xref: /openbmc/linux/fs/jbd2/journal.c (revision b595076a)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 #include <asm/system.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_update_format);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_file_inode);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 
97 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
98 static void __journal_abort_soft (journal_t *journal, int errno);
99 static int jbd2_journal_create_slab(size_t slab_size);
100 
101 /*
102  * Helper function used to manage commit timeouts
103  */
104 
105 static void commit_timeout(unsigned long __data)
106 {
107 	struct task_struct * p = (struct task_struct *) __data;
108 
109 	wake_up_process(p);
110 }
111 
112 /*
113  * kjournald2: The main thread function used to manage a logging device
114  * journal.
115  *
116  * This kernel thread is responsible for two things:
117  *
118  * 1) COMMIT:  Every so often we need to commit the current state of the
119  *    filesystem to disk.  The journal thread is responsible for writing
120  *    all of the metadata buffers to disk.
121  *
122  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
123  *    of the data in that part of the log has been rewritten elsewhere on
124  *    the disk.  Flushing these old buffers to reclaim space in the log is
125  *    known as checkpointing, and this thread is responsible for that job.
126  */
127 
128 static int kjournald2(void *arg)
129 {
130 	journal_t *journal = arg;
131 	transaction_t *transaction;
132 
133 	/*
134 	 * Set up an interval timer which can be used to trigger a commit wakeup
135 	 * after the commit interval expires
136 	 */
137 	setup_timer(&journal->j_commit_timer, commit_timeout,
138 			(unsigned long)current);
139 
140 	/* Record that the journal thread is running */
141 	journal->j_task = current;
142 	wake_up(&journal->j_wait_done_commit);
143 
144 	/*
145 	 * And now, wait forever for commit wakeup events.
146 	 */
147 	write_lock(&journal->j_state_lock);
148 
149 loop:
150 	if (journal->j_flags & JBD2_UNMOUNT)
151 		goto end_loop;
152 
153 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
154 		journal->j_commit_sequence, journal->j_commit_request);
155 
156 	if (journal->j_commit_sequence != journal->j_commit_request) {
157 		jbd_debug(1, "OK, requests differ\n");
158 		write_unlock(&journal->j_state_lock);
159 		del_timer_sync(&journal->j_commit_timer);
160 		jbd2_journal_commit_transaction(journal);
161 		write_lock(&journal->j_state_lock);
162 		goto loop;
163 	}
164 
165 	wake_up(&journal->j_wait_done_commit);
166 	if (freezing(current)) {
167 		/*
168 		 * The simpler the better. Flushing journal isn't a
169 		 * good idea, because that depends on threads that may
170 		 * be already stopped.
171 		 */
172 		jbd_debug(1, "Now suspending kjournald2\n");
173 		write_unlock(&journal->j_state_lock);
174 		refrigerator();
175 		write_lock(&journal->j_state_lock);
176 	} else {
177 		/*
178 		 * We assume on resume that commits are already there,
179 		 * so we don't sleep
180 		 */
181 		DEFINE_WAIT(wait);
182 		int should_sleep = 1;
183 
184 		prepare_to_wait(&journal->j_wait_commit, &wait,
185 				TASK_INTERRUPTIBLE);
186 		if (journal->j_commit_sequence != journal->j_commit_request)
187 			should_sleep = 0;
188 		transaction = journal->j_running_transaction;
189 		if (transaction && time_after_eq(jiffies,
190 						transaction->t_expires))
191 			should_sleep = 0;
192 		if (journal->j_flags & JBD2_UNMOUNT)
193 			should_sleep = 0;
194 		if (should_sleep) {
195 			write_unlock(&journal->j_state_lock);
196 			schedule();
197 			write_lock(&journal->j_state_lock);
198 		}
199 		finish_wait(&journal->j_wait_commit, &wait);
200 	}
201 
202 	jbd_debug(1, "kjournald2 wakes\n");
203 
204 	/*
205 	 * Were we woken up by a commit wakeup event?
206 	 */
207 	transaction = journal->j_running_transaction;
208 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
209 		journal->j_commit_request = transaction->t_tid;
210 		jbd_debug(1, "woke because of timeout\n");
211 	}
212 	goto loop;
213 
214 end_loop:
215 	write_unlock(&journal->j_state_lock);
216 	del_timer_sync(&journal->j_commit_timer);
217 	journal->j_task = NULL;
218 	wake_up(&journal->j_wait_done_commit);
219 	jbd_debug(1, "Journal thread exiting.\n");
220 	return 0;
221 }
222 
223 static int jbd2_journal_start_thread(journal_t *journal)
224 {
225 	struct task_struct *t;
226 
227 	t = kthread_run(kjournald2, journal, "jbd2/%s",
228 			journal->j_devname);
229 	if (IS_ERR(t))
230 		return PTR_ERR(t);
231 
232 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
233 	return 0;
234 }
235 
236 static void journal_kill_thread(journal_t *journal)
237 {
238 	write_lock(&journal->j_state_lock);
239 	journal->j_flags |= JBD2_UNMOUNT;
240 
241 	while (journal->j_task) {
242 		wake_up(&journal->j_wait_commit);
243 		write_unlock(&journal->j_state_lock);
244 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
245 		write_lock(&journal->j_state_lock);
246 	}
247 	write_unlock(&journal->j_state_lock);
248 }
249 
250 /*
251  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
252  *
253  * Writes a metadata buffer to a given disk block.  The actual IO is not
254  * performed but a new buffer_head is constructed which labels the data
255  * to be written with the correct destination disk block.
256  *
257  * Any magic-number escaping which needs to be done will cause a
258  * copy-out here.  If the buffer happens to start with the
259  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
260  * magic number is only written to the log for descripter blocks.  In
261  * this case, we copy the data and replace the first word with 0, and we
262  * return a result code which indicates that this buffer needs to be
263  * marked as an escaped buffer in the corresponding log descriptor
264  * block.  The missing word can then be restored when the block is read
265  * during recovery.
266  *
267  * If the source buffer has already been modified by a new transaction
268  * since we took the last commit snapshot, we use the frozen copy of
269  * that data for IO.  If we end up using the existing buffer_head's data
270  * for the write, then we *have* to lock the buffer to prevent anyone
271  * else from using and possibly modifying it while the IO is in
272  * progress.
273  *
274  * The function returns a pointer to the buffer_heads to be used for IO.
275  *
276  * We assume that the journal has already been locked in this function.
277  *
278  * Return value:
279  *  <0: Error
280  * >=0: Finished OK
281  *
282  * On success:
283  * Bit 0 set == escape performed on the data
284  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
285  */
286 
287 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
288 				  struct journal_head  *jh_in,
289 				  struct journal_head **jh_out,
290 				  unsigned long long blocknr)
291 {
292 	int need_copy_out = 0;
293 	int done_copy_out = 0;
294 	int do_escape = 0;
295 	char *mapped_data;
296 	struct buffer_head *new_bh;
297 	struct journal_head *new_jh;
298 	struct page *new_page;
299 	unsigned int new_offset;
300 	struct buffer_head *bh_in = jh2bh(jh_in);
301 	journal_t *journal = transaction->t_journal;
302 
303 	/*
304 	 * The buffer really shouldn't be locked: only the current committing
305 	 * transaction is allowed to write it, so nobody else is allowed
306 	 * to do any IO.
307 	 *
308 	 * akpm: except if we're journalling data, and write() output is
309 	 * also part of a shared mapping, and another thread has
310 	 * decided to launch a writepage() against this buffer.
311 	 */
312 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
313 
314 retry_alloc:
315 	new_bh = alloc_buffer_head(GFP_NOFS);
316 	if (!new_bh) {
317 		/*
318 		 * Failure is not an option, but __GFP_NOFAIL is going
319 		 * away; so we retry ourselves here.
320 		 */
321 		congestion_wait(BLK_RW_ASYNC, HZ/50);
322 		goto retry_alloc;
323 	}
324 
325 	/* keep subsequent assertions sane */
326 	new_bh->b_state = 0;
327 	init_buffer(new_bh, NULL, NULL);
328 	atomic_set(&new_bh->b_count, 1);
329 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
330 
331 	/*
332 	 * If a new transaction has already done a buffer copy-out, then
333 	 * we use that version of the data for the commit.
334 	 */
335 	jbd_lock_bh_state(bh_in);
336 repeat:
337 	if (jh_in->b_frozen_data) {
338 		done_copy_out = 1;
339 		new_page = virt_to_page(jh_in->b_frozen_data);
340 		new_offset = offset_in_page(jh_in->b_frozen_data);
341 	} else {
342 		new_page = jh2bh(jh_in)->b_page;
343 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
344 	}
345 
346 	mapped_data = kmap_atomic(new_page, KM_USER0);
347 	/*
348 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
349 	 * before checking for escaping, as the trigger may modify the magic
350 	 * offset.  If a copy-out happens afterwards, it will have the correct
351 	 * data in the buffer.
352 	 */
353 	if (!done_copy_out)
354 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
355 					   jh_in->b_triggers);
356 
357 	/*
358 	 * Check for escaping
359 	 */
360 	if (*((__be32 *)(mapped_data + new_offset)) ==
361 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
362 		need_copy_out = 1;
363 		do_escape = 1;
364 	}
365 	kunmap_atomic(mapped_data, KM_USER0);
366 
367 	/*
368 	 * Do we need to do a data copy?
