xref: /openbmc/linux/fs/jbd2/journal.c (revision ca79522c)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102 
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105 
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110 		return 1;
111 
112 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114 
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117 	__u32 csum, old_csum;
118 
119 	old_csum = sb->s_checksum;
120 	sb->s_checksum = 0;
121 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122 	sb->s_checksum = old_csum;
123 
124 	return cpu_to_be32(csum);
125 }
126 
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130 		return 1;
131 
132 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134 
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138 		return;
139 
140 	sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(unsigned long __data)
148 {
149 	struct task_struct * p = (struct task_struct *) __data;
150 
151 	wake_up_process(p);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169 
170 static int kjournald2(void *arg)
171 {
172 	journal_t *journal = arg;
173 	transaction_t *transaction;
174 
175 	/*
176 	 * Set up an interval timer which can be used to trigger a commit wakeup
177 	 * after the commit interval expires
178 	 */
179 	setup_timer(&journal->j_commit_timer, commit_timeout,
180 			(unsigned long)current);
181 
182 	set_freezable();
183 
184 	/* Record that the journal thread is running */
185 	journal->j_task = current;
186 	wake_up(&journal->j_wait_done_commit);
187 
188 	/*
189 	 * And now, wait forever for commit wakeup events.
190 	 */
191 	write_lock(&journal->j_state_lock);
192 
193 loop:
194 	if (journal->j_flags & JBD2_UNMOUNT)
195 		goto end_loop;
196 
197 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198 		journal->j_commit_sequence, journal->j_commit_request);
199 
200 	if (journal->j_commit_sequence != journal->j_commit_request) {
201 		jbd_debug(1, "OK, requests differ\n");
202 		write_unlock(&journal->j_state_lock);
203 		del_timer_sync(&journal->j_commit_timer);
204 		jbd2_journal_commit_transaction(journal);
205 		write_lock(&journal->j_state_lock);
206 		goto loop;
207 	}
208 
209 	wake_up(&journal->j_wait_done_commit);
210 	if (freezing(current)) {
211 		/*
212 		 * The simpler the better. Flushing journal isn't a
213 		 * good idea, because that depends on threads that may
214 		 * be already stopped.
215 		 */
216 		jbd_debug(1, "Now suspending kjournald2\n");
217 		write_unlock(&journal->j_state_lock);
218 		try_to_freeze();
219 		write_lock(&journal->j_state_lock);
220 	} else {
221 		/*
222 		 * We assume on resume that commits are already there,
223 		 * so we don't sleep
224 		 */
225 		DEFINE_WAIT(wait);
226 		int should_sleep = 1;
227 
228 		prepare_to_wait(&journal->j_wait_commit, &wait,
229 				TASK_INTERRUPTIBLE);
230 		if (journal->j_commit_sequence != journal->j_commit_request)
231 			should_sleep = 0;
232 		transaction = journal->j_running_transaction;
233 		if (transaction && time_after_eq(jiffies,
234 						transaction->t_expires))
235 			should_sleep = 0;
236 		if (journal->j_flags & JBD2_UNMOUNT)
237 			should_sleep = 0;
238 		if (should_sleep) {
239 			write_unlock(&journal->j_state_lock);
240 			schedule();
241 			write_lock(&journal->j_state_lock);
242 		}
243 		finish_wait(&journal->j_wait_commit, &wait);
244 	}
245 
246 	jbd_debug(1, "kjournald2 wakes\n");
247 
248 	/*
249 	 * Were we woken up by a commit wakeup event?
250 	 */
251 	transaction = journal->j_running_transaction;
252 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253 		journal->j_commit_request = transaction->t_tid;
254 		jbd_debug(1, "woke because of timeout\n");
255 	}
256 	goto loop;
257 
258 end_loop:
259 	write_unlock(&journal->j_state_lock);
260 	del_timer_sync(&journal->j_commit_timer);
261 	journal->j_task = NULL;
262 	wake_up(&journal->j_wait_done_commit);
263 	jbd_debug(1, "Journal thread exiting.\n");
264 	return 0;
265 }
266 
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269 	struct task_struct *t;
270 
271 	t = kthread_run(kjournald2, journal, "jbd2/%s",
272 			journal->j_devname);
273 	if (IS_ERR(t))
274 		return PTR_ERR(t);
275 
276 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277 	return 0;
278 }
279 
280 static void journal_kill_thread(journal_t *journal)
281 {
282 	write_lock(&journal->j_state_lock);
283 	journal->j_flags |= JBD2_UNMOUNT;
284 
285 	while (journal->j_task) {
286 		wake_up(&journal->j_wait_commit);
287 		write_unlock(&journal->j_state_lock);
288 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289 		write_lock(&journal->j_state_lock);
290 	}
291 	write_unlock(&journal->j_state_lock);
292 }
293 
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO.  If we end up using the existing buffer_head's data
314  * for the write, then we *have* to lock the buffer to prevent anyone
315  * else from using and possibly modifying it while the IO is in
316  * progress.
317  *
318  * The function returns a pointer to the buffer_heads to be used for IO.
319  *
320  * We assume that the journal has already been locked in this function.
321  *
322  * Return value:
323  *  <0: Error
324  * >=0: Finished OK
325  *
326  * On success:
327  * Bit 0 set == escape performed on the data
328  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329  */
330 
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332 				  struct journal_head  *jh_in,
333 				  struct journal_head **jh_out,
334 				  unsigned long long blocknr)
335 {
336 	int need_copy_out = 0;
337 	int done_copy_out = 0;
338 	int do_escape = 0;
339 	char *mapped_data;
340 	struct buffer_head *new_bh;
341 	struct journal_head *new_jh;
342 	struct page *new_page;
343 	unsigned int new_offset;
344 	struct buffer_head *bh_in = jh2bh(jh_in);
345 	journal_t *journal = transaction->t_journal;
346 
347 	/*
348 	 * The buffer really shouldn't be locked: only the current committing
349 	 * transaction is allowed to write it, so nobody else is allowed
350 	 * to do any IO.
351 	 *
352 	 * akpm: except if we're journalling data, and write() output is
353 	 * also part of a shared mapping, and another thread has
354 	 * decided to launch a writepage() against this buffer.
355 	 */
356 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357 
358 retry_alloc:
359 	new_bh = alloc_buffer_head(GFP_NOFS);
360 	if (!new_bh) {
361 		/*
362 		 * Failure is not an option, but __GFP_NOFAIL is going
363 		 * away; so we retry ourselves here.
364 		 */
365 		congestion_wait(BLK_RW_ASYNC, HZ/50);
366 		goto retry_alloc;
367 	}
368 
369 	/* keep subsequent assertions sane */
370 	atomic_set(&new_bh->b_count, 1);
371 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
372 
373 	/*
374 	 * If a new transaction has already done a buffer copy-out, then
375 	 * we use that version of the data for the commit.
376 	 */
377 	jbd_lock_bh_state(bh_in);
378 repeat:
379 	if (jh_in->b_frozen_data) {
380 		done_copy_out = 1;
381 		new_page = virt_to_page(jh_in->b_frozen_data);
382 		new_offset = offset_in_page(jh_in->b_frozen_data);
383 	} else {
384 		new_page = jh2bh(jh_in)->b_page;
385 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
386 	}
387 
388 	mapped_data = kmap_atomic(new_page);
389 	/*
390 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
391 	 * before checking for escaping, as the trigger may modify the magic
392 	 * offset.  If a copy-out happens afterwards, it will have the correct
393 	 * data in the buffer.
394 	 */
395 	if (!done_copy_out)
396 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
397 					   jh_in->b_triggers);
398 
399 	/*
400 	 * Check for escaping
401 	 */
402 	if (*((__be32 *)(mapped_data + new_offset)) ==
403 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
404 		need_copy_out = 1;
405 		do_escape = 1;
406 	}
407 	kunmap_atomic(mapped_data);
408 
409 	/*
410 	 * Do we need to do a data copy?
411 	 */
412 	if (need_copy_out && !done_copy_out) {
413 		char *tmp;
414 
415 		jbd_unlock_bh_state(bh_in);
416 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
417 		if (!tmp) {
418 			jbd2_journal_put_journal_head(new_jh);
419 			return -ENOMEM;
420 		}
421 		jbd_lock_bh_state(bh_in);
422 		if (jh_in->b_frozen_data) {
423 			jbd2_free(tmp, bh_in->b_size);
424 			goto repeat;
425 		}
426 
427 		jh_in->b_frozen_data = tmp;
428 		mapped_data = kmap_atomic(new_page);
429 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
430 		kunmap_atomic(mapped_data);
431 
432 		new_page = virt_to_page(tmp);
433 		new_offset = offset_in_page(tmp);
434 		done_copy_out = 1;
435 
436 		/*
437 		 * This isn't strictly necessary, as we're using frozen
438 		 * data for the escaping, but it keeps consistency with
439 		 * b_frozen_data usage.
440 		 */
441 		jh_in->b_frozen_triggers = jh_in->b_triggers;
442 	}
443 
444 	/*
445 	 * Did we need to do an escaping?  Now we've done all the
446 	 * copying, we can finally do so.
447 	 */
448 	if (do_escape) {
449 		mapped_data = kmap_atomic(new_page);
450 		*((unsigned int *)(mapped_data + new_offset)) = 0;
451 		kunmap_atomic(mapped_data);
452 	}
453 
454 	set_bh_page(new_bh, new_page, new_offset);
455 	new_jh->b_transaction = NULL;
456 	new_bh->b_size = jh2bh(jh_in)->b_size;
457 	new_bh->b_bdev = transaction->t_journal->j_dev;
458 	new_bh->b_blocknr = blocknr;
459 	set_buffer_mapped(new_bh);
460 	set_buffer_dirty(new_bh);
461 
462 	*jh_out = new_jh;
463 
464 	/*
465 	 * The to-be-written buffer needs to get moved to the io queue,
466 	 * and the original buffer whose contents we are shadowing or
467 	 * copying is moved to the transaction's shadow queue.
