xref: /openbmc/linux/fs/jbd2/journal.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int jbd2_journal_create_slab(size_t slab_size);
100 
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level, const char *file, const char *func,
103 		  unsigned int line, const char *fmt, ...)
104 {
105 	struct va_format vaf;
106 	va_list args;
107 
108 	if (level > jbd2_journal_enable_debug)
109 		return;
110 	va_start(args, fmt);
111 	vaf.fmt = fmt;
112 	vaf.va = &args;
113 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 	va_end(args);
115 }
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
118 
119 /* Checksumming functions */
120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121 {
122 	if (!jbd2_journal_has_csum_v2or3_feature(j))
123 		return 1;
124 
125 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126 }
127 
128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129 {
130 	__u32 csum;
131 	__be32 old_csum;
132 
133 	old_csum = sb->s_checksum;
134 	sb->s_checksum = 0;
135 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 	sb->s_checksum = old_csum;
137 
138 	return cpu_to_be32(csum);
139 }
140 
141 /*
142  * Helper function used to manage commit timeouts
143  */
144 
145 static void commit_timeout(struct timer_list *t)
146 {
147 	journal_t *journal = from_timer(journal, t, j_commit_timer);
148 
149 	wake_up_process(journal->j_task);
150 }
151 
152 /*
153  * kjournald2: The main thread function used to manage a logging device
154  * journal.
155  *
156  * This kernel thread is responsible for two things:
157  *
158  * 1) COMMIT:  Every so often we need to commit the current state of the
159  *    filesystem to disk.  The journal thread is responsible for writing
160  *    all of the metadata buffers to disk.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167 
168 static int kjournald2(void *arg)
169 {
170 	journal_t *journal = arg;
171 	transaction_t *transaction;
172 
173 	/*
174 	 * Set up an interval timer which can be used to trigger a commit wakeup
175 	 * after the commit interval expires
176 	 */
177 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178 
179 	set_freezable();
180 
181 	/* Record that the journal thread is running */
182 	journal->j_task = current;
183 	wake_up(&journal->j_wait_done_commit);
184 
185 	/*
186 	 * Make sure that no allocations from this kernel thread will ever
187 	 * recurse to the fs layer because we are responsible for the
188 	 * transaction commit and any fs involvement might get stuck waiting for
189 	 * the trasn. commit.
190 	 */
191 	memalloc_nofs_save();
192 
193 	/*
194 	 * And now, wait forever for commit wakeup events.
195 	 */
196 	write_lock(&journal->j_state_lock);
197 
198 loop:
199 	if (journal->j_flags & JBD2_UNMOUNT)
200 		goto end_loop;
201 
202 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 		journal->j_commit_sequence, journal->j_commit_request);
204 
205 	if (journal->j_commit_sequence != journal->j_commit_request) {
206 		jbd_debug(1, "OK, requests differ\n");
207 		write_unlock(&journal->j_state_lock);
208 		del_timer_sync(&journal->j_commit_timer);
209 		jbd2_journal_commit_transaction(journal);
210 		write_lock(&journal->j_state_lock);
211 		goto loop;
212 	}
213 
214 	wake_up(&journal->j_wait_done_commit);
215 	if (freezing(current)) {
216 		/*
217 		 * The simpler the better. Flushing journal isn't a
218 		 * good idea, because that depends on threads that may
219 		 * be already stopped.
220 		 */
221 		jbd_debug(1, "Now suspending kjournald2\n");
222 		write_unlock(&journal->j_state_lock);
223 		try_to_freeze();
224 		write_lock(&journal->j_state_lock);
225 	} else {
226 		/*
227 		 * We assume on resume that commits are already there,
228 		 * so we don't sleep
229 		 */
230 		DEFINE_WAIT(wait);
231 		int should_sleep = 1;
232 
233 		prepare_to_wait(&journal->j_wait_commit, &wait,
234 				TASK_INTERRUPTIBLE);
235 		if (journal->j_commit_sequence != journal->j_commit_request)
236 			should_sleep = 0;
237 		transaction = journal->j_running_transaction;
238 		if (transaction && time_after_eq(jiffies,
239 						transaction->t_expires))
240 			should_sleep = 0;
241 		if (journal->j_flags & JBD2_UNMOUNT)
242 			should_sleep = 0;
243 		if (should_sleep) {
244 			write_unlock(&journal->j_state_lock);
245 			schedule();
246 			write_lock(&journal->j_state_lock);
247 		}
248 		finish_wait(&journal->j_wait_commit, &wait);
249 	}
250 
251 	jbd_debug(1, "kjournald2 wakes\n");
252 
253 	/*
254 	 * Were we woken up by a commit wakeup event?
255 	 */
256 	transaction = journal->j_running_transaction;
257 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 		journal->j_commit_request = transaction->t_tid;
259 		jbd_debug(1, "woke because of timeout\n");
260 	}
261 	goto loop;
262 
263 end_loop:
264 	del_timer_sync(&journal->j_commit_timer);
265 	journal->j_task = NULL;
266 	wake_up(&journal->j_wait_done_commit);
267 	jbd_debug(1, "Journal thread exiting.\n");
268 	write_unlock(&journal->j_state_lock);
269 	return 0;
270 }
271 
272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 	struct task_struct *t;
275 
276 	t = kthread_run(kjournald2, journal, "jbd2/%s",
277 			journal->j_devname);
278 	if (IS_ERR(t))
279 		return PTR_ERR(t);
280 
281 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 	return 0;
283 }
284 
285 static void journal_kill_thread(journal_t *journal)
286 {
287 	write_lock(&journal->j_state_lock);
288 	journal->j_flags |= JBD2_UNMOUNT;
289 
290 	while (journal->j_task) {
291 		write_unlock(&journal->j_state_lock);
292 		wake_up(&journal->j_wait_commit);
293 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 		write_lock(&journal->j_state_lock);
295 	}
296 	write_unlock(&journal->j_state_lock);
297 }
298 
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333 
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 				  struct journal_head  *jh_in,
336 				  struct buffer_head **bh_out,
337 				  sector_t blocknr)
338 {
339 	int need_copy_out = 0;
340 	int done_copy_out = 0;
341 	int do_escape = 0;
342 	char *mapped_data;
343 	struct buffer_head *new_bh;
344 	struct page *new_page;
345 	unsigned int new_offset;
346 	struct buffer_head *bh_in = jh2bh(jh_in);
347 	journal_t *journal = transaction->t_journal;
348 
349 	/*
350 	 * The buffer really shouldn't be locked: only the current committing
351 	 * transaction is allowed to write it, so nobody else is allowed
352 	 * to do any IO.
353 	 *
354 	 * akpm: except if we're journalling data, and write() output is
355 	 * also part of a shared mapping, and another thread has
356 	 * decided to launch a writepage() against this buffer.
357 	 */
358 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359 
360 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361 
362 	/* keep subsequent assertions sane */
363 	atomic_set(&new_bh->b_count, 1);
364 
365 	spin_lock(&jh_in->b_state_lock);
366 repeat:
367 	/*
368 	 * If a new transaction has already done a buffer copy-out, then
369 	 * we use that version of the data for the commit.
370 	 */
371 	if (jh_in->b_frozen_data) {
372 		done_copy_out = 1;
373 		new_page = virt_to_page(jh_in->b_frozen_data);
374 		new_offset = offset_in_page(jh_in->b_frozen_data);
375 	} else {
376 		new_page = jh2bh(jh_in)->b_page;
377 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 	}
379 
380 	mapped_data = kmap_atomic(new_page);
381 	/*
382 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
383 	 * before checking for escaping, as the trigger may modify the magic
384 	 * offset.  If a copy-out happens afterwards, it will have the correct
385 	 * data in the buffer.
386 	 */
387 	if (!done_copy_out)
388 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 					   jh_in->b_triggers);
390 
391 	/*
392 	 * Check for escaping
393 	 */
394 	if (*((__be32 *)(mapped_data + new_offset)) ==
395 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 		need_copy_out = 1;
397 		do_escape = 1;
398 	}
399 	kunmap_atomic(mapped_data);
400 
401 	/*
402 	 * Do we need to do a data copy?
403 	 */
404 	if (need_copy_out && !done_copy_out) {
405 		char *tmp;
406 
407 		spin_unlock(&jh_in->b_state_lock);
408 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 		if (!tmp) {
410 			brelse(new_bh);
411 			return -ENOMEM;
412 		}
413 		spin_lock(&jh_in->b_state_lock);
414 		if (jh_in->b_frozen_data) {
415 			jbd2_free(tmp, bh_in->b_size);
416 			goto repeat;
417 		}
418 
419 		jh_in->b_frozen_data = tmp;
420 		mapped_data = kmap_atomic(new_page);
421 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 		kunmap_atomic(mapped_data);
423 
424 		new_page = virt_to_page(tmp);
425 		new_offset = offset_in_page(tmp);
426 		done_copy_out = 1;
427 
428 		/*
429 		 * This isn't strictly necessary, as we're using frozen
430 		 * data for the escaping, but it keeps consistency with
431 		 * b_frozen_data usage.
432 		 */
433 		jh_in->b_frozen_triggers = jh_in->b_triggers;
434 	}
435 
436 	/*
437 	 * Did we need to do an escaping?  Now we've done all the
438 	 * copying, we can finally do so.
439 	 */
440 	if (do_escape) {
441 		mapped_data = kmap_atomic(new_page);
442 		*((unsigned int *)(mapped_data + new_offset)) = 0;
443 		kunmap_atomic(mapped_data);
444 	}
445 
446 	set_bh_page(new_bh, new_page, new_offset);
447 	new_bh->b_size = bh_in->b_size;
448 	new_bh->b_bdev = journal->j_dev;
449 	new_bh->b_blocknr = blocknr;
450 	new_bh->b_private = bh_in;
451 	set_buffer_mapped(new_bh);
452 	set_buffer_dirty(new_bh);
453 
454 	*bh_out = new_bh;
455 
456 	/*
457 	 * The to-be-written buffer needs to get moved to the io queue,
458 	 * and the original buffer whose contents we are shadowing or
459 	 * copying is moved to the transaction's shadow queue.
460 	 */
461 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 	spin_lock(&journal->j_list_lock);
463 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 	spin_unlock(&journal->j_list_lock);
465 	set_buffer_shadow(bh_in);
466 	spin_unlock(&jh_in->b_state_lock);
467 
468 	return do_escape | (done_copy_out << 1);
469 }
470 
471 /*
472  * Allocation code for the journal file.  Manage the space left in the
473  * journal, so that we can begin checkpointing when appropriate.
