1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 94 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 95 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static void __journal_abort_soft (journal_t *journal, int errno); 102 static int jbd2_journal_create_slab(size_t slab_size); 103 104 #ifdef CONFIG_JBD2_DEBUG 105 void __jbd2_debug(int level, const char *file, const char *func, 106 unsigned int line, const char *fmt, ...) 107 { 108 struct va_format vaf; 109 va_list args; 110 111 if (level > jbd2_journal_enable_debug) 112 return; 113 va_start(args, fmt); 114 vaf.fmt = fmt; 115 vaf.va = &args; 116 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 117 va_end(args); 118 } 119 EXPORT_SYMBOL(__jbd2_debug); 120 #endif 121 122 /* Checksumming functions */ 123 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 124 { 125 if (!jbd2_journal_has_csum_v2or3_feature(j)) 126 return 1; 127 128 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 129 } 130 131 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 132 { 133 __u32 csum; 134 __be32 old_csum; 135 136 old_csum = sb->s_checksum; 137 sb->s_checksum = 0; 138 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 139 sb->s_checksum = old_csum; 140 141 return cpu_to_be32(csum); 142 } 143 144 /* 145 * Helper function used to manage commit timeouts 146 */ 147 148 static void commit_timeout(struct timer_list *t) 149 { 150 journal_t *journal = from_timer(journal, t, j_commit_timer); 151 152 wake_up_process(journal->j_task); 153 } 154 155 /* 156 * kjournald2: The main thread function used to manage a logging device 157 * journal. 158 * 159 * This kernel thread is responsible for two things: 160 * 161 * 1) COMMIT: Every so often we need to commit the current state of the 162 * filesystem to disk. The journal thread is responsible for writing 163 * all of the metadata buffers to disk. 164 * 165 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 166 * of the data in that part of the log has been rewritten elsewhere on 167 * the disk. Flushing these old buffers to reclaim space in the log is 168 * known as checkpointing, and this thread is responsible for that job. 169 */ 170 171 static int kjournald2(void *arg) 172 { 173 journal_t *journal = arg; 174 transaction_t *transaction; 175 176 /* 177 * Set up an interval timer which can be used to trigger a commit wakeup 178 * after the commit interval expires 179 */ 180 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 181 182 set_freezable(); 183 184 /* Record that the journal thread is running */ 185 journal->j_task = current; 186 wake_up(&journal->j_wait_done_commit); 187 188 /* 189 * Make sure that no allocations from this kernel thread will ever 190 * recurse to the fs layer because we are responsible for the 191 * transaction commit and any fs involvement might get stuck waiting for 192 * the trasn. commit. 193 */ 194 memalloc_nofs_save(); 195 196 /* 197 * And now, wait forever for commit wakeup events. 198 */ 199 write_lock(&journal->j_state_lock); 200 201 loop: 202 if (journal->j_flags & JBD2_UNMOUNT) 203 goto end_loop; 204 205 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 206 journal->j_commit_sequence, journal->j_commit_request); 207 208 if (journal->j_commit_sequence != journal->j_commit_request) { 209 jbd_debug(1, "OK, requests differ\n"); 210 write_unlock(&journal->j_state_lock); 211 del_timer_sync(&journal->j_commit_timer); 212 jbd2_journal_commit_transaction(journal); 213 write_lock(&journal->j_state_lock); 214 goto loop; 215 } 216 217 wake_up(&journal->j_wait_done_commit); 218 if (freezing(current)) { 219 /* 220 * The simpler the better. Flushing journal isn't a 221 * good idea, because that depends on threads that may 222 * be already stopped. 