1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 #if 0 70 EXPORT_SYMBOL(journal_sync_buffer); 71 #endif 72 EXPORT_SYMBOL(jbd2_journal_flush); 73 EXPORT_SYMBOL(jbd2_journal_revoke); 74 75 EXPORT_SYMBOL(jbd2_journal_init_dev); 76 EXPORT_SYMBOL(jbd2_journal_init_inode); 77 EXPORT_SYMBOL(jbd2_journal_check_used_features); 78 EXPORT_SYMBOL(jbd2_journal_check_available_features); 79 EXPORT_SYMBOL(jbd2_journal_set_features); 80 EXPORT_SYMBOL(jbd2_journal_load); 81 EXPORT_SYMBOL(jbd2_journal_destroy); 82 EXPORT_SYMBOL(jbd2_journal_abort); 83 EXPORT_SYMBOL(jbd2_journal_errno); 84 EXPORT_SYMBOL(jbd2_journal_ack_err); 85 EXPORT_SYMBOL(jbd2_journal_clear_err); 86 EXPORT_SYMBOL(jbd2_log_wait_commit); 87 EXPORT_SYMBOL(jbd2_log_start_commit); 88 EXPORT_SYMBOL(jbd2_journal_start_commit); 89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 90 EXPORT_SYMBOL(jbd2_journal_wipe); 91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 92 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 94 EXPORT_SYMBOL(jbd2_journal_force_commit); 95 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 100 EXPORT_SYMBOL(jbd2_inode_cache); 101 102 static void __journal_abort_soft (journal_t *journal, int errno); 103 static int jbd2_journal_create_slab(size_t slab_size); 104 105 #ifdef CONFIG_JBD2_DEBUG 106 void __jbd2_debug(int level, const char *file, const char *func, 107 unsigned int line, const char *fmt, ...) 108 { 109 struct va_format vaf; 110 va_list args; 111 112 if (level > jbd2_journal_enable_debug) 113 return; 114 va_start(args, fmt); 115 vaf.fmt = fmt; 116 vaf.va = &args; 117 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 118 va_end(args); 119 } 120 EXPORT_SYMBOL(__jbd2_debug); 121 #endif 122 123 /* Checksumming functions */ 124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 125 { 126 if (!jbd2_journal_has_csum_v2or3_feature(j)) 127 return 1; 128 129 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 130 } 131 132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 133 { 134 __u32 csum; 135 __be32 old_csum; 136 137 old_csum = sb->s_checksum; 138 sb->s_checksum = 0; 139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 140 sb->s_checksum = old_csum; 141 142 return cpu_to_be32(csum); 143 } 144 145 /* 146 * Helper function used to manage commit timeouts 147 */ 148 149 static void commit_timeout(struct timer_list *t) 150 { 151 journal_t *journal = from_timer(journal, t, j_commit_timer); 152 153 wake_up_process(journal->j_task); 154 } 155 156 /* 157 * kjournald2: The main thread function used to manage a logging device 158 * journal. 159 * 160 * This kernel thread is responsible for two things: 161 * 162 * 1) COMMIT: Every so often we need to commit the current state of the 163 * filesystem to disk. The journal thread is responsible for writing 164 * all of the metadata buffers to disk. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 jbd_lock_bh_state(bh_in); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 jbd_unlock_bh_state(bh_in); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 jbd_lock_bh_state(bh_in); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 jbd_unlock_bh_state(bh_in); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * Force and wait upon a commit if the calling process is not within 570 * transaction. This is used for forcing out undo-protected data which contains 571 * bitmaps, when the fs is running out of space. 572 * 573 * @journal: journal to force 574 * Returns true if progress was made. 575 */ 576 int jbd2_journal_force_commit_nested(journal_t *journal) 577 { 578 int ret; 579 580 ret = __jbd2_journal_force_commit(journal); 581 return ret > 0; 582 } 583 584 /** 585 * int journal_force_commit() - force any uncommitted transactions 586 * @journal: journal to force 587 * 588 * Caller want unconditional commit. We can only force the running transaction 589 * if we don't have an active handle, otherwise, we will deadlock. 590 */ 591 int jbd2_journal_force_commit(journal_t *journal) 592 { 593 int ret; 594 595 J_ASSERT(!current->journal_info); 596 ret = __jbd2_journal_force_commit(journal); 597 if (ret > 0) 598 ret = 0; 599 return ret; 600 } 601 602 /* 603 * Start a commit of the current running transaction (if any). Returns true 604 * if a transaction is going to be committed (or is currently already 605 * committing), and fills its tid in at *ptid 606 */ 607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 608 { 609 int ret = 0; 610 611 write_lock(&journal->j_state_lock); 612 if (journal->j_running_transaction) { 613 tid_t tid = journal->j_running_transaction->t_tid; 614 615 __jbd2_log_start_commit(journal, tid); 616 /* There's a running transaction and we've just made sure 617 * it's commit has been scheduled. */ 618 if (ptid) 619 *ptid = tid; 620 ret = 1; 621 } else if (journal->j_committing_transaction) { 622 /* 623 * If commit has been started, then we have to wait for 624 * completion of that transaction. 625 */ 626 if (ptid) 627 *ptid = journal->j_committing_transaction->t_tid; 628 ret = 1; 629 } 630 write_unlock(&journal->j_state_lock); 631 return ret; 632 } 633 634 /* 635 * Return 1 if a given transaction has not yet sent barrier request 636 * connected with a transaction commit. If 0 is returned, transaction 637 * may or may not have sent the barrier. Used to avoid sending barrier 638 * twice in common cases. 639 */ 640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 641 { 642 int ret = 0; 643 transaction_t *commit_trans; 644 645 if (!(journal->j_flags & JBD2_BARRIER)) 646 return 0; 647 read_lock(&journal->j_state_lock); 648 /* Transaction already committed? */ 649 if (tid_geq(journal->j_commit_sequence, tid)) 650 goto out; 651 commit_trans = journal->j_committing_transaction; 652 if (!commit_trans || commit_trans->t_tid != tid) { 653 ret = 1; 654 goto out; 655 } 656 /* 657 * Transaction is being committed and we already proceeded to 658 * submitting a flush to fs partition? 659 */ 660 if (journal->j_fs_dev != journal->j_dev) { 661 if (!commit_trans->t_need_data_flush || 662 commit_trans->t_state >= T_COMMIT_DFLUSH) 663 goto out; 664 } else { 665 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 666 goto out; 667 } 668 ret = 1; 669 out: 670 read_unlock(&journal->j_state_lock); 671 return ret; 672 } 673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 674 675 /* 676 * Wait for a specified commit to complete. 677 * The caller may not hold the journal lock. 678 */ 679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 680 { 681 int err = 0; 682 683 read_lock(&journal->j_state_lock); 684 #ifdef CONFIG_PROVE_LOCKING 685 /* 686 * Some callers make sure transaction is already committing and in that 687 * case we cannot block on open handles anymore. So don't warn in that 688 * case. 689 */ 690 if (tid_gt(tid, journal->j_commit_sequence) && 691 (!journal->j_committing_transaction || 692 journal->j_committing_transaction->t_tid != tid)) { 693 read_unlock(&journal->j_state_lock); 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 } 697 #endif 698 #ifdef CONFIG_JBD2_DEBUG 699 if (!tid_geq(journal->j_commit_request, tid)) { 700 printk(KERN_ERR 701 "%s: error: j_commit_request=%d, tid=%d\n", 702 __func__, journal->j_commit_request, tid); 703 } 704 #endif 705 while (tid_gt(tid, journal->j_commit_sequence)) { 706 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 707 tid, journal->j_commit_sequence); 708 read_unlock(&journal->j_state_lock); 709 wake_up(&journal->j_wait_commit); 710 wait_event(journal->j_wait_done_commit, 711 !tid_gt(tid, journal->j_commit_sequence)); 712 read_lock(&journal->j_state_lock); 713 } 714 read_unlock(&journal->j_state_lock); 715 716 if (unlikely(is_journal_aborted(journal))) 717 err = -EIO; 718 return err; 719 } 720 721 /* Return 1 when transaction with given tid has already committed. */ 722 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 723 { 724 int ret = 1; 725 726 read_lock(&journal->j_state_lock); 727 if (journal->j_running_transaction && 728 journal->j_running_transaction->t_tid == tid) 729 ret = 0; 730 if (journal->j_committing_transaction && 731 journal->j_committing_transaction->t_tid == tid) 732 ret = 0; 733 read_unlock(&journal->j_state_lock); 734 return ret; 735 } 736 EXPORT_SYMBOL(jbd2_transaction_committed); 737 738 /* 739 * When this function returns the transaction corresponding to tid 740 * will be completed. If the transaction has currently running, start 741 * committing that transaction before waiting for it to complete. If 742 * the transaction id is stale, it is by definition already completed, 743 * so just return SUCCESS. 