474  */
475 
476 /*
477  * Called with j_state_lock locked for writing.
478  * Returns true if a transaction commit was started.
479  */
480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482 	/* Return if the txn has already requested to be committed */
483 	if (journal->j_commit_request == target)
484 		return 0;
485 
486 	/*
487 	 * The only transaction we can possibly wait upon is the
488 	 * currently running transaction (if it exists).  Otherwise,
489 	 * the target tid must be an old one.
490 	 */
491 	if (journal->j_running_transaction &&
492 	    journal->j_running_transaction->t_tid == target) {
493 		/*
494 		 * We want a new commit: OK, mark the request and wakeup the
495 		 * commit thread.  We do _not_ do the commit ourselves.
496 		 */
497 
498 		journal->j_commit_request = target;
499 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 			  journal->j_commit_request,
501 			  journal->j_commit_sequence);
502 		journal->j_running_transaction->t_requested = jiffies;
503 		wake_up(&journal->j_wait_commit);
504 		return 1;
505 	} else if (!tid_geq(journal->j_commit_request, target))
506 		/* This should never happen, but if it does, preserve
507 		   the evidence before kjournald goes into a loop and
508 		   increments j_commit_sequence beyond all recognition. */
509 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 			  journal->j_commit_request,
511 			  journal->j_commit_sequence,
512 			  target, journal->j_running_transaction ?
513 			  journal->j_running_transaction->t_tid : 0);
514 	return 0;
515 }
516 
517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519 	int ret;
520 
521 	write_lock(&journal->j_state_lock);
522 	ret = __jbd2_log_start_commit(journal, tid);
523 	write_unlock(&journal->j_state_lock);
524 	return ret;
525 }
526 
527 /*
528  * Force and wait any uncommitted transactions.  We can only force the running
529  * transaction if we don't have an active handle, otherwise, we will deadlock.
530  * Returns: <0 in case of error,
531  *           0 if nothing to commit,
532  *           1 if transaction was successfully committed.
533  */
534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536 	transaction_t *transaction = NULL;
537 	tid_t tid;
538 	int need_to_start = 0, ret = 0;
539 
540 	read_lock(&journal->j_state_lock);
541 	if (journal->j_running_transaction && !current->journal_info) {
542 		transaction = journal->j_running_transaction;
543 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 			need_to_start = 1;
545 	} else if (journal->j_committing_transaction)
546 		transaction = journal->j_committing_transaction;
547 
548 	if (!transaction) {
549 		/* Nothing to commit */
550 		read_unlock(&journal->j_state_lock);
551 		return 0;
552 	}
553 	tid = transaction->t_tid;
554 	read_unlock(&journal->j_state_lock);
555 	if (need_to_start)
556 		jbd2_log_start_commit(journal, tid);
557 	ret = jbd2_log_wait_commit(journal, tid);
558 	if (!ret)
559 		ret = 1;
560 
561 	return ret;
562 }
563 
564 /**
565  * Force and wait upon a commit if the calling process is not within
566  * transaction.  This is used for forcing out undo-protected data which contains
567  * bitmaps, when the fs is running out of space.
568  *
569  * @journal: journal to force
570  * Returns true if progress was made.
571  */
572 int jbd2_journal_force_commit_nested(journal_t *journal)
573 {
574 	int ret;
575 
576 	ret = __jbd2_journal_force_commit(journal);
577 	return ret > 0;
578 }
579 
580 /**
581  * int journal_force_commit() - force any uncommitted transactions
582  * @journal: journal to force
583  *
584  * Caller want unconditional commit. We can only force the running transaction
585  * if we don't have an active handle, otherwise, we will deadlock.
586  */
587 int jbd2_journal_force_commit(journal_t *journal)
588 {
589 	int ret;
590 
591 	J_ASSERT(!current->journal_info);
592 	ret = __jbd2_journal_force_commit(journal);
593 	if (ret > 0)
594 		ret = 0;
595 	return ret;
596 }
597 
598 /*
599  * Start a commit of the current running transaction (if any).  Returns true
600  * if a transaction is going to be committed (or is currently already
601  * committing), and fills its tid in at *ptid
602  */
603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
604 {
605 	int ret = 0;
606 
607 	write_lock(&journal->j_state_lock);
608 	if (journal->j_running_transaction) {
609 		tid_t tid = journal->j_running_transaction->t_tid;
610 
611 		__jbd2_log_start_commit(journal, tid);
612 		/* There's a running transaction and we've just made sure
613 		 * it's commit has been scheduled. */
614 		if (ptid)
615 			*ptid = tid;
616 		ret = 1;
617 	} else if (journal->j_committing_transaction) {
618 		/*
619 		 * If commit has been started, then we have to wait for
620 		 * completion of that transaction.
621 		 */
622 		if (ptid)
623 			*ptid = journal->j_committing_transaction->t_tid;
624 		ret = 1;
625 	}
626 	write_unlock(&journal->j_state_lock);
627 	return ret;
628 }
629 
630 /*
631  * Return 1 if a given transaction has not yet sent barrier request
632  * connected with a transaction commit. If 0 is returned, transaction
633  * may or may not have sent the barrier. Used to avoid sending barrier
634  * twice in common cases.
635  */
636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
637 {
638 	int ret = 0;
639 	transaction_t *commit_trans;
640 
641 	if (!(journal->j_flags & JBD2_BARRIER))
642 		return 0;
643 	read_lock(&journal->j_state_lock);
644 	/* Transaction already committed? */
645 	if (tid_geq(journal->j_commit_sequence, tid))
646 		goto out;
647 	commit_trans = journal->j_committing_transaction;
648 	if (!commit_trans || commit_trans->t_tid != tid) {
649 		ret = 1;
650 		goto out;
651 	}
652 	/*
653 	 * Transaction is being committed and we already proceeded to
654 	 * submitting a flush to fs partition?
655 	 */
656 	if (journal->j_fs_dev != journal->j_dev) {
657 		if (!commit_trans->t_need_data_flush ||
658 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
659 			goto out;
660 	} else {
661 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
662 			goto out;
663 	}
664 	ret = 1;
665 out:
666 	read_unlock(&journal->j_state_lock);
667 	return ret;
668 }
669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
670 
671 /*
672  * Wait for a specified commit to complete.
673  * The caller may not hold the journal lock.
674  */
675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
676 {
677 	int err = 0;
678 
679 	read_lock(&journal->j_state_lock);
680 #ifdef CONFIG_PROVE_LOCKING
681 	/*
682 	 * Some callers make sure transaction is already committing and in that
683 	 * case we cannot block on open handles anymore. So don't warn in that
684 	 * case.
685 	 */
686 	if (tid_gt(tid, journal->j_commit_sequence) &&
687 	    (!journal->j_committing_transaction ||
688 	     journal->j_committing_transaction->t_tid != tid)) {
689 		read_unlock(&journal->j_state_lock);
690 		jbd2_might_wait_for_commit(journal);
691 		read_lock(&journal->j_state_lock);
692 	}
693 #endif
694 #ifdef CONFIG_JBD2_DEBUG
695 	if (!tid_geq(journal->j_commit_request, tid)) {
696 		printk(KERN_ERR
697 		       "%s: error: j_commit_request=%u, tid=%u\n",
698 		       __func__, journal->j_commit_request, tid);
699 	}
700 #endif
701 	while (tid_gt(tid, journal->j_commit_sequence)) {
702 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
703 				  tid, journal->j_commit_sequence);
704 		read_unlock(&journal->j_state_lock);
705 		wake_up(&journal->j_wait_commit);
706 		wait_event(journal->j_wait_done_commit,
707 				!tid_gt(tid, journal->j_commit_sequence));
708 		read_lock(&journal->j_state_lock);
709 	}
710 	read_unlock(&journal->j_state_lock);
711 
712 	if (unlikely(is_journal_aborted(journal)))
713 		err = -EIO;
714 	return err;
715 }
716 
717 /* Return 1 when transaction with given tid has already committed. */
718 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
719 {
720 	int ret = 1;
721 
722 	read_lock(&journal->j_state_lock);
723 	if (journal->j_running_transaction &&
724 	    journal->j_running_transaction->t_tid == tid)
725 		ret = 0;
726 	if (journal->j_committing_transaction &&
727 	    journal->j_committing_transaction->t_tid == tid)
728 		ret = 0;
729 	read_unlock(&journal->j_state_lock);
730 	return ret;
731 }
732 EXPORT_SYMBOL(jbd2_transaction_committed);
733 
734 /*
735  * When this function returns the transaction corresponding to tid
736  * will be completed.  If the transaction has currently running, start
737  * committing that transaction before waiting for it to complete.  If
738  * the transaction id is stale, it is by definition already completed,
739  * so just return SUCCESS.
740  */
741 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
742 {
743 	int	need_to_wait = 1;
744 
745 	read_lock(&journal->j_state_lock);
746 	if (journal->j_running_transaction &&
747 	    journal->j_running_transaction->t_tid == tid) {
748 		if (journal->j_commit_request != tid) {
749 			/* transaction not yet started, so request it */
750 			read_unlock(&journal->j_state_lock);
751 			jbd2_log_start_commit(journal, tid);
752 			goto wait_commit;
753 		}
754 	} else if (!(journal->j_committing_transaction &&
755 		     journal->j_committing_transaction->t_tid == tid))
756 		need_to_wait = 0;
757 	read_unlock(&journal->j_state_lock);
758 	if (!need_to_wait)
759 		return 0;
760 wait_commit:
761 	return jbd2_log_wait_commit(journal, tid);
762 }
763 EXPORT_SYMBOL(jbd2_complete_transaction);
764 
765 /*
766  * Log buffer allocation routines:
767  */
768 
769 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
770 {
771 	unsigned long blocknr;
772 
773 	write_lock(&journal->j_state_lock);
774 	J_ASSERT(journal->j_free > 1);
775 
776 	blocknr = journal->j_head;
777 	journal->j_head++;
778 	journal->j_free--;
779 	if (journal->j_head == journal->j_last)
780 		journal->j_head = journal->j_first;
781 	write_unlock(&journal->j_state_lock);
782 	return jbd2_journal_bmap(journal, blocknr, retp);
783 }
784 
785 /*
786  * Conversion of logical to physical block numbers for the journal
787  *
788  * On external journals the journal blocks are identity-mapped, so
789  * this is a no-op.  If needed, we can use j_blk_offset - everything is
790  * ready.
