xref: /openbmc/linux/fs/jbd2/journal.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
118 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
119 {
120 	if (!jbd2_journal_has_csum_v2or3_feature(j))
121 		return 1;
122 
123 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
124 }
125 
126 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
127 {
128 	__u32 csum;
129 	__be32 old_csum;
130 
131 	old_csum = sb->s_checksum;
132 	sb->s_checksum = 0;
133 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
134 	sb->s_checksum = old_csum;
135 
136 	return cpu_to_be32(csum);
137 }
138 
139 /*
140  * Helper function used to manage commit timeouts
141  */
142 
143 static void commit_timeout(struct timer_list *t)
144 {
145 	journal_t *journal = from_timer(journal, t, j_commit_timer);
146 
147 	wake_up_process(journal->j_task);
148 }
149 
150 /*
151  * kjournald2: The main thread function used to manage a logging device
152  * journal.
153  *
154  * This kernel thread is responsible for two things:
155  *
156  * 1) COMMIT:  Every so often we need to commit the current state of the
157  *    filesystem to disk.  The journal thread is responsible for writing
158  *    all of the metadata buffers to disk. If a fast commit is ongoing
159  *    journal thread waits until it's done and then continues from
160  *    there on.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167 
168 static int kjournald2(void *arg)
169 {
170 	journal_t *journal = arg;
171 	transaction_t *transaction;
172 
173 	/*
174 	 * Set up an interval timer which can be used to trigger a commit wakeup
175 	 * after the commit interval expires
176 	 */
177 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178 
179 	set_freezable();
180 
181 	/* Record that the journal thread is running */
182 	journal->j_task = current;
183 	wake_up(&journal->j_wait_done_commit);
184 
185 	/*
186 	 * Make sure that no allocations from this kernel thread will ever
187 	 * recurse to the fs layer because we are responsible for the
188 	 * transaction commit and any fs involvement might get stuck waiting for
189 	 * the trasn. commit.
190 	 */
191 	memalloc_nofs_save();
192 
193 	/*
194 	 * And now, wait forever for commit wakeup events.
195 	 */
196 	write_lock(&journal->j_state_lock);
197 
198 loop:
199 	if (journal->j_flags & JBD2_UNMOUNT)
200 		goto end_loop;
201 
202 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 		journal->j_commit_sequence, journal->j_commit_request);
204 
205 	if (journal->j_commit_sequence != journal->j_commit_request) {
206 		jbd2_debug(1, "OK, requests differ\n");
207 		write_unlock(&journal->j_state_lock);
208 		del_timer_sync(&journal->j_commit_timer);
209 		jbd2_journal_commit_transaction(journal);
210 		write_lock(&journal->j_state_lock);
211 		goto loop;
212 	}
213 
214 	wake_up(&journal->j_wait_done_commit);
215 	if (freezing(current)) {
216 		/*
217 		 * The simpler the better. Flushing journal isn't a
218 		 * good idea, because that depends on threads that may
219 		 * be already stopped.
220 		 */
221 		jbd2_debug(1, "Now suspending kjournald2\n");
222 		write_unlock(&journal->j_state_lock);
223 		try_to_freeze();
224 		write_lock(&journal->j_state_lock);
225 	} else {
226 		/*
227 		 * We assume on resume that commits are already there,
228 		 * so we don't sleep
229 		 */
230 		DEFINE_WAIT(wait);
231 		int should_sleep = 1;
232 
233 		prepare_to_wait(&journal->j_wait_commit, &wait,
234 				TASK_INTERRUPTIBLE);
235 		if (journal->j_commit_sequence != journal->j_commit_request)
236 			should_sleep = 0;
237 		transaction = journal->j_running_transaction;
238 		if (transaction && time_after_eq(jiffies,
239 						transaction->t_expires))
240 			should_sleep = 0;
241 		if (journal->j_flags & JBD2_UNMOUNT)
242 			should_sleep = 0;
243 		if (should_sleep) {
244 			write_unlock(&journal->j_state_lock);
245 			schedule();
246 			write_lock(&journal->j_state_lock);
247 		}
248 		finish_wait(&journal->j_wait_commit, &wait);
249 	}
250 
251 	jbd2_debug(1, "kjournald2 wakes\n");
252 
253 	/*
254 	 * Were we woken up by a commit wakeup event?
255 	 */
256 	transaction = journal->j_running_transaction;
257 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 		journal->j_commit_request = transaction->t_tid;
259 		jbd2_debug(1, "woke because of timeout\n");
260 	}
261 	goto loop;
262 
263 end_loop:
264 	del_timer_sync(&journal->j_commit_timer);
265 	journal->j_task = NULL;
266 	wake_up(&journal->j_wait_done_commit);
267 	jbd2_debug(1, "Journal thread exiting.\n");
268 	write_unlock(&journal->j_state_lock);
269 	return 0;
270 }
271 
272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 	struct task_struct *t;
275 
276 	t = kthread_run(kjournald2, journal, "jbd2/%s",
277 			journal->j_devname);
278 	if (IS_ERR(t))
279 		return PTR_ERR(t);
280 
281 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 	return 0;
283 }
284 
285 static void journal_kill_thread(journal_t *journal)
286 {
287 	write_lock(&journal->j_state_lock);
288 	journal->j_flags |= JBD2_UNMOUNT;
289 
290 	while (journal->j_task) {
291 		write_unlock(&journal->j_state_lock);
292 		wake_up(&journal->j_wait_commit);
293 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 		write_lock(&journal->j_state_lock);
295 	}
296 	write_unlock(&journal->j_state_lock);
297 }
298 
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333 
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 				  struct journal_head  *jh_in,
336 				  struct buffer_head **bh_out,
337 				  sector_t blocknr)
338 {
339 	int need_copy_out = 0;
340 	int done_copy_out = 0;
341 	int do_escape = 0;
342 	char *mapped_data;
343 	struct buffer_head *new_bh;
344 	struct folio *new_folio;
345 	unsigned int new_offset;
346 	struct buffer_head *bh_in = jh2bh(jh_in);
347 	journal_t *journal = transaction->t_journal;
348 
349 	/*
350 	 * The buffer really shouldn't be locked: only the current committing
351 	 * transaction is allowed to write it, so nobody else is allowed
352 	 * to do any IO.
353 	 *
354 	 * akpm: except if we're journalling data, and write() output is
355 	 * also part of a shared mapping, and another thread has
356 	 * decided to launch a writepage() against this buffer.
357 	 */
358 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359 
360 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361 
362 	/* keep subsequent assertions sane */
363 	atomic_set(&new_bh->b_count, 1);
364 
365 	spin_lock(&jh_in->b_state_lock);
366 repeat:
367 	/*
368 	 * If a new transaction has already done a buffer copy-out, then
369 	 * we use that version of the data for the commit.
370 	 */
371 	if (jh_in->b_frozen_data) {
372 		done_copy_out = 1;
373 		new_folio = virt_to_folio(jh_in->b_frozen_data);
374 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
375 	} else {
376 		new_folio = jh2bh(jh_in)->b_folio;
377 		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
378 	}
379 
380 	mapped_data = kmap_local_folio(new_folio, new_offset);
381 	/*
382 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
383 	 * before checking for escaping, as the trigger may modify the magic
384 	 * offset.  If a copy-out happens afterwards, it will have the correct
385 	 * data in the buffer.
386 	 */
387 	if (!done_copy_out)
388 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
389 					   jh_in->b_triggers);
390 
391 	/*
392 	 * Check for escaping
393 	 */
394 	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
395 		need_copy_out = 1;
396 		do_escape = 1;
397 	}
398 	kunmap_local(mapped_data);
399 
400 	/*
401 	 * Do we need to do a data copy?
402 	 */
403 	if (need_copy_out && !done_copy_out) {
404 		char *tmp;
405 
406 		spin_unlock(&jh_in->b_state_lock);
407 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
408 		if (!tmp) {
409 			brelse(new_bh);
410 			return -ENOMEM;
411 		}
412 		spin_lock(&jh_in->b_state_lock);
413 		if (jh_in->b_frozen_data) {
414 			jbd2_free(tmp, bh_in->b_size);
415 			goto repeat;
416 		}
417 
418 		jh_in->b_frozen_data = tmp;
419 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
420 
421 		new_folio = virt_to_folio(tmp);
422 		new_offset = offset_in_folio(new_folio, tmp);
423 		done_copy_out = 1;
424 
425 		/*
426 		 * This isn't strictly necessary, as we're using frozen
427 		 * data for the escaping, but it keeps consistency with
428 		 * b_frozen_data usage.
429 		 */
430 		jh_in->b_frozen_triggers = jh_in->b_triggers;
431 	}
432 
433 	/*
434 	 * Did we need to do an escaping?  Now we've done all the
435 	 * copying, we can finally do so.
436 	 */
437 	if (do_escape) {
438 		mapped_data = kmap_local_folio(new_folio, new_offset);
439 		*((unsigned int *)mapped_data) = 0;
440 		kunmap_local(mapped_data);
441 	}
442 
443 	folio_set_bh(new_bh, new_folio, new_offset);
444 	new_bh->b_size = bh_in->b_size;
445 	new_bh->b_bdev = journal->j_dev;
446 	new_bh->b_blocknr = blocknr;
447 	new_bh->b_private = bh_in;
448 	set_buffer_mapped(new_bh);
449 	set_buffer_dirty(new_bh);
450 
451 	*bh_out = new_bh;
452 
453 	/*
454 	 * The to-be-written buffer needs to get moved to the io queue,
455 	 * and the original buffer whose contents we are shadowing or
456 	 * copying is moved to the transaction's shadow queue.
457 	 */
458 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
459 	spin_lock(&journal->j_list_lock);
460 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
461 	spin_unlock(&journal->j_list_lock);
462 	set_buffer_shadow(bh_in);
463 	spin_unlock(&jh_in->b_state_lock);
464 
465 	return do_escape | (done_copy_out << 1);
466 }
467 
468 /*
469  * Allocation code for the journal file.  Manage the space left in the
470  * journal, so that we can begin checkpointing when appropriate.
471  */
472 
473 /*
474  * Called with j_state_lock locked for writing.
475  * Returns true if a transaction commit was started.
476  */
477 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
478 {
479 	/* Return if the txn has already requested to be committed */
480 	if (journal->j_commit_request == target)
481 		return 0;
482 
483 	/*
484 	 * The only transaction we can possibly wait upon is the
485 	 * currently running transaction (if it exists).  Otherwise,
486 	 * the target tid must be an old one.
487 	 */
488 	if (journal->j_running_transaction &&
489 	    journal->j_running_transaction->t_tid == target) {
490 		/*
491 		 * We want a new commit: OK, mark the request and wakeup the
492 		 * commit thread.  We do _not_ do the commit ourselves.
493 		 */
494 
495 		journal->j_commit_request = target;
496 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
497 			  journal->j_commit_request,
498 			  journal->j_commit_sequence);
499 		journal->j_running_transaction->t_requested = jiffies;
500 		wake_up(&journal->j_wait_commit);
501 		return 1;
502 	} else if (!tid_geq(journal->j_commit_request, target))
503 		/* This should never happen, but if it does, preserve
504 		   the evidence before kjournald goes into a loop and
505 		   increments j_commit_sequence beyond all recognition. */
506 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
507 			  journal->j_commit_request,
508 			  journal->j_commit_sequence,
509 			  target, journal->j_running_transaction ?
510 			  journal->j_running_transaction->t_tid : 0);
511 	return 0;
512 }
513 
514 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
515 {
516 	int ret;
517 
518 	write_lock(&journal->j_state_lock);
519 	ret = __jbd2_log_start_commit(journal, tid);
520 	write_unlock(&journal->j_state_lock);
521 	return ret;
522 }
523 
524 /*
525  * Force and wait any uncommitted transactions.  We can only force the running
526  * transaction if we don't have an active handle, otherwise, we will deadlock.
527  * Returns: <0 in case of error,
528  *           0 if nothing to commit,
529  *           1 if transaction was successfully committed.
