal_t *journal)
1266 {
1267 	struct buffer_head *bh = journal->j_sb_buffer;
1268 	brelse(bh);
1269 	journal->j_sb_buffer = NULL;
1270 }
1271 
1272 /*
1273  * Given a journal_t structure, initialise the various fields for
1274  * startup of a new journaling session.  We use this both when creating
1275  * a journal, and after recovering an old journal to reset it for
1276  * subsequent use.
1277  */
1278 
1279 static int journal_reset(journal_t *journal)
1280 {
1281 	journal_superblock_t *sb = journal->j_superblock;
1282 	unsigned long long first, last;
1283 
1284 	first = be32_to_cpu(sb->s_first);
1285 	last = be32_to_cpu(sb->s_maxlen);
1286 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1288 		       first, last);
1289 		journal_fail_superblock(journal);
1290 		return -EINVAL;
1291 	}
1292 
1293 	journal->j_first = first;
1294 	journal->j_last = last;
1295 
1296 	journal->j_head = first;
1297 	journal->j_tail = first;
1298 	journal->j_free = last - first;
1299 
1300 	journal->j_tail_sequence = journal->j_transaction_sequence;
1301 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 	journal->j_commit_request = journal->j_commit_sequence;
1303 
1304 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1305 
1306 	/*
1307 	 * As a special case, if the on-disk copy is already marked as needing
1308 	 * no recovery (s_start == 0), then we can safely defer the superblock
1309 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1310 	 * attempting a write to a potential-readonly device.
1311 	 */
1312 	if (sb->s_start == 0) {
1313 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 			"(start %ld, seq %d, errno %d)\n",
1315 			journal->j_tail, journal->j_tail_sequence,
1316 			journal->j_errno);
1317 		journal->j_flags |= JBD2_FLUSHED;
1318 	} else {
1319 		/* Lock here to make assertions happy... */
1320 		mutex_lock(&journal->j_checkpoint_mutex);
1321 		/*
1322 		 * Update log tail information. We use WRITE_FUA since new
1323 		 * transaction will start reusing journal space and so we
1324 		 * must make sure information about current log tail is on
1325 		 * disk before that.
1326 		 */
1327 		jbd2_journal_update_sb_log_tail(journal,
1328 						journal->j_tail_sequence,
1329 						journal->j_tail,
1330 						WRITE_FUA);
1331 		mutex_unlock(&journal->j_checkpoint_mutex);
1332 	}
1333 	return jbd2_journal_start_thread(journal);
1334 }
1335 
1336 static void jbd2_write_superblock(journal_t *journal, int write_op)
1337 {
1338 	struct buffer_head *bh = journal->j_sb_buffer;
1339 	journal_superblock_t *sb = journal->j_superblock;
1340 	int ret;
1341 
1342 	trace_jbd2_write_superblock(journal, write_op);
1343 	if (!(journal->j_flags & JBD2_BARRIER))
1344 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1345 	lock_buffer(bh);
1346 	if (buffer_write_io_error(bh)) {
1347 		/*
1348 		 * Oh, dear.  A previous attempt to write the journal
1349 		 * superblock failed.  This could happen because the
1350 		 * USB device was yanked out.  Or it could happen to
1351 		 * be a transient write error and maybe the block will
1352 		 * be remapped.  Nothing we can do but to retry the
1353 		 * write and hope for the best.
1354 		 */
1355 		printk(KERN_ERR "JBD2: previous I/O error detected "
1356 		       "for journal superblock update for %s.\n",
1357 		       journal->j_devname);
1358 		clear_buffer_write_io_error(bh);
1359 		set_buffer_uptodate(bh);
1360 	}
1361 	jbd2_superblock_csum_set(journal, sb);
1362 	get_bh(bh);
1363 	bh->b_end_io = end_buffer_write_sync;
1364 	ret = submit_bh(write_op, bh);
1365 	wait_on_buffer(bh);
1366 	if (buffer_write_io_error(bh)) {
1367 		clear_buffer_write_io_error(bh);
1368 		set_buffer_uptodate(bh);
1369 		ret = -EIO;
1370 	}
1371 	if (ret) {
1372 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1373 		       "journal superblock for %s.\n", ret,
1374 		       journal->j_devname);
1375 	}
1376 }
1377 
1378 /**
1379  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1380  * @journal: The journal to update.
1381  * @tail_tid: TID of the new transaction at the tail of the log
1382  * @tail_block: The first block of the transaction at the tail of the log
1383  * @write_op: With which operation should we write the journal sb
1384  *
1385  * Update a journal's superblock information about log tail and write it to
1386  * disk, waiting for the IO to complete.
1387  */
1388 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1389 				     unsigned long tail_block, int write_op)
1390 {
1391 	journal_superblock_t *sb = journal->j_superblock;
1392 
1393 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1394 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1395 		  tail_block, tail_tid);
1396 
1397 	sb->s_sequence = cpu_to_be32(tail_tid);
1398 	sb->s_start    = cpu_to_be32(tail_block);
1399 
1400 	jbd2_write_superblock(journal, write_op);
1401 
1402 	/* Log is no longer empty */
1403 	write_lock(&journal->j_state_lock);
1404 	WARN_ON(!sb->s_sequence);
1405 	journal->j_flags &= ~JBD2_FLUSHED;
1406 	write_unlock(&journal->j_state_lock);
1407 }
1408 
1409 /**
1410  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1411  * @journal: The journal to update.
1412  *
1413  * Update a journal's dynamic superblock fields to show that journal is empty.
1414  * Write updated superblock to disk waiting for IO to complete.