468 	 */
469 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
470 	spin_lock(&journal->j_list_lock);
471 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
472 	spin_unlock(&journal->j_list_lock);
473 	jbd_unlock_bh_state(bh_in);
474 
475 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
476 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
477 
478 	return do_escape | (done_copy_out << 1);
479 }
480 
481 /*
482  * Allocation code for the journal file.  Manage the space left in the
483  * journal, so that we can begin checkpointing when appropriate.
484  */
485 
486 /*
487  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
488  *
489  * Called with the journal already locked.
490  *
491  * Called under j_state_lock
492  */
493 
494 int __jbd2_log_space_left(journal_t *journal)
495 {
496 	int left = journal->j_free;
497 
498 	/* assert_spin_locked(&journal->j_state_lock); */
499 
500 	/*
501 	 * Be pessimistic here about the number of those free blocks which
502 	 * might be required for log descriptor control blocks.
503 	 */
504 
505 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
506 
507 	left -= MIN_LOG_RESERVED_BLOCKS;
508 
509 	if (left <= 0)
510 		return 0;
511 	left -= (left >> 3);
512 	return left;
513 }
514 
515 /*
516  * Called with j_state_lock locked for writing.
517  * Returns true if a transaction commit was started.
518  */
519 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
520 {
521 	/* Return if the txn has already requested to be committed */
522 	if (journal->j_commit_request == target)
523 		return 0;
524 
525 	/*
526 	 * The only transaction we can possibly wait upon is the
527 	 * currently running transaction (if it exists).  Otherwise,
528 	 * the target tid must be an old one.
529 	 */
530 	if (journal->j_running_transaction &&
531 	    journal->j_running_transaction->t_tid == target) {
532 		/*
533 		 * We want a new commit: OK, mark the request and wakeup the
534 		 * commit thread.  We do _not_ do the commit ourselves.
535 		 */
536 
537 		journal->j_commit_request = target;
538 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
539 			  journal->j_commit_request,
540 			  journal->j_commit_sequence);
541 		journal->j_running_transaction->t_requested = jiffies;
542 		wake_up(&journal->j_wait_commit);
543 		return 1;
544 	} else if (!tid_geq(journal->j_commit_request, target))
545 		/* This should never happen, but if it does, preserve
546 		   the evidence before kjournald goes into a loop and
547 		   increments j_commit_sequence beyond all recognition. */
548 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
549 			  journal->j_commit_request,
550 			  journal->j_commit_sequence,
551 			  target, journal->j_running_transaction ?
552 			  journal->j_running_transaction->t_tid : 0);
553 	return 0;
554 }
555 
556 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
557 {
558 	int ret;
559 
560 	write_lock(&journal->j_state_lock);
561 	ret = __jbd2_log_start_commit(journal, tid);
562 	write_unlock(&journal->j_state_lock);
563 	return ret;
564 }
565 
566 /*
567  * Force and wait upon a commit if the calling process is not within
568  * transaction.  This is used for forcing out undo-protected data which contains
569  * bitmaps, when the fs is running out of space.
570  *
571  * We can only force the running transaction if we don't have an active handle;
572  * otherwise, we will deadlock.
573  *
574  * Returns true if a transaction was started.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 	transaction_t *transaction = NULL;
579 	tid_t tid;
580 	int need_to_start = 0;
581 
582 	read_lock(&journal->j_state_lock);
583 	if (journal->j_running_transaction && !current->journal_info) {
584 		transaction = journal->j_running_transaction;
585 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
586 			need_to_start = 1;
587 	} else if (journal->j_committing_transaction)
588 		transaction = journal->j_committing_transaction;
589 
590 	if (!transaction) {
591 		read_unlock(&journal->j_state_lock);
592 		return 0;	/* Nothing to retry */
593 	}
594 
595 	tid = transaction->t_tid;
596 	read_unlock(&journal->j_state_lock);
597 	if (need_to_start)
598 		jbd2_log_start_commit(journal, tid);
599 	jbd2_log_wait_commit(journal, tid);
600 	return 1;
601 }
602 
603 /*
604  * Start a commit of the current running transaction (if any).  Returns true
605  * if a transaction is going to be committed (or is currently already
606  * committing), and fills its tid in at *ptid
607  */
608 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
609 {
610 	int ret = 0;
611 
612 	write_lock(&journal->j_state_lock);
613 	if (journal->j_running_transaction) {
614 		tid_t tid = journal->j_running_transaction->t_tid;
615 
616 		__jbd2_log_start_commit(journal, tid);
617 		/* There's a running transaction and we've just made sure
618 		 * it's commit has been scheduled. */
619 		if (ptid)
620 			*ptid = tid;
621 		ret = 1;
622 	} else if (journal->j_committing_transaction) {
623 		/*
624 		 * If commit has been started, then we have to wait for
625 		 * completion of that transaction.
626 		 */
627 		if (ptid)
628 			*ptid = journal->j_committing_transaction->t_tid;
629 		ret = 1;
630 	}
631 	write_unlock(&journal->j_state_lock);
632 	return ret;
633 }
634 
635 /*
636  * Return 1 if a given transaction has not yet sent barrier request
637  * connected with a transaction commit. If 0 is returned, transaction
638  * may or may not have sent the barrier. Used to avoid sending barrier
639  * twice in common cases.
640  */
641 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
642 {
643 	int ret = 0;
644 	transaction_t *commit_trans;
645 
646 	if (!(journal->j_flags & JBD2_BARRIER))
647 		return 0;
648 	read_lock(&journal->j_state_lock);
649 	/* Transaction already committed? */
650 	if (tid_geq(journal->j_commit_sequence, tid))
651 		goto out;
652 	commit_trans = journal->j_committing_transaction;
653 	if (!commit_trans || commit_trans->t_tid != tid) {
654 		ret = 1;
655 		goto out;
656 	}
657 	/*
658 	 * Transaction is being committed and we already proceeded to
659 	 * submitting a flush to fs partition?
660 	 */
661 	if (journal->j_fs_dev != journal->j_dev) {
662 		if (!commit_trans->t_need_data_flush ||
663 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
664 			goto out;
665 	} else {
666 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
667 			goto out;
668 	}
669 	ret = 1;
670 out:
671 	read_unlock(&journal->j_state_lock);
672 	return ret;
673 }
674 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
675 
676 /*
677  * Wait for a specified commit to complete.
678  * The caller may not hold the journal lock.
679  */
680 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
681 {
682 	int err = 0;
683 
684 	read_lock(&journal->j_state_lock);
685 #ifdef CONFIG_JBD2_DEBUG
686 	if (!tid_geq(journal->j_commit_request, tid)) {
687 		printk(KERN_EMERG
688 		       "%s: error: j_commit_request=%d, tid=%d\n",
689 		       __func__, journal->j_commit_request, tid);
690 	}
691 #endif
692 	while (tid_gt(tid, journal->j_commit_sequence)) {
693 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
694 				  tid, journal->j_commit_sequence);
695 		wake_up(&journal->j_wait_commit);
696 		read_unlock(&journal->j_state_lock);
697 		wait_event(journal->j_wait_done_commit,
698 				!tid_gt(tid, journal->j_commit_sequence));
699 		read_lock(&journal->j_state_lock);
700 	}
701 	read_unlock(&journal->j_state_lock);
702 
703 	if (unlikely(is_journal_aborted(journal))) {
704 		printk(KERN_EMERG "journal commit I/O error\n");
705 		err = -EIO;
706 	}
707 	return err;
708 }
709 
710 /*
711  * When this function returns the transaction corresponding to tid
712  * will be completed.  If the transaction has currently running, start
713  * committing that transaction before waiting for it to complete.  If
714  * the transaction id is stale, it is by definition already completed,
715  * so just return SUCCESS.
716  */
717 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
718 {
719 	int	need_to_wait = 1;
720 
721 	read_lock(&journal->j_state_lock);
722 	if (journal->j_running_transaction &&
723 	    journal->j_running_transaction->t_tid == tid) {
724 		if (journal->j_commit_request != tid) {
725 			/* transaction not yet started, so request it */
726 			read_unlock(&journal->j_state_lock);
727 			jbd2_log_start_commit(journal, tid);
728 			goto wait_commit;
729 		}
730 	} else if (!(journal->j_committing_transaction &&
731 		     journal->j_committing_transaction->t_tid == tid))
732 		need_to_wait = 0;
733 	read_unlock(&journal->j_state_lock);
734 	if (!need_to_wait)
735 		return 0;
736 wait_commit:
737 	return jbd2_log_wait_commit(journal, tid);
738 }
739 EXPORT_SYMBOL(jbd2_complete_transaction);
740 
741 /*
742  * Log buffer allocation routines:
743  */
744 
745 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
746 {
747 	unsigned long blocknr;
748 
749 	write_lock(&journal->j_state_lock);
750 	J_ASSERT(journal->j_free > 1);
751 
752 	blocknr = journal->j_head;
753 	journal->j_head++;
754 	journal->j_free--;
755 	if (journal->j_head == journal->j_last)
756 		journal->j_head = journal->j_first;
757 	write_unlock(&journal->j_state_lock);
758 	return jbd2_journal_bmap(journal, blocknr, retp);
759 }
760 
761 /*
762  * Conversion of logical to physical block numbers for the journal
763  *
764  * On external journals the journal blocks are identity-mapped, so
765  * this is a no-op.  If needed, we can use j_blk_offset - everything is
766  * ready.
767  */
768 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
769 		 unsigned long long *retp)
770 {
771 	int err = 0;
772 	unsigned long long ret;
773 
774 	if (journal->j_inode) {
775 		ret = bmap(journal->j_inode, blocknr);
776 		if (ret)
777 			*retp = ret;
778 		else {
779 			printk(KERN_ALERT "%s: journal block not found "
780 					"at offset %lu on %s\n",
781 			       __func__, blocknr, journal->j_devname);
782 			err = -EIO;
783 			__journal_abort_soft(journal, err);
784 		}
785 	} else {
786 		*retp = blocknr; /* +journal->j_blk_offset */
787 	}
788 	return err;
789 }
790 
791 /*
792  * We play buffer_head aliasing tricks to write data/metadata blocks to
793  * the journal without copying their contents, but for journal
794  * descriptor blocks we do need to generate bona fide buffers.
