1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 #if 0 70 EXPORT_SYMBOL(journal_sync_buffer); 71 #endif 72 EXPORT_SYMBOL(jbd2_journal_flush); 73 EXPORT_SYMBOL(jbd2_journal_revoke); 74 75 EXPORT_SYMBOL(jbd2_journal_init_dev); 76 EXPORT_SYMBOL(jbd2_journal_init_inode); 77 EXPORT_SYMBOL(jbd2_journal_check_used_features); 78 EXPORT_SYMBOL(jbd2_journal_check_available_features); 79 EXPORT_SYMBOL(jbd2_journal_set_features); 80 EXPORT_SYMBOL(jbd2_journal_load); 81 EXPORT_SYMBOL(jbd2_journal_destroy); 82 EXPORT_SYMBOL(jbd2_journal_abort); 83 EXPORT_SYMBOL(jbd2_journal_errno); 84 EXPORT_SYMBOL(jbd2_journal_ack_err); 85 EXPORT_SYMBOL(jbd2_journal_clear_err); 86 EXPORT_SYMBOL(jbd2_log_wait_commit); 87 EXPORT_SYMBOL(jbd2_log_start_commit); 88 EXPORT_SYMBOL(jbd2_journal_start_commit); 89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 90 EXPORT_SYMBOL(jbd2_journal_wipe); 91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 92 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 94 EXPORT_SYMBOL(jbd2_journal_force_commit); 95 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 100 EXPORT_SYMBOL(jbd2_inode_cache); 101 102 static void __journal_abort_soft (journal_t *journal, int errno); 103 static int jbd2_journal_create_slab(size_t slab_size); 104 105 #ifdef CONFIG_JBD2_DEBUG 106 void __jbd2_debug(int level, const char *file, const char *func, 107 unsigned int line, const char *fmt, ...) 108 { 109 struct va_format vaf; 110 va_list args; 111 112 if (level > jbd2_journal_enable_debug) 113 return; 114 va_start(args, fmt); 115 vaf.fmt = fmt; 116 vaf.va = &args; 117 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 118 va_end(args); 119 } 120 EXPORT_SYMBOL(__jbd2_debug); 121 #endif 122 123 /* Checksumming functions */ 124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 125 { 126 if (!jbd2_journal_has_csum_v2or3_feature(j)) 127 return 1; 128 129 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 130 } 131 132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 133 { 134 __u32 csum; 135 __be32 old_csum; 136 137 old_csum = sb->s_checksum; 138 sb->s_checksum = 0; 139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 140 sb->s_checksum = old_csum; 141 142 return cpu_to_be32(csum); 143 } 144 145 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 146 { 147 if (!jbd2_journal_has_csum_v2or3(j)) 148 return 1; 149 150 return sb->s_checksum == jbd2_superblock_csum(j, sb); 151 } 152 153 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 154 { 155 if (!jbd2_journal_has_csum_v2or3(j)) 156 return; 157 158 sb->s_checksum = jbd2_superblock_csum(j, sb); 159 } 160 161 /* 162 * Helper function used to manage commit timeouts 163 */ 164 165 static void commit_timeout(struct timer_list *t) 166 { 167 journal_t *journal = from_timer(journal, t, j_commit_timer); 168 169 wake_up_process(journal->j_task); 170 } 171 172 /* 173 * kjournald2: The main thread function used to manage a logging device 174 * journal. 175 * 176 * This kernel thread is responsible for two things: 177 * 178 * 1) COMMIT: Every so often we need to commit the current state of the 179 * filesystem to disk. The journal thread is responsible for writing 180 * all of the metadata buffers to disk. 181 * 182 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 183 * of the data in that part of the log has been rewritten elsewhere on 184 * the disk. Flushing these old buffers to reclaim space in the log is 185 * known as checkpointing, and this thread is responsible for that job. 186 */ 187 188 static int kjournald2(void *arg) 189 { 190 journal_t *journal = arg; 191 transaction_t *transaction; 192 193 /* 194 * Set up an interval timer which can be used to trigger a commit wakeup 195 * after the commit interval expires 196 */ 197 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 198 199 set_freezable(); 200 201 /* Record that the journal thread is running */ 202 journal->j_task = current; 203 wake_up(&journal->j_wait_done_commit); 204 205 /* 206 * Make sure that no allocations from this kernel thread will ever 207 * recurse to the fs layer because we are responsible for the 208 * transaction commit and any fs involvement might get stuck waiting for 209 * the trasn. commit. 210 */ 211 memalloc_nofs_save(); 212 213 /* 214 * And now, wait forever for commit wakeup events. 215 */ 216 write_lock(&journal->j_state_lock); 217 218 loop: 219 if (journal->j_flags & JBD2_UNMOUNT) 220 goto end_loop; 221 222 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 223 journal->j_commit_sequence, journal->j_commit_request); 224 225 if (journal->j_commit_sequence != journal->j_commit_request) { 226 jbd_debug(1, "OK, requests differ\n"); 227 write_unlock(&journal->j_state_lock); 228 del_timer_sync(&journal->j_commit_timer); 229 jbd2_journal_commit_transaction(journal); 230 write_lock(&journal->j_state_lock); 231 goto loop; 232 } 233 234 wake_up(&journal->j_wait_done_commit); 235 if (freezing(current)) { 236 /* 237 * The simpler the better. Flushing journal isn't a 238 * good idea, because that depends on threads that may 239 * be already stopped. 240 */ 241 jbd_debug(1, "Now suspending kjournald2\n"); 242 write_unlock(&journal->j_state_lock); 243 try_to_freeze(); 244 write_lock(&journal->j_state_lock); 245 } else { 246 /* 247 * We assume on resume that commits are already there, 248 * so we don't sleep 249 */ 250 DEFINE_WAIT(wait); 251 int should_sleep = 1; 252 253 prepare_to_wait(&journal->j_wait_commit, &wait, 254 TASK_INTERRUPTIBLE); 255 if (journal->j_commit_sequence != journal->j_commit_request) 256 should_sleep = 0; 257 transaction = journal->j_running_transaction; 258 if (transaction && time_after_eq(jiffies, 259 transaction->t_expires)) 260 should_sleep = 0; 261 if (journal->j_flags & JBD2_UNMOUNT) 262 should_sleep = 0; 263 if (should_sleep) { 264 write_unlock(&journal->j_state_lock); 265 schedule(); 266 write_lock(&journal->j_state_lock); 267 } 268 finish_wait(&journal->j_wait_commit, &wait); 269 } 270 271 jbd_debug(1, "kjournald2 wakes\n"); 272 273 /* 274 * Were we woken up by a commit wakeup event? 275 */ 276 transaction = journal->j_running_transaction; 277 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 278 journal->j_commit_request = transaction->t_tid; 279 jbd_debug(1, "woke because of timeout\n"); 280 } 281 goto loop; 282 283 end_loop: 284 del_timer_sync(&journal->j_commit_timer); 285 journal->j_task = NULL; 286 wake_up(&journal->j_wait_done_commit); 287 jbd_debug(1, "Journal thread exiting.\n"); 288 write_unlock(&journal->j_state_lock); 289 return 0; 290 } 291 292 static int jbd2_journal_start_thread(journal_t *journal) 293 { 294 struct task_struct *t; 295 296 t = kthread_run(kjournald2, journal, "jbd2/%s", 297 journal->j_devname); 298 if (IS_ERR(t)) 299 return PTR_ERR(t); 300 301 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 302 return 0; 303 } 304 305 static void journal_kill_thread(journal_t *journal) 306 { 307 write_lock(&journal->j_state_lock); 308 journal->j_flags |= JBD2_UNMOUNT; 309 310 while (journal->j_task) { 311 write_unlock(&journal->j_state_lock); 312 wake_up(&journal->j_wait_commit); 313 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 314 write_lock(&journal->j_state_lock); 315 } 316 write_unlock(&journal->j_state_lock); 317 } 318 319 /* 320 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 321 * 322 * Writes a metadata buffer to a given disk block. The actual IO is not 323 * performed but a new buffer_head is constructed which labels the data 324 * to be written with the correct destination disk block. 325 * 326 * Any magic-number escaping which needs to be done will cause a 327 * copy-out here. If the buffer happens to start with the 328 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 329 * magic number is only written to the log for descripter blocks. In 330 * this case, we copy the data and replace the first word with 0, and we 331 * return a result code which indicates that this buffer needs to be 332 * marked as an escaped buffer in the corresponding log descriptor 333 * block. The missing word can then be restored when the block is read 334 * during recovery. 335 * 336 * If the source buffer has already been modified by a new transaction 337 * since we took the last commit snapshot, we use the frozen copy of 338 * that data for IO. If we end up using the existing buffer_head's data 339 * for the write, then we have to make sure nobody modifies it while the 340 * IO is in progress. do_get_write_access() handles this. 341 * 342 * The function returns a pointer to the buffer_head to be used for IO. 343 * 344 * 345 * Return value: 346 * <0: Error 347 * >=0: Finished OK 348 * 349 * On success: 350 * Bit 0 set == escape performed on the data 351 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 352 */ 353 354 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 355 struct journal_head *jh_in, 356 struct buffer_head **bh_out, 357 sector_t blocknr) 358 { 359 int need_copy_out = 0; 360 int done_copy_out = 0; 361 int do_escape = 0; 362 char *mapped_data; 363 struct buffer_head *new_bh; 364 struct page *new_page; 365 unsigned int new_offset; 366 struct buffer_head *bh_in = jh2bh(jh_in); 367 journal_t *journal = transaction->t_journal; 368 369 /* 370 * The buffer really shouldn't be locked: only the current committing 371 * transaction is allowed to write it, so nobody else is allowed 372 * to do any IO. 373 * 374 * akpm: except if we're journalling data, and write() output is 375 * also part of a shared mapping, and another thread has 376 * decided to launch a writepage() against this buffer. 377 */ 378 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 379 380 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 381 382 /* keep subsequent assertions sane */ 383 atomic_set(&new_bh->b_count, 1); 384 385 jbd_lock_bh_state(bh_in); 386 repeat: 387 /* 388 * If a new transaction has already done a buffer copy-out, then 389 * we use that version of the data for the commit. 