530  */
531 static int __jbd2_journal_force_commit(journal_t *journal)
532 {
533 	transaction_t *transaction = NULL;
534 	tid_t tid;
535 	int need_to_start = 0, ret = 0;
536 
537 	read_lock(&journal->j_state_lock);
538 	if (journal->j_running_transaction && !current->journal_info) {
539 		transaction = journal->j_running_transaction;
540 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
541 			need_to_start = 1;
542 	} else if (journal->j_committing_transaction)
543 		transaction = journal->j_committing_transaction;
544 
545 	if (!transaction) {
546 		/* Nothing to commit */
547 		read_unlock(&journal->j_state_lock);
548 		return 0;
549 	}
550 	tid = transaction->t_tid;
551 	read_unlock(&journal->j_state_lock);
552 	if (need_to_start)
553 		jbd2_log_start_commit(journal, tid);
554 	ret = jbd2_log_wait_commit(journal, tid);
555 	if (!ret)
556 		ret = 1;
557 
558 	return ret;
559 }
560 
561 /**
562  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
563  * calling process is not within transaction.
564  *
565  * @journal: journal to force
566  * Returns true if progress was made.
567  *
568  * This is used for forcing out undo-protected data which contains
569  * bitmaps, when the fs is running out of space.
570  */
571 int jbd2_journal_force_commit_nested(journal_t *journal)
572 {
573 	int ret;
574 
575 	ret = __jbd2_journal_force_commit(journal);
576 	return ret > 0;
577 }
578 
579 /**
580  * jbd2_journal_force_commit() - force any uncommitted transactions
581  * @journal: journal to force
582  *
583  * Caller want unconditional commit. We can only force the running transaction
584  * if we don't have an active handle, otherwise, we will deadlock.
585  */
586 int jbd2_journal_force_commit(journal_t *journal)
587 {
588 	int ret;
589 
590 	J_ASSERT(!current->journal_info);
591 	ret = __jbd2_journal_force_commit(journal);
592 	if (ret > 0)
593 		ret = 0;
594 	return ret;
595 }
596 
597 /*
598  * Start a commit of the current running transaction (if any).  Returns true
599  * if a transaction is going to be committed (or is currently already
600  * committing), and fills its tid in at *ptid
601  */
602 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
603 {
604 	int ret = 0;
605 
606 	write_lock(&journal->j_state_lock);
607 	if (journal->j_running_transaction) {
608 		tid_t tid = journal->j_running_transaction->t_tid;
609 
610 		__jbd2_log_start_commit(journal, tid);
611 		/* There's a running transaction and we've just made sure
612 		 * it's commit has been scheduled. */
613 		if (ptid)
614 			*ptid = tid;
615 		ret = 1;
616 	} else if (journal->j_committing_transaction) {
617 		/*
618 		 * If commit has been started, then we have to wait for
619 		 * completion of that transaction.
620 		 */
621 		if (ptid)
622 			*ptid = journal->j_committing_transaction->t_tid;
623 		ret = 1;
624 	}
625 	write_unlock(&journal->j_state_lock);
626 	return ret;
627 }
628 
629 /*
630  * Return 1 if a given transaction has not yet sent barrier request
631  * connected with a transaction commit. If 0 is returned, transaction
632  * may or may not have sent the barrier. Used to avoid sending barrier
633  * twice in common cases.
634  */
635 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
636 {
637 	int ret = 0;
638 	transaction_t *commit_trans;
639 
640 	if (!(journal->j_flags & JBD2_BARRIER))
641 		return 0;
642 	read_lock(&journal->j_state_lock);
643 	/* Transaction already committed? */
644 	if (tid_geq(journal->j_commit_sequence, tid))
645 		goto out;
646 	commit_trans = journal->j_committing_transaction;
647 	if (!commit_trans || commit_trans->t_tid != tid) {
648 		ret = 1;
649 		goto out;
650 	}
651 	/*
652 	 * Transaction is being committed and we already proceeded to
653 	 * submitting a flush to fs partition?
654 	 */
655 	if (journal->j_fs_dev != journal->j_dev) {
656 		if (!commit_trans->t_need_data_flush ||
657 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
658 			goto out;
659 	} else {
660 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
661 			goto out;
662 	}
663 	ret = 1;
664 out:
665 	read_unlock(&journal->j_state_lock);
666 	return ret;
667 }
668 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
669 
670 /*
671  * Wait for a specified commit to complete.
672  * The caller may not hold the journal lock.
673  */
674 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
675 {
676 	int err = 0;
677 
678 	read_lock(&journal->j_state_lock);
679 #ifdef CONFIG_PROVE_LOCKING
680 	/*
681 	 * Some callers make sure transaction is already committing and in that
682 	 * case we cannot block on open handles anymore. So don't warn in that
683 	 * case.
684 	 */
685 	if (tid_gt(tid, journal->j_commit_sequence) &&
686 	    (!journal->j_committing_transaction ||
687 	     journal->j_committing_transaction->t_tid != tid)) {
688 		read_unlock(&journal->j_state_lock);
689 		jbd2_might_wait_for_commit(journal);
690 		read_lock(&journal->j_state_lock);
691 	}
692 #endif
693 #ifdef CONFIG_JBD2_DEBUG
694 	if (!tid_geq(journal->j_commit_request, tid)) {
695 		printk(KERN_ERR
696 		       "%s: error: j_commit_request=%u, tid=%u\n",
697 		       __func__, journal->j_commit_request, tid);
698 	}
699 #endif
700 	while (tid_gt(tid, journal->j_commit_sequence)) {
701 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
702 				  tid, journal->j_commit_sequence);
703 		read_unlock(&journal->j_state_lock);
704 		wake_up(&journal->j_wait_commit);
705 		wait_event(journal->j_wait_done_commit,
706 				!tid_gt(tid, journal->j_commit_sequence));
707 		read_lock(&journal->j_state_lock);
708 	}
709 	read_unlock(&journal->j_state_lock);
710 
711 	if (unlikely(is_journal_aborted(journal)))
712 		err = -EIO;
713 	return err;
714 }
715 
716 /*
717  * Start a fast commit. If there's an ongoing fast or full commit wait for
718  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
719  * if a fast commit is not needed, either because there's an already a commit
720  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
721  * commit has yet been performed.
722  */
723 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
724 {
725 	if (unlikely(is_journal_aborted(journal)))
726 		return -EIO;
727 	/*
728 	 * Fast commits only allowed if at least one full commit has
729 	 * been processed.
730 	 */
731 	if (!journal->j_stats.ts_tid)
732 		return -EINVAL;
733 
734 	write_lock(&journal->j_state_lock);
735 	if (tid <= journal->j_commit_sequence) {
736 		write_unlock(&journal->j_state_lock);
737 		return -EALREADY;
738 	}
739 
740 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
741 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
742 		DEFINE_WAIT(wait);
743 
744 		prepare_to_wait(&journal->j_fc_wait, &wait,
745 				TASK_UNINTERRUPTIBLE);
746 		write_unlock(&journal->j_state_lock);
747 		schedule();
748 		finish_wait(&journal->j_fc_wait, &wait);
749 		return -EALREADY;
750 	}
751 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
752 	write_unlock(&journal->j_state_lock);
753 	jbd2_journal_lock_updates(journal);
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL(jbd2_fc_begin_commit);
758 
759 /*
760  * Stop a fast commit. If fallback is set, this function starts commit of
761  * TID tid before any other fast commit can start.
762  */
763 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
764 {
765 	jbd2_journal_unlock_updates(journal);
766 	if (journal->j_fc_cleanup_callback)
767 		journal->j_fc_cleanup_callback(journal, 0, tid);
768 	write_lock(&journal->j_state_lock);
769 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
770 	if (fallback)
771 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
772 	write_unlock(&journal->j_state_lock);
773 	wake_up(&journal->j_fc_wait);
774 	if (fallback)
775 		return jbd2_complete_transaction(journal, tid);
776 	return 0;
777 }
778 
779 int jbd2_fc_end_commit(journal_t *journal)
780 {
781 	return __jbd2_fc_end_commit(journal, 0, false);
782 }
783 EXPORT_SYMBOL(jbd2_fc_end_commit);
784 
785 int jbd2_fc_end_commit_fallback(journal_t *journal)
786 {
787 	tid_t tid;
788 
789 	read_lock(&journal->j_state_lock);
790 	tid = journal->j_running_transaction ?
791 		journal->j_running_transaction->t_tid : 0;
792 	read_unlock(&journal->j_state_lock);
793 	return __jbd2_fc_end_commit(journal, tid, true);
794 }
795 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
796 
797 /* Return 1 when transaction with given tid has already committed. */
798 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
799 {
800 	int ret = 1;
801 
802 	read_lock(&journal->j_state_lock);
803 	if (journal->j_running_transaction &&
804 	    journal->j_running_transaction->t_tid == tid)
805 		ret = 0;
806 	if (journal->j_committing_transaction &&
807 	    journal->j_committing_transaction->t_tid == tid)
808 		ret = 0;
809 	read_unlock(&journal->j_state_lock);
810 	return ret;
811 }
812 EXPORT_SYMBOL(jbd2_transaction_committed);
813 
814 /*
815  * When this function returns the transaction corresponding to tid
816  * will be completed.  If the transaction has currently running, start
817  * committing that transaction before waiting for it to complete.  If
818  * the transaction id is stale, it is by definition already completed,
819  * so just return SUCCESS.
820  */
821 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
822 {
823 	int	need_to_wait = 1;
824 
825 	read_lock(&journal->j_state_lock);
826 	if (journal->j_running_transaction &&
827 	    journal->j_running_transaction->t_tid == tid) {
828 		if (journal->j_commit_request != tid) {
829 			/* transaction not yet started, so request it */
830 			read_unlock(&journal->j_state_lock);
831 			jbd2_log_start_commit(journal, tid);
832 			goto wait_commit;
833 		}
834 	} else if (!(journal->j_committing_transaction &&
835 		     journal->j_committing_transaction->t_tid == tid))
836 		need_to_wait = 0;
837 	read_unlock(&journal->j_state_lock);
838 	if (!need_to_wait)
839 		return 0;
840 wait_commit:
841 	return jbd2_log_wait_commit(journal, tid);
842 }
843 EXPORT_SYMBOL(jbd2_complete_transaction);
844 
845 /*
846  * Log buffer allocation routines:
847  */
848 
849 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
850 {
851 	unsigned long blocknr;
852 
853 	write_lock(&journal->j_state_lock);
854 	J_ASSERT(journal->j_free > 1);
855 
856 	blocknr = journal->j_head;
857 	journal->j_head++;
858 	journal->j_free--;
859 	if (journal->j_head == journal->j_last)
860 		journal->j_head = journal->j_first;
861 	write_unlock(&journal->j_state_lock);
862 	return jbd2_journal_bmap(journal, blocknr, retp);
863 }
864 
865 /* Map one fast commit buffer for use by the file system */
866 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
867 {
868 	unsigned long long pblock;
869 	unsigned long blocknr;
870 	int ret = 0;
871 	struct buffer_head *bh;
872 	int fc_off;
873 
874 	*bh_out = NULL;
875 
876 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
877 		fc_off = journal->j_fc_off;
878 		blocknr = journal->j_fc_first + fc_off;
879 		journal->j_fc_off++;
880 	} else {
881 		ret = -EINVAL;
882 	}
883 
884 	if (ret)
885 		return ret;
886 
887 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
888 	if (ret)
889 		return ret;
890 
891 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
892 	if (!bh)
893 		return -ENOMEM;
894 
895 
896 	journal->j_fc_wbuf[fc_off] = bh;
897 
898 	*bh_out = bh;
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL(jbd2_fc_get_buf);
903 
904 /*
905  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
906  * for completion.
907  */
908 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
909 {
910 	struct buffer_head *bh;
911 	int i, j_fc_off;
912 
913 	j_fc_off = journal->j_fc_off;
914 
915 	/*
916 	 * Wait in reverse order to minimize chances of us being woken up before
917 	 * all IOs have completed
918 	 */
919 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
920 		bh = journal->j_fc_wbuf[i];
921 		wait_on_buffer(bh);
922 		/*
923 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
924 		 * buffer head.