795  *
796  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
797  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
798  * But we don't bother doing that, so there will be coherency problems with
799  * mmaps of blockdevs which hold live JBD-controlled filesystems.
800  */
801 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
802 {
803 	struct buffer_head *bh;
804 	unsigned long long blocknr;
805 	int err;
806 
807 	err = jbd2_journal_next_log_block(journal, &blocknr);
808 
809 	if (err)
810 		return NULL;
811 
812 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
813 	if (!bh)
814 		return NULL;
815 	lock_buffer(bh);
816 	memset(bh->b_data, 0, journal->j_blocksize);
817 	set_buffer_uptodate(bh);
818 	unlock_buffer(bh);
819 	BUFFER_TRACE(bh, "return this buffer");
820 	return jbd2_journal_add_journal_head(bh);
821 }
822 
823 /*
824  * Return tid of the oldest transaction in the journal and block in the journal
825  * where the transaction starts.
826  *
827  * If the journal is now empty, return which will be the next transaction ID
828  * we will write and where will that transaction start.
829  *
830  * The return value is 0 if journal tail cannot be pushed any further, 1 if
831  * it can.
832  */
833 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
834 			      unsigned long *block)
835 {
836 	transaction_t *transaction;
837 	int ret;
838 
839 	read_lock(&journal->j_state_lock);
840 	spin_lock(&journal->j_list_lock);
841 	transaction = journal->j_checkpoint_transactions;
842 	if (transaction) {
843 		*tid = transaction->t_tid;
844 		*block = transaction->t_log_start;
845 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
846 		*tid = transaction->t_tid;
847 		*block = transaction->t_log_start;
848 	} else if ((transaction = journal->j_running_transaction) != NULL) {
849 		*tid = transaction->t_tid;
850 		*block = journal->j_head;
851 	} else {
852 		*tid = journal->j_transaction_sequence;
853 		*block = journal->j_head;
854 	}
855 	ret = tid_gt(*tid, journal->j_tail_sequence);
856 	spin_unlock(&journal->j_list_lock);
857 	read_unlock(&journal->j_state_lock);
858 
859 	return ret;
860 }
861 
862 /*
863  * Update information in journal structure and in on disk journal superblock
864  * about log tail. This function does not check whether information passed in
865  * really pushes log tail further. It's responsibility of the caller to make
866  * sure provided log tail information is valid (e.g. by holding
867  * j_checkpoint_mutex all the time between computing log tail and calling this
868  * function as is the case with jbd2_cleanup_journal_tail()).
869  *
870  * Requires j_checkpoint_mutex
871  */
872 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
873 {
874 	unsigned long freed;
875 
876 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
877 
878 	/*
879 	 * We cannot afford for write to remain in drive's caches since as
880 	 * soon as we update j_tail, next transaction can start reusing journal
881 	 * space and if we lose sb update during power failure we'd replay
882 	 * old transaction with possibly newly overwritten data.
883 	 */
884 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
885 	write_lock(&journal->j_state_lock);
886 	freed = block - journal->j_tail;
887 	if (block < journal->j_tail)
888 		freed += journal->j_last - journal->j_first;
889 
890 	trace_jbd2_update_log_tail(journal, tid, block, freed);
891 	jbd_debug(1,
892 		  "Cleaning journal tail from %d to %d (offset %lu), "
893 		  "freeing %lu\n",
894 		  journal->j_tail_sequence, tid, block, freed);
895 
896 	journal->j_free += freed;
897 	journal->j_tail_sequence = tid;
898 	journal->j_tail = block;
899 	write_unlock(&journal->j_state_lock);
900 }
901 
902 /*
903  * This is a variaon of __jbd2_update_log_tail which checks for validity of
904  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
905  * with other threads updating log tail.
906  */
907 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
908 {
909 	mutex_lock(&journal->j_checkpoint_mutex);
910 	if (tid_gt(tid, journal->j_tail_sequence))
911 		__jbd2_update_log_tail(journal, tid, block);
912 	mutex_unlock(&journal->j_checkpoint_mutex);
913 }
914 
915 struct jbd2_stats_proc_session {
916 	journal_t *journal;
917 	struct transaction_stats_s *stats;
918 	int start;
919 	int max;
920 };
921 
922 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
923 {
924 	return *pos ? NULL : SEQ_START_TOKEN;
925 }
926 
927 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
928 {
929 	return NULL;
930 }
931 
932 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
933 {
934 	struct jbd2_stats_proc_session *s = seq->private;
935 
936 	if (v != SEQ_START_TOKEN)
937 		return 0;
938 	seq_printf(seq, "%lu transactions (%lu requested), "
939 		   "each up to %u blocks\n",
940 		   s->stats->ts_tid, s->stats->ts_requested,
941 		   s->journal->j_max_transaction_buffers);
942 	if (s->stats->ts_tid == 0)
943 		return 0;
944 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
945 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
946 	seq_printf(seq, "  %ums request delay\n",
947 	    (s->stats->ts_requested == 0) ? 0 :
948 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
949 			     s->stats->ts_requested));
950 	seq_printf(seq, "  %ums running transaction\n",
951 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
952 	seq_printf(seq, "  %ums transaction was being locked\n",
953 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
954 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
955 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
956 	seq_printf(seq, "  %ums logging transaction\n",
957 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
958 	seq_printf(seq, "  %lluus average transaction commit time\n",
959 		   div_u64(s->journal->j_average_commit_time, 1000));
960 	seq_printf(seq, "  %lu handles per transaction\n",
961 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
962 	seq_printf(seq, "  %lu blocks per transaction\n",
963 	    s->stats->run.rs_blocks / s->stats->ts_tid);
964 	seq_printf(seq, "  %lu logged blocks per transaction\n",
965 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
966 	return 0;
967 }
968 
969 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
970 {
971 }
972 
973 static const struct seq_operations jbd2_seq_info_ops = {
974 	.start  = jbd2_seq_info_start,
975 	.next   = jbd2_seq_info_next,
976 	.stop   = jbd2_seq_info_stop,
977 	.show   = jbd2_seq_info_show,
978 };
979 
980 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
981 {
982 	journal_t *journal = PDE_DATA(inode);
983 	struct jbd2_stats_proc_session *s;
984 	int rc, size;
985 
986 	s = kmalloc(sizeof(*s), GFP_KERNEL);
987 	if (s == NULL)
988 		return -ENOMEM;
989 	size = sizeof(struct transaction_stats_s);
990 	s->stats = kmalloc(size, GFP_KERNEL);
991 	if (s->stats == NULL) {
992 		kfree(s);
993 		return -ENOMEM;
994 	}
995 	spin_lock(&journal->j_history_lock);
996 	memcpy(s->stats, &journal->j_stats, size);
997 	s->journal = journal;
998 	spin_unlock(&journal->j_history_lock);
999 
1000 	rc = seq_open(file, &jbd2_seq_info_ops);
1001 	if (rc == 0) {
1002 		struct seq_file *m = file->private_data;
1003 		m->private = s;
1004 	} else {
1005 		kfree(s->stats);
1006 		kfree(s);
1007 	}
1008 	return rc;
1009 
1010 }
1011 
1012 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1013 {
1014 	struct seq_file *seq = file->private_data;
1015 	struct jbd2_stats_proc_session *s = seq->private;
1016 	kfree(s->stats);
1017 	kfree(s);
1018 	return seq_release(inode, file);
1019 }
1020 
1021 static const struct file_operations jbd2_seq_info_fops = {
1022 	.owner		= THIS_MODULE,
1023 	.open           = jbd2_seq_info_open,
1024 	.read           = seq_read,
1025 	.llseek         = seq_lseek,
1026 	.release        = jbd2_seq_info_release,
1027 };
1028 
1029 static struct proc_dir_entry *proc_jbd2_stats;
1030 
1031 static void jbd2_stats_proc_init(journal_t *journal)
1032 {
1033 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1034 	if (journal->j_proc_entry) {
1035 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1036 				 &jbd2_seq_info_fops, journal);
1037 	}
1038 }
1039 
1040 static void jbd2_stats_proc_exit(journal_t *journal)
1041 {
1042 	remove_proc_entry("info", journal->j_proc_entry);
1043 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1044 }
1045 
1046 /*
1047  * Management for journal control blocks: functions to create and
1048  * destroy journal_t structures, and to initialise and read existing
1049  * journal blocks from disk.  */
1050 
1051 /* First: create and setup a journal_t object in memory.  We initialise
1052  * very few fields yet: that has to wait until we have created the
1053  * journal structures from from scratch, or loaded them from disk. */
1054 
1055 static journal_t * journal_init_common (void)
1056 {
1057 	journal_t *journal;
1058 	int err;
1059 
1060 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1061 	if (!journal)
1062 		return NULL;
1063 
1064 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1065 	init_waitqueue_head(&journal->j_wait_logspace);
1066 	init_waitqueue_head(&journal->j_wait_done_commit);
1067 	init_waitqueue_head(&journal->j_wait_checkpoint);
1068 	init_waitqueue_head(&journal->j_wait_commit);
1069 	init_waitqueue_head(&journal->j_wait_updates);
1070 	mutex_init(&journal->j_barrier);
1071 	mutex_init(&journal->j_checkpoint_mutex);
1072 	spin_lock_init(&journal->j_revoke_lock);
1073 	spin_lock_init(&journal->j_list_lock);
1074 	rwlock_init(&journal->j_state_lock);
1075 
1076 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1077 	journal->j_min_batch_time = 0;
1078 	journal->j_max_batch_time = 15000; /* 15ms */
1079 
1080 	/* The journal is marked for error until we succeed with recovery! */
1081 	journal->j_flags = JBD2_ABORT;
1082 
1083 	/* Set up a default-sized revoke table for the new mount. */
1084 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1085 	if (err) {
1086 		kfree(journal);
1087 		return NULL;
1088 	}
1089 
1090 	spin_lock_init(&journal->j_history_lock);
1091 
1092 	return journal;
1093 }
1094 
1095 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1096  *
1097  * Create a journal structure assigned some fixed set of disk blocks to
1098  * the journal.  We don't actually touch those disk blocks yet, but we
1099  * need to set up all of the mapping information to tell the journaling
1100  * system where the journal blocks are.