390 */ 391 if (jh_in->b_frozen_data) { 392 done_copy_out = 1; 393 new_page = virt_to_page(jh_in->b_frozen_data); 394 new_offset = offset_in_page(jh_in->b_frozen_data); 395 } else { 396 new_page = jh2bh(jh_in)->b_page; 397 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 398 } 399 400 mapped_data = kmap_atomic(new_page); 401 /* 402 * Fire data frozen trigger if data already wasn't frozen. Do this 403 * before checking for escaping, as the trigger may modify the magic 404 * offset. If a copy-out happens afterwards, it will have the correct 405 * data in the buffer. 406 */ 407 if (!done_copy_out) 408 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 409 jh_in->b_triggers); 410 411 /* 412 * Check for escaping 413 */ 414 if (*((__be32 *)(mapped_data + new_offset)) == 415 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 416 need_copy_out = 1; 417 do_escape = 1; 418 } 419 kunmap_atomic(mapped_data); 420 421 /* 422 * Do we need to do a data copy? 423 */ 424 if (need_copy_out && !done_copy_out) { 425 char *tmp; 426 427 jbd_unlock_bh_state(bh_in); 428 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 429 if (!tmp) { 430 brelse(new_bh); 431 return -ENOMEM; 432 } 433 jbd_lock_bh_state(bh_in); 434 if (jh_in->b_frozen_data) { 435 jbd2_free(tmp, bh_in->b_size); 436 goto repeat; 437 } 438 439 jh_in->b_frozen_data = tmp; 440 mapped_data = kmap_atomic(new_page); 441 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 442 kunmap_atomic(mapped_data); 443 444 new_page = virt_to_page(tmp); 445 new_offset = offset_in_page(tmp); 446 done_copy_out = 1; 447 448 /* 449 * This isn't strictly necessary, as we're using frozen 450 * data for the escaping, but it keeps consistency with 451 * b_frozen_data usage. 452 */ 453 jh_in->b_frozen_triggers = jh_in->b_triggers; 454 } 455 456 /* 457 * Did we need to do an escaping? Now we've done all the 458 * copying, we can finally do so. 459 */ 460 if (do_escape) { 461 mapped_data = kmap_atomic(new_page); 462 *((unsigned int *)(mapped_data + new_offset)) = 0; 463 kunmap_atomic(mapped_data); 464 } 465 466 set_bh_page(new_bh, new_page, new_offset); 467 new_bh->b_size = bh_in->b_size; 468 new_bh->b_bdev = journal->j_dev; 469 new_bh->b_blocknr = blocknr; 470 new_bh->b_private = bh_in; 471 set_buffer_mapped(new_bh); 472 set_buffer_dirty(new_bh); 473 474 *bh_out = new_bh; 475 476 /* 477 * The to-be-written buffer needs to get moved to the io queue, 478 * and the original buffer whose contents we are shadowing or 479 * copying is moved to the transaction's shadow queue. 480 */ 481 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 482 spin_lock(&journal->j_list_lock); 483 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 484 spin_unlock(&journal->j_list_lock); 485 set_buffer_shadow(bh_in); 486 jbd_unlock_bh_state(bh_in); 487 488 return do_escape | (done_copy_out << 1); 489 } 490 491 /* 492 * Allocation code for the journal file. Manage the space left in the 493 * journal, so that we can begin checkpointing when appropriate. 494 */ 495 496 /* 497 * Called with j_state_lock locked for writing. 498 * Returns true if a transaction commit was started. 499 */ 500 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 501 { 502 /* Return if the txn has already requested to be committed */ 503 if (journal->j_commit_request == target) 504 return 0; 505 506 /* 507 * The only transaction we can possibly wait upon is the 508 * currently running transaction (if it exists). Otherwise, 509 * the target tid must be an old one. 510 */ 511 if (journal->j_running_transaction && 512 journal->j_running_transaction->t_tid == target) { 513 /* 514 * We want a new commit: OK, mark the request and wakeup the 515 * commit thread. We do _not_ do the commit ourselves. 516 */ 517 518 journal->j_commit_request = target; 519 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 520 journal->j_commit_request, 521 journal->j_commit_sequence); 522 journal->j_running_transaction->t_requested = jiffies; 523 wake_up(&journal->j_wait_commit); 524 return 1; 525 } else if (!tid_geq(journal->j_commit_request, target)) 526 /* This should never happen, but if it does, preserve 527 the evidence before kjournald goes into a loop and 528 increments j_commit_sequence beyond all recognition. */ 529 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 530 journal->j_commit_request, 531 journal->j_commit_sequence, 532 target, journal->j_running_transaction ? 533 journal->j_running_transaction->t_tid : 0); 534 return 0; 535 } 536 537 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 538 { 539 int ret; 540 541 write_lock(&journal->j_state_lock); 542 ret = __jbd2_log_start_commit(journal, tid); 543 write_unlock(&journal->j_state_lock); 544 return ret; 545 } 546 547 /* 548 * Force and wait any uncommitted transactions. We can only force the running 549 * transaction if we don't have an active handle, otherwise, we will deadlock. 550 * Returns: <0 in case of error, 551 * 0 if nothing to commit, 552 * 1 if transaction was successfully committed. 553 */ 554 static int __jbd2_journal_force_commit(journal_t *journal) 555 { 556 transaction_t *transaction = NULL; 557 tid_t tid; 558 int need_to_start = 0, ret = 0; 559 560 read_lock(&journal->j_state_lock); 561 if (journal->j_running_transaction && !current->journal_info) { 562 transaction = journal->j_running_transaction; 563 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 564 need_to_start = 1; 565 } else if (journal->j_committing_transaction) 566 transaction = journal->j_committing_transaction; 567 568 if (!transaction) { 569 /* Nothing to commit */ 570 read_unlock(&journal->j_state_lock); 571 return 0; 572 } 573 tid = transaction->t_tid; 574 read_unlock(&journal->j_state_lock); 575 if (need_to_start) 576 jbd2_log_start_commit(journal, tid); 577 ret = jbd2_log_wait_commit(journal, tid); 578 if (!ret) 579 ret = 1; 580 581 return ret; 582 } 583 584 /** 585 * Force and wait upon a commit if the calling process is not within 586 * transaction. This is used for forcing out undo-protected data which contains 587 * bitmaps, when the fs is running out of space. 588 * 589 * @journal: journal to force 590 * Returns true if progress was made. 591 */ 592 int jbd2_journal_force_commit_nested(journal_t *journal) 593 { 594 int ret; 595 596 ret = __jbd2_journal_force_commit(journal); 597 return ret > 0; 598 } 599 600 /** 601 * int journal_force_commit() - force any uncommitted transactions 602 * @journal: journal to force 603 * 604 * Caller want unconditional commit. We can only force the running transaction 605 * if we don't have an active handle, otherwise, we will deadlock. 606 */ 607 int jbd2_journal_force_commit(journal_t *journal) 608 { 609 int ret; 610 611 J_ASSERT(!current->journal_info); 612 ret = __jbd2_journal_force_commit(journal); 613 if (ret > 0) 614 ret = 0; 615 return ret; 616 } 617 618 /* 619 * Start a commit of the current running transaction (if any). Returns true 620 * if a transaction is going to be committed (or is currently already 621 * committing), and fills its tid in at *ptid 622 */ 623 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 624 { 625 int ret = 0; 626 627 write_lock(&journal->j_state_lock); 628 if (journal->j_running_transaction) { 629 tid_t tid = journal->j_running_transaction->t_tid; 630 631 __jbd2_log_start_commit(journal, tid); 632 /* There's a running transaction and we've just made sure 633 * it's commit has been scheduled. */ 634 if (ptid) 635 *ptid = tid; 636 ret = 1; 637 } else if (journal->j_committing_transaction) { 638 /* 639 * If commit has been started, then we have to wait for 640 * completion of that transaction. 641 */ 642 if (ptid) 643 *ptid = journal->j_committing_transaction->t_tid; 644 ret = 1; 645 } 646 write_unlock(&journal->j_state_lock); 647 return ret; 648 } 649 650 /* 651 * Return 1 if a given transaction has not yet sent barrier request 652 * connected with a transaction commit. If 0 is returned, transaction 653 * may or may not have sent the barrier. Used to avoid sending barrier 654 * twice in common cases. 655 */ 656 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 657 { 658 int ret = 0; 659 transaction_t *commit_trans; 660 661 if (!(journal->j_flags & JBD2_BARRIER)) 662 return 0; 663 read_lock(&journal->j_state_lock); 664 /* Transaction already committed? */ 665 if (tid_geq(journal->j_commit_sequence, tid)) 666 goto out; 667 commit_trans = journal->j_committing_transaction; 668 if (!commit_trans || commit_trans->t_tid != tid) { 669 ret = 1; 670 goto out; 671 } 672 /* 673 * Transaction is being committed and we already proceeded to 674 * submitting a flush to fs partition? 675 */ 676 if (journal->j_fs_dev != journal->j_dev) { 677 if (!commit_trans->t_need_data_flush || 678 commit_trans->t_state >= T_COMMIT_DFLUSH) 679 goto out; 680 } else { 681 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 682 goto out; 683 } 684 ret = 1; 685 out: 686 read_unlock(&journal->j_state_lock); 687 return ret; 688 } 689 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 690 691 /* 692 * Wait for a specified commit to complete. 693 * The caller may not hold the journal lock. 694 */ 695 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 696 { 697 int err = 0; 698 699 read_lock(&journal->j_state_lock); 700 #ifdef CONFIG_PROVE_LOCKING 701 /* 702 * Some callers make sure transaction is already committing and in that 703 * case we cannot block on open handles anymore. So don't warn in that 704 * case. 705 */ 706 if (tid_gt(tid, journal->j_commit_sequence) && 707 (!journal->j_committing_transaction || 708 journal->j_committing_transaction->t_tid != tid)) { 709 read_unlock(&journal->j_state_lock); 710 jbd2_might_wait_for_commit(journal); 711 read_lock(&journal->j_state_lock); 712 } 713 #endif 714 #ifdef CONFIG_JBD2_DEBUG 715 if (!tid_geq(journal->j_commit_request, tid)) { 716 printk(KERN_ERR 717 "%s: error: j_commit_request=%d, tid=%d\n", 718 __func__, journal->j_commit_request, tid); 719 } 720 #endif 721 while (tid_gt(tid, journal->j_commit_sequence)) { 722 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 723 tid, journal->j_commit_sequence); 724 read_unlock(&journal->j_state_lock); 725 wake_up(&journal->j_wait_commit); 726 wait_event(journal->j_wait_done_commit, 727 !tid_gt(tid, journal->j_commit_sequence)); 728 read_lock(&journal->j_state_lock); 729 } 730 read_unlock(&journal->j_state_lock); 731 732 if (unlikely(is_journal_aborted(journal))) 733 err = -EIO; 734 return err; 735 } 736 737 /* Return 1 when transaction with given tid has already committed. */ 738 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 739 { 740 int ret = 1; 741 742 read_lock(&journal->j_state_lock); 743 if (journal->j_running_transaction && 744 journal->j_running_transaction->t_tid == tid) 745 ret = 0; 746 if (journal->j_committing_transaction && 747 journal->j_committing_transaction->t_tid == tid) 748 ret = 0; 749 read_unlock(&journal->j_state_lock); 750 return ret; 751 } 752 EXPORT_SYMBOL(jbd2_transaction_committed); 753 754 /* 755 * When this function returns the transaction corresponding to tid 756 * will be completed. If the transaction has currently running, start 757 * committing that transaction before waiting for it to complete. If 758 * the transaction id is stale, it is by definition already completed, 759 * so just return SUCCESS. 