369 	 */
370 	if (need_copy_out && !done_copy_out) {
371 		char *tmp;
372 
373 		jbd_unlock_bh_state(bh_in);
374 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
375 		if (!tmp) {
376 			jbd2_journal_put_journal_head(new_jh);
377 			return -ENOMEM;
378 		}
379 		jbd_lock_bh_state(bh_in);
380 		if (jh_in->b_frozen_data) {
381 			jbd2_free(tmp, bh_in->b_size);
382 			goto repeat;
383 		}
384 
385 		jh_in->b_frozen_data = tmp;
386 		mapped_data = kmap_atomic(new_page, KM_USER0);
387 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
388 		kunmap_atomic(mapped_data, KM_USER0);
389 
390 		new_page = virt_to_page(tmp);
391 		new_offset = offset_in_page(tmp);
392 		done_copy_out = 1;
393 
394 		/*
395 		 * This isn't strictly necessary, as we're using frozen
396 		 * data for the escaping, but it keeps consistency with
397 		 * b_frozen_data usage.
398 		 */
399 		jh_in->b_frozen_triggers = jh_in->b_triggers;
400 	}
401 
402 	/*
403 	 * Did we need to do an escaping?  Now we've done all the
404 	 * copying, we can finally do so.
405 	 */
406 	if (do_escape) {
407 		mapped_data = kmap_atomic(new_page, KM_USER0);
408 		*((unsigned int *)(mapped_data + new_offset)) = 0;
409 		kunmap_atomic(mapped_data, KM_USER0);
410 	}
411 
412 	set_bh_page(new_bh, new_page, new_offset);
413 	new_jh->b_transaction = NULL;
414 	new_bh->b_size = jh2bh(jh_in)->b_size;
415 	new_bh->b_bdev = transaction->t_journal->j_dev;
416 	new_bh->b_blocknr = blocknr;
417 	set_buffer_mapped(new_bh);
418 	set_buffer_dirty(new_bh);
419 
420 	*jh_out = new_jh;
421 
422 	/*
423 	 * The to-be-written buffer needs to get moved to the io queue,
424 	 * and the original buffer whose contents we are shadowing or
425 	 * copying is moved to the transaction's shadow queue.
426 	 */
427 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
428 	spin_lock(&journal->j_list_lock);
429 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
430 	spin_unlock(&journal->j_list_lock);
431 	jbd_unlock_bh_state(bh_in);
432 
433 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
434 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
435 
436 	return do_escape | (done_copy_out << 1);
437 }
438 
439 /*
440  * Allocation code for the journal file.  Manage the space left in the
441  * journal, so that we can begin checkpointing when appropriate.
442  */
443 
444 /*
445  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
446  *
447  * Called with the journal already locked.
448  *
449  * Called under j_state_lock
450  */
451 
452 int __jbd2_log_space_left(journal_t *journal)
453 {
454 	int left = journal->j_free;
455 
456 	/* assert_spin_locked(&journal->j_state_lock); */
457 
458 	/*
459 	 * Be pessimistic here about the number of those free blocks which
460 	 * might be required for log descriptor control blocks.
461 	 */
462 
463 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
464 
465 	left -= MIN_LOG_RESERVED_BLOCKS;
466 
467 	if (left <= 0)
468 		return 0;
469 	left -= (left >> 3);
470 	return left;
471 }
472 
473 /*
474  * Called under j_state_lock.  Returns true if a transaction commit was started.
475  */
476 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
477 {
478 	/*
479 	 * Are we already doing a recent enough commit?
480 	 */
481 	if (!tid_geq(journal->j_commit_request, target)) {
482 		/*
483 		 * We want a new commit: OK, mark the request and wakeup the
484 		 * commit thread.  We do _not_ do the commit ourselves.
485 		 */
486 
487 		journal->j_commit_request = target;
488 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
489 			  journal->j_commit_request,
490 			  journal->j_commit_sequence);
491 		wake_up(&journal->j_wait_commit);
492 		return 1;
493 	}
494 	return 0;
495 }
496 
497 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
498 {
499 	int ret;
500 
501 	write_lock(&journal->j_state_lock);
502 	ret = __jbd2_log_start_commit(journal, tid);
503 	write_unlock(&journal->j_state_lock);
504 	return ret;
505 }
506 
507 /*
508  * Force and wait upon a commit if the calling process is not within
509  * transaction.  This is used for forcing out undo-protected data which contains
510  * bitmaps, when the fs is running out of space.
511  *
512  * We can only force the running transaction if we don't have an active handle;
513  * otherwise, we will deadlock.
514  *
515  * Returns true if a transaction was started.
516  */
517 int jbd2_journal_force_commit_nested(journal_t *journal)
518 {
519 	transaction_t *transaction = NULL;
520 	tid_t tid;
521 
522 	read_lock(&journal->j_state_lock);
523 	if (journal->j_running_transaction && !current->journal_info) {
524 		transaction = journal->j_running_transaction;
525 		__jbd2_log_start_commit(journal, transaction->t_tid);
526 	} else if (journal->j_committing_transaction)
527 		transaction = journal->j_committing_transaction;
528 
529 	if (!transaction) {
530 		read_unlock(&journal->j_state_lock);
531 		return 0;	/* Nothing to retry */
532 	}
533 
534 	tid = transaction->t_tid;
535 	read_unlock(&journal->j_state_lock);
536 	jbd2_log_wait_commit(journal, tid);
537 	return 1;
538 }
539 
540 /*
541  * Start a commit of the current running transaction (if any).  Returns true
542  * if a transaction is going to be committed (or is currently already
543  * committing), and fills its tid in at *ptid
544  */
545 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
546 {
547 	int ret = 0;
548 
549 	write_lock(&journal->j_state_lock);
550 	if (journal->j_running_transaction) {
551 		tid_t tid = journal->j_running_transaction->t_tid;
552 
553 		__jbd2_log_start_commit(journal, tid);
554 		/* There's a running transaction and we've just made sure
555 		 * it's commit has been scheduled. */
556 		if (ptid)
557 			*ptid = tid;
558 		ret = 1;
559 	} else if (journal->j_committing_transaction) {
560 		/*
561 		 * If ext3_write_super() recently started a commit, then we
562 		 * have to wait for completion of that transaction
563 		 */
564 		if (ptid)
565 			*ptid = journal->j_committing_transaction->t_tid;
566 		ret = 1;
567 	}
568 	write_unlock(&journal->j_state_lock);
569 	return ret;
570 }
571 
572 /*
573  * Wait for a specified commit to complete.
574  * The caller may not hold the journal lock.
575  */
576 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
577 {
578 	int err = 0;
579 
580 	read_lock(&journal->j_state_lock);
581 #ifdef CONFIG_JBD2_DEBUG
582 	if (!tid_geq(journal->j_commit_request, tid)) {
583 		printk(KERN_EMERG
584 		       "%s: error: j_commit_request=%d, tid=%d\n",
585 		       __func__, journal->j_commit_request, tid);
586 	}
587 #endif
588 	while (tid_gt(tid, journal->j_commit_sequence)) {
589 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
590 				  tid, journal->j_commit_sequence);
591 		wake_up(&journal->j_wait_commit);
592 		read_unlock(&journal->j_state_lock);
593 		wait_event(journal->j_wait_done_commit,
594 				!tid_gt(tid, journal->j_commit_sequence));
595 		read_lock(&journal->j_state_lock);
596 	}
597 	read_unlock(&journal->j_state_lock);
598 
599 	if (unlikely(is_journal_aborted(journal))) {
600 		printk(KERN_EMERG "journal commit I/O error\n");
601 		err = -EIO;
602 	}
603 	return err;
604 }
605 
606 /*
607  * Log buffer allocation routines:
608  */
609 
610 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
611 {
612 	unsigned long blocknr;
613 
614 	write_lock(&journal->j_state_lock);
615 	J_ASSERT(journal->j_free > 1);
616 
617 	blocknr = journal->j_head;
618 	journal->j_head++;
619 	journal->j_free--;
620 	if (journal->j_head == journal->j_last)
621 		journal->j_head = journal->j_first;
622 	write_unlock(&journal->j_state_lock);
623 	return jbd2_journal_bmap(journal, blocknr, retp);
624 }
625 
626 /*
627  * Conversion of logical to physical block numbers for the journal
628  *
629  * On external journals the journal blocks are identity-mapped, so
630  * this is a no-op.  If needed, we can use j_blk_offset - everything is
631  * ready.
632  */
633 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
634 		 unsigned long long *retp)
635 {
636 	int err = 0;
637 	unsigned long long ret;
638 
639 	if (journal->j_inode) {
640 		ret = bmap(journal->j_inode, blocknr);
641 		if (ret)
642 			*retp = ret;
643 		else {
644 			printk(KERN_ALERT "%s: journal block not found "
645 					"at offset %lu on %s\n",
646 			       __func__, blocknr, journal->j_devname);
647 			err = -EIO;
648 			__journal_abort_soft(journal, err);
649 		}
650 	} else {
651 		*retp = blocknr; /* +journal->j_blk_offset */
652 	}
653 	return err;
654 }
655 
656 /*
657  * We play buffer_head aliasing tricks to write data/metadata blocks to
658  * the journal without copying their contents, but for journal
659  * descriptor blocks we do need to generate bona fide buffers.
660  *
661  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
662  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
663  * But we don't bother doing that, so there will be coherency problems with
664  * mmaps of blockdevs which hold live JBD-controlled filesystems.