223 */ 224 jbd_debug(1, "Now suspending kjournald2\n"); 225 write_unlock(&journal->j_state_lock); 226 try_to_freeze(); 227 write_lock(&journal->j_state_lock); 228 } else { 229 /* 230 * We assume on resume that commits are already there, 231 * so we don't sleep 232 */ 233 DEFINE_WAIT(wait); 234 int should_sleep = 1; 235 236 prepare_to_wait(&journal->j_wait_commit, &wait, 237 TASK_INTERRUPTIBLE); 238 if (journal->j_commit_sequence != journal->j_commit_request) 239 should_sleep = 0; 240 transaction = journal->j_running_transaction; 241 if (transaction && time_after_eq(jiffies, 242 transaction->t_expires)) 243 should_sleep = 0; 244 if (journal->j_flags & JBD2_UNMOUNT) 245 should_sleep = 0; 246 if (should_sleep) { 247 write_unlock(&journal->j_state_lock); 248 schedule(); 249 write_lock(&journal->j_state_lock); 250 } 251 finish_wait(&journal->j_wait_commit, &wait); 252 } 253 254 jbd_debug(1, "kjournald2 wakes\n"); 255 256 /* 257 * Were we woken up by a commit wakeup event? 258 */ 259 transaction = journal->j_running_transaction; 260 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 261 journal->j_commit_request = transaction->t_tid; 262 jbd_debug(1, "woke because of timeout\n"); 263 } 264 goto loop; 265 266 end_loop: 267 del_timer_sync(&journal->j_commit_timer); 268 journal->j_task = NULL; 269 wake_up(&journal->j_wait_done_commit); 270 jbd_debug(1, "Journal thread exiting.\n"); 271 write_unlock(&journal->j_state_lock); 272 return 0; 273 } 274 275 static int jbd2_journal_start_thread(journal_t *journal) 276 { 277 struct task_struct *t; 278 279 t = kthread_run(kjournald2, journal, "jbd2/%s", 280 journal->j_devname); 281 if (IS_ERR(t)) 282 return PTR_ERR(t); 283 284 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 285 return 0; 286 } 287 288 static void journal_kill_thread(journal_t *journal) 289 { 290 write_lock(&journal->j_state_lock); 291 journal->j_flags |= JBD2_UNMOUNT; 292 293 while (journal->j_task) { 294 write_unlock(&journal->j_state_lock); 295 wake_up(&journal->j_wait_commit); 296 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 297 write_lock(&journal->j_state_lock); 298 } 299 write_unlock(&journal->j_state_lock); 300 } 301 302 /* 303 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 304 * 305 * Writes a metadata buffer to a given disk block. The actual IO is not 306 * performed but a new buffer_head is constructed which labels the data 307 * to be written with the correct destination disk block. 308 * 309 * Any magic-number escaping which needs to be done will cause a 310 * copy-out here. If the buffer happens to start with the 311 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 312 * magic number is only written to the log for descripter blocks. In 313 * this case, we copy the data and replace the first word with 0, and we 314 * return a result code which indicates that this buffer needs to be 315 * marked as an escaped buffer in the corresponding log descriptor 316 * block. The missing word can then be restored when the block is read 317 * during recovery. 318 * 319 * If the source buffer has already been modified by a new transaction 320 * since we took the last commit snapshot, we use the frozen copy of 321 * that data for IO. If we end up using the existing buffer_head's data 322 * for the write, then we have to make sure nobody modifies it while the 323 * IO is in progress. do_get_write_access() handles this. 324 * 325 * The function returns a pointer to the buffer_head to be used for IO. 326 * 327 * 328 * Return value: 329 * <0: Error 330 * >=0: Finished OK 331 * 332 * On success: 333 * Bit 0 set == escape performed on the data 334 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 335 */ 336 337 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 338 struct journal_head *jh_in, 339 struct buffer_head **bh_out, 340 sector_t blocknr) 341 { 342 int need_copy_out = 0; 343 int done_copy_out = 0; 344 int do_escape = 0; 345 char *mapped_data; 346 struct buffer_head *new_bh; 347 struct page *new_page; 348 unsigned int new_offset; 349 struct buffer_head *bh_in = jh2bh(jh_in); 350 journal_t *journal = transaction->t_journal; 351 352 /* 353 * The buffer really shouldn't be locked: only the current committing 354 * transaction is allowed to write it, so nobody else is allowed 355 * to do any IO. 356 * 357 * akpm: except if we're journalling data, and write() output is 358 * also part of a shared mapping, and another thread has 359 * decided to launch a writepage() against this buffer. 