760 */ 761 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 762 { 763 int need_to_wait = 1; 764 765 read_lock(&journal->j_state_lock); 766 if (journal->j_running_transaction && 767 journal->j_running_transaction->t_tid == tid) { 768 if (journal->j_commit_request != tid) { 769 /* transaction not yet started, so request it */ 770 read_unlock(&journal->j_state_lock); 771 jbd2_log_start_commit(journal, tid); 772 goto wait_commit; 773 } 774 } else if (!(journal->j_committing_transaction && 775 journal->j_committing_transaction->t_tid == tid)) 776 need_to_wait = 0; 777 read_unlock(&journal->j_state_lock); 778 if (!need_to_wait) 779 return 0; 780 wait_commit: 781 return jbd2_log_wait_commit(journal, tid); 782 } 783 EXPORT_SYMBOL(jbd2_complete_transaction); 784 785 /* 786 * Log buffer allocation routines: 787 */ 788 789 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 790 { 791 unsigned long blocknr; 792 793 write_lock(&journal->j_state_lock); 794 J_ASSERT(journal->j_free > 1); 795 796 blocknr = journal->j_head; 797 journal->j_head++; 798 journal->j_free--; 799 if (journal->j_head == journal->j_last) 800 journal->j_head = journal->j_first; 801 write_unlock(&journal->j_state_lock); 802 return jbd2_journal_bmap(journal, blocknr, retp); 803 } 804 805 /* 806 * Conversion of logical to physical block numbers for the journal 807 * 808 * On external journals the journal blocks are identity-mapped, so 809 * this is a no-op. If needed, we can use j_blk_offset - everything is 810 * ready. 811 */ 812 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 813 unsigned long long *retp) 814 { 815 int err = 0; 816 unsigned long long ret; 817 818 if (journal->j_inode) { 819 ret = bmap(journal->j_inode, blocknr); 820 if (ret) 821 *retp = ret; 822 else { 823 printk(KERN_ALERT "%s: journal block not found " 824 "at offset %lu on %s\n", 825 __func__, blocknr, journal->j_devname); 826 err = -EIO; 827 __journal_abort_soft(journal, err); 828 } 829 } else { 830 *retp = blocknr; /* +journal->j_blk_offset */ 831 } 832 return err; 833 } 834 835 /* 836 * We play buffer_head aliasing tricks to write data/metadata blocks to 837 * the journal without copying their contents, but for journal 838 * descriptor blocks we do need to generate bona fide buffers. 839 * 840 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 841 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 842 * But we don't bother doing that, so there will be coherency problems with 843 * mmaps of blockdevs which hold live JBD-controlled filesystems. 844 */ 845 struct buffer_head * 846 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 847 { 848 journal_t *journal = transaction->t_journal; 849 struct buffer_head *bh; 850 unsigned long long blocknr; 851 journal_header_t *header; 852 int err; 853 854 err = jbd2_journal_next_log_block(journal, &blocknr); 855 856 if (err) 857 return NULL; 858 859 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 860 if (!bh) 861 return NULL; 862 lock_buffer(bh); 863 memset(bh->b_data, 0, journal->j_blocksize); 864 header = (journal_header_t *)bh->b_data; 865 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 866 header->h_blocktype = cpu_to_be32(type); 867 header->h_sequence = cpu_to_be32(transaction->t_tid); 868 set_buffer_uptodate(bh); 869 unlock_buffer(bh); 870 BUFFER_TRACE(bh, "return this buffer"); 871 return bh; 872 } 873 874 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 875 { 876 struct jbd2_journal_block_tail *tail; 877 __u32 csum; 878 879 if (!jbd2_journal_has_csum_v2or3(j)) 880 return; 881 882 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 883 sizeof(struct jbd2_journal_block_tail)); 884 tail->t_checksum = 0; 885 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 886 tail->t_checksum = cpu_to_be32(csum); 887 } 888 889 /* 890 * Return tid of the oldest transaction in the journal and block in the journal 891 * where the transaction starts. 892 * 893 * If the journal is now empty, return which will be the next transaction ID 894 * we will write and where will that transaction start. 895 * 896 * The return value is 0 if journal tail cannot be pushed any further, 1 if 897 * it can. 898 */ 899 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 900 unsigned long *block) 901 { 902 transaction_t *transaction; 903 int ret; 904 905 read_lock(&journal->j_state_lock); 906 spin_lock(&journal->j_list_lock); 907 transaction = journal->j_checkpoint_transactions; 908 if (transaction) { 909 *tid = transaction->t_tid; 910 *block = transaction->t_log_start; 911 } else if ((transaction = journal->j_committing_transaction) != NULL) { 912 *tid = transaction->t_tid; 913 *block = transaction->t_log_start; 914 } else if ((transaction = journal->j_running_transaction) != NULL) { 915 *tid = transaction->t_tid; 916 *block = journal->j_head; 917 } else { 918 *tid = journal->j_transaction_sequence; 919 *block = journal->j_head; 920 } 921 ret = tid_gt(*tid, journal->j_tail_sequence); 922 spin_unlock(&journal->j_list_lock); 923 read_unlock(&journal->j_state_lock); 924 925 return ret; 926 } 927 928 /* 929 * Update information in journal structure and in on disk journal superblock 930 * about log tail. This function does not check whether information passed in 931 * really pushes log tail further. It's responsibility of the caller to make 932 * sure provided log tail information is valid (e.g. by holding 933 * j_checkpoint_mutex all the time between computing log tail and calling this 934 * function as is the case with jbd2_cleanup_journal_tail()). 935 * 936 * Requires j_checkpoint_mutex 937 */ 938 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 939 { 940 unsigned long freed; 941 int ret; 942 943 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 944 945 /* 946 * We cannot afford for write to remain in drive's caches since as 947 * soon as we update j_tail, next transaction can start reusing journal 948 * space and if we lose sb update during power failure we'd replay 949 * old transaction with possibly newly overwritten data. 950 */ 951 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 952 REQ_SYNC | REQ_FUA); 953 if (ret) 954 goto out; 955 956 write_lock(&journal->j_state_lock); 957 freed = block - journal->j_tail; 958 if (block < journal->j_tail) 959 freed += journal->j_last - journal->j_first; 960 961 trace_jbd2_update_log_tail(journal, tid, block, freed); 962 jbd_debug(1, 963 "Cleaning journal tail from %d to %d (offset %lu), " 964 "freeing %lu\n", 965 journal->j_tail_sequence, tid, block, freed); 966 967 journal->j_free += freed; 968 journal->j_tail_sequence = tid; 969 journal->j_tail = block; 970 write_unlock(&journal->j_state_lock); 971 972 out: 973 return ret; 974 } 975 976 /* 977 * This is a variaon of __jbd2_update_log_tail which checks for validity of 978 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 979 * with other threads updating log tail. 980 */ 981 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 982 { 983 mutex_lock_io(&journal->j_checkpoint_mutex); 984 if (tid_gt(tid, journal->j_tail_sequence)) 985 __jbd2_update_log_tail(journal, tid, block); 986 mutex_unlock(&journal->j_checkpoint_mutex); 987 } 988 989 struct jbd2_stats_proc_session { 990 journal_t *journal; 991 struct transaction_stats_s *stats; 992 int start; 993 int max; 994 }; 995 996 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 997 { 998 return *pos ? NULL : SEQ_START_TOKEN; 999 } 1000 1001 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1002 { 1003 return NULL; 1004 } 1005 1006 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1007 { 1008 struct jbd2_stats_proc_session *s = seq->private; 1009 1010 if (v != SEQ_START_TOKEN) 1011 return 0; 1012 seq_printf(seq, "%lu transactions (%lu requested), " 1013 "each up to %u blocks\n", 1014 s->stats->ts_tid, s->stats->ts_requested, 1015 s->journal->j_max_transaction_buffers); 1016 if (s->stats->ts_tid == 0) 1017 return 0; 1018 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1019 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1020 seq_printf(seq, " %ums request delay\n", 1021 (s->stats->ts_requested == 0) ? 