925 		 */
926 		if (unlikely(!buffer_uptodate(bh))) {
927 			journal->j_fc_off = i + 1;
928 			return -EIO;
929 		}
930 		put_bh(bh);
931 		journal->j_fc_wbuf[i] = NULL;
932 	}
933 
934 	return 0;
935 }
936 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
937 
938 int jbd2_fc_release_bufs(journal_t *journal)
939 {
940 	struct buffer_head *bh;
941 	int i, j_fc_off;
942 
943 	j_fc_off = journal->j_fc_off;
944 
945 	for (i = j_fc_off - 1; i >= 0; i--) {
946 		bh = journal->j_fc_wbuf[i];
947 		if (!bh)
948 			break;
949 		put_bh(bh);
950 		journal->j_fc_wbuf[i] = NULL;
951 	}
952 
953 	return 0;
954 }
955 EXPORT_SYMBOL(jbd2_fc_release_bufs);
956 
957 /*
958  * Conversion of logical to physical block numbers for the journal
959  *
960  * On external journals the journal blocks are identity-mapped, so
961  * this is a no-op.  If needed, we can use j_blk_offset - everything is
962  * ready.
963  */
964 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
965 		 unsigned long long *retp)
966 {
967 	int err = 0;
968 	unsigned long long ret;
969 	sector_t block = blocknr;
970 
971 	if (journal->j_bmap) {
972 		err = journal->j_bmap(journal, &block);
973 		if (err == 0)
974 			*retp = block;
975 	} else if (journal->j_inode) {
976 		ret = bmap(journal->j_inode, &block);
977 
978 		if (ret || !block) {
979 			printk(KERN_ALERT "%s: journal block not found "
980 					"at offset %lu on %s\n",
981 			       __func__, blocknr, journal->j_devname);
982 			err = -EIO;
983 			jbd2_journal_abort(journal, err);
984 		} else {
985 			*retp = block;
986 		}
987 
988 	} else {
989 		*retp = blocknr; /* +journal->j_blk_offset */
990 	}
991 	return err;
992 }
993 
994 /*
995  * We play buffer_head aliasing tricks to write data/metadata blocks to
996  * the journal without copying their contents, but for journal
997  * descriptor blocks we do need to generate bona fide buffers.
998  *
999  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1000  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1001  * But we don't bother doing that, so there will be coherency problems with
1002  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1003  */
1004 struct buffer_head *
1005 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1006 {
1007 	journal_t *journal = transaction->t_journal;
1008 	struct buffer_head *bh;
1009 	unsigned long long blocknr;
1010 	journal_header_t *header;
1011 	int err;
1012 
1013 	err = jbd2_journal_next_log_block(journal, &blocknr);
1014 
1015 	if (err)
1016 		return NULL;
1017 
1018 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1019 	if (!bh)
1020 		return NULL;
1021 	atomic_dec(&transaction->t_outstanding_credits);
1022 	lock_buffer(bh);
1023 	memset(bh->b_data, 0, journal->j_blocksize);
1024 	header = (journal_header_t *)bh->b_data;
1025 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1026 	header->h_blocktype = cpu_to_be32(type);
1027 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1028 	set_buffer_uptodate(bh);
1029 	unlock_buffer(bh);
1030 	BUFFER_TRACE(bh, "return this buffer");
1031 	return bh;
1032 }
1033 
1034 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1035 {
1036 	struct jbd2_journal_block_tail *tail;
1037 	__u32 csum;
1038 
1039 	if (!jbd2_journal_has_csum_v2or3(j))
1040 		return;
1041 
1042 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1043 			sizeof(struct jbd2_journal_block_tail));
1044 	tail->t_checksum = 0;
1045 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1046 	tail->t_checksum = cpu_to_be32(csum);
1047 }
1048 
1049 /*
1050  * Return tid of the oldest transaction in the journal and block in the journal
1051  * where the transaction starts.
1052  *
1053  * If the journal is now empty, return which will be the next transaction ID
1054  * we will write and where will that transaction start.
1055  *
1056  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1057  * it can.
1058  */
1059 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1060 			      unsigned long *block)
1061 {
1062 	transaction_t *transaction;
1063 	int ret;
1064 
1065 	read_lock(&journal->j_state_lock);
1066 	spin_lock(&journal->j_list_lock);
1067 	transaction = journal->j_checkpoint_transactions;
1068 	if (transaction) {
1069 		*tid = transaction->t_tid;
1070 		*block = transaction->t_log_start;
1071 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1072 		*tid = transaction->t_tid;
1073 		*block = transaction->t_log_start;
1074 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1075 		*tid = transaction->t_tid;
1076 		*block = journal->j_head;
1077 	} else {
1078 		*tid = journal->j_transaction_sequence;
1079 		*block = journal->j_head;
1080 	}
1081 	ret = tid_gt(*tid, journal->j_tail_sequence);
1082 	spin_unlock(&journal->j_list_lock);
1083 	read_unlock(&journal->j_state_lock);
1084 
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Update information in journal structure and in on disk journal superblock
1090  * about log tail. This function does not check whether information passed in
1091  * really pushes log tail further. It's responsibility of the caller to make
1092  * sure provided log tail information is valid (e.g. by holding
1093  * j_checkpoint_mutex all the time between computing log tail and calling this
1094  * function as is the case with jbd2_cleanup_journal_tail()).
1095  *
1096  * Requires j_checkpoint_mutex
1097  */
1098 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1099 {
1100 	unsigned long freed;
1101 	int ret;
1102 
1103 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1104 
1105 	/*
1106 	 * We cannot afford for write to remain in drive's caches since as
1107 	 * soon as we update j_tail, next transaction can start reusing journal
1108 	 * space and if we lose sb update during power failure we'd replay
1109 	 * old transaction with possibly newly overwritten data.
1110 	 */
1111 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1112 					      REQ_SYNC | REQ_FUA);
1113 	if (ret)
1114 		goto out;
1115 
1116 	write_lock(&journal->j_state_lock);
1117 	freed = block - journal->j_tail;
1118 	if (block < journal->j_tail)
1119 		freed += journal->j_last - journal->j_first;
1120 
1121 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1122 	jbd2_debug(1,
1123 		  "Cleaning journal tail from %u to %u (offset %lu), "
1124 		  "freeing %lu\n",
1125 		  journal->j_tail_sequence, tid, block, freed);
1126 
1127 	journal->j_free += freed;
1128 	journal->j_tail_sequence = tid;
1129 	journal->j_tail = block;
1130 	write_unlock(&journal->j_state_lock);
1131 
1132 out:
1133 	return ret;
1134 }
1135 
1136 /*
1137  * This is a variation of __jbd2_update_log_tail which checks for validity of
1138  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1139  * with other threads updating log tail.
1140  */
1141 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1142 {
1143 	mutex_lock_io(&journal->j_checkpoint_mutex);
1144 	if (tid_gt(tid, journal->j_tail_sequence))
1145 		__jbd2_update_log_tail(journal, tid, block);
1146 	mutex_unlock(&journal->j_checkpoint_mutex);
1147 }
1148 
1149 struct jbd2_stats_proc_session {
1150 	journal_t *journal;
1151 	struct transaction_stats_s *stats;
1152 	int start;
1153 	int max;
1154 };
1155 
1156 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1157 {
1158 	return *pos ? NULL : SEQ_START_TOKEN;
1159 }
1160 
1161 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1162 {
1163 	(*pos)++;
1164 	return NULL;
1165 }
1166 
1167 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1168 {
1169 	struct jbd2_stats_proc_session *s = seq->private;
1170 
1171 	if (v != SEQ_START_TOKEN)
1172 		return 0;
1173 	seq_printf(seq, "%lu transactions (%lu requested), "
1174 		   "each up to %u blocks\n",
1175 		   s->stats->ts_tid, s->stats->ts_requested,
1176 		   s->journal->j_max_transaction_buffers);
1177 	if (s->stats->ts_tid == 0)
1178 		return 0;
1179 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1180 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1181 	seq_printf(seq, "  %ums request delay\n",
1182 	    (s->stats->ts_requested == 0) ? 0 :
1183 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1184 			     s->stats->ts_requested));
1185 	seq_printf(seq, "  %ums running transaction\n",
1186 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1187 	seq_printf(seq, "  %ums transaction was being locked\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1189 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1191 	seq_printf(seq, "  %ums logging transaction\n",
1192 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1193 	seq_printf(seq, "  %lluus average transaction commit time\n",
1194 		   div_u64(s->journal->j_average_commit_time, 1000));
1195 	seq_printf(seq, "  %lu handles per transaction\n",
1196 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1197 	seq_printf(seq, "  %lu blocks per transaction\n",
1198 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1199 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1200 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1201 	return 0;
1202 }
1203 
1204 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1205 {
1206 }
1207 
1208 static const struct seq_operations jbd2_seq_info_ops = {
1209 	.start  = jbd2_seq_info_start,
1210 	.next   = jbd2_seq_info_next,
1211 	.stop   = jbd2_seq_info_stop,
1212 	.show   = jbd2_seq_info_show,
1213 };
1214 
1215 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1216 {
1217 	journal_t *journal = pde_data(inode);
1218 	struct jbd2_stats_proc_session *s;
1219 	int rc, size;
1220 
1221 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1222 	if (s == NULL)
1223 		return -ENOMEM;
1224 	size = sizeof(struct transaction_stats_s);
1225 	s->stats = kmalloc(size, GFP_KERNEL);
1226 	if (s->stats == NULL) {
1227 		kfree(s);
1228 		return -ENOMEM;
1229 	}
1230 	spin_lock(&journal->j_history_lock);
1231 	memcpy(s->stats, &journal->j_stats, size);
1232 	s->journal = journal;
1233 	spin_unlock(&journal->j_history_lock);
1234 
1235 	rc = seq_open(file, &jbd2_seq_info_ops);
1236 	if (rc == 0) {
1237 		struct seq_file *m = file->private_data;
1238 		m->private = s;
1239 	} else {
1240 		kfree(s->stats);
1241 		kfree(s);
1242 	}
1243 	return rc;
1244 
1245 }
1246 
1247 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1248 {
1249 	struct seq_file *seq = file->private_data;
1250 	struct jbd2_stats_proc_session *s = seq->private;
1251 	kfree(s->stats);
1252 	kfree(s);
1253 	return seq_release(inode, file);
1254 }
1255 
1256 static const struct proc_ops jbd2_info_proc_ops = {
1257 	.proc_open	= jbd2_seq_info_open,
1258 	.proc_read	= seq_read,
1259 	.proc_lseek	= seq_lseek,
1260 	.proc_release	= jbd2_seq_info_release,
1261 };
1262 
1263 static struct proc_dir_entry *proc_jbd2_stats;
1264 
1265 static void jbd2_stats_proc_init(journal_t *journal)
1266 {
1267 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1268 	if (journal->j_proc_entry) {
1269 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1270 				 &jbd2_info_proc_ops, journal);
1271 	}
1272 }
1273 
1274 static void jbd2_stats_proc_exit(journal_t *journal)
1275 {
1276 	remove_proc_entry("info", journal->j_proc_entry);
1277 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1278 }
1279 
1280 /* Minimum size of descriptor tag */
1281 static int jbd2_min_tag_size(void)
1282 {
1283 	/*
1284 	 * Tag with 32-bit block numbers does not use last four bytes of the
1285 	 * structure
1286 	 */
1287 	return sizeof(journal_block_tag_t) - 4;
1288 }
1289 
1290 /**
1291  * jbd2_journal_shrink_scan()
1292  * @shrink: shrinker to work on
1293  * @sc: reclaim request to process
1294  *
1295  * Scan the checkpointed buffer on the checkpoint list and release the
1296  * journal_head.
1297  */
1298 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1299 					      struct shrink_control *sc)
1300 {
1301 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1302 	unsigned long nr_to_scan = sc->nr_to_scan;
1303 	unsigned long nr_shrunk;
1304 	unsigned long count;
1305 
1306 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1307 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1308 
1309 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1310 
1311 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1312 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1313 
1314 	return nr_shrunk;
1315 }
1316 
1317 /**
1318  * jbd2_journal_shrink_count()
1319  * @shrink: shrinker to work on
1320  * @sc: reclaim request to process
1321  *
1322  * Count the number of checkpoint buffers on the checkpoint list.