791  */
792 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
793 		 unsigned long long *retp)
794 {
795 	int err = 0;
796 	unsigned long long ret;
797 	sector_t block = 0;
798 
799 	if (journal->j_inode) {
800 		block = blocknr;
801 		ret = bmap(journal->j_inode, &block);
802 
803 		if (ret || !block) {
804 			printk(KERN_ALERT "%s: journal block not found "
805 					"at offset %lu on %s\n",
806 			       __func__, blocknr, journal->j_devname);
807 			err = -EIO;
808 			jbd2_journal_abort(journal, err);
809 		} else {
810 			*retp = block;
811 		}
812 
813 	} else {
814 		*retp = blocknr; /* +journal->j_blk_offset */
815 	}
816 	return err;
817 }
818 
819 /*
820  * We play buffer_head aliasing tricks to write data/metadata blocks to
821  * the journal without copying their contents, but for journal
822  * descriptor blocks we do need to generate bona fide buffers.
823  *
824  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826  * But we don't bother doing that, so there will be coherency problems with
827  * mmaps of blockdevs which hold live JBD-controlled filesystems.
828  */
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831 {
832 	journal_t *journal = transaction->t_journal;
833 	struct buffer_head *bh;
834 	unsigned long long blocknr;
835 	journal_header_t *header;
836 	int err;
837 
838 	err = jbd2_journal_next_log_block(journal, &blocknr);
839 
840 	if (err)
841 		return NULL;
842 
843 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 	if (!bh)
845 		return NULL;
846 	atomic_dec(&transaction->t_outstanding_credits);
847 	lock_buffer(bh);
848 	memset(bh->b_data, 0, journal->j_blocksize);
849 	header = (journal_header_t *)bh->b_data;
850 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
851 	header->h_blocktype = cpu_to_be32(type);
852 	header->h_sequence = cpu_to_be32(transaction->t_tid);
853 	set_buffer_uptodate(bh);
854 	unlock_buffer(bh);
855 	BUFFER_TRACE(bh, "return this buffer");
856 	return bh;
857 }
858 
859 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
860 {
861 	struct jbd2_journal_block_tail *tail;
862 	__u32 csum;
863 
864 	if (!jbd2_journal_has_csum_v2or3(j))
865 		return;
866 
867 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
868 			sizeof(struct jbd2_journal_block_tail));
869 	tail->t_checksum = 0;
870 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
871 	tail->t_checksum = cpu_to_be32(csum);
872 }
873 
874 /*
875  * Return tid of the oldest transaction in the journal and block in the journal
876  * where the transaction starts.
877  *
878  * If the journal is now empty, return which will be the next transaction ID
879  * we will write and where will that transaction start.
880  *
881  * The return value is 0 if journal tail cannot be pushed any further, 1 if
882  * it can.
883  */
884 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
885 			      unsigned long *block)
886 {
887 	transaction_t *transaction;
888 	int ret;
889 
890 	read_lock(&journal->j_state_lock);
891 	spin_lock(&journal->j_list_lock);
892 	transaction = journal->j_checkpoint_transactions;
893 	if (transaction) {
894 		*tid = transaction->t_tid;
895 		*block = transaction->t_log_start;
896 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
897 		*tid = transaction->t_tid;
898 		*block = transaction->t_log_start;
899 	} else if ((transaction = journal->j_running_transaction) != NULL) {
900 		*tid = transaction->t_tid;
901 		*block = journal->j_head;
902 	} else {
903 		*tid = journal->j_transaction_sequence;
904 		*block = journal->j_head;
905 	}
906 	ret = tid_gt(*tid, journal->j_tail_sequence);
907 	spin_unlock(&journal->j_list_lock);
908 	read_unlock(&journal->j_state_lock);
909 
910 	return ret;
911 }
912 
913 /*
914  * Update information in journal structure and in on disk journal superblock
915  * about log tail. This function does not check whether information passed in
916  * really pushes log tail further. It's responsibility of the caller to make
917  * sure provided log tail information is valid (e.g. by holding
918  * j_checkpoint_mutex all the time between computing log tail and calling this
919  * function as is the case with jbd2_cleanup_journal_tail()).
920  *
921  * Requires j_checkpoint_mutex
922  */
923 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
924 {
925 	unsigned long freed;
926 	int ret;
927 
928 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
929 
930 	/*
931 	 * We cannot afford for write to remain in drive's caches since as
932 	 * soon as we update j_tail, next transaction can start reusing journal
933 	 * space and if we lose sb update during power failure we'd replay
934 	 * old transaction with possibly newly overwritten data.
935 	 */
936 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
937 					      REQ_SYNC | REQ_FUA);
938 	if (ret)
939 		goto out;
940 
941 	write_lock(&journal->j_state_lock);
942 	freed = block - journal->j_tail;
943 	if (block < journal->j_tail)
944 		freed += journal->j_last - journal->j_first;
945 
946 	trace_jbd2_update_log_tail(journal, tid, block, freed);
947 	jbd_debug(1,
948 		  "Cleaning journal tail from %u to %u (offset %lu), "
949 		  "freeing %lu\n",
950 		  journal->j_tail_sequence, tid, block, freed);
951 
952 	journal->j_free += freed;
953 	journal->j_tail_sequence = tid;
954 	journal->j_tail = block;
955 	write_unlock(&journal->j_state_lock);
956 
957 out:
958 	return ret;
959 }
960 
961 /*
962  * This is a variation of __jbd2_update_log_tail which checks for validity of
963  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
964  * with other threads updating log tail.
965  */
966 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
967 {
968 	mutex_lock_io(&journal->j_checkpoint_mutex);
969 	if (tid_gt(tid, journal->j_tail_sequence))
970 		__jbd2_update_log_tail(journal, tid, block);
971 	mutex_unlock(&journal->j_checkpoint_mutex);
972 }
973 
974 struct jbd2_stats_proc_session {
975 	journal_t *journal;
976 	struct transaction_stats_s *stats;
977 	int start;
978 	int max;
979 };
980 
981 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
982 {
983 	return *pos ? NULL : SEQ_START_TOKEN;
984 }
985 
986 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
987 {
988 	(*pos)++;
989 	return NULL;
990 }
991 
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
993 {
994 	struct jbd2_stats_proc_session *s = seq->private;
995 
996 	if (v != SEQ_START_TOKEN)
997 		return 0;
998 	seq_printf(seq, "%lu transactions (%lu requested), "
999 		   "each up to %u blocks\n",
1000 		   s->stats->ts_tid, s->stats->ts_requested,
1001 		   s->journal->j_max_transaction_buffers);
1002 	if (s->stats->ts_tid == 0)
1003 		return 0;
1004 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1005 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 	seq_printf(seq, "  %ums request delay\n",
1007 	    (s->stats->ts_requested == 0) ? 0 :
1008 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 			     s->stats->ts_requested));
1010 	seq_printf(seq, "  %ums running transaction\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums transaction was being locked\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1015 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 	seq_printf(seq, "  %ums logging transaction\n",
1017 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 	seq_printf(seq, "  %lluus average transaction commit time\n",
1019 		   div_u64(s->journal->j_average_commit_time, 1000));
1020 	seq_printf(seq, "  %lu handles per transaction\n",
1021 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 	seq_printf(seq, "  %lu blocks per transaction\n",
1023 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1024 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1025 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026 	return 0;
1027 }
1028 
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1030 {
1031 }
1032 
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034 	.start  = jbd2_seq_info_start,
1035 	.next   = jbd2_seq_info_next,
1036 	.stop   = jbd2_seq_info_stop,
1037 	.show   = jbd2_seq_info_show,
1038 };
1039 
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1041 {
1042 	journal_t *journal = PDE_DATA(inode);
1043 	struct jbd2_stats_proc_session *s;
1044 	int rc, size;
1045 
1046 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1047 	if (s == NULL)
1048 		return -ENOMEM;
1049 	size = sizeof(struct transaction_stats_s);
1050 	s->stats = kmalloc(size, GFP_KERNEL);
1051 	if (s->stats == NULL) {
1052 		kfree(s);
1053 		return -ENOMEM;
1054 	}
1055 	spin_lock(&journal->j_history_lock);
1056 	memcpy(s->stats, &journal->j_stats, size);
1057 	s->journal = journal;
1058 	spin_unlock(&journal->j_history_lock);
1059 
1060 	rc = seq_open(file, &jbd2_seq_info_ops);
1061 	if (rc == 0) {
1062 		struct seq_file *m = file->private_data;
1063 		m->private = s;
1064 	} else {
1065 		kfree(s->stats);
1066 		kfree(s);
1067 	}
1068 	return rc;
1069 
1070 }
1071 
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1073 {
1074 	struct seq_file *seq = file->private_data;
1075 	struct jbd2_stats_proc_session *s = seq->private;
1076 	kfree(s->stats);
1077 	kfree(s);
1078 	return seq_release(inode, file);
1079 }
1080 
1081 static const struct proc_ops jbd2_info_proc_ops = {
1082 	.proc_open	= jbd2_seq_info_open,
1083 	.proc_read	= seq_read,
1084 	.proc_lseek	= seq_lseek,
1085 	.proc_release	= jbd2_seq_info_release,
1086 };
1087 
1088 static struct proc_dir_entry *proc_jbd2_stats;
1089 
1090 static void jbd2_stats_proc_init(journal_t *journal)
1091 {
1092 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1093 	if (journal->j_proc_entry) {
1094 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1095 				 &jbd2_info_proc_ops, journal);
1096 	}
1097 }
1098 
1099 static void jbd2_stats_proc_exit(journal_t *journal)
1100 {
1101 	remove_proc_entry("info", journal->j_proc_entry);
1102 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1103 }
1104 
1105 /* Minimum size of descriptor tag */
1106 static int jbd2_min_tag_size(void)
1107 {
1108 	/*
1109 	 * Tag with 32-bit block numbers does not use last four bytes of the
1110 	 * structure
1111 	 */
1112 	return sizeof(journal_block_tag_t) - 4;
1113 }
1114 
1115 /*
1116  * Management for journal control blocks: functions to create and
1117  * destroy journal_t structures, and to initialise and read existing
1118  * journal blocks from disk.  */
1119 
1120 /* First: create and setup a journal_t object in memory.  We initialise
1121  * very few fields yet: that has to wait until we have created the
1122  * journal structures from from scratch, or loaded them from disk. */
1123 
1124 static journal_t *journal_init_common(struct block_device *bdev,
1125 			struct block_device *fs_dev,
1126 			unsigned long long start, int len, int blocksize)
1127 {
1128 	static struct lock_class_key jbd2_trans_commit_key;
1129 	journal_t *journal;
1130 	int err;
1131 	struct buffer_head *bh;
1132 	int n;
1133 
1134 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1135 	if (!journal)
1136 		return NULL;
1137 
1138 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1139 	init_waitqueue_head(&journal->j_wait_done_commit);
1140 	init_waitqueue_head(&journal->j_wait_commit);
1141 	init_waitqueue_head(&journal->j_wait_updates);
1142 	init_waitqueue_head(&journal->j_wait_reserved);
1143 	mutex_init(&journal->j_abort_mutex);
1144 	mutex_init(&journal->j_barrier);
1145 	mutex_init(&journal->j_checkpoint_mutex);
1146 	spin_lock_init(&journal->j_revoke_lock);
1147 	spin_lock_init(&journal->j_list_lock);
1148 	rwlock_init(&journal->j_state_lock);
1149 
1150 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1151 	journal->j_min_batch_time = 0;
1152 	journal->j_max_batch_time = 15000; /* 15ms */
1153 	atomic_set(&journal->j_reserved_credits, 0);
1154 
1155 	/* The journal is marked for error until we succeed with recovery! */
1156 	journal->j_flags = JBD2_ABORT;
1157 
1158 	/* Set up a default-sized revoke table for the new mount. */
1159 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1160 	if (err)
1161 		goto err_cleanup;
1162 
1163 	spin_lock_init(&journal->j_history_lock);
1164 
1165 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1166 			 &jbd2_trans_commit_key, 0);
1167 
1168 	/* journal descriptor can store up to n blocks -bzzz */
1169 	journal->j_blocksize = blocksize;
1170 	journal->j_dev = bdev;
1171 	journal->j_fs_dev = fs_dev;
1172 	journal->j_blk_offset = start;
1173 	journal->j_maxlen = len;
1174 	/* We need enough buffers to write out full descriptor block. */
1175 	n = journal->j_blocksize / jbd2_min_tag_size();
1176 	journal->j_wbufsize = n;
1177 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1178 					GFP_KERNEL);
1179 	if (!journal->j_wbuf)
1180 		goto err_cleanup;
1181 
1182 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1183 	if (!bh) {
1184 		pr_err("%s: Cannot get buffer for journal superblock\n",
1185 			__func__);
1186 		goto err_cleanup;
1187 	}
1188 	journal->j_sb_buffer = bh;
1189 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1190 
1191 	return journal;
1192 
1193 err_cleanup:
1194 	kfree(journal->j_wbuf);
1195 	jbd2_journal_destroy_revoke(journal);
1196 	kfree(journal);
1197 	return NULL;
1198 }
1199 
1200 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1201  *
1202  * Create a journal structure assigned some fixed set of disk blocks to
1203  * the journal.  We don't actually touch those disk blocks yet, but we
1204  * need to set up all of the mapping information to tell the journaling
1205  * system where the journal blocks are.