744 */ 745 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 746 { 747 int need_to_wait = 1; 748 749 read_lock(&journal->j_state_lock); 750 if (journal->j_running_transaction && 751 journal->j_running_transaction->t_tid == tid) { 752 if (journal->j_commit_request != tid) { 753 /* transaction not yet started, so request it */ 754 read_unlock(&journal->j_state_lock); 755 jbd2_log_start_commit(journal, tid); 756 goto wait_commit; 757 } 758 } else if (!(journal->j_committing_transaction && 759 journal->j_committing_transaction->t_tid == tid)) 760 need_to_wait = 0; 761 read_unlock(&journal->j_state_lock); 762 if (!need_to_wait) 763 return 0; 764 wait_commit: 765 return jbd2_log_wait_commit(journal, tid); 766 } 767 EXPORT_SYMBOL(jbd2_complete_transaction); 768 769 /* 770 * Log buffer allocation routines: 771 */ 772 773 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 774 { 775 unsigned long blocknr; 776 777 write_lock(&journal->j_state_lock); 778 J_ASSERT(journal->j_free > 1); 779 780 blocknr = journal->j_head; 781 journal->j_head++; 782 journal->j_free--; 783 if (journal->j_head == journal->j_last) 784 journal->j_head = journal->j_first; 785 write_unlock(&journal->j_state_lock); 786 return jbd2_journal_bmap(journal, blocknr, retp); 787 } 788 789 /* 790 * Conversion of logical to physical block numbers for the journal 791 * 792 * On external journals the journal blocks are identity-mapped, so 793 * this is a no-op. If needed, we can use j_blk_offset - everything is 794 * ready. 795 */ 796 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 797 unsigned long long *retp) 798 { 799 int err = 0; 800 unsigned long long ret; 801 802 if (journal->j_inode) { 803 ret = bmap(journal->j_inode, blocknr); 804 if (ret) 805 *retp = ret; 806 else { 807 printk(KERN_ALERT "%s: journal block not found " 808 "at offset %lu on %s\n", 809 __func__, blocknr, journal->j_devname); 810 err = -EIO; 811 __journal_abort_soft(journal, err); 812 } 813 } else { 814 *retp = blocknr; /* +journal->j_blk_offset */ 815 } 816 return err; 817 } 818 819 /* 820 * We play buffer_head aliasing tricks to write data/metadata blocks to 821 * the journal without copying their contents, but for journal 822 * descriptor blocks we do need to generate bona fide buffers. 823 * 824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 825 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 826 * But we don't bother doing that, so there will be coherency problems with 827 * mmaps of blockdevs which hold live JBD-controlled filesystems. 828 */ 829 struct buffer_head * 830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 831 { 832 journal_t *journal = transaction->t_journal; 833 struct buffer_head *bh; 834 unsigned long long blocknr; 835 journal_header_t *header; 836 int err; 837 838 err = jbd2_journal_next_log_block(journal, &blocknr); 839 840 if (err) 841 return NULL; 842 843 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 844 if (!bh) 845 return NULL; 846 lock_buffer(bh); 847 memset(bh->b_data, 0, journal->j_blocksize); 848 header = (journal_header_t *)bh->b_data; 849 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 850 header->h_blocktype = cpu_to_be32(type); 851 header->h_sequence = cpu_to_be32(transaction->t_tid); 852 set_buffer_uptodate(bh); 853 unlock_buffer(bh); 854 BUFFER_TRACE(bh, "return this buffer"); 855 return bh; 856 } 857 858 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 859 { 860 struct jbd2_journal_block_tail *tail; 861 __u32 csum; 862 863 if (!jbd2_journal_has_csum_v2or3(j)) 864 return; 865 866 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 867 sizeof(struct jbd2_journal_block_tail)); 868 tail->t_checksum = 0; 869 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 870 tail->t_checksum = cpu_to_be32(csum); 871 } 872 873 /* 874 * Return tid of the oldest transaction in the journal and block in the journal 875 * where the transaction starts. 876 * 877 * If the journal is now empty, return which will be the next transaction ID 878 * we will write and where will that transaction start. 879 * 880 * The return value is 0 if journal tail cannot be pushed any further, 1 if 881 * it can. 882 */ 883 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 884 unsigned long *block) 885 { 886 transaction_t *transaction; 887 int ret; 888 889 read_lock(&journal->j_state_lock); 890 spin_lock(&journal->j_list_lock); 891 transaction = journal->j_checkpoint_transactions; 892 if (transaction) { 893 *tid = transaction->t_tid; 894 *block = transaction->t_log_start; 895 } else if ((transaction = journal->j_committing_transaction) != NULL) { 896 *tid = transaction->t_tid; 897 *block = transaction->t_log_start; 898 } else if ((transaction = journal->j_running_transaction) != NULL) { 899 *tid = transaction->t_tid; 900 *block = journal->j_head; 901 } else { 902 *tid = journal->j_transaction_sequence; 903 *block = journal->j_head; 904 } 905 ret = tid_gt(*tid, journal->j_tail_sequence); 906 spin_unlock(&journal->j_list_lock); 907 read_unlock(&journal->j_state_lock); 908 909 return ret; 910 } 911 912 /* 913 * Update information in journal structure and in on disk journal superblock 914 * about log tail. This function does not check whether information passed in 915 * really pushes log tail further. It's responsibility of the caller to make 916 * sure provided log tail information is valid (e.g. by holding 917 * j_checkpoint_mutex all the time between computing log tail and calling this 918 * function as is the case with jbd2_cleanup_journal_tail()). 919 * 920 * Requires j_checkpoint_mutex 921 */ 922 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 923 { 924 unsigned long freed; 925 int ret; 926 927 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 928 929 /* 930 * We cannot afford for write to remain in drive's caches since as 931 * soon as we update j_tail, next transaction can start reusing journal 932 * space and if we lose sb update during power failure we'd replay 933 * old transaction with possibly newly overwritten data. 934 */ 935 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 936 REQ_SYNC | REQ_FUA); 937 if (ret) 938 goto out; 939 940 write_lock(&journal->j_state_lock); 941 freed = block - journal->j_tail; 942 if (block < journal->j_tail) 943 freed += journal->j_last - journal->j_first; 944 945 trace_jbd2_update_log_tail(journal, tid, block, freed); 946 jbd_debug(1, 947 "Cleaning journal tail from %d to %d (offset %lu), " 948 "freeing %lu\n", 949 journal->j_tail_sequence, tid, block, freed); 950 951 journal->j_free += freed; 952 journal->j_tail_sequence = tid; 953 journal->j_tail = block; 954 write_unlock(&journal->j_state_lock); 955 956 out: 957 return ret; 958 } 959 960 /* 961 * This is a variation of __jbd2_update_log_tail which checks for validity of 962 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 963 * with other threads updating log tail. 964 */ 965 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 966 { 967 mutex_lock_io(&journal->j_checkpoint_mutex); 968 if (tid_gt(tid, journal->j_tail_sequence)) 969 __jbd2_update_log_tail(journal, tid, block); 970 mutex_unlock(&journal->j_checkpoint_mutex); 971 } 972 973 struct jbd2_stats_proc_session { 974 journal_t *journal; 975 struct transaction_stats_s *stats; 976 int start; 977 int max; 978 }; 979 980 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 981 { 982 return *pos ? NULL : SEQ_START_TOKEN; 983 } 984 985 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 986 { 987 return NULL; 988 } 989 990 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 991 { 992 struct jbd2_stats_proc_session *s = seq->private; 993 994 if (v != SEQ_START_TOKEN) 995 return 0; 996 seq_printf(seq, "%lu transactions (%lu requested), " 997 "each up to %u blocks\n", 998 s->stats->ts_tid, s->stats->ts_requested, 999 s->journal->j_max_transaction_buffers); 1000 if (s->stats->ts_tid == 0) 1001 return 0; 1002 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1003 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1004 seq_printf(seq, " %ums request delay\n", 1005 (s->stats->ts_requested == 0) ? 