1323  */
1324 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1325 					       struct shrink_control *sc)
1326 {
1327 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1328 	unsigned long count;
1329 
1330 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1331 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1332 
1333 	return count;
1334 }
1335 
1336 /*
1337  * Management for journal control blocks: functions to create and
1338  * destroy journal_t structures, and to initialise and read existing
1339  * journal blocks from disk.  */
1340 
1341 /* First: create and setup a journal_t object in memory.  We initialise
1342  * very few fields yet: that has to wait until we have created the
1343  * journal structures from from scratch, or loaded them from disk. */
1344 
1345 static journal_t *journal_init_common(struct block_device *bdev,
1346 			struct block_device *fs_dev,
1347 			unsigned long long start, int len, int blocksize)
1348 {
1349 	static struct lock_class_key jbd2_trans_commit_key;
1350 	journal_t *journal;
1351 	int err;
1352 	struct buffer_head *bh;
1353 	int n;
1354 
1355 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1356 	if (!journal)
1357 		return NULL;
1358 
1359 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1360 	init_waitqueue_head(&journal->j_wait_done_commit);
1361 	init_waitqueue_head(&journal->j_wait_commit);
1362 	init_waitqueue_head(&journal->j_wait_updates);
1363 	init_waitqueue_head(&journal->j_wait_reserved);
1364 	init_waitqueue_head(&journal->j_fc_wait);
1365 	mutex_init(&journal->j_abort_mutex);
1366 	mutex_init(&journal->j_barrier);
1367 	mutex_init(&journal->j_checkpoint_mutex);
1368 	spin_lock_init(&journal->j_revoke_lock);
1369 	spin_lock_init(&journal->j_list_lock);
1370 	rwlock_init(&journal->j_state_lock);
1371 
1372 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1373 	journal->j_min_batch_time = 0;
1374 	journal->j_max_batch_time = 15000; /* 15ms */
1375 	atomic_set(&journal->j_reserved_credits, 0);
1376 
1377 	/* The journal is marked for error until we succeed with recovery! */
1378 	journal->j_flags = JBD2_ABORT;
1379 
1380 	/* Set up a default-sized revoke table for the new mount. */
1381 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1382 	if (err)
1383 		goto err_cleanup;
1384 
1385 	spin_lock_init(&journal->j_history_lock);
1386 
1387 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1388 			 &jbd2_trans_commit_key, 0);
1389 
1390 	/* journal descriptor can store up to n blocks -bzzz */
1391 	journal->j_blocksize = blocksize;
1392 	journal->j_dev = bdev;
1393 	journal->j_fs_dev = fs_dev;
1394 	journal->j_blk_offset = start;
1395 	journal->j_total_len = len;
1396 	/* We need enough buffers to write out full descriptor block. */
1397 	n = journal->j_blocksize / jbd2_min_tag_size();
1398 	journal->j_wbufsize = n;
1399 	journal->j_fc_wbuf = NULL;
1400 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1401 					GFP_KERNEL);
1402 	if (!journal->j_wbuf)
1403 		goto err_cleanup;
1404 
1405 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1406 	if (!bh) {
1407 		pr_err("%s: Cannot get buffer for journal superblock\n",
1408 			__func__);
1409 		goto err_cleanup;
1410 	}
1411 	journal->j_sb_buffer = bh;
1412 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1413 
1414 	journal->j_shrink_transaction = NULL;
1415 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1416 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1417 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1418 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1419 
1420 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1421 		goto err_cleanup;
1422 
1423 	if (register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1424 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev))) {
1425 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1426 		goto err_cleanup;
1427 	}
1428 	return journal;
1429 
1430 err_cleanup:
1431 	brelse(journal->j_sb_buffer);
1432 	kfree(journal->j_wbuf);
1433 	jbd2_journal_destroy_revoke(journal);
1434 	kfree(journal);
1435 	return NULL;
1436 }
1437 
1438 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1439  *
1440  * Create a journal structure assigned some fixed set of disk blocks to
1441  * the journal.  We don't actually touch those disk blocks yet, but we
1442  * need to set up all of the mapping information to tell the journaling
1443  * system where the journal blocks are.
1444  *
1445  */
1446 
1447 /**
1448  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1449  *  @bdev: Block device on which to create the journal
1450  *  @fs_dev: Device which hold journalled filesystem for this journal.
1451  *  @start: Block nr Start of journal.
1452  *  @len:  Length of the journal in blocks.
1453  *  @blocksize: blocksize of journalling device
1454  *
1455  *  Returns: a newly created journal_t *
1456  *
1457  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1458  *  range of blocks on an arbitrary block device.
1459  *
1460  */
1461 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1462 			struct block_device *fs_dev,
1463 			unsigned long long start, int len, int blocksize)
1464 {
1465 	journal_t *journal;
1466 
1467 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1468 	if (!journal)
1469 		return NULL;
1470 
1471 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1472 		 "%pg", journal->j_dev);
1473 	strreplace(journal->j_devname, '/', '!');
1474 	jbd2_stats_proc_init(journal);
1475 
1476 	return journal;
1477 }
1478 
1479 /**
1480  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1481  *  @inode: An inode to create the journal in
1482  *
1483  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1484  * the journal.  The inode must exist already, must support bmap() and
1485  * must have all data blocks preallocated.
1486  */
1487 journal_t *jbd2_journal_init_inode(struct inode *inode)
1488 {
1489 	journal_t *journal;
1490 	sector_t blocknr;
1491 	int err = 0;
1492 
1493 	blocknr = 0;
1494 	err = bmap(inode, &blocknr);
1495 
1496 	if (err || !blocknr) {
1497 		pr_err("%s: Cannot locate journal superblock\n",
1498 			__func__);
1499 		return NULL;
1500 	}
1501 
1502 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1503 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1504 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1505 
1506 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1507 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1508 			inode->i_sb->s_blocksize);
1509 	if (!journal)
1510 		return NULL;
1511 
1512 	journal->j_inode = inode;
1513 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1514 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1515 	strreplace(journal->j_devname, '/', '!');
1516 	jbd2_stats_proc_init(journal);
1517 
1518 	return journal;
1519 }
1520 
1521 /*
1522  * If the journal init or create aborts, we need to mark the journal
1523  * superblock as being NULL to prevent the journal destroy from writing
1524  * back a bogus superblock.
1525  */
1526 static void journal_fail_superblock(journal_t *journal)
1527 {
1528 	struct buffer_head *bh = journal->j_sb_buffer;
1529 	brelse(bh);
1530 	journal->j_sb_buffer = NULL;
1531 }
1532 
1533 /*
1534  * Given a journal_t structure, initialise the various fields for
1535  * startup of a new journaling session.  We use this both when creating
1536  * a journal, and after recovering an old journal to reset it for
1537  * subsequent use.
1538  */
1539 
1540 static int journal_reset(journal_t *journal)
1541 {
1542 	journal_superblock_t *sb = journal->j_superblock;
1543 	unsigned long long first, last;
1544 
1545 	first = be32_to_cpu(sb->s_first);
1546 	last = be32_to_cpu(sb->s_maxlen);
1547 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1548 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1549 		       first, last);
1550 		journal_fail_superblock(journal);
1551 		return -EINVAL;
1552 	}
1553 
1554 	journal->j_first = first;
1555 	journal->j_last = last;
1556 
1557 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1558 		/*
1559 		 * Disable the cycled recording mode if the journal head block
1560 		 * number is not correct.
1561 		 */
1562 		if (journal->j_head < first || journal->j_head >= last) {
1563 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1564 			       "disable journal_cycle_record\n",
1565 			       journal->j_head);
1566 			journal->j_head = journal->j_first;
1567 		}
1568 	} else {
1569 		journal->j_head = journal->j_first;
1570 	}
1571 	journal->j_tail = journal->j_head;
1572 	journal->j_free = journal->j_last - journal->j_first;
1573 
1574 	journal->j_tail_sequence = journal->j_transaction_sequence;
1575 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1576 	journal->j_commit_request = journal->j_commit_sequence;
1577 
1578 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1579 
1580 	/*
1581 	 * Now that journal recovery is done, turn fast commits off here. This
1582 	 * way, if fast commit was enabled before the crash but if now FS has
1583 	 * disabled it, we don't enable fast commits.
1584 	 */
1585 	jbd2_clear_feature_fast_commit(journal);
1586 
1587 	/*
1588 	 * As a special case, if the on-disk copy is already marked as needing
1589 	 * no recovery (s_start == 0), then we can safely defer the superblock
1590 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1591 	 * attempting a write to a potential-readonly device.
1592 	 */
1593 	if (sb->s_start == 0) {
1594 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1595 			"(start %ld, seq %u, errno %d)\n",
1596 			journal->j_tail, journal->j_tail_sequence,
1597 			journal->j_errno);
1598 		journal->j_flags |= JBD2_FLUSHED;
1599 	} else {
1600 		/* Lock here to make assertions happy... */
1601 		mutex_lock_io(&journal->j_checkpoint_mutex);
1602 		/*
1603 		 * Update log tail information. We use REQ_FUA since new
1604 		 * transaction will start reusing journal space and so we
1605 		 * must make sure information about current log tail is on
1606 		 * disk before that.
1607 		 */
1608 		jbd2_journal_update_sb_log_tail(journal,
1609 						journal->j_tail_sequence,
1610 						journal->j_tail,
1611 						REQ_SYNC | REQ_FUA);
1612 		mutex_unlock(&journal->j_checkpoint_mutex);
1613 	}
1614 	return jbd2_journal_start_thread(journal);
1615 }
1616 
1617 /*
1618  * This function expects that the caller will have locked the journal
1619  * buffer head, and will return with it unlocked
1620  */
1621 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1622 {
1623 	struct buffer_head *bh = journal->j_sb_buffer;
1624 	journal_superblock_t *sb = journal->j_superblock;
1625 	int ret = 0;
1626 
1627 	/* Buffer got discarded which means block device got invalidated */
1628 	if (!buffer_mapped(bh)) {
1629 		unlock_buffer(bh);
1630 		return -EIO;
1631 	}
1632 
1633 	trace_jbd2_write_superblock(journal, write_flags);
1634 	if (!(journal->j_flags & JBD2_BARRIER))
1635 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1636 	if (buffer_write_io_error(bh)) {
1637 		/*
1638 		 * Oh, dear.  A previous attempt to write the journal
1639 		 * superblock failed.  This could happen because the
1640 		 * USB device was yanked out.  Or it could happen to
1641 		 * be a transient write error and maybe the block will
1642 		 * be remapped.  Nothing we can do but to retry the
1643 		 * write and hope for the best.
1644 		 */
1645 		printk(KERN_ERR "JBD2: previous I/O error detected "
1646 		       "for journal superblock update for %s.\n",
1647 		       journal->j_devname);
1648 		clear_buffer_write_io_error(bh);
1649 		set_buffer_uptodate(bh);
1650 	}
1651 	if (jbd2_journal_has_csum_v2or3(journal))
1652 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1653 	get_bh(bh);
1654 	bh->b_end_io = end_buffer_write_sync;
1655 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1656 	wait_on_buffer(bh);
1657 	if (buffer_write_io_error(bh)) {
1658 		clear_buffer_write_io_error(bh);
1659 		set_buffer_uptodate(bh);
1660 		ret = -EIO;
1661 	}
1662 	if (ret) {
1663 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1664 				journal->j_devname);
1665 		if (!is_journal_aborted(journal))
1666 			jbd2_journal_abort(journal, ret);
1667 	}
1668 
1669 	return ret;
1670 }
1671 
1672 /**
1673  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1674  * @journal: The journal to update.
1675  * @tail_tid: TID of the new transaction at the tail of the log
1676  * @tail_block: The first block of the transaction at the tail of the log
1677  * @write_flags: Flags for the journal sb write operation
1678  *
1679  * Update a journal's superblock information about log tail and write it to
1680  * disk, waiting for the IO to complete.