1415  */
1416 static void jbd2_mark_journal_empty(journal_t *journal)
1417 {
1418 	journal_superblock_t *sb = journal->j_superblock;
1419 
1420 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421 	read_lock(&journal->j_state_lock);
1422 	/* Is it already empty? */
1423 	if (sb->s_start == 0) {
1424 		read_unlock(&journal->j_state_lock);
1425 		return;
1426 	}
1427 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1428 		  journal->j_tail_sequence);
1429 
1430 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1431 	sb->s_start    = cpu_to_be32(0);
1432 	read_unlock(&journal->j_state_lock);
1433 
1434 	jbd2_write_superblock(journal, WRITE_FUA);
1435 
1436 	/* Log is no longer empty */
1437 	write_lock(&journal->j_state_lock);
1438 	journal->j_flags |= JBD2_FLUSHED;
1439 	write_unlock(&journal->j_state_lock);
1440 }
1441 
1442 
1443 /**
1444  * jbd2_journal_update_sb_errno() - Update error in the journal.
1445  * @journal: The journal to update.
1446  *
1447  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1448  * to complete.
1449  */
1450 void jbd2_journal_update_sb_errno(journal_t *journal)
1451 {
1452 	journal_superblock_t *sb = journal->j_superblock;
1453 
1454 	read_lock(&journal->j_state_lock);
1455 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1456 		  journal->j_errno);
1457 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1458 	read_unlock(&journal->j_state_lock);
1459 
1460 	jbd2_write_superblock(journal, WRITE_SYNC);
1461 }
1462 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1463 
1464 /*
1465  * Read the superblock for a given journal, performing initial
1466  * validation of the format.
1467  */
1468 static int journal_get_superblock(journal_t *journal)
1469 {
1470 	struct buffer_head *bh;
1471 	journal_superblock_t *sb;
1472 	int err = -EIO;
1473 
1474 	bh = journal->j_sb_buffer;
1475 
1476 	J_ASSERT(bh != NULL);
1477 	if (!buffer_uptodate(bh)) {
1478 		ll_rw_block(READ, 1, &bh);
1479 		wait_on_buffer(bh);
1480 		if (!buffer_uptodate(bh)) {
1481 			printk(KERN_ERR
1482 				"JBD2: IO error reading journal superblock\n");
1483 			goto out;
1484 		}
1485 	}
1486 
1487 	if (buffer_verified(bh))
1488 		return 0;
1489 
1490 	sb = journal->j_superblock;
1491 
1492 	err = -EINVAL;
1493 
1494 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1495 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1496 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1497 		goto out;
1498 	}
1499 
1500 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1501 	case JBD2_SUPERBLOCK_V1:
1502 		journal->j_format_version = 1;
1503 		break;
1504 	case JBD2_SUPERBLOCK_V2:
1505 		journal->j_format_version = 2;
1506 		break;
1507 	default:
1508 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1509 		goto out;
1510 	}
1511 
1512 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1513 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1514 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1515 		printk(KERN_WARNING "JBD2: journal file too short\n");
1516 		goto out;
1517 	}
1518 
1519 	if (be32_to_cpu(sb->s_first) == 0 ||
1520 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1521 		printk(KERN_WARNING
1522 			"JBD2: Invalid start block of journal: %u\n",
1523 			be32_to_cpu(sb->s_first));
1524 		goto out;
1525 	}
1526 
1527 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1528 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1529 		/* Can't have checksum v1 and v2 on at the same time! */
1530 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1531 		       "at the same time!\n");
1532 		goto out;
1533 	}
1534 
1535 	if (!jbd2_verify_csum_type(journal, sb)) {
1536 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1537 		goto out;
1538 	}
1539 
1540 	/* Load the checksum driver */
1541 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1542 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1543 		if (IS_ERR(journal->j_chksum_driver)) {
1544 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1545 			err = PTR_ERR(journal->j_chksum_driver);
1546 			journal->j_chksum_driver = NULL;
1547 			goto out;
1548 		}
1549 	}
1550 
1551 	/* Check superblock checksum */
1552 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1553 		printk(KERN_ERR "JBD: journal checksum error\n");
1554 		goto out;
1555 	}
1556 
1557 	/* Precompute checksum seed for all metadata */
1558 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1559 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1560 						   sizeof(sb->s_uuid));
1561 
1562 	set_buffer_verified(bh);
1563 
1564 	return 0;
1565 
1566 out:
1567 	journal_fail_superblock(journal);
1568 	return err;
1569 }
1570 
1571 /*
1572  * Load the on-disk journal superblock and read the key fields into the
1573  * journal_t.
1574  */
1575 
1576 static int load_superblock(journal_t *journal)
1577 {
1578 	int err;
1579 	journal_superblock_t *sb;
1580 
1581 	err = journal_get_superblock(journal);
1582 	if (err)
1583 		return err;
1584 
1585 	sb = journal->j_superblock;
1586 
1587 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1588 	journal->j_tail = be32_to_cpu(sb->s_start);
1589 	journal->j_first = be32_to_cpu(sb->s_first);
1590 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1591 	journal->j_errno = be32_to_cpu(sb->s_errno);
1592 
1593 	return 0;
1594 }
1595 
1596 
1597 /**
1598  * int jbd2_journal_load() - Read journal from disk.
1599  * @journal: Journal to act on.
1600  *
1601  * Given a journal_t structure which tells us which disk blocks contain
1602  * a journal, read the journal from disk to initialise the in-memory
1603  * structures.