0 : 1006 jiffies_to_msecs(s->stats->run.rs_request_delay / 1007 s->stats->ts_requested)); 1008 seq_printf(seq, " %ums running transaction\n", 1009 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1010 seq_printf(seq, " %ums transaction was being locked\n", 1011 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1012 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1013 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1014 seq_printf(seq, " %ums logging transaction\n", 1015 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1016 seq_printf(seq, " %lluus average transaction commit time\n", 1017 div_u64(s->journal->j_average_commit_time, 1000)); 1018 seq_printf(seq, " %lu handles per transaction\n", 1019 s->stats->run.rs_handle_count / s->stats->ts_tid); 1020 seq_printf(seq, " %lu blocks per transaction\n", 1021 s->stats->run.rs_blocks / s->stats->ts_tid); 1022 seq_printf(seq, " %lu logged blocks per transaction\n", 1023 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1024 return 0; 1025 } 1026 1027 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1028 { 1029 } 1030 1031 static const struct seq_operations jbd2_seq_info_ops = { 1032 .start = jbd2_seq_info_start, 1033 .next = jbd2_seq_info_next, 1034 .stop = jbd2_seq_info_stop, 1035 .show = jbd2_seq_info_show, 1036 }; 1037 1038 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1039 { 1040 journal_t *journal = PDE_DATA(inode); 1041 struct jbd2_stats_proc_session *s; 1042 int rc, size; 1043 1044 s = kmalloc(sizeof(*s), GFP_KERNEL); 1045 if (s == NULL) 1046 return -ENOMEM; 1047 size = sizeof(struct transaction_stats_s); 1048 s->stats = kmalloc(size, GFP_KERNEL); 1049 if (s->stats == NULL) { 1050 kfree(s); 1051 return -ENOMEM; 1052 } 1053 spin_lock(&journal->j_history_lock); 1054 memcpy(s->stats, &journal->j_stats, size); 1055 s->journal = journal; 1056 spin_unlock(&journal->j_history_lock); 1057 1058 rc = seq_open(file, &jbd2_seq_info_ops); 1059 if (rc == 0) { 1060 struct seq_file *m = file->private_data; 1061 m->private = s; 1062 } else { 1063 kfree(s->stats); 1064 kfree(s); 1065 } 1066 return rc; 1067 1068 } 1069 1070 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1071 { 1072 struct seq_file *seq = file->private_data; 1073 struct jbd2_stats_proc_session *s = seq->private; 1074 kfree(s->stats); 1075 kfree(s); 1076 return seq_release(inode, file); 1077 } 1078 1079 static const struct file_operations jbd2_seq_info_fops = { 1080 .owner = THIS_MODULE, 1081 .open = jbd2_seq_info_open, 1082 .read = seq_read, 1083 .llseek = seq_lseek, 1084 .release = jbd2_seq_info_release, 1085 }; 1086 1087 static struct proc_dir_entry *proc_jbd2_stats; 1088 1089 static void jbd2_stats_proc_init(journal_t *journal) 1090 { 1091 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1092 if (journal->j_proc_entry) { 1093 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1094 &jbd2_seq_info_fops, journal); 1095 } 1096 } 1097 1098 static void jbd2_stats_proc_exit(journal_t *journal) 1099 { 1100 remove_proc_entry("info", journal->j_proc_entry); 1101 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1102 } 1103 1104 /* 1105 * Management for journal control blocks: functions to create and 1106 * destroy journal_t structures, and to initialise and read existing 1107 * journal blocks from disk. */ 1108 1109 /* First: create and setup a journal_t object in memory. We initialise 1110 * very few fields yet: that has to wait until we have created the 1111 * journal structures from from scratch, or loaded them from disk. */ 1112 1113 static journal_t *journal_init_common(struct block_device *bdev, 1114 struct block_device *fs_dev, 1115 unsigned long long start, int len, int blocksize) 1116 { 1117 static struct lock_class_key jbd2_trans_commit_key; 1118 journal_t *journal; 1119 int err; 1120 struct buffer_head *bh; 1121 int n; 1122 1123 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1124 if (!journal) 1125 return NULL; 1126 1127 init_waitqueue_head(&journal->j_wait_transaction_locked); 1128 init_waitqueue_head(&journal->j_wait_done_commit); 1129 init_waitqueue_head(&journal->j_wait_commit); 1130 init_waitqueue_head(&journal->j_wait_updates); 1131 init_waitqueue_head(&journal->j_wait_reserved); 1132 mutex_init(&journal->j_barrier); 1133 mutex_init(&journal->j_checkpoint_mutex); 1134 spin_lock_init(&journal->j_revoke_lock); 1135 spin_lock_init(&journal->j_list_lock); 1136 rwlock_init(&journal->j_state_lock); 1137 1138 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1139 journal->j_min_batch_time = 0; 1140 journal->j_max_batch_time = 15000; /* 15ms */ 1141 atomic_set(&journal->j_reserved_credits, 0); 1142 1143 /* The journal is marked for error until we succeed with recovery! */ 1144 journal->j_flags = JBD2_ABORT; 1145 1146 /* Set up a default-sized revoke table for the new mount. */ 1147 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1148 if (err) 1149 goto err_cleanup; 1150 1151 spin_lock_init(&journal->j_history_lock); 1152 1153 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1154 &jbd2_trans_commit_key, 0); 1155 1156 /* journal descriptor can store up to n blocks -bzzz */ 1157 journal->j_blocksize = blocksize; 1158 journal->j_dev = bdev; 1159 journal->j_fs_dev = fs_dev; 1160 journal->j_blk_offset = start; 1161 journal->j_maxlen = len; 1162 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1163 journal->j_wbufsize = n; 1164 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1165 GFP_KERNEL); 1166 if (!journal->j_wbuf) 1167 goto err_cleanup; 1168 1169 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1170 if (!bh) { 1171 pr_err("%s: Cannot get buffer for journal superblock\n", 1172 __func__); 1173 goto err_cleanup; 1174 } 1175 journal->j_sb_buffer = bh; 1176 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1177 1178 return journal; 1179 1180 err_cleanup: 1181 kfree(journal->j_wbuf); 1182 jbd2_journal_destroy_revoke(journal); 1183 kfree(journal); 1184 return NULL; 1185 } 1186 1187 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1188 * 1189 * Create a journal structure assigned some fixed set of disk blocks to 1190 * the journal. We don't actually touch those disk blocks yet, but we 1191 * need to set up all of the mapping information to tell the journaling 1192 * system where the journal blocks are. 1193 * 1194 */ 1195 1196 /** 1197 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1198 * @bdev: Block device on which to create the journal 1199 * @fs_dev: Device which hold journalled filesystem for this journal. 1200 * @start: Block nr Start of journal. 1201 * @len: Length of the journal in blocks. 1202 * @blocksize: blocksize of journalling device 1203 * 1204 * Returns: a newly created journal_t * 1205 * 1206 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1207 * range of blocks on an arbitrary block device. 1208 * 1209 */ 1210 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1211 struct block_device *fs_dev, 1212 unsigned long long start, int len, int blocksize) 1213 { 1214 journal_t *journal; 1215 1216 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1217 if (!journal) 1218 return NULL; 1219 1220 bdevname(journal->j_dev, journal->j_devname); 1221 strreplace(journal->j_devname, '/', '!'); 1222 jbd2_stats_proc_init(journal); 1223 1224 return journal; 1225 } 1226 1227 /** 1228 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1229 * @inode: An inode to create the journal in 1230 * 1231 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1232 * the journal. The inode must exist already, must support bmap() and 1233 * must have all data blocks preallocated. 1234 */ 1235 journal_t *jbd2_journal_init_inode(struct inode *inode) 1236 { 1237 journal_t *journal; 1238 char *p; 1239 unsigned long long blocknr; 1240 1241 blocknr = bmap(inode, 0); 1242 if (!blocknr) { 1243 pr_err("%s: Cannot locate journal superblock\n", 1244 __func__); 1245 return NULL; 1246 } 1247 1248 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1249 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1250 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1251 1252 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1253 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1254 inode->i_sb->s_blocksize); 1255 if (!journal) 1256 return NULL; 1257 1258 journal->j_inode = inode; 1259 bdevname(journal->j_dev, journal->j_devname); 1260 p = strreplace(journal->j_devname, '/', '!'); 1261 sprintf(p, "-%lu", journal->j_inode->i_ino); 1262 jbd2_stats_proc_init(journal); 1263 1264 return journal; 1265 } 1266 1267 /* 1268 * If the journal init or create aborts, we need to mark the journal 1269 * superblock as being NULL to prevent the journal destroy from writing 1270 * back a bogus superblock. 1271 */ 1272 static void journal_fail_superblock (journal_t *journal) 1273 { 1274 struct buffer_head *bh = journal->j_sb_buffer; 1275 brelse(bh); 1276 journal->j_sb_buffer = NULL; 1277 } 1278 1279 /* 1280 * Given a journal_t structure, initialise the various fields for 1281 * startup of a new journaling session. We use this both when creating 1282 * a journal, and after recovering an old journal to reset it for 1283 * subsequent use. 1284 */ 1285 1286 static int journal_reset(journal_t *journal) 1287 { 1288 journal_superblock_t *sb = journal->j_superblock; 1289 unsigned long long first, last; 1290 1291 first = be32_to_cpu(sb->s_first); 1292 last = be32_to_cpu(sb->s_maxlen); 1293 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1294 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1295 first, last); 1296 journal_fail_superblock(journal); 1297 return -EINVAL; 1298 } 1299 1300 journal->j_first = first; 1301 journal->j_last = last; 1302 1303 journal->j_head = first; 1304 journal->j_tail = first; 1305 journal->j_free = last - first; 1306 1307 journal->j_tail_sequence = journal->j_transaction_sequence; 1308 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1309 journal->j_commit_request = journal->j_commit_sequence; 1310 1311 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1312 1313 /* 1314 * As a special case, if the on-disk copy is already marked as needing 1315 * no recovery (s_start == 0), then we can safely defer the superblock 1316 * update until the next commit by setting JBD2_FLUSHED. This avoids 1317 * attempting a write to a potential-readonly device. 