1681  */
1682 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1683 				    unsigned long tail_block,
1684 				    blk_opf_t write_flags)
1685 {
1686 	journal_superblock_t *sb = journal->j_superblock;
1687 	int ret;
1688 
1689 	if (is_journal_aborted(journal))
1690 		return -EIO;
1691 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1692 		jbd2_journal_abort(journal, -EIO);
1693 		return -EIO;
1694 	}
1695 
1696 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1697 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1698 		  tail_block, tail_tid);
1699 
1700 	lock_buffer(journal->j_sb_buffer);
1701 	sb->s_sequence = cpu_to_be32(tail_tid);
1702 	sb->s_start    = cpu_to_be32(tail_block);
1703 
1704 	ret = jbd2_write_superblock(journal, write_flags);
1705 	if (ret)
1706 		goto out;
1707 
1708 	/* Log is no longer empty */
1709 	write_lock(&journal->j_state_lock);
1710 	WARN_ON(!sb->s_sequence);
1711 	journal->j_flags &= ~JBD2_FLUSHED;
1712 	write_unlock(&journal->j_state_lock);
1713 
1714 out:
1715 	return ret;
1716 }
1717 
1718 /**
1719  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1720  * @journal: The journal to update.
1721  * @write_flags: Flags for the journal sb write operation
1722  *
1723  * Update a journal's dynamic superblock fields to show that journal is empty.
1724  * Write updated superblock to disk waiting for IO to complete.
1725  */
1726 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1727 {
1728 	journal_superblock_t *sb = journal->j_superblock;
1729 	bool had_fast_commit = false;
1730 
1731 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1732 	lock_buffer(journal->j_sb_buffer);
1733 	if (sb->s_start == 0) {		/* Is it already empty? */
1734 		unlock_buffer(journal->j_sb_buffer);
1735 		return;
1736 	}
1737 
1738 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1739 		  journal->j_tail_sequence);
1740 
1741 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1742 	sb->s_start    = cpu_to_be32(0);
1743 	sb->s_head     = cpu_to_be32(journal->j_head);
1744 	if (jbd2_has_feature_fast_commit(journal)) {
1745 		/*
1746 		 * When journal is clean, no need to commit fast commit flag and
1747 		 * make file system incompatible with older kernels.
1748 		 */
1749 		jbd2_clear_feature_fast_commit(journal);
1750 		had_fast_commit = true;
1751 	}
1752 
1753 	jbd2_write_superblock(journal, write_flags);
1754 
1755 	if (had_fast_commit)
1756 		jbd2_set_feature_fast_commit(journal);
1757 
1758 	/* Log is no longer empty */
1759 	write_lock(&journal->j_state_lock);
1760 	journal->j_flags |= JBD2_FLUSHED;
1761 	write_unlock(&journal->j_state_lock);
1762 }
1763 
1764 /**
1765  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1766  * @journal: The journal to erase.
1767  * @flags: A discard/zeroout request is sent for each physically contigous
1768  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1769  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1770  *	to perform.
1771  *
1772  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1773  * will be explicitly written if no hardware offload is available, see
1774  * blkdev_issue_zeroout for more details.
1775  */
1776 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1777 {
1778 	int err = 0;
1779 	unsigned long block, log_offset; /* logical */
1780 	unsigned long long phys_block, block_start, block_stop; /* physical */
1781 	loff_t byte_start, byte_stop, byte_count;
1782 
1783 	/* flags must be set to either discard or zeroout */
1784 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1785 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1786 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1787 		return -EINVAL;
1788 
1789 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1790 	    !bdev_max_discard_sectors(journal->j_dev))
1791 		return -EOPNOTSUPP;
1792 
1793 	/*
1794 	 * lookup block mapping and issue discard/zeroout for each
1795 	 * contiguous region
1796 	 */
1797 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1798 	block_start =  ~0ULL;
1799 	for (block = log_offset; block < journal->j_total_len; block++) {
1800 		err = jbd2_journal_bmap(journal, block, &phys_block);
1801 		if (err) {
1802 			pr_err("JBD2: bad block at offset %lu", block);
1803 			return err;
1804 		}
1805 
1806 		if (block_start == ~0ULL) {
1807 			block_start = phys_block;
1808 			block_stop = block_start - 1;
1809 		}
1810 
1811 		/*
1812 		 * last block not contiguous with current block,
1813 		 * process last contiguous region and return to this block on
1814 		 * next loop
1815 		 */
1816 		if (phys_block != block_stop + 1) {
1817 			block--;
1818 		} else {
1819 			block_stop++;
1820 			/*
1821 			 * if this isn't the last block of journal,
1822 			 * no need to process now because next block may also
1823 			 * be part of this contiguous region
1824 			 */
1825 			if (block != journal->j_total_len - 1)
1826 				continue;
1827 		}
1828 
1829 		/*
1830 		 * end of contiguous region or this is last block of journal,
1831 		 * take care of the region
1832 		 */
1833 		byte_start = block_start * journal->j_blocksize;
1834 		byte_stop = block_stop * journal->j_blocksize;
1835 		byte_count = (block_stop - block_start + 1) *
1836 				journal->j_blocksize;
1837 
1838 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1839 				byte_start, byte_stop);
1840 
1841 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1842 			err = blkdev_issue_discard(journal->j_dev,
1843 					byte_start >> SECTOR_SHIFT,
1844 					byte_count >> SECTOR_SHIFT,
1845 					GFP_NOFS);
1846 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1847 			err = blkdev_issue_zeroout(journal->j_dev,
1848 					byte_start >> SECTOR_SHIFT,
1849 					byte_count >> SECTOR_SHIFT,
1850 					GFP_NOFS, 0);
1851 		}
1852 
1853 		if (unlikely(err != 0)) {
1854 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1855 					err, block_start, block_stop);
1856 			return err;
1857 		}
1858 
1859 		/* reset start and stop after processing a region */
1860 		block_start = ~0ULL;
1861 	}
1862 
1863 	return blkdev_issue_flush(journal->j_dev);
1864 }
1865 
1866 /**
1867  * jbd2_journal_update_sb_errno() - Update error in the journal.
1868  * @journal: The journal to update.
1869  *
1870  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1871  * to complete.
1872  */
1873 void jbd2_journal_update_sb_errno(journal_t *journal)
1874 {
1875 	journal_superblock_t *sb = journal->j_superblock;
1876 	int errcode;
1877 
1878 	lock_buffer(journal->j_sb_buffer);
1879 	errcode = journal->j_errno;
1880 	if (errcode == -ESHUTDOWN)
1881 		errcode = 0;
1882 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1883 	sb->s_errno    = cpu_to_be32(errcode);
1884 
1885 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1886 }
1887 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1888 
1889 static int journal_revoke_records_per_block(journal_t *journal)
1890 {
1891 	int record_size;
1892 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1893 
1894 	if (jbd2_has_feature_64bit(journal))
1895 		record_size = 8;
1896 	else
1897 		record_size = 4;
1898 
1899 	if (jbd2_journal_has_csum_v2or3(journal))
1900 		space -= sizeof(struct jbd2_journal_block_tail);
1901 	return space / record_size;
1902 }
1903 
1904 /*
1905  * Read the superblock for a given journal, performing initial
1906  * validation of the format.
1907  */
1908 static int journal_get_superblock(journal_t *journal)
1909 {
1910 	struct buffer_head *bh;
1911 	journal_superblock_t *sb;
1912 	int err;
1913 
1914 	bh = journal->j_sb_buffer;
1915 
1916 	J_ASSERT(bh != NULL);
1917 	if (buffer_verified(bh))
1918 		return 0;
1919 
1920 	err = bh_read(bh, 0);
1921 	if (err < 0) {
1922 		printk(KERN_ERR
1923 			"JBD2: IO error reading journal superblock\n");
1924 		goto out;
1925 	}
1926 
1927 	sb = journal->j_superblock;
1928 
1929 	err = -EINVAL;
1930 
1931 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1932 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1933 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1934 		goto out;
1935 	}
1936 
1937 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1938 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1939 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1940 		goto out;
1941 	}
1942 
1943 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1944 		printk(KERN_WARNING "JBD2: journal file too short\n");
1945 		goto out;
1946 	}
1947 
1948 	if (be32_to_cpu(sb->s_first) == 0 ||
1949 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1950 		printk(KERN_WARNING
1951 			"JBD2: Invalid start block of journal: %u\n",
1952 			be32_to_cpu(sb->s_first));
1953 		goto out;
1954 	}
1955 
1956 	if (jbd2_has_feature_csum2(journal) &&
1957 	    jbd2_has_feature_csum3(journal)) {
1958 		/* Can't have checksum v2 and v3 at the same time! */
1959 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1960 		       "at the same time!\n");
1961 		goto out;
1962 	}
1963 
1964 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1965 	    jbd2_has_feature_checksum(journal)) {
1966 		/* Can't have checksum v1 and v2 on at the same time! */
1967 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1968 		       "at the same time!\n");
1969 		goto out;
1970 	}
1971 
1972 	if (!jbd2_verify_csum_type(journal, sb)) {
1973 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1974 		goto out;
1975 	}
1976 
1977 	/* Load the checksum driver */
1978 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1979 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1980 		if (IS_ERR(journal->j_chksum_driver)) {
1981 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1982 			err = PTR_ERR(journal->j_chksum_driver);
1983 			journal->j_chksum_driver = NULL;
1984 			goto out;
1985 		}
1986 		/* Check superblock checksum */
1987 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1988 			printk(KERN_ERR "JBD2: journal checksum error\n");
1989 			err = -EFSBADCRC;
1990 			goto out;
1991 		}
1992 	}
1993 	set_buffer_verified(bh);
1994 	return 0;
1995 
1996 out:
1997 	journal_fail_superblock(journal);
1998 	return err;
1999 }
2000 
2001 /*
2002  * Load the on-disk journal superblock and read the key fields into the
2003  * journal_t.
2004  */
2005 
2006 static int load_superblock(journal_t *journal)
2007 {
2008 	int err;
2009 	journal_superblock_t *sb;
2010 	int num_fc_blocks;
2011 
2012 	err = journal_get_superblock(journal);
2013 	if (err)
2014 		return err;
2015 
2016 	sb = journal->j_superblock;
2017 
2018 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2019 	journal->j_tail = be32_to_cpu(sb->s_start);
2020 	journal->j_first = be32_to_cpu(sb->s_first);
2021 	journal->j_errno = be32_to_cpu(sb->s_errno);
2022 	journal->j_last = be32_to_cpu(sb->s_maxlen);
2023 
2024 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
2025 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
2026 	/* Precompute checksum seed for all metadata */
2027 	if (jbd2_journal_has_csum_v2or3(journal))
2028 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2029 						   sizeof(sb->s_uuid));
2030 	journal->j_revoke_records_per_block =
2031 				journal_revoke_records_per_block(journal);
2032 
2033 	if (jbd2_has_feature_fast_commit(journal)) {
2034 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2035 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2036 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2037 			journal->j_last = journal->j_fc_last - num_fc_blocks;
2038 		journal->j_fc_first = journal->j_last + 1;
2039 		journal->j_fc_off = 0;
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 
2046 /**
2047  * jbd2_journal_load() - Read journal from disk.
2048  * @journal: Journal to act on.
2049  *
2050  * Given a journal_t structure which tells us which disk blocks contain
2051  * a journal, read the journal from disk to initialise the in-memory
2052  * structures.
2053  */
2054 int jbd2_journal_load(journal_t *journal)
2055 {
2056 	int err;
2057 	journal_superblock_t *sb;
2058 
2059 	err = load_superblock(journal);
2060 	if (err)
2061 		return err;
2062 
2063 	sb = journal->j_superblock;
2064 
2065 	/*
2066 	 * If this is a V2 superblock, then we have to check the
2067 	 * features flags on it.