1604  */
1605 int jbd2_journal_load(journal_t *journal)
1606 {
1607 	int err;
1608 	journal_superblock_t *sb;
1609 
1610 	err = load_superblock(journal);
1611 	if (err)
1612 		return err;
1613 
1614 	sb = journal->j_superblock;
1615 	/* If this is a V2 superblock, then we have to check the
1616 	 * features flags on it. */
1617 
1618 	if (journal->j_format_version >= 2) {
1619 		if ((sb->s_feature_ro_compat &
1620 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1621 		    (sb->s_feature_incompat &
1622 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1623 			printk(KERN_WARNING
1624 				"JBD2: Unrecognised features on journal\n");
1625 			return -EINVAL;
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * Create a slab for this blocksize
1631 	 */
1632 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1633 	if (err)
1634 		return err;
1635 
1636 	/* Let the recovery code check whether it needs to recover any
1637 	 * data from the journal. */
1638 	if (jbd2_journal_recover(journal))
1639 		goto recovery_error;
1640 
1641 	if (journal->j_failed_commit) {
1642 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1643 		       "is corrupt.\n", journal->j_failed_commit,
1644 		       journal->j_devname);
1645 		return -EIO;
1646 	}
1647 
1648 	/* OK, we've finished with the dynamic journal bits:
1649 	 * reinitialise the dynamic contents of the superblock in memory
1650 	 * and reset them on disk. */
1651 	if (journal_reset(journal))
1652 		goto recovery_error;
1653 
1654 	journal->j_flags &= ~JBD2_ABORT;
1655 	journal->j_flags |= JBD2_LOADED;
1656 	return 0;
1657 
1658 recovery_error:
1659 	printk(KERN_WARNING "JBD2: recovery failed\n");
1660 	return -EIO;
1661 }
1662 
1663 /**
1664  * void jbd2_journal_destroy() - Release a journal_t structure.
1665  * @journal: Journal to act on.
1666  *
1667  * Release a journal_t structure once it is no longer in use by the
1668  * journaled object.
1669  * Return <0 if we couldn't clean up the journal.
1670  */
1671 int jbd2_journal_destroy(journal_t *journal)
1672 {
1673 	int err = 0;
1674 
1675 	/* Wait for the commit thread to wake up and die. */
1676 	journal_kill_thread(journal);
1677 
1678 	/* Force a final log commit */
1679 	if (journal->j_running_transaction)
1680 		jbd2_journal_commit_transaction(journal);
1681 
1682 	/* Force any old transactions to disk */
1683 
1684 	/* Totally anal locking here... */
1685 	spin_lock(&journal->j_list_lock);
1686 	while (journal->j_checkpoint_transactions != NULL) {
1687 		spin_unlock(&journal->j_list_lock);
1688 		mutex_lock(&journal->j_checkpoint_mutex);
1689 		jbd2_log_do_checkpoint(journal);
1690 		mutex_unlock(&journal->j_checkpoint_mutex);
1691 		spin_lock(&journal->j_list_lock);
1692 	}
1693 
1694 	J_ASSERT(journal->j_running_transaction == NULL);
1695 	J_ASSERT(journal->j_committing_transaction == NULL);
1696 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1697 	spin_unlock(&journal->j_list_lock);
1698 
1699 	if (journal->j_sb_buffer) {
1700 		if (!is_journal_aborted(journal)) {
1701 			mutex_lock(&journal->j_checkpoint_mutex);
1702 			jbd2_mark_journal_empty(journal);
1703 			mutex_unlock(&journal->j_checkpoint_mutex);
1704 		} else
1705 			err = -EIO;
1706 		brelse(journal->j_sb_buffer);
1707 	}
1708 
1709 	if (journal->j_proc_entry)
1710 		jbd2_stats_proc_exit(journal);
1711 	if (journal->j_inode)
1712 		iput(journal->j_inode);
1713 	if (journal->j_revoke)
1714 		jbd2_journal_destroy_revoke(journal);
1715 	if (journal->j_chksum_driver)
1716 		crypto_free_shash(journal->j_chksum_driver);
1717 	kfree(journal->j_wbuf);
1718 	kfree(journal);
1719 
1720 	return err;
1721 }
1722 
1723 
1724 /**
1725  *int jbd2_journal_check_used_features () - Check if features specified are used.
1726  * @journal: Journal to check.
1727  * @compat: bitmask of compatible features
1728  * @ro: bitmask of features that force read-only mount
1729  * @incompat: bitmask of incompatible features
1730  *
1731  * Check whether the journal uses all of a given set of
1732  * features.  Return true (non-zero) if it does.
1733  **/
1734 
1735 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1736 				 unsigned long ro, unsigned long incompat)
1737 {
1738 	journal_superblock_t *sb;
1739 
1740 	if (!compat && !ro && !incompat)
1741 		return 1;
1742 	/* Load journal superblock if it is not loaded yet. */
1743 	if (journal->j_format_version == 0 &&
1744 	    journal_get_superblock(journal) != 0)
1745 		return 0;
1746 	if (journal->j_format_version == 1)
1747 		return 0;
1748 
1749 	sb = journal->j_superblock;
1750 
1751 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1752 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1753 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1754 		return 1;
1755 
1756 	return 0;
1757 }
1758 
1759 /**
1760  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1761  * @journal: Journal to check.
1762  * @compat: bitmask of compatible features
1763  * @ro: bitmask of features that force read-only mount
1764  * @incompat: bitmask of incompatible features
1765  *
1766  * Check whether the journaling code supports the use of
1767  * all of a given set of features on this journal.  Return true
1768  * (non-zero) if it can. */
1769 
1770 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1771 				      unsigned long ro, unsigned long incompat)
1772 {
1773 	if (!compat && !ro && !incompat)
1774 		return 1;
1775 
1776 	/* We can support any known requested features iff the
1777 	 * superblock is in version 2.  Otherwise we fail to support any
1778 	 * extended sb features. */
1779 
1780 	if (journal->j_format_version != 2)
1781 		return 0;
1782 
1783 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1784 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1785 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1786 		return 1;
1787 
1788 	return 0;
1789 }
1790 
1791 /**
1792  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1793  * @journal: Journal to act on.