1318 */ 1319 if (sb->s_start == 0) { 1320 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1321 "(start %ld, seq %d, errno %d)\n", 1322 journal->j_tail, journal->j_tail_sequence, 1323 journal->j_errno); 1324 journal->j_flags |= JBD2_FLUSHED; 1325 } else { 1326 /* Lock here to make assertions happy... */ 1327 mutex_lock_io(&journal->j_checkpoint_mutex); 1328 /* 1329 * Update log tail information. We use REQ_FUA since new 1330 * transaction will start reusing journal space and so we 1331 * must make sure information about current log tail is on 1332 * disk before that. 1333 */ 1334 jbd2_journal_update_sb_log_tail(journal, 1335 journal->j_tail_sequence, 1336 journal->j_tail, 1337 REQ_SYNC | REQ_FUA); 1338 mutex_unlock(&journal->j_checkpoint_mutex); 1339 } 1340 return jbd2_journal_start_thread(journal); 1341 } 1342 1343 /* 1344 * This function expects that the caller will have locked the journal 1345 * buffer head, and will return with it unlocked 1346 */ 1347 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1348 { 1349 struct buffer_head *bh = journal->j_sb_buffer; 1350 journal_superblock_t *sb = journal->j_superblock; 1351 int ret; 1352 1353 /* Buffer got discarded which means block device got invalidated */ 1354 if (!buffer_mapped(bh)) 1355 return -EIO; 1356 1357 trace_jbd2_write_superblock(journal, write_flags); 1358 if (!(journal->j_flags & JBD2_BARRIER)) 1359 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1360 if (buffer_write_io_error(bh)) { 1361 /* 1362 * Oh, dear. A previous attempt to write the journal 1363 * superblock failed. This could happen because the 1364 * USB device was yanked out. Or it could happen to 1365 * be a transient write error and maybe the block will 1366 * be remapped. Nothing we can do but to retry the 1367 * write and hope for the best. 1368 */ 1369 printk(KERN_ERR "JBD2: previous I/O error detected " 1370 "for journal superblock update for %s.\n", 1371 journal->j_devname); 1372 clear_buffer_write_io_error(bh); 1373 set_buffer_uptodate(bh); 1374 } 1375 if (jbd2_journal_has_csum_v2or3(journal)) 1376 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1377 get_bh(bh); 1378 bh->b_end_io = end_buffer_write_sync; 1379 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1380 wait_on_buffer(bh); 1381 if (buffer_write_io_error(bh)) { 1382 clear_buffer_write_io_error(bh); 1383 set_buffer_uptodate(bh); 1384 ret = -EIO; 1385 } 1386 if (ret) { 1387 printk(KERN_ERR "JBD2: Error %d detected when updating " 1388 "journal superblock for %s.\n", ret, 1389 journal->j_devname); 1390 jbd2_journal_abort(journal, ret); 1391 } 1392 1393 return ret; 1394 } 1395 1396 /** 1397 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1398 * @journal: The journal to update. 1399 * @tail_tid: TID of the new transaction at the tail of the log 1400 * @tail_block: The first block of the transaction at the tail of the log 1401 * @write_op: With which operation should we write the journal sb 1402 * 1403 * Update a journal's superblock information about log tail and write it to 1404 * disk, waiting for the IO to complete. 1405 */ 1406 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1407 unsigned long tail_block, int write_op) 1408 { 1409 journal_superblock_t *sb = journal->j_superblock; 1410 int ret; 1411 1412 if (is_journal_aborted(journal)) 1413 return -EIO; 1414 1415 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1416 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1417 tail_block, tail_tid); 1418 1419 lock_buffer(journal->j_sb_buffer); 1420 sb->s_sequence = cpu_to_be32(tail_tid); 1421 sb->s_start = cpu_to_be32(tail_block); 1422 1423 ret = jbd2_write_superblock(journal, write_op); 1424 if (ret) 1425 goto out; 1426 1427 /* Log is no longer empty */ 1428 write_lock(&journal->j_state_lock); 1429 WARN_ON(!sb->s_sequence); 1430 journal->j_flags &= ~JBD2_FLUSHED; 1431 write_unlock(&journal->j_state_lock); 1432 1433 out: 1434 return ret; 1435 } 1436 1437 /** 1438 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1439 * @journal: The journal to update. 1440 * @write_op: With which operation should we write the journal sb 1441 * 1442 * Update a journal's dynamic superblock fields to show that journal is empty. 1443 * Write updated superblock to disk waiting for IO to complete. 1444 */ 1445 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1446 { 1447 journal_superblock_t *sb = journal->j_superblock; 1448 1449 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1450 lock_buffer(journal->j_sb_buffer); 1451 if (sb->s_start == 0) { /* Is it already empty? */ 1452 unlock_buffer(journal->j_sb_buffer); 1453 return; 1454 } 1455 1456 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1457 journal->j_tail_sequence); 1458 1459 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1460 sb->s_start = cpu_to_be32(0); 1461 1462 jbd2_write_superblock(journal, write_op); 1463 1464 /* Log is no longer empty */ 1465 write_lock(&journal->j_state_lock); 1466 journal->j_flags |= JBD2_FLUSHED; 1467 write_unlock(&journal->j_state_lock); 1468 } 1469 1470 1471 /** 1472 * jbd2_journal_update_sb_errno() - Update error in the journal. 1473 * @journal: The journal to update. 1474 * 1475 * Update a journal's errno. Write updated superblock to disk waiting for IO 1476 * to complete. 1477 */ 1478 void jbd2_journal_update_sb_errno(journal_t *journal) 1479 { 1480 journal_superblock_t *sb = journal->j_superblock; 1481 int errcode; 1482 1483 lock_buffer(journal->j_sb_buffer); 1484 errcode = journal->j_errno; 1485 if (errcode == -ESHUTDOWN) 1486 errcode = 0; 1487 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1488 sb->s_errno = cpu_to_be32(errcode); 1489 1490 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1491 } 1492 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1493 1494 /* 1495 * Read the superblock for a given journal, performing initial 1496 * validation of the format. 1497 */ 1498 static int journal_get_superblock(journal_t *journal) 1499 { 1500 struct buffer_head *bh; 1501 journal_superblock_t *sb; 1502 int err = -EIO; 1503 1504 bh = journal->j_sb_buffer; 1505 1506 J_ASSERT(bh != NULL); 1507 if (!buffer_uptodate(bh)) { 1508 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1509 wait_on_buffer(bh); 1510 if (!buffer_uptodate(bh)) { 1511 printk(KERN_ERR 1512 "JBD2: IO error reading journal superblock\n"); 1513 goto out; 1514 } 1515 } 1516 1517 if (buffer_verified(bh)) 1518 return 0; 1519 1520 sb = journal->j_superblock; 1521 1522 err = -EINVAL; 1523 1524 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1525 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1526 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1527 goto out; 1528 } 1529 1530 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1531 case JBD2_SUPERBLOCK_V1: 1532 journal->j_format_version = 1; 1533 break; 1534 case JBD2_SUPERBLOCK_V2: 1535 journal->j_format_version = 2; 1536 break; 1537 default: 1538 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1539 goto out; 1540 } 1541 1542 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1543 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1544 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1545 printk(KERN_WARNING "JBD2: journal file too short\n"); 1546 goto out; 1547 } 1548 1549 if (be32_to_cpu(sb->s_first) == 0 || 1550 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1551 printk(KERN_WARNING 1552 "JBD2: Invalid start block of journal: %u\n", 1553 be32_to_cpu(sb->s_first)); 1554 goto out; 1555 } 1556 1557 if (jbd2_has_feature_csum2(journal) && 1558 jbd2_has_feature_csum3(journal)) { 1559 /* Can't have checksum v2 and v3 at the same time! */ 1560 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1561 "at the same time!\n"); 1562 goto out; 1563 } 1564 1565 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1566 jbd2_has_feature_checksum(journal)) { 1567 /* Can't have checksum v1 and v2 on at the same time! */ 1568 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1569 "at the same time!