2068 	 */
2069 	if (jbd2_format_support_feature(journal)) {
2070 		if ((sb->s_feature_ro_compat &
2071 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2072 		    (sb->s_feature_incompat &
2073 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2074 			printk(KERN_WARNING
2075 				"JBD2: Unrecognised features on journal\n");
2076 			return -EINVAL;
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * Create a slab for this blocksize
2082 	 */
2083 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2084 	if (err)
2085 		return err;
2086 
2087 	/* Let the recovery code check whether it needs to recover any
2088 	 * data from the journal. */
2089 	if (jbd2_journal_recover(journal))
2090 		goto recovery_error;
2091 
2092 	if (journal->j_failed_commit) {
2093 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2094 		       "is corrupt.\n", journal->j_failed_commit,
2095 		       journal->j_devname);
2096 		return -EFSCORRUPTED;
2097 	}
2098 	/*
2099 	 * clear JBD2_ABORT flag initialized in journal_init_common
2100 	 * here to update log tail information with the newest seq.
2101 	 */
2102 	journal->j_flags &= ~JBD2_ABORT;
2103 
2104 	/* OK, we've finished with the dynamic journal bits:
2105 	 * reinitialise the dynamic contents of the superblock in memory
2106 	 * and reset them on disk. */
2107 	if (journal_reset(journal))
2108 		goto recovery_error;
2109 
2110 	journal->j_flags |= JBD2_LOADED;
2111 	return 0;
2112 
2113 recovery_error:
2114 	printk(KERN_WARNING "JBD2: recovery failed\n");
2115 	return -EIO;
2116 }
2117 
2118 /**
2119  * jbd2_journal_destroy() - Release a journal_t structure.
2120  * @journal: Journal to act on.
2121  *
2122  * Release a journal_t structure once it is no longer in use by the
2123  * journaled object.
2124  * Return <0 if we couldn't clean up the journal.
2125  */
2126 int jbd2_journal_destroy(journal_t *journal)
2127 {
2128 	int err = 0;
2129 
2130 	/* Wait for the commit thread to wake up and die. */
2131 	journal_kill_thread(journal);
2132 
2133 	/* Force a final log commit */
2134 	if (journal->j_running_transaction)
2135 		jbd2_journal_commit_transaction(journal);
2136 
2137 	/* Force any old transactions to disk */
2138 
2139 	/* Totally anal locking here... */
2140 	spin_lock(&journal->j_list_lock);
2141 	while (journal->j_checkpoint_transactions != NULL) {
2142 		spin_unlock(&journal->j_list_lock);
2143 		mutex_lock_io(&journal->j_checkpoint_mutex);
2144 		err = jbd2_log_do_checkpoint(journal);
2145 		mutex_unlock(&journal->j_checkpoint_mutex);
2146 		/*
2147 		 * If checkpointing failed, just free the buffers to avoid
2148 		 * looping forever
2149 		 */
2150 		if (err) {
2151 			jbd2_journal_destroy_checkpoint(journal);
2152 			spin_lock(&journal->j_list_lock);
2153 			break;
2154 		}
2155 		spin_lock(&journal->j_list_lock);
2156 	}
2157 
2158 	J_ASSERT(journal->j_running_transaction == NULL);
2159 	J_ASSERT(journal->j_committing_transaction == NULL);
2160 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2161 	spin_unlock(&journal->j_list_lock);
2162 
2163 	/*
2164 	 * OK, all checkpoint transactions have been checked, now check the
2165 	 * write out io error flag and abort the journal if some buffer failed
2166 	 * to write back to the original location, otherwise the filesystem
2167 	 * may become inconsistent.
2168 	 */
2169 	if (!is_journal_aborted(journal) &&
2170 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2171 		jbd2_journal_abort(journal, -EIO);
2172 
2173 	if (journal->j_sb_buffer) {
2174 		if (!is_journal_aborted(journal)) {
2175 			mutex_lock_io(&journal->j_checkpoint_mutex);
2176 
2177 			write_lock(&journal->j_state_lock);
2178 			journal->j_tail_sequence =
2179 				++journal->j_transaction_sequence;
2180 			write_unlock(&journal->j_state_lock);
2181 
2182 			jbd2_mark_journal_empty(journal,
2183 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2184 			mutex_unlock(&journal->j_checkpoint_mutex);
2185 		} else
2186 			err = -EIO;
2187 		brelse(journal->j_sb_buffer);
2188 	}
2189 
2190 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2191 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2192 		unregister_shrinker(&journal->j_shrinker);
2193 	}
2194 	if (journal->j_proc_entry)
2195 		jbd2_stats_proc_exit(journal);
2196 	iput(journal->j_inode);
2197 	if (journal->j_revoke)
2198 		jbd2_journal_destroy_revoke(journal);
2199 	if (journal->j_chksum_driver)
2200 		crypto_free_shash(journal->j_chksum_driver);
2201 	kfree(journal->j_fc_wbuf);
2202 	kfree(journal->j_wbuf);
2203 	kfree(journal);
2204 
2205 	return err;
2206 }
2207 
2208 
2209 /**
2210  * jbd2_journal_check_used_features() - Check if features specified are used.
2211  * @journal: Journal to check.
2212  * @compat: bitmask of compatible features
2213  * @ro: bitmask of features that force read-only mount
2214  * @incompat: bitmask of incompatible features
2215  *
2216  * Check whether the journal uses all of a given set of
2217  * features.  Return true (non-zero) if it does.
2218  **/
2219 
2220 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2221 				 unsigned long ro, unsigned long incompat)
2222 {
2223 	journal_superblock_t *sb;
2224 
2225 	if (!compat && !ro && !incompat)
2226 		return 1;
2227 	if (journal_get_superblock(journal))
2228 		return 0;
2229 	if (!jbd2_format_support_feature(journal))
2230 		return 0;
2231 
2232 	sb = journal->j_superblock;
2233 
2234 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2235 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2236 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2237 		return 1;
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2244  * @journal: Journal to check.
2245  * @compat: bitmask of compatible features
2246  * @ro: bitmask of features that force read-only mount
2247  * @incompat: bitmask of incompatible features
2248  *
2249  * Check whether the journaling code supports the use of
2250  * all of a given set of features on this journal.  Return true
2251  * (non-zero) if it can. */
2252 
2253 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2254 				      unsigned long ro, unsigned long incompat)
2255 {
2256 	if (!compat && !ro && !incompat)
2257 		return 1;
2258 
2259 	if (!jbd2_format_support_feature(journal))
2260 		return 0;
2261 
2262 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2263 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2264 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2265 		return 1;
2266 
2267 	return 0;
2268 }
2269 
2270 static int
2271 jbd2_journal_initialize_fast_commit(journal_t *journal)
2272 {
2273 	journal_superblock_t *sb = journal->j_superblock;
2274 	unsigned long long num_fc_blks;
2275 
2276 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2277 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2278 		return -ENOSPC;
2279 
2280 	/* Are we called twice? */
2281 	WARN_ON(journal->j_fc_wbuf != NULL);
2282 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2283 				sizeof(struct buffer_head *), GFP_KERNEL);
2284 	if (!journal->j_fc_wbuf)
2285 		return -ENOMEM;
2286 
2287 	journal->j_fc_wbufsize = num_fc_blks;
2288 	journal->j_fc_last = journal->j_last;
2289 	journal->j_last = journal->j_fc_last - num_fc_blks;
2290 	journal->j_fc_first = journal->j_last + 1;
2291 	journal->j_fc_off = 0;
2292 	journal->j_free = journal->j_last - journal->j_first;
2293 	journal->j_max_transaction_buffers =
2294 		jbd2_journal_get_max_txn_bufs(journal);
2295 
2296 	return 0;
2297 }
2298 
2299 /**
2300  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2301  * @journal: Journal to act on.
2302  * @compat: bitmask of compatible features
2303  * @ro: bitmask of features that force read-only mount
2304  * @incompat: bitmask of incompatible features
2305  *
2306  * Mark a given journal feature as present on the
2307  * superblock.  Returns true if the requested features could be set.
2308  *
2309  */
2310 
2311 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2312 			  unsigned long ro, unsigned long incompat)
2313 {
2314 #define INCOMPAT_FEATURE_ON(f) \
2315 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2316 #define COMPAT_FEATURE_ON(f) \
2317 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2318 	journal_superblock_t *sb;
2319 
2320 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2321 		return 1;
2322 
2323 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2324 		return 0;
2325 
2326 	/* If enabling v2 checksums, turn on v3 instead */
2327 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2328 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2329 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2330 	}
2331 
2332 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2333 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2334 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2335 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2336 
2337 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2338 		  compat, ro, incompat);
2339 
2340 	sb = journal->j_superblock;
2341 
2342 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2343 		if (jbd2_journal_initialize_fast_commit(journal)) {
2344 			pr_err("JBD2: Cannot enable fast commits.\n");
2345 			return 0;
2346 		}
2347 	}
2348 
2349 	/* Load the checksum driver if necessary */
2350 	if ((journal->j_chksum_driver == NULL) &&
2351 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2352 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2353 		if (IS_ERR(journal->j_chksum_driver)) {
2354 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2355 			journal->j_chksum_driver = NULL;
2356 			return 0;
2357 		}
2358 		/* Precompute checksum seed for all metadata */
2359 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2360 						   sizeof(sb->s_uuid));
2361 	}
2362 
2363 	lock_buffer(journal->j_sb_buffer);
2364 
2365 	/* If enabling v3 checksums, update superblock */
2366 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2367 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2368 		sb->s_feature_compat &=
2369 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2370 	}
2371 
2372 	/* If enabling v1 checksums, downgrade superblock */
2373 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2374 		sb->s_feature_incompat &=
2375 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2376 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2377 
2378 	sb->s_feature_compat    |= cpu_to_be32(compat);
2379 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2380 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2381 	unlock_buffer(journal->j_sb_buffer);
2382 	journal->j_revoke_records_per_block =
2383 				journal_revoke_records_per_block(journal);
2384 
2385 	return 1;
2386 #undef COMPAT_FEATURE_ON
2387 #undef INCOMPAT_FEATURE_ON
2388 }
2389 
2390 /*
2391  * jbd2_journal_clear_features() - Clear a given journal feature in the
2392  * 				    superblock
2393  * @journal: Journal to act on.
2394  * @compat: bitmask of compatible features
2395  * @ro: bitmask of features that force read-only mount
2396  * @incompat: bitmask of incompatible features
2397  *
2398  * Clear a given journal feature as present on the
2399  * superblock.
2400  */
2401 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2402 				unsigned long ro, unsigned long incompat)
2403 {
2404 	journal_superblock_t *sb;
2405 
2406 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2407 		  compat, ro, incompat);
2408 
2409 	sb = journal->j_superblock;
2410 
2411 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2412 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2413 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2414 	journal->j_revoke_records_per_block =
2415 				journal_revoke_records_per_block(journal);
2416 }
2417 EXPORT_SYMBOL(jbd2_journal_clear_features);
2418 
2419 /**
2420  * jbd2_journal_flush() - Flush journal
2421  * @journal: Journal to act on.
2422  * @flags: optional operation on the journal blocks after the flush (see below)
2423  *
2424  * Flush all data for a given journal to disk and empty the journal.
2425  * Filesystems can use this when remounting readonly to ensure that
2426  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2427  * can be issued on the journal blocks after flushing.
2428  *
2429  * flags:
2430  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2431  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2432  */
2433 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2434 {
2435 	int err = 0;
2436 	transaction_t *transaction = NULL;
2437 
2438 	write_lock(&journal->j_state_lock);
2439 
2440 	/* Force everything buffered to the log... */
2441 	if (journal->j_running_transaction) {
2442 		transaction = journal->j_running_transaction;
2443 		__jbd2_log_start_commit(journal, transaction->t_tid);
2444 	} else if (journal->j_committing_transaction)
2445 		transaction = journal->j_committing_transaction;
2446 
2447 	/* Wait for the log commit to complete... */
2448 	if (transaction) {
2449 		tid_t tid = transaction->t_tid;
2450 
2451 		write_unlock(&journal->j_state_lock);
2452 		jbd2_log_wait_commit(journal, tid);
2453 	} else {
2454 		write_unlock(&journal->j_state_lock);
2455 	}
2456 
2457 	/* ...and flush everything in the log out to disk. */
2458 	spin_lock(&journal->j_list_lock);
2459 	while (!err && journal->j_checkpoint_transactions != NULL) {
2460 		spin_unlock(&journal->j_list_lock);
2461 		mutex_lock_io(&journal->j_checkpoint_mutex);
2462 		err = jbd2_log_do_checkpoint(journal);
2463 		mutex_unlock(&journal->j_checkpoint_mutex);
2464 		spin_lock(&journal->j_list_lock);
2465 	}
2466 	spin_unlock(&journal->j_list_lock);
2467 
2468 	if (is_journal_aborted(journal))
2469 		return -EIO;
2470 
2471 	mutex_lock_io(&journal->j_checkpoint_mutex);
2472 	if (!err) {
2473 		err = jbd2_cleanup_journal_tail(journal);
2474 		if (err < 0) {
2475 			mutex_unlock(&journal->j_checkpoint_mutex);
2476 			goto out;
2477 		}
2478 		err = 0;
2479 	}
2480 
2481 	/* Finally, mark the journal as really needing no recovery.