1101  *
1102  */
1103 
1104 /**
1105  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1106  *  @bdev: Block device on which to create the journal
1107  *  @fs_dev: Device which hold journalled filesystem for this journal.
1108  *  @start: Block nr Start of journal.
1109  *  @len:  Length of the journal in blocks.
1110  *  @blocksize: blocksize of journalling device
1111  *
1112  *  Returns: a newly created journal_t *
1113  *
1114  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1115  *  range of blocks on an arbitrary block device.
1116  *
1117  */
1118 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1119 			struct block_device *fs_dev,
1120 			unsigned long long start, int len, int blocksize)
1121 {
1122 	journal_t *journal = journal_init_common();
1123 	struct buffer_head *bh;
1124 	char *p;
1125 	int n;
1126 
1127 	if (!journal)
1128 		return NULL;
1129 
1130 	/* journal descriptor can store up to n blocks -bzzz */
1131 	journal->j_blocksize = blocksize;
1132 	journal->j_dev = bdev;
1133 	journal->j_fs_dev = fs_dev;
1134 	journal->j_blk_offset = start;
1135 	journal->j_maxlen = len;
1136 	bdevname(journal->j_dev, journal->j_devname);
1137 	p = journal->j_devname;
1138 	while ((p = strchr(p, '/')))
1139 		*p = '!';
1140 	jbd2_stats_proc_init(journal);
1141 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1142 	journal->j_wbufsize = n;
1143 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1144 	if (!journal->j_wbuf) {
1145 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1146 			__func__);
1147 		goto out_err;
1148 	}
1149 
1150 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1151 	if (!bh) {
1152 		printk(KERN_ERR
1153 		       "%s: Cannot get buffer for journal superblock\n",
1154 		       __func__);
1155 		goto out_err;
1156 	}
1157 	journal->j_sb_buffer = bh;
1158 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1159 
1160 	return journal;
1161 out_err:
1162 	kfree(journal->j_wbuf);
1163 	jbd2_stats_proc_exit(journal);
1164 	kfree(journal);
1165 	return NULL;
1166 }
1167 
1168 /**
1169  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1170  *  @inode: An inode to create the journal in
1171  *
1172  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1173  * the journal.  The inode must exist already, must support bmap() and
1174  * must have all data blocks preallocated.
1175  */
1176 journal_t * jbd2_journal_init_inode (struct inode *inode)
1177 {
1178 	struct buffer_head *bh;
1179 	journal_t *journal = journal_init_common();
1180 	char *p;
1181 	int err;
1182 	int n;
1183 	unsigned long long blocknr;
1184 
1185 	if (!journal)
1186 		return NULL;
1187 
1188 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1189 	journal->j_inode = inode;
1190 	bdevname(journal->j_dev, journal->j_devname);
1191 	p = journal->j_devname;
1192 	while ((p = strchr(p, '/')))
1193 		*p = '!';
1194 	p = journal->j_devname + strlen(journal->j_devname);
1195 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1196 	jbd_debug(1,
1197 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1198 		  journal, inode->i_sb->s_id, inode->i_ino,
1199 		  (long long) inode->i_size,
1200 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1201 
1202 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1203 	journal->j_blocksize = inode->i_sb->s_blocksize;
1204 	jbd2_stats_proc_init(journal);
1205 
1206 	/* journal descriptor can store up to n blocks -bzzz */
1207 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1208 	journal->j_wbufsize = n;
1209 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1210 	if (!journal->j_wbuf) {
1211 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1212 			__func__);
1213 		goto out_err;
1214 	}
1215 
1216 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1217 	/* If that failed, give up */
1218 	if (err) {
1219 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1220 		       __func__);
1221 		goto out_err;
1222 	}
1223 
1224 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1225 	if (!bh) {
1226 		printk(KERN_ERR
1227 		       "%s: Cannot get buffer for journal superblock\n",
1228 		       __func__);
1229 		goto out_err;
1230 	}
1231 	journal->j_sb_buffer = bh;
1232 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1233 
1234 	return journal;
1235 out_err:
1236 	kfree(journal->j_wbuf);
1237 	jbd2_stats_proc_exit(journal);
1238 	kfree(journal);
1239 	return NULL;
1240 }
1241 
1242 /*
1243  * If the journal init or create aborts, we need to mark the journal
1244  * superblock as being NULL to prevent the journal destroy from writing
1245  * back a bogus superblock.
1246  */
1247 static void journal_fail_superblock (journal_t *journal)
1248 {
1249 	struct buffer_head *bh = journal->j_sb_buffer;
1250 	brelse(bh);
1251 	journal->j_sb_buffer = NULL;
1252 }
1253 
1254 /*
1255  * Given a journal_t structure, initialise the various fields for
1256  * startup of a new journaling session.  We use this both when creating
1257  * a journal, and after recovering an old journal to reset it for
1258  * subsequent use.
1259  */
1260 
1261 static int journal_reset(journal_t *journal)
1262 {
1263 	journal_superblock_t *sb = journal->j_superblock;
1264 	unsigned long long first, last;
1265 
1266 	first = be32_to_cpu(sb->s_first);
1267 	last = be32_to_cpu(sb->s_maxlen);
1268 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1269 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1270 		       first, last);
1271 		journal_fail_superblock(journal);
1272 		return -EINVAL;
1273 	}
1274 
1275 	journal->j_first = first;
1276 	journal->j_last = last;
1277 
1278 	journal->j_head = first;
1279 	journal->j_tail = first;
1280 	journal->j_free = last - first;
1281 
1282 	journal->j_tail_sequence = journal->j_transaction_sequence;
1283 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1284 	journal->j_commit_request = journal->j_commit_sequence;
1285 
1286 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1287 
1288 	/*
1289 	 * As a special case, if the on-disk copy is already marked as needing
1290 	 * no recovery (s_start == 0), then we can safely defer the superblock
1291 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1292 	 * attempting a write to a potential-readonly device.
1293 	 */
1294 	if (sb->s_start == 0) {
1295 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1296 			"(start %ld, seq %d, errno %d)\n",
1297 			journal->j_tail, journal->j_tail_sequence,
1298 			journal->j_errno);
1299 		journal->j_flags |= JBD2_FLUSHED;
1300 	} else {
1301 		/* Lock here to make assertions happy... */
1302 		mutex_lock(&journal->j_checkpoint_mutex);
1303 		/*
1304 		 * Update log tail information. We use WRITE_FUA since new
1305 		 * transaction will start reusing journal space and so we
1306 		 * must make sure information about current log tail is on
1307 		 * disk before that.
1308 		 */
1309 		jbd2_journal_update_sb_log_tail(journal,
1310 						journal->j_tail_sequence,
1311 						journal->j_tail,
1312 						WRITE_FUA);
1313 		mutex_unlock(&journal->j_checkpoint_mutex);
1314 	}
1315 	return jbd2_journal_start_thread(journal);
1316 }
1317 
1318 static void jbd2_write_superblock(journal_t *journal, int write_op)
1319 {
1320 	struct buffer_head *bh = journal->j_sb_buffer;
1321 	int ret;
1322 
1323 	trace_jbd2_write_superblock(journal, write_op);
1324 	if (!(journal->j_flags & JBD2_BARRIER))
1325 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1326 	lock_buffer(bh);
1327 	if (buffer_write_io_error(bh)) {
1328 		/*
1329 		 * Oh, dear.  A previous attempt to write the journal
1330 		 * superblock failed.  This could happen because the
1331 		 * USB device was yanked out.  Or it could happen to
1332 		 * be a transient write error and maybe the block will
1333 		 * be remapped.  Nothing we can do but to retry the
1334 		 * write and hope for the best.
1335 		 */
1336 		printk(KERN_ERR "JBD2: previous I/O error detected "
1337 		       "for journal superblock update for %s.\n",
1338 		       journal->j_devname);
1339 		clear_buffer_write_io_error(bh);
1340 		set_buffer_uptodate(bh);
1341 	}
1342 	get_bh(bh);
1343 	bh->b_end_io = end_buffer_write_sync;
1344 	ret = submit_bh(write_op, bh);
1345 	wait_on_buffer(bh);
1346 	if (buffer_write_io_error(bh)) {
1347 		clear_buffer_write_io_error(bh);
1348 		set_buffer_uptodate(bh);
1349 		ret = -EIO;
1350 	}
1351 	if (ret) {
1352 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1353 		       "journal superblock for %s.\n", ret,
1354 		       journal->j_devname);
1355 	}
1356 }
1357 
1358 /**
1359  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1360  * @journal: The journal to update.
1361  * @tail_tid: TID of the new transaction at the tail of the log
1362  * @tail_block: The first block of the transaction at the tail of the log
1363  * @write_op: With which operation should we write the journal sb
1364  *
1365  * Update a journal's superblock information about log tail and write it to
1366  * disk, waiting for the IO to complete.
1367  */
1368 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1369 				     unsigned long tail_block, int write_op)
1370 {
1371 	journal_superblock_t *sb = journal->j_superblock;
1372 
1373 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1374 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1375 		  tail_block, tail_tid);
1376 
1377 	sb->s_sequence = cpu_to_be32(tail_tid);
1378 	sb->s_start    = cpu_to_be32(tail_block);
1379 
1380 	jbd2_write_superblock(journal, write_op);
1381 
1382 	/* Log is no longer empty */
1383 	write_lock(&journal->j_state_lock);
1384 	WARN_ON(!sb->s_sequence);
1385 	journal->j_flags &= ~JBD2_FLUSHED;
1386 	write_unlock(&journal->j_state_lock);
1387 }
1388 
1389 /**
1390  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1391  * @journal: The journal to update.