\n"); 1570 goto out; 1571 } 1572 1573 if (!jbd2_verify_csum_type(journal, sb)) { 1574 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1575 goto out; 1576 } 1577 1578 /* Load the checksum driver */ 1579 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1580 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1581 if (IS_ERR(journal->j_chksum_driver)) { 1582 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1583 err = PTR_ERR(journal->j_chksum_driver); 1584 journal->j_chksum_driver = NULL; 1585 goto out; 1586 } 1587 } 1588 1589 if (jbd2_journal_has_csum_v2or3(journal)) { 1590 /* Check superblock checksum */ 1591 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1592 printk(KERN_ERR "JBD2: journal checksum error\n"); 1593 err = -EFSBADCRC; 1594 goto out; 1595 } 1596 1597 /* Precompute checksum seed for all metadata */ 1598 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1599 sizeof(sb->s_uuid)); 1600 } 1601 1602 set_buffer_verified(bh); 1603 1604 return 0; 1605 1606 out: 1607 journal_fail_superblock(journal); 1608 return err; 1609 } 1610 1611 /* 1612 * Load the on-disk journal superblock and read the key fields into the 1613 * journal_t. 1614 */ 1615 1616 static int load_superblock(journal_t *journal) 1617 { 1618 int err; 1619 journal_superblock_t *sb; 1620 1621 err = journal_get_superblock(journal); 1622 if (err) 1623 return err; 1624 1625 sb = journal->j_superblock; 1626 1627 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1628 journal->j_tail = be32_to_cpu(sb->s_start); 1629 journal->j_first = be32_to_cpu(sb->s_first); 1630 journal->j_last = be32_to_cpu(sb->s_maxlen); 1631 journal->j_errno = be32_to_cpu(sb->s_errno); 1632 1633 return 0; 1634 } 1635 1636 1637 /** 1638 * int jbd2_journal_load() - Read journal from disk. 1639 * @journal: Journal to act on. 1640 * 1641 * Given a journal_t structure which tells us which disk blocks contain 1642 * a journal, read the journal from disk to initialise the in-memory 1643 * structures. 1644 */ 1645 int jbd2_journal_load(journal_t *journal) 1646 { 1647 int err; 1648 journal_superblock_t *sb; 1649 1650 err = load_superblock(journal); 1651 if (err) 1652 return err; 1653 1654 sb = journal->j_superblock; 1655 /* If this is a V2 superblock, then we have to check the 1656 * features flags on it. */ 1657 1658 if (journal->j_format_version >= 2) { 1659 if ((sb->s_feature_ro_compat & 1660 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1661 (sb->s_feature_incompat & 1662 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1663 printk(KERN_WARNING 1664 "JBD2: Unrecognised features on journal\n"); 1665 return -EINVAL; 1666 } 1667 } 1668 1669 /* 1670 * Create a slab for this blocksize 1671 */ 1672 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1673 if (err) 1674 return err; 1675 1676 /* Let the recovery code check whether it needs to recover any 1677 * data from the journal. */ 1678 if (jbd2_journal_recover(journal)) 1679 goto recovery_error; 1680 1681 if (journal->j_failed_commit) { 1682 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1683 "is corrupt.\n", journal->j_failed_commit, 1684 journal->j_devname); 1685 return -EFSCORRUPTED; 1686 } 1687 1688 /* OK, we've finished with the dynamic journal bits: 1689 * reinitialise the dynamic contents of the superblock in memory 1690 * and reset them on disk. */ 1691 if (journal_reset(journal)) 1692 goto recovery_error; 1693 1694 journal->j_flags &= ~JBD2_ABORT; 1695 journal->j_flags |= JBD2_LOADED; 1696 return 0; 1697 1698 recovery_error: 1699 printk(KERN_WARNING "JBD2: recovery failed\n"); 1700 return -EIO; 1701 } 1702 1703 /** 1704 * void jbd2_journal_destroy() - Release a journal_t structure. 1705 * @journal: Journal to act on. 1706 * 1707 * Release a journal_t structure once it is no longer in use by the 1708 * journaled object. 1709 * Return <0 if we couldn't clean up the journal. 1710 */ 1711 int jbd2_journal_destroy(journal_t *journal) 1712 { 1713 int err = 0; 1714 1715 /* Wait for the commit thread to wake up and die. */ 1716 journal_kill_thread(journal); 1717 1718 /* Force a final log commit */ 1719 if (journal->j_running_transaction) 1720 jbd2_journal_commit_transaction(journal); 1721 1722 /* Force any old transactions to disk */ 1723 1724 /* Totally anal locking here... */ 1725 spin_lock(&journal->j_list_lock); 1726 while (journal->j_checkpoint_transactions != NULL) { 1727 spin_unlock(&journal->j_list_lock); 1728 mutex_lock_io(&journal->j_checkpoint_mutex); 1729 err = jbd2_log_do_checkpoint(journal); 1730 mutex_unlock(&journal->j_checkpoint_mutex); 1731 /* 1732 * If checkpointing failed, just free the buffers to avoid 1733 * looping forever 1734 */ 1735 if (err) { 1736 jbd2_journal_destroy_checkpoint(journal); 1737 spin_lock(&journal->j_list_lock); 1738 break; 1739 } 1740 spin_lock(&journal->j_list_lock); 1741 } 1742 1743 J_ASSERT(journal->j_running_transaction == NULL); 1744 J_ASSERT(journal->j_committing_transaction == NULL); 1745 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1746 spin_unlock(&journal->j_list_lock); 1747 1748 if (journal->j_sb_buffer) { 1749 if (!is_journal_aborted(journal)) { 1750 mutex_lock_io(&journal->j_checkpoint_mutex); 1751 1752 write_lock(&journal->j_state_lock); 1753 journal->j_tail_sequence = 1754 ++journal->j_transaction_sequence; 1755 write_unlock(&journal->j_state_lock); 1756 1757 jbd2_mark_journal_empty(journal, 1758 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1759 mutex_unlock(&journal->j_checkpoint_mutex); 1760 } else 1761 err = -EIO; 1762 brelse(journal->j_sb_buffer); 1763 } 1764 1765 if (journal->j_proc_entry) 1766 jbd2_stats_proc_exit(journal); 1767 iput(journal->j_inode); 1768 if (journal->j_revoke) 1769 jbd2_journal_destroy_revoke(journal); 1770 if (journal->j_chksum_driver) 1771 crypto_free_shash(journal->j_chksum_driver); 1772 kfree(journal->j_wbuf); 1773 kfree(journal); 1774 1775 return err; 1776 } 1777 1778 1779 /** 1780 *int jbd2_journal_check_used_features () - Check if features specified are used. 1781 * @journal: Journal to check. 1782 * @compat: bitmask of compatible features 1783 * @ro: bitmask of features that force read-only mount 1784 * @incompat: bitmask of incompatible features 1785 * 1786 * Check whether the journal uses all of a given set of 1787 * features. Return true (non-zero) if it does. 1788 **/ 1789 1790 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1791 unsigned long ro, unsigned long incompat) 1792 { 1793 journal_superblock_t *sb; 1794 1795 if (!compat && !ro && !incompat) 1796 return 1; 1797 /* Load journal superblock if it is not loaded yet. */ 1798 if (journal->j_format_version == 0 && 1799 journal_get_superblock(journal) != 0) 1800 return 0; 1801 if (journal->j_format_version == 1) 1802 return 0; 1803 1804 sb = journal->j_superblock; 1805 1806 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1807 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1808 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1809 return 1; 1810 1811 return 0; 1812 } 1813 1814 /** 1815 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1816 * @journal: Journal to check. 1817 * @compat: bitmask of compatible features 1818 * @ro: bitmask of features that force read-only mount 1819 * @incompat: bitmask of incompatible features 1820 * 1821 * Check whether the journaling code supports the use of 1822 * all of a given set of features on this journal. Return true 1823 * (non-zero) if it can. */ 1824 1825 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1826 unsigned long ro, unsigned long incompat) 1827 { 1828 if (!compat && !ro && !incompat) 1829 return 1; 1830 1831 /* We can support any known requested features iff the 1832 * superblock is in version 2. Otherwise we fail to support any 1833 * extended sb features. */ 1834 1835 if (journal->j_format_version != 2) 1836 return 0; 1837 1838 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1839 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1840 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1841 return 1; 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1848 * @journal: Journal to act on. 1849 * @compat: bitmask of compatible features 1850 * @ro: bitmask of features that force read-only mount 1851 * @incompat: bitmask of incompatible features 1852 * 1853 * Mark a given journal feature as present on the 1854 * superblock. Returns true if the requested features could be set. 1855 * 1856 */ 1857 1858 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1859 unsigned long ro, unsigned long incompat) 1860 { 1861 #define INCOMPAT_FEATURE_ON(f) \ 1862 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1863 #define COMPAT_FEATURE_ON(f) \ 1864 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1865 journal_superblock_t *sb; 1866 1867 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1868 return 1; 1869 1870 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1871 return 0; 1872 1873 /* If enabling v2 checksums, turn on v3 instead */ 1874 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1875 