1794  * @compat: bitmask of compatible features
1795  * @ro: bitmask of features that force read-only mount
1796  * @incompat: bitmask of incompatible features
1797  *
1798  * Mark a given journal feature as present on the
1799  * superblock.  Returns true if the requested features could be set.
1800  *
1801  */
1802 
1803 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1804 			  unsigned long ro, unsigned long incompat)
1805 {
1806 #define INCOMPAT_FEATURE_ON(f) \
1807 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1808 #define COMPAT_FEATURE_ON(f) \
1809 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1810 	journal_superblock_t *sb;
1811 
1812 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1813 		return 1;
1814 
1815 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1816 		return 0;
1817 
1818 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1819 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1820 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1821 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1822 
1823 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1824 		  compat, ro, incompat);
1825 
1826 	sb = journal->j_superblock;
1827 
1828 	/* If enabling v2 checksums, update superblock */
1829 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1830 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1831 		sb->s_feature_compat &=
1832 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1833 
1834 		/* Load the checksum driver */
1835 		if (journal->j_chksum_driver == NULL) {
1836 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1837 								      0, 0);
1838 			if (IS_ERR(journal->j_chksum_driver)) {
1839 				printk(KERN_ERR "JBD: Cannot load crc32c "
1840 				       "driver.\n");
1841 				journal->j_chksum_driver = NULL;
1842 				return 0;
1843 			}
1844 		}
1845 
1846 		/* Precompute checksum seed for all metadata */
1847 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1848 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1849 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1850 							   sb->s_uuid,
1851 							   sizeof(sb->s_uuid));
1852 	}
1853 
1854 	/* If enabling v1 checksums, downgrade superblock */
1855 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1856 		sb->s_feature_incompat &=
1857 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1858 
1859 	sb->s_feature_compat    |= cpu_to_be32(compat);
1860 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1861 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1862 
1863 	return 1;
1864 #undef COMPAT_FEATURE_ON
1865 #undef INCOMPAT_FEATURE_ON
1866 }
1867 
1868 /*
1869  * jbd2_journal_clear_features () - Clear a given journal feature in the
1870  * 				    superblock
1871  * @journal: Journal to act on.
1872  * @compat: bitmask of compatible features
1873  * @ro: bitmask of features that force read-only mount
1874  * @incompat: bitmask of incompatible features
1875  *
1876  * Clear a given journal feature as present on the
1877  * superblock.
1878  */
1879 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1880 				unsigned long ro, unsigned long incompat)
1881 {
1882 	journal_superblock_t *sb;
1883 
1884 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1885 		  compat, ro, incompat);
1886 
1887 	sb = journal->j_superblock;
1888 
1889 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1890 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1891 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1892 }
1893 EXPORT_SYMBOL(jbd2_journal_clear_features);
1894 
1895 /**
1896  * int jbd2_journal_flush () - Flush journal
1897  * @journal: Journal to act on.
1898  *
1899  * Flush all data for a given journal to disk and empty the journal.
1900  * Filesystems can use this when remounting readonly to ensure that
1901  * recovery does not need to happen on remount.
1902  */
1903 
1904 int jbd2_journal_flush(journal_t *journal)
1905 {
1906 	int err = 0;
1907 	transaction_t *transaction = NULL;
1908 
1909 	write_lock(&journal->j_state_lock);
1910 
1911 	/* Force everything buffered to the log... */
1912 	if (journal->j_running_transaction) {
1913 		transaction = journal->j_running_transaction;
1914 		__jbd2_log_start_commit(journal, transaction->t_tid);
1915 	} else if (journal->j_committing_transaction)
1916 		transaction = journal->j_committing_transaction;
1917 
1918 	/* Wait for the log commit to complete... */
1919 	if (transaction) {
1920 		tid_t tid = transaction->t_tid;
1921 
1922 		write_unlock(&journal->j_state_lock);
1923 		jbd2_log_wait_commit(journal, tid);
1924 	} else {
1925 		write_unlock(&journal->j_state_lock);
1926 	}
1927 
1928 	/* ...and flush everything in the log out to disk. */
1929 	spin_lock(&journal->j_list_lock);
1930 	while (!err && journal->j_checkpoint_transactions != NULL) {
1931 		spin_unlock(&journal->j_list_lock);
1932 		mutex_lock(&journal->j_checkpoint_mutex);
1933 		err = jbd2_log_do_checkpoint(journal);
1934 		mutex_unlock(&journal->j_checkpoint_mutex);
1935 		spin_lock(&journal->j_list_lock);
1936 	}
1937 	spin_unlock(&journal->j_list_lock);
1938 
1939 	if (is_journal_aborted(journal))
1940 		return -EIO;
1941 
1942 	mutex_lock(&journal->j_checkpoint_mutex);
1943 	jbd2_cleanup_journal_tail(journal);
1944 
1945 	/* Finally, mark the journal as really needing no recovery.
1946 	 * This sets s_start==0 in the underlying superblock, which is
1947 	 * the magic code for a fully-recovered superblock.  Any future
1948 	 * commits of data to the journal will restore the current
1949 	 * s_start value. */
1950 	jbd2_mark_journal_empty(journal);
1951 	mutex_unlock(&journal->j_checkpoint_mutex);
1952 	write_lock(&journal->j_state_lock);
1953 	J_ASSERT(!journal->j_running_transaction);
1954 	J_ASSERT(!journal->j_committing_transaction);
1955 	J_ASSERT(!journal->j_checkpoint_transactions);
1956 	J_ASSERT(journal->j_head == journal->j_tail);
1957 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1958 	write_unlock(&journal->j_state_lock);
1959 	return 0;
1960 }
1961 
1962 /**
1963  * int jbd2_journal_wipe() - Wipe journal contents
1964  * @journal: Journal to act on.