0 : 1022 jiffies_to_msecs(s->stats->run.rs_request_delay / 1023 s->stats->ts_requested)); 1024 seq_printf(seq, " %ums running transaction\n", 1025 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1026 seq_printf(seq, " %ums transaction was being locked\n", 1027 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1028 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1029 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1030 seq_printf(seq, " %ums logging transaction\n", 1031 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1032 seq_printf(seq, " %lluus average transaction commit time\n", 1033 div_u64(s->journal->j_average_commit_time, 1000)); 1034 seq_printf(seq, " %lu handles per transaction\n", 1035 s->stats->run.rs_handle_count / s->stats->ts_tid); 1036 seq_printf(seq, " %lu blocks per transaction\n", 1037 s->stats->run.rs_blocks / s->stats->ts_tid); 1038 seq_printf(seq, " %lu logged blocks per transaction\n", 1039 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1040 return 0; 1041 } 1042 1043 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1044 { 1045 } 1046 1047 static const struct seq_operations jbd2_seq_info_ops = { 1048 .start = jbd2_seq_info_start, 1049 .next = jbd2_seq_info_next, 1050 .stop = jbd2_seq_info_stop, 1051 .show = jbd2_seq_info_show, 1052 }; 1053 1054 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1055 { 1056 journal_t *journal = PDE_DATA(inode); 1057 struct jbd2_stats_proc_session *s; 1058 int rc, size; 1059 1060 s = kmalloc(sizeof(*s), GFP_KERNEL); 1061 if (s == NULL) 1062 return -ENOMEM; 1063 size = sizeof(struct transaction_stats_s); 1064 s->stats = kmalloc(size, GFP_KERNEL); 1065 if (s->stats == NULL) { 1066 kfree(s); 1067 return -ENOMEM; 1068 } 1069 spin_lock(&journal->j_history_lock); 1070 memcpy(s->stats, &journal->j_stats, size); 1071 s->journal = journal; 1072 spin_unlock(&journal->j_history_lock); 1073 1074 rc = seq_open(file, &jbd2_seq_info_ops); 1075 if (rc == 0) { 1076 struct seq_file *m = file->private_data; 1077 m->private = s; 1078 } else { 1079 kfree(s->stats); 1080 kfree(s); 1081 } 1082 return rc; 1083 1084 } 1085 1086 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1087 { 1088 struct seq_file *seq = file->private_data; 1089 struct jbd2_stats_proc_session *s = seq->private; 1090 kfree(s->stats); 1091 kfree(s); 1092 return seq_release(inode, file); 1093 } 1094 1095 static const struct file_operations jbd2_seq_info_fops = { 1096 .owner = THIS_MODULE, 1097 .open = jbd2_seq_info_open, 1098 .read = seq_read, 1099 .llseek = seq_lseek, 1100 .release = jbd2_seq_info_release, 1101 }; 1102 1103 static struct proc_dir_entry *proc_jbd2_stats; 1104 1105 static void jbd2_stats_proc_init(journal_t *journal) 1106 { 1107 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1108 if (journal->j_proc_entry) { 1109 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1110 &jbd2_seq_info_fops, journal); 1111 } 1112 } 1113 1114 static void jbd2_stats_proc_exit(journal_t *journal) 1115 { 1116 remove_proc_entry("info", journal->j_proc_entry); 1117 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1118 } 1119 1120 /* 1121 * Management for journal control blocks: functions to create and 1122 * destroy journal_t structures, and to initialise and read existing 1123 * journal blocks from disk. */ 1124 1125 /* First: create and setup a journal_t object in memory. We initialise 1126 * very few fields yet: that has to wait until we have created the 1127 * journal structures from from scratch, or loaded them from disk. */ 1128 1129 static journal_t *journal_init_common(struct block_device *bdev, 1130 struct block_device *fs_dev, 1131 unsigned long long start, int len, int blocksize) 1132 { 1133 static struct lock_class_key jbd2_trans_commit_key; 1134 journal_t *journal; 1135 int err; 1136 struct buffer_head *bh; 1137 int n; 1138 1139 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1140 if (!journal) 1141 return NULL; 1142 1143 init_waitqueue_head(&journal->j_wait_transaction_locked); 1144 init_waitqueue_head(&journal->j_wait_done_commit); 1145 init_waitqueue_head(&journal->j_wait_commit); 1146 init_waitqueue_head(&journal->j_wait_updates); 1147 init_waitqueue_head(&journal->j_wait_reserved); 1148 mutex_init(&journal->j_barrier); 1149 mutex_init(&journal->j_checkpoint_mutex); 1150 spin_lock_init(&journal->j_revoke_lock); 1151 spin_lock_init(&journal->j_list_lock); 1152 rwlock_init(&journal->j_state_lock); 1153 1154 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1155 journal->j_min_batch_time = 0; 1156 journal->j_max_batch_time = 15000; /* 15ms */ 1157 atomic_set(&journal->j_reserved_credits, 0); 1158 1159 /* The journal is marked for error until we succeed with recovery! */ 1160 journal->j_flags = JBD2_ABORT; 1161 1162 /* Set up a default-sized revoke table for the new mount. */ 1163 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1164 if (err) 1165 goto err_cleanup; 1166 1167 spin_lock_init(&journal->j_history_lock); 1168 1169 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1170 &jbd2_trans_commit_key, 0); 1171 1172 /* journal descriptor can store up to n blocks -bzzz */ 1173 journal->j_blocksize = blocksize; 1174 journal->j_dev = bdev; 1175 journal->j_fs_dev = fs_dev; 1176 journal->j_blk_offset = start; 1177 journal->j_maxlen = len; 1178 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1179 journal->j_wbufsize = n; 1180 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1181 GFP_KERNEL); 1182 if (!journal->j_wbuf) 1183 goto err_cleanup; 1184 1185 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1186 if (!bh) { 1187 pr_err("%s: Cannot get buffer for journal superblock\n", 1188 __func__); 1189 goto err_cleanup; 1190 } 1191 journal->j_sb_buffer = bh; 1192 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1193 1194 return journal; 1195 1196 err_cleanup: 1197 kfree(journal->j_wbuf); 1198 jbd2_journal_destroy_revoke(journal); 1199 kfree(journal); 1200 return NULL; 1201 } 1202 1203 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1204 * 1205 * Create a journal structure assigned some fixed set of disk blocks to 1206 * the journal. We don't actually touch those disk blocks yet, but we 1207 * need to set up all of the mapping information to tell the journaling 1208 * system where the journal blocks are. 1209 * 1210 */ 1211 1212 /** 1213 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1214 * @bdev: Block device on which to create the journal 1215 * @fs_dev: Device which hold journalled filesystem for this journal. 1216 * @start: Block nr Start of journal. 1217 * @len: Length of the journal in blocks. 1218 * @blocksize: blocksize of journalling device 1219 * 1220 * Returns: a newly created journal_t * 1221 * 1222 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1223 * range of blocks on an arbitrary block device. 1224 * 1225 */ 1226 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1227 struct block_device *fs_dev, 1228 unsigned long long start, int len, int blocksize) 1229 { 1230 journal_t *journal; 1231 1232 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1233 if (!journal) 1234 return NULL; 1235 1236 bdevname(journal->j_dev, journal->j_devname); 1237 strreplace(journal->j_devname, '/', '!'); 1238 jbd2_stats_proc_init(journal); 1239 1240 return journal; 1241 } 1242 1243 /** 1244 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1245 * @inode: An inode to create the journal in 1246 * 1247 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1248 * the journal. The inode must exist already, must support bmap() and 1249 * must have all data blocks preallocated. 1250 */ 1251 journal_t *jbd2_journal_init_inode(struct inode *inode) 1252 { 1253 journal_t *journal; 1254 char *p; 1255 unsigned long long blocknr; 1256 1257 blocknr = bmap(inode, 0); 1258 if (!blocknr) { 1259 pr_err("%s: Cannot locate journal superblock\n", 1260 __func__); 1261 return NULL; 1262 } 1263 1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1267 1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1270 inode->i_sb->s_blocksize); 1271 if (!journal) 1272 return NULL; 1273 1274 journal->j_inode = inode; 1275 bdevname(journal->j_dev, journal->j_devname); 1276 p = strreplace(journal->j_devname, '/', '!'); 1277 sprintf(p, "-%lu", journal->j_inode->i_ino); 1278 jbd2_stats_proc_init(journal); 1279 1280 return journal; 1281 } 1282 1283 /* 1284 * If the journal init or create aborts, we need to mark the journal 1285 * superblock as being NULL to prevent the journal destroy from writing 1286 * back a bogus superblock. 1287 */ 1288 static void journal_fail_superblock (journal_t *journal) 1289 { 1290 struct buffer_head *bh = journal->j_sb_buffer; 1291 brelse(bh); 1292 journal->j_sb_buffer = NULL; 1293 } 1294 1295 /* 1296 * Given a journal_t structure, initialise the various fields for 1297 * startup of a new journaling session. We use this both when creating 1298 * a journal, and after recovering an old journal to reset it for 1299 * subsequent use. 1300 */ 1301 1302 static int journal_reset(journal_t *journal) 1303 { 1304 journal_superblock_t *sb = journal->j_superblock; 1305 unsigned long long first, last; 1306 1307 first = be32_to_cpu(sb->s_first); 1308 last = be32_to_cpu(sb->s_maxlen); 1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1311 first, last); 1312 journal_fail_superblock(journal); 1313 return -EINVAL; 1314 } 1315 1316 journal->j_first = first; 1317 journal->j_last = last; 1318 1319 journal->j_head = first; 1320 journal->j_tail = first; 1321 journal->j_free = last - first; 1322 1323 journal->j_tail_sequence = journal->j_transaction_sequence; 1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1325 journal->j_commit_request = journal->j_commit_sequence; 1326 1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1328 1329 /* 1330 * As a special case, if the on-disk copy is already marked as needing 1331 * no recovery (s_start == 0), then we can safely defer the superblock 1332 * update until the next commit by setting JBD2_FLUSHED. This avoids 1333 * attempting a write to a potential-readonly device. 1334 */ 1335 if (sb->s_start == 0) { 1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1337 "(start %ld, seq %d, errno %d)\n", 1338 journal->j_tail, journal->j_tail_sequence, 1339 journal->j_errno); 1340 journal->j_flags |= JBD2_FLUSHED; 1341 } else { 1342 /* Lock here to make assertions happy... */ 1343 mutex_lock_io(&journal->j_checkpoint_mutex); 1344 /* 1345 * Update log tail information. We use REQ_FUA since new 1346 * transaction will start reusing journal space and so we 1347 * must make sure information about current log tail is on 1348 * disk before that. 1349 */ 1350 jbd2_journal_update_sb_log_tail(journal, 1351 journal->j_tail_sequence, 1352 journal->j_tail, 1353 REQ_SYNC | REQ_FUA); 1354 mutex_unlock(&journal->j_checkpoint_mutex); 1355 } 1356 return jbd2_journal_start_thread(journal); 1357 } 1358 1359 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1360 { 1361 struct buffer_head *bh = journal->j_sb_buffer; 1362 journal_superblock_t *sb = journal->j_superblock; 1363 int ret; 1364 1365 trace_jbd2_write_superblock(journal, write_flags); 1366 if (!(journal->j_flags & JBD2_BARRIER)) 1367 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1368 lock_buffer(bh); 1369 if (buffer_write_io_error(bh)) { 1370 /* 1371 * Oh, dear. A previous attempt to write the journal 1372 * superblock failed. This could happen because the 1373 * USB device was yanked out. Or it could happen to 1374 * be a transient write error and maybe the block will 1375 * be remapped. Nothing we can do but to retry the 1376 * write and hope for the best. 1377 */ 1378 printk(KERN_ERR "JBD2: previous I/O error detected " 1379 "for journal superblock update for %s.