1206  *
1207  */
1208 
1209 /**
1210  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1211  *  @bdev: Block device on which to create the journal
1212  *  @fs_dev: Device which hold journalled filesystem for this journal.
1213  *  @start: Block nr Start of journal.
1214  *  @len:  Length of the journal in blocks.
1215  *  @blocksize: blocksize of journalling device
1216  *
1217  *  Returns: a newly created journal_t *
1218  *
1219  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1220  *  range of blocks on an arbitrary block device.
1221  *
1222  */
1223 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1224 			struct block_device *fs_dev,
1225 			unsigned long long start, int len, int blocksize)
1226 {
1227 	journal_t *journal;
1228 
1229 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1230 	if (!journal)
1231 		return NULL;
1232 
1233 	bdevname(journal->j_dev, journal->j_devname);
1234 	strreplace(journal->j_devname, '/', '!');
1235 	jbd2_stats_proc_init(journal);
1236 
1237 	return journal;
1238 }
1239 
1240 /**
1241  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1242  *  @inode: An inode to create the journal in
1243  *
1244  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1245  * the journal.  The inode must exist already, must support bmap() and
1246  * must have all data blocks preallocated.
1247  */
1248 journal_t *jbd2_journal_init_inode(struct inode *inode)
1249 {
1250 	journal_t *journal;
1251 	sector_t blocknr;
1252 	char *p;
1253 	int err = 0;
1254 
1255 	blocknr = 0;
1256 	err = bmap(inode, &blocknr);
1257 
1258 	if (err || !blocknr) {
1259 		pr_err("%s: Cannot locate journal superblock\n",
1260 			__func__);
1261 		return NULL;
1262 	}
1263 
1264 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267 
1268 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 			inode->i_sb->s_blocksize);
1271 	if (!journal)
1272 		return NULL;
1273 
1274 	journal->j_inode = inode;
1275 	bdevname(journal->j_dev, journal->j_devname);
1276 	p = strreplace(journal->j_devname, '/', '!');
1277 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 	jbd2_stats_proc_init(journal);
1279 
1280 	return journal;
1281 }
1282 
1283 /*
1284  * If the journal init or create aborts, we need to mark the journal
1285  * superblock as being NULL to prevent the journal destroy from writing
1286  * back a bogus superblock.
1287  */
1288 static void journal_fail_superblock(journal_t *journal)
1289 {
1290 	struct buffer_head *bh = journal->j_sb_buffer;
1291 	brelse(bh);
1292 	journal->j_sb_buffer = NULL;
1293 }
1294 
1295 /*
1296  * Given a journal_t structure, initialise the various fields for
1297  * startup of a new journaling session.  We use this both when creating
1298  * a journal, and after recovering an old journal to reset it for
1299  * subsequent use.
1300  */
1301 
1302 static int journal_reset(journal_t *journal)
1303 {
1304 	journal_superblock_t *sb = journal->j_superblock;
1305 	unsigned long long first, last;
1306 
1307 	first = be32_to_cpu(sb->s_first);
1308 	last = be32_to_cpu(sb->s_maxlen);
1309 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 		       first, last);
1312 		journal_fail_superblock(journal);
1313 		return -EINVAL;
1314 	}
1315 
1316 	journal->j_first = first;
1317 	journal->j_last = last;
1318 
1319 	journal->j_head = first;
1320 	journal->j_tail = first;
1321 	journal->j_free = last - first;
1322 
1323 	journal->j_tail_sequence = journal->j_transaction_sequence;
1324 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 	journal->j_commit_request = journal->j_commit_sequence;
1326 
1327 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328 
1329 	/*
1330 	 * As a special case, if the on-disk copy is already marked as needing
1331 	 * no recovery (s_start == 0), then we can safely defer the superblock
1332 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1333 	 * attempting a write to a potential-readonly device.
1334 	 */
1335 	if (sb->s_start == 0) {
1336 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 			"(start %ld, seq %u, errno %d)\n",
1338 			journal->j_tail, journal->j_tail_sequence,
1339 			journal->j_errno);
1340 		journal->j_flags |= JBD2_FLUSHED;
1341 	} else {
1342 		/* Lock here to make assertions happy... */
1343 		mutex_lock_io(&journal->j_checkpoint_mutex);
1344 		/*
1345 		 * Update log tail information. We use REQ_FUA since new
1346 		 * transaction will start reusing journal space and so we
1347 		 * must make sure information about current log tail is on
1348 		 * disk before that.
1349 		 */
1350 		jbd2_journal_update_sb_log_tail(journal,
1351 						journal->j_tail_sequence,
1352 						journal->j_tail,
1353 						REQ_SYNC | REQ_FUA);
1354 		mutex_unlock(&journal->j_checkpoint_mutex);
1355 	}
1356 	return jbd2_journal_start_thread(journal);
1357 }
1358 
1359 /*
1360  * This function expects that the caller will have locked the journal
1361  * buffer head, and will return with it unlocked
1362  */
1363 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1364 {
1365 	struct buffer_head *bh = journal->j_sb_buffer;
1366 	journal_superblock_t *sb = journal->j_superblock;
1367 	int ret;
1368 
1369 	/* Buffer got discarded which means block device got invalidated */
1370 	if (!buffer_mapped(bh)) {
1371 		unlock_buffer(bh);
1372 		return -EIO;
1373 	}
1374 
1375 	trace_jbd2_write_superblock(journal, write_flags);
1376 	if (!(journal->j_flags & JBD2_BARRIER))
1377 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1378 	if (buffer_write_io_error(bh)) {
1379 		/*
1380 		 * Oh, dear.  A previous attempt to write the journal
1381 		 * superblock failed.  This could happen because the
1382 		 * USB device was yanked out.  Or it could happen to
1383 		 * be a transient write error and maybe the block will
1384 		 * be remapped.  Nothing we can do but to retry the
1385 		 * write and hope for the best.
1386 		 */
1387 		printk(KERN_ERR "JBD2: previous I/O error detected "
1388 		       "for journal superblock update for %s.\n",
1389 		       journal->j_devname);
1390 		clear_buffer_write_io_error(bh);
1391 		set_buffer_uptodate(bh);
1392 	}
1393 	if (jbd2_journal_has_csum_v2or3(journal))
1394 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1395 	get_bh(bh);
1396 	bh->b_end_io = end_buffer_write_sync;
1397 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1398 	wait_on_buffer(bh);
1399 	if (buffer_write_io_error(bh)) {
1400 		clear_buffer_write_io_error(bh);
1401 		set_buffer_uptodate(bh);
1402 		ret = -EIO;
1403 	}
1404 	if (ret) {
1405 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1406 		       "journal superblock for %s.\n", ret,
1407 		       journal->j_devname);
1408 		if (!is_journal_aborted(journal))
1409 			jbd2_journal_abort(journal, ret);
1410 	}
1411 
1412 	return ret;
1413 }
1414 
1415 /**
1416  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1417  * @journal: The journal to update.
1418  * @tail_tid: TID of the new transaction at the tail of the log
1419  * @tail_block: The first block of the transaction at the tail of the log
1420  * @write_op: With which operation should we write the journal sb
1421  *
1422  * Update a journal's superblock information about log tail and write it to
1423  * disk, waiting for the IO to complete.
1424  */
1425 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1426 				     unsigned long tail_block, int write_op)
1427 {
1428 	journal_superblock_t *sb = journal->j_superblock;
1429 	int ret;
1430 
1431 	if (is_journal_aborted(journal))
1432 		return -EIO;
1433 
1434 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1435 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1436 		  tail_block, tail_tid);
1437 
1438 	lock_buffer(journal->j_sb_buffer);
1439 	sb->s_sequence = cpu_to_be32(tail_tid);
1440 	sb->s_start    = cpu_to_be32(tail_block);
1441 
1442 	ret = jbd2_write_superblock(journal, write_op);
1443 	if (ret)
1444 		goto out;
1445 
1446 	/* Log is no longer empty */
1447 	write_lock(&journal->j_state_lock);
1448 	WARN_ON(!sb->s_sequence);
1449 	journal->j_flags &= ~JBD2_FLUSHED;
1450 	write_unlock(&journal->j_state_lock);
1451 
1452 out:
1453 	return ret;
1454 }
1455 
1456 /**
1457  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1458  * @journal: The journal to update.