360 */ 361 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 362 363 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 364 365 /* keep subsequent assertions sane */ 366 atomic_set(&new_bh->b_count, 1); 367 368 jbd_lock_bh_state(bh_in); 369 repeat: 370 /* 371 * If a new transaction has already done a buffer copy-out, then 372 * we use that version of the data for the commit. 373 */ 374 if (jh_in->b_frozen_data) { 375 done_copy_out = 1; 376 new_page = virt_to_page(jh_in->b_frozen_data); 377 new_offset = offset_in_page(jh_in->b_frozen_data); 378 } else { 379 new_page = jh2bh(jh_in)->b_page; 380 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 381 } 382 383 mapped_data = kmap_atomic(new_page); 384 /* 385 * Fire data frozen trigger if data already wasn't frozen. Do this 386 * before checking for escaping, as the trigger may modify the magic 387 * offset. If a copy-out happens afterwards, it will have the correct 388 * data in the buffer. 389 */ 390 if (!done_copy_out) 391 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 392 jh_in->b_triggers); 393 394 /* 395 * Check for escaping 396 */ 397 if (*((__be32 *)(mapped_data + new_offset)) == 398 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 399 need_copy_out = 1; 400 do_escape = 1; 401 } 402 kunmap_atomic(mapped_data); 403 404 /* 405 * Do we need to do a data copy? 406 */ 407 if (need_copy_out && !done_copy_out) { 408 char *tmp; 409 410 jbd_unlock_bh_state(bh_in); 411 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 412 if (!tmp) { 413 brelse(new_bh); 414 return -ENOMEM; 415 } 416 jbd_lock_bh_state(bh_in); 417 if (jh_in->b_frozen_data) { 418 jbd2_free(tmp, bh_in->b_size); 419 goto repeat; 420 } 421 422 jh_in->b_frozen_data = tmp; 423 mapped_data = kmap_atomic(new_page); 424 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 425 kunmap_atomic(mapped_data); 426 427 new_page = virt_to_page(tmp); 428 new_offset = offset_in_page(tmp); 429 done_copy_out = 1; 430 431 /* 432 * This isn't strictly necessary, as we're using frozen 433 * data for the escaping, but it keeps consistency with 434 * b_frozen_data usage. 435 */ 436 jh_in->b_frozen_triggers = jh_in->b_triggers; 437 } 438 439 /* 440 * Did we need to do an escaping? Now we've done all the 441 * copying, we can finally do so. 442 */ 443 if (do_escape) { 444 mapped_data = kmap_atomic(new_page); 445 *((unsigned int *)(mapped_data + new_offset)) = 0; 446 kunmap_atomic(mapped_data); 447 } 448 449 set_bh_page(new_bh, new_page, new_offset); 450 new_bh->b_size = bh_in->b_size; 451 new_bh->b_bdev = journal->j_dev; 452 new_bh->b_blocknr = blocknr; 453 new_bh->b_private = bh_in; 454 set_buffer_mapped(new_bh); 455 set_buffer_dirty(new_bh); 456 457 *bh_out = new_bh; 458 459 /* 460 * The to-be-written buffer needs to get moved to the io queue, 461 * and the original buffer whose contents we are shadowing or 462 * copying is moved to the transaction's shadow queue. 463 */ 464 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 465 spin_lock(&journal->j_list_lock); 466 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 467 spin_unlock(&journal->j_list_lock); 468 set_buffer_shadow(bh_in); 469 jbd_unlock_bh_state(bh_in); 470 471 return do_escape | (done_copy_out << 1); 472 } 473 474 /* 475 * Allocation code for the journal file. Manage the space left in the 476 * journal, so that we can begin checkpointing when appropriate. 477 */ 478 479 /* 480 * Called with j_state_lock locked for writing. 481 * Returns true if a transaction commit was started. 482 */ 483 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 484 { 485 /* Return if the txn has already requested to be committed */ 486 if (journal->j_commit_request == target) 487 return 0; 488 489 /* 490 * The only transaction we can possibly wait upon is the 491 * currently running transaction (if it exists). Otherwise, 492 * the target tid must be an old one. 493 */ 494 if (journal->j_running_transaction && 495 journal->j_running_transaction->t_tid == target) { 496 /* 497 * We want a new commit: OK, mark the request and wakeup the 498 * commit thread. We do _not_ do the commit ourselves. 