\n", 1380 journal->j_devname); 1381 clear_buffer_write_io_error(bh); 1382 set_buffer_uptodate(bh); 1383 } 1384 jbd2_superblock_csum_set(journal, sb); 1385 get_bh(bh); 1386 bh->b_end_io = end_buffer_write_sync; 1387 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1388 wait_on_buffer(bh); 1389 if (buffer_write_io_error(bh)) { 1390 clear_buffer_write_io_error(bh); 1391 set_buffer_uptodate(bh); 1392 ret = -EIO; 1393 } 1394 if (ret) { 1395 printk(KERN_ERR "JBD2: Error %d detected when updating " 1396 "journal superblock for %s.\n", ret, 1397 journal->j_devname); 1398 jbd2_journal_abort(journal, ret); 1399 } 1400 1401 return ret; 1402 } 1403 1404 /** 1405 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1406 * @journal: The journal to update. 1407 * @tail_tid: TID of the new transaction at the tail of the log 1408 * @tail_block: The first block of the transaction at the tail of the log 1409 * @write_op: With which operation should we write the journal sb 1410 * 1411 * Update a journal's superblock information about log tail and write it to 1412 * disk, waiting for the IO to complete. 1413 */ 1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1415 unsigned long tail_block, int write_op) 1416 { 1417 journal_superblock_t *sb = journal->j_superblock; 1418 int ret; 1419 1420 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1421 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1422 tail_block, tail_tid); 1423 1424 sb->s_sequence = cpu_to_be32(tail_tid); 1425 sb->s_start = cpu_to_be32(tail_block); 1426 1427 ret = jbd2_write_superblock(journal, write_op); 1428 if (ret) 1429 goto out; 1430 1431 /* Log is no longer empty */ 1432 write_lock(&journal->j_state_lock); 1433 WARN_ON(!sb->s_sequence); 1434 journal->j_flags &= ~JBD2_FLUSHED; 1435 write_unlock(&journal->j_state_lock); 1436 1437 out: 1438 return ret; 1439 } 1440 1441 /** 1442 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1443 * @journal: The journal to update. 1444 * @write_op: With which operation should we write the journal sb 1445 * 1446 * Update a journal's dynamic superblock fields to show that journal is empty. 1447 * Write updated superblock to disk waiting for IO to complete. 1448 */ 1449 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1450 { 1451 journal_superblock_t *sb = journal->j_superblock; 1452 1453 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1454 read_lock(&journal->j_state_lock); 1455 /* Is it already empty? */ 1456 if (sb->s_start == 0) { 1457 read_unlock(&journal->j_state_lock); 1458 return; 1459 } 1460 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1461 journal->j_tail_sequence); 1462 1463 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1464 sb->s_start = cpu_to_be32(0); 1465 read_unlock(&journal->j_state_lock); 1466 1467 jbd2_write_superblock(journal, write_op); 1468 1469 /* Log is no longer empty */ 1470 write_lock(&journal->j_state_lock); 1471 journal->j_flags |= JBD2_FLUSHED; 1472 write_unlock(&journal->j_state_lock); 1473 } 1474 1475 1476 /** 1477 * jbd2_journal_update_sb_errno() - Update error in the journal. 1478 * @journal: The journal to update. 1479 * 1480 * Update a journal's errno. Write updated superblock to disk waiting for IO 1481 * to complete. 1482 */ 1483 void jbd2_journal_update_sb_errno(journal_t *journal) 1484 { 1485 journal_superblock_t *sb = journal->j_superblock; 1486 1487 read_lock(&journal->j_state_lock); 1488 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1489 journal->j_errno); 1490 sb->s_errno = cpu_to_be32(journal->j_errno); 1491 read_unlock(&journal->j_state_lock); 1492 1493 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1494 } 1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1496 1497 /* 1498 * Read the superblock for a given journal, performing initial 1499 * validation of the format. 1500 */ 1501 static int journal_get_superblock(journal_t *journal) 1502 { 1503 struct buffer_head *bh; 1504 journal_superblock_t *sb; 1505 int err = -EIO; 1506 1507 bh = journal->j_sb_buffer; 1508 1509 J_ASSERT(bh != NULL); 1510 if (!buffer_uptodate(bh)) { 1511 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1512 wait_on_buffer(bh); 1513 if (!buffer_uptodate(bh)) { 1514 printk(KERN_ERR 1515 "JBD2: IO error reading journal superblock\n"); 1516 goto out; 1517 } 1518 } 1519 1520 if (buffer_verified(bh)) 1521 return 0; 1522 1523 sb = journal->j_superblock; 1524 1525 err = -EINVAL; 1526 1527 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1528 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1529 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1530 goto out; 1531 } 1532 1533 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1534 case JBD2_SUPERBLOCK_V1: 1535 journal->j_format_version = 1; 1536 break; 1537 case JBD2_SUPERBLOCK_V2: 1538 journal->j_format_version = 2; 1539 break; 1540 default: 1541 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1542 goto out; 1543 } 1544 1545 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1546 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1547 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1548 printk(KERN_WARNING "JBD2: journal file too short\n"); 1549 goto out; 1550 } 1551 1552 if (be32_to_cpu(sb->s_first) == 0 || 1553 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1554 printk(KERN_WARNING 1555 "JBD2: Invalid start block of journal: %u\n", 1556 be32_to_cpu(sb->s_first)); 1557 goto out; 1558 } 1559 1560 if (jbd2_has_feature_csum2(journal) && 1561 jbd2_has_feature_csum3(journal)) { 1562 /* Can't have checksum v2 and v3 at the same time! */ 1563 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1564 "at the same time!\n"); 1565 goto out; 1566 } 1567 1568 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1569 jbd2_has_feature_checksum(journal)) { 1570 /* Can't have checksum v1 and v2 on at the same time! */ 1571 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1572 "at the same time!\n"); 1573 goto out; 1574 } 1575 1576 if (!jbd2_verify_csum_type(journal, sb)) { 1577 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1578 goto out; 1579 } 1580 1581 /* Load the checksum driver */ 1582 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1583 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1584 if (IS_ERR(journal->j_chksum_driver)) { 1585 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1586 err = PTR_ERR(journal->j_chksum_driver); 1587 journal->j_chksum_driver = NULL; 1588 goto out; 1589 } 1590 } 1591 1592 /* Check superblock checksum */ 1593 if (!jbd2_superblock_csum_verify(journal, sb)) { 1594 printk(KERN_ERR "JBD2: journal checksum error\n"); 1595 err = -EFSBADCRC; 1596 goto out; 1597 } 1598 1599 /* Precompute checksum seed for all metadata */ 1600 if (jbd2_journal_has_csum_v2or3(journal)) 1601 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1602 sizeof(sb->s_uuid)); 1603 1604 set_buffer_verified(bh); 1605 1606 return 0; 1607 1608 out: 1609 journal_fail_superblock(journal); 1610 return err; 1611 } 1612 1613 /* 1614 * Load the on-disk journal superblock and read the key fields into the 1615 * journal_t. 1616 */ 1617 1618 static int load_superblock(journal_t *journal) 1619 { 1620 int err; 1621 journal_superblock_t *sb; 1622 1623 err = journal_get_superblock(journal); 1624 if (err) 1625 return err; 1626 1627 sb = journal->j_superblock; 1628 1629 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1630 journal->j_tail = be32_to_cpu(sb->s_start); 1631 journal->j_first = be32_to_cpu(sb->s_first); 1632 journal->j_last = be32_to_cpu(sb->s_maxlen); 1633 journal->j_errno = be32_to_cpu(sb->s_errno); 1634 1635 return 0; 1636 } 1637 1638 1639 /** 1640 * int jbd2_journal_load() - Read journal from disk. 1641 * @journal: Journal to act on. 1642 * 1643 * Given a journal_t structure which tells us which disk blocks contain 1644 * a journal, read the journal from disk to initialise the in-memory 1645 * structures. 1646 */ 1647 int jbd2_journal_load(journal_t *journal) 1648 { 1649 int err; 1650 journal_superblock_t *sb; 1651 1652 err = load_superblock(journal); 1653 if (err) 1654 return err; 1655 1656 sb = journal->j_superblock; 1657 /* If this is a V2 superblock, then we have to check the 1658 * features flags on it. */ 1659 1660 if (journal->j_format_version >= 2) { 1661 if ((sb->s_feature_ro_compat & 1662 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1663 (sb->s_feature_incompat & 1664 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1665 printk(KERN_WARNING 1666 "JBD2: Unrecognised features on journal\n"); 1667 return -EINVAL; 1668 } 1669 } 1670 1671 /* 1672 * Create a slab for this blocksize 1673 */ 1674 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1675 if (err) 1676 return err; 1677 1678 /* Let the recovery code check whether it needs to recover any 1679 * data from the journal. */ 1680 if (jbd2_journal_recover(journal)) 1681 goto recovery_error; 1682 1683 if (journal->j_failed_commit) { 1684 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1685 "is corrupt.\n", journal->j_failed_commit, 1686 journal->j_devname); 1687 return -EFSCORRUPTED; 1688 } 1689 1690 /* OK, we've finished with the dynamic journal bits: 1691 * reinitialise the dynamic contents of the superblock in memory 1692 * and reset them on disk. */ 1693 if (journal_reset(journal)) 1694 goto recovery_error; 1695 1696 journal->j_flags &= ~JBD2_ABORT; 1697 journal->j_flags |= JBD2_LOADED; 1698 return 0; 1699 1700 recovery_error: 1701 printk(KERN_WARNING "JBD2: recovery failed\n"); 1702 return -EIO; 1703 } 1704 1705 /** 1706 * void jbd2_journal_destroy() - Release a journal_t structure. 1707 * @journal: Journal to act on. 1708 * 1709 * Release a journal_t structure once it is no longer in use by the 1710 * journaled object. 1711 * Return <0 if we couldn't clean up the journal. 