1459  * @write_op: With which operation should we write the journal sb
1460  *
1461  * Update a journal's dynamic superblock fields to show that journal is empty.
1462  * Write updated superblock to disk waiting for IO to complete.
1463  */
1464 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1465 {
1466 	journal_superblock_t *sb = journal->j_superblock;
1467 
1468 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1469 	lock_buffer(journal->j_sb_buffer);
1470 	if (sb->s_start == 0) {		/* Is it already empty? */
1471 		unlock_buffer(journal->j_sb_buffer);
1472 		return;
1473 	}
1474 
1475 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1476 		  journal->j_tail_sequence);
1477 
1478 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1479 	sb->s_start    = cpu_to_be32(0);
1480 
1481 	jbd2_write_superblock(journal, write_op);
1482 
1483 	/* Log is no longer empty */
1484 	write_lock(&journal->j_state_lock);
1485 	journal->j_flags |= JBD2_FLUSHED;
1486 	write_unlock(&journal->j_state_lock);
1487 }
1488 
1489 
1490 /**
1491  * jbd2_journal_update_sb_errno() - Update error in the journal.
1492  * @journal: The journal to update.
1493  *
1494  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1495  * to complete.
1496  */
1497 void jbd2_journal_update_sb_errno(journal_t *journal)
1498 {
1499 	journal_superblock_t *sb = journal->j_superblock;
1500 	int errcode;
1501 
1502 	lock_buffer(journal->j_sb_buffer);
1503 	errcode = journal->j_errno;
1504 	if (errcode == -ESHUTDOWN)
1505 		errcode = 0;
1506 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1507 	sb->s_errno    = cpu_to_be32(errcode);
1508 
1509 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1510 }
1511 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1512 
1513 static int journal_revoke_records_per_block(journal_t *journal)
1514 {
1515 	int record_size;
1516 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1517 
1518 	if (jbd2_has_feature_64bit(journal))
1519 		record_size = 8;
1520 	else
1521 		record_size = 4;
1522 
1523 	if (jbd2_journal_has_csum_v2or3(journal))
1524 		space -= sizeof(struct jbd2_journal_block_tail);
1525 	return space / record_size;
1526 }
1527 
1528 /*
1529  * Read the superblock for a given journal, performing initial
1530  * validation of the format.
1531  */
1532 static int journal_get_superblock(journal_t *journal)
1533 {
1534 	struct buffer_head *bh;
1535 	journal_superblock_t *sb;
1536 	int err = -EIO;
1537 
1538 	bh = journal->j_sb_buffer;
1539 
1540 	J_ASSERT(bh != NULL);
1541 	if (!buffer_uptodate(bh)) {
1542 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1543 		wait_on_buffer(bh);
1544 		if (!buffer_uptodate(bh)) {
1545 			printk(KERN_ERR
1546 				"JBD2: IO error reading journal superblock\n");
1547 			goto out;
1548 		}
1549 	}
1550 
1551 	if (buffer_verified(bh))
1552 		return 0;
1553 
1554 	sb = journal->j_superblock;
1555 
1556 	err = -EINVAL;
1557 
1558 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1559 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1560 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1561 		goto out;
1562 	}
1563 
1564 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1565 	case JBD2_SUPERBLOCK_V1:
1566 		journal->j_format_version = 1;
1567 		break;
1568 	case JBD2_SUPERBLOCK_V2:
1569 		journal->j_format_version = 2;
1570 		break;
1571 	default:
1572 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1573 		goto out;
1574 	}
1575 
1576 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1577 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1578 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1579 		printk(KERN_WARNING "JBD2: journal file too short\n");
1580 		goto out;
1581 	}
1582 
1583 	if (be32_to_cpu(sb->s_first) == 0 ||
1584 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1585 		printk(KERN_WARNING
1586 			"JBD2: Invalid start block of journal: %u\n",
1587 			be32_to_cpu(sb->s_first));
1588 		goto out;
1589 	}
1590 
1591 	if (jbd2_has_feature_csum2(journal) &&
1592 	    jbd2_has_feature_csum3(journal)) {
1593 		/* Can't have checksum v2 and v3 at the same time! */
1594 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1595 		       "at the same time!\n");
1596 		goto out;
1597 	}
1598 
1599 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1600 	    jbd2_has_feature_checksum(journal)) {
1601 		/* Can't have checksum v1 and v2 on at the same time! */
1602 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1603 		       "at the same time!\n");
1604 		goto out;
1605 	}
1606 
1607 	if (!jbd2_verify_csum_type(journal, sb)) {
1608 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1609 		goto out;
1610 	}
1611 
1612 	/* Load the checksum driver */
1613 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1614 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1615 		if (IS_ERR(journal->j_chksum_driver)) {
1616 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1617 			err = PTR_ERR(journal->j_chksum_driver);
1618 			journal->j_chksum_driver = NULL;
1619 			goto out;
1620 		}
1621 	}
1622 
1623 	if (jbd2_journal_has_csum_v2or3(journal)) {
1624 		/* Check superblock checksum */
1625 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1626 			printk(KERN_ERR "JBD2: journal checksum error\n");
1627 			err = -EFSBADCRC;
1628 			goto out;
1629 		}
1630 
1631 		/* Precompute checksum seed for all metadata */
1632 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1633 						   sizeof(sb->s_uuid));
1634 	}
1635 
1636 	journal->j_revoke_records_per_block =
1637 				journal_revoke_records_per_block(journal);
1638 	set_buffer_verified(bh);
1639 
1640 	return 0;
1641 
1642 out:
1643 	journal_fail_superblock(journal);
1644 	return err;
1645 }
1646 
1647 /*
1648  * Load the on-disk journal superblock and read the key fields into the
1649  * journal_t.
1650  */
1651 
1652 static int load_superblock(journal_t *journal)
1653 {
1654 	int err;
1655 	journal_superblock_t *sb;
1656 
1657 	err = journal_get_superblock(journal);
1658 	if (err)
1659 		return err;
1660 
1661 	sb = journal->j_superblock;
1662 
1663 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1664 	journal->j_tail = be32_to_cpu(sb->s_start);
1665 	journal->j_first = be32_to_cpu(sb->s_first);
1666 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1667 	journal->j_errno = be32_to_cpu(sb->s_errno);
1668 
1669 	return 0;
1670 }
1671 
1672 
1673 /**
1674  * int jbd2_journal_load() - Read journal from disk.
1675  * @journal: Journal to act on.
1676  *
1677  * Given a journal_t structure which tells us which disk blocks contain
1678  * a journal, read the journal from disk to initialise the in-memory
1679  * structures.
1680  */
1681 int jbd2_journal_load(journal_t *journal)
1682 {
1683 	int err;
1684 	journal_superblock_t *sb;
1685 
1686 	err = load_superblock(journal);
1687 	if (err)
1688 		return err;
1689 
1690 	sb = journal->j_superblock;
1691 	/* If this is a V2 superblock, then we have to check the
1692 	 * features flags on it. */
1693 
1694 	if (journal->j_format_version >= 2) {
1695 		if ((sb->s_feature_ro_compat &
1696 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1697 		    (sb->s_feature_incompat &
1698 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1699 			printk(KERN_WARNING
1700 				"JBD2: Unrecognised features on journal\n");
1701 			return -EINVAL;
1702 		}
1703 	}
1704 
1705 	/*
1706 	 * Create a slab for this blocksize
1707 	 */
1708 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1709 	if (err)
1710 		return err;
1711 
1712 	/* Let the recovery code check whether it needs to recover any
1713 	 * data from the journal. */
1714 	if (jbd2_journal_recover(journal))
1715 		goto recovery_error;
1716 
1717 	if (journal->j_failed_commit) {
1718 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1719 		       "is corrupt.\n", journal->j_failed_commit,
1720 		       journal->j_devname);
1721 		return -EFSCORRUPTED;
1722 	}
1723 	/*
1724 	 * clear JBD2_ABORT flag initialized in journal_init_common
1725 	 * here to update log tail information with the newest seq.
1726 	 */
1727 	journal->j_flags &= ~JBD2_ABORT;
1728 
1729 	/* OK, we've finished with the dynamic journal bits:
1730 	 * reinitialise the dynamic contents of the superblock in memory
1731 	 * and reset them on disk. */
1732 	if (journal_reset(journal))
1733 		goto recovery_error;
1734 
1735 	journal->j_flags |= JBD2_LOADED;
1736 	return 0;
1737 
1738 recovery_error:
1739 	printk(KERN_WARNING "JBD2: recovery failed\n");
1740 	return -EIO;
1741 }
1742 
1743 /**
1744  * void jbd2_journal_destroy() - Release a journal_t structure.
1745  * @journal: Journal to act on.
1746  *
1747  * Release a journal_t structure once it is no longer in use by the
1748  * journaled object.
1749  * Return <0 if we couldn't clean up the journal.
1750  */
1751 int jbd2_journal_destroy(journal_t *journal)
1752 {
1753 	int err = 0;
1754 
1755 	/* Wait for the commit thread to wake up and die. */
1756 	journal_kill_thread(journal);
1757 
1758 	/* Force a final log commit */
1759 	if (journal->j_running_transaction)
1760 		jbd2_journal_commit_transaction(journal);
1761 
1762 	/* Force any old transactions to disk */
1763 
1764 	/* Totally anal locking here... */
1765 	spin_lock(&journal->j_list_lock);
1766 	while (journal->j_checkpoint_transactions != NULL) {
1767 		spin_unlock(&journal->j_list_lock);
1768 		mutex_lock_io(&journal->j_checkpoint_mutex);
1769 		err = jbd2_log_do_checkpoint(journal);
1770 		mutex_unlock(&journal->j_checkpoint_mutex);
1771 		/*
1772 		 * If checkpointing failed, just free the buffers to avoid
1773 		 * looping forever
1774 		 */
1775 		if (err) {
1776 			jbd2_journal_destroy_checkpoint(journal);
1777 			spin_lock(&journal->j_list_lock);
1778 			break;
1779 		}
1780 		spin_lock(&journal->j_list_lock);
1781 	}
1782 
1783 	J_ASSERT(journal->j_running_transaction == NULL);
1784 	J_ASSERT(journal->j_committing_transaction == NULL);
1785 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1786 	spin_unlock(&journal->j_list_lock);
1787 
1788 	if (journal->j_sb_buffer) {
1789 		if (!is_journal_aborted(journal)) {
1790 			mutex_lock_io(&journal->j_checkpoint_mutex);
1791 
1792 			write_lock(&journal->j_state_lock);
1793 			journal->j_tail_sequence =
1794 				++journal->j_transaction_sequence;
1795 			write_unlock(&journal->j_state_lock);
1796 
1797 			jbd2_mark_journal_empty(journal,
1798 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1799 			mutex_unlock(&journal->j_checkpoint_mutex);
1800 		} else
1801 			err = -EIO;
1802 		brelse(journal->j_sb_buffer);
1803 	}
1804 
1805 	if (journal->j_proc_entry)
1806 		jbd2_stats_proc_exit(journal);
1807 	iput(journal->j_inode);
1808 	if (journal->j_revoke)
1809 		jbd2_journal_destroy_revoke(journal);
1810 	if (journal->j_chksum_driver)
1811 		crypto_free_shash(journal->j_chksum_driver);
1812 	kfree(journal->j_wbuf);
1813 	kfree(journal);
1814 
1815 	return err;
1816 }
1817 
1818 
1819 /**
1820  *int jbd2_journal_check_used_features() - Check if features specified are used.