2482 	 * This sets s_start==0 in the underlying superblock, which is
2483 	 * the magic code for a fully-recovered superblock.  Any future
2484 	 * commits of data to the journal will restore the current
2485 	 * s_start value. */
2486 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2487 
2488 	if (flags)
2489 		err = __jbd2_journal_erase(journal, flags);
2490 
2491 	mutex_unlock(&journal->j_checkpoint_mutex);
2492 	write_lock(&journal->j_state_lock);
2493 	J_ASSERT(!journal->j_running_transaction);
2494 	J_ASSERT(!journal->j_committing_transaction);
2495 	J_ASSERT(!journal->j_checkpoint_transactions);
2496 	J_ASSERT(journal->j_head == journal->j_tail);
2497 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2498 	write_unlock(&journal->j_state_lock);
2499 out:
2500 	return err;
2501 }
2502 
2503 /**
2504  * jbd2_journal_wipe() - Wipe journal contents
2505  * @journal: Journal to act on.
2506  * @write: flag (see below)
2507  *
2508  * Wipe out all of the contents of a journal, safely.  This will produce
2509  * a warning if the journal contains any valid recovery information.
2510  * Must be called between journal_init_*() and jbd2_journal_load().
2511  *
2512  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2513  * we merely suppress recovery.
2514  */
2515 
2516 int jbd2_journal_wipe(journal_t *journal, int write)
2517 {
2518 	int err = 0;
2519 
2520 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2521 
2522 	err = load_superblock(journal);
2523 	if (err)
2524 		return err;
2525 
2526 	if (!journal->j_tail)
2527 		goto no_recovery;
2528 
2529 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2530 		write ? "Clearing" : "Ignoring");
2531 
2532 	err = jbd2_journal_skip_recovery(journal);
2533 	if (write) {
2534 		/* Lock to make assertions happy... */
2535 		mutex_lock_io(&journal->j_checkpoint_mutex);
2536 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2537 		mutex_unlock(&journal->j_checkpoint_mutex);
2538 	}
2539 
2540  no_recovery:
2541 	return err;
2542 }
2543 
2544 /**
2545  * jbd2_journal_abort () - Shutdown the journal immediately.
2546  * @journal: the journal to shutdown.
2547  * @errno:   an error number to record in the journal indicating
2548  *           the reason for the shutdown.
2549  *
2550  * Perform a complete, immediate shutdown of the ENTIRE
2551  * journal (not of a single transaction).  This operation cannot be
2552  * undone without closing and reopening the journal.
2553  *
2554  * The jbd2_journal_abort function is intended to support higher level error
2555  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2556  * mode.
2557  *
2558  * Journal abort has very specific semantics.  Any existing dirty,
2559  * unjournaled buffers in the main filesystem will still be written to
2560  * disk by bdflush, but the journaling mechanism will be suspended
2561  * immediately and no further transaction commits will be honoured.
2562  *
2563  * Any dirty, journaled buffers will be written back to disk without
2564  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2565  * filesystem, but we _do_ attempt to leave as much data as possible
2566  * behind for fsck to use for cleanup.
2567  *
2568  * Any attempt to get a new transaction handle on a journal which is in
2569  * ABORT state will just result in an -EROFS error return.  A
2570  * jbd2_journal_stop on an existing handle will return -EIO if we have
2571  * entered abort state during the update.
2572  *
2573  * Recursive transactions are not disturbed by journal abort until the
2574  * final jbd2_journal_stop, which will receive the -EIO error.
2575  *
2576  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2577  * which will be recorded (if possible) in the journal superblock.  This
2578  * allows a client to record failure conditions in the middle of a
2579  * transaction without having to complete the transaction to record the
2580  * failure to disk.  ext3_error, for example, now uses this
2581  * functionality.
2582  *
2583  */
2584 
2585 void jbd2_journal_abort(journal_t *journal, int errno)
2586 {
2587 	transaction_t *transaction;
2588 
2589 	/*
2590 	 * Lock the aborting procedure until everything is done, this avoid
2591 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2592 	 * ensure panic after the error info is written into journal's
2593 	 * superblock.
2594 	 */
2595 	mutex_lock(&journal->j_abort_mutex);
2596 	/*
2597 	 * ESHUTDOWN always takes precedence because a file system check
2598 	 * caused by any other journal abort error is not required after
2599 	 * a shutdown triggered.
2600 	 */
2601 	write_lock(&journal->j_state_lock);
2602 	if (journal->j_flags & JBD2_ABORT) {
2603 		int old_errno = journal->j_errno;
2604 
2605 		write_unlock(&journal->j_state_lock);
2606 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2607 			journal->j_errno = errno;
2608 			jbd2_journal_update_sb_errno(journal);
2609 		}
2610 		mutex_unlock(&journal->j_abort_mutex);
2611 		return;
2612 	}
2613 
2614 	/*
2615 	 * Mark the abort as occurred and start current running transaction
2616 	 * to release all journaled buffer.
2617 	 */
2618 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2619 
2620 	journal->j_flags |= JBD2_ABORT;
2621 	journal->j_errno = errno;
2622 	transaction = journal->j_running_transaction;
2623 	if (transaction)
2624 		__jbd2_log_start_commit(journal, transaction->t_tid);
2625 	write_unlock(&journal->j_state_lock);
2626 
2627 	/*
2628 	 * Record errno to the journal super block, so that fsck and jbd2
2629 	 * layer could realise that a filesystem check is needed.
2630 	 */
2631 	jbd2_journal_update_sb_errno(journal);
2632 	mutex_unlock(&journal->j_abort_mutex);
2633 }
2634 
2635 /**
2636  * jbd2_journal_errno() - returns the journal's error state.
2637  * @journal: journal to examine.
2638  *
2639  * This is the errno number set with jbd2_journal_abort(), the last
2640  * time the journal was mounted - if the journal was stopped
2641  * without calling abort this will be 0.
2642  *
2643  * If the journal has been aborted on this mount time -EROFS will
2644  * be returned.
2645  */
2646 int jbd2_journal_errno(journal_t *journal)
2647 {
2648 	int err;
2649 
2650 	read_lock(&journal->j_state_lock);
2651 	if (journal->j_flags & JBD2_ABORT)
2652 		err = -EROFS;
2653 	else
2654 		err = journal->j_errno;
2655 	read_unlock(&journal->j_state_lock);
2656 	return err;
2657 }
2658 
2659 /**
2660  * jbd2_journal_clear_err() - clears the journal's error state
2661  * @journal: journal to act on.
2662  *
2663  * An error must be cleared or acked to take a FS out of readonly
2664  * mode.
2665  */
2666 int jbd2_journal_clear_err(journal_t *journal)
2667 {
2668 	int err = 0;
2669 
2670 	write_lock(&journal->j_state_lock);
2671 	if (journal->j_flags & JBD2_ABORT)
2672 		err = -EROFS;
2673 	else
2674 		journal->j_errno = 0;
2675 	write_unlock(&journal->j_state_lock);
2676 	return err;
2677 }
2678 
2679 /**
2680  * jbd2_journal_ack_err() - Ack journal err.
2681  * @journal: journal to act on.
2682  *
2683  * An error must be cleared or acked to take a FS out of readonly
2684  * mode.
2685  */
2686 void jbd2_journal_ack_err(journal_t *journal)
2687 {
2688 	write_lock(&journal->j_state_lock);
2689 	if (journal->j_errno)
2690 		journal->j_flags |= JBD2_ACK_ERR;
2691 	write_unlock(&journal->j_state_lock);
2692 }
2693 
2694 int jbd2_journal_blocks_per_page(struct inode *inode)
2695 {
2696 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2697 }
2698 
2699 /*
2700  * helper functions to deal with 32 or 64bit block numbers.
2701  */
2702 size_t journal_tag_bytes(journal_t *journal)
2703 {
2704 	size_t sz;
2705 
2706 	if (jbd2_has_feature_csum3(journal))
2707 		return sizeof(journal_block_tag3_t);
2708 
2709 	sz = sizeof(journal_block_tag_t);
2710 
2711 	if (jbd2_has_feature_csum2(journal))
2712 		sz += sizeof(__u16);
2713 
2714 	if (jbd2_has_feature_64bit(journal))
2715 		return sz;
2716 	else
2717 		return sz - sizeof(__u32);
2718 }
2719 
2720 /*
2721  * JBD memory management
2722  *
2723  * These functions are used to allocate block-sized chunks of memory
2724  * used for making copies of buffer_head data.  Very often it will be
2725  * page-sized chunks of data, but sometimes it will be in
2726  * sub-page-size chunks.  (For example, 16k pages on Power systems
2727  * with a 4k block file system.)  For blocks smaller than a page, we
2728  * use a SLAB allocator.  There are slab caches for each block size,
2729  * which are allocated at mount time, if necessary, and we only free
2730  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2731  * this reason we don't need to a mutex to protect access to
2732  * jbd2_slab[] allocating or releasing memory; only in
2733  * jbd2_journal_create_slab().
2734  */
2735 #define JBD2_MAX_SLABS 8
2736 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2737 
2738 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2739 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2740 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2741 };
2742 
2743 
2744 static void jbd2_journal_destroy_slabs(void)
2745 {
2746 	int i;
2747 
2748 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2749 		kmem_cache_destroy(jbd2_slab[i]);
2750 		jbd2_slab[i] = NULL;
2751 	}
2752 }
2753 
2754 static int jbd2_journal_create_slab(size_t size)
2755 {
2756 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2757 	int i = order_base_2(size) - 10;
2758 	size_t slab_size;
2759 
2760 	if (size == PAGE_SIZE)
2761 		return 0;
2762 
2763 	if (i >= JBD2_MAX_SLABS)
2764 		return -EINVAL;
2765 
2766 	if (unlikely(i < 0))
2767 		i = 0;
2768 	mutex_lock(&jbd2_slab_create_mutex);
2769 	if (jbd2_slab[i]) {
2770 		mutex_unlock(&jbd2_slab_create_mutex);
2771 		return 0;	/* Already created */
2772 	}
2773 
2774 	slab_size = 1 << (i+10);
2775 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2776 					 slab_size, 0, NULL);
2777 	mutex_unlock(&jbd2_slab_create_mutex);
2778 	if (!jbd2_slab[i]) {
2779 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2780 		return -ENOMEM;
2781 	}
2782 	return 0;
2783 }
2784 
2785 static struct kmem_cache *get_slab(size_t size)
2786 {
2787 	int i = order_base_2(size) - 10;
2788 
2789 	BUG_ON(i >= JBD2_MAX_SLABS);
2790 	if (unlikely(i < 0))
2791 		i = 0;
2792 	BUG_ON(jbd2_slab[i] == NULL);
2793 	return jbd2_slab[i];
2794 }
2795 
2796 void *jbd2_alloc(size_t size, gfp_t flags)
2797 {
2798 	void *ptr;
2799 
2800 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2801 
2802 	if (size < PAGE_SIZE)
2803 		ptr = kmem_cache_alloc(get_slab(size), flags);
2804 	else
2805 		ptr = (void *)__get_free_pages(flags, get_order(size));
2806 
2807 	/* Check alignment; SLUB has gotten this wrong in the past,
2808 	 * and this can lead to user data corruption! */
2809 	BUG_ON(((unsigned long) ptr) & (size-1));
2810 
2811 	return ptr;
2812 }
2813 
2814 void jbd2_free(void *ptr, size_t size)
2815 {
2816 	if (size < PAGE_SIZE)
2817 		kmem_cache_free(get_slab(size), ptr);
2818 	else
2819 		free_pages((unsigned long)ptr, get_order(size));
2820 };
2821 
2822 /*
2823  * Journal_head storage management
2824  */
2825 static struct kmem_cache *jbd2_journal_head_cache;
2826 #ifdef CONFIG_JBD2_DEBUG
2827 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2828 #endif
2829 
2830 static int __init jbd2_journal_init_journal_head_cache(void)
2831 {
2832 	J_ASSERT(!jbd2_journal_head_cache);
2833 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2834 				sizeof(struct journal_head),
2835 				0,		/* offset */
2836 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2837 				NULL);		/* ctor */
2838 	if (!jbd2_journal_head_cache) {
2839 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2840 		return -ENOMEM;
2841 	}
2842 	return 0;
2843 }
2844 
2845 static void jbd2_journal_destroy_journal_head_cache(void)
2846 {
2847 	kmem_cache_destroy(jbd2_journal_head_cache);
2848 	jbd2_journal_head_cache = NULL;
2849 }
2850 
2851 /*
2852  * journal_head splicing and dicing
2853  */
2854 static struct journal_head *journal_alloc_journal_head(void)
2855 {
2856 	struct journal_head *ret;
2857 
2858 #ifdef CONFIG_JBD2_DEBUG
2859 	atomic_inc(&nr_journal_heads);
2860 #endif
2861 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2862 	if (!ret) {
2863 		jbd2_debug(1, "out of memory for journal_head\n");
2864 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2865 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2866 				GFP_NOFS | __GFP_NOFAIL);
2867 	}
2868 	if (ret)
2869 		spin_lock_init(&ret->b_state_lock);
2870 	return ret;
2871 }
2872 
2873 static void journal_free_journal_head(struct journal_head *jh)
2874 {
2875 #ifdef CONFIG_JBD2_DEBUG
2876 	atomic_dec(&nr_journal_heads);
2877 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2878 #endif
2879 	kmem_cache_free(jbd2_journal_head_cache, jh);
2880 }
2881 
2882 /*
2883  * A journal_head is attached to a buffer_head whenever JBD has an
2884  * interest in the buffer.