665  */
666 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
667 {
668 	struct buffer_head *bh;
669 	unsigned long long blocknr;
670 	int err;
671 
672 	err = jbd2_journal_next_log_block(journal, &blocknr);
673 
674 	if (err)
675 		return NULL;
676 
677 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
678 	if (!bh)
679 		return NULL;
680 	lock_buffer(bh);
681 	memset(bh->b_data, 0, journal->j_blocksize);
682 	set_buffer_uptodate(bh);
683 	unlock_buffer(bh);
684 	BUFFER_TRACE(bh, "return this buffer");
685 	return jbd2_journal_add_journal_head(bh);
686 }
687 
688 struct jbd2_stats_proc_session {
689 	journal_t *journal;
690 	struct transaction_stats_s *stats;
691 	int start;
692 	int max;
693 };
694 
695 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
696 {
697 	return *pos ? NULL : SEQ_START_TOKEN;
698 }
699 
700 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
701 {
702 	return NULL;
703 }
704 
705 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
706 {
707 	struct jbd2_stats_proc_session *s = seq->private;
708 
709 	if (v != SEQ_START_TOKEN)
710 		return 0;
711 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
712 			s->stats->ts_tid,
713 			s->journal->j_max_transaction_buffers);
714 	if (s->stats->ts_tid == 0)
715 		return 0;
716 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
717 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
718 	seq_printf(seq, "  %ums running transaction\n",
719 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
720 	seq_printf(seq, "  %ums transaction was being locked\n",
721 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
722 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
723 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
724 	seq_printf(seq, "  %ums logging transaction\n",
725 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
726 	seq_printf(seq, "  %lluus average transaction commit time\n",
727 		   div_u64(s->journal->j_average_commit_time, 1000));
728 	seq_printf(seq, "  %lu handles per transaction\n",
729 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
730 	seq_printf(seq, "  %lu blocks per transaction\n",
731 	    s->stats->run.rs_blocks / s->stats->ts_tid);
732 	seq_printf(seq, "  %lu logged blocks per transaction\n",
733 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
734 	return 0;
735 }
736 
737 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
738 {
739 }
740 
741 static const struct seq_operations jbd2_seq_info_ops = {
742 	.start  = jbd2_seq_info_start,
743 	.next   = jbd2_seq_info_next,
744 	.stop   = jbd2_seq_info_stop,
745 	.show   = jbd2_seq_info_show,
746 };
747 
748 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
749 {
750 	journal_t *journal = PDE(inode)->data;
751 	struct jbd2_stats_proc_session *s;
752 	int rc, size;
753 
754 	s = kmalloc(sizeof(*s), GFP_KERNEL);
755 	if (s == NULL)
756 		return -ENOMEM;
757 	size = sizeof(struct transaction_stats_s);
758 	s->stats = kmalloc(size, GFP_KERNEL);
759 	if (s->stats == NULL) {
760 		kfree(s);
761 		return -ENOMEM;
762 	}
763 	spin_lock(&journal->j_history_lock);
764 	memcpy(s->stats, &journal->j_stats, size);
765 	s->journal = journal;
766 	spin_unlock(&journal->j_history_lock);
767 
768 	rc = seq_open(file, &jbd2_seq_info_ops);
769 	if (rc == 0) {
770 		struct seq_file *m = file->private_data;
771 		m->private = s;
772 	} else {
773 		kfree(s->stats);
774 		kfree(s);
775 	}
776 	return rc;
777 
778 }
779 
780 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
781 {
782 	struct seq_file *seq = file->private_data;
783 	struct jbd2_stats_proc_session *s = seq->private;
784 	kfree(s->stats);
785 	kfree(s);
786 	return seq_release(inode, file);
787 }
788 
789 static const struct file_operations jbd2_seq_info_fops = {
790 	.owner		= THIS_MODULE,
791 	.open           = jbd2_seq_info_open,
792 	.read           = seq_read,
793 	.llseek         = seq_lseek,
794 	.release        = jbd2_seq_info_release,
795 };
796 
797 static struct proc_dir_entry *proc_jbd2_stats;
798 
799 static void jbd2_stats_proc_init(journal_t *journal)
800 {
801 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
802 	if (journal->j_proc_entry) {
803 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
804 				 &jbd2_seq_info_fops, journal);
805 	}
806 }
807 
808 static void jbd2_stats_proc_exit(journal_t *journal)
809 {
810 	remove_proc_entry("info", journal->j_proc_entry);
811 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
812 }
813 
814 /*
815  * Management for journal control blocks: functions to create and
816  * destroy journal_t structures, and to initialise and read existing
817  * journal blocks from disk.  */
818 
819 /* First: create and setup a journal_t object in memory.  We initialise
820  * very few fields yet: that has to wait until we have created the
821  * journal structures from from scratch, or loaded them from disk. */
822 
823 static journal_t * journal_init_common (void)
824 {
825 	journal_t *journal;
826 	int err;
827 
828 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
829 	if (!journal)
830 		goto fail;
831 
832 	init_waitqueue_head(&journal->j_wait_transaction_locked);
833 	init_waitqueue_head(&journal->j_wait_logspace);
834 	init_waitqueue_head(&journal->j_wait_done_commit);
835 	init_waitqueue_head(&journal->j_wait_checkpoint);
836 	init_waitqueue_head(&journal->j_wait_commit);
837 	init_waitqueue_head(&journal->j_wait_updates);
838 	mutex_init(&journal->j_barrier);
839 	mutex_init(&journal->j_checkpoint_mutex);
840 	spin_lock_init(&journal->j_revoke_lock);
841 	spin_lock_init(&journal->j_list_lock);
842 	rwlock_init(&journal->j_state_lock);
843 
844 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
845 	journal->j_min_batch_time = 0;
846 	journal->j_max_batch_time = 15000; /* 15ms */
847 
848 	/* The journal is marked for error until we succeed with recovery! */
849 	journal->j_flags = JBD2_ABORT;
850 
851 	/* Set up a default-sized revoke table for the new mount. */
852 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
853 	if (err) {
854 		kfree(journal);
855 		goto fail;
856 	}
857 
858 	spin_lock_init(&journal->j_history_lock);
859 
860 	return journal;
861 fail:
862 	return NULL;
863 }
864 
865 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
866  *
867  * Create a journal structure assigned some fixed set of disk blocks to
868  * the journal.  We don't actually touch those disk blocks yet, but we
869  * need to set up all of the mapping information to tell the journaling
870  * system where the journal blocks are.
871  *
872  */
873 
874 /**
875  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
876  *  @bdev: Block device on which to create the journal
877  *  @fs_dev: Device which hold journalled filesystem for this journal.
878  *  @start: Block nr Start of journal.
879  *  @len:  Length of the journal in blocks.
880  *  @blocksize: blocksize of journalling device
881  *
882  *  Returns: a newly created journal_t *
883  *
884  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
885  *  range of blocks on an arbitrary block device.
886  *
887  */
888 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
889 			struct block_device *fs_dev,
890 			unsigned long long start, int len, int blocksize)
891 {
892 	journal_t *journal = journal_init_common();
893 	struct buffer_head *bh;
894 	char *p;
895 	int n;
896 
897 	if (!journal)
898 		return NULL;
899 
900 	/* journal descriptor can store up to n blocks -bzzz */
901 	journal->j_blocksize = blocksize;
902 	jbd2_stats_proc_init(journal);
903 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
904 	journal->j_wbufsize = n;
905 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
906 	if (!journal->j_wbuf) {
907 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
908 			__func__);
909 		goto out_err;
910 	}
911 	journal->j_dev = bdev;
912 	journal->j_fs_dev = fs_dev;
913 	journal->j_blk_offset = start;
914 	journal->j_maxlen = len;
915 	bdevname(journal->j_dev, journal->j_devname);
916 	p = journal->j_devname;
917 	while ((p = strchr(p, '/')))
918 		*p = '!';
919 
920 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
921 	if (!bh) {
922 		printk(KERN_ERR
923 		       "%s: Cannot get buffer for journal superblock\n",
924 		       __func__);
925 		goto out_err;
926 	}
927 	journal->j_sb_buffer = bh;
928 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
929 
930 	return journal;
931 out_err:
932 	kfree(journal->j_wbuf);
933 	jbd2_stats_proc_exit(journal);
934 	kfree(journal);
935 	return NULL;
936 }
937 
938 /**
939  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
940  *  @inode: An inode to create the journal in
941  *
942  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
943  * the journal.  The inode must exist already, must support bmap() and
944  * must have all data blocks preallocated.