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1876 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1877 } 1878 1879 /* Asking for checksumming v3 and v1? Only give them v3. */ 1880 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1881 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1882 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1883 1884 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1885 compat, ro, incompat); 1886 1887 sb = journal->j_superblock; 1888 1889 /* Load the checksum driver if necessary */ 1890 if ((journal->j_chksum_driver == NULL) && 1891 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1892 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1893 if (IS_ERR(journal->j_chksum_driver)) { 1894 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1895 journal->j_chksum_driver = NULL; 1896 return 0; 1897 } 1898 /* Precompute checksum seed for all metadata */ 1899 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1900 sizeof(sb->s_uuid)); 1901 } 1902 1903 lock_buffer(journal->j_sb_buffer); 1904 1905 /* If enabling v3 checksums, update superblock */ 1906 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1907 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1908 sb->s_feature_compat &= 1909 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1910 } 1911 1912 /* If enabling v1 checksums, downgrade superblock */ 1913 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1914 sb->s_feature_incompat &= 1915 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1916 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1917 1918 sb->s_feature_compat |= cpu_to_be32(compat); 1919 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1920 sb->s_feature_incompat |= cpu_to_be32(incompat); 1921 unlock_buffer(journal->j_sb_buffer); 1922 1923 return 1; 1924 #undef COMPAT_FEATURE_ON 1925 #undef INCOMPAT_FEATURE_ON 1926 } 1927 1928 /* 1929 * jbd2_journal_clear_features () - Clear a given journal feature in the 1930 * superblock 1931 * @journal: Journal to act on. 1932 * @compat: bitmask of compatible features 1933 * @ro: bitmask of features that force read-only mount 1934 * @incompat: bitmask of incompatible features 1935 * 1936 * Clear a given journal feature as present on the 1937 * superblock. 1938 */ 1939 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1940 unsigned long ro, unsigned long incompat) 1941 { 1942 journal_superblock_t *sb; 1943 1944 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1945 compat, ro, incompat); 1946 1947 sb = journal->j_superblock; 1948 1949 sb->s_feature_compat &= ~cpu_to_be32(compat); 1950 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1951 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1952 } 1953 EXPORT_SYMBOL(jbd2_journal_clear_features); 1954 1955 /** 1956 * int jbd2_journal_flush () - Flush journal 1957 * @journal: Journal to act on. 1958 * 1959 * Flush all data for a given journal to disk and empty the journal. 1960 * Filesystems can use this when remounting readonly to ensure that 1961 * recovery does not need to happen on remount. 1962 */ 1963 1964 int jbd2_journal_flush(journal_t *journal) 1965 { 1966 int err = 0; 1967 transaction_t *transaction = NULL; 1968 1969 write_lock(&journal->j_state_lock); 1970 1971 /* Force everything buffered to the log... */ 1972 if (journal->j_running_transaction) { 1973 transaction = journal->j_running_transaction; 1974 __jbd2_log_start_commit(journal, transaction->t_tid); 1975 } else if (journal->j_committing_transaction) 1976 transaction = journal->j_committing_transaction; 1977 1978 /* Wait for the log commit to complete... */ 1979 if (transaction) { 1980 tid_t tid = transaction->t_tid; 1981 1982 write_unlock(&journal->j_state_lock); 1983 jbd2_log_wait_commit(journal, tid); 1984 } else { 1985 write_unlock(&journal->j_state_lock); 1986 } 1987 1988 /* ...and flush everything in the log out to disk. */ 1989 spin_lock(&journal->j_list_lock); 1990 while (!err && journal->j_checkpoint_transactions != NULL) { 1991 spin_unlock(&journal->j_list_lock); 1992 mutex_lock_io(&journal->j_checkpoint_mutex); 1993 err = jbd2_log_do_checkpoint(journal); 1994 mutex_unlock(&journal->j_checkpoint_mutex); 1995 spin_lock(&journal->j_list_lock); 1996 } 1997 spin_unlock(&journal->j_list_lock); 1998 1999 if (is_journal_aborted(journal)) 2000 return -EIO; 2001 2002 mutex_lock_io(&journal->j_checkpoint_mutex); 2003 if (!err) { 2004 err = jbd2_cleanup_journal_tail(journal); 2005 if (err < 0) { 2006 mutex_unlock(&journal->j_checkpoint_mutex); 2007 goto out; 2008 } 2009 err = 0; 2010 } 2011 2012 /* Finally, mark the journal as really needing no recovery. 2013 * This sets s_start==0 in the underlying superblock, which is 2014 * the magic code for a fully-recovered superblock. Any future 2015 * commits of data to the journal will restore the current 2016 * s_start value. */ 2017 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2018 mutex_unlock(&journal->j_checkpoint_mutex); 2019 write_lock(&journal->j_state_lock); 2020 J_ASSERT(!journal->j_running_transaction); 2021 J_ASSERT(!journal->j_committing_transaction); 2022 J_ASSERT(!journal->j_checkpoint_transactions); 2023 J_ASSERT(journal->j_head == journal->j_tail); 2024 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2025 write_unlock(&journal->j_state_lock); 2026 out: 2027 return err; 2028 } 2029 2030 /** 2031 * int jbd2_journal_wipe() - Wipe journal contents 2032 * @journal: Journal to act on. 2033 * @write: flag (see below) 2034 * 2035 * Wipe out all of the contents of a journal, safely. This will produce 2036 * a warning if the journal contains any valid recovery information. 2037 * Must be called between journal_init_*() and jbd2_journal_load(). 2038 * 2039 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2040 * we merely suppress recovery. 2041 */ 2042 2043 int jbd2_journal_wipe(journal_t *journal, int write) 2044 { 2045 int err = 0; 2046 2047 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2048 2049 err = load_superblock(journal); 2050 if (err) 2051 return err; 2052 2053 if (!journal->j_tail) 2054 goto no_recovery; 2055 2056 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2057 write ? "Clearing" : "Ignoring"); 2058 2059 err = jbd2_journal_skip_recovery(journal); 2060 if (write) { 2061 /* Lock to make assertions happy... */ 2062 mutex_lock_io(&journal->j_checkpoint_mutex); 2063 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2064 mutex_unlock(&journal->j_checkpoint_mutex); 2065 } 2066 2067 no_recovery: 2068 return err; 2069 } 2070 2071 /* 2072 * Journal abort has very specific semantics, which we describe 2073 * for journal abort. 2074 * 2075 * Two internal functions, which provide abort to the jbd layer 2076 * itself are here. 2077 */ 2078 2079 /* 2080 * Quick version for internal journal use (doesn't lock the journal). 2081 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2082 * and don't attempt to make any other journal updates. 2083 */ 2084 void __jbd2_journal_abort_hard(journal_t *journal) 2085 { 2086 transaction_t *transaction; 2087 2088 if (journal->j_flags & JBD2_ABORT) 2089 return; 2090 2091 printk(KERN_ERR "Aborting journal on device %s.\n", 2092 journal->j_devname); 2093 2094 write_lock(&journal->j_state_lock); 2095 journal->j_flags |= JBD2_ABORT; 2096 transaction = journal->j_running_transaction; 2097 if (transaction) 2098 __jbd2_log_start_commit(journal, transaction->t_tid); 2099 write_unlock(&journal->j_state_lock); 2100 } 2101 2102 /* Soft abort: record the abort error status in the journal superblock, 2103 * but don't do any other IO. */ 2104 static void __journal_abort_soft (journal_t *journal, int errno) 2105 { 2106 int old_errno; 2107 2108 write_lock(&journal->j_state_lock); 2109 old_errno = journal->j_errno; 2110 if (!journal->j_errno || errno == -ESHUTDOWN) 2111 journal->j_errno = errno; 2112 2113 if (journal->j_flags & JBD2_ABORT) { 2114 write_unlock(&journal->j_state_lock); 2115 if (!old_errno && old_errno != -ESHUTDOWN && 2116 errno == -ESHUTDOWN) 2117 jbd2_journal_update_sb_errno(journal); 2118 return; 2119 } 2120 write_unlock(&journal->j_state_lock); 2121 2122 __jbd2_journal_abort_hard(journal); 2123 2124 if (errno) { 2125 jbd2_journal_update_sb_errno(journal); 2126 write_lock(&journal->j_state_lock); 2127 journal->j_flags |= JBD2_REC_ERR; 2128 write_unlock(&journal->j_state_lock); 2129 } 2130 } 2131 2132 /** 2133 * void jbd2_journal_abort () - Shutdown the journal immediately. 2134 * @journal: the journal to shutdown. 2135 * @errno: an error number to record in the journal indicating 2136 * the reason for the shutdown. 2137 * 2138 * Perform a complete, immediate shutdown of the ENTIRE 2139 * journal (not of a single transaction). This operation cannot be 2140 * undone without closing and reopening the journal. 