499 */ 500 501 journal->j_commit_request = target; 502 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 503 journal->j_commit_request, 504 journal->j_commit_sequence); 505 journal->j_running_transaction->t_requested = jiffies; 506 wake_up(&journal->j_wait_commit); 507 return 1; 508 } else if (!tid_geq(journal->j_commit_request, target)) 509 /* This should never happen, but if it does, preserve 510 the evidence before kjournald goes into a loop and 511 increments j_commit_sequence beyond all recognition. */ 512 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 513 journal->j_commit_request, 514 journal->j_commit_sequence, 515 target, journal->j_running_transaction ? 516 journal->j_running_transaction->t_tid : 0); 517 return 0; 518 } 519 520 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 521 { 522 int ret; 523 524 write_lock(&journal->j_state_lock); 525 ret = __jbd2_log_start_commit(journal, tid); 526 write_unlock(&journal->j_state_lock); 527 return ret; 528 } 529 530 /* 531 * Force and wait any uncommitted transactions. We can only force the running 532 * transaction if we don't have an active handle, otherwise, we will deadlock. 533 * Returns: <0 in case of error, 534 * 0 if nothing to commit, 535 * 1 if transaction was successfully committed. 536 */ 537 static int __jbd2_journal_force_commit(journal_t *journal) 538 { 539 transaction_t *transaction = NULL; 540 tid_t tid; 541 int need_to_start = 0, ret = 0; 542 543 read_lock(&journal->j_state_lock); 544 if (journal->j_running_transaction && !current->journal_info) { 545 transaction = journal->j_running_transaction; 546 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 547 need_to_start = 1; 548 } else if (journal->j_committing_transaction) 549 transaction = journal->j_committing_transaction; 550 551 if (!transaction) { 552 /* Nothing to commit */ 553 read_unlock(&journal->j_state_lock); 554 return 0; 555 } 556 tid = transaction->t_tid; 557 read_unlock(&journal->j_state_lock); 558 if (need_to_start) 559 jbd2_log_start_commit(journal, tid); 560 ret = jbd2_log_wait_commit(journal, tid); 561 if (!ret) 562 ret = 1; 563 564 return ret; 565 } 566 567 /** 568 * Force and wait upon a commit if the calling process is not within 569 * transaction. This is used for forcing out undo-protected data which contains 570 * bitmaps, when the fs is running out of space. 571 * 572 * @journal: journal to force 573 * Returns true if progress was made. 574 */ 575 int jbd2_journal_force_commit_nested(journal_t *journal) 576 { 577 int ret; 578 579 ret = __jbd2_journal_force_commit(journal); 580 return ret > 0; 581 } 582 583 /** 584 * int journal_force_commit() - force any uncommitted transactions 585 * @journal: journal to force 586 * 587 * Caller want unconditional commit. We can only force the running transaction 588 * if we don't have an active handle, otherwise, we will deadlock. 589 */ 590 int jbd2_journal_force_commit(journal_t *journal) 591 { 592 int ret; 593 594 J_ASSERT(!current->journal_info); 595 ret = __jbd2_journal_force_commit(journal); 596 if (ret > 0) 597 ret = 0; 598 return ret; 599 } 600 601 /* 602 * Start a commit of the current running transaction (if any). Returns true 603 * if a transaction is going to be committed (or is currently already 604 * committing), and fills its tid in at *ptid 605 */ 606 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 607 { 608 int ret = 0; 609 610 write_lock(&journal->j_state_lock); 611 if (journal->j_running_transaction) { 612 tid_t tid = journal->j_running_transaction->t_tid; 613 614 __jbd2_log_start_commit(journal, tid); 615 /* There's a running transaction and we've just made sure 616 * it's commit has been scheduled. */ 617 if (ptid) 618 *ptid = tid; 619 ret = 1; 620 } else if (journal->j_committing_transaction) { 621 /* 622 * If commit has been started, then we have to wait for 623 * completion of that transaction. 624 */ 625 if (ptid) 626 *ptid = journal->j_committing_transaction->t_tid; 627 ret = 1; 628 } 629 write_unlock(&journal->j_state_lock); 630 return ret; 631 } 632 633 /* 634 * Return 1 if a given transaction has not yet sent barrier request 635 * connected with a transaction commit. If 0 is returned, transaction 636 * may or may not have sent the barrier. Used to avoid sending barrier 637 * twice in common cases. 