945  */
946 journal_t * jbd2_journal_init_inode (struct inode *inode)
947 {
948 	struct buffer_head *bh;
949 	journal_t *journal = journal_init_common();
950 	char *p;
951 	int err;
952 	int n;
953 	unsigned long long blocknr;
954 
955 	if (!journal)
956 		return NULL;
957 
958 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
959 	journal->j_inode = inode;
960 	bdevname(journal->j_dev, journal->j_devname);
961 	p = journal->j_devname;
962 	while ((p = strchr(p, '/')))
963 		*p = '!';
964 	p = journal->j_devname + strlen(journal->j_devname);
965 	sprintf(p, "-%lu", journal->j_inode->i_ino);
966 	jbd_debug(1,
967 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
968 		  journal, inode->i_sb->s_id, inode->i_ino,
969 		  (long long) inode->i_size,
970 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
971 
972 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
973 	journal->j_blocksize = inode->i_sb->s_blocksize;
974 	jbd2_stats_proc_init(journal);
975 
976 	/* journal descriptor can store up to n blocks -bzzz */
977 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
978 	journal->j_wbufsize = n;
979 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
980 	if (!journal->j_wbuf) {
981 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
982 			__func__);
983 		goto out_err;
984 	}
985 
986 	err = jbd2_journal_bmap(journal, 0, &blocknr);
987 	/* If that failed, give up */
988 	if (err) {
989 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
990 		       __func__);
991 		goto out_err;
992 	}
993 
994 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
995 	if (!bh) {
996 		printk(KERN_ERR
997 		       "%s: Cannot get buffer for journal superblock\n",
998 		       __func__);
999 		goto out_err;
1000 	}
1001 	journal->j_sb_buffer = bh;
1002 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1003 
1004 	return journal;
1005 out_err:
1006 	kfree(journal->j_wbuf);
1007 	jbd2_stats_proc_exit(journal);
1008 	kfree(journal);
1009 	return NULL;
1010 }
1011 
1012 /*
1013  * If the journal init or create aborts, we need to mark the journal
1014  * superblock as being NULL to prevent the journal destroy from writing
1015  * back a bogus superblock.
1016  */
1017 static void journal_fail_superblock (journal_t *journal)
1018 {
1019 	struct buffer_head *bh = journal->j_sb_buffer;
1020 	brelse(bh);
1021 	journal->j_sb_buffer = NULL;
1022 }
1023 
1024 /*
1025  * Given a journal_t structure, initialise the various fields for
1026  * startup of a new journaling session.  We use this both when creating
1027  * a journal, and after recovering an old journal to reset it for
1028  * subsequent use.
1029  */
1030 
1031 static int journal_reset(journal_t *journal)
1032 {
1033 	journal_superblock_t *sb = journal->j_superblock;
1034 	unsigned long long first, last;
1035 
1036 	first = be32_to_cpu(sb->s_first);
1037 	last = be32_to_cpu(sb->s_maxlen);
1038 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1039 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1040 		       first, last);
1041 		journal_fail_superblock(journal);
1042 		return -EINVAL;
1043 	}
1044 
1045 	journal->j_first = first;
1046 	journal->j_last = last;
1047 
1048 	journal->j_head = first;
1049 	journal->j_tail = first;
1050 	journal->j_free = last - first;
1051 
1052 	journal->j_tail_sequence = journal->j_transaction_sequence;
1053 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1054 	journal->j_commit_request = journal->j_commit_sequence;
1055 
1056 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1057 
1058 	/* Add the dynamic fields and write it to disk. */
1059 	jbd2_journal_update_superblock(journal, 1);
1060 	return jbd2_journal_start_thread(journal);
1061 }
1062 
1063 /**
1064  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1065  * @journal: The journal to update.
1066  * @wait: Set to '0' if you don't want to wait for IO completion.
1067  *
1068  * Update a journal's dynamic superblock fields and write it to disk,
1069  * optionally waiting for the IO to complete.
1070  */
1071 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1072 {
1073 	journal_superblock_t *sb = journal->j_superblock;
1074 	struct buffer_head *bh = journal->j_sb_buffer;
1075 
1076 	/*
1077 	 * As a special case, if the on-disk copy is already marked as needing
1078 	 * no recovery (s_start == 0) and there are no outstanding transactions
1079 	 * in the filesystem, then we can safely defer the superblock update
1080 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1081 	 * attempting a write to a potential-readonly device.
1082 	 */
1083 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1084 				journal->j_transaction_sequence) {
1085 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1086 			"(start %ld, seq %d, errno %d)\n",
1087 			journal->j_tail, journal->j_tail_sequence,
1088 			journal->j_errno);
1089 		goto out;
1090 	}
1091 
1092 	if (buffer_write_io_error(bh)) {
1093 		/*
1094 		 * Oh, dear.  A previous attempt to write the journal
1095 		 * superblock failed.  This could happen because the
1096 		 * USB device was yanked out.  Or it could happen to
1097 		 * be a transient write error and maybe the block will
1098 		 * be remapped.  Nothing we can do but to retry the
1099 		 * write and hope for the best.
1100 		 */
1101 		printk(KERN_ERR "JBD2: previous I/O error detected "
1102 		       "for journal superblock update for %s.\n",
1103 		       journal->j_devname);
1104 		clear_buffer_write_io_error(bh);
1105 		set_buffer_uptodate(bh);
1106 	}
1107 
1108 	read_lock(&journal->j_state_lock);
1109 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1110 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1111 
1112 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1113 	sb->s_start    = cpu_to_be32(journal->j_tail);
1114 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1115 	read_unlock(&journal->j_state_lock);
1116 
1117 	BUFFER_TRACE(bh, "marking dirty");
1118 	mark_buffer_dirty(bh);
1119 	if (wait) {
1120 		sync_dirty_buffer(bh);
1121 		if (buffer_write_io_error(bh)) {
1122 			printk(KERN_ERR "JBD2: I/O error detected "
1123 			       "when updating journal superblock for %s.\n",
1124 			       journal->j_devname);
1125 			clear_buffer_write_io_error(bh);
1126 			set_buffer_uptodate(bh);
1127 		}
1128 	} else
1129 		write_dirty_buffer(bh, WRITE);
1130 
1131 out:
1132 	/* If we have just flushed the log (by marking s_start==0), then
1133 	 * any future commit will have to be careful to update the
1134 	 * superblock again to re-record the true start of the log. */
1135 
1136 	write_lock(&journal->j_state_lock);
1137 	if (sb->s_start)
1138 		journal->j_flags &= ~JBD2_FLUSHED;
1139 	else
1140 		journal->j_flags |= JBD2_FLUSHED;
1141 	write_unlock(&journal->j_state_lock);
1142 }
1143 
1144 /*
1145  * Read the superblock for a given journal, performing initial
1146  * validation of the format.
1147  */
1148 
1149 static int journal_get_superblock(journal_t *journal)
1150 {
1151 	struct buffer_head *bh;
1152 	journal_superblock_t *sb;
1153 	int err = -EIO;
1154 
1155 	bh = journal->j_sb_buffer;
1156 
1157 	J_ASSERT(bh != NULL);
1158 	if (!buffer_uptodate(bh)) {
1159 		ll_rw_block(READ, 1, &bh);
1160 		wait_on_buffer(bh);
1161 		if (!buffer_uptodate(bh)) {
1162 			printk (KERN_ERR
1163 				"JBD: IO error reading journal superblock\n");
1164 			goto out;
1165 		}
1166 	}
1167 
1168 	sb = journal->j_superblock;
1169 
1170 	err = -EINVAL;
1171 
1172 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1173 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1174 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1175 		goto out;
1176 	}
1177 
1178 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1179 	case JBD2_SUPERBLOCK_V1:
1180 		journal->j_format_version = 1;
1181 		break;
1182 	case JBD2_SUPERBLOCK_V2:
1183 		journal->j_format_version = 2;
1184 		break;
1185 	default:
1186 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1187 		goto out;
1188 	}
1189 
1190 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1191 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1192 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1193 		printk (KERN_WARNING "JBD: journal file too short\n");
1194 		goto out;
1195 	}
1196 
1197 	return 0;
1198 
1199 out:
1200 	journal_fail_superblock(journal);
1201 	return err;
1202 }
1203 
1204 /*
1205  * Load the on-disk journal superblock and read the key fields into the
1206  * journal_t.
1207  */
1208 
1209 static int load_superblock(journal_t *journal)
1210 {
1211 	int err;
1212 	journal_superblock_t *sb;
1213 
1214 	err = journal_get_superblock(journal);
1215 	if (err)
1216 		return err;
1217 
1218 	sb = journal->j_superblock;
1219 
1220 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1221 	journal->j_tail = be32_to_cpu(sb->s_start);
1222 	journal->j_first = be32_to_cpu(sb->s_first);
1223 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1224 	journal->j_errno = be32_to_cpu(sb->s_errno);
1225 
1226 	return 0;
1227 }
1228 
1229 
1230 /**
1231  * int jbd2_journal_load() - Read journal from disk.
1232  * @journal: Journal to act on.
1233  *
1234  * Given a journal_t structure which tells us which disk blocks contain
1235  * a journal, read the journal from disk to initialise the in-memory
1236  * structures.
1237  */
1238 int jbd2_journal_load(journal_t *journal)
1239 {
1240 	int err;
1241 	journal_superblock_t *sb;
1242 
1243 	err = load_superblock(journal);
1244 	if (err)
1245 		return err;
1246 
1247 	sb = journal->j_superblock;
1248 	/* If this is a V2 superblock, then we have to check the
1249 	 * features flags on it. */
1250 
1251 	if (journal->j_format_version >= 2) {
1252 		if ((sb->s_feature_ro_compat &
1253 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1254 		    (sb->s_feature_incompat &
1255 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1256 			printk (KERN_WARNING
1257 				"JBD: Unrecognised features on journal\n");
1258 			return -EINVAL;
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Create a slab for this blocksize
1264 	 */
1265 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1266 	if (err)
1267 		return err;
1268 
1269 	/* Let the recovery code check whether it needs to recover any
1270 	 * data from the journal. */
1271 	if (jbd2_journal_recover(journal))
1272 		goto recovery_error;
1273 
1274 	if (journal->j_failed_commit) {
1275 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1276 		       "is corrupt.\n", journal->j_failed_commit,
1277 		       journal->j_devname);
1278 		return -EIO;
1279 	}
1280 
1281 	/* OK, we've finished with the dynamic journal bits:
1282 	 * reinitialise the dynamic contents of the superblock in memory
1283 	 * and reset them on disk. */
1284 	if (journal_reset(journal))
1285 		goto recovery_error;
1286 
1287 	journal->j_flags &= ~JBD2_ABORT;
1288 	journal->j_flags |= JBD2_LOADED;
1289 	return 0;
1290 
1291 recovery_error:
1292 	printk (KERN_WARNING "JBD: recovery failed\n");
1293 	return -EIO;
1294 }
1295 
1296 /**
1297  * void jbd2_journal_destroy() - Release a journal_t structure.