2141 * 2142 * The jbd2_journal_abort function is intended to support higher level error 2143 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2144 * mode. 2145 * 2146 * Journal abort has very specific semantics. Any existing dirty, 2147 * unjournaled buffers in the main filesystem will still be written to 2148 * disk by bdflush, but the journaling mechanism will be suspended 2149 * immediately and no further transaction commits will be honoured. 2150 * 2151 * Any dirty, journaled buffers will be written back to disk without 2152 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2153 * filesystem, but we _do_ attempt to leave as much data as possible 2154 * behind for fsck to use for cleanup. 2155 * 2156 * Any attempt to get a new transaction handle on a journal which is in 2157 * ABORT state will just result in an -EROFS error return. A 2158 * jbd2_journal_stop on an existing handle will return -EIO if we have 2159 * entered abort state during the update. 2160 * 2161 * Recursive transactions are not disturbed by journal abort until the 2162 * final jbd2_journal_stop, which will receive the -EIO error. 2163 * 2164 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2165 * which will be recorded (if possible) in the journal superblock. This 2166 * allows a client to record failure conditions in the middle of a 2167 * transaction without having to complete the transaction to record the 2168 * failure to disk. ext3_error, for example, now uses this 2169 * functionality. 2170 * 2171 * Errors which originate from within the journaling layer will NOT 2172 * supply an errno; a null errno implies that absolutely no further 2173 * writes are done to the journal (unless there are any already in 2174 * progress). 2175 * 2176 */ 2177 2178 void jbd2_journal_abort(journal_t *journal, int errno) 2179 { 2180 __journal_abort_soft(journal, errno); 2181 } 2182 2183 /** 2184 * int jbd2_journal_errno () - returns the journal's error state. 2185 * @journal: journal to examine. 2186 * 2187 * This is the errno number set with jbd2_journal_abort(), the last 2188 * time the journal was mounted - if the journal was stopped 2189 * without calling abort this will be 0. 2190 * 2191 * If the journal has been aborted on this mount time -EROFS will 2192 * be returned. 2193 */ 2194 int jbd2_journal_errno(journal_t *journal) 2195 { 2196 int err; 2197 2198 read_lock(&journal->j_state_lock); 2199 if (journal->j_flags & JBD2_ABORT) 2200 err = -EROFS; 2201 else 2202 err = journal->j_errno; 2203 read_unlock(&journal->j_state_lock); 2204 return err; 2205 } 2206 2207 /** 2208 * int jbd2_journal_clear_err () - clears the journal's error state 2209 * @journal: journal to act on. 2210 * 2211 * An error must be cleared or acked to take a FS out of readonly 2212 * mode. 2213 */ 2214 int jbd2_journal_clear_err(journal_t *journal) 2215 { 2216 int err = 0; 2217 2218 write_lock(&journal->j_state_lock); 2219 if (journal->j_flags & JBD2_ABORT) 2220 err = -EROFS; 2221 else 2222 journal->j_errno = 0; 2223 write_unlock(&journal->j_state_lock); 2224 return err; 2225 } 2226 2227 /** 2228 * void jbd2_journal_ack_err() - Ack journal err. 2229 * @journal: journal to act on. 2230 * 2231 * An error must be cleared or acked to take a FS out of readonly 2232 * mode. 2233 */ 2234 void jbd2_journal_ack_err(journal_t *journal) 2235 { 2236 write_lock(&journal->j_state_lock); 2237 if (journal->j_errno) 2238 journal->j_flags |= JBD2_ACK_ERR; 2239 write_unlock(&journal->j_state_lock); 2240 } 2241 2242 int jbd2_journal_blocks_per_page(struct inode *inode) 2243 { 2244 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2245 } 2246 2247 /* 2248 * helper functions to deal with 32 or 64bit block numbers. 2249 */ 2250 size_t journal_tag_bytes(journal_t *journal) 2251 { 2252 size_t sz; 2253 2254 if (jbd2_has_feature_csum3(journal)) 2255 return sizeof(journal_block_tag3_t); 2256 2257 sz = sizeof(journal_block_tag_t); 2258 2259 if (jbd2_has_feature_csum2(journal)) 2260 sz += sizeof(__u16); 2261 2262 if (jbd2_has_feature_64bit(journal)) 2263 return sz; 2264 else 2265 return sz - sizeof(__u32); 2266 } 2267 2268 /* 2269 * JBD memory management 2270 * 2271 * These functions are used to allocate block-sized chunks of memory 2272 * used for making copies of buffer_head data. Very often it will be 2273 * page-sized chunks of data, but sometimes it will be in 2274 * sub-page-size chunks. (For example, 16k pages on Power systems 2275 * with a 4k block file system.) For blocks smaller than a page, we 2276 * use a SLAB allocator. There are slab caches for each block size, 2277 * which are allocated at mount time, if necessary, and we only free 2278 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2279 * this reason we don't need to a mutex to protect access to 2280 * jbd2_slab[] allocating or releasing memory; only in 2281 * jbd2_journal_create_slab(). 2282 */ 2283 #define JBD2_MAX_SLABS 8 2284 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2285 2286 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2287 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2288 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2289 }; 2290 2291 2292 static void jbd2_journal_destroy_slabs(void) 2293 { 2294 int i; 2295 2296 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2297 kmem_cache_destroy(jbd2_slab[i]); 2298 jbd2_slab[i] = NULL; 2299 } 2300 } 2301 2302 static int jbd2_journal_create_slab(size_t size) 2303 { 2304 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2305 int i = order_base_2(size) - 10; 2306 size_t slab_size; 2307 2308 if (size == PAGE_SIZE) 2309 return 0; 2310 2311 if (i >= JBD2_MAX_SLABS) 2312 return -EINVAL; 2313 2314 if (unlikely(i < 0)) 2315 i = 0; 2316 mutex_lock(&jbd2_slab_create_mutex); 2317 if (jbd2_slab[i]) { 2318 mutex_unlock(&jbd2_slab_create_mutex); 2319 return 0; /* Already created */ 2320 } 2321 2322 slab_size = 1 << (i+10); 2323 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2324 slab_size, 0, NULL); 2325 mutex_unlock(&jbd2_slab_create_mutex); 2326 if (!jbd2_slab[i]) { 2327 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2328 return -ENOMEM; 2329 } 2330 return 0; 2331 } 2332 2333 static struct kmem_cache *get_slab(size_t size) 2334 { 2335 int i = order_base_2(size) - 10; 2336 2337 BUG_ON(i >= JBD2_MAX_SLABS); 2338 if (unlikely(i < 0)) 2339 i = 0; 2340 BUG_ON(jbd2_slab[i] == NULL); 2341 return jbd2_slab[i]; 2342 } 2343 2344 void *jbd2_alloc(size_t size, gfp_t flags) 2345 { 2346 void *ptr; 2347 2348 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2349 2350 if (size < PAGE_SIZE) 2351 ptr = kmem_cache_alloc(get_slab(size), flags); 2352 else 2353 ptr = (void *)__get_free_pages(flags, get_order(size)); 2354 2355 /* Check alignment; SLUB has gotten this wrong in the past, 2356 * and this can lead to user data corruption! */ 2357 BUG_ON(((unsigned long) ptr) & (size-1)); 2358 2359 return ptr; 2360 } 2361 2362 void jbd2_free(void *ptr, size_t size) 2363 { 2364 if (size < PAGE_SIZE) 2365 kmem_cache_free(get_slab(size), ptr); 2366 else 2367 free_pages((unsigned long)ptr, get_order(size)); 2368 }; 2369 2370 /* 2371 * Journal_head storage management 2372 */ 2373 static struct kmem_cache *jbd2_journal_head_cache; 2374 #ifdef CONFIG_JBD2_DEBUG 2375 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2376 #endif 2377 2378 static int __init jbd2_journal_init_journal_head_cache(void) 2379 { 2380 J_ASSERT(!jbd2_journal_head_cache); 2381 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2382 sizeof(struct journal_head), 2383 0, /* offset */ 2384 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2385 NULL); /* ctor */ 2386 if (!jbd2_journal_head_cache) { 2387 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2388 return -ENOMEM; 2389 } 2390 return 0; 2391 } 2392 2393 static void jbd2_journal_destroy_journal_head_cache(void) 2394 { 2395 kmem_cache_destroy(jbd2_journal_head_cache); 2396 jbd2_journal_head_cache = NULL; 2397 } 2398 2399 /* 2400 * journal_head splicing and dicing 2401 */ 2402 static struct journal_head *journal_alloc_journal_head(void) 2403 { 2404 struct journal_head *ret; 2405 2406 #ifdef CONFIG_JBD2_DEBUG 2407 atomic_inc(&nr_journal_heads); 2408 #endif 2409 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2410 if (!ret) { 2411 jbd_debug(1, "out of memory for journal_head\n"); 2412 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2413 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2414 GFP_NOFS | __GFP_NOFAIL); 2415 } 2416 return ret; 2417 } 2418 2419 static void journal_free_journal_head(struct journal_head *jh) 2420 { 2421 #ifdef CONFIG_JBD2_DEBUG 2422 atomic_dec(&nr_journal_heads); 2423 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2424 #endif 2425 kmem_cache_free(jbd2_journal_head_cache, jh); 2426 } 2427 2428 /* 2429 * A journal_head is attached to a buffer_head whenever JBD has an 2430 * interest in the buffer. 