1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static void __journal_abort_soft (journal_t *journal, int errno); 100 static int jbd2_journal_create_slab(size_t slab_size); 101 102 #ifdef CONFIG_JBD2_DEBUG 103 void __jbd2_debug(int level, const char *file, const char *func, 104 unsigned int line, const char *fmt, ...) 105 { 106 struct va_format vaf; 107 va_list args; 108 109 if (level > jbd2_journal_enable_debug) 110 return; 111 va_start(args, fmt); 112 vaf.fmt = fmt; 113 vaf.va = &args; 114 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 115 va_end(args); 116 } 117 EXPORT_SYMBOL(__jbd2_debug); 118 #endif 119 120 /* Checksumming functions */ 121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 122 { 123 if (!jbd2_journal_has_csum_v2or3_feature(j)) 124 return 1; 125 126 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 127 } 128 129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 130 { 131 __u32 csum; 132 __be32 old_csum; 133 134 old_csum = sb->s_checksum; 135 sb->s_checksum = 0; 136 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 137 sb->s_checksum = old_csum; 138 139 return cpu_to_be32(csum); 140 } 141 142 /* 143 * Helper function used to manage commit timeouts 144 */ 145 146 static void commit_timeout(struct timer_list *t) 147 { 148 journal_t *journal = from_timer(journal, t, j_commit_timer); 149 150 wake_up_process(journal->j_task); 151 } 152 153 /* 154 * kjournald2: The main thread function used to manage a logging device 155 * journal. 156 * 157 * This kernel thread is responsible for two things: 158 * 159 * 1) COMMIT: Every so often we need to commit the current state of the 160 * filesystem to disk. The journal thread is responsible for writing 161 * all of the metadata buffers to disk. 162 * 163 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 164 * of the data in that part of the log has been rewritten elsewhere on 165 * the disk. Flushing these old buffers to reclaim space in the log is 166 * known as checkpointing, and this thread is responsible for that job. 167 */ 168 169 static int kjournald2(void *arg) 170 { 171 journal_t *journal = arg; 172 transaction_t *transaction; 173 174 /* 175 * Set up an interval timer which can be used to trigger a commit wakeup 176 * after the commit interval expires 177 */ 178 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 179 180 set_freezable(); 181 182 /* Record that the journal thread is running */ 183 journal->j_task = current; 184 wake_up(&journal->j_wait_done_commit); 185 186 /* 187 * Make sure that no allocations from this kernel thread will ever 188 * recurse to the fs layer because we are responsible for the 189 * transaction commit and any fs involvement might get stuck waiting for 190 * the trasn. commit. 191 */ 192 memalloc_nofs_save(); 193 194 /* 195 * And now, wait forever for commit wakeup events. 196 */ 197 write_lock(&journal->j_state_lock); 198 199 loop: 200 if (journal->j_flags & JBD2_UNMOUNT) 201 goto end_loop; 202 203 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 204 journal->j_commit_sequence, journal->j_commit_request); 205 206 if (journal->j_commit_sequence != journal->j_commit_request) { 207 jbd_debug(1, "OK, requests differ\n"); 208 write_unlock(&journal->j_state_lock); 209 del_timer_sync(&journal->j_commit_timer); 210 jbd2_journal_commit_transaction(journal); 211 write_lock(&journal->j_state_lock); 212 goto loop; 213 } 214 215 wake_up(&journal->j_wait_done_commit); 216 if (freezing(current)) { 217 /* 218 * The simpler the better. Flushing journal isn't a 219 * good idea, because that depends on threads that may 220 * be already stopped. 221 */ 222 jbd_debug(1, "Now suspending kjournald2\n"); 223 write_unlock(&journal->j_state_lock); 224 try_to_freeze(); 225 write_lock(&journal->j_state_lock); 226 } else { 227 /* 228 * We assume on resume that commits are already there, 229 * so we don't sleep 230 */ 231 DEFINE_WAIT(wait); 232 int should_sleep = 1; 233 234 prepare_to_wait(&journal->j_wait_commit, &wait, 235 TASK_INTERRUPTIBLE); 236 if (journal->j_commit_sequence != journal->j_commit_request) 237 should_sleep = 0; 238 transaction = journal->j_running_transaction; 239 if (transaction && time_after_eq(jiffies, 240 transaction->t_expires)) 241 should_sleep = 0; 242 if (journal->j_flags & JBD2_UNMOUNT) 243 should_sleep = 0; 244 if (should_sleep) { 245 write_unlock(&journal->j_state_lock); 246 schedule(); 247 write_lock(&journal->j_state_lock); 248 } 249 finish_wait(&journal->j_wait_commit, &wait); 250 } 251 252 jbd_debug(1, "kjournald2 wakes\n"); 253 254 /* 255 * Were we woken up by a commit wakeup event? 256 */ 257 transaction = journal->j_running_transaction; 258 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 259 journal->j_commit_request = transaction->t_tid; 260 jbd_debug(1, "woke because of timeout\n"); 261 } 262 goto loop; 263 264 end_loop: 265 del_timer_sync(&journal->j_commit_timer); 266 journal->j_task = NULL; 267 wake_up(&journal->j_wait_done_commit); 268 jbd_debug(1, "Journal thread exiting.\n"); 269 write_unlock(&journal->j_state_lock); 270 return 0; 271 } 272 273 static int jbd2_journal_start_thread(journal_t *journal) 274 { 275 struct task_struct *t; 276 277 t = kthread_run(kjournald2, journal, "jbd2/%s", 278 journal->j_devname); 279 if (IS_ERR(t)) 280 return PTR_ERR(t); 281 282 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 283 return 0; 284 } 285 286 static void journal_kill_thread(journal_t *journal) 287 { 288 write_lock(&journal->j_state_lock); 289 journal->j_flags |= JBD2_UNMOUNT; 290 291 while (journal->j_task) { 292 write_unlock(&journal->j_state_lock); 293 wake_up(&journal->j_wait_commit); 294 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 295 write_lock(&journal->j_state_lock); 296 } 297 write_unlock(&journal->j_state_lock); 298 } 299 300 /* 301 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 302 * 303 * Writes a metadata buffer to a given disk block. The actual IO is not 304 * performed but a new buffer_head is constructed which labels the data 305 * to be written with the correct destination disk block. 306 * 307 * Any magic-number escaping which needs to be done will cause a 308 * copy-out here. If the buffer happens to start with the 309 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 310 * magic number is only written to the log for descripter blocks. In 311 * this case, we copy the data and replace the first word with 0, and we 312 * return a result code which indicates that this buffer needs to be 313 * marked as an escaped buffer in the corresponding log descriptor 314 * block. The missing word can then be restored when the block is read 315 * during recovery. 316 * 317 * If the source buffer has already been modified by a new transaction 318 * since we took the last commit snapshot, we use the frozen copy of 319 * that data for IO. If we end up using the existing buffer_head's data 320 * for the write, then we have to make sure nobody modifies it while the 321 * IO is in progress. do_get_write_access() handles this. 322 * 323 * The function returns a pointer to the buffer_head to be used for IO. 324 * 325 * 326 * Return value: 327 * <0: Error 328 * >=0: Finished OK 329 * 330 * On success: 331 * Bit 0 set == escape performed on the data 332 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 333 */ 334 335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 336 struct journal_head *jh_in, 337 struct buffer_head **bh_out, 338 sector_t blocknr) 339 { 340 int need_copy_out = 0; 341 int done_copy_out = 0; 342 int do_escape = 0; 343 char *mapped_data; 344 struct buffer_head *new_bh; 345 struct page *new_page; 346 unsigned int new_offset; 347 struct buffer_head *bh_in = jh2bh(jh_in); 348 journal_t *journal = transaction->t_journal; 349 350 /* 351 * The buffer really shouldn't be locked: only the current committing 352 * transaction is allowed to write it, so nobody else is allowed 353 * to do any IO. 354 * 355 * akpm: except if we're journalling data, and write() output is 356 * also part of a shared mapping, and another thread has 357 * decided to launch a writepage() against this buffer. 358 */ 359 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 360 361 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 362 363 /* keep subsequent assertions sane */ 364 atomic_set(&new_bh->b_count, 1); 365 366 jbd_lock_bh_state(bh_in); 367 repeat: 368 /* 369 * If a new transaction has already done a buffer copy-out, then 370 * we use that version of the data for the commit. 371 */ 372 if (jh_in->b_frozen_data) { 373 done_copy_out = 1; 374 new_page = virt_to_page(jh_in->b_frozen_data); 375 new_offset = offset_in_page(jh_in->b_frozen_data); 376 } else { 377 new_page = jh2bh(jh_in)->b_page; 378 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 379 } 380 381 mapped_data = kmap_atomic(new_page); 382 /* 383 * Fire data frozen trigger if data already wasn't frozen. Do this 384 * before checking for escaping, as the trigger may modify the magic 385 * offset. If a copy-out happens afterwards, it will have the correct 386 * data in the buffer. 387 */ 388 if (!done_copy_out) 389 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 390 jh_in->b_triggers); 391 392 /* 393 * Check for escaping 394 */ 395 if (*((__be32 *)(mapped_data + new_offset)) == 396 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 397 need_copy_out = 1; 398 do_escape = 1; 399 } 400 kunmap_atomic(mapped_data); 401 402 /* 403 * Do we need to do a data copy? 404 */ 405 if (need_copy_out && !done_copy_out) { 406 char *tmp; 407 408 jbd_unlock_bh_state(bh_in); 409 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 410 if (!tmp) { 411 brelse(new_bh); 412 return -ENOMEM; 413 } 414 jbd_lock_bh_state(bh_in); 415 if (jh_in->b_frozen_data) { 416 jbd2_free(tmp, bh_in->b_size); 417 goto repeat; 418 } 419 420 jh_in->b_frozen_data = tmp; 421 mapped_data = kmap_atomic(new_page); 422 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 423 kunmap_atomic(mapped_data); 424 425 new_page = virt_to_page(tmp); 426 new_offset = offset_in_page(tmp); 427 done_copy_out = 1; 428 429 /* 430 * This isn't strictly necessary, as we're using frozen 431 * data for the escaping, but it keeps consistency with 432 * b_frozen_data usage. 