638 */ 639 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 640 { 641 int ret = 0; 642 transaction_t *commit_trans; 643 644 if (!(journal->j_flags & JBD2_BARRIER)) 645 return 0; 646 read_lock(&journal->j_state_lock); 647 /* Transaction already committed? */ 648 if (tid_geq(journal->j_commit_sequence, tid)) 649 goto out; 650 commit_trans = journal->j_committing_transaction; 651 if (!commit_trans || commit_trans->t_tid != tid) { 652 ret = 1; 653 goto out; 654 } 655 /* 656 * Transaction is being committed and we already proceeded to 657 * submitting a flush to fs partition? 658 */ 659 if (journal->j_fs_dev != journal->j_dev) { 660 if (!commit_trans->t_need_data_flush || 661 commit_trans->t_state >= T_COMMIT_DFLUSH) 662 goto out; 663 } else { 664 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 665 goto out; 666 } 667 ret = 1; 668 out: 669 read_unlock(&journal->j_state_lock); 670 return ret; 671 } 672 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 673 674 /* 675 * Wait for a specified commit to complete. 676 * The caller may not hold the journal lock. 677 */ 678 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 679 { 680 int err = 0; 681 682 read_lock(&journal->j_state_lock); 683 #ifdef CONFIG_PROVE_LOCKING 684 /* 685 * Some callers make sure transaction is already committing and in that 686 * case we cannot block on open handles anymore. So don't warn in that 687 * case. 688 */ 689 if (tid_gt(tid, journal->j_commit_sequence) && 690 (!journal->j_committing_transaction || 691 journal->j_committing_transaction->t_tid != tid)) { 692 read_unlock(&journal->j_state_lock); 693 jbd2_might_wait_for_commit(journal); 694 read_lock(&journal->j_state_lock); 695 } 696 #endif 697 #ifdef CONFIG_JBD2_DEBUG 698 if (!tid_geq(journal->j_commit_request, tid)) { 699 printk(KERN_ERR 700 "%s: error: j_commit_request=%u, tid=%u\n", 701 __func__, journal->j_commit_request, tid); 702 } 703 #endif 704 while (tid_gt(tid, journal->j_commit_sequence)) { 705 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 706 tid, journal->j_commit_sequence); 707 read_unlock(&journal->j_state_lock); 708 wake_up(&journal->j_wait_commit); 709 wait_event(journal->j_wait_done_commit, 710 !tid_gt(tid, journal->j_commit_sequence)); 711 read_lock(&journal->j_state_lock); 712 } 713 read_unlock(&journal->j_state_lock); 714 715 if (unlikely(is_journal_aborted(journal))) 716 err = -EIO; 717 return err; 718 } 719 720 /* Return 1 when transaction with given tid has already committed. */ 721 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 722 { 723 int ret = 1; 724 725 read_lock(&journal->j_state_lock); 726 if (journal->j_running_transaction && 727 journal->j_running_transaction->t_tid == tid) 728 ret = 0; 729 if (journal->j_committing_transaction && 730 journal->j_committing_transaction->t_tid == tid) 731 ret = 0; 732 read_unlock(&journal->j_state_lock); 733 return ret; 734 } 735 EXPORT_SYMBOL(jbd2_transaction_committed); 736 737 /* 738 * When this function returns the transaction corresponding to tid 739 * will be completed. If the transaction has currently running, start 740 * committing that transaction before waiting for it to complete. If 741 * the transaction id is stale, it is by definition already completed, 742 * so just return SUCCESS. 743 */ 744 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 745 { 746 int need_to_wait = 1; 747 748 read_lock(&journal->j_state_lock); 749 if (journal->j_running_transaction && 750 journal->j_running_transaction->t_tid == tid) { 751 if (journal->j_commit_request != tid) { 752 /* transaction not yet started, so request it */ 753 read_unlock(&journal->j_state_lock); 754 jbd2_log_start_commit(journal, tid); 755 goto wait_commit; 756 } 757 } else if (!