1298  * @journal: Journal to act on.
1299  *
1300  * Release a journal_t structure once it is no longer in use by the
1301  * journaled object.
1302  * Return <0 if we couldn't clean up the journal.
1303  */
1304 int jbd2_journal_destroy(journal_t *journal)
1305 {
1306 	int err = 0;
1307 
1308 	/* Wait for the commit thread to wake up and die. */
1309 	journal_kill_thread(journal);
1310 
1311 	/* Force a final log commit */
1312 	if (journal->j_running_transaction)
1313 		jbd2_journal_commit_transaction(journal);
1314 
1315 	/* Force any old transactions to disk */
1316 
1317 	/* Totally anal locking here... */
1318 	spin_lock(&journal->j_list_lock);
1319 	while (journal->j_checkpoint_transactions != NULL) {
1320 		spin_unlock(&journal->j_list_lock);
1321 		mutex_lock(&journal->j_checkpoint_mutex);
1322 		jbd2_log_do_checkpoint(journal);
1323 		mutex_unlock(&journal->j_checkpoint_mutex);
1324 		spin_lock(&journal->j_list_lock);
1325 	}
1326 
1327 	J_ASSERT(journal->j_running_transaction == NULL);
1328 	J_ASSERT(journal->j_committing_transaction == NULL);
1329 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1330 	spin_unlock(&journal->j_list_lock);
1331 
1332 	if (journal->j_sb_buffer) {
1333 		if (!is_journal_aborted(journal)) {
1334 			/* We can now mark the journal as empty. */
1335 			journal->j_tail = 0;
1336 			journal->j_tail_sequence =
1337 				++journal->j_transaction_sequence;
1338 			jbd2_journal_update_superblock(journal, 1);
1339 		} else {
1340 			err = -EIO;
1341 		}
1342 		brelse(journal->j_sb_buffer);
1343 	}
1344 
1345 	if (journal->j_proc_entry)
1346 		jbd2_stats_proc_exit(journal);
1347 	if (journal->j_inode)
1348 		iput(journal->j_inode);
1349 	if (journal->j_revoke)
1350 		jbd2_journal_destroy_revoke(journal);
1351 	kfree(journal->j_wbuf);
1352 	kfree(journal);
1353 
1354 	return err;
1355 }
1356 
1357 
1358 /**
1359  *int jbd2_journal_check_used_features () - Check if features specified are used.
1360  * @journal: Journal to check.
1361  * @compat: bitmask of compatible features
1362  * @ro: bitmask of features that force read-only mount
1363  * @incompat: bitmask of incompatible features
1364  *
1365  * Check whether the journal uses all of a given set of
1366  * features.  Return true (non-zero) if it does.
1367  **/
1368 
1369 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1370 				 unsigned long ro, unsigned long incompat)
1371 {
1372 	journal_superblock_t *sb;
1373 
1374 	if (!compat && !ro && !incompat)
1375 		return 1;
1376 	/* Load journal superblock if it is not loaded yet. */
1377 	if (journal->j_format_version == 0 &&
1378 	    journal_get_superblock(journal) != 0)
1379 		return 0;
1380 	if (journal->j_format_version == 1)
1381 		return 0;
1382 
1383 	sb = journal->j_superblock;
1384 
1385 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1386 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1387 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1388 		return 1;
1389 
1390 	return 0;
1391 }
1392 
1393 /**
1394  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1395  * @journal: Journal to check.
1396  * @compat: bitmask of compatible features
1397  * @ro: bitmask of features that force read-only mount
1398  * @incompat: bitmask of incompatible features
1399  *
1400  * Check whether the journaling code supports the use of
1401  * all of a given set of features on this journal.  Return true
1402  * (non-zero) if it can. */
1403 
1404 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1405 				      unsigned long ro, unsigned long incompat)
1406 {
1407 	if (!compat && !ro && !incompat)
1408 		return 1;
1409 
1410 	/* We can support any known requested features iff the
1411 	 * superblock is in version 2.  Otherwise we fail to support any
1412 	 * extended sb features. */
1413 
1414 	if (journal->j_format_version != 2)
1415 		return 0;
1416 
1417 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1418 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1419 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1420 		return 1;
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1427  * @journal: Journal to act on.
1428  * @compat: bitmask of compatible features
1429  * @ro: bitmask of features that force read-only mount
1430  * @incompat: bitmask of incompatible features
1431  *
1432  * Mark a given journal feature as present on the
1433  * superblock.  Returns true if the requested features could be set.
1434  *
1435  */
1436 
1437 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1438 			  unsigned long ro, unsigned long incompat)
1439 {
1440 	journal_superblock_t *sb;
1441 
1442 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1443 		return 1;
1444 
1445 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1446 		return 0;
1447 
1448 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1449 		  compat, ro, incompat);
1450 
1451 	sb = journal->j_superblock;
1452 
1453 	sb->s_feature_compat    |= cpu_to_be32(compat);
1454 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1455 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1456 
1457 	return 1;
1458 }
1459 
1460 /*
1461  * jbd2_journal_clear_features () - Clear a given journal feature in the
1462  * 				    superblock
1463  * @journal: Journal to act on.
1464  * @compat: bitmask of compatible features
1465  * @ro: bitmask of features that force read-only mount
1466  * @incompat: bitmask of incompatible features
1467  *
1468  * Clear a given journal feature as present on the
1469  * superblock.
1470  */
1471 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1472 				unsigned long ro, unsigned long incompat)
1473 {
1474 	journal_superblock_t *sb;
1475 
1476 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1477 		  compat, ro, incompat);
1478 
1479 	sb = journal->j_superblock;
1480 
1481 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1482 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1483 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1484 }
1485 EXPORT_SYMBOL(jbd2_journal_clear_features);
1486 
1487 /**
1488  * int jbd2_journal_update_format () - Update on-disk journal structure.
1489  * @journal: Journal to act on.
1490  *
1491  * Given an initialised but unloaded journal struct, poke about in the
1492  * on-disk structure to update it to the most recent supported version.
1493  */
1494 int jbd2_journal_update_format (journal_t *journal)
1495 {
1496 	journal_superblock_t *sb;
1497 	int err;
1498 
1499 	err = journal_get_superblock(journal);
1500 	if (err)
1501 		return err;
1502 
1503 	sb = journal->j_superblock;
1504 
1505 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1506 	case JBD2_SUPERBLOCK_V2:
1507 		return 0;
1508 	case JBD2_SUPERBLOCK_V1:
1509 		return journal_convert_superblock_v1(journal, sb);
1510 	default:
1511 		break;
1512 	}
1513 	return -EINVAL;
1514 }
1515 
1516 static int journal_convert_superblock_v1(journal_t *journal,
1517 					 journal_superblock_t *sb)
1518 {
1519 	int offset, blocksize;
1520 	struct buffer_head *bh;
1521 
1522 	printk(KERN_WARNING
1523 		"JBD: Converting superblock from version 1 to 2.\n");
1524 
1525 	/* Pre-initialise new fields to zero */
1526 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1527 	blocksize = be32_to_cpu(sb->s_blocksize);
1528 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1529 
1530 	sb->s_nr_users = cpu_to_be32(1);
1531 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1532 	journal->j_format_version = 2;
1533 
1534 	bh = journal->j_sb_buffer;
1535 	BUFFER_TRACE(bh, "marking dirty");
1536 	mark_buffer_dirty(bh);
1537 	sync_dirty_buffer(bh);
1538 	return 0;
1539 }
1540 
1541 
1542 /**
1543  * int jbd2_journal_flush () - Flush journal
1544  * @journal: Journal to act on.
1545  *
1546  * Flush all data for a given journal to disk and empty the journal.
1547  * Filesystems can use this when remounting readonly to ensure that
1548  * recovery does not need to happen on remount.
1549  */
1550 
1551 int jbd2_journal_flush(journal_t *journal)
1552 {
1553 	int err = 0;
1554 	transaction_t *transaction = NULL;
1555 	unsigned long old_tail;
1556 
1557 	write_lock(&journal->j_state_lock);
1558 
1559 	/* Force everything buffered to the log... */
1560 	if (journal->j_running_transaction) {
1561 		transaction = journal->j_running_transaction;
1562 		__jbd2_log_start_commit(journal, transaction->t_tid);
1563 	} else if (journal->j_committing_transaction)
1564 		transaction = journal->j_committing_transaction;
1565 
1566 	/* Wait for the log commit to complete... */
1567 	if (transaction) {
1568 		tid_t tid = transaction->t_tid;
1569 
1570 		write_unlock(&journal->j_state_lock);
1571 		jbd2_log_wait_commit(journal, tid);
1572 	} else {
1573 		write_unlock(&journal->j_state_lock);
1574 	}
1575 
1576 	/* ...and flush everything in the log out to disk. */
1577 	spin_lock(&journal->j_list_lock);
1578 	while (!err && journal->j_checkpoint_transactions != NULL) {
1579 		spin_unlock(&journal->j_list_lock);
1580 		mutex_lock(&journal->j_checkpoint_mutex);
1581 		err = jbd2_log_do_checkpoint(journal);
1582 		mutex_unlock(&journal->j_checkpoint_mutex);
1583 		spin_lock(&journal->j_list_lock);
1584 	}
1585 	spin_unlock(&journal->j_list_lock);
1586 
1587 	if (is_journal_aborted(journal))
1588 		return -EIO;
1589 
1590 	jbd2_cleanup_journal_tail(journal);
1591 
1592 	/* Finally, mark the journal as really needing no recovery.