433 */ 434 jh_in->b_frozen_triggers = jh_in->b_triggers; 435 } 436 437 /* 438 * Did we need to do an escaping? Now we've done all the 439 * copying, we can finally do so. 440 */ 441 if (do_escape) { 442 mapped_data = kmap_atomic(new_page); 443 *((unsigned int *)(mapped_data + new_offset)) = 0; 444 kunmap_atomic(mapped_data); 445 } 446 447 set_bh_page(new_bh, new_page, new_offset); 448 new_bh->b_size = bh_in->b_size; 449 new_bh->b_bdev = journal->j_dev; 450 new_bh->b_blocknr = blocknr; 451 new_bh->b_private = bh_in; 452 set_buffer_mapped(new_bh); 453 set_buffer_dirty(new_bh); 454 455 *bh_out = new_bh; 456 457 /* 458 * The to-be-written buffer needs to get moved to the io queue, 459 * and the original buffer whose contents we are shadowing or 460 * copying is moved to the transaction's shadow queue. 461 */ 462 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 463 spin_lock(&journal->j_list_lock); 464 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 465 spin_unlock(&journal->j_list_lock); 466 set_buffer_shadow(bh_in); 467 jbd_unlock_bh_state(bh_in); 468 469 return do_escape | (done_copy_out << 1); 470 } 471 472 /* 473 * Allocation code for the journal file. Manage the space left in the 474 * journal, so that we can begin checkpointing when appropriate. 475 */ 476 477 /* 478 * Called with j_state_lock locked for writing. 479 * Returns true if a transaction commit was started. 480 */ 481 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 482 { 483 /* Return if the txn has already requested to be committed */ 484 if (journal->j_commit_request == target) 485 return 0; 486 487 /* 488 * The only transaction we can possibly wait upon is the 489 * currently running transaction (if it exists). Otherwise, 490 * the target tid must be an old one. 491 */ 492 if (journal->j_running_transaction && 493 journal->j_running_transaction->t_tid == target) { 494 /* 495 * We want a new commit: OK, mark the request and wakeup the 496 * commit thread. We do _not_ do the commit ourselves. 497 */ 498 499 journal->j_commit_request = target; 500 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 501 journal->j_commit_request, 502 journal->j_commit_sequence); 503 journal->j_running_transaction->t_requested = jiffies; 504 wake_up(&journal->j_wait_commit); 505 return 1; 506 } else if (!tid_geq(journal->j_commit_request, target)) 507 /* This should never happen, but if it does, preserve 508 the evidence before kjournald goes into a loop and 509 increments j_commit_sequence beyond all recognition. */ 510 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 511 journal->j_commit_request, 512 journal->j_commit_sequence, 513 target, journal->j_running_transaction ? 514 journal->j_running_transaction->t_tid : 0); 515 return 0; 516 } 517 518 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 519 { 520 int ret; 521 522 write_lock(&journal->j_state_lock); 523 ret = __jbd2_log_start_commit(journal, tid); 524 write_unlock(&journal->j_state_lock); 525 return ret; 526 } 527 528 /* 529 * Force and wait any uncommitted transactions. We can only force the running 530 * transaction if we don't have an active handle, otherwise, we will deadlock. 531 * Returns: <0 in case of error, 532 * 0 if nothing to commit, 533 * 1 if transaction was successfully committed. 534 */ 535 static int __jbd2_journal_force_commit(journal_t *journal) 536 { 537 transaction_t *transaction = NULL; 538 tid_t tid; 539 int need_to_start = 0, ret = 0; 540 541 read_lock(&journal->j_state_lock); 542 if (journal->j_running_transaction && !current->journal_info) { 543 transaction = journal->j_running_transaction; 544 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 545 need_to_start = 1; 546 } else if (journal->j_committing_transaction) 547 transaction = journal->j_committing_transaction; 548 549 if (!transaction) { 550 /* Nothing to commit */ 551 read_unlock(&journal->j_state_lock); 552 return 0; 553 } 554 tid = transaction->t_tid; 555 read_unlock(&journal->j_state_lock); 556 if (need_to_start) 557 jbd2_log_start_commit(journal, tid); 558 ret = jbd2_log_wait_commit(journal, tid); 559 if (!ret) 560 ret = 1; 561 562 return ret; 563 } 564 565 /** 566 * Force and wait upon a commit if the calling process is not within 567 * transaction. This is used for forcing out undo-protected data which contains 568 * bitmaps, when the fs is running out of space. 569 * 570 * @journal: journal to force 571 * Returns true if progress was made. 572 */ 573 int jbd2_journal_force_commit_nested(journal_t *journal) 574 { 575 int ret; 576 577 ret = __jbd2_journal_force_commit(journal); 578 return ret > 0; 579 } 580 581 /** 582 * int journal_force_commit() - force any uncommitted transactions 583 * @journal: journal to force 584 * 585 * Caller want unconditional commit. We can only force the running transaction 586 * if we don't have an active handle, otherwise, we will deadlock. 587 */ 588 int jbd2_journal_force_commit(journal_t *journal) 589 { 590 int ret; 591 592 J_ASSERT(!current->journal_info); 593 ret = __jbd2_journal_force_commit(journal); 594 if (ret > 0) 595 ret = 0; 596 return ret; 597 } 598 599 /* 600 * Start a commit of the current running transaction (if any). Returns true 601 * if a transaction is going to be committed (or is currently already 602 * committing), and fills its tid in at *ptid 603 */ 604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 605 { 606 int ret = 0; 607 608 write_lock(&journal->j_state_lock); 609 if (journal->j_running_transaction) { 610 tid_t tid = journal->j_running_transaction->t_tid; 611 612 __jbd2_log_start_commit(journal, tid); 613 /* There's a running transaction and we've just made sure 614 * it's commit has been scheduled. */ 615 if (ptid) 616 *ptid = tid; 617 ret = 1; 618 } else if (journal->j_committing_transaction) { 619 /* 620 * If commit has been started, then we have to wait for 621 * completion of that transaction. 622 */ 623 if (ptid) 624 *ptid = journal->j_committing_transaction->t_tid; 625 ret = 1; 626 } 627 write_unlock(&journal->j_state_lock); 628 return ret; 629 } 630 631 /* 632 * Return 1 if a given transaction has not yet sent barrier request 633 * connected with a transaction commit. If 0 is returned, transaction 634 * may or may not have sent the barrier. Used to avoid sending barrier 635 * twice in common cases. 636 */ 637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 638 { 639 int ret = 0; 640 transaction_t *commit_trans; 641 642 if (!(journal->j_flags & JBD2_BARRIER)) 643 return 0; 644 read_lock(&journal->j_state_lock); 645 /* Transaction already committed? */ 646 if (tid_geq(journal->j_commit_sequence, tid)) 647 goto out; 648 commit_trans = journal->j_committing_transaction; 649 if (!commit_trans || commit_trans->t_tid != tid) { 650 ret = 1; 651 goto out; 652 } 653 /* 654 * Transaction is being committed and we already proceeded to 655 * submitting a flush to fs partition? 656 */ 657 if (journal->j_fs_dev != journal->j_dev) { 658 if (!commit_trans->t_need_data_flush || 659 commit_trans->t_state >= T_COMMIT_DFLUSH) 660 goto out; 661 } else { 662 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 663 goto out; 664 } 665 ret = 1; 666 out: 667 read_unlock(&journal->j_state_lock); 668 return ret; 669 } 670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 671 672 /* 673 * Wait for a specified commit to complete. 674 * The caller may not hold the journal lock. 675 */ 676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 677 { 678 int err = 0; 679 680 read_lock(&journal->j_state_lock); 681 #ifdef CONFIG_PROVE_LOCKING 682 /* 683 * Some callers make sure transaction is already committing and in that 684 * case we cannot block on open handles anymore. So don't warn in that 685 * case. 686 */ 687 if (tid_gt(tid, journal->j_commit_sequence) && 688 (!journal->j_committing_transaction || 689 journal->j_committing_transaction->t_tid != tid)) { 690 read_unlock(&journal->j_state_lock); 691 jbd2_might_wait_for_commit(journal); 692 read_lock(&journal->j_state_lock); 693 } 694 #endif 695 #ifdef CONFIG_JBD2_DEBUG 696 if (!tid_geq(journal->j_commit_request, tid)) { 697 printk(KERN_ERR 698 "%s: error: j_commit_request=%u, tid=%u\n", 699 __func__, journal->j_commit_request, tid); 700 } 701 #endif 702 while (tid_gt(tid, journal->j_commit_sequence)) { 703 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 704 tid, journal->j_commit_sequence); 705 read_unlock(&journal->j_state_lock); 706 wake_up(&journal->j_wait_commit); 707 wait_event(journal->j_wait_done_commit, 708 !tid_gt(tid, journal->j_commit_sequence)); 709 read_lock(&journal->j_state_lock); 710 } 711 read_unlock(&journal->j_state_lock); 712 713 if (unlikely(is_journal_aborted(journal))) 714 err = -EIO; 715 return err; 716 } 717 718 /* Return 1 when transaction with given tid has already committed. */ 719 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 720 { 721 int ret = 1; 722 723 read_lock(&journal->j_state_lock); 724 if (journal->j_running_transaction && 725 journal->j_running_transaction->t_tid == tid) 726 ret = 0; 727 if (journal->j_committing_transaction && 728 journal->j_committing_transaction->t_tid == tid) 729 ret = 0; 730 read_unlock(&journal->j_state_lock); 731 return ret; 732 } 733 EXPORT_SYMBOL(jbd2_transaction_committed); 734 735 /* 736 * When this function returns the transaction corresponding to tid 737 * will be completed. If the transaction has currently running, start 738 * committing that transaction before waiting for it to complete. If 739 * the transaction id is stale, it is by definition already completed, 740 * so just return SUCCESS. 741 */ 742 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 743 { 744 int need_to_wait = 1; 745 746 read_lock(&journal->j_state_lock); 747 if (journal->j_running_transaction && 748 journal->j_running_transaction->t_tid == tid) { 749 if (journal->j_commit_request != tid) { 750 /* transaction not yet started, so request it */ 751 read_unlock(&journal->j_state_lock); 752 jbd2_log_start_commit(journal, tid); 753 goto wait_commit; 754 } 755 } else if (!