(journal->j_committing_transaction && 758 journal->j_committing_transaction->t_tid == tid)) 759 need_to_wait = 0; 760 read_unlock(&journal->j_state_lock); 761 if (!need_to_wait) 762 return 0; 763 wait_commit: 764 return jbd2_log_wait_commit(journal, tid); 765 } 766 EXPORT_SYMBOL(jbd2_complete_transaction); 767 768 /* 769 * Log buffer allocation routines: 770 */ 771 772 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 773 { 774 unsigned long blocknr; 775 776 write_lock(&journal->j_state_lock); 777 J_ASSERT(journal->j_free > 1); 778 779 blocknr = journal->j_head; 780 journal->j_head++; 781 journal->j_free--; 782 if (journal->j_head == journal->j_last) 783 journal->j_head = journal->j_first; 784 write_unlock(&journal->j_state_lock); 785 return jbd2_journal_bmap(journal, blocknr, retp); 786 } 787 788 /* 789 * Conversion of logical to physical block numbers for the journal 790 * 791 * On external journals the journal blocks are identity-mapped, so 792 * this is a no-op. If needed, we can use j_blk_offset - everything is 793 * ready. 794 */ 795 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 796 unsigned long long *retp) 797 { 798 int err = 0; 799 unsigned long long ret; 800 801 if (journal->j_inode) { 802 ret = bmap(journal->j_inode, blocknr); 803 if (ret) 804 *retp = ret; 805 else { 806 printk(KERN_ALERT "%s: journal block not found " 807 "at offset %lu on %s\n", 808 __func__, blocknr, journal->j_devname); 809 err = -EIO; 810 __journal_abort_soft(journal, err); 811 } 812 } else { 813 *retp = blocknr; /* +journal->j_blk_offset */ 814 } 815 return err; 816 } 817 818 /* 819 * We play buffer_head aliasing tricks to write data/metadata blocks to 820 * the journal without copying their contents, but for journal 821 * descriptor blocks we do need to generate bona fide buffers. 822 * 823 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 824 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 825 * But we don't bother doing that, so there will be coherency problems with 826 * mmaps of blockdevs which hold live JBD-controlled filesystems. 827 */ 828 struct buffer_head * 829 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 830 { 831 journal_t *journal = transaction->t_journal; 832 struct buffer_head *bh; 833 unsigned long long blocknr; 834 journal_header_t *header; 835 int err; 836 837 err = jbd2_journal_next_log_block(journal, &blocknr); 838 839 if (err) 840 return NULL; 841 842 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 843 if (!bh) 844 return NULL; 845 lock_buffer(bh); 846 memset(bh->b_data, 0, journal->j_blocksize); 847 header = (journal_header_t *)bh->b_data; 848 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 849 header->h_blocktype = cpu_to_be32(type); 850 header->h_sequence = cpu_to_be32(transaction->t_tid); 851 set_buffer_uptodate(bh); 852 unlock_buffer(bh); 853 BUFFER_TRACE(bh, "return this buffer"); 854 return bh; 855 } 856 857 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 858 { 859 struct jbd2_journal_block_tail *tail; 860 __u32 csum; 861 862 if (!jbd2_journal_has_csum_v2or3(j)) 863 return; 864 865 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 866 sizeof(struct jbd2_journal_block_tail)); 867 tail->t_checksum = 0; 868 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 869 tail->t_checksum = cpu_to_be32(csum); 870 } 871 872 /* 873 * Return tid of the oldest transaction in the journal and block in the journal 874 * where the transaction starts. 875 * 876 * If the journal is now empty, return which will be the next transaction ID 877 * we will write and where will that transaction start. 878 * 879 * The return value is 0 if journal tail cannot be pushed any further, 1 if 880 * it can. 881 */ 882 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 883 unsigned long *block) 884 { 885 transaction_t *transaction; 886 int ret; 887 888 read_lock(&journal->j_state_lock); 889 spin_lock(&journal->j_list_lock); 890 transaction = journal->j_checkpoint_transactions; 891 if (transaction) { 892 *tid = transaction->t_tid; 893 *block = transaction->t_log_start; 894 } else if ((transaction = journal->j_committing_transaction) != NULL) { 895 *tid = transaction->t_tid; 896 *block = transaction->t_log_start; 897 } else if ((transaction = journal->j_running_transaction) != NULL) { 898 *tid = transaction->t_tid; 899 *block = journal->j_head; 900 } else { 901 *tid = journal->j_transaction_sequence; 902 *block = journal->j_head; 903 } 904 ret = tid_gt(*tid, journal->j_tail_sequence); 905 spin_unlock(&journal->j_list_lock); 906 read_unlock(&journal->j_state_lock); 907 908 return ret; 909 } 910 911 /* 912 * Update information in journal structure and in on disk journal superblock 913 * about log tail. This function does not check whether information passed in 914 * really pushes log tail further. It's responsibility of the caller to make 915 * sure provided log tail information is valid (e.g. by holding 916 * j_checkpoint_mutex all the time between computing log tail and calling this 917 * function as is the case with jbd2_cleanup_journal_tail()). 