1821  * @journal: Journal to check.
1822  * @compat: bitmask of compatible features
1823  * @ro: bitmask of features that force read-only mount
1824  * @incompat: bitmask of incompatible features
1825  *
1826  * Check whether the journal uses all of a given set of
1827  * features.  Return true (non-zero) if it does.
1828  **/
1829 
1830 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
1831 				 unsigned long ro, unsigned long incompat)
1832 {
1833 	journal_superblock_t *sb;
1834 
1835 	if (!compat && !ro && !incompat)
1836 		return 1;
1837 	/* Load journal superblock if it is not loaded yet. */
1838 	if (journal->j_format_version == 0 &&
1839 	    journal_get_superblock(journal) != 0)
1840 		return 0;
1841 	if (journal->j_format_version == 1)
1842 		return 0;
1843 
1844 	sb = journal->j_superblock;
1845 
1846 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1847 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1848 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1849 		return 1;
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1856  * @journal: Journal to check.
1857  * @compat: bitmask of compatible features
1858  * @ro: bitmask of features that force read-only mount
1859  * @incompat: bitmask of incompatible features
1860  *
1861  * Check whether the journaling code supports the use of
1862  * all of a given set of features on this journal.  Return true
1863  * (non-zero) if it can. */
1864 
1865 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
1866 				      unsigned long ro, unsigned long incompat)
1867 {
1868 	if (!compat && !ro && !incompat)
1869 		return 1;
1870 
1871 	/* We can support any known requested features iff the
1872 	 * superblock is in version 2.  Otherwise we fail to support any
1873 	 * extended sb features. */
1874 
1875 	if (journal->j_format_version != 2)
1876 		return 0;
1877 
1878 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1879 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1880 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1881 		return 1;
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * int jbd2_journal_set_features() - Mark a given journal feature in the superblock
1888  * @journal: Journal to act on.
1889  * @compat: bitmask of compatible features
1890  * @ro: bitmask of features that force read-only mount
1891  * @incompat: bitmask of incompatible features
1892  *
1893  * Mark a given journal feature as present on the
1894  * superblock.  Returns true if the requested features could be set.
1895  *
1896  */
1897 
1898 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
1899 			  unsigned long ro, unsigned long incompat)
1900 {
1901 #define INCOMPAT_FEATURE_ON(f) \
1902 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1903 #define COMPAT_FEATURE_ON(f) \
1904 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1905 	journal_superblock_t *sb;
1906 
1907 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1908 		return 1;
1909 
1910 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1911 		return 0;
1912 
1913 	/* If enabling v2 checksums, turn on v3 instead */
1914 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1915 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1916 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1917 	}
1918 
1919 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1920 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1921 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1922 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1923 
1924 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1925 		  compat, ro, incompat);
1926 
1927 	sb = journal->j_superblock;
1928 
1929 	/* Load the checksum driver if necessary */
1930 	if ((journal->j_chksum_driver == NULL) &&
1931 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1932 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1933 		if (IS_ERR(journal->j_chksum_driver)) {
1934 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1935 			journal->j_chksum_driver = NULL;
1936 			return 0;
1937 		}
1938 		/* Precompute checksum seed for all metadata */
1939 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1940 						   sizeof(sb->s_uuid));
1941 	}
1942 
1943 	lock_buffer(journal->j_sb_buffer);
1944 
1945 	/* If enabling v3 checksums, update superblock */
1946 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1947 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1948 		sb->s_feature_compat &=
1949 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1950 	}
1951 
1952 	/* If enabling v1 checksums, downgrade superblock */
1953 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1954 		sb->s_feature_incompat &=
1955 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1956 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1957 
1958 	sb->s_feature_compat    |= cpu_to_be32(compat);
1959 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1960 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1961 	unlock_buffer(journal->j_sb_buffer);
1962 	journal->j_revoke_records_per_block =
1963 				journal_revoke_records_per_block(journal);
1964 
1965 	return 1;
1966 #undef COMPAT_FEATURE_ON
1967 #undef INCOMPAT_FEATURE_ON
1968 }
1969 
1970 /*
1971  * jbd2_journal_clear_features () - Clear a given journal feature in the
1972  * 				    superblock
1973  * @journal: Journal to act on.
1974  * @compat: bitmask of compatible features
1975  * @ro: bitmask of features that force read-only mount
1976  * @incompat: bitmask of incompatible features
1977  *
1978  * Clear a given journal feature as present on the
1979  * superblock.
1980  */
1981 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1982 				unsigned long ro, unsigned long incompat)
1983 {
1984 	journal_superblock_t *sb;
1985 
1986 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1987 		  compat, ro, incompat);
1988 
1989 	sb = journal->j_superblock;
1990 
1991 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1992 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1993 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1994 	journal->j_revoke_records_per_block =
1995 				journal_revoke_records_per_block(journal);
1996 }
1997 EXPORT_SYMBOL(jbd2_journal_clear_features);
1998 
1999 /**
2000  * int jbd2_journal_flush () - Flush journal
2001  * @journal: Journal to act on.
2002  *
2003  * Flush all data for a given journal to disk and empty the journal.
2004  * Filesystems can use this when remounting readonly to ensure that
2005  * recovery does not need to happen on remount.
2006  */
2007 
2008 int jbd2_journal_flush(journal_t *journal)
2009 {
2010 	int err = 0;
2011 	transaction_t *transaction = NULL;
2012 
2013 	write_lock(&journal->j_state_lock);
2014 
2015 	/* Force everything buffered to the log... */
2016 	if (journal->j_running_transaction) {
2017 		transaction = journal->j_running_transaction;
2018 		__jbd2_log_start_commit(journal, transaction->t_tid);
2019 	} else if (journal->j_committing_transaction)
2020 		transaction = journal->j_committing_transaction;
2021 
2022 	/* Wait for the log commit to complete... */
2023 	if (transaction) {
2024 		tid_t tid = transaction->t_tid;
2025 
2026 		write_unlock(&journal->j_state_lock);
2027 		jbd2_log_wait_commit(journal, tid);
2028 	} else {
2029 		write_unlock(&journal->j_state_lock);
2030 	}
2031 
2032 	/* ...and flush everything in the log out to disk. */
2033 	spin_lock(&journal->j_list_lock);
2034 	while (!err && journal->j_checkpoint_transactions != NULL) {
2035 		spin_unlock(&journal->j_list_lock);
2036 		mutex_lock_io(&journal->j_checkpoint_mutex);
2037 		err = jbd2_log_do_checkpoint(journal);
2038 		mutex_unlock(&journal->j_checkpoint_mutex);
2039 		spin_lock(&journal->j_list_lock);
2040 	}
2041 	spin_unlock(&journal->j_list_lock);
2042 
2043 	if (is_journal_aborted(journal))
2044 		return -EIO;
2045 
2046 	mutex_lock_io(&journal->j_checkpoint_mutex);
2047 	if (!err) {
2048 		err = jbd2_cleanup_journal_tail(journal);
2049 		if (err < 0) {
2050 			mutex_unlock(&journal->j_checkpoint_mutex);
2051 			goto out;
2052 		}
2053 		err = 0;
2054 	}
2055 
2056 	/* Finally, mark the journal as really needing no recovery.
2057 	 * This sets s_start==0 in the underlying superblock, which is
2058 	 * the magic code for a fully-recovered superblock.  Any future
2059 	 * commits of data to the journal will restore the current
2060 	 * s_start value. */
2061 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2062 	mutex_unlock(&journal->j_checkpoint_mutex);
2063 	write_lock(&journal->j_state_lock);
2064 	J_ASSERT(!journal->j_running_transaction);
2065 	J_ASSERT(!journal->j_committing_transaction);
2066 	J_ASSERT(!journal->j_checkpoint_transactions);
2067 	J_ASSERT(journal->j_head == journal->j_tail);
2068 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2069 	write_unlock(&journal->j_state_lock);
2070 out:
2071 	return err;
2072 }
2073 
2074 /**
2075  * int jbd2_journal_wipe() - Wipe journal contents
2076  * @journal: Journal to act on.
2077  * @write: flag (see below)
2078  *
2079  * Wipe out all of the contents of a journal, safely.  This will produce
2080  * a warning if the journal contains any valid recovery information.
2081  * Must be called between journal_init_*() and jbd2_journal_load().
2082  *
2083  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2084  * we merely suppress recovery.
2085  */
2086 
2087 int jbd2_journal_wipe(journal_t *journal, int write)
2088 {
2089 	int err = 0;
2090 
2091 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2092 
2093 	err = load_superblock(journal);
2094 	if (err)
2095 		return err;
2096 
2097 	if (!journal->j_tail)
2098 		goto no_recovery;
2099 
2100 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2101 		write ? "Clearing" : "Ignoring");
2102 
2103 	err = jbd2_journal_skip_recovery(journal);
2104 	if (write) {
2105 		/* Lock to make assertions happy... */
2106 		mutex_lock_io(&journal->j_checkpoint_mutex);
2107 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2108 		mutex_unlock(&journal->j_checkpoint_mutex);
2109 	}
2110 
2111  no_recovery:
2112 	return err;
2113 }
2114 
2115 /**
2116  * void jbd2_journal_abort () - Shutdown the journal immediately.
2117  * @journal: the journal to shutdown.