2885  *
2886  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2887  * is set.  This bit is tested in core kernel code where we need to take
2888  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2889  * there.
2890  *
2891  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2892  *
2893  * When a buffer has its BH_JBD bit set it is immune from being released by
2894  * core kernel code, mainly via ->b_count.
2895  *
2896  * A journal_head is detached from its buffer_head when the journal_head's
2897  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2898  * transaction (b_cp_transaction) hold their references to b_jcount.
2899  *
2900  * Various places in the kernel want to attach a journal_head to a buffer_head
2901  * _before_ attaching the journal_head to a transaction.  To protect the
2902  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2903  * journal_head's b_jcount refcount by one.  The caller must call
2904  * jbd2_journal_put_journal_head() to undo this.
2905  *
2906  * So the typical usage would be:
2907  *
2908  *	(Attach a journal_head if needed.  Increments b_jcount)
2909  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2910  *	...
2911  *      (Get another reference for transaction)
2912  *	jbd2_journal_grab_journal_head(bh);
2913  *	jh->b_transaction = xxx;
2914  *	(Put original reference)
2915  *	jbd2_journal_put_journal_head(jh);
2916  */
2917 
2918 /*
2919  * Give a buffer_head a journal_head.
2920  *
2921  * May sleep.
2922  */
2923 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2924 {
2925 	struct journal_head *jh;
2926 	struct journal_head *new_jh = NULL;
2927 
2928 repeat:
2929 	if (!buffer_jbd(bh))
2930 		new_jh = journal_alloc_journal_head();
2931 
2932 	jbd_lock_bh_journal_head(bh);
2933 	if (buffer_jbd(bh)) {
2934 		jh = bh2jh(bh);
2935 	} else {
2936 		J_ASSERT_BH(bh,
2937 			(atomic_read(&bh->b_count) > 0) ||
2938 			(bh->b_folio && bh->b_folio->mapping));
2939 
2940 		if (!new_jh) {
2941 			jbd_unlock_bh_journal_head(bh);
2942 			goto repeat;
2943 		}
2944 
2945 		jh = new_jh;
2946 		new_jh = NULL;		/* We consumed it */
2947 		set_buffer_jbd(bh);
2948 		bh->b_private = jh;
2949 		jh->b_bh = bh;
2950 		get_bh(bh);
2951 		BUFFER_TRACE(bh, "added journal_head");
2952 	}
2953 	jh->b_jcount++;
2954 	jbd_unlock_bh_journal_head(bh);
2955 	if (new_jh)
2956 		journal_free_journal_head(new_jh);
2957 	return bh->b_private;
2958 }
2959 
2960 /*
2961  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2962  * having a journal_head, return NULL
2963  */
2964 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2965 {
2966 	struct journal_head *jh = NULL;
2967 
2968 	jbd_lock_bh_journal_head(bh);
2969 	if (buffer_jbd(bh)) {
2970 		jh = bh2jh(bh);
2971 		jh->b_jcount++;
2972 	}
2973 	jbd_unlock_bh_journal_head(bh);
2974 	return jh;
2975 }
2976 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2977 
2978 static void __journal_remove_journal_head(struct buffer_head *bh)
2979 {
2980 	struct journal_head *jh = bh2jh(bh);
2981 
2982 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2983 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2984 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2985 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2986 	J_ASSERT_BH(bh, buffer_jbd(bh));
2987 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2988 	BUFFER_TRACE(bh, "remove journal_head");
2989 
2990 	/* Unlink before dropping the lock */
2991 	bh->b_private = NULL;
2992 	jh->b_bh = NULL;	/* debug, really */
2993 	clear_buffer_jbd(bh);
2994 }
2995 
2996 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2997 {
2998 	if (jh->b_frozen_data) {
2999 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3000 		jbd2_free(jh->b_frozen_data, b_size);
3001 	}
3002 	if (jh->b_committed_data) {
3003 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3004 		jbd2_free(jh->b_committed_data, b_size);
3005 	}
3006 	journal_free_journal_head(jh);
3007 }
3008 
3009 /*
3010  * Drop a reference on the passed journal_head.  If it fell to zero then
3011  * release the journal_head from the buffer_head.
3012  */
3013 void jbd2_journal_put_journal_head(struct journal_head *jh)
3014 {
3015 	struct buffer_head *bh = jh2bh(jh);
3016 
3017 	jbd_lock_bh_journal_head(bh);
3018 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3019 	--jh->b_jcount;
3020 	if (!jh->b_jcount) {
3021 		__journal_remove_journal_head(bh);
3022 		jbd_unlock_bh_journal_head(bh);
3023 		journal_release_journal_head(jh, bh->b_size);
3024 		__brelse(bh);
3025 	} else {
3026 		jbd_unlock_bh_journal_head(bh);
3027 	}
3028 }
3029 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3030 
3031 /*
3032  * Initialize jbd inode head
3033  */
3034 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3035 {
3036 	jinode->i_transaction = NULL;
3037 	jinode->i_next_transaction = NULL;
3038 	jinode->i_vfs_inode = inode;
3039 	jinode->i_flags = 0;
3040 	jinode->i_dirty_start = 0;
3041 	jinode->i_dirty_end = 0;
3042 	INIT_LIST_HEAD(&jinode->i_list);
3043 }
3044 
3045 /*
3046  * Function to be called before we start removing inode from memory (i.e.,
3047  * clear_inode() is a fine place to be called from). It removes inode from
3048  * transaction's lists.
3049  */
3050 void jbd2_journal_release_jbd_inode(journal_t *journal,
3051 				    struct jbd2_inode *jinode)
3052 {
3053 	if (!journal)
3054 		return;
3055 restart:
3056 	spin_lock(&journal->j_list_lock);
3057 	/* Is commit writing out inode - we have to wait */
3058 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3059 		wait_queue_head_t *wq;
3060 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3061 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3062 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3063 		spin_unlock(&journal->j_list_lock);
3064 		schedule();
3065 		finish_wait(wq, &wait.wq_entry);
3066 		goto restart;
3067 	}
3068 
3069 	if (jinode->i_transaction) {
3070 		list_del(&jinode->i_list);
3071 		jinode->i_transaction = NULL;
3072 	}
3073 	spin_unlock(&journal->j_list_lock);
3074 }
3075 
3076 
3077 #ifdef CONFIG_PROC_FS
3078 
3079 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3080 
3081 static void __init jbd2_create_jbd_stats_proc_entry(void)
3082 {
3083 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3084 }
3085 
3086 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3087 {
3088 	if (proc_jbd2_stats)
3089 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3090 }
3091 
3092 #else
3093 
3094 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3095 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3096 
3097 #endif
3098 
3099 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3100 
3101 static int __init jbd2_journal_init_inode_cache(void)
3102 {
3103 	J_ASSERT(!jbd2_inode_cache);
3104 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3105 	if (!jbd2_inode_cache) {
3106 		pr_emerg("JBD2: failed to create inode cache\n");
3107 		return -ENOMEM;
3108 	}
3109 	return 0;
3110 }
3111 
3112 static int __init jbd2_journal_init_handle_cache(void)
3113 {
3114 	J_ASSERT(!jbd2_handle_cache);
3115 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3116 	if (!jbd2_handle_cache) {
3117 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3118 		return -ENOMEM;
3119 	}
3120 	return 0;
3121 }
3122 
3123 static void jbd2_journal_destroy_inode_cache(void)
3124 {
3125 	kmem_cache_destroy(jbd2_inode_cache);
3126 	jbd2_inode_cache = NULL;
3127 }
3128 
3129 static void jbd2_journal_destroy_handle_cache(void)
3130 {
3131 	kmem_cache_destroy(jbd2_handle_cache);
3132 	jbd2_handle_cache = NULL;
3133 }
3134 
3135 /*
3136  * Module startup and shutdown
3137  */
3138 
3139 static int __init journal_init_caches(void)
3140 {
3141 	int ret;
3142 
3143 	ret = jbd2_journal_init_revoke_record_cache();
3144 	if (ret == 0)
3145 		ret = jbd2_journal_init_revoke_table_cache();
3146 	if (ret == 0)
3147 		ret = jbd2_journal_init_journal_head_cache();
3148 	if (ret == 0)
3149 		ret = jbd2_journal_init_handle_cache();
3150 	if (ret == 0)
3151 		ret = jbd2_journal_init_inode_cache();
3152 	if (ret == 0)
3153 		ret = jbd2_journal_init_transaction_cache();
3154 	return ret;
3155 }
3156 
3157 static void jbd2_journal_destroy_caches(void)
3158 {
3159 	jbd2_journal_destroy_revoke_record_cache();
3160 	jbd2_journal_destroy_revoke_table_cache();
3161 	jbd2_journal_destroy_journal_head_cache();
3162 	jbd2_journal_destroy_handle_cache();
3163 	jbd2_journal_destroy_inode_cache();
3164 	jbd2_journal_destroy_transaction_cache();
3165 	jbd2_journal_destroy_slabs();
3166 }
3167 
3168 static int __init journal_init(void)
3169 {
3170 	int ret;
3171 
3172 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3173 
3174 	ret = journal_init_caches();
3175 	if (ret == 0) {
3176 		jbd2_create_jbd_stats_proc_entry();
3177 	} else {
3178 		jbd2_journal_destroy_caches();
3179 	}
3180 	return ret;
3181 }
3182 
3183 static void __exit journal_exit(void)
3184 {
3185 #ifdef CONFIG_JBD2_DEBUG
3186 	int n = atomic_read(&nr_journal_heads);
3187 	if (n)
3188 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3189 #endif
3190 	jbd2_remove_jbd_stats_proc_entry();
3191 	jbd2_journal_destroy_caches();
3192 }
3193 
3194 MODULE_LICENSE("GPL");
3195 module_init(journal_init);
3196 module_exit(journal_exit);
3197 
3198