(journal->j_committing_transaction && 756 journal->j_committing_transaction->t_tid == tid)) 757 need_to_wait = 0; 758 read_unlock(&journal->j_state_lock); 759 if (!need_to_wait) 760 return 0; 761 wait_commit: 762 return jbd2_log_wait_commit(journal, tid); 763 } 764 EXPORT_SYMBOL(jbd2_complete_transaction); 765 766 /* 767 * Log buffer allocation routines: 768 */ 769 770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 771 { 772 unsigned long blocknr; 773 774 write_lock(&journal->j_state_lock); 775 J_ASSERT(journal->j_free > 1); 776 777 blocknr = journal->j_head; 778 journal->j_head++; 779 journal->j_free--; 780 if (journal->j_head == journal->j_last) 781 journal->j_head = journal->j_first; 782 write_unlock(&journal->j_state_lock); 783 return jbd2_journal_bmap(journal, blocknr, retp); 784 } 785 786 /* 787 * Conversion of logical to physical block numbers for the journal 788 * 789 * On external journals the journal blocks are identity-mapped, so 790 * this is a no-op. If needed, we can use j_blk_offset - everything is 791 * ready. 792 */ 793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 794 unsigned long long *retp) 795 { 796 int err = 0; 797 unsigned long long ret; 798 799 if (journal->j_inode) { 800 ret = bmap(journal->j_inode, blocknr); 801 if (ret) 802 *retp = ret; 803 else { 804 printk(KERN_ALERT "%s: journal block not found " 805 "at offset %lu on %s\n", 806 __func__, blocknr, journal->j_devname); 807 err = -EIO; 808 __journal_abort_soft(journal, err); 809 } 810 } else { 811 *retp = blocknr; /* +journal->j_blk_offset */ 812 } 813 return err; 814 } 815 816 /* 817 * We play buffer_head aliasing tricks to write data/metadata blocks to 818 * the journal without copying their contents, but for journal 819 * descriptor blocks we do need to generate bona fide buffers. 820 * 821 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 822 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 823 * But we don't bother doing that, so there will be coherency problems with 824 * mmaps of blockdevs which hold live JBD-controlled filesystems. 825 */ 826 struct buffer_head * 827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 828 { 829 journal_t *journal = transaction->t_journal; 830 struct buffer_head *bh; 831 unsigned long long blocknr; 832 journal_header_t *header; 833 int err; 834 835 err = jbd2_journal_next_log_block(journal, &blocknr); 836 837 if (err) 838 return NULL; 839 840 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 841 if (!bh) 842 return NULL; 843 lock_buffer(bh); 844 memset(bh->b_data, 0, journal->j_blocksize); 845 header = (journal_header_t *)bh->b_data; 846 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 847 header->h_blocktype = cpu_to_be32(type); 848 header->h_sequence = cpu_to_be32(transaction->t_tid); 849 set_buffer_uptodate(bh); 850 unlock_buffer(bh); 851 BUFFER_TRACE(bh, "return this buffer"); 852 return bh; 853 } 854 855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 856 { 857 struct jbd2_journal_block_tail *tail; 858 __u32 csum; 859 860 if (!jbd2_journal_has_csum_v2or3(j)) 861 return; 862 863 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 864 sizeof(struct jbd2_journal_block_tail)); 865 tail->t_checksum = 0; 866 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 867 tail->t_checksum = cpu_to_be32(csum); 868 } 869 870 /* 871 * Return tid of the oldest transaction in the journal and block in the journal 872 * where the transaction starts. 873 * 874 * If the journal is now empty, return which will be the next transaction ID 875 * we will write and where will that transaction start. 876 * 877 * The return value is 0 if journal tail cannot be pushed any further, 1 if 878 * it can. 879 */ 880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 881 unsigned long *block) 882 { 883 transaction_t *transaction; 884 int ret; 885 886 read_lock(&journal->j_state_lock); 887 spin_lock(&journal->j_list_lock); 888 transaction = journal->j_checkpoint_transactions; 889 if (transaction) { 890 *tid = transaction->t_tid; 891 *block = transaction->t_log_start; 892 } else if ((transaction = journal->j_committing_transaction) != NULL) { 893 *tid = transaction->t_tid; 894 *block = transaction->t_log_start; 895 } else if ((transaction = journal->j_running_transaction) != NULL) { 896 *tid = transaction->t_tid; 897 *block = journal->j_head; 898 } else { 899 *tid = journal->j_transaction_sequence; 900 *block = journal->j_head; 901 } 902 ret = tid_gt(*tid, journal->j_tail_sequence); 903 spin_unlock(&journal->j_list_lock); 904 read_unlock(&journal->j_state_lock); 905 906 return ret; 907 } 908 909 /* 910 * Update information in journal structure and in on disk journal superblock 911 * about log tail. This function does not check whether information passed in 912 * really pushes log tail further. It's responsibility of the caller to make 913 * sure provided log tail information is valid (e.g. by holding 914 * j_checkpoint_mutex all the time between computing log tail and calling this 915 * function as is the case with jbd2_cleanup_journal_tail()). 916 * 917 * Requires j_checkpoint_mutex 918 */ 919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 920 { 921 unsigned long freed; 922 int ret; 923 924 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 925 926 /* 927 * We cannot afford for write to remain in drive's caches since as 928 * soon as we update j_tail, next transaction can start reusing journal 929 * space and if we lose sb update during power failure we'd replay 930 * old transaction with possibly newly overwritten data. 931 */ 932 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 933 REQ_SYNC | REQ_FUA); 934 if (ret) 935 goto out; 936 937 write_lock(&journal->j_state_lock); 938 freed = block - journal->j_tail; 939 if (block < journal->j_tail) 940 freed += journal->j_last - journal->j_first; 941 942 trace_jbd2_update_log_tail(journal, tid, block, freed); 943 jbd_debug(1, 944 "Cleaning journal tail from %u to %u (offset %lu), " 945 "freeing %lu\n", 946 journal->j_tail_sequence, tid, block, freed); 947 948 journal->j_free += freed; 949 journal->j_tail_sequence = tid; 950 journal->j_tail = block; 951 write_unlock(&journal->j_state_lock); 952 953 out: 954 return ret; 955 } 956 957 /* 958 * This is a variation of __jbd2_update_log_tail which checks for validity of 959 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 960 * with other threads updating log tail. 961 */ 962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 963 { 964 mutex_lock_io(&journal->j_checkpoint_mutex); 965 if (tid_gt(tid, journal->j_tail_sequence)) 966 __jbd2_update_log_tail(journal, tid, block); 967 mutex_unlock(&journal->j_checkpoint_mutex); 968 } 969 970 struct jbd2_stats_proc_session { 971 journal_t *journal; 972 struct transaction_stats_s *stats; 973 int start; 974 int max; 975 }; 976 977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 978 { 979 return *pos ? NULL : SEQ_START_TOKEN; 980 } 981 982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 983 { 984 return NULL; 985 } 986 987 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 988 { 989 struct jbd2_stats_proc_session *s = seq->private; 990 991 if (v != SEQ_START_TOKEN) 992 return 0; 993 seq_printf(seq, "%lu transactions (%lu requested), " 994 "each up to %u blocks\n", 995 s->stats->ts_tid, s->stats->ts_requested, 996 s->journal->j_max_transaction_buffers); 997 if (s->stats->ts_tid == 0) 998 return 0; 999 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1000 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1001 seq_printf(seq, " %ums request delay\n", 1002 (s->stats->ts_requested == 0) ? 0 : 1003 jiffies_to_msecs(s->stats->run.rs_request_delay / 1004 s->stats->ts_requested)); 1005 seq_printf(seq, " %ums running transaction\n", 1006 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1007 seq_printf(seq, " %ums transaction was being locked\n", 1008 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1009 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1010 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1011 seq_printf(seq, " %ums logging transaction\n", 1012 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1013 seq_printf(seq, " %lluus average transaction commit time\n", 1014 div_u64(s->journal->j_average_commit_time, 1000)); 1015 seq_printf(seq, " %lu handles per transaction\n", 1016 s->stats->run.rs_handle_count / s->stats->ts_tid); 1017 seq_printf(seq, " %lu blocks per transaction\n", 1018 s->stats->run.rs_blocks / s->stats->ts_tid); 1019 seq_printf(seq, " %lu logged blocks per transaction\n", 1020 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1021 return 0; 1022 } 1023 1024 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1025 { 1026 } 1027 1028 static const struct seq_operations jbd2_seq_info_ops = { 1029 .start = jbd2_seq_info_start, 1030 .next = jbd2_seq_info_next, 1031 .stop = jbd2_seq_info_stop, 1032 .show = jbd2_seq_info_show, 1033 }; 1034 1035 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1036 { 1037 journal_t *journal = PDE_DATA(inode); 1038 struct jbd2_stats_proc_session *s; 1039 int rc, size; 1040 1041 s = kmalloc(sizeof(*s), GFP_KERNEL); 1042 if (s == NULL) 1043 return -ENOMEM; 1044 size = sizeof(struct transaction_stats_s); 1045 s->stats = kmalloc(size, GFP_KERNEL); 1046 if (s->stats == NULL) { 1047 kfree(s); 1048 return -ENOMEM; 1049 } 1050 spin_lock(&journal->j_history_lock); 1051 memcpy(s->stats, &journal->j_stats, size); 1052 s->journal = journal; 1053 spin_unlock(&journal->j_history_lock); 1054 1055 rc = seq_open(file, &jbd2_seq_info_ops); 1056 if (rc == 0) { 1057 struct seq_file *m = file->private_data; 1058 m->private = s; 1059 } else { 1060 kfree(s->stats); 1061 kfree(s); 1062 } 1063 return rc; 1064 1065 } 1066 1067 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1068 { 1069 struct seq_file *seq = file->private_data; 1070 struct jbd2_stats_proc_session *s = seq->private; 1071 kfree(s->stats); 1072 kfree(s); 1073 return seq_release(inode, file); 1074 } 1075 1076 static const struct file_operations jbd2_seq_info_fops = { 1077 .owner = THIS_MODULE, 1078 .open = jbd2_seq_info_open, 1079 .read = seq_read, 1080 .llseek = seq_lseek, 1081 .release = jbd2_seq_info_release, 1082 }; 1083 1084 static struct proc_dir_entry *proc_jbd2_stats; 1085 1086 static void jbd2_stats_proc_init(journal_t *journal) 1087 { 1088 