2118  * @errno:   an error number to record in the journal indicating
2119  *           the reason for the shutdown.
2120  *
2121  * Perform a complete, immediate shutdown of the ENTIRE
2122  * journal (not of a single transaction).  This operation cannot be
2123  * undone without closing and reopening the journal.
2124  *
2125  * The jbd2_journal_abort function is intended to support higher level error
2126  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2127  * mode.
2128  *
2129  * Journal abort has very specific semantics.  Any existing dirty,
2130  * unjournaled buffers in the main filesystem will still be written to
2131  * disk by bdflush, but the journaling mechanism will be suspended
2132  * immediately and no further transaction commits will be honoured.
2133  *
2134  * Any dirty, journaled buffers will be written back to disk without
2135  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2136  * filesystem, but we _do_ attempt to leave as much data as possible
2137  * behind for fsck to use for cleanup.
2138  *
2139  * Any attempt to get a new transaction handle on a journal which is in
2140  * ABORT state will just result in an -EROFS error return.  A
2141  * jbd2_journal_stop on an existing handle will return -EIO if we have
2142  * entered abort state during the update.
2143  *
2144  * Recursive transactions are not disturbed by journal abort until the
2145  * final jbd2_journal_stop, which will receive the -EIO error.
2146  *
2147  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2148  * which will be recorded (if possible) in the journal superblock.  This
2149  * allows a client to record failure conditions in the middle of a
2150  * transaction without having to complete the transaction to record the
2151  * failure to disk.  ext3_error, for example, now uses this
2152  * functionality.
2153  *
2154  */
2155 
2156 void jbd2_journal_abort(journal_t *journal, int errno)
2157 {
2158 	transaction_t *transaction;
2159 
2160 	/*
2161 	 * Lock the aborting procedure until everything is done, this avoid
2162 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2163 	 * ensure panic after the error info is written into journal's
2164 	 * superblock.
2165 	 */
2166 	mutex_lock(&journal->j_abort_mutex);
2167 	/*
2168 	 * ESHUTDOWN always takes precedence because a file system check
2169 	 * caused by any other journal abort error is not required after
2170 	 * a shutdown triggered.
2171 	 */
2172 	write_lock(&journal->j_state_lock);
2173 	if (journal->j_flags & JBD2_ABORT) {
2174 		int old_errno = journal->j_errno;
2175 
2176 		write_unlock(&journal->j_state_lock);
2177 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2178 			journal->j_errno = errno;
2179 			jbd2_journal_update_sb_errno(journal);
2180 		}
2181 		mutex_unlock(&journal->j_abort_mutex);
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * Mark the abort as occurred and start current running transaction
2187 	 * to release all journaled buffer.
2188 	 */
2189 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2190 
2191 	journal->j_flags |= JBD2_ABORT;
2192 	journal->j_errno = errno;
2193 	transaction = journal->j_running_transaction;
2194 	if (transaction)
2195 		__jbd2_log_start_commit(journal, transaction->t_tid);
2196 	write_unlock(&journal->j_state_lock);
2197 
2198 	/*
2199 	 * Record errno to the journal super block, so that fsck and jbd2
2200 	 * layer could realise that a filesystem check is needed.
2201 	 */
2202 	jbd2_journal_update_sb_errno(journal);
2203 	mutex_unlock(&journal->j_abort_mutex);
2204 }
2205 
2206 /**
2207  * int jbd2_journal_errno () - returns the journal's error state.
2208  * @journal: journal to examine.
2209  *
2210  * This is the errno number set with jbd2_journal_abort(), the last
2211  * time the journal was mounted - if the journal was stopped
2212  * without calling abort this will be 0.
2213  *
2214  * If the journal has been aborted on this mount time -EROFS will
2215  * be returned.
2216  */
2217 int jbd2_journal_errno(journal_t *journal)
2218 {
2219 	int err;
2220 
2221 	read_lock(&journal->j_state_lock);
2222 	if (journal->j_flags & JBD2_ABORT)
2223 		err = -EROFS;
2224 	else
2225 		err = journal->j_errno;
2226 	read_unlock(&journal->j_state_lock);
2227 	return err;
2228 }
2229 
2230 /**
2231  * int jbd2_journal_clear_err () - clears the journal's error state
2232  * @journal: journal to act on.
2233  *
2234  * An error must be cleared or acked to take a FS out of readonly
2235  * mode.
2236  */
2237 int jbd2_journal_clear_err(journal_t *journal)
2238 {
2239 	int err = 0;
2240 
2241 	write_lock(&journal->j_state_lock);
2242 	if (journal->j_flags & JBD2_ABORT)
2243 		err = -EROFS;
2244 	else
2245 		journal->j_errno = 0;
2246 	write_unlock(&journal->j_state_lock);
2247 	return err;
2248 }
2249 
2250 /**
2251  * void jbd2_journal_ack_err() - Ack journal err.
2252  * @journal: journal to act on.
2253  *
2254  * An error must be cleared or acked to take a FS out of readonly
2255  * mode.
2256  */
2257 void jbd2_journal_ack_err(journal_t *journal)
2258 {
2259 	write_lock(&journal->j_state_lock);
2260 	if (journal->j_errno)
2261 		journal->j_flags |= JBD2_ACK_ERR;
2262 	write_unlock(&journal->j_state_lock);
2263 }
2264 
2265 int jbd2_journal_blocks_per_page(struct inode *inode)
2266 {
2267 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2268 }
2269 
2270 /*
2271  * helper functions to deal with 32 or 64bit block numbers.
2272  */
2273 size_t journal_tag_bytes(journal_t *journal)
2274 {
2275 	size_t sz;
2276 
2277 	if (jbd2_has_feature_csum3(journal))
2278 		return sizeof(journal_block_tag3_t);
2279 
2280 	sz = sizeof(journal_block_tag_t);
2281 
2282 	if (jbd2_has_feature_csum2(journal))
2283 		sz += sizeof(__u16);
2284 
2285 	if (jbd2_has_feature_64bit(journal))
2286 		return sz;
2287 	else
2288 		return sz - sizeof(__u32);
2289 }
2290 
2291 /*
2292  * JBD memory management
2293  *
2294  * These functions are used to allocate block-sized chunks of memory
2295  * used for making copies of buffer_head data.  Very often it will be
2296  * page-sized chunks of data, but sometimes it will be in
2297  * sub-page-size chunks.  (For example, 16k pages on Power systems
2298  * with a 4k block file system.)  For blocks smaller than a page, we
2299  * use a SLAB allocator.  There are slab caches for each block size,
2300  * which are allocated at mount time, if necessary, and we only free
2301  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2302  * this reason we don't need to a mutex to protect access to
2303  * jbd2_slab[] allocating or releasing memory; only in
2304  * jbd2_journal_create_slab().
2305  */
2306 #define JBD2_MAX_SLABS 8
2307 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2308 
2309 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2310 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2311 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2312 };
2313 
2314 
2315 static void jbd2_journal_destroy_slabs(void)
2316 {
2317 	int i;
2318 
2319 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2320 		kmem_cache_destroy(jbd2_slab[i]);
2321 		jbd2_slab[i] = NULL;
2322 	}
2323 }
2324 
2325 static int jbd2_journal_create_slab(size_t size)
2326 {
2327 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2328 	int i = order_base_2(size) - 10;
2329 	size_t slab_size;
2330 
2331 	if (size == PAGE_SIZE)
2332 		return 0;
2333 
2334 	if (i >= JBD2_MAX_SLABS)
2335 		return -EINVAL;
2336 
2337 	if (unlikely(i < 0))
2338 		i = 0;
2339 	mutex_lock(&jbd2_slab_create_mutex);
2340 	if (jbd2_slab[i]) {
2341 		mutex_unlock(&jbd2_slab_create_mutex);
2342 		return 0;	/* Already created */
2343 	}
2344 
2345 	slab_size = 1 << (i+10);
2346 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2347 					 slab_size, 0, NULL);
2348 	mutex_unlock(&jbd2_slab_create_mutex);
2349 	if (!jbd2_slab[i]) {
2350 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2351 		return -ENOMEM;
2352 	}
2353 	return 0;
2354 }
2355 
2356 static struct kmem_cache *get_slab(size_t size)
2357 {
2358 	int i = order_base_2(size) - 10;
2359 
2360 	BUG_ON(i >= JBD2_MAX_SLABS);
2361 	if (unlikely(i < 0))
2362 		i = 0;
2363 	BUG_ON(jbd2_slab[i] == NULL);
2364 	return jbd2_slab[i];
2365 }
2366 
2367 void *jbd2_alloc(size_t size, gfp_t flags)
2368 {
2369 	void *ptr;
2370 
2371 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2372 
2373 	if (size < PAGE_SIZE)
2374 		ptr = kmem_cache_alloc(get_slab(size), flags);
2375 	else
2376 		ptr = (void *)__get_free_pages(flags, get_order(size));
2377 
2378 	/* Check alignment; SLUB has gotten this wrong in the past,
2379 	 * and this can lead to user data corruption! */
2380 	BUG_ON(((unsigned long) ptr) & (size-1));
2381 
2382 	return ptr;
2383 }
2384 
2385 void jbd2_free(void *ptr, size_t size)
2386 {
2387 	if (size < PAGE_SIZE)
2388 		kmem_cache_free(get_slab(size), ptr);
2389 	else
2390 		free_pages((unsigned long)ptr, get_order(size));
2391 };
2392 
2393 /*
2394  * Journal_head storage management
2395  */
2396 static struct kmem_cache *jbd2_journal_head_cache;
2397 #ifdef CONFIG_JBD2_DEBUG
2398 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2399 #endif
2400 
2401 static int __init jbd2_journal_init_journal_head_cache(void)
2402 {
2403 	J_ASSERT(!jbd2_journal_head_cache);
2404 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2405 				sizeof(struct journal_head),
2406 				0,		/* offset */
2407 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2408 				NULL);		/* ctor */
2409 	if (!jbd2_journal_head_cache) {
2410 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2411 		return -ENOMEM;
2412 	}
2413 	return 0;
2414 }
2415 
2416 static void jbd2_journal_destroy_journal_head_cache(void)
2417 {
2418 	kmem_cache_destroy(jbd2_journal_head_cache);
2419 	jbd2_journal_head_cache = NULL;
2420 }
2421 
2422 /*
2423  * journal_head splicing and dicing
2424  */
2425 static struct journal_head *journal_alloc_journal_head(void)
2426 {
2427 	struct journal_head *ret;
2428 
2429 #ifdef CONFIG_JBD2_DEBUG
2430 	atomic_inc(&nr_journal_heads);
2431 #endif
2432 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2433 	if (!ret) {
2434 		jbd_debug(1, "out of memory for journal_head\n");
2435 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2436 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2437 				GFP_NOFS | __GFP_NOFAIL);
2438 	}
2439 	if (ret)
2440 		spin_lock_init(&ret->b_state_lock);
2441 	return ret;
2442 }
2443 
2444 static void journal_free_journal_head(struct journal_head *jh)
2445 {
2446 #ifdef CONFIG_JBD2_DEBUG
2447 	atomic_dec(&nr_journal_heads);
2448 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2449 #endif
2450 	kmem_cache_free(jbd2_journal_head_cache, jh);
2451 }
2452 
2453 /*
2454  * A journal_head is attached to a buffer_head whenever JBD has an
2455  * interest in the buffer.