1392  *
1393  * Update a journal's dynamic superblock fields to show that journal is empty.
1394  * Write updated superblock to disk waiting for IO to complete.
1395  */
1396 static void jbd2_mark_journal_empty(journal_t *journal)
1397 {
1398 	journal_superblock_t *sb = journal->j_superblock;
1399 
1400 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1401 	read_lock(&journal->j_state_lock);
1402 	/* Is it already empty? */
1403 	if (sb->s_start == 0) {
1404 		read_unlock(&journal->j_state_lock);
1405 		return;
1406 	}
1407 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1408 		  journal->j_tail_sequence);
1409 
1410 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1411 	sb->s_start    = cpu_to_be32(0);
1412 	read_unlock(&journal->j_state_lock);
1413 
1414 	jbd2_write_superblock(journal, WRITE_FUA);
1415 
1416 	/* Log is no longer empty */
1417 	write_lock(&journal->j_state_lock);
1418 	journal->j_flags |= JBD2_FLUSHED;
1419 	write_unlock(&journal->j_state_lock);
1420 }
1421 
1422 
1423 /**
1424  * jbd2_journal_update_sb_errno() - Update error in the journal.
1425  * @journal: The journal to update.
1426  *
1427  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1428  * to complete.
1429  */
1430 void jbd2_journal_update_sb_errno(journal_t *journal)
1431 {
1432 	journal_superblock_t *sb = journal->j_superblock;
1433 
1434 	read_lock(&journal->j_state_lock);
1435 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1436 		  journal->j_errno);
1437 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1438 	jbd2_superblock_csum_set(journal, sb);
1439 	read_unlock(&journal->j_state_lock);
1440 
1441 	jbd2_write_superblock(journal, WRITE_SYNC);
1442 }
1443 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1444 
1445 /*
1446  * Read the superblock for a given journal, performing initial
1447  * validation of the format.
1448  */
1449 static int journal_get_superblock(journal_t *journal)
1450 {
1451 	struct buffer_head *bh;
1452 	journal_superblock_t *sb;
1453 	int err = -EIO;
1454 
1455 	bh = journal->j_sb_buffer;
1456 
1457 	J_ASSERT(bh != NULL);
1458 	if (!buffer_uptodate(bh)) {
1459 		ll_rw_block(READ, 1, &bh);
1460 		wait_on_buffer(bh);
1461 		if (!buffer_uptodate(bh)) {
1462 			printk(KERN_ERR
1463 				"JBD2: IO error reading journal superblock\n");
1464 			goto out;
1465 		}
1466 	}
1467 
1468 	if (buffer_verified(bh))
1469 		return 0;
1470 
1471 	sb = journal->j_superblock;
1472 
1473 	err = -EINVAL;
1474 
1475 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1476 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1477 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1478 		goto out;
1479 	}
1480 
1481 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1482 	case JBD2_SUPERBLOCK_V1:
1483 		journal->j_format_version = 1;
1484 		break;
1485 	case JBD2_SUPERBLOCK_V2:
1486 		journal->j_format_version = 2;
1487 		break;
1488 	default:
1489 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1490 		goto out;
1491 	}
1492 
1493 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1494 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1495 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1496 		printk(KERN_WARNING "JBD2: journal file too short\n");
1497 		goto out;
1498 	}
1499 
1500 	if (be32_to_cpu(sb->s_first) == 0 ||
1501 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1502 		printk(KERN_WARNING
1503 			"JBD2: Invalid start block of journal: %u\n",
1504 			be32_to_cpu(sb->s_first));
1505 		goto out;
1506 	}
1507 
1508 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1509 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1510 		/* Can't have checksum v1 and v2 on at the same time! */
1511 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1512 		       "at the same time!\n");
1513 		goto out;
1514 	}
1515 
1516 	if (!jbd2_verify_csum_type(journal, sb)) {
1517 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1518 		goto out;
1519 	}
1520 
1521 	/* Load the checksum driver */
1522 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1523 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1524 		if (IS_ERR(journal->j_chksum_driver)) {
1525 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1526 			err = PTR_ERR(journal->j_chksum_driver);
1527 			journal->j_chksum_driver = NULL;
1528 			goto out;
1529 		}
1530 	}
1531 
1532 	/* Check superblock checksum */
1533 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1534 		printk(KERN_ERR "JBD: journal checksum error\n");
1535 		goto out;
1536 	}
1537 
1538 	/* Precompute checksum seed for all metadata */
1539 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1540 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1541 						   sizeof(sb->s_uuid));
1542 
1543 	set_buffer_verified(bh);
1544 
1545 	return 0;
1546 
1547 out:
1548 	journal_fail_superblock(journal);
1549 	return err;
1550 }
1551 
1552 /*
1553  * Load the on-disk journal superblock and read the key fields into the
1554  * journal_t.
1555  */
1556 
1557 static int load_superblock(journal_t *journal)
1558 {
1559 	int err;
1560 	journal_superblock_t *sb;
1561 
1562 	err = journal_get_superblock(journal);
1563 	if (err)
1564 		return err;
1565 
1566 	sb = journal->j_superblock;
1567 
1568 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1569 	journal->j_tail = be32_to_cpu(sb->s_start);
1570 	journal->j_first = be32_to_cpu(sb->s_first);
1571 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1572 	journal->j_errno = be32_to_cpu(sb->s_errno);
1573 
1574 	return 0;
1575 }
1576 
1577 
1578 /**
1579  * int jbd2_journal_load() - Read journal from disk.
1580  * @journal: Journal to act on.
1581  *
1582  * Given a journal_t structure which tells us which disk blocks contain
1583  * a journal, read the journal from disk to initialise the in-memory
1584  * structures.
1585  */
1586 int jbd2_journal_load(journal_t *journal)
1587 {
1588 	int err;
1589 	journal_superblock_t *sb;
1590 
1591 	err = load_superblock(journal);
1592 	if (err)
1593 		return err;
1594 
1595 	sb = journal->j_superblock;
1596 	/* If this is a V2 superblock, then we have to check the
1597 	 * features flags on it. */
1598 
1599 	if (journal->j_format_version >= 2) {
1600 		if ((sb->s_feature_ro_compat &
1601 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1602 		    (sb->s_feature_incompat &
1603 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1604 			printk(KERN_WARNING
1605 				"JBD2: Unrecognised features on journal\n");
1606 			return -EINVAL;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Create a slab for this blocksize
1612 	 */
1613 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1614 	if (err)
1615 		return err;
1616 
1617 	/* Let the recovery code check whether it needs to recover any
1618 	 * data from the journal. */
1619 	if (jbd2_journal_recover(journal))
1620 		goto recovery_error;
1621 
1622 	if (journal->j_failed_commit) {
1623 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1624 		       "is corrupt.\n", journal->j_failed_commit,
1625 		       journal->j_devname);
1626 		return -EIO;
1627 	}
1628 
1629 	/* OK, we've finished with the dynamic journal bits:
1630 	 * reinitialise the dynamic contents of the superblock in memory
1631 	 * and reset them on disk. */
1632 	if (journal_reset(journal))
1633 		goto recovery_error;
1634 
1635 	journal->j_flags &= ~JBD2_ABORT;
1636 	journal->j_flags |= JBD2_LOADED;
1637 	return 0;
1638 
1639 recovery_error:
1640 	printk(KERN_WARNING "JBD2: recovery failed\n");
1641 	return -EIO;
1642 }
1643 
1644 /**
1645  * void jbd2_journal_destroy() - Release a journal_t structure.
1646  * @journal: Journal to act on.
1647  *
1648  * Release a journal_t structure once it is no longer in use by the
1649  * journaled object.
1650  * Return <0 if we couldn't clean up the journal.
1651  */
1652 int jbd2_journal_destroy(journal_t *journal)
1653 {
1654 	int err = 0;
1655 
1656 	/* Wait for the commit thread to wake up and die. */
1657 	journal_kill_thread(journal);
1658 
1659 	/* Force a final log commit */
1660 	if (journal->j_running_transaction)
1661 		jbd2_journal_commit_transaction(journal);
1662 
1663 	/* Force any old transactions to disk */
1664 
1665 	/* Totally anal locking here... */
1666 	spin_lock(&journal->j_list_lock);
1667 	while (journal->j_checkpoint_transactions != NULL) {
1668 		spin_unlock(&journal->j_list_lock);
1669 		mutex_lock(&journal->j_checkpoint_mutex);
1670 		jbd2_log_do_checkpoint(journal);
1671 		mutex_unlock(&journal->j_checkpoint_mutex);
1672 		spin_lock(&journal->j_list_lock);
1673 	}
1674 
1675 	J_ASSERT(journal->j_running_transaction == NULL);
1676 	J_ASSERT(journal->j_committing_transaction == NULL);
1677 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1678 	spin_unlock(&journal->j_list_lock);
1679 
1680 	if (journal->j_sb_buffer) {
1681 		if (!is_journal_aborted(journal)) {
1682 			mutex_lock(&journal->j_checkpoint_mutex);
1683 			jbd2_mark_journal_empty(journal);
1684 			mutex_unlock(&journal->j_checkpoint_mutex);
1685 		} else
1686 			err = -EIO;
1687 		brelse(journal->j_sb_buffer);
1688 	}
1689 
1690 	if (journal->j_proc_entry)
1691 		jbd2_stats_proc_exit(journal);
1692 	if (journal->j_inode)
1693 		iput(journal->j_inode);
1694 	if (journal->j_revoke)
1695 		jbd2_journal_destroy_revoke(journal);
1696 	if (journal->j_chksum_driver)
1697 		crypto_free_shash(journal->j_chksum_driver);
1698 	kfree(journal->j_wbuf);
1699 	kfree(journal);
1700 
1701 	return err;
1702 }
1703 
1704 
1705 /**
1706  *int jbd2_journal_check_used_features () - Check if features specified are used.