1712 */ 1713 int jbd2_journal_destroy(journal_t *journal) 1714 { 1715 int err = 0; 1716 1717 /* Wait for the commit thread to wake up and die. */ 1718 journal_kill_thread(journal); 1719 1720 /* Force a final log commit */ 1721 if (journal->j_running_transaction) 1722 jbd2_journal_commit_transaction(journal); 1723 1724 /* Force any old transactions to disk */ 1725 1726 /* Totally anal locking here... */ 1727 spin_lock(&journal->j_list_lock); 1728 while (journal->j_checkpoint_transactions != NULL) { 1729 spin_unlock(&journal->j_list_lock); 1730 mutex_lock_io(&journal->j_checkpoint_mutex); 1731 err = jbd2_log_do_checkpoint(journal); 1732 mutex_unlock(&journal->j_checkpoint_mutex); 1733 /* 1734 * If checkpointing failed, just free the buffers to avoid 1735 * looping forever 1736 */ 1737 if (err) { 1738 jbd2_journal_destroy_checkpoint(journal); 1739 spin_lock(&journal->j_list_lock); 1740 break; 1741 } 1742 spin_lock(&journal->j_list_lock); 1743 } 1744 1745 J_ASSERT(journal->j_running_transaction == NULL); 1746 J_ASSERT(journal->j_committing_transaction == NULL); 1747 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1748 spin_unlock(&journal->j_list_lock); 1749 1750 if (journal->j_sb_buffer) { 1751 if (!is_journal_aborted(journal)) { 1752 mutex_lock_io(&journal->j_checkpoint_mutex); 1753 1754 write_lock(&journal->j_state_lock); 1755 journal->j_tail_sequence = 1756 ++journal->j_transaction_sequence; 1757 write_unlock(&journal->j_state_lock); 1758 1759 jbd2_mark_journal_empty(journal, 1760 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1761 mutex_unlock(&journal->j_checkpoint_mutex); 1762 } else 1763 err = -EIO; 1764 brelse(journal->j_sb_buffer); 1765 } 1766 1767 if (journal->j_proc_entry) 1768 jbd2_stats_proc_exit(journal); 1769 iput(journal->j_inode); 1770 if (journal->j_revoke) 1771 jbd2_journal_destroy_revoke(journal); 1772 if (journal->j_chksum_driver) 1773 crypto_free_shash(journal->j_chksum_driver); 1774 kfree(journal->j_wbuf); 1775 kfree(journal); 1776 1777 return err; 1778 } 1779 1780 1781 /** 1782 *int jbd2_journal_check_used_features () - Check if features specified are used. 1783 * @journal: Journal to check. 1784 * @compat: bitmask of compatible features 1785 * @ro: bitmask of features that force read-only mount 1786 * @incompat: bitmask of incompatible features 1787 * 1788 * Check whether the journal uses all of a given set of 1789 * features. Return true (non-zero) if it does. 1790 **/ 1791 1792 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1793 unsigned long ro, unsigned long incompat) 1794 { 1795 journal_superblock_t *sb; 1796 1797 if (!compat && !ro && !incompat) 1798 return 1; 1799 /* Load journal superblock if it is not loaded yet. */ 1800 if (journal->j_format_version == 0 && 1801 journal_get_superblock(journal) != 0) 1802 return 0; 1803 if (journal->j_format_version == 1) 1804 return 0; 1805 1806 sb = journal->j_superblock; 1807 1808 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1809 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1810 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1811 return 1; 1812 1813 return 0; 1814 } 1815 1816 /** 1817 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1818 * @journal: Journal to check. 1819 * @compat: bitmask of compatible features 1820 * @ro: bitmask of features that force read-only mount 1821 * @incompat: bitmask of incompatible features 1822 * 1823 * Check whether the journaling code supports the use of 1824 * all of a given set of features on this journal. Return true 1825 * (non-zero) if it can. */ 1826 1827 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1828 unsigned long ro, unsigned long incompat) 1829 { 1830 if (!compat && !ro && !incompat) 1831 return 1; 1832 1833 /* We can support any known requested features iff the 1834 * superblock is in version 2. Otherwise we fail to support any 1835 * extended sb features. */ 1836 1837 if (journal->j_format_version != 2) 1838 return 0; 1839 1840 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1841 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1842 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1843 return 1; 1844 1845 return 0; 1846 } 1847 1848 /** 1849 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1850 * @journal: Journal to act on. 1851 * @compat: bitmask of compatible features 1852 * @ro: bitmask of features that force read-only mount 1853 * @incompat: bitmask of incompatible features 1854 * 1855 * Mark a given journal feature as present on the 1856 * superblock. Returns true if the requested features could be set. 1857 * 1858 */ 1859 1860 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1861 unsigned long ro, unsigned long incompat) 1862 { 1863 #define INCOMPAT_FEATURE_ON(f) \ 1864 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1865 #define COMPAT_FEATURE_ON(f) \ 1866 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1867 journal_superblock_t *sb; 1868 1869 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1870 return 1; 1871 1872 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1873 return 0; 1874 1875 /* If enabling v2 checksums, turn on v3 instead */ 1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1877 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1878 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1879 } 1880 1881 /* Asking for checksumming v3 and v1? Only give them v3. */ 1882 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1883 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1884 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1885 1886 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1887 compat, ro, incompat); 1888 1889 sb = journal->j_superblock; 1890 1891 /* If enabling v3 checksums, update superblock */ 1892 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1893 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1894 sb->s_feature_compat &= 1895 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1896 1897 /* Load the checksum driver */ 1898 if (journal->j_chksum_driver == NULL) { 1899 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1900 0, 0); 1901 if (IS_ERR(journal->j_chksum_driver)) { 1902 printk(KERN_ERR "JBD2: Cannot load crc32c " 1903 "driver.\n"); 1904 journal->j_chksum_driver = NULL; 1905 return 0; 1906 } 1907 1908 /* Precompute checksum seed for all metadata */ 1909 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1910 sb->s_uuid, 1911 sizeof(sb->s_uuid)); 1912 } 1913 } 1914 1915 /* If enabling v1 checksums, downgrade superblock */ 1916 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1917 sb->s_feature_incompat &= 1918 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1919 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1920 1921 sb->s_feature_compat |= cpu_to_be32(compat); 1922 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1923 sb->s_feature_incompat |= cpu_to_be32(incompat); 1924 1925 return 1; 1926 #undef COMPAT_FEATURE_ON 1927 #undef INCOMPAT_FEATURE_ON 1928 } 1929 1930 /* 1931 * jbd2_journal_clear_features () - Clear a given journal feature in the 1932 * superblock 1933 * @journal: Journal to act on. 1934 * @compat: bitmask of compatible features 1935 * @ro: bitmask of features that force read-only mount 1936 * @incompat: bitmask of incompatible features 1937 * 1938 * Clear a given journal feature as present on the 1939 * superblock. 1940 */ 1941 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1942 unsigned long ro, unsigned long incompat) 1943 { 1944 journal_superblock_t *sb; 1945 1946 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1947 compat, ro, incompat); 1948 1949 sb = journal->j_superblock; 1950 1951 sb->s_feature_compat &= ~cpu_to_be32(compat); 1952 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1953 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1954 } 1955 EXPORT_SYMBOL(jbd2_journal_clear_features); 1956 1957 /** 1958 * int jbd2_journal_flush () - Flush journal 1959 * @journal: Journal to act on. 1960 * 1961 * Flush all data for a given journal to disk and empty the journal. 1962 * Filesystems can use this when remounting readonly to ensure that 1963 * recovery does not need to happen on remount. 1964 */ 1965 1966 int jbd2_journal_flush(journal_t *journal) 1967 { 1968 int err = 0; 1969 transaction_t *transaction = NULL; 1970 1971 write_lock(&journal->j_state_lock); 1972 1973 /* Force everything buffered to the log... */ 1974 if (journal->j_running_transaction) { 1975 transaction = journal->j_running_transaction; 1976 __jbd2_log_start_commit(journal, transaction->t_tid); 1977 } else if (journal->j_committing_transaction) 1978 transaction = journal->j_committing_transaction; 1979 1980 /* Wait for the log commit to complete... */ 1981 if (transaction) { 1982 tid_t tid = transaction->t_tid; 1983 1984 write_unlock(&journal->j_state_lock); 1985 jbd2_log_wait_commit(journal, tid); 1986 } else { 1987 write_unlock(&journal->j_state_lock); 1988 } 1989 1990 /* ...and flush everything in the log out to disk. */ 1991 spin_lock(&journal->j_list_lock); 1992 while (!err && journal->j_checkpoint_transactions != NULL) { 1993 spin_unlock(&journal->j_list_lock); 1994 mutex_lock_io(&journal->j_checkpoint_mutex); 1995 err = jbd2_log_do_checkpoint(journal); 1996 mutex_unlock(&journal->j_checkpoint_mutex); 1997 spin_lock(&journal->j_list_lock); 1998 } 1999 spin_unlock(&journal->j_list_lock); 2000 2001 if (is_journal_aborted(journal)) 2002 return -EIO; 2003 2004 mutex_lock_io(&journal->j_checkpoint_mutex); 2005 if (!err) { 2006 err = jbd2_cleanup_journal_tail(journal); 2007 if (err < 0) { 2008 mutex_unlock(&journal->j_checkpoint_mutex); 2009 goto out; 2010 } 2011 err = 0; 2012 } 2013 2014 /* Finally, mark the journal as really needing no recovery. 2015 * This sets s_start==0 in the underlying superblock, which is 2016 * the magic code for a fully-recovered superblock. Any future 2017 * commits of data to the journal will restore the current 2018 * s_start value. */ 2019 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2020 mutex_unlock(&journal->j_checkpoint_mutex); 2021 write_lock(&journal->j_state_lock); 2022 J_ASSERT(!journal->j_running_transaction); 2023 J_ASSERT(!journal->j_committing_transaction); 2024 J_ASSERT(!journal->j_checkpoint_transactions); 2025 J_ASSERT(journal->j_head == journal->j_tail); 2026 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2027 write_unlock(&journal->j_state_lock); 2028 out: 2029 return err; 2030 } 2031 2032 /** 2033 * int jbd2_journal_wipe() - Wipe journal contents 2034 * @journal: Journal to act on. 2035 * @write: flag (see below) 2036 * 2037 * Wipe out all of the contents of a journal, safely. This will produce 2038 * a warning if the journal contains any valid recovery information. 