2456  *
2457  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2458  * is set.  This bit is tested in core kernel code where we need to take
2459  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2460  * there.
2461  *
2462  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2463  *
2464  * When a buffer has its BH_JBD bit set it is immune from being released by
2465  * core kernel code, mainly via ->b_count.
2466  *
2467  * A journal_head is detached from its buffer_head when the journal_head's
2468  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2469  * transaction (b_cp_transaction) hold their references to b_jcount.
2470  *
2471  * Various places in the kernel want to attach a journal_head to a buffer_head
2472  * _before_ attaching the journal_head to a transaction.  To protect the
2473  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2474  * journal_head's b_jcount refcount by one.  The caller must call
2475  * jbd2_journal_put_journal_head() to undo this.
2476  *
2477  * So the typical usage would be:
2478  *
2479  *	(Attach a journal_head if needed.  Increments b_jcount)
2480  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2481  *	...
2482  *      (Get another reference for transaction)
2483  *	jbd2_journal_grab_journal_head(bh);
2484  *	jh->b_transaction = xxx;
2485  *	(Put original reference)
2486  *	jbd2_journal_put_journal_head(jh);
2487  */
2488 
2489 /*
2490  * Give a buffer_head a journal_head.
2491  *
2492  * May sleep.
2493  */
2494 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2495 {
2496 	struct journal_head *jh;
2497 	struct journal_head *new_jh = NULL;
2498 
2499 repeat:
2500 	if (!buffer_jbd(bh))
2501 		new_jh = journal_alloc_journal_head();
2502 
2503 	jbd_lock_bh_journal_head(bh);
2504 	if (buffer_jbd(bh)) {
2505 		jh = bh2jh(bh);
2506 	} else {
2507 		J_ASSERT_BH(bh,
2508 			(atomic_read(&bh->b_count) > 0) ||
2509 			(bh->b_page && bh->b_page->mapping));
2510 
2511 		if (!new_jh) {
2512 			jbd_unlock_bh_journal_head(bh);
2513 			goto repeat;
2514 		}
2515 
2516 		jh = new_jh;
2517 		new_jh = NULL;		/* We consumed it */
2518 		set_buffer_jbd(bh);
2519 		bh->b_private = jh;
2520 		jh->b_bh = bh;
2521 		get_bh(bh);
2522 		BUFFER_TRACE(bh, "added journal_head");
2523 	}
2524 	jh->b_jcount++;
2525 	jbd_unlock_bh_journal_head(bh);
2526 	if (new_jh)
2527 		journal_free_journal_head(new_jh);
2528 	return bh->b_private;
2529 }
2530 
2531 /*
2532  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2533  * having a journal_head, return NULL
2534  */
2535 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2536 {
2537 	struct journal_head *jh = NULL;
2538 
2539 	jbd_lock_bh_journal_head(bh);
2540 	if (buffer_jbd(bh)) {
2541 		jh = bh2jh(bh);
2542 		jh->b_jcount++;
2543 	}
2544 	jbd_unlock_bh_journal_head(bh);
2545 	return jh;
2546 }
2547 
2548 static void __journal_remove_journal_head(struct buffer_head *bh)
2549 {
2550 	struct journal_head *jh = bh2jh(bh);
2551 
2552 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2553 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2554 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2555 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2556 	J_ASSERT_BH(bh, buffer_jbd(bh));
2557 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2558 	BUFFER_TRACE(bh, "remove journal_head");
2559 
2560 	/* Unlink before dropping the lock */
2561 	bh->b_private = NULL;
2562 	jh->b_bh = NULL;	/* debug, really */
2563 	clear_buffer_jbd(bh);
2564 }
2565 
2566 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2567 {
2568 	if (jh->b_frozen_data) {
2569 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2570 		jbd2_free(jh->b_frozen_data, b_size);
2571 	}
2572 	if (jh->b_committed_data) {
2573 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2574 		jbd2_free(jh->b_committed_data, b_size);
2575 	}
2576 	journal_free_journal_head(jh);
2577 }
2578 
2579 /*
2580  * Drop a reference on the passed journal_head.  If it fell to zero then
2581  * release the journal_head from the buffer_head.
2582  */
2583 void jbd2_journal_put_journal_head(struct journal_head *jh)
2584 {
2585 	struct buffer_head *bh = jh2bh(jh);
2586 
2587 	jbd_lock_bh_journal_head(bh);
2588 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2589 	--jh->b_jcount;
2590 	if (!jh->b_jcount) {
2591 		__journal_remove_journal_head(bh);
2592 		jbd_unlock_bh_journal_head(bh);
2593 		journal_release_journal_head(jh, bh->b_size);
2594 		__brelse(bh);
2595 	} else {
2596 		jbd_unlock_bh_journal_head(bh);
2597 	}
2598 }
2599 
2600 /*
2601  * Initialize jbd inode head
2602  */
2603 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2604 {
2605 	jinode->i_transaction = NULL;
2606 	jinode->i_next_transaction = NULL;
2607 	jinode->i_vfs_inode = inode;
2608 	jinode->i_flags = 0;
2609 	jinode->i_dirty_start = 0;
2610 	jinode->i_dirty_end = 0;
2611 	INIT_LIST_HEAD(&jinode->i_list);
2612 }
2613 
2614 /*
2615  * Function to be called before we start removing inode from memory (i.e.,
2616  * clear_inode() is a fine place to be called from). It removes inode from
2617  * transaction's lists.
2618  */
2619 void jbd2_journal_release_jbd_inode(journal_t *journal,
2620 				    struct jbd2_inode *jinode)
2621 {
2622 	if (!journal)
2623 		return;
2624 restart:
2625 	spin_lock(&journal->j_list_lock);
2626 	/* Is commit writing out inode - we have to wait */
2627 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2628 		wait_queue_head_t *wq;
2629 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2630 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2631 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2632 		spin_unlock(&journal->j_list_lock);
2633 		schedule();
2634 		finish_wait(wq, &wait.wq_entry);
2635 		goto restart;
2636 	}
2637 
2638 	if (jinode->i_transaction) {
2639 		list_del(&jinode->i_list);
2640 		jinode->i_transaction = NULL;
2641 	}
2642 	spin_unlock(&journal->j_list_lock);
2643 }
2644 
2645 
2646 #ifdef CONFIG_PROC_FS
2647 
2648 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2649 
2650 static void __init jbd2_create_jbd_stats_proc_entry(void)
2651 {
2652 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2653 }
2654 
2655 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2656 {
2657 	if (proc_jbd2_stats)
2658 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2659 }
2660 
2661 #else
2662 
2663 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2664 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2665 
2666 #endif
2667 
2668 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2669 
2670 static int __init jbd2_journal_init_inode_cache(void)
2671 {
2672 	J_ASSERT(!jbd2_inode_cache);
2673 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2674 	if (!jbd2_inode_cache) {
2675 		pr_emerg("JBD2: failed to create inode cache\n");
2676 		return -ENOMEM;
2677 	}
2678 	return 0;
2679 }
2680 
2681 static int __init jbd2_journal_init_handle_cache(void)
2682 {
2683 	J_ASSERT(!jbd2_handle_cache);
2684 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2685 	if (!jbd2_handle_cache) {
2686 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2687 		return -ENOMEM;
2688 	}
2689 	return 0;
2690 }
2691 
2692 static void jbd2_journal_destroy_inode_cache(void)
2693 {
2694 	kmem_cache_destroy(jbd2_inode_cache);
2695 	jbd2_inode_cache = NULL;
2696 }
2697 
2698 static void jbd2_journal_destroy_handle_cache(void)
2699 {
2700 	kmem_cache_destroy(jbd2_handle_cache);
2701 	jbd2_handle_cache = NULL;
2702 }
2703 
2704 /*
2705  * Module startup and shutdown
2706  */
2707 
2708 static int __init journal_init_caches(void)
2709 {
2710 	int ret;
2711 
2712 	ret = jbd2_journal_init_revoke_record_cache();
2713 	if (ret == 0)
2714 		ret = jbd2_journal_init_revoke_table_cache();
2715 	if (ret == 0)
2716 		ret = jbd2_journal_init_journal_head_cache();
2717 	if (ret == 0)
2718 		ret = jbd2_journal_init_handle_cache();
2719 	if (ret == 0)
2720 		ret = jbd2_journal_init_inode_cache();
2721 	if (ret == 0)
2722 		ret = jbd2_journal_init_transaction_cache();
2723 	return ret;
2724 }
2725 
2726 static void jbd2_journal_destroy_caches(void)
2727 {
2728 	jbd2_journal_destroy_revoke_record_cache();
2729 	jbd2_journal_destroy_revoke_table_cache();
2730 	jbd2_journal_destroy_journal_head_cache();
2731 	jbd2_journal_destroy_handle_cache();
2732 	jbd2_journal_destroy_inode_cache();
2733 	jbd2_journal_destroy_transaction_cache();
2734 	jbd2_journal_destroy_slabs();
2735 }
2736 
2737 static int __init journal_init(void)
2738 {
2739 	int ret;
2740 
2741 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2742 
2743 	ret = journal_init_caches();
2744 	if (ret == 0) {
2745 		jbd2_create_jbd_stats_proc_entry();
2746 	} else {
2747 		jbd2_journal_destroy_caches();
2748 	}
2749 	return ret;
2750 }
2751 
2752 static void __exit journal_exit(void)
2753 {
2754 #ifdef CONFIG_JBD2_DEBUG
2755 	int n = atomic_read(&nr_journal_heads);
2756 	if (n)
2757 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2758 #endif
2759 	jbd2_remove_jbd_stats_proc_entry();
2760 	jbd2_journal_destroy_caches();
2761 }
2762 
2763 MODULE_LICENSE("GPL");
2764 module_init(journal_init);
2765 module_exit(journal_exit);
2766 
2767