1707  * @journal: Journal to check.
1708  * @compat: bitmask of compatible features
1709  * @ro: bitmask of features that force read-only mount
1710  * @incompat: bitmask of incompatible features
1711  *
1712  * Check whether the journal uses all of a given set of
1713  * features.  Return true (non-zero) if it does.
1714  **/
1715 
1716 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1717 				 unsigned long ro, unsigned long incompat)
1718 {
1719 	journal_superblock_t *sb;
1720 
1721 	if (!compat && !ro && !incompat)
1722 		return 1;
1723 	/* Load journal superblock if it is not loaded yet. */
1724 	if (journal->j_format_version == 0 &&
1725 	    journal_get_superblock(journal) != 0)
1726 		return 0;
1727 	if (journal->j_format_version == 1)
1728 		return 0;
1729 
1730 	sb = journal->j_superblock;
1731 
1732 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1733 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1734 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1735 		return 1;
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1742  * @journal: Journal to check.
1743  * @compat: bitmask of compatible features
1744  * @ro: bitmask of features that force read-only mount
1745  * @incompat: bitmask of incompatible features
1746  *
1747  * Check whether the journaling code supports the use of
1748  * all of a given set of features on this journal.  Return true
1749  * (non-zero) if it can. */
1750 
1751 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1752 				      unsigned long ro, unsigned long incompat)
1753 {
1754 	if (!compat && !ro && !incompat)
1755 		return 1;
1756 
1757 	/* We can support any known requested features iff the
1758 	 * superblock is in version 2.  Otherwise we fail to support any
1759 	 * extended sb features. */
1760 
1761 	if (journal->j_format_version != 2)
1762 		return 0;
1763 
1764 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1765 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1766 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1767 		return 1;
1768 
1769 	return 0;
1770 }
1771 
1772 /**
1773  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1774  * @journal: Journal to act on.
1775  * @compat: bitmask of compatible features
1776  * @ro: bitmask of features that force read-only mount
1777  * @incompat: bitmask of incompatible features
1778  *
1779  * Mark a given journal feature as present on the
1780  * superblock.  Returns true if the requested features could be set.
1781  *
1782  */
1783 
1784 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1785 			  unsigned long ro, unsigned long incompat)
1786 {
1787 #define INCOMPAT_FEATURE_ON(f) \
1788 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1789 #define COMPAT_FEATURE_ON(f) \
1790 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1791 	journal_superblock_t *sb;
1792 
1793 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1794 		return 1;
1795 
1796 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1797 		return 0;
1798 
1799 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1800 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1801 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1802 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1803 
1804 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1805 		  compat, ro, incompat);
1806 
1807 	sb = journal->j_superblock;
1808 
1809 	/* If enabling v2 checksums, update superblock */
1810 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1811 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1812 		sb->s_feature_compat &=
1813 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1814 
1815 		/* Load the checksum driver */
1816 		if (journal->j_chksum_driver == NULL) {
1817 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1818 								      0, 0);
1819 			if (IS_ERR(journal->j_chksum_driver)) {
1820 				printk(KERN_ERR "JBD: Cannot load crc32c "
1821 				       "driver.\n");
1822 				journal->j_chksum_driver = NULL;
1823 				return 0;
1824 			}
1825 		}
1826 
1827 		/* Precompute checksum seed for all metadata */
1828 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1829 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1830 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1831 							   sb->s_uuid,
1832 							   sizeof(sb->s_uuid));
1833 	}
1834 
1835 	/* If enabling v1 checksums, downgrade superblock */
1836 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1837 		sb->s_feature_incompat &=
1838 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1839 
1840 	sb->s_feature_compat    |= cpu_to_be32(compat);
1841 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1842 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1843 
1844 	return 1;
1845 #undef COMPAT_FEATURE_ON
1846 #undef INCOMPAT_FEATURE_ON
1847 }
1848 
1849 /*
1850  * jbd2_journal_clear_features () - Clear a given journal feature in the
1851  * 				    superblock
1852  * @journal: Journal to act on.
1853  * @compat: bitmask of compatible features
1854  * @ro: bitmask of features that force read-only mount
1855  * @incompat: bitmask of incompatible features
1856  *
1857  * Clear a given journal feature as present on the
1858  * superblock.
1859  */
1860 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1861 				unsigned long ro, unsigned long incompat)
1862 {
1863 	journal_superblock_t *sb;
1864 
1865 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1866 		  compat, ro, incompat);
1867 
1868 	sb = journal->j_superblock;
1869 
1870 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1871 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1872 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1873 }
1874 EXPORT_SYMBOL(jbd2_journal_clear_features);
1875 
1876 /**
1877  * int jbd2_journal_flush () - Flush journal
1878  * @journal: Journal to act on.
1879  *
1880  * Flush all data for a given journal to disk and empty the journal.
1881  * Filesystems can use this when remounting readonly to ensure that
1882  * recovery does not need to happen on remount.
1883  */
1884 
1885 int jbd2_journal_flush(journal_t *journal)
1886 {
1887 	int err = 0;
1888 	transaction_t *transaction = NULL;
1889 
1890 	write_lock(&journal->j_state_lock);
1891 
1892 	/* Force everything buffered to the log... */
1893 	if (journal->j_running_transaction) {
1894 		transaction = journal->j_running_transaction;
1895 		__jbd2_log_start_commit(journal, transaction->t_tid);
1896 	} else if (journal->j_committing_transaction)
1897 		transaction = journal->j_committing_transaction;
1898 
1899 	/* Wait for the log commit to complete... */
1900 	if (transaction) {
1901 		tid_t tid = transaction->t_tid;
1902 
1903 		write_unlock(&journal->j_state_lock);
1904 		jbd2_log_wait_commit(journal, tid);
1905 	} else {
1906 		write_unlock(&journal->j_state_lock);
1907 	}
1908 
1909 	/* ...and flush everything in the log out to disk. */
1910 	spin_lock(&journal->j_list_lock);
1911 	while (!err && journal->j_checkpoint_transactions != NULL) {
1912 		spin_unlock(&journal->j_list_lock);
1913 		mutex_lock(&journal->j_checkpoint_mutex);
1914 		err = jbd2_log_do_checkpoint(journal);
1915 		mutex_unlock(&journal->j_checkpoint_mutex);
1916 		spin_lock(&journal->j_list_lock);
1917 	}
1918 	spin_unlock(&journal->j_list_lock);
1919 
1920 	if (is_journal_aborted(journal))
1921 		return -EIO;
1922 
1923 	mutex_lock(&journal->j_checkpoint_mutex);
1924 	jbd2_cleanup_journal_tail(journal);
1925 
1926 	/* Finally, mark the journal as really needing no recovery.
1927 	 * This sets s_start==0 in the underlying superblock, which is
1928 	 * the magic code for a fully-recovered superblock.  Any future
1929 	 * commits of data to the journal will restore the current
1930 	 * s_start value. */
1931 	jbd2_mark_journal_empty(journal);
1932 	mutex_unlock(&journal->j_checkpoint_mutex);
1933 	write_lock(&journal->j_state_lock);
1934 	J_ASSERT(!journal->j_running_transaction);
1935 	J_ASSERT(!journal->j_committing_transaction);
1936 	J_ASSERT(!journal->j_checkpoint_transactions);
1937 	J_ASSERT(journal->j_head == journal->j_tail);
1938 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1939 	write_unlock(&journal->j_state_lock);
1940 	return 0;
1941 }
1942 
1943 /**
1944  * int jbd2_journal_wipe() - Wipe journal contents
1945  * @journal: Journal to act on.
1946  * @write: flag (see below)
1947  *
1948  * Wipe out all of the contents of a journal, safely.  This will produce
1949  * a warning if the journal contains any valid recovery information.
1950  * Must be called between journal_init_*() and jbd2_journal_load().
1951  *
1952  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1953  * we merely suppress recovery.
1954  */
1955 
1956 int jbd2_journal_wipe(journal_t *journal, int write)
1957 {
1958 	int err = 0;
1959 
1960 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1961 
1962 	err = load_superblock(journal);
1963 	if (err)
1964 		return err;
1965 
1966 	if (!journal->j_tail)
1967 		goto no_recovery;
1968 
1969 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1970 		write ? "Clearing" : "Ignoring");
1971 
1972 	err = jbd2_journal_skip_recovery(journal);
1973 	if (write) {
1974 		/* Lock to make assertions happy... */
1975 		mutex_lock(&journal->j_checkpoint_mutex);
1976 		jbd2_mark_journal_empty(journal);
1977 		mutex_unlock(&journal->j_checkpoint_mutex);
1978 	}
1979 
1980  no_recovery:
1981 	return err;
1982 }
1983 
1984 /*
1985  * Journal abort has very specific semantics, which we describe
1986  * for journal abort.
1987  *
1988  * Two internal functions, which provide abort to the jbd layer
1989  * itself are here.
1990  */
1991 
1992 /*
1993  * Quick version for internal journal use (doesn't lock the journal).
1994  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1995  * and don't attempt to make any other journal updates.
1996  */
1997 void __jbd2_journal_abort_hard(journal_t *journal)
1998 {
1999 	transaction_t *transaction;
2000 
2001 	if (journal->j_flags & JBD2_ABORT)
2002 		return;
2003 
2004 	printk(KERN_ERR "Aborting journal on device %s.\n",
2005 	       journal->j_devname);
2006 
2007 	write_lock(&journal->j_state_lock);
2008 	journal->j_flags |= JBD2_ABORT;
2009 	transaction = journal->j_running_transaction;
2010 	if (transaction)
2011 		__jbd2_log_start_commit(journal, transaction->t_tid);
2012 	write_unlock(&journal->j_state_lock);
2013 }
2014 
2015 /* Soft abort: record the abort error status in the journal superblock,
2016  * but don't do any other IO. */
2017 static void __journal_abort_soft (journal_t *journal, int errno)
2018 {
2019 	if (journal->j_flags & JBD2_ABORT)
2020 		return;
2021 
2022 	if (!journal->j_errno)
2023 		journal->j_errno = errno;
2024 
2025 	__jbd2_journal_abort_hard(journal);
2026 
2027 	if (errno)
2028 		jbd2_journal_update_sb_errno(journal);
2029 }
2030 
2031 /**
2032  * void jbd2_journal_abort () - Shutdown the journal immediately.