1965  * @write: flag (see below)
1966  *
1967  * Wipe out all of the contents of a journal, safely.  This will produce
1968  * a warning if the journal contains any valid recovery information.
1969  * Must be called between journal_init_*() and jbd2_journal_load().
1970  *
1971  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1972  * we merely suppress recovery.
1973  */
1974 
1975 int jbd2_journal_wipe(journal_t *journal, int write)
1976 {
1977 	int err = 0;
1978 
1979 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1980 
1981 	err = load_superblock(journal);
1982 	if (err)
1983 		return err;
1984 
1985 	if (!journal->j_tail)
1986 		goto no_recovery;
1987 
1988 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1989 		write ? "Clearing" : "Ignoring");
1990 
1991 	err = jbd2_journal_skip_recovery(journal);
1992 	if (write) {
1993 		/* Lock to make assertions happy... */
1994 		mutex_lock(&journal->j_checkpoint_mutex);
1995 		jbd2_mark_journal_empty(journal);
1996 		mutex_unlock(&journal->j_checkpoint_mutex);
1997 	}
1998 
1999  no_recovery:
2000 	return err;
2001 }
2002 
2003 /*
2004  * Journal abort has very specific semantics, which we describe
2005  * for journal abort.
2006  *
2007  * Two internal functions, which provide abort to the jbd layer
2008  * itself are here.
2009  */
2010 
2011 /*
2012  * Quick version for internal journal use (doesn't lock the journal).
2013  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2014  * and don't attempt to make any other journal updates.
2015  */
2016 void __jbd2_journal_abort_hard(journal_t *journal)
2017 {
2018 	transaction_t *transaction;
2019 
2020 	if (journal->j_flags & JBD2_ABORT)
2021 		return;
2022 
2023 	printk(KERN_ERR "Aborting journal on device %s.\n",
2024 	       journal->j_devname);
2025 
2026 	write_lock(&journal->j_state_lock);
2027 	journal->j_flags |= JBD2_ABORT;
2028 	transaction = journal->j_running_transaction;
2029 	if (transaction)
2030 		__jbd2_log_start_commit(journal, transaction->t_tid);
2031 	write_unlock(&journal->j_state_lock);
2032 }
2033 
2034 /* Soft abort: record the abort error status in the journal superblock,
2035  * but don't do any other IO. */
2036 static void __journal_abort_soft (journal_t *journal, int errno)
2037 {
2038 	if (journal->j_flags & JBD2_ABORT)
2039 		return;
2040 
2041 	if (!journal->j_errno)
2042 		journal->j_errno = errno;
2043 
2044 	__jbd2_journal_abort_hard(journal);
2045 
2046 	if (errno)
2047 		jbd2_journal_update_sb_errno(journal);
2048 }
2049 
2050 /**
2051  * void jbd2_journal_abort () - Shutdown the journal immediately.
2052  * @journal: the journal to shutdown.
2053  * @errno:   an error number to record in the journal indicating
2054  *           the reason for the shutdown.
2055  *
2056  * Perform a complete, immediate shutdown of the ENTIRE
2057  * journal (not of a single transaction).  This operation cannot be
2058  * undone without closing and reopening the journal.
2059  *
2060  * The jbd2_journal_abort function is intended to support higher level error
2061  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2062  * mode.
2063  *
2064  * Journal abort has very specific semantics.  Any existing dirty,
2065  * unjournaled buffers in the main filesystem will still be written to
2066  * disk by bdflush, but the journaling mechanism will be suspended
2067  * immediately and no further transaction commits will be honoured.
2068  *
2069  * Any dirty, journaled buffers will be written back to disk without
2070  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2071  * filesystem, but we _do_ attempt to leave as much data as possible
2072  * behind for fsck to use for cleanup.
2073  *
2074  * Any attempt to get a new transaction handle on a journal which is in
2075  * ABORT state will just result in an -EROFS error return.  A
2076  * jbd2_journal_stop on an existing handle will return -EIO if we have
2077  * entered abort state during the update.
2078  *
2079  * Recursive transactions are not disturbed by journal abort until the
2080  * final jbd2_journal_stop, which will receive the -EIO error.
2081  *
2082  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2083  * which will be recorded (if possible) in the journal superblock.  This
2084  * allows a client to record failure conditions in the middle of a
2085  * transaction without having to complete the transaction to record the
2086  * failure to disk.  ext3_error, for example, now uses this
2087  * functionality.
2088  *
2089  * Errors which originate from within the journaling layer will NOT
2090  * supply an errno; a null errno implies that absolutely no further
2091  * writes are done to the journal (unless there are any already in
2092  * progress).
2093  *
2094  */
2095 
2096 void jbd2_journal_abort(journal_t *journal, int errno)
2097 {
2098 	__journal_abort_soft(journal, errno);
2099 }
2100 
2101 /**
2102  * int jbd2_journal_errno () - returns the journal's error state.
2103  * @journal: journal to examine.
2104  *
2105  * This is the errno number set with jbd2_journal_abort(), the last
2106  * time the journal was mounted - if the journal was stopped
2107  * without calling abort this will be 0.
2108  *
2109  * If the journal has been aborted on this mount time -EROFS will
2110  * be returned.