2431 * 2432 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2433 * is set. This bit is tested in core kernel code where we need to take 2434 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2435 * there. 2436 * 2437 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2438 * 2439 * When a buffer has its BH_JBD bit set it is immune from being released by 2440 * core kernel code, mainly via ->b_count. 2441 * 2442 * A journal_head is detached from its buffer_head when the journal_head's 2443 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2444 * transaction (b_cp_transaction) hold their references to b_jcount. 2445 * 2446 * Various places in the kernel want to attach a journal_head to a buffer_head 2447 * _before_ attaching the journal_head to a transaction. To protect the 2448 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2449 * journal_head's b_jcount refcount by one. The caller must call 2450 * jbd2_journal_put_journal_head() to undo this. 2451 * 2452 * So the typical usage would be: 2453 * 2454 * (Attach a journal_head if needed. Increments b_jcount) 2455 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2456 * ... 2457 * (Get another reference for transaction) 2458 * jbd2_journal_grab_journal_head(bh); 2459 * jh->b_transaction = xxx; 2460 * (Put original reference) 2461 * jbd2_journal_put_journal_head(jh); 2462 */ 2463 2464 /* 2465 * Give a buffer_head a journal_head. 2466 * 2467 * May sleep. 2468 */ 2469 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2470 { 2471 struct journal_head *jh; 2472 struct journal_head *new_jh = NULL; 2473 2474 repeat: 2475 if (!buffer_jbd(bh)) 2476 new_jh = journal_alloc_journal_head(); 2477 2478 jbd_lock_bh_journal_head(bh); 2479 if (buffer_jbd(bh)) { 2480 jh = bh2jh(bh); 2481 } else { 2482 J_ASSERT_BH(bh, 2483 (atomic_read(&bh->b_count) > 0) || 2484 (bh->b_page && bh->b_page->mapping)); 2485 2486 if (!new_jh) { 2487 jbd_unlock_bh_journal_head(bh); 2488 goto repeat; 2489 } 2490 2491 jh = new_jh; 2492 new_jh = NULL; /* We consumed it */ 2493 set_buffer_jbd(bh); 2494 bh->b_private = jh; 2495 jh->b_bh = bh; 2496 get_bh(bh); 2497 BUFFER_TRACE(bh, "added journal_head"); 2498 } 2499 jh->b_jcount++; 2500 jbd_unlock_bh_journal_head(bh); 2501 if (new_jh) 2502 journal_free_journal_head(new_jh); 2503 return bh->b_private; 2504 } 2505 2506 /* 2507 * Grab a ref against this buffer_head's journal_head. If it ended up not 2508 * having a journal_head, return NULL 2509 */ 2510 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2511 { 2512 struct journal_head *jh = NULL; 2513 2514 jbd_lock_bh_journal_head(bh); 2515 if (buffer_jbd(bh)) { 2516 jh = bh2jh(bh); 2517 jh->b_jcount++; 2518 } 2519 jbd_unlock_bh_journal_head(bh); 2520 return jh; 2521 } 2522 2523 static void __journal_remove_journal_head(struct buffer_head *bh) 2524 { 2525 struct journal_head *jh = bh2jh(bh); 2526 2527 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2528 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2529 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2530 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2531 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2532 J_ASSERT_BH(bh, buffer_jbd(bh)); 2533 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2534 BUFFER_TRACE(bh, "remove journal_head"); 2535 if (jh->b_frozen_data) { 2536 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2537 jbd2_free(jh->b_frozen_data, bh->b_size); 2538 } 2539 if (jh->b_committed_data) { 2540 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2541 jbd2_free(jh->b_committed_data, bh->b_size); 2542 } 2543 bh->b_private = NULL; 2544 jh->b_bh = NULL; /* debug, really */ 2545 clear_buffer_jbd(bh); 2546 journal_free_journal_head(jh); 2547 } 2548 2549 /* 2550 * Drop a reference on the passed journal_head. If it fell to zero then 2551 * release the journal_head from the buffer_head. 2552 */ 2553 void jbd2_journal_put_journal_head(struct journal_head *jh) 2554 { 2555 struct buffer_head *bh = jh2bh(jh); 2556 2557 jbd_lock_bh_journal_head(bh); 2558 J_ASSERT_JH(jh, jh->b_jcount > 0); 2559 --jh->b_jcount; 2560 if (!jh->b_jcount) { 2561 __journal_remove_journal_head(bh); 2562 jbd_unlock_bh_journal_head(bh); 2563 __brelse(bh); 2564 } else 2565 jbd_unlock_bh_journal_head(bh); 2566 } 2567 2568 /* 2569 * Initialize jbd inode head 2570 */ 2571 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2572 { 2573 jinode->i_transaction = NULL; 2574 jinode->i_next_transaction = NULL; 2575 jinode->i_vfs_inode = inode; 2576 jinode->i_flags = 0; 2577 INIT_LIST_HEAD(&jinode->i_list); 2578 } 2579 2580 /* 2581 * Function to be called before we start removing inode from memory (i.e., 2582 * clear_inode() is a fine place to be called from). It removes inode from 2583 * transaction's lists. 2584 */ 2585 void jbd2_journal_release_jbd_inode(journal_t *journal, 2586 struct jbd2_inode *jinode) 2587 { 2588 if (!journal) 2589 return; 2590 restart: 2591 spin_lock(&journal->j_list_lock); 2592 /* Is commit writing out inode - we have to wait */ 2593 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2594 wait_queue_head_t *wq; 2595 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2596 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2597 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2598 spin_unlock(&journal->j_list_lock); 2599 schedule(); 2600 finish_wait(wq, &wait.wq_entry); 2601 goto restart; 2602 } 2603 2604 if (jinode->i_transaction) { 2605 list_del(&jinode->i_list); 2606 jinode->i_transaction = NULL; 2607 } 2608 spin_unlock(&journal->j_list_lock); 2609 } 2610 2611 2612 #ifdef CONFIG_PROC_FS 2613 2614 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2615 2616 static void __init jbd2_create_jbd_stats_proc_entry(void) 2617 { 2618 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2619 } 2620 2621 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2622 { 2623 if (proc_jbd2_stats) 2624 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2625 } 2626 2627 #else 2628 2629 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2630 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2631 2632 #endif 2633 2634 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2635 2636 static int __init jbd2_journal_init_inode_cache(void) 2637 { 2638 J_ASSERT(!jbd2_inode_cache); 2639 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2640 if (!jbd2_inode_cache) { 2641 pr_emerg("JBD2: failed to create inode cache\n"); 2642 return -ENOMEM; 2643 } 2644 return 0; 2645 } 2646 2647 static int __init jbd2_journal_init_handle_cache(void) 2648 { 2649 J_ASSERT(!jbd2_handle_cache); 2650 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2651 if (!jbd2_handle_cache) { 2652 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2653 return -ENOMEM; 2654 } 2655 return 0; 2656 } 2657 2658 static void jbd2_journal_destroy_inode_cache(void) 2659 { 2660 kmem_cache_destroy(jbd2_inode_cache); 2661 jbd2_inode_cache = NULL; 2662 } 2663 2664 static void jbd2_journal_destroy_handle_cache(void) 2665 { 2666 kmem_cache_destroy(jbd2_handle_cache); 2667 jbd2_handle_cache = NULL; 2668 } 2669 2670 /* 2671 * Module startup and shutdown 2672 */ 2673 2674 static int __init journal_init_caches(void) 2675 { 2676 int ret; 2677 2678 ret = jbd2_journal_init_revoke_record_cache(); 2679 if (ret == 0) 2680 ret = jbd2_journal_init_revoke_table_cache(); 2681 if (ret == 0) 2682 ret = jbd2_journal_init_journal_head_cache(); 2683 if (ret == 0) 2684 ret = jbd2_journal_init_handle_cache(); 2685 if (ret == 0) 2686 ret = jbd2_journal_init_inode_cache(); 2687 if (ret == 0) 2688 ret = jbd2_journal_init_transaction_cache(); 2689 return ret; 2690 } 2691 2692 static void jbd2_journal_destroy_caches(void) 2693 { 2694 jbd2_journal_destroy_revoke_record_cache(); 2695 jbd2_journal_destroy_revoke_table_cache(); 2696 jbd2_journal_destroy_journal_head_cache(); 2697 jbd2_journal_destroy_handle_cache(); 2698 jbd2_journal_destroy_inode_cache(); 2699 jbd2_journal_destroy_transaction_cache(); 2700 jbd2_journal_destroy_slabs(); 2701 } 2702 2703 static int __init journal_init(void) 2704 { 2705 int ret; 2706 2707 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2708 2709 ret = journal_init_caches(); 2710 if (ret == 0) { 2711 jbd2_create_jbd_stats_proc_entry(); 2712 } else { 2713 jbd2_journal_destroy_caches(); 2714 } 2715 return ret; 2716 } 2717 2718 static void __exit journal_exit(void) 2719 { 2720 #ifdef CONFIG_JBD2_DEBUG 2721 int n = atomic_read(&nr_journal_heads); 2722 if (n) 2723 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2724 #endif 2725 jbd2_remove_jbd_stats_proc_entry(); 2726 jbd2_journal_destroy_caches(); 2727 } 2728 2729 MODULE_LICENSE("GPL"); 2730 module_init(journal_init); 2731 module_exit(journal_exit); 2732 2733