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1089 if (journal->j_proc_entry) { 1090 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1091 &jbd2_seq_info_fops, journal); 1092 } 1093 } 1094 1095 static void jbd2_stats_proc_exit(journal_t *journal) 1096 { 1097 remove_proc_entry("info", journal->j_proc_entry); 1098 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1099 } 1100 1101 /* 1102 * Management for journal control blocks: functions to create and 1103 * destroy journal_t structures, and to initialise and read existing 1104 * journal blocks from disk. */ 1105 1106 /* First: create and setup a journal_t object in memory. We initialise 1107 * very few fields yet: that has to wait until we have created the 1108 * journal structures from from scratch, or loaded them from disk. */ 1109 1110 static journal_t *journal_init_common(struct block_device *bdev, 1111 struct block_device *fs_dev, 1112 unsigned long long start, int len, int blocksize) 1113 { 1114 static struct lock_class_key jbd2_trans_commit_key; 1115 journal_t *journal; 1116 int err; 1117 struct buffer_head *bh; 1118 int n; 1119 1120 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1121 if (!journal) 1122 return NULL; 1123 1124 init_waitqueue_head(&journal->j_wait_transaction_locked); 1125 init_waitqueue_head(&journal->j_wait_done_commit); 1126 init_waitqueue_head(&journal->j_wait_commit); 1127 init_waitqueue_head(&journal->j_wait_updates); 1128 init_waitqueue_head(&journal->j_wait_reserved); 1129 mutex_init(&journal->j_barrier); 1130 mutex_init(&journal->j_checkpoint_mutex); 1131 spin_lock_init(&journal->j_revoke_lock); 1132 spin_lock_init(&journal->j_list_lock); 1133 rwlock_init(&journal->j_state_lock); 1134 1135 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1136 journal->j_min_batch_time = 0; 1137 journal->j_max_batch_time = 15000; /* 15ms */ 1138 atomic_set(&journal->j_reserved_credits, 0); 1139 1140 /* The journal is marked for error until we succeed with recovery! */ 1141 journal->j_flags = JBD2_ABORT; 1142 1143 /* Set up a default-sized revoke table for the new mount. */ 1144 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1145 if (err) 1146 goto err_cleanup; 1147 1148 spin_lock_init(&journal->j_history_lock); 1149 1150 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1151 &jbd2_trans_commit_key, 0); 1152 1153 /* journal descriptor can store up to n blocks -bzzz */ 1154 journal->j_blocksize = blocksize; 1155 journal->j_dev = bdev; 1156 journal->j_fs_dev = fs_dev; 1157 journal->j_blk_offset = start; 1158 journal->j_maxlen = len; 1159 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1160 journal->j_wbufsize = n; 1161 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1162 GFP_KERNEL); 1163 if (!journal->j_wbuf) 1164 goto err_cleanup; 1165 1166 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1167 if (!bh) { 1168 pr_err("%s: Cannot get buffer for journal superblock\n", 1169 __func__); 1170 goto err_cleanup; 1171 } 1172 journal->j_sb_buffer = bh; 1173 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1174 1175 return journal; 1176 1177 err_cleanup: 1178 kfree(journal->j_wbuf); 1179 jbd2_journal_destroy_revoke(journal); 1180 kfree(journal); 1181 return NULL; 1182 } 1183 1184 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1185 * 1186 * Create a journal structure assigned some fixed set of disk blocks to 1187 * the journal. We don't actually touch those disk blocks yet, but we 1188 * need to set up all of the mapping information to tell the journaling 1189 * system where the journal blocks are. 1190 * 1191 */ 1192 1193 /** 1194 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1195 * @bdev: Block device on which to create the journal 1196 * @fs_dev: Device which hold journalled filesystem for this journal. 1197 * @start: Block nr Start of journal. 1198 * @len: Length of the journal in blocks. 1199 * @blocksize: blocksize of journalling device 1200 * 1201 * Returns: a newly created journal_t * 1202 * 1203 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1204 * range of blocks on an arbitrary block device. 1205 * 1206 */ 1207 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1208 struct block_device *fs_dev, 1209 unsigned long long start, int len, int blocksize) 1210 { 1211 journal_t *journal; 1212 1213 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1214 if (!journal) 1215 return NULL; 1216 1217 bdevname(journal->j_dev, journal->j_devname); 1218 strreplace(journal->j_devname, '/', '!'); 1219 jbd2_stats_proc_init(journal); 1220 1221 return journal; 1222 } 1223 1224 /** 1225 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1226 * @inode: An inode to create the journal in 1227 * 1228 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1229 * the journal. The inode must exist already, must support bmap() and 1230 * must have all data blocks preallocated. 1231 */ 1232 journal_t *jbd2_journal_init_inode(struct inode *inode) 1233 { 1234 journal_t *journal; 1235 char *p; 1236 unsigned long long blocknr; 1237 1238 blocknr = bmap(inode, 0); 1239 if (!blocknr) { 1240 pr_err("%s: Cannot locate journal superblock\n", 1241 __func__); 1242 return NULL; 1243 } 1244 1245 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1246 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1247 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1248 1249 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1250 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1251 inode->i_sb->s_blocksize); 1252 if (!journal) 1253 return NULL; 1254 1255 journal->j_inode = inode; 1256 bdevname(journal->j_dev, journal->j_devname); 1257 p = strreplace(journal->j_devname, '/', '!'); 1258 sprintf(p, "-%lu", journal->j_inode->i_ino); 1259 jbd2_stats_proc_init(journal); 1260 1261 return journal; 1262 } 1263 1264 /* 1265 * If the journal init or create aborts, we need to mark the journal 1266 * superblock as being NULL to prevent the journal destroy from writing 1267 * back a bogus superblock. 1268 */ 1269 static void journal_fail_superblock (journal_t *journal) 1270 { 1271 struct buffer_head *bh = journal->j_sb_buffer; 1272 brelse(bh); 1273 journal->j_sb_buffer = NULL; 1274 } 1275 1276 /* 1277 * Given a journal_t structure, initialise the various fields for 1278 * startup of a new journaling session. We use this both when creating 1279 * a journal, and after recovering an old journal to reset it for 1280 * subsequent use. 1281 */ 1282 1283 static int journal_reset(journal_t *journal) 1284 { 1285 journal_superblock_t *sb = journal->j_superblock; 1286 unsigned long long first, last; 1287 1288 first = be32_to_cpu(sb->s_first); 1289 last = be32_to_cpu(sb->s_maxlen); 1290 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1291 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1292 first, last); 1293 journal_fail_superblock(journal); 1294 return -EINVAL; 1295 } 1296 1297 journal->j_first = first; 1298 journal->j_last = last; 1299 1300 journal->j_head = first; 1301 journal->j_tail = first; 1302 journal->j_free = last - first; 1303 1304 journal->j_tail_sequence = journal->j_transaction_sequence; 1305 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1306 journal->j_commit_request = journal->j_commit_sequence; 1307 1308 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1309 1310 /* 1311 * As a special case, if the on-disk copy is already marked as needing 1312 * no recovery (s_start == 0), then we can safely defer the superblock 1313 * update until the next commit by setting JBD2_FLUSHED. This avoids 1314 * attempting a write to a potential-readonly device. 1315 */ 1316 if (sb->s_start == 0) { 1317 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1318 "(start %ld, seq %u, errno %d)\n", 1319 journal->j_tail, journal->j_tail_sequence, 1320 journal->j_errno); 1321 journal->j_flags |= JBD2_FLUSHED; 1322 } else { 1323 /* Lock here to make assertions happy... */ 1324 mutex_lock_io(&journal->j_checkpoint_mutex); 1325 /* 1326 * Update log tail information. We use REQ_FUA since new 1327 * transaction will start reusing journal space and so we 1328 * must make sure information about current log tail is on 1329 * disk before that. 1330 */ 1331 jbd2_journal_update_sb_log_tail(journal, 1332 journal->j_tail_sequence, 1333 journal->j_tail, 1334 REQ_SYNC | REQ_FUA); 1335 mutex_unlock(&journal->j_checkpoint_mutex); 1336 } 1337 return jbd2_journal_start_thread(journal); 1338 } 1339 1340 /* 1341 * This function expects that the caller will have locked the journal 1342 * buffer head, and will return with it unlocked 1343 */ 1344 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1345 { 1346 struct buffer_head *bh = journal->j_sb_buffer; 1347 journal_superblock_t *sb = journal->j_superblock; 1348 int ret; 1349 1350 /* Buffer got discarded which means block device got invalidated */ 1351 if (!buffer_mapped(bh)) 1352 return -EIO; 1353 1354 trace_jbd2_write_superblock(journal, write_flags); 1355 if (!(journal->j_flags & JBD2_BARRIER)) 1356 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1357 if (buffer_write_io_error(bh)) { 1358 /* 1359 * Oh, dear. A previous attempt to write the journal 1360 * superblock failed. This could happen because the 1361 * USB device was yanked out. Or it could happen to 1362 * be a transient write error and maybe the block will 1363 * be remapped. Nothing we can do but to retry the 1364 * write and hope for the best. 1365 */ 1366 printk(KERN_ERR "JBD2: previous I/O error detected " 1367 "for journal superblock update for %s.\n", 1368 journal->j_devname); 1369 clear_buffer_write_io_error(bh); 1370 set_buffer_uptodate(bh); 1371 } 1372 if (jbd2_journal_has_csum_v2or3(journal)) 1373 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1374 get_bh(bh); 1375 bh->b_end_io = end_buffer_write_sync; 1376 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1377 wait_on_buffer(bh); 1378 if (buffer_write_io_error(bh)) { 1379 clear_buffer_write_io_error(bh); 1380 set_buffer_uptodate(bh); 1381 ret = -EIO; 1382 } 1383 if (ret) { 1384 printk(KERN_ERR "JBD2: Error %d detected when updating " 1385 "journal superblock for %s.