2039 * Must be called between journal_init_*() and jbd2_journal_load(). 2040 * 2041 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2042 * we merely suppress recovery. 2043 */ 2044 2045 int jbd2_journal_wipe(journal_t *journal, int write) 2046 { 2047 int err = 0; 2048 2049 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2050 2051 err = load_superblock(journal); 2052 if (err) 2053 return err; 2054 2055 if (!journal->j_tail) 2056 goto no_recovery; 2057 2058 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2059 write ? "Clearing" : "Ignoring"); 2060 2061 err = jbd2_journal_skip_recovery(journal); 2062 if (write) { 2063 /* Lock to make assertions happy... */ 2064 mutex_lock(&journal->j_checkpoint_mutex); 2065 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2066 mutex_unlock(&journal->j_checkpoint_mutex); 2067 } 2068 2069 no_recovery: 2070 return err; 2071 } 2072 2073 /* 2074 * Journal abort has very specific semantics, which we describe 2075 * for journal abort. 2076 * 2077 * Two internal functions, which provide abort to the jbd layer 2078 * itself are here. 2079 */ 2080 2081 /* 2082 * Quick version for internal journal use (doesn't lock the journal). 2083 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2084 * and don't attempt to make any other journal updates. 2085 */ 2086 void __jbd2_journal_abort_hard(journal_t *journal) 2087 { 2088 transaction_t *transaction; 2089 2090 if (journal->j_flags & JBD2_ABORT) 2091 return; 2092 2093 printk(KERN_ERR "Aborting journal on device %s.\n", 2094 journal->j_devname); 2095 2096 write_lock(&journal->j_state_lock); 2097 journal->j_flags |= JBD2_ABORT; 2098 transaction = journal->j_running_transaction; 2099 if (transaction) 2100 __jbd2_log_start_commit(journal, transaction->t_tid); 2101 write_unlock(&journal->j_state_lock); 2102 } 2103 2104 /* Soft abort: record the abort error status in the journal superblock, 2105 * but don't do any other IO. */ 2106 static void __journal_abort_soft (journal_t *journal, int errno) 2107 { 2108 if (journal->j_flags & JBD2_ABORT) 2109 return; 2110 2111 if (!journal->j_errno) 2112 journal->j_errno = errno; 2113 2114 __jbd2_journal_abort_hard(journal); 2115 2116 if (errno) { 2117 jbd2_journal_update_sb_errno(journal); 2118 write_lock(&journal->j_state_lock); 2119 journal->j_flags |= JBD2_REC_ERR; 2120 write_unlock(&journal->j_state_lock); 2121 } 2122 } 2123 2124 /** 2125 * void jbd2_journal_abort () - Shutdown the journal immediately. 2126 * @journal: the journal to shutdown. 2127 * @errno: an error number to record in the journal indicating 2128 * the reason for the shutdown. 2129 * 2130 * Perform a complete, immediate shutdown of the ENTIRE 2131 * journal (not of a single transaction). This operation cannot be 2132 * undone without closing and reopening the journal. 2133 * 2134 * The jbd2_journal_abort function is intended to support higher level error 2135 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2136 * mode. 2137 * 2138 * Journal abort has very specific semantics. Any existing dirty, 2139 * unjournaled buffers in the main filesystem will still be written to 2140 * disk by bdflush, but the journaling mechanism will be suspended 2141 * immediately and no further transaction commits will be honoured. 2142 * 2143 * Any dirty, journaled buffers will be written back to disk without 2144 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2145 * filesystem, but we _do_ attempt to leave as much data as possible 2146 * behind for fsck to use for cleanup. 2147 * 2148 * Any attempt to get a new transaction handle on a journal which is in 2149 * ABORT state will just result in an -EROFS error return. A 2150 * jbd2_journal_stop on an existing handle will return -EIO if we have 2151 * entered abort state during the update. 2152 * 2153 * Recursive transactions are not disturbed by journal abort until the 2154 * final jbd2_journal_stop, which will receive the -EIO error. 2155 * 2156 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2157 * which will be recorded (if possible) in the journal superblock. This 2158 * allows a client to record failure conditions in the middle of a 2159 * transaction without having to complete the transaction to record the 2160 * failure to disk. ext3_error, for example, now uses this 2161 * functionality. 2162 * 2163 * Errors which originate from within the journaling layer will NOT 2164 * supply an errno; a null errno implies that absolutely no further 2165 * writes are done to the journal (unless there are any already in 2166 * progress). 2167 * 2168 */ 2169 2170 void jbd2_journal_abort(journal_t *journal, int errno) 2171 { 2172 __journal_abort_soft(journal, errno); 2173 } 2174 2175 /** 2176 * int jbd2_journal_errno () - returns the journal's error state. 2177 * @journal: journal to examine. 2178 * 2179 * This is the errno number set with jbd2_journal_abort(), the last 2180 * time the journal was mounted - if the journal was stopped 2181 * without calling abort this will be 0. 2182 * 2183 * If the journal has been aborted on this mount time -EROFS will 2184 * be returned. 2185 */ 2186 int jbd2_journal_errno(journal_t *journal) 2187 { 2188 int err; 2189 2190 read_lock(&journal->j_state_lock); 2191 if (journal->j_flags & JBD2_ABORT) 2192 err = -EROFS; 2193 else 2194 err = journal->j_errno; 2195 read_unlock(&journal->j_state_lock); 2196 return err; 2197 } 2198 2199 /** 2200 * int jbd2_journal_clear_err () - clears the journal's error state 2201 * @journal: journal to act on. 2202 * 2203 * An error must be cleared or acked to take a FS out of readonly 2204 * mode. 2205 */ 2206 int jbd2_journal_clear_err(journal_t *journal) 2207 { 2208 int err = 0; 2209 2210 write_lock(&journal->j_state_lock); 2211 if (journal->j_flags & JBD2_ABORT) 2212 err = -EROFS; 2213 else 2214 journal->j_errno = 0; 2215 write_unlock(&journal->j_state_lock); 2216 return err; 2217 } 2218 2219 /** 2220 * void jbd2_journal_ack_err() - Ack journal err. 2221 * @journal: journal to act on. 2222 * 2223 * An error must be cleared or acked to take a FS out of readonly 2224 * mode. 2225 */ 2226 void jbd2_journal_ack_err(journal_t *journal) 2227 { 2228 write_lock(&journal->j_state_lock); 2229 if (journal->j_errno) 2230 journal->j_flags |= JBD2_ACK_ERR; 2231 write_unlock(&journal->j_state_lock); 2232 } 2233 2234 int jbd2_journal_blocks_per_page(struct inode *inode) 2235 { 2236 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2237 } 2238 2239 /* 2240 * helper functions to deal with 32 or 64bit block numbers. 2241 */ 2242 size_t journal_tag_bytes(journal_t *journal) 2243 { 2244 size_t sz; 2245 2246 if (jbd2_has_feature_csum3(journal)) 2247 return sizeof(journal_block_tag3_t); 2248 2249 sz = sizeof(journal_block_tag_t); 2250 2251 if (jbd2_has_feature_csum2(journal)) 2252 sz += sizeof(__u16); 2253 2254 if (jbd2_has_feature_64bit(journal)) 2255 return sz; 2256 else 2257 return sz - sizeof(__u32); 2258 } 2259 2260 /* 2261 * JBD memory management 2262 * 2263 * These functions are used to allocate block-sized chunks of memory 2264 * used for making copies of buffer_head data. Very often it will be 2265 * page-sized chunks of data, but sometimes it will be in 2266 * sub-page-size chunks. (For example, 16k pages on Power systems 2267 * with a 4k block file system.) For blocks smaller than a page, we 2268 * use a SLAB allocator. There are slab caches for each block size, 2269 * which are allocated at mount time, if necessary, and we only free 2270 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2271 * this reason we don't need to a mutex to protect access to 2272 * jbd2_slab[] allocating or releasing memory; only in 2273 * jbd2_journal_create_slab(). 2274 */ 2275 #define JBD2_MAX_SLABS 8 2276 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2277 2278 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2279 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2280 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2281 }; 2282 2283 2284 static void jbd2_journal_destroy_slabs(void) 2285 { 2286 int i; 2287 2288 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2289 if (jbd2_slab[i]) 2290 kmem_cache_destroy(jbd2_slab[i]); 2291 jbd2_slab[i] = NULL; 2292 } 2293 } 2294 2295 static int jbd2_journal_create_slab(size_t size) 2296 { 2297 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2298 int i = order_base_2(size) - 10; 2299 size_t slab_size; 2300 2301 if (size == PAGE_SIZE) 2302 return 0; 2303 2304 if (i >= JBD2_MAX_SLABS) 2305 return -EINVAL; 2306 2307 if (unlikely(i < 0)) 2308 i = 0; 2309 mutex_lock(&jbd2_slab_create_mutex); 2310 if (jbd2_slab[i]) { 2311 mutex_unlock(&jbd2_slab_create_mutex); 2312 return 0; /* Already created */ 2313 } 2314 2315 slab_size = 1 << (i+10); 2316 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2317 slab_size, 0, NULL); 2318 mutex_unlock(&jbd2_slab_create_mutex); 2319 if (!jbd2_slab[i]) { 2320 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2321 return -ENOMEM; 2322 } 2323 return 0; 2324 } 2325 2326 static struct kmem_cache *get_slab(size_t size) 2327 { 2328 int i = order_base_2(size) - 10; 2329 2330 BUG_ON(i >= JBD2_MAX_SLABS); 2331 if (unlikely(i < 0)) 2332 i = 0; 2333 BUG_ON(jbd2_slab[i] == NULL); 2334 return jbd2_slab[i]; 2335 } 2336 2337 void *jbd2_alloc(size_t size, gfp_t flags) 2338 { 2339 void *ptr; 2340 2341 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2342 2343 if (size < PAGE_SIZE) 2344 ptr = kmem_cache_alloc(get_slab(size), flags); 2345 else 2346 ptr = (void *)__get_free_pages(flags, get_order(size)); 2347 2348 /* Check alignment; SLUB has gotten this wrong in the past, 2349 * and this can lead to user data corruption! */ 2350 BUG_ON(((unsigned long) ptr) & (size-1)); 2351 2352 return ptr; 2353 } 2354 2355 void jbd2_free(void *ptr, size_t size) 2356 { 2357 if (size < PAGE_SIZE) 2358 kmem_cache_free(get_slab(size), ptr); 2359 else 2360 free_pages((unsigned