1593 	 * This sets s_start==0 in the underlying superblock, which is
1594 	 * the magic code for a fully-recovered superblock.  Any future
1595 	 * commits of data to the journal will restore the current
1596 	 * s_start value. */
1597 	write_lock(&journal->j_state_lock);
1598 	old_tail = journal->j_tail;
1599 	journal->j_tail = 0;
1600 	write_unlock(&journal->j_state_lock);
1601 	jbd2_journal_update_superblock(journal, 1);
1602 	write_lock(&journal->j_state_lock);
1603 	journal->j_tail = old_tail;
1604 
1605 	J_ASSERT(!journal->j_running_transaction);
1606 	J_ASSERT(!journal->j_committing_transaction);
1607 	J_ASSERT(!journal->j_checkpoint_transactions);
1608 	J_ASSERT(journal->j_head == journal->j_tail);
1609 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1610 	write_unlock(&journal->j_state_lock);
1611 	return 0;
1612 }
1613 
1614 /**
1615  * int jbd2_journal_wipe() - Wipe journal contents
1616  * @journal: Journal to act on.
1617  * @write: flag (see below)
1618  *
1619  * Wipe out all of the contents of a journal, safely.  This will produce
1620  * a warning if the journal contains any valid recovery information.
1621  * Must be called between journal_init_*() and jbd2_journal_load().
1622  *
1623  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1624  * we merely suppress recovery.
1625  */
1626 
1627 int jbd2_journal_wipe(journal_t *journal, int write)
1628 {
1629 	int err = 0;
1630 
1631 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1632 
1633 	err = load_superblock(journal);
1634 	if (err)
1635 		return err;
1636 
1637 	if (!journal->j_tail)
1638 		goto no_recovery;
1639 
1640 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1641 		write ? "Clearing" : "Ignoring");
1642 
1643 	err = jbd2_journal_skip_recovery(journal);
1644 	if (write)
1645 		jbd2_journal_update_superblock(journal, 1);
1646 
1647  no_recovery:
1648 	return err;
1649 }
1650 
1651 /*
1652  * Journal abort has very specific semantics, which we describe
1653  * for journal abort.
1654  *
1655  * Two internal functions, which provide abort to the jbd layer
1656  * itself are here.
1657  */
1658 
1659 /*
1660  * Quick version for internal journal use (doesn't lock the journal).
1661  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1662  * and don't attempt to make any other journal updates.
1663  */
1664 void __jbd2_journal_abort_hard(journal_t *journal)
1665 {
1666 	transaction_t *transaction;
1667 
1668 	if (journal->j_flags & JBD2_ABORT)
1669 		return;
1670 
1671 	printk(KERN_ERR "Aborting journal on device %s.\n",
1672 	       journal->j_devname);
1673 
1674 	write_lock(&journal->j_state_lock);
1675 	journal->j_flags |= JBD2_ABORT;
1676 	transaction = journal->j_running_transaction;
1677 	if (transaction)
1678 		__jbd2_log_start_commit(journal, transaction->t_tid);
1679 	write_unlock(&journal->j_state_lock);
1680 }
1681 
1682 /* Soft abort: record the abort error status in the journal superblock,
1683  * but don't do any other IO. */
1684 static void __journal_abort_soft (journal_t *journal, int errno)
1685 {
1686 	if (journal->j_flags & JBD2_ABORT)
1687 		return;
1688 
1689 	if (!journal->j_errno)
1690 		journal->j_errno = errno;
1691 
1692 	__jbd2_journal_abort_hard(journal);
1693 
1694 	if (errno)
1695 		jbd2_journal_update_superblock(journal, 1);
1696 }
1697 
1698 /**
1699  * void jbd2_journal_abort () - Shutdown the journal immediately.
1700  * @journal: the journal to shutdown.
1701  * @errno:   an error number to record in the journal indicating
1702  *           the reason for the shutdown.
1703  *
1704  * Perform a complete, immediate shutdown of the ENTIRE
1705  * journal (not of a single transaction).  This operation cannot be
1706  * undone without closing and reopening the journal.
1707  *
1708  * The jbd2_journal_abort function is intended to support higher level error
1709  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1710  * mode.
1711  *
1712  * Journal abort has very specific semantics.  Any existing dirty,
1713  * unjournaled buffers in the main filesystem will still be written to
1714  * disk by bdflush, but the journaling mechanism will be suspended
1715  * immediately and no further transaction commits will be honoured.
1716  *
1717  * Any dirty, journaled buffers will be written back to disk without
1718  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1719  * filesystem, but we _do_ attempt to leave as much data as possible
1720  * behind for fsck to use for cleanup.
1721  *
1722  * Any attempt to get a new transaction handle on a journal which is in
1723  * ABORT state will just result in an -EROFS error return.  A
1724  * jbd2_journal_stop on an existing handle will return -EIO if we have
1725  * entered abort state during the update.
1726  *
1727  * Recursive transactions are not disturbed by journal abort until the
1728  * final jbd2_journal_stop, which will receive the -EIO error.
1729  *
1730  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1731  * which will be recorded (if possible) in the journal superblock.  This
1732  * allows a client to record failure conditions in the middle of a
1733  * transaction without having to complete the transaction to record the
1734  * failure to disk.  ext3_error, for example, now uses this
1735  * functionality.
1736  *
1737  * Errors which originate from within the journaling layer will NOT
1738  * supply an errno; a null errno implies that absolutely no further
1739  * writes are done to the journal (unless there are any already in
1740  * progress).
1741  *
1742  */
1743 
1744 void jbd2_journal_abort(journal_t *journal, int errno)
1745 {
1746 	__journal_abort_soft(journal, errno);
1747 }
1748 
1749 /**
1750  * int jbd2_journal_errno () - returns the journal's error state.
1751  * @journal: journal to examine.
1752  *
1753  * This is the errno number set with jbd2_journal_abort(), the last
1754  * time the journal was mounted - if the journal was stopped
1755  * without calling abort this will be 0.
1756  *
1757  * If the journal has been aborted on this mount time -EROFS will
1758  * be returned.
1759  */
1760 int jbd2_journal_errno(journal_t *journal)
1761 {
1762 	int err;
1763 
1764 	read_lock(&journal->j_state_lock);
1765 	if (journal->j_flags & JBD2_ABORT)
1766 		err = -EROFS;
1767 	else
1768 		err = journal->j_errno;
1769 	read_unlock(&journal->j_state_lock);
1770 	return err;
1771 }
1772 
1773 /**
1774  * int jbd2_journal_clear_err () - clears the journal's error state
1775  * @journal: journal to act on.
1776  *
1777  * An error must be cleared or acked to take a FS out of readonly
1778  * mode.
1779  */
1780 int jbd2_journal_clear_err(journal_t *journal)
1781 {
1782 	int err = 0;
1783 
1784 	write_lock(&journal->j_state_lock);
1785 	if (journal->j_flags & JBD2_ABORT)
1786 		err = -EROFS;
1787 	else
1788 		journal->j_errno = 0;
1789 	write_unlock(&journal->j_state_lock);
1790 	return err;
1791 }
1792 
1793 /**
1794  * void jbd2_journal_ack_err() - Ack journal err.
1795  * @journal: journal to act on.
1796  *
1797  * An error must be cleared or acked to take a FS out of readonly
1798  * mode.
1799  */
1800 void jbd2_journal_ack_err(journal_t *journal)
1801 {
1802 	write_lock(&journal->j_state_lock);
1803 	if (journal->j_errno)
1804 		journal->j_flags |= JBD2_ACK_ERR;
1805 	write_unlock(&journal->j_state_lock);
1806 }
1807 
1808 int jbd2_journal_blocks_per_page(struct inode *inode)
1809 {
1810 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1811 }
1812 
1813 /*
1814  * helper functions to deal with 32 or 64bit block numbers.
1815  */
1816 size_t journal_tag_bytes(journal_t *journal)
1817 {
1818 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1819 		return JBD2_TAG_SIZE64;
1820 	else
1821 		return JBD2_TAG_SIZE32;
1822 }
1823 
1824 /*
1825  * JBD memory management
1826  *
1827  * These functions are used to allocate block-sized chunks of memory
1828  * used for making copies of buffer_head data.  Very often it will be
1829  * page-sized chunks of data, but sometimes it will be in
1830  * sub-page-size chunks.  (For example, 16k pages on Power systems
1831  * with a 4k block file system.)  For blocks smaller than a page, we
1832  * use a SLAB allocator.  There are slab caches for each block size,
1833  * which are allocated at mount time, if necessary, and we only free
1834  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1835  * this reason we don't need to a mutex to protect access to
1836  * jbd2_slab[] allocating or releasing memory; only in
1837  * jbd2_journal_create_slab().