\n", ret, 1386 journal->j_devname); 1387 jbd2_journal_abort(journal, ret); 1388 } 1389 1390 return ret; 1391 } 1392 1393 /** 1394 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1395 * @journal: The journal to update. 1396 * @tail_tid: TID of the new transaction at the tail of the log 1397 * @tail_block: The first block of the transaction at the tail of the log 1398 * @write_op: With which operation should we write the journal sb 1399 * 1400 * Update a journal's superblock information about log tail and write it to 1401 * disk, waiting for the IO to complete. 1402 */ 1403 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1404 unsigned long tail_block, int write_op) 1405 { 1406 journal_superblock_t *sb = journal->j_superblock; 1407 int ret; 1408 1409 if (is_journal_aborted(journal)) 1410 return -EIO; 1411 1412 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1413 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1414 tail_block, tail_tid); 1415 1416 lock_buffer(journal->j_sb_buffer); 1417 sb->s_sequence = cpu_to_be32(tail_tid); 1418 sb->s_start = cpu_to_be32(tail_block); 1419 1420 ret = jbd2_write_superblock(journal, write_op); 1421 if (ret) 1422 goto out; 1423 1424 /* Log is no longer empty */ 1425 write_lock(&journal->j_state_lock); 1426 WARN_ON(!sb->s_sequence); 1427 journal->j_flags &= ~JBD2_FLUSHED; 1428 write_unlock(&journal->j_state_lock); 1429 1430 out: 1431 return ret; 1432 } 1433 1434 /** 1435 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1436 * @journal: The journal to update. 1437 * @write_op: With which operation should we write the journal sb 1438 * 1439 * Update a journal's dynamic superblock fields to show that journal is empty. 1440 * Write updated superblock to disk waiting for IO to complete. 1441 */ 1442 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1443 { 1444 journal_superblock_t *sb = journal->j_superblock; 1445 1446 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1447 lock_buffer(journal->j_sb_buffer); 1448 if (sb->s_start == 0) { /* Is it already empty? */ 1449 unlock_buffer(journal->j_sb_buffer); 1450 return; 1451 } 1452 1453 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1454 journal->j_tail_sequence); 1455 1456 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1457 sb->s_start = cpu_to_be32(0); 1458 1459 jbd2_write_superblock(journal, write_op); 1460 1461 /* Log is no longer empty */ 1462 write_lock(&journal->j_state_lock); 1463 journal->j_flags |= JBD2_FLUSHED; 1464 write_unlock(&journal->j_state_lock); 1465 } 1466 1467 1468 /** 1469 * jbd2_journal_update_sb_errno() - Update error in the journal. 1470 * @journal: The journal to update. 1471 * 1472 * Update a journal's errno. Write updated superblock to disk waiting for IO 1473 * to complete. 1474 */ 1475 void jbd2_journal_update_sb_errno(journal_t *journal) 1476 { 1477 journal_superblock_t *sb = journal->j_superblock; 1478 int errcode; 1479 1480 lock_buffer(journal->j_sb_buffer); 1481 errcode = journal->j_errno; 1482 if (errcode == -ESHUTDOWN) 1483 errcode = 0; 1484 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1485 sb->s_errno = cpu_to_be32(errcode); 1486 1487 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1488 } 1489 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1490 1491 /* 1492 * Read the superblock for a given journal, performing initial 1493 * validation of the format. 1494 */ 1495 static int journal_get_superblock(journal_t *journal) 1496 { 1497 struct buffer_head *bh; 1498 journal_superblock_t *sb; 1499 int err = -EIO; 1500 1501 bh = journal->j_sb_buffer; 1502 1503 J_ASSERT(bh != NULL); 1504 if (!buffer_uptodate(bh)) { 1505 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1506 wait_on_buffer(bh); 1507 if (!buffer_uptodate(bh)) { 1508 printk(KERN_ERR 1509 "JBD2: IO error reading journal superblock\n"); 1510 goto out; 1511 } 1512 } 1513 1514 if (buffer_verified(bh)) 1515 return 0; 1516 1517 sb = journal->j_superblock; 1518 1519 err = -EINVAL; 1520 1521 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1522 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1523 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1524 goto out; 1525 } 1526 1527 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1528 case JBD2_SUPERBLOCK_V1: 1529 journal->j_format_version = 1; 1530 break; 1531 case JBD2_SUPERBLOCK_V2: 1532 journal->j_format_version = 2; 1533 break; 1534 default: 1535 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1536 goto out; 1537 } 1538 1539 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1540 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1541 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1542 printk(KERN_WARNING "JBD2: journal file too short\n"); 1543 goto out; 1544 } 1545 1546 if (be32_to_cpu(sb->s_first) == 0 || 1547 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1548 printk(KERN_WARNING 1549 "JBD2: Invalid start block of journal: %u\n", 1550 be32_to_cpu(sb->s_first)); 1551 goto out; 1552 } 1553 1554 if (jbd2_has_feature_csum2(journal) && 1555 jbd2_has_feature_csum3(journal)) { 1556 /* Can't have checksum v2 and v3 at the same time! */ 1557 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1558 "at the same time!\n"); 1559 goto out; 1560 } 1561 1562 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1563 jbd2_has_feature_checksum(journal)) { 1564 /* Can't have checksum v1 and v2 on at the same time! */ 1565 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1566 "at the same time!\n"); 1567 goto out; 1568 } 1569 1570 if (!jbd2_verify_csum_type(journal, sb)) { 1571 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1572 goto out; 1573 } 1574 1575 /* Load the checksum driver */ 1576 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1577 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1578 if (IS_ERR(journal->j_chksum_driver)) { 1579 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1580 err = PTR_ERR(journal->j_chksum_driver); 1581 journal->j_chksum_driver = NULL; 1582 goto out; 1583 } 1584 } 1585 1586 if (jbd2_journal_has_csum_v2or3(journal)) { 1587 /* Check superblock checksum */ 1588 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1589 printk(KERN_ERR "JBD2: journal checksum error\n"); 1590 err = -EFSBADCRC; 1591 goto out; 1592 } 1593 1594 /* Precompute checksum seed for all metadata */ 1595 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1596 sizeof(sb->s_uuid)); 1597 } 1598 1599 set_buffer_verified(bh); 1600 1601 return 0; 1602 1603 out: 1604 journal_fail_superblock(journal); 1605 return err; 1606 } 1607 1608 /* 1609 * Load the on-disk journal superblock and read the key fields into the 1610 * journal_t. 1611 */ 1612 1613 static int load_superblock(journal_t *journal) 1614 { 1615 int err; 1616 journal_superblock_t *sb; 1617 1618 err = journal_get_superblock(journal); 1619 if (err) 1620 return err; 1621 1622 sb = journal->j_superblock; 1623 1624 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1625 journal->j_tail = be32_to_cpu(sb->s_start); 1626 journal->j_first = be32_to_cpu(sb->s_first); 1627 journal->j_last = be32_to_cpu(sb->s_maxlen); 1628 journal->j_errno = be32_to_cpu(sb->s_errno); 1629 1630 return 0; 1631 } 1632 1633 1634 /** 1635 * int jbd2_journal_load() - Read journal from disk. 1636 * @journal: Journal to act on. 1637 * 1638 * Given a journal_t structure which tells us which disk blocks contain 1639 * a journal, read the journal from disk to initialise the in-memory 1640 * structures. 1641 */ 1642 int jbd2_journal_load(journal_t *journal) 1643 { 1644 int err; 1645 journal_superblock_t *sb; 1646 1647 err = load_superblock(journal); 1648 if (err) 1649 return err; 1650 1651 sb = journal->j_superblock; 1652 /* If this is a V2 superblock, then we have to check the 1653 * features flags on it. */ 1654 1655 if (journal->j_format_version >= 2) { 1656 if ((sb->s_feature_ro_compat & 1657 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1658 (sb->s_feature_incompat & 1659 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1660 printk(KERN_WARNING 1661 "JBD2: Unrecognised features on journal\n"); 1662 return -EINVAL; 1663 } 1664 } 1665 1666 /* 1667 * Create a slab for this blocksize 1668 */ 1669 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1670 if (err) 1671 return err; 1672 1673 /* Let the recovery code check whether it needs to recover any 1674 * data from the journal. */ 1675 if (jbd2_journal_recover(journal)) 1676 goto recovery_error; 1677 1678 if (journal->j_failed_commit) { 1679 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1680 "is corrupt.\n", journal->j_failed_commit, 1681 journal->j_devname); 1682 return -EFSCORRUPTED; 1683 } 1684 1685 /* OK, we've finished with the dynamic journal bits: 1686 * reinitialise the dynamic contents of the superblock in memory 1687 * and reset them on disk. */ 1688 if (journal_reset(journal)) 1689 goto recovery_error; 1690 1691 journal->j_flags &= ~JBD2_ABORT; 1692 journal->j_flags |= JBD2_LOADED; 1693 return 0; 1694 1695 recovery_error: 1696 printk(KERN_WARNING "JBD2: recovery failed\n"); 1697 return -EIO; 1698 } 1699 1700 /** 1701 * void jbd2_journal_destroy() - Release a journal_t structure. 1702 * @journal: Journal to act on. 1703 * 1704 * Release a journal_t structure once it is no longer in use by the 1705 * journaled object. 1706 * Return <0 if we couldn't clean up the journal. 