2111  */
2112 int jbd2_journal_errno(journal_t *journal)
2113 {
2114 	int err;
2115 
2116 	read_lock(&journal->j_state_lock);
2117 	if (journal->j_flags & JBD2_ABORT)
2118 		err = -EROFS;
2119 	else
2120 		err = journal->j_errno;
2121 	read_unlock(&journal->j_state_lock);
2122 	return err;
2123 }
2124 
2125 /**
2126  * int jbd2_journal_clear_err () - clears the journal's error state
2127  * @journal: journal to act on.
2128  *
2129  * An error must be cleared or acked to take a FS out of readonly
2130  * mode.
2131  */
2132 int jbd2_journal_clear_err(journal_t *journal)
2133 {
2134 	int err = 0;
2135 
2136 	write_lock(&journal->j_state_lock);
2137 	if (journal->j_flags & JBD2_ABORT)
2138 		err = -EROFS;
2139 	else
2140 		journal->j_errno = 0;
2141 	write_unlock(&journal->j_state_lock);
2142 	return err;
2143 }
2144 
2145 /**
2146  * void jbd2_journal_ack_err() - Ack journal err.
2147  * @journal: journal to act on.
2148  *
2149  * An error must be cleared or acked to take a FS out of readonly
2150  * mode.
2151  */
2152 void jbd2_journal_ack_err(journal_t *journal)
2153 {
2154 	write_lock(&journal->j_state_lock);
2155 	if (journal->j_errno)
2156 		journal->j_flags |= JBD2_ACK_ERR;
2157 	write_unlock(&journal->j_state_lock);
2158 }
2159 
2160 int jbd2_journal_blocks_per_page(struct inode *inode)
2161 {
2162 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2163 }
2164 
2165 /*
2166  * helper functions to deal with 32 or 64bit block numbers.
2167  */
2168 size_t journal_tag_bytes(journal_t *journal)
2169 {
2170 	journal_block_tag_t tag;
2171 	size_t x = 0;
2172 
2173 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2174 		x += sizeof(tag.t_checksum);
2175 
2176 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2177 		return x + JBD2_TAG_SIZE64;
2178 	else
2179 		return x + JBD2_TAG_SIZE32;
2180 }
2181 
2182 /*
2183  * JBD memory management
2184  *
2185  * These functions are used to allocate block-sized chunks of memory
2186  * used for making copies of buffer_head data.  Very often it will be
2187  * page-sized chunks of data, but sometimes it will be in
2188  * sub-page-size chunks.  (For example, 16k pages on Power systems
2189  * with a 4k block file system.)  For blocks smaller than a page, we
2190  * use a SLAB allocator.  There are slab caches for each block size,
2191  * which are allocated at mount time, if necessary, and we only free
2192  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2193  * this reason we don't need to a mutex to protect access to
2194  * jbd2_slab[] allocating or releasing memory; only in
2195  * jbd2_journal_create_slab().
2196  */
2197 #define JBD2_MAX_SLABS 8
2198 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2199 
2200 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2201 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2202 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2203 };
2204 
2205 
2206 static void jbd2_journal_destroy_slabs(void)
2207 {
2208 	int i;
2209 
2210 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2211 		if (jbd2_slab[i])
2212 			kmem_cache_destroy(jbd2_slab[i]);
2213 		jbd2_slab[i] = NULL;
2214 	}
2215 }
2216 
2217 static int jbd2_journal_create_slab(size_t size)
2218 {
2219 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2220 	int i = order_base_2(size) - 10;
2221 	size_t slab_size;
2222 
2223 	if (size == PAGE_SIZE)
2224 		return 0;
2225 
2226 	if (i >= JBD2_MAX_SLABS)
2227 		return -EINVAL;
2228 
2229 	if (unlikely(i < 0))
2230 		i = 0;
2231 	mutex_lock(&jbd2_slab_create_mutex);
2232 	if (jbd2_slab[i]) {
2233 		mutex_unlock(&jbd2_slab_create_mutex);
2234 		return 0;	/* Already created */
2235 	}
2236 
2237 	slab_size = 1 << (i+10);
2238 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2239 					 slab_size, 0, NULL);
2240 	mutex_unlock(&jbd2_slab_create_mutex);
2241 	if (!jbd2_slab[i]) {
2242 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2243 		return -ENOMEM;
2244 	}
2245 	return 0;
2246 }
2247 
2248 static struct kmem_cache *get_slab(size_t size)
2249 {
2250 	int i = order_base_2(size) - 10;
2251 
2252 	BUG_ON(i >= JBD2_MAX_SLABS);
2253 	if (unlikely(i < 0))
2254 		i = 0;
2255 	BUG_ON(jbd2_slab[i] == NULL);
2256 	return jbd2_slab[i];
2257 }
2258 
2259 void *jbd2_alloc(size_t size, gfp_t flags)
2260 {
2261 	void *ptr;
2262 
2263 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2264 
2265 	flags |= __GFP_REPEAT;
2266 	if (size == PAGE_SIZE)
2267 		ptr = (void *)__get_free_pages(flags, 0);
2268 	else if (size > PAGE_SIZE) {
2269 		int order = get_order(size);
2270 
2271 		if (order < 3)
2272 			ptr = (void *)__get_free_pages(flags, order);
2273 		else
2274 			ptr = vmalloc(size);
2275 	} else
2276 		ptr = kmem_cache_alloc(get_slab(size), flags);
2277 
2278 	/* Check alignment; SLUB has gotten this wrong in the past,
2279 	 * and this can lead to user data corruption! */
2280 	BUG_ON(((unsigned long) ptr) & (size-1));
2281 
2282 	return ptr;
2283 }
2284 
2285 void jbd2_free(void *ptr, size_t size)
2286 {
2287 	if (size == PAGE_SIZE) {
2288 		free_pages((unsigned long)ptr, 0);
2289 		return;
2290 	}
2291 	if (size > PAGE_SIZE) {
2292 		int order = get_order(size);
2293 
2294 		if (order < 3)
2295 			free_pages((unsigned long)ptr, order);
2296 		else
2297 			vfree(ptr);
2298 		return;
2299 	}
2300 	kmem_cache_free(get_slab(size), ptr);
2301 };
2302 
2303 /*
2304  * Journal_head storage management
2305  */
2306 static struct kmem_cache *jbd2_journal_head_cache;
2307 #ifdef CONFIG_JBD2_DEBUG
2308 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2309 #endif
2310 
2311 static int jbd2_journal_init_journal_head_cache(void)