1838  */
1839 #define JBD2_MAX_SLABS 8
1840 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1841 static DECLARE_MUTEX(jbd2_slab_create_sem);
1842 
1843 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1844 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1845 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1846 };
1847 
1848 
1849 static void jbd2_journal_destroy_slabs(void)
1850 {
1851 	int i;
1852 
1853 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1854 		if (jbd2_slab[i])
1855 			kmem_cache_destroy(jbd2_slab[i]);
1856 		jbd2_slab[i] = NULL;
1857 	}
1858 }
1859 
1860 static int jbd2_journal_create_slab(size_t size)
1861 {
1862 	int i = order_base_2(size) - 10;
1863 	size_t slab_size;
1864 
1865 	if (size == PAGE_SIZE)
1866 		return 0;
1867 
1868 	if (i >= JBD2_MAX_SLABS)
1869 		return -EINVAL;
1870 
1871 	if (unlikely(i < 0))
1872 		i = 0;
1873 	down(&jbd2_slab_create_sem);
1874 	if (jbd2_slab[i]) {
1875 		up(&jbd2_slab_create_sem);
1876 		return 0;	/* Already created */
1877 	}
1878 
1879 	slab_size = 1 << (i+10);
1880 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1881 					 slab_size, 0, NULL);
1882 	up(&jbd2_slab_create_sem);
1883 	if (!jbd2_slab[i]) {
1884 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1885 		return -ENOMEM;
1886 	}
1887 	return 0;
1888 }
1889 
1890 static struct kmem_cache *get_slab(size_t size)
1891 {
1892 	int i = order_base_2(size) - 10;
1893 
1894 	BUG_ON(i >= JBD2_MAX_SLABS);
1895 	if (unlikely(i < 0))
1896 		i = 0;
1897 	BUG_ON(jbd2_slab[i] == NULL);
1898 	return jbd2_slab[i];
1899 }
1900 
1901 void *jbd2_alloc(size_t size, gfp_t flags)
1902 {
1903 	void *ptr;
1904 
1905 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1906 
1907 	flags |= __GFP_REPEAT;
1908 	if (size == PAGE_SIZE)
1909 		ptr = (void *)__get_free_pages(flags, 0);
1910 	else if (size > PAGE_SIZE) {
1911 		int order = get_order(size);
1912 
1913 		if (order < 3)
1914 			ptr = (void *)__get_free_pages(flags, order);
1915 		else
1916 			ptr = vmalloc(size);
1917 	} else
1918 		ptr = kmem_cache_alloc(get_slab(size), flags);
1919 
1920 	/* Check alignment; SLUB has gotten this wrong in the past,
1921 	 * and this can lead to user data corruption! */
1922 	BUG_ON(((unsigned long) ptr) & (size-1));
1923 
1924 	return ptr;
1925 }
1926 
1927 void jbd2_free(void *ptr, size_t size)
1928 {
1929 	if (size == PAGE_SIZE) {
1930 		free_pages((unsigned long)ptr, 0);
1931 		return;
1932 	}
1933 	if (size > PAGE_SIZE) {
1934 		int order = get_order(size);
1935 
1936 		if (order < 3)
1937 			free_pages((unsigned long)ptr, order);
1938 		else
1939 			vfree(ptr);
1940 		return;
1941 	}
1942 	kmem_cache_free(get_slab(size), ptr);
1943 };
1944 
1945 /*
1946  * Journal_head storage management
1947  */
1948 static struct kmem_cache *jbd2_journal_head_cache;
1949 #ifdef CONFIG_JBD2_DEBUG
1950 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1951 #endif
1952 
1953 static int journal_init_jbd2_journal_head_cache(void)
1954 {
1955 	int retval;
1956 
1957 	J_ASSERT(jbd2_journal_head_cache == NULL);
1958 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1959 				sizeof(struct journal_head),
1960 				0,		/* offset */
1961 				SLAB_TEMPORARY,	/* flags */
1962 				NULL);		/* ctor */
1963 	retval = 0;
1964 	if (!jbd2_journal_head_cache) {
1965 		retval = -ENOMEM;
1966 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1967 	}
1968 	return retval;
1969 }
1970 
1971 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1972 {
1973 	if (jbd2_journal_head_cache) {
1974 		kmem_cache_destroy(jbd2_journal_head_cache);
1975 		jbd2_journal_head_cache = NULL;
1976 	}
1977 }
1978 
1979 /*
1980  * journal_head splicing and dicing
1981  */
1982 static struct journal_head *journal_alloc_journal_head(void)
1983 {
1984 	struct journal_head *ret;
1985 	static unsigned long last_warning;
1986 
1987 #ifdef CONFIG_JBD2_DEBUG
1988 	atomic_inc(&nr_journal_heads);
1989 #endif
1990 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1991 	if (!ret) {
1992 		jbd_debug(1, "out of memory for journal_head\n");
1993 		if (time_after(jiffies, last_warning + 5*HZ)) {
1994 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1995 			       __func__);
1996 			last_warning = jiffies;
1997 		}
1998 		while (!ret) {
1999 			yield();
2000 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2001 		}
2002 	}
2003 	return ret;
2004 }
2005 
2006 static void journal_free_journal_head(struct journal_head *jh)
2007 {
2008 #ifdef CONFIG_JBD2_DEBUG
2009 	atomic_dec(&nr_journal_heads);
2010 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2011 #endif
2012 	kmem_cache_free(jbd2_journal_head_cache, jh);
2013 }
2014 
2015 /*
2016  * A journal_head is attached to a buffer_head whenever JBD has an
2017  * interest in the buffer.
2018  *
2019  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2020  * is set.  This bit is tested in core kernel code where we need to take
2021  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2022  * there.
2023  *
2024  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2025  *
2026  * When a buffer has its BH_JBD bit set it is immune from being released by
2027  * core kernel code, mainly via ->b_count.
2028  *
2029  * A journal_head may be detached from its buffer_head when the journal_head's
2030  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2031  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2032  * journal_head can be dropped if needed.
2033  *
2034  * Various places in the kernel want to attach a journal_head to a buffer_head
2035  * _before_ attaching the journal_head to a transaction.  To protect the
2036  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2037  * journal_head's b_jcount refcount by one.  The caller must call
2038  * jbd2_journal_put_journal_head() to undo this.
2039  *
2040  * So the typical usage would be:
2041  *
2042  *	(Attach a journal_head if needed.  Increments b_jcount)
2043  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2044  *	...
2045  *	jh->b_transaction = xxx;
2046  *	jbd2_journal_put_journal_head(jh);
2047  *
2048  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2049  * because it has a non-zero b_transaction.
2050  */
2051 
2052 /*
2053  * Give a buffer_head a journal_head.
2054  *
2055  * Doesn't need the journal lock.
2056  * May sleep.
2057  */
2058 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2059 {
2060 	struct journal_head *jh;
2061 	struct journal_head *new_jh = NULL;
2062 
2063 repeat:
2064 	if (!buffer_jbd(bh)) {
2065 		new_jh = journal_alloc_journal_head();
2066 		memset(new_jh, 0, sizeof(*new_jh));
2067 	}
2068 
2069 	jbd_lock_bh_journal_head(bh);
2070 	if (buffer_jbd(bh)) {
2071 		jh = bh2jh(bh);
2072 	} else {
2073 		J_ASSERT_BH(bh,
2074 			(atomic_read(&bh->b_count) > 0) ||
2075 			(bh->b_page && bh->b_page->mapping));
2076 
2077 		if (!new_jh) {
2078 			jbd_unlock_bh_journal_head(bh);
2079 			goto repeat;
2080 		}
2081 
2082 		jh = new_jh;
2083 		new_jh = NULL;		/* We consumed it */
2084 		set_buffer_jbd(bh);
2085 		bh->b_private = jh;
2086 		jh->b_bh = bh;
2087 		get_bh(bh);
2088 		BUFFER_TRACE(bh, "added journal_head");
2089 	}
2090 	jh->b_jcount++;
2091 	jbd_unlock_bh_journal_head(bh);
2092 	if (new_jh)
2093 		journal_free_journal_head(new_jh);
2094 	return bh->b_private;
2095 }
2096 
2097 /*
2098  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2099  * having a journal_head, return NULL
2100  */
2101 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2102 {
2103 	struct journal_head *jh = NULL;
2104 
2105 	jbd_lock_bh_journal_head(bh);
2106 	if (buffer_jbd(bh)) {
2107 		jh = bh2jh(bh);
2108 		jh->b_jcount++;
2109 	}
2110 	jbd_unlock_bh_journal_head(bh);
2111 	return jh;
2112 }
2113 
2114 static void __journal_remove_journal_head(struct buffer_head *bh)
2115 {
2116 	struct journal_head *jh = bh2jh(bh);
2117 
2118 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2119 
2120 	get_bh(bh);
2121 	if (jh->b_jcount == 0) {
2122 		if (jh->b_transaction == NULL &&
2123 				jh->b_next_transaction == NULL &&
2124 				jh->b_cp_transaction == NULL) {
2125 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2126 			J_ASSERT_BH(bh, buffer_jbd(bh));
2127 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2128 			BUFFER_TRACE(bh, "remove journal_head");
2129 			if (jh->b_frozen_data) {
2130 				printk(KERN_WARNING "%s: freeing "
2131 						"b_frozen_data\n",
2132 						__func__);
2133 				jbd2_free(jh->b_frozen_data, bh->b_size);
2134 			}
2135 			if (jh->b_committed_data) {
2136 				printk(KERN_WARNING "%s: freeing "
2137 						"b_committed_data\n",
2138 						__func__);
2139 				jbd2_free(jh->b_committed_data, bh->b_size);
2140 			}
2141 			bh->b_private = NULL;
2142 			jh->b_bh = NULL;	/* debug, really */
2143 			clear_buffer_jbd(bh);
2144 			__brelse(bh);
2145 			journal_free_journal_head(jh);
2146 		} else {
2147 			BUFFER_TRACE(bh, "journal_head was locked");
2148 		}
2149 	}
2150 }
2151 
2152 /*
2153  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2154  * and has a zero b_jcount then remove and release its journal_head.   If we did
2155  * see that the buffer is not used by any transaction we also "logically"
2156  * decrement ->b_count.