1707 */ 1708 int jbd2_journal_destroy(journal_t *journal) 1709 { 1710 int err = 0; 1711 1712 /* Wait for the commit thread to wake up and die. */ 1713 journal_kill_thread(journal); 1714 1715 /* Force a final log commit */ 1716 if (journal->j_running_transaction) 1717 jbd2_journal_commit_transaction(journal); 1718 1719 /* Force any old transactions to disk */ 1720 1721 /* Totally anal locking here... */ 1722 spin_lock(&journal->j_list_lock); 1723 while (journal->j_checkpoint_transactions != NULL) { 1724 spin_unlock(&journal->j_list_lock); 1725 mutex_lock_io(&journal->j_checkpoint_mutex); 1726 err = jbd2_log_do_checkpoint(journal); 1727 mutex_unlock(&journal->j_checkpoint_mutex); 1728 /* 1729 * If checkpointing failed, just free the buffers to avoid 1730 * looping forever 1731 */ 1732 if (err) { 1733 jbd2_journal_destroy_checkpoint(journal); 1734 spin_lock(&journal->j_list_lock); 1735 break; 1736 } 1737 spin_lock(&journal->j_list_lock); 1738 } 1739 1740 J_ASSERT(journal->j_running_transaction == NULL); 1741 J_ASSERT(journal->j_committing_transaction == NULL); 1742 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1743 spin_unlock(&journal->j_list_lock); 1744 1745 if (journal->j_sb_buffer) { 1746 if (!is_journal_aborted(journal)) { 1747 mutex_lock_io(&journal->j_checkpoint_mutex); 1748 1749 write_lock(&journal->j_state_lock); 1750 journal->j_tail_sequence = 1751 ++journal->j_transaction_sequence; 1752 write_unlock(&journal->j_state_lock); 1753 1754 jbd2_mark_journal_empty(journal, 1755 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1756 mutex_unlock(&journal->j_checkpoint_mutex); 1757 } else 1758 err = -EIO; 1759 brelse(journal->j_sb_buffer); 1760 } 1761 1762 if (journal->j_proc_entry) 1763 jbd2_stats_proc_exit(journal); 1764 iput(journal->j_inode); 1765 if (journal->j_revoke) 1766 jbd2_journal_destroy_revoke(journal); 1767 if (journal->j_chksum_driver) 1768 crypto_free_shash(journal->j_chksum_driver); 1769 kfree(journal->j_wbuf); 1770 kfree(journal); 1771 1772 return err; 1773 } 1774 1775 1776 /** 1777 *int jbd2_journal_check_used_features () - Check if features specified are used. 1778 * @journal: Journal to check. 1779 * @compat: bitmask of compatible features 1780 * @ro: bitmask of features that force read-only mount 1781 * @incompat: bitmask of incompatible features 1782 * 1783 * Check whether the journal uses all of a given set of 1784 * features. Return true (non-zero) if it does. 1785 **/ 1786 1787 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1788 unsigned long ro, unsigned long incompat) 1789 { 1790 journal_superblock_t *sb; 1791 1792 if (!compat && !ro && !incompat) 1793 return 1; 1794 /* Load journal superblock if it is not loaded yet. */ 1795 if (journal->j_format_version == 0 && 1796 journal_get_superblock(journal) != 0) 1797 return 0; 1798 if (journal->j_format_version == 1) 1799 return 0; 1800 1801 sb = journal->j_superblock; 1802 1803 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1804 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1805 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1806 return 1; 1807 1808 return 0; 1809 } 1810 1811 /** 1812 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1813 * @journal: Journal to check. 1814 * @compat: bitmask of compatible features 1815 * @ro: bitmask of features that force read-only mount 1816 * @incompat: bitmask of incompatible features 1817 * 1818 * Check whether the journaling code supports the use of 1819 * all of a given set of features on this journal. Return true 1820 * (non-zero) if it can. */ 1821 1822 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1823 unsigned long ro, unsigned long incompat) 1824 { 1825 if (!compat && !ro && !incompat) 1826 return 1; 1827 1828 /* We can support any known requested features iff the 1829 * superblock is in version 2. Otherwise we fail to support any 1830 * extended sb features. */ 1831 1832 if (journal->j_format_version != 2) 1833 return 0; 1834 1835 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1836 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1837 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1838 return 1; 1839 1840 return 0; 1841 } 1842 1843 /** 1844 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1845 * @journal: Journal to act on. 1846 * @compat: bitmask of compatible features 1847 * @ro: bitmask of features that force read-only mount 1848 * @incompat: bitmask of incompatible features 1849 * 1850 * Mark a given journal feature as present on the 1851 * superblock. Returns true if the requested features could be set. 1852 * 1853 */ 1854 1855 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1856 unsigned long ro, unsigned long incompat) 1857 { 1858 #define INCOMPAT_FEATURE_ON(f) \ 1859 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1860 #define COMPAT_FEATURE_ON(f) \ 1861 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1862 journal_superblock_t *sb; 1863 1864 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1865 return 1; 1866 1867 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1868 return 0; 1869 1870 /* If enabling v2 checksums, turn on v3 instead */ 1871 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1872 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1873 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1874 } 1875 1876 /* Asking for checksumming v3 and v1? Only give them v3. */ 1877 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1878 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1879 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1880 1881 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1882 compat, ro, incompat); 1883 1884 sb = journal->j_superblock; 1885 1886 /* Load the checksum driver if necessary */ 1887 if ((journal->j_chksum_driver == NULL) && 1888 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1889 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1890 if (IS_ERR(journal->j_chksum_driver)) { 1891 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1892 journal->j_chksum_driver = NULL; 1893 return 0; 1894 } 1895 /* Precompute checksum seed for all metadata */ 1896 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1897 sizeof(sb->s_uuid)); 1898 } 1899 1900 lock_buffer(journal->j_sb_buffer); 1901 1902 /* If enabling v3 checksums, update superblock */ 1903 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1904 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1905 sb->s_feature_compat &= 1906 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1907 } 1908 1909 /* If enabling v1 checksums, downgrade superblock */ 1910 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1911 sb->s_feature_incompat &= 1912 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1913 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1914 1915 sb->s_feature_compat |= cpu_to_be32(compat); 1916 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1917 sb->s_feature_incompat |= cpu_to_be32(incompat); 1918 unlock_buffer(journal->j_sb_buffer); 1919 1920 return 1; 1921 #undef COMPAT_FEATURE_ON 1922 #undef INCOMPAT_FEATURE_ON 1923 } 1924 1925 /* 1926 * jbd2_journal_clear_features () - Clear a given journal feature in the 1927 * superblock 1928 * @journal: Journal to act on. 1929 * @compat: bitmask of compatible features 1930 * @ro: bitmask of features that force read-only mount 1931 * @incompat: bitmask of incompatible features 1932 * 1933 * Clear a given journal feature as present on the 1934 * superblock. 1935 */ 1936 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1937 unsigned long ro, unsigned long incompat) 1938 { 1939 journal_superblock_t *sb; 1940 1941 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1942 compat, ro, incompat); 1943 1944 sb = journal->j_superblock; 1945 1946 sb->s_feature_compat &= ~cpu_to_be32(compat); 1947 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1948 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1949 } 1950 EXPORT_SYMBOL(jbd2_journal_clear_features); 1951 1952 /** 1953 * int jbd2_journal_flush () - Flush journal 1954 * @journal: Journal to act on. 1955 * 1956 * Flush all data for a given journal to disk and empty the journal. 1957 * Filesystems can use this when remounting readonly to ensure that 1958 * recovery does not need to happen on remount. 1959 */ 1960 1961 int jbd2_journal_flush(journal_t *journal) 1962 { 1963 int err = 0; 1964 transaction_t *transaction = NULL; 1965 1966 write_lock(&journal->j_state_lock); 1967 1968 /* Force everything buffered to the log... */ 1969 if (journal->j_running_transaction) { 1970 transaction = journal->j_running_transaction; 1971 __jbd2_log_start_commit(journal, transaction->t_tid); 1972 } else if (journal->j_committing_transaction) 1973 transaction = journal->j_committing_transaction; 1974 1975 /* Wait for the log commit to complete... */ 1976 if (transaction) { 1977 tid_t tid = transaction->t_tid; 1978 1979 write_unlock(&journal->j_state_lock); 1980 jbd2_log_wait_commit(journal, tid); 1981 } else { 1982 write_unlock(&journal->j_state_lock); 1983 } 1984 1985 /* ...and flush everything in the log out to disk. */ 1986 spin_lock(&journal->j_list_lock); 1987 while (!err && journal->j_checkpoint_transactions != NULL) { 1988 spin_unlock(&journal->j_list_lock); 1989 mutex_lock_io(&journal->j_checkpoint_mutex); 1990 err = jbd2_log_do_checkpoint(journal); 1991 mutex_unlock(&journal->j_checkpoint_mutex); 1992 spin_lock(&journal->j_list_lock); 1993 } 1994 spin_unlock(&journal->j_list_lock); 1995 1996 if (is_journal_aborted(journal)) 1997 return -EIO; 1998 1999 mutex_lock_io(&journal->j_checkpoint_mutex); 2000 if (!err) { 2001 err = jbd2_cleanup_journal_tail(journal); 2002 if (err < 0) { 2003 mutex_unlock(&journal->j_checkpoint_mutex); 2004 goto out; 2005 } 2006 err = 0; 2007 } 2008 2009 /* Finally, mark the journal as really needing no recovery. 2010 * This sets s_start==0 in the underlying superblock, which is 2011 * the magic code for a fully-recovered superblock. Any future 2012 * commits of data to the journal will restore the current 2013 * s_start value. */ 2014 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2015 mutex_unlock(&journal->j_checkpoint_mutex); 2016 write_lock(&journal->j_state_lock); 2017 J_ASSERT(!journal->j_running_transaction); 2018 J_ASSERT(!journal->j_committing_transaction); 2019 J_ASSERT(!journal->j_checkpoint_transactions); 2020 J_ASSERT(journal->j_head == journal->j_tail); 2021 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2022 write_unlock(&journal->j_state_lock); 2023 out: 2024 return err; 2025 } 2026 2027 /** 2028 * int jbd2_journal_wipe() - Wipe journal contents 2029 * @journal: Journal to act on. 2030 * @write: flag (see below) 2031 * 2032 * Wipe out all of the contents of a journal, safely. This will produce 2033 * a warning if the journal contains any valid recovery information. 2034 * Must be called between journal_init_*() and jbd2_journal_load(). 2035 * 2036 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2037 * we merely suppress recovery. 