2312 {
2313 	int retval;
2314 
2315 	J_ASSERT(jbd2_journal_head_cache == NULL);
2316 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2317 				sizeof(struct journal_head),
2318 				0,		/* offset */
2319 				SLAB_TEMPORARY,	/* flags */
2320 				NULL);		/* ctor */
2321 	retval = 0;
2322 	if (!jbd2_journal_head_cache) {
2323 		retval = -ENOMEM;
2324 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2325 	}
2326 	return retval;
2327 }
2328 
2329 static void jbd2_journal_destroy_journal_head_cache(void)
2330 {
2331 	if (jbd2_journal_head_cache) {
2332 		kmem_cache_destroy(jbd2_journal_head_cache);
2333 		jbd2_journal_head_cache = NULL;
2334 	}
2335 }
2336 
2337 /*
2338  * journal_head splicing and dicing
2339  */
2340 static struct journal_head *journal_alloc_journal_head(void)
2341 {
2342 	struct journal_head *ret;
2343 
2344 #ifdef CONFIG_JBD2_DEBUG
2345 	atomic_inc(&nr_journal_heads);
2346 #endif
2347 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2348 	if (!ret) {
2349 		jbd_debug(1, "out of memory for journal_head\n");
2350 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2351 		while (!ret) {
2352 			yield();
2353 			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2354 		}
2355 	}
2356 	return ret;
2357 }
2358 
2359 static void journal_free_journal_head(struct journal_head *jh)
2360 {
2361 #ifdef CONFIG_JBD2_DEBUG
2362 	atomic_dec(&nr_journal_heads);
2363 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2364 #endif
2365 	kmem_cache_free(jbd2_journal_head_cache, jh);
2366 }
2367 
2368 /*
2369  * A journal_head is attached to a buffer_head whenever JBD has an
2370  * interest in the buffer.
2371  *
2372  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2373  * is set.  This bit is tested in core kernel code where we need to take
2374  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2375  * there.
2376  *
2377  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2378  *
2379  * When a buffer has its BH_JBD bit set it is immune from being released by
2380  * core kernel code, mainly via ->b_count.
2381  *
2382  * A journal_head is detached from its buffer_head when the journal_head's
2383  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2384  * transaction (b_cp_transaction) hold their references to b_jcount.
2385  *
2386  * Various places in the kernel want to attach a journal_head to a buffer_head
2387  * _before_ attaching the journal_head to a transaction.  To protect the
2388  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2389  * journal_head's b_jcount refcount by one.  The caller must call
2390  * jbd2_journal_put_journal_head() to undo this.
2391  *
2392  * So the typical usage would be:
2393  *
2394  *	(Attach a journal_head if needed.  Increments b_jcount)
2395  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2396  *	...
2397  *      (Get another reference for transaction)
2398  *	jbd2_journal_grab_journal_head(bh);
2399  *	jh->b_transaction = xxx;
2400  *	(Put original reference)
2401  *	jbd2_journal_put_journal_head(jh);
2402  */
2403 
2404 /*
2405  * Give a buffer_head a journal_head.
2406  *
2407  * May sleep.
2408  */
2409 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2410 {
2411 	struct journal_head *jh;
2412 	struct journal_head *new_jh = NULL;
2413 
2414 repeat:
2415 	if (!buffer_jbd(bh))
2416 		new_jh = journal_alloc_journal_head();
2417 
2418 	jbd_lock_bh_journal_head(bh);
2419 	if (buffer_jbd(bh)) {
2420 		jh = bh2jh(bh);
2421 	} else {
2422 		J_ASSERT_BH(bh,
2423 			(atomic_read(&bh->b_count) > 0) ||
2424 			(bh->b_page && bh->b_page->mapping));
2425 
2426 		if (!new_jh) {
2427 			jbd_unlock_bh_journal_head(bh);
2428 			goto repeat;
2429 		}
2430 
2431 		jh = new_jh;
2432 		new_jh = NULL;		/* We consumed it */
2433 		set_buffer_jbd(bh);
2434 		bh->b_private = jh;
2435 		jh->b_bh = bh;
2436 		get_bh(bh);
2437 		BUFFER_TRACE(bh, "added journal_head");
2438 	}
2439 	jh->b_jcount++;
2440 	jbd_unlock_bh_journal_head(bh);
2441 	if (new_jh)
2442 		journal_free_journal_head(new_jh);
2443 	return bh->b_private;
2444 }
2445 
2446 /*
2447  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2448  * having a journal_head, return NULL
2449  */
2450 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2451 {
2452 	struct journal_head *jh = NULL;
2453 
2454 	jbd_lock_bh_journal_head(bh);
2455 	if (buffer_jbd(bh)) {
2456 		jh = bh2jh(bh);
2457 		jh->b_jcount++;
2458 	}
2459 	jbd_unlock_bh_journal_head(bh);
2460 	return jh;
2461 }
2462 
2463 static void __journal_remove_journal_head(struct buffer_head *bh)
2464 {
2465 	struct journal_head *jh = bh2jh(bh);
2466 
2467 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2468 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2469 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2470 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2471 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2472 	J_ASSERT_BH(bh, buffer_jbd(bh));
2473 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2474 	BUFFER_TRACE(bh, "remove journal_head");
2475 	if (jh->b_frozen_data) {
2476 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2477 		jbd2_free(jh->b_frozen_data, bh->b_size);
2478 	}
2479 	if (jh->b_committed_data) {
2480 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2481 		jbd2_free(jh->b_committed_data, bh->b_size);
2482 	}
2483 	bh->b_private = NULL;
2484 	jh->b_bh = NULL;	/* debug, really */
2485 	clear_buffer_jbd(bh);
2486 	journal_free_journal_head(jh);
2487 }
2488 
2489 /*
2490  * Drop a reference on the passed journal_head.  If it fell to zero then
2491  * release the journal_head from the buffer_head.