2157  *
2158  * We in fact take an additional increment on ->b_count as a convenience,
2159  * because the caller usually wants to do additional things with the bh
2160  * after calling here.
2161  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2162  * time.  Once the caller has run __brelse(), the buffer is eligible for
2163  * reaping by try_to_free_buffers().
2164  */
2165 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2166 {
2167 	jbd_lock_bh_journal_head(bh);
2168 	__journal_remove_journal_head(bh);
2169 	jbd_unlock_bh_journal_head(bh);
2170 }
2171 
2172 /*
2173  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2174  * release the journal_head from the buffer_head.
2175  */
2176 void jbd2_journal_put_journal_head(struct journal_head *jh)
2177 {
2178 	struct buffer_head *bh = jh2bh(jh);
2179 
2180 	jbd_lock_bh_journal_head(bh);
2181 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2182 	--jh->b_jcount;
2183 	if (!jh->b_jcount && !jh->b_transaction) {
2184 		__journal_remove_journal_head(bh);
2185 		__brelse(bh);
2186 	}
2187 	jbd_unlock_bh_journal_head(bh);
2188 }
2189 
2190 /*
2191  * Initialize jbd inode head
2192  */
2193 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2194 {
2195 	jinode->i_transaction = NULL;
2196 	jinode->i_next_transaction = NULL;
2197 	jinode->i_vfs_inode = inode;
2198 	jinode->i_flags = 0;
2199 	INIT_LIST_HEAD(&jinode->i_list);
2200 }
2201 
2202 /*
2203  * Function to be called before we start removing inode from memory (i.e.,
2204  * clear_inode() is a fine place to be called from). It removes inode from
2205  * transaction's lists.
2206  */
2207 void jbd2_journal_release_jbd_inode(journal_t *journal,
2208 				    struct jbd2_inode *jinode)
2209 {
2210 	if (!journal)
2211 		return;
2212 restart:
2213 	spin_lock(&journal->j_list_lock);
2214 	/* Is commit writing out inode - we have to wait */
2215 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2216 		wait_queue_head_t *wq;
2217 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2218 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2219 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2220 		spin_unlock(&journal->j_list_lock);
2221 		schedule();
2222 		finish_wait(wq, &wait.wait);
2223 		goto restart;
2224 	}
2225 
2226 	if (jinode->i_transaction) {
2227 		list_del(&jinode->i_list);
2228 		jinode->i_transaction = NULL;
2229 	}
2230 	spin_unlock(&journal->j_list_lock);
2231 }
2232 
2233 /*
2234  * debugfs tunables
2235  */
2236 #ifdef CONFIG_JBD2_DEBUG
2237 u8 jbd2_journal_enable_debug __read_mostly;
2238 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2239 
2240 #define JBD2_DEBUG_NAME "jbd2-debug"
2241 
2242 static struct dentry *jbd2_debugfs_dir;
2243 static struct dentry *jbd2_debug;
2244 
2245 static void __init jbd2_create_debugfs_entry(void)
2246 {
2247 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2248 	if (jbd2_debugfs_dir)
2249 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2250 					       S_IRUGO | S_IWUSR,
2251 					       jbd2_debugfs_dir,
2252 					       &jbd2_journal_enable_debug);
2253 }
2254 
2255 static void __exit jbd2_remove_debugfs_entry(void)
2256 {
2257 	debugfs_remove(jbd2_debug);
2258 	debugfs_remove(jbd2_debugfs_dir);
2259 }
2260 
2261 #else
2262 
2263 static void __init jbd2_create_debugfs_entry(void)
2264 {
2265 }
2266 
2267 static void __exit jbd2_remove_debugfs_entry(void)
2268 {
2269 }
2270 
2271 #endif
2272 
2273 #ifdef CONFIG_PROC_FS
2274 
2275 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2276 
2277 static void __init jbd2_create_jbd_stats_proc_entry(void)
2278 {
2279 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281 
2282 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2283 {
2284 	if (proc_jbd2_stats)
2285 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2286 }
2287 
2288 #else
2289 
2290 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2291 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2292 
2293 #endif
2294 
2295 struct kmem_cache *jbd2_handle_cache;
2296 
2297 static int __init journal_init_handle_cache(void)
2298 {
2299 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2300 				sizeof(handle_t),
2301 				0,		/* offset */
2302 				SLAB_TEMPORARY,	/* flags */
2303 				NULL);		/* ctor */
2304 	if (jbd2_handle_cache == NULL) {
2305 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2306 		return -ENOMEM;
2307 	}
2308 	return 0;
2309 }
2310 
2311 static void jbd2_journal_destroy_handle_cache(void)
2312 {
2313 	if (jbd2_handle_cache)
2314 		kmem_cache_destroy(jbd2_handle_cache);
2315 }
2316 
2317 /*
2318  * Module startup and shutdown
2319  */
2320 
2321 static int __init journal_init_caches(void)
2322 {
2323 	int ret;
2324 
2325 	ret = jbd2_journal_init_revoke_caches();
2326 	if (ret == 0)
2327 		ret = journal_init_jbd2_journal_head_cache();
2328 	if (ret == 0)
2329 		ret = journal_init_handle_cache();
2330 	return ret;
2331 }
2332 
2333 static void jbd2_journal_destroy_caches(void)
2334 {
2335 	jbd2_journal_destroy_revoke_caches();
2336 	jbd2_journal_destroy_jbd2_journal_head_cache();
2337 	jbd2_journal_destroy_handle_cache();
2338 	jbd2_journal_destroy_slabs();
2339 }
2340 
2341 static int __init journal_init(void)
2342 {
2343 	int ret;
2344 
2345 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2346 
2347 	ret = journal_init_caches();
2348 	if (ret == 0) {
2349 		jbd2_create_debugfs_entry();
2350 		jbd2_create_jbd_stats_proc_entry();
2351 	} else {
2352 		jbd2_journal_destroy_caches();
2353 	}
2354 	return ret;
2355 }
2356 
2357 static void __exit journal_exit(void)
2358 {
2359 #ifdef CONFIG_JBD2_DEBUG
2360 	int n = atomic_read(&nr_journal_heads);
2361 	if (n)
2362 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2363 #endif
2364 	jbd2_remove_debugfs_entry();
2365 	jbd2_remove_jbd_stats_proc_entry();
2366 	jbd2_journal_destroy_caches();
2367 }
2368 
2369 /*
2370  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2371  * tracing infrastructure to map a dev_t to a device name.
2372  *
2373  * The caller should use rcu_read_lock() in order to make sure the
2374  * device name stays valid until its done with it.  We use
2375  * rcu_read_lock() as well to make sure we're safe in case the caller
2376  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2377  * nested.
2378  */
2379 struct devname_cache {
2380 	struct rcu_head	rcu;
2381 	dev_t		device;
2382 	char		devname[BDEVNAME_SIZE];
2383 };
2384 #define CACHE_SIZE_BITS 6
2385 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2386 static DEFINE_SPINLOCK(devname_cache_lock);
2387 
2388 static void free_devcache(struct rcu_head *rcu)
2389 {
2390 	kfree(rcu);
2391 }
2392 
2393 const char *jbd2_dev_to_name(dev_t device)
2394 {
2395 	int	i = hash_32(device, CACHE_SIZE_BITS);
2396 	char	*ret;
2397 	struct block_device *bd;
2398 	static struct devname_cache *new_dev;
2399 
2400 	rcu_read_lock();
2401 	if (devcache[i] && devcache[i]->device == device) {
2402 		ret = devcache[i]->devname;
2403 		rcu_read_unlock();
2404 		return ret;
2405 	}
2406 	rcu_read_unlock();
2407 
2408 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2409 	if (!new_dev)
2410 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2411 	spin_lock(&devname_cache_lock);
2412 	if (devcache[i]) {
2413 		if (devcache[i]->device == device) {
2414 			kfree(new_dev);
2415 			ret = devcache[i]->devname;
2416 			spin_unlock(&devname_cache_lock);
2417 			return ret;
2418 		}
2419 		call_rcu(&devcache[i]->rcu, free_devcache);
2420 	}
2421 	devcache[i] = new_dev;
2422 	devcache[i]->device = device;
2423 	bd = bdget(device);
2424 	if (bd) {
2425 		bdevname(bd, devcache[i]->devname);
2426 		bdput(bd);
2427 	} else
2428 		__bdevname(device, devcache[i]->devname);
2429 	ret = devcache[i]->devname;
2430 	spin_unlock(&devname_cache_lock);
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL(jbd2_dev_to_name);
2434 
2435 MODULE_LICENSE("GPL");
2436 module_init(journal_init);
2437 module_exit(journal_exit);
2438 
2439