2038 */ 2039 2040 int jbd2_journal_wipe(journal_t *journal, int write) 2041 { 2042 int err = 0; 2043 2044 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2045 2046 err = load_superblock(journal); 2047 if (err) 2048 return err; 2049 2050 if (!journal->j_tail) 2051 goto no_recovery; 2052 2053 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2054 write ? "Clearing" : "Ignoring"); 2055 2056 err = jbd2_journal_skip_recovery(journal); 2057 if (write) { 2058 /* Lock to make assertions happy... */ 2059 mutex_lock_io(&journal->j_checkpoint_mutex); 2060 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2061 mutex_unlock(&journal->j_checkpoint_mutex); 2062 } 2063 2064 no_recovery: 2065 return err; 2066 } 2067 2068 /* 2069 * Journal abort has very specific semantics, which we describe 2070 * for journal abort. 2071 * 2072 * Two internal functions, which provide abort to the jbd layer 2073 * itself are here. 2074 */ 2075 2076 /* 2077 * Quick version for internal journal use (doesn't lock the journal). 2078 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2079 * and don't attempt to make any other journal updates. 2080 */ 2081 void __jbd2_journal_abort_hard(journal_t *journal) 2082 { 2083 transaction_t *transaction; 2084 2085 if (journal->j_flags & JBD2_ABORT) 2086 return; 2087 2088 printk(KERN_ERR "Aborting journal on device %s.\n", 2089 journal->j_devname); 2090 2091 write_lock(&journal->j_state_lock); 2092 journal->j_flags |= JBD2_ABORT; 2093 transaction = journal->j_running_transaction; 2094 if (transaction) 2095 __jbd2_log_start_commit(journal, transaction->t_tid); 2096 write_unlock(&journal->j_state_lock); 2097 } 2098 2099 /* Soft abort: record the abort error status in the journal superblock, 2100 * but don't do any other IO. */ 2101 static void __journal_abort_soft (journal_t *journal, int errno) 2102 { 2103 int old_errno; 2104 2105 write_lock(&journal->j_state_lock); 2106 old_errno = journal->j_errno; 2107 if (!journal->j_errno || errno == -ESHUTDOWN) 2108 journal->j_errno = errno; 2109 2110 if (journal->j_flags & JBD2_ABORT) { 2111 write_unlock(&journal->j_state_lock); 2112 if (!old_errno && old_errno != -ESHUTDOWN && 2113 errno == -ESHUTDOWN) 2114 jbd2_journal_update_sb_errno(journal); 2115 return; 2116 } 2117 write_unlock(&journal->j_state_lock); 2118 2119 __jbd2_journal_abort_hard(journal); 2120 2121 if (errno) { 2122 jbd2_journal_update_sb_errno(journal); 2123 write_lock(&journal->j_state_lock); 2124 journal->j_flags |= JBD2_REC_ERR; 2125 write_unlock(&journal->j_state_lock); 2126 } 2127 } 2128 2129 /** 2130 * void jbd2_journal_abort () - Shutdown the journal immediately. 2131 * @journal: the journal to shutdown. 2132 * @errno: an error number to record in the journal indicating 2133 * the reason for the shutdown. 2134 * 2135 * Perform a complete, immediate shutdown of the ENTIRE 2136 * journal (not of a single transaction). This operation cannot be 2137 * undone without closing and reopening the journal. 2138 * 2139 * The jbd2_journal_abort function is intended to support higher level error 2140 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2141 * mode. 2142 * 2143 * Journal abort has very specific semantics. Any existing dirty, 2144 * unjournaled buffers in the main filesystem will still be written to 2145 * disk by bdflush, but the journaling mechanism will be suspended 2146 * immediately and no further transaction commits will be honoured. 2147 * 2148 * Any dirty, journaled buffers will be written back to disk without 2149 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2150 * filesystem, but we _do_ attempt to leave as much data as possible 2151 * behind for fsck to use for cleanup. 2152 * 2153 * Any attempt to get a new transaction handle on a journal which is in 2154 * ABORT state will just result in an -EROFS error return. A 2155 * jbd2_journal_stop on an existing handle will return -EIO if we have 2156 * entered abort state during the update. 2157 * 2158 * Recursive transactions are not disturbed by journal abort until the 2159 * final jbd2_journal_stop, which will receive the -EIO error. 2160 * 2161 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2162 * which will be recorded (if possible) in the journal superblock. This 2163 * allows a client to record failure conditions in the middle of a 2164 * transaction without having to complete the transaction to record the 2165 * failure to disk. ext3_error, for example, now uses this 2166 * functionality. 2167 * 2168 * Errors which originate from within the journaling layer will NOT 2169 * supply an errno; a null errno implies that absolutely no further 2170 * writes are done to the journal (unless there are any already in 2171 * progress). 2172 * 2173 */ 2174 2175 void jbd2_journal_abort(journal_t *journal, int errno) 2176 { 2177 __journal_abort_soft(journal, errno); 2178 } 2179 2180 /** 2181 * int jbd2_journal_errno () - returns the journal's error state. 2182 * @journal: journal to examine. 2183 * 2184 * This is the errno number set with jbd2_journal_abort(), the last 2185 * time the journal was mounted - if the journal was stopped 2186 * without calling abort this will be 0. 2187 * 2188 * If the journal has been aborted on this mount time -EROFS will 2189 * be returned. 2190 */ 2191 int jbd2_journal_errno(journal_t *journal) 2192 { 2193 int err; 2194 2195 read_lock(&journal->j_state_lock); 2196 if (journal->j_flags & JBD2_ABORT) 2197 err = -EROFS; 2198 else 2199 err = journal->j_errno; 2200 read_unlock(&journal->j_state_lock); 2201 return err; 2202 } 2203 2204 /** 2205 * int jbd2_journal_clear_err () - clears the journal's error state 2206 * @journal: journal to act on. 2207 * 2208 * An error must be cleared or acked to take a FS out of readonly 2209 * mode. 2210 */ 2211 int jbd2_journal_clear_err(journal_t *journal) 2212 { 2213 int err = 0; 2214 2215 write_lock(&journal->j_state_lock); 2216 if (journal->j_flags & JBD2_ABORT) 2217 err = -EROFS; 2218 else 2219 journal->j_errno = 0; 2220 write_unlock(&journal->j_state_lock); 2221 return err; 2222 } 2223 2224 /** 2225 * void jbd2_journal_ack_err() - Ack journal err. 2226 * @journal: journal to act on. 2227 * 2228 * An error must be cleared or acked to take a FS out of readonly 2229 * mode. 2230 */ 2231 void jbd2_journal_ack_err(journal_t *journal) 2232 { 2233 write_lock(&journal->j_state_lock); 2234 if (journal->j_errno) 2235 journal->j_flags |= JBD2_ACK_ERR; 2236 write_unlock(&journal->j_state_lock); 2237 } 2238 2239 int jbd2_journal_blocks_per_page(struct inode *inode) 2240 { 2241 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2242 } 2243 2244 /* 2245 * helper functions to deal with 32 or 64bit block numbers. 2246 */ 2247 size_t journal_tag_bytes(journal_t *journal) 2248 { 2249 size_t sz; 2250 2251 if (jbd2_has_feature_csum3(journal)) 2252 return sizeof(journal_block_tag3_t); 2253 2254 sz = sizeof(journal_block_tag_t); 2255 2256 if (jbd2_has_feature_csum2(journal)) 2257 sz += sizeof(__u16); 2258 2259 if (jbd2_has_feature_64bit(journal)) 2260 return sz; 2261 else 2262 return sz - sizeof(__u32); 2263 } 2264 2265 /* 2266 * JBD memory management 2267 * 2268 * These functions are used to allocate block-sized chunks of memory 2269 * used for making copies of buffer_head data. Very often it will be 2270 * page-sized chunks of data, but sometimes it will be in 2271 * sub-page-size chunks. (For example, 16k pages on Power systems 2272 * with a 4k block file system.) For blocks smaller than a page, we 2273 * use a SLAB allocator. There are slab caches for each block size, 2274 * which are allocated at mount time, if necessary, and we only free 2275 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2276 * this reason we don't need to a mutex to protect access to 2277 * jbd2_slab[] allocating or releasing memory; only in 2278 * jbd2_journal_create_slab(). 2279 */ 2280 #define JBD2_MAX_SLABS 8 2281 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2282 2283 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2284 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2285 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2286 }; 2287 2288 2289 static void jbd2_journal_destroy_slabs(void) 2290 { 2291 int i; 2292 2293 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2294 kmem_cache_destroy(jbd2_slab[i]); 2295 jbd2_slab[i] = NULL; 2296 } 2297 } 2298 2299 static int jbd2_journal_create_slab(size_t size) 2300 { 2301 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2302 int i = order_base_2(size) - 10; 2303 size_t slab_size; 2304 2305 if (size == PAGE_SIZE) 2306 return 0; 2307 2308 if (i >= JBD2_MAX_SLABS) 2309 return -EINVAL; 2310 2311 if (unlikely(i < 0)) 2312 i = 0; 2313 mutex_lock(&jbd2_slab_create_mutex); 2314 if (jbd2_slab[i]) { 2315 mutex_unlock(&jbd2_slab_create_mutex); 2316 return 0; /* Already created */ 2317 } 2318 2319 slab_size = 1 << (i+10); 2320 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2321 slab_size, 0, NULL); 2322 mutex_unlock(&jbd2_slab_create_mutex); 2323 if (!jbd2_slab[i]) { 2324 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2325 return -ENOMEM; 2326 } 2327 return 0; 2328 } 2329 2330 static struct kmem_cache *get_slab(size_t size) 2331 { 2332 int i = order_base_2(size) - 10; 2333 2334 BUG_ON(i >= JBD2_MAX_SLABS); 2335 if (unlikely(i < 0)) 2336 i = 0; 2337 BUG_ON(jbd2_slab[i] == NULL); 2338 return jbd2_slab[i]; 2339 } 2340 2341 void *jbd2_alloc(size_t size, gfp_t flags) 2342 { 2343 void *ptr; 2344 2345 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2346 2347 if (size < PAGE_SIZE) 2348 ptr = kmem_cache_alloc(get_slab(size), flags); 2349 else 2350 ptr = (void *)__get_free_pages(flags, get_order(size)); 2351 2352 /* Check alignment; SLUB has gotten this wrong in the past, 2353 * and this can lead to user data corruption! */ 2354 BUG_ON(((unsigned long) ptr) & (size-1)); 2355 2356 return ptr; 2357 } 2358 2359 void jbd2_free(void *ptr, size_t size) 2360 { 2361 if (size < PAGE_SIZE) 2362 kmem_cache_free(get_slab(size), ptr); 2363 else 2364 free_pages((unsigned long)ptr, get_order(size)); 2365 }; 2366 2367 /* 2368 * Journal_head storage management 2369 */ 2370 static struct kmem_cache *jbd2_journal_head_cache; 2371 #ifdef CONFIG_JBD2_DEBUG 2372 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2373 #endif 2374 2375 static int __init jbd2_journal_init_journal_head_cache(void) 2376 { 2377 J_ASSERT(!jbd2_journal_head_cache); 2378 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2379 sizeof(struct journal_head), 2380 0, /* offset */ 2381 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2382 NULL); /* ctor */ 2383 if (!jbd2_journal_head_cache) { 2384 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2385 return -ENOMEM; 2386 } 2387 return 0; 2388 } 2389 2390 static void jbd2_journal_destroy_journal_head_cache(void) 2391 { 2392 kmem_cache_destroy(jbd2_journal_head_cache); 2393 jbd2_journal_head_cache = NULL; 2394 } 2395 2396 /* 2397 * journal_head splicing and dicing 2398 */ 2399 static struct journal_head *journal_alloc_journal_head(void) 2400 { 2401 struct journal_head *ret; 2402 2403 #ifdef CONFIG_JBD2_DEBUG 2404 atomic_inc(&nr_journal_heads); 2405 #endif 2406 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2407 if (!ret) { 2408 jbd_debug(1, "out of memory for journal_head\n"); 2409 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2410 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2411 GFP_NOFS | __GFP_NOFAIL); 2412 } 2413 return ret; 2414 } 2415 2416 static void journal_free_journal_head(struct journal_head *jh) 2417 { 2418 #ifdef CONFIG_JBD2_DEBUG 2419 atomic_dec(&nr_journal_heads); 2420 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2421 #endif 2422 kmem_cache_free(jbd2_journal_head_cache, jh); 2423 } 2424 2425 /* 2426 * A journal_head is attached to a buffer_head whenever JBD has an 2427 * interest in the buffer. 