2492  */
2493 void jbd2_journal_put_journal_head(struct journal_head *jh)
2494 {
2495 	struct buffer_head *bh = jh2bh(jh);
2496 
2497 	jbd_lock_bh_journal_head(bh);
2498 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2499 	--jh->b_jcount;
2500 	if (!jh->b_jcount) {
2501 		__journal_remove_journal_head(bh);
2502 		jbd_unlock_bh_journal_head(bh);
2503 		__brelse(bh);
2504 	} else
2505 		jbd_unlock_bh_journal_head(bh);
2506 }
2507 
2508 /*
2509  * Initialize jbd inode head
2510  */
2511 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2512 {
2513 	jinode->i_transaction = NULL;
2514 	jinode->i_next_transaction = NULL;
2515 	jinode->i_vfs_inode = inode;
2516 	jinode->i_flags = 0;
2517 	INIT_LIST_HEAD(&jinode->i_list);
2518 }
2519 
2520 /*
2521  * Function to be called before we start removing inode from memory (i.e.,
2522  * clear_inode() is a fine place to be called from). It removes inode from
2523  * transaction's lists.
2524  */
2525 void jbd2_journal_release_jbd_inode(journal_t *journal,
2526 				    struct jbd2_inode *jinode)
2527 {
2528 	if (!journal)
2529 		return;
2530 restart:
2531 	spin_lock(&journal->j_list_lock);
2532 	/* Is commit writing out inode - we have to wait */
2533 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2534 		wait_queue_head_t *wq;
2535 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2536 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2537 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2538 		spin_unlock(&journal->j_list_lock);
2539 		schedule();
2540 		finish_wait(wq, &wait.wait);
2541 		goto restart;
2542 	}
2543 
2544 	if (jinode->i_transaction) {
2545 		list_del(&jinode->i_list);
2546 		jinode->i_transaction = NULL;
2547 	}
2548 	spin_unlock(&journal->j_list_lock);
2549 }
2550 
2551 
2552 #ifdef CONFIG_PROC_FS
2553 
2554 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2555 
2556 static void __init jbd2_create_jbd_stats_proc_entry(void)
2557 {
2558 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2559 }
2560 
2561 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2562 {
2563 	if (proc_jbd2_stats)
2564 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2565 }
2566 
2567 #else
2568 
2569 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2570 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2571 
2572 #endif
2573 
2574 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2575 
2576 static int __init jbd2_journal_init_handle_cache(void)
2577 {
2578 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2579 	if (jbd2_handle_cache == NULL) {
2580 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2581 		return -ENOMEM;
2582 	}
2583 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2584 	if (jbd2_inode_cache == NULL) {
2585 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2586 		kmem_cache_destroy(jbd2_handle_cache);
2587 		return -ENOMEM;
2588 	}
2589 	return 0;
2590 }
2591 
2592 static void jbd2_journal_destroy_handle_cache(void)
2593 {
2594 	if (jbd2_handle_cache)
2595 		kmem_cache_destroy(jbd2_handle_cache);
2596 	if (jbd2_inode_cache)
2597 		kmem_cache_destroy(jbd2_inode_cache);
2598 
2599 }
2600 
2601 /*
2602  * Module startup and shutdown
2603  */
2604 
2605 static int __init journal_init_caches(void)
2606 {
2607 	int ret;
2608 
2609 	ret = jbd2_journal_init_revoke_caches();
2610 	if (ret == 0)
2611 		ret = jbd2_journal_init_journal_head_cache();
2612 	if (ret == 0)
2613 		ret = jbd2_journal_init_handle_cache();
2614 	if (ret == 0)
2615 		ret = jbd2_journal_init_transaction_cache();
2616 	return ret;
2617 }
2618 
2619 static void jbd2_journal_destroy_caches(void)
2620 {
2621 	jbd2_journal_destroy_revoke_caches();
2622 	jbd2_journal_destroy_journal_head_cache();
2623 	jbd2_journal_destroy_handle_cache();
2624 	jbd2_journal_destroy_transaction_cache();
2625 	jbd2_journal_destroy_slabs();
2626 }
2627 
2628 static int __init journal_init(void)
2629 {
2630 	int ret;
2631 
2632 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2633 
2634 	ret = journal_init_caches();
2635 	if (ret == 0) {
2636 		jbd2_create_jbd_stats_proc_entry();
2637 	} else {
2638 		jbd2_journal_destroy_caches();
2639 	}
2640 	return ret;
2641 }
2642 
2643 static void __exit journal_exit(void)
2644 {
2645 #ifdef CONFIG_JBD2_DEBUG
2646 	int n = atomic_read(&nr_journal_heads);
2647 	if (n)
2648 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2649 #endif
2650 	jbd2_remove_jbd_stats_proc_entry();
2651 	jbd2_journal_destroy_caches();
2652 }
2653 
2654 MODULE_LICENSE("GPL");
2655 module_init(journal_init);
2656 module_exit(journal_exit);
2657 
2658