2033  * @journal: the journal to shutdown.
2034  * @errno:   an error number to record in the journal indicating
2035  *           the reason for the shutdown.
2036  *
2037  * Perform a complete, immediate shutdown of the ENTIRE
2038  * journal (not of a single transaction).  This operation cannot be
2039  * undone without closing and reopening the journal.
2040  *
2041  * The jbd2_journal_abort function is intended to support higher level error
2042  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2043  * mode.
2044  *
2045  * Journal abort has very specific semantics.  Any existing dirty,
2046  * unjournaled buffers in the main filesystem will still be written to
2047  * disk by bdflush, but the journaling mechanism will be suspended
2048  * immediately and no further transaction commits will be honoured.
2049  *
2050  * Any dirty, journaled buffers will be written back to disk without
2051  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2052  * filesystem, but we _do_ attempt to leave as much data as possible
2053  * behind for fsck to use for cleanup.
2054  *
2055  * Any attempt to get a new transaction handle on a journal which is in
2056  * ABORT state will just result in an -EROFS error return.  A
2057  * jbd2_journal_stop on an existing handle will return -EIO if we have
2058  * entered abort state during the update.
2059  *
2060  * Recursive transactions are not disturbed by journal abort until the
2061  * final jbd2_journal_stop, which will receive the -EIO error.
2062  *
2063  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2064  * which will be recorded (if possible) in the journal superblock.  This
2065  * allows a client to record failure conditions in the middle of a
2066  * transaction without having to complete the transaction to record the
2067  * failure to disk.  ext3_error, for example, now uses this
2068  * functionality.
2069  *
2070  * Errors which originate from within the journaling layer will NOT
2071  * supply an errno; a null errno implies that absolutely no further
2072  * writes are done to the journal (unless there are any already in
2073  * progress).
2074  *
2075  */
2076 
2077 void jbd2_journal_abort(journal_t *journal, int errno)
2078 {
2079 	__journal_abort_soft(journal, errno);
2080 }
2081 
2082 /**
2083  * int jbd2_journal_errno () - returns the journal's error state.
2084  * @journal: journal to examine.
2085  *
2086  * This is the errno number set with jbd2_journal_abort(), the last
2087  * time the journal was mounted - if the journal was stopped
2088  * without calling abort this will be 0.
2089  *
2090  * If the journal has been aborted on this mount time -EROFS will
2091  * be returned.
2092  */
2093 int jbd2_journal_errno(journal_t *journal)
2094 {
2095 	int err;
2096 
2097 	read_lock(&journal->j_state_lock);
2098 	if (journal->j_flags & JBD2_ABORT)
2099 		err = -EROFS;
2100 	else
2101 		err = journal->j_errno;
2102 	read_unlock(&journal->j_state_lock);
2103 	return err;
2104 }
2105 
2106 /**
2107  * int jbd2_journal_clear_err () - clears the journal's error state
2108  * @journal: journal to act on.
2109  *
2110  * An error must be cleared or acked to take a FS out of readonly
2111  * mode.
2112  */
2113 int jbd2_journal_clear_err(journal_t *journal)
2114 {
2115 	int err = 0;
2116 
2117 	write_lock(&journal->j_state_lock);
2118 	if (journal->j_flags & JBD2_ABORT)
2119 		err = -EROFS;
2120 	else
2121 		journal->j_errno = 0;
2122 	write_unlock(&journal->j_state_lock);
2123 	return err;
2124 }
2125 
2126 /**
2127  * void jbd2_journal_ack_err() - Ack journal err.
2128  * @journal: journal to act on.
2129  *
2130  * An error must be cleared or acked to take a FS out of readonly
2131  * mode.
2132  */
2133 void jbd2_journal_ack_err(journal_t *journal)
2134 {
2135 	write_lock(&journal->j_state_lock);
2136 	if (journal->j_errno)
2137 		journal->j_flags |= JBD2_ACK_ERR;
2138 	write_unlock(&journal->j_state_lock);
2139 }
2140 
2141 int jbd2_journal_blocks_per_page(struct inode *inode)
2142 {
2143 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2144 }
2145 
2146 /*
2147  * helper functions to deal with 32 or 64bit block numbers.
2148  */
2149 size_t journal_tag_bytes(journal_t *journal)
2150 {
2151 	journal_block_tag_t tag;
2152 	size_t x = 0;
2153 
2154 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2155 		x += sizeof(tag.t_checksum);
2156 
2157 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2158 		return x + JBD2_TAG_SIZE64;
2159 	else
2160 		return x + JBD2_TAG_SIZE32;
2161 }
2162 
2163 /*
2164  * JBD memory management
2165  *
2166  * These functions are used to allocate block-sized chunks of memory
2167  * used for making copies of buffer_head data.  Very often it will be
2168  * page-sized chunks of data, but sometimes it will be in
2169  * sub-page-size chunks.  (For example, 16k pages on Power systems
2170  * with a 4k block file system.)  For blocks smaller than a page, we
2171  * use a SLAB allocator.  There are slab caches for each block size,
2172  * which are allocated at mount time, if necessary, and we only free
2173  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2174  * this reason we don't need to a mutex to protect access to
2175  * jbd2_slab[] allocating or releasing memory; only in
2176  * jbd2_journal_create_slab().
2177  */
2178 #define JBD2_MAX_SLABS 8
2179 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2180 
2181 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2182 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2183 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2184 };
2185 
2186 
2187 static void jbd2_journal_destroy_slabs(void)
2188 {
2189 	int i;
2190 
2191 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2192 		if (jbd2_slab[i])
2193 			kmem_cache_destroy(jbd2_slab[i]);
2194 		jbd2_slab[i] = NULL;
2195 	}
2196 }
2197 
2198 static int jbd2_journal_create_slab(size_t size)
2199 {
2200 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2201 	int i = order_base_2(size) - 10;
2202 	size_t slab_size;
2203 
2204 	if (size == PAGE_SIZE)
2205 		return 0;
2206 
2207 	if (i >= JBD2_MAX_SLABS)
2208 		return -EINVAL;
2209 
2210 	if (unlikely(i < 0))
2211 		i = 0;
2212 	mutex_lock(&jbd2_slab_create_mutex);
2213 	if (jbd2_slab[i]) {
2214 		mutex_unlock(&jbd2_slab_create_mutex);
2215 		return 0;	/* Already created */
2216 	}
2217 
2218 	slab_size = 1 << (i+10);
2219 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2220 					 slab_size, 0, NULL);
2221 	mutex_unlock(&jbd2_slab_create_mutex);
2222 	if (!jbd2_slab[i]) {
2223 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2224 		return -ENOMEM;
2225 	}
2226 	return 0;
2227 }
2228 
2229 static struct kmem_cache *get_slab(size_t size)
2230 {
2231 	int i = order_base_2(size) - 10;
2232 
2233 	BUG_ON(i >= JBD2_MAX_SLABS);
2234 	if (unlikely(i < 0))
2235 		i = 0;
2236 	BUG_ON(jbd2_slab[i] == NULL);
2237 	return jbd2_slab[i];
2238 }
2239 
2240 void *jbd2_alloc(size_t size, gfp_t flags)
2241 {
2242 	void *ptr;
2243 
2244 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2245 
2246 	flags |= __GFP_REPEAT;
2247 	if (size == PAGE_SIZE)
2248 		ptr = (void *)__get_free_pages(flags, 0);
2249 	else if (size > PAGE_SIZE) {
2250 		int order = get_order(size);
2251 
2252 		if (order < 3)
2253 			ptr = (void *)__get_free_pages(flags, order);
2254 		else
2255 			ptr = vmalloc(size);
2256 	} else
2257 		ptr = kmem_cache_alloc(get_slab(size), flags);
2258 
2259 	/* Check alignment; SLUB has gotten this wrong in the past,
2260 	 * and this can lead to user data corruption! */
2261 	BUG_ON(((unsigned long) ptr) & (size-1));
2262 
2263 	return ptr;
2264 }
2265 
2266 void jbd2_free(void *ptr, size_t size)
2267 {
2268 	if (size == PAGE_SIZE) {
2269 		free_pages((unsigned long)ptr, 0);
2270 		return;
2271 	}
2272 	if (size > PAGE_SIZE) {
2273 		int order = get_order(size);
2274 
2275 		if (order < 3)
2276 			free_pages((unsigned long)ptr, order);
2277 		else
2278 			vfree(ptr);
2279 		return;
2280 	}
2281 	kmem_cache_free(get_slab(size), ptr);
2282 };
2283 
2284 /*
2285  * Journal_head storage management
2286  */
2287 static struct kmem_cache *jbd2_journal_head_cache;
2288 #ifdef CONFIG_JBD2_DEBUG
2289 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2290 #endif
2291 
2292 static int jbd2_journal_init_journal_head_cache(void)
2293 {
2294 	int retval;
2295 
2296 	J_ASSERT(jbd2_journal_head_cache == NULL);
2297 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2298 				sizeof(struct journal_head),
2299 				0,		/* offset */
2300 				SLAB_TEMPORARY,	/* flags */
2301 				NULL);		/* ctor */
2302 	retval = 0;
2303 	if (!jbd2_journal_head_cache) {
2304 		retval = -ENOMEM;
2305 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2306 	}
2307 	return retval;
2308 }
2309 
2310 static void jbd2_journal_destroy_journal_head_cache(void)
2311 {
2312 	if (jbd2_journal_head_cache) {
2313 		kmem_cache_destroy(jbd2_journal_head_cache);
2314 		jbd2_journal_head_cache = NULL;
2315 	}
2316 }
2317 
2318 /*
2319  * journal_head splicing and dicing
2320  */
2321 static struct journal_head *journal_alloc_journal_head(void)
2322 {
2323 	struct journal_head *ret;
2324 
2325 #ifdef CONFIG_JBD2_DEBUG
2326 	atomic_inc(&nr_journal_heads);
2327 #endif
2328 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2329 	if (!ret) {
2330 		jbd_debug(1, "out of memory for journal_head\n");
2331 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2332 		while (!ret) {
2333 			yield();
2334 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2335 		}
2336 	}
2337 	return ret;
2338 }
2339 
2340 static void journal_free_journal_head(struct journal_head *jh)
2341 {
2342 #ifdef CONFIG_JBD2_DEBUG
2343 	atomic_dec(&nr_journal_heads);
2344 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2345 #endif
2346 	kmem_cache_free(jbd2_journal_head_cache, jh);
2347 }
2348 
2349 /*
2350  * A journal_head is attached to a buffer_head whenever JBD has an
2351  * interest in the buffer.