2428 * 2429 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2430 * is set. This bit is tested in core kernel code where we need to take 2431 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2432 * there. 2433 * 2434 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2435 * 2436 * When a buffer has its BH_JBD bit set it is immune from being released by 2437 * core kernel code, mainly via ->b_count. 2438 * 2439 * A journal_head is detached from its buffer_head when the journal_head's 2440 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2441 * transaction (b_cp_transaction) hold their references to b_jcount. 2442 * 2443 * Various places in the kernel want to attach a journal_head to a buffer_head 2444 * _before_ attaching the journal_head to a transaction. To protect the 2445 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2446 * journal_head's b_jcount refcount by one. The caller must call 2447 * jbd2_journal_put_journal_head() to undo this. 2448 * 2449 * So the typical usage would be: 2450 * 2451 * (Attach a journal_head if needed. Increments b_jcount) 2452 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2453 * ... 2454 * (Get another reference for transaction) 2455 * jbd2_journal_grab_journal_head(bh); 2456 * jh->b_transaction = xxx; 2457 * (Put original reference) 2458 * jbd2_journal_put_journal_head(jh); 2459 */ 2460 2461 /* 2462 * Give a buffer_head a journal_head. 2463 * 2464 * May sleep. 2465 */ 2466 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2467 { 2468 struct journal_head *jh; 2469 struct journal_head *new_jh = NULL; 2470 2471 repeat: 2472 if (!buffer_jbd(bh)) 2473 new_jh = journal_alloc_journal_head(); 2474 2475 jbd_lock_bh_journal_head(bh); 2476 if (buffer_jbd(bh)) { 2477 jh = bh2jh(bh); 2478 } else { 2479 J_ASSERT_BH(bh, 2480 (atomic_read(&bh->b_count) > 0) || 2481 (bh->b_page && bh->b_page->mapping)); 2482 2483 if (!new_jh) { 2484 jbd_unlock_bh_journal_head(bh); 2485 goto repeat; 2486 } 2487 2488 jh = new_jh; 2489 new_jh = NULL; /* We consumed it */ 2490 set_buffer_jbd(bh); 2491 bh->b_private = jh; 2492 jh->b_bh = bh; 2493 get_bh(bh); 2494 BUFFER_TRACE(bh, "added journal_head"); 2495 } 2496 jh->b_jcount++; 2497 jbd_unlock_bh_journal_head(bh); 2498 if (new_jh) 2499 journal_free_journal_head(new_jh); 2500 return bh->b_private; 2501 } 2502 2503 /* 2504 * Grab a ref against this buffer_head's journal_head. If it ended up not 2505 * having a journal_head, return NULL 2506 */ 2507 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2508 { 2509 struct journal_head *jh = NULL; 2510 2511 jbd_lock_bh_journal_head(bh); 2512 if (buffer_jbd(bh)) { 2513 jh = bh2jh(bh); 2514 jh->b_jcount++; 2515 } 2516 jbd_unlock_bh_journal_head(bh); 2517 return jh; 2518 } 2519 2520 static void __journal_remove_journal_head(struct buffer_head *bh) 2521 { 2522 struct journal_head *jh = bh2jh(bh); 2523 2524 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2525 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2526 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2527 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2528 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2529 J_ASSERT_BH(bh, buffer_jbd(bh)); 2530 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2531 BUFFER_TRACE(bh, "remove journal_head"); 2532 if (jh->b_frozen_data) { 2533 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2534 jbd2_free(jh->b_frozen_data, bh->b_size); 2535 } 2536 if (jh->b_committed_data) { 2537 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2538 jbd2_free(jh->b_committed_data, bh->b_size); 2539 } 2540 bh->b_private = NULL; 2541 jh->b_bh = NULL; /* debug, really */ 2542 clear_buffer_jbd(bh); 2543 journal_free_journal_head(jh); 2544 } 2545 2546 /* 2547 * Drop a reference on the passed journal_head. If it fell to zero then 2548 * release the journal_head from the buffer_head. 2549 */ 2550 void jbd2_journal_put_journal_head(struct journal_head *jh) 2551 { 2552 struct buffer_head *bh = jh2bh(jh); 2553 2554 jbd_lock_bh_journal_head(bh); 2555 J_ASSERT_JH(jh, jh->b_jcount > 0); 2556 --jh->b_jcount; 2557 if (!jh->b_jcount) { 2558 __journal_remove_journal_head(bh); 2559 jbd_unlock_bh_journal_head(bh); 2560 __brelse(bh); 2561 } else 2562 jbd_unlock_bh_journal_head(bh); 2563 } 2564 2565 /* 2566 * Initialize jbd inode head 2567 */ 2568 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2569 { 2570 jinode->i_transaction = NULL; 2571 jinode->i_next_transaction = NULL; 2572 jinode->i_vfs_inode = inode; 2573 jinode->i_flags = 0; 2574 jinode->i_dirty_start = 0; 2575 jinode->i_dirty_end = 0; 2576 INIT_LIST_HEAD(&jinode->i_list); 2577 } 2578 2579 /* 2580 * Function to be called before we start removing inode from memory (i.e., 2581 * clear_inode() is a fine place to be called from). It removes inode from 2582 * transaction's lists. 2583 */ 2584 void jbd2_journal_release_jbd_inode(journal_t *journal, 2585 struct jbd2_inode *jinode) 2586 { 2587 if (!journal) 2588 return; 2589 restart: 2590 spin_lock(&journal->j_list_lock); 2591 /* Is commit writing out inode - we have to wait */ 2592 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2593 wait_queue_head_t *wq; 2594 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2595 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2596 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2597 spin_unlock(&journal->j_list_lock); 2598 schedule(); 2599 finish_wait(wq, &wait.wq_entry); 2600 goto restart; 2601 } 2602 2603 if (jinode->i_transaction) { 2604 list_del(&jinode->i_list); 2605 jinode->i_transaction = NULL; 2606 } 2607 spin_unlock(&journal->j_list_lock); 2608 } 2609 2610 2611 #ifdef CONFIG_PROC_FS 2612 2613 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2614 2615 static void __init jbd2_create_jbd_stats_proc_entry(void) 2616 { 2617 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2618 } 2619 2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2621 { 2622 if (proc_jbd2_stats) 2623 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2624 } 2625 2626 #else 2627 2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2630 2631 #endif 2632 2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2634 2635 static int __init jbd2_journal_init_inode_cache(void) 2636 { 2637 J_ASSERT(!jbd2_inode_cache); 2638 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2639 if (!jbd2_inode_cache) { 2640 pr_emerg("JBD2: failed to create inode cache\n"); 2641 return -ENOMEM; 2642 } 2643 return 0; 2644 } 2645 2646 static int __init jbd2_journal_init_handle_cache(void) 2647 { 2648 J_ASSERT(!jbd2_handle_cache); 2649 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2650 if (!jbd2_handle_cache) { 2651 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2652 return -ENOMEM; 2653 } 2654 return 0; 2655 } 2656 2657 static void jbd2_journal_destroy_inode_cache(void) 2658 { 2659 kmem_cache_destroy(jbd2_inode_cache); 2660 jbd2_inode_cache = NULL; 2661 } 2662 2663 static void jbd2_journal_destroy_handle_cache(void) 2664 { 2665 kmem_cache_destroy(jbd2_handle_cache); 2666 jbd2_handle_cache = NULL; 2667 } 2668 2669 /* 2670 * Module startup and shutdown 2671 */ 2672 2673 static int __init journal_init_caches(void) 2674 { 2675 int ret; 2676 2677 ret = jbd2_journal_init_revoke_record_cache(); 2678 if (ret == 0) 2679 ret = jbd2_journal_init_revoke_table_cache(); 2680 if (ret == 0) 2681 ret = jbd2_journal_init_journal_head_cache(); 2682 if (ret == 0) 2683 ret = jbd2_journal_init_handle_cache(); 2684 if (ret == 0) 2685 ret = jbd2_journal_init_inode_cache(); 2686 if (ret == 0) 2687 ret = jbd2_journal_init_transaction_cache(); 2688 return ret; 2689 } 2690 2691 static void jbd2_journal_destroy_caches(void) 2692 { 2693 jbd2_journal_destroy_revoke_record_cache(); 2694 jbd2_journal_destroy_revoke_table_cache(); 2695 jbd2_journal_destroy_journal_head_cache(); 2696 jbd2_journal_destroy_handle_cache(); 2697 jbd2_journal_destroy_inode_cache(); 2698 jbd2_journal_destroy_transaction_cache(); 2699 jbd2_journal_destroy_slabs(); 2700 } 2701 2702 static int __init journal_init(void) 2703 { 2704 int ret; 2705 2706 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2707 2708 ret = journal_init_caches(); 2709 if (ret == 0) { 2710 jbd2_create_jbd_stats_proc_entry(); 2711 } else { 2712 jbd2_journal_destroy_caches(); 2713 } 2714 return ret; 2715 } 2716 2717 static void __exit journal_exit(void) 2718 { 2719 #ifdef CONFIG_JBD2_DEBUG 2720 int n = atomic_read(&nr_journal_heads); 2721 if (n) 2722 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2723 #endif 2724 jbd2_remove_jbd_stats_proc_entry(); 2725 jbd2_journal_destroy_caches(); 2726 } 2727 2728 MODULE_LICENSE("GPL"); 2729 module_init(journal_init); 2730 module_exit(journal_exit); 2731 2732