long)ptr, get_order(size)); 2361 }; 2362 2363 /* 2364 * Journal_head storage management 2365 */ 2366 static struct kmem_cache *jbd2_journal_head_cache; 2367 #ifdef CONFIG_JBD2_DEBUG 2368 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2369 #endif 2370 2371 static int jbd2_journal_init_journal_head_cache(void) 2372 { 2373 int retval; 2374 2375 J_ASSERT(jbd2_journal_head_cache == NULL); 2376 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2377 sizeof(struct journal_head), 2378 0, /* offset */ 2379 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2380 NULL); /* ctor */ 2381 retval = 0; 2382 if (!jbd2_journal_head_cache) { 2383 retval = -ENOMEM; 2384 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2385 } 2386 return retval; 2387 } 2388 2389 static void jbd2_journal_destroy_journal_head_cache(void) 2390 { 2391 if (jbd2_journal_head_cache) { 2392 kmem_cache_destroy(jbd2_journal_head_cache); 2393 jbd2_journal_head_cache = NULL; 2394 } 2395 } 2396 2397 /* 2398 * journal_head splicing and dicing 2399 */ 2400 static struct journal_head *journal_alloc_journal_head(void) 2401 { 2402 struct journal_head *ret; 2403 2404 #ifdef CONFIG_JBD2_DEBUG 2405 atomic_inc(&nr_journal_heads); 2406 #endif 2407 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2408 if (!ret) { 2409 jbd_debug(1, "out of memory for journal_head\n"); 2410 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2411 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2412 GFP_NOFS | __GFP_NOFAIL); 2413 } 2414 return ret; 2415 } 2416 2417 static void journal_free_journal_head(struct journal_head *jh) 2418 { 2419 #ifdef CONFIG_JBD2_DEBUG 2420 atomic_dec(&nr_journal_heads); 2421 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2422 #endif 2423 kmem_cache_free(jbd2_journal_head_cache, jh); 2424 } 2425 2426 /* 2427 * A journal_head is attached to a buffer_head whenever JBD has an 2428 * interest in the buffer. 2429 * 2430 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2431 * is set. This bit is tested in core kernel code where we need to take 2432 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2433 * there. 2434 * 2435 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2436 * 2437 * When a buffer has its BH_JBD bit set it is immune from being released by 2438 * core kernel code, mainly via ->b_count. 2439 * 2440 * A journal_head is detached from its buffer_head when the journal_head's 2441 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2442 * transaction (b_cp_transaction) hold their references to b_jcount. 2443 * 2444 * Various places in the kernel want to attach a journal_head to a buffer_head 2445 * _before_ attaching the journal_head to a transaction. To protect the 2446 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2447 * journal_head's b_jcount refcount by one. The caller must call 2448 * jbd2_journal_put_journal_head() to undo this. 2449 * 2450 * So the typical usage would be: 2451 * 2452 * (Attach a journal_head if needed. Increments b_jcount) 2453 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2454 * ... 2455 * (Get another reference for transaction) 2456 * jbd2_journal_grab_journal_head(bh); 2457 * jh->b_transaction = xxx; 2458 * (Put original reference) 2459 * jbd2_journal_put_journal_head(jh); 2460 */ 2461 2462 /* 2463 * Give a buffer_head a journal_head. 2464 * 2465 * May sleep. 2466 */ 2467 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2468 { 2469 struct journal_head *jh; 2470 struct journal_head *new_jh = NULL; 2471 2472 repeat: 2473 if (!buffer_jbd(bh)) 2474 new_jh = journal_alloc_journal_head(); 2475 2476 jbd_lock_bh_journal_head(bh); 2477 if (buffer_jbd(bh)) { 2478 jh = bh2jh(bh); 2479 } else { 2480 J_ASSERT_BH(bh, 2481 (atomic_read(&bh->b_count) > 0) || 2482 (bh->b_page && bh->b_page->mapping)); 2483 2484 if (!new_jh) { 2485 jbd_unlock_bh_journal_head(bh); 2486 goto repeat; 2487 } 2488 2489 jh = new_jh; 2490 new_jh = NULL; /* We consumed it */ 2491 set_buffer_jbd(bh); 2492 bh->b_private = jh; 2493 jh->b_bh = bh; 2494 get_bh(bh); 2495 BUFFER_TRACE(bh, "added journal_head"); 2496 } 2497 jh->b_jcount++; 2498 jbd_unlock_bh_journal_head(bh); 2499 if (new_jh) 2500 journal_free_journal_head(new_jh); 2501 return bh->b_private; 2502 } 2503 2504 /* 2505 * Grab a ref against this buffer_head's journal_head. If it ended up not 2506 * having a journal_head, return NULL 2507 */ 2508 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2509 { 2510 struct journal_head *jh = NULL; 2511 2512 jbd_lock_bh_journal_head(bh); 2513 if (buffer_jbd(bh)) { 2514 jh = bh2jh(bh); 2515 jh->b_jcount++; 2516 } 2517 jbd_unlock_bh_journal_head(bh); 2518 return jh; 2519 } 2520 2521 static void __journal_remove_journal_head(struct buffer_head *bh) 2522 { 2523 struct journal_head *jh = bh2jh(bh); 2524 2525 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2526 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2527 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2528 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2529 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2530 J_ASSERT_BH(bh, buffer_jbd(bh)); 2531 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2532 BUFFER_TRACE(bh, "remove journal_head"); 2533 if (jh->b_frozen_data) { 2534 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2535 jbd2_free(jh->b_frozen_data, bh->b_size); 2536 } 2537 if (jh->b_committed_data) { 2538 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2539 jbd2_free(jh->b_committed_data, bh->b_size); 2540 } 2541 bh->b_private = NULL; 2542 jh->b_bh = NULL; /* debug, really */ 2543 clear_buffer_jbd(bh); 2544 journal_free_journal_head(jh); 2545 } 2546 2547 /* 2548 * Drop a reference on the passed journal_head. If it fell to zero then 2549 * release the journal_head from the buffer_head. 2550 */ 2551 void jbd2_journal_put_journal_head(struct journal_head *jh) 2552 { 2553 struct buffer_head *bh = jh2bh(jh); 2554 2555 jbd_lock_bh_journal_head(bh); 2556 J_ASSERT_JH(jh, jh->b_jcount > 0); 2557 --jh->b_jcount; 2558 if (!jh->b_jcount) { 2559 __journal_remove_journal_head(bh); 2560 jbd_unlock_bh_journal_head(bh); 2561 __brelse(bh); 2562 } else 2563 jbd_unlock_bh_journal_head(bh); 2564 } 2565 2566 /* 2567 * Initialize jbd inode head 2568 */ 2569 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2570 { 2571 jinode->i_transaction = NULL; 2572 jinode->i_next_transaction = NULL; 2573 jinode->i_vfs_inode = inode; 2574 jinode->i_flags = 0; 2575 INIT_LIST_HEAD(&jinode->i_list); 2576 } 2577 2578 /* 2579 * Function to be called before we start removing inode from memory (i.e., 2580 * clear_inode() is a fine place to be called from). It removes inode from 2581 * transaction's lists. 2582 */ 2583 void jbd2_journal_release_jbd_inode(journal_t *journal, 2584 struct jbd2_inode *jinode) 2585 { 2586 if (!journal) 2587 return; 2588 restart: 2589 spin_lock(&journal->j_list_lock); 2590 /* Is commit writing out inode - we have to wait */ 2591 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2592 wait_queue_head_t *wq; 2593 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2594 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2595 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2596 spin_unlock(&journal->j_list_lock); 2597 schedule(); 2598 finish_wait(wq, &wait.wq_entry); 2599 goto restart; 2600 } 2601 2602 if (jinode->i_transaction) { 2603 list_del(&jinode->i_list); 2604 jinode->i_transaction = NULL; 2605 } 2606 spin_unlock(&journal->j_list_lock); 2607 } 2608 2609 2610 #ifdef CONFIG_PROC_FS 2611 2612 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2613 2614 static void __init jbd2_create_jbd_stats_proc_entry(void) 2615 { 2616 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2617 } 2618 2619 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2620 { 2621 if (proc_jbd2_stats) 2622 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2623 } 2624 2625 #else 2626 2627 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2628 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2629 2630 #endif 2631 2632 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2633 2634 static int __init jbd2_journal_init_handle_cache(void) 2635 { 2636 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2637 if (jbd2_handle_cache == NULL) { 2638 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2639 return -ENOMEM; 2640 } 2641 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2642 if (jbd2_inode_cache == NULL) { 2643 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2644 kmem_cache_destroy(jbd2_handle_cache); 2645 return -ENOMEM; 2646 } 2647 return 0; 2648 } 2649 2650 static void jbd2_journal_destroy_handle_cache(void) 2651 { 2652 if (jbd2_handle_cache) 2653 kmem_cache_destroy(jbd2_handle_cache); 2654 if (jbd2_inode_cache) 2655 kmem_cache_destroy(jbd2_inode_cache); 2656 2657 } 2658 2659 /* 2660 * Module startup and shutdown 2661 */ 2662 2663 static int __init journal_init_caches(void) 2664 { 2665 int ret; 2666 2667 ret = jbd2_journal_init_revoke_caches(); 2668 if (ret == 0) 2669 ret = jbd2_journal_init_journal_head_cache(); 2670 if (ret == 0) 2671 ret = jbd2_journal_init_handle_cache(); 2672 if (ret == 0) 2673 ret = jbd2_journal_init_transaction_cache(); 2674 return ret; 2675 } 2676 2677 static void jbd2_journal_destroy_caches(void) 2678 { 2679 jbd2_journal_destroy_revoke_caches(); 2680 jbd2_journal_destroy_journal_head_cache(); 2681 jbd2_journal_destroy_handle_cache(); 2682 jbd2_journal_destroy_transaction_cache(); 2683 jbd2_journal_destroy_slabs(); 2684 } 2685 2686 static int __init journal_init(void) 2687 { 2688 int ret; 2689 2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2691 2692 ret = journal_init_caches(); 2693 if (ret == 0) { 2694 jbd2_create_jbd_stats_proc_entry(); 2695 } else { 2696 jbd2_journal_destroy_caches(); 2697 } 2698 return ret; 2699 } 2700 2701 static void __exit journal_exit(void) 2702 { 2703 #ifdef CONFIG_JBD2_DEBUG 2704 int n = atomic_read(&nr_journal_heads); 2705 if (n) 2706 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2707 #endif 2708 jbd2_remove_jbd_stats_proc_entry(); 2709 jbd2_journal_destroy_caches(); 2710 } 2711 2712 MODULE_LICENSE("GPL"); 2713 module_init(journal_init); 2714 module_exit(journal_exit); 2715 2716