2352  *
2353  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2354  * is set.  This bit is tested in core kernel code where we need to take
2355  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2356  * there.
2357  *
2358  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2359  *
2360  * When a buffer has its BH_JBD bit set it is immune from being released by
2361  * core kernel code, mainly via ->b_count.
2362  *
2363  * A journal_head is detached from its buffer_head when the journal_head's
2364  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2365  * transaction (b_cp_transaction) hold their references to b_jcount.
2366  *
2367  * Various places in the kernel want to attach a journal_head to a buffer_head
2368  * _before_ attaching the journal_head to a transaction.  To protect the
2369  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2370  * journal_head's b_jcount refcount by one.  The caller must call
2371  * jbd2_journal_put_journal_head() to undo this.
2372  *
2373  * So the typical usage would be:
2374  *
2375  *	(Attach a journal_head if needed.  Increments b_jcount)
2376  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2377  *	...
2378  *      (Get another reference for transaction)
2379  *	jbd2_journal_grab_journal_head(bh);
2380  *	jh->b_transaction = xxx;
2381  *	(Put original reference)
2382  *	jbd2_journal_put_journal_head(jh);
2383  */
2384 
2385 /*
2386  * Give a buffer_head a journal_head.
2387  *
2388  * May sleep.
2389  */
2390 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2391 {
2392 	struct journal_head *jh;
2393 	struct journal_head *new_jh = NULL;
2394 
2395 repeat:
2396 	if (!buffer_jbd(bh)) {
2397 		new_jh = journal_alloc_journal_head();
2398 		memset(new_jh, 0, sizeof(*new_jh));
2399 	}
2400 
2401 	jbd_lock_bh_journal_head(bh);
2402 	if (buffer_jbd(bh)) {
2403 		jh = bh2jh(bh);
2404 	} else {
2405 		J_ASSERT_BH(bh,
2406 			(atomic_read(&bh->b_count) > 0) ||
2407 			(bh->b_page && bh->b_page->mapping));
2408 
2409 		if (!new_jh) {
2410 			jbd_unlock_bh_journal_head(bh);
2411 			goto repeat;
2412 		}
2413 
2414 		jh = new_jh;
2415 		new_jh = NULL;		/* We consumed it */
2416 		set_buffer_jbd(bh);
2417 		bh->b_private = jh;
2418 		jh->b_bh = bh;
2419 		get_bh(bh);
2420 		BUFFER_TRACE(bh, "added journal_head");
2421 	}
2422 	jh->b_jcount++;
2423 	jbd_unlock_bh_journal_head(bh);
2424 	if (new_jh)
2425 		journal_free_journal_head(new_jh);
2426 	return bh->b_private;
2427 }
2428 
2429 /*
2430  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2431  * having a journal_head, return NULL
2432  */
2433 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2434 {
2435 	struct journal_head *jh = NULL;
2436 
2437 	jbd_lock_bh_journal_head(bh);
2438 	if (buffer_jbd(bh)) {
2439 		jh = bh2jh(bh);
2440 		jh->b_jcount++;
2441 	}
2442 	jbd_unlock_bh_journal_head(bh);
2443 	return jh;
2444 }
2445 
2446 static void __journal_remove_journal_head(struct buffer_head *bh)
2447 {
2448 	struct journal_head *jh = bh2jh(bh);
2449 
2450 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2451 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2452 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2453 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2454 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2455 	J_ASSERT_BH(bh, buffer_jbd(bh));
2456 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2457 	BUFFER_TRACE(bh, "remove journal_head");
2458 	if (jh->b_frozen_data) {
2459 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2460 		jbd2_free(jh->b_frozen_data, bh->b_size);
2461 	}
2462 	if (jh->b_committed_data) {
2463 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2464 		jbd2_free(jh->b_committed_data, bh->b_size);
2465 	}
2466 	bh->b_private = NULL;
2467 	jh->b_bh = NULL;	/* debug, really */
2468 	clear_buffer_jbd(bh);
2469 	journal_free_journal_head(jh);
2470 }
2471 
2472 /*
2473  * Drop a reference on the passed journal_head.  If it fell to zero then
2474  * release the journal_head from the buffer_head.
2475  */
2476 void jbd2_journal_put_journal_head(struct journal_head *jh)
2477 {
2478 	struct buffer_head *bh = jh2bh(jh);
2479 
2480 	jbd_lock_bh_journal_head(bh);
2481 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2482 	--jh->b_jcount;
2483 	if (!jh->b_jcount) {
2484 		__journal_remove_journal_head(bh);
2485 		jbd_unlock_bh_journal_head(bh);
2486 		__brelse(bh);
2487 	} else
2488 		jbd_unlock_bh_journal_head(bh);
2489 }
2490 
2491 /*
2492  * Initialize jbd inode head
2493  */
2494 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2495 {
2496 	jinode->i_transaction = NULL;
2497 	jinode->i_next_transaction = NULL;
2498 	jinode->i_vfs_inode = inode;
2499 	jinode->i_flags = 0;
2500 	INIT_LIST_HEAD(&jinode->i_list);
2501 }
2502 
2503 /*
2504  * Function to be called before we start removing inode from memory (i.e.,
2505  * clear_inode() is a fine place to be called from). It removes inode from
2506  * transaction's lists.
2507  */
2508 void jbd2_journal_release_jbd_inode(journal_t *journal,
2509 				    struct jbd2_inode *jinode)
2510 {
2511 	if (!journal)
2512 		return;
2513 restart:
2514 	spin_lock(&journal->j_list_lock);
2515 	/* Is commit writing out inode - we have to wait */
2516 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2517 		wait_queue_head_t *wq;
2518 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2519 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2520 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2521 		spin_unlock(&journal->j_list_lock);
2522 		schedule();
2523 		finish_wait(wq, &wait.wait);
2524 		goto restart;
2525 	}
2526 
2527 	if (jinode->i_transaction) {
2528 		list_del(&jinode->i_list);
2529 		jinode->i_transaction = NULL;
2530 	}
2531 	spin_unlock(&journal->j_list_lock);
2532 }
2533 
2534 
2535 #ifdef CONFIG_PROC_FS
2536 
2537 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2538 
2539 static void __init jbd2_create_jbd_stats_proc_entry(void)
2540 {
2541 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2542 }
2543 
2544 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2545 {
2546 	if (proc_jbd2_stats)
2547 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2548 }
2549 
2550 #else
2551 
2552 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2553 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2554 
2555 #endif
2556 
2557 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2558 
2559 static int __init jbd2_journal_init_handle_cache(void)
2560 {
2561 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2562 	if (jbd2_handle_cache == NULL) {
2563 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2564 		return -ENOMEM;
2565 	}
2566 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2567 	if (jbd2_inode_cache == NULL) {
2568 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2569 		kmem_cache_destroy(jbd2_handle_cache);
2570 		return -ENOMEM;
2571 	}
2572 	return 0;
2573 }
2574 
2575 static void jbd2_journal_destroy_handle_cache(void)
2576 {
2577 	if (jbd2_handle_cache)
2578 		kmem_cache_destroy(jbd2_handle_cache);
2579 	if (jbd2_inode_cache)
2580 		kmem_cache_destroy(jbd2_inode_cache);
2581 
2582 }
2583 
2584 /*
2585  * Module startup and shutdown
2586  */
2587 
2588 static int __init journal_init_caches(void)
2589 {
2590 	int ret;
2591 
2592 	ret = jbd2_journal_init_revoke_caches();
2593 	if (ret == 0)
2594 		ret = jbd2_journal_init_journal_head_cache();
2595 	if (ret == 0)
2596 		ret = jbd2_journal_init_handle_cache();
2597 	if (ret == 0)
2598 		ret = jbd2_journal_init_transaction_cache();
2599 	return ret;
2600 }
2601 
2602 static void jbd2_journal_destroy_caches(void)
2603 {
2604 	jbd2_journal_destroy_revoke_caches();
2605 	jbd2_journal_destroy_journal_head_cache();
2606 	jbd2_journal_destroy_handle_cache();
2607 	jbd2_journal_destroy_transaction_cache();
2608 	jbd2_journal_destroy_slabs();
2609 }
2610 
2611 static int __init journal_init(void)
2612 {
2613 	int ret;
2614 
2615 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2616 
2617 	ret = journal_init_caches();
2618 	if (ret == 0) {
2619 		jbd2_create_jbd_stats_proc_entry();
2620 	} else {
2621 		jbd2_journal_destroy_caches();
2622 	}
2623 	return ret;
2624 }
2625 
2626 static void __exit journal_exit(void)
2627 {
2628 #ifdef CONFIG_JBD2_DEBUG
2629 	int n = atomic_read(&nr_journal_heads);
2630 	if (n)
2631 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2632 #endif
2633 	jbd2_remove_jbd_stats_proc_entry();
2634 	jbd2_journal_destroy_caches();
2635 }
2636 
2637 MODULE_LICENSE("GPL");
2638 module_init(journal_init);
2639 module_exit(journal_exit);
2640 
2641