918 * 919 * Requires j_checkpoint_mutex 920 */ 921 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 922 { 923 unsigned long freed; 924 int ret; 925 926 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 927 928 /* 929 * We cannot afford for write to remain in drive's caches since as 930 * soon as we update j_tail, next transaction can start reusing journal 931 * space and if we lose sb update during power failure we'd replay 932 * old transaction with possibly newly overwritten data. 933 */ 934 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 935 REQ_SYNC | REQ_FUA); 936 if (ret) 937 goto out; 938 939 write_lock(&journal->j_state_lock); 940 freed = block - journal->j_tail; 941 if (block < journal->j_tail) 942 freed += journal->j_last - journal->j_first; 943 944 trace_jbd2_update_log_tail(journal, tid, block, freed); 945 jbd_debug(1, 946 "Cleaning journal tail from %u to %u (offset %lu), " 947 "freeing %lu\n", 948 journal->j_tail_sequence, tid, block, freed); 949 950 journal->j_free += freed; 951 journal->j_tail_sequence = tid; 952 journal->j_tail = block; 953 write_unlock(&journal->j_state_lock); 954 955 out: 956 return ret; 957 } 958 959 /* 960 * This is a variation of __jbd2_update_log_tail which checks for validity of 961 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 962 * with other threads updating log tail. 963 */ 964 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 965 { 966 mutex_lock_io(&journal->j_checkpoint_mutex); 967 if (tid_gt(tid, journal->j_tail_sequence)) 968 __jbd2_update_log_tail(journal, tid, block); 969 mutex_unlock(&journal->j_checkpoint_mutex); 970 } 971 972 struct jbd2_stats_proc_session { 973 journal_t *journal; 974 struct transaction_stats_s *stats; 975 int start; 976 int max; 977 }; 978 979 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 980 { 981 return *pos ? NULL : SEQ_START_TOKEN; 982 } 983 984 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 985 { 986 return NULL; 987 } 988 989 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 990 { 991 struct jbd2_stats_proc_session *s = seq->private; 992 993 if (v != SEQ_START_TOKEN) 994 return 0; 995 seq_printf(seq, "%lu transactions (%lu requested), " 996 "each up to %u blocks\n", 997 s->stats->ts_tid, s->stats->ts_requested, 998 s->journal->j_max_transaction_buffers); 999 if (s->stats->ts_tid == 0) 1000 return 0; 1001 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1002 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1003 seq_printf(seq, " %ums request delay\n", 1004 (s->stats->ts_requested == 0) ? 0 : 1005 jiffies_to_msecs(s->stats->run.rs_request_delay / 1006 s->stats->ts_requested)); 1007 seq_printf(seq, " %ums running transaction\n", 1008 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1009 seq_printf(seq, " %ums transaction was being locked\n", 1010 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1011 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1012 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1013 seq_printf(seq, " %ums logging transaction\n", 1014 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1015 seq_printf(seq, " %lluus average transaction commit time\n", 1016 div_u64(s->journal->j_average_commit_time, 1000)); 1017 seq_printf(seq, " %lu handles per transaction\n", 1018 s->stats->run.rs_handle_count / s->stats->ts_tid); 1019 seq_printf(seq, " %lu blocks per transaction\n", 1020 s->stats->run.rs_blocks / s->stats->ts_tid); 1021 seq_printf(seq, " %lu logged blocks per transaction\n", 1022 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1023 return 0; 1024 } 1025 1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1027 { 1028 } 1029 1030 static const struct seq_operations jbd2_seq_info_ops = { 1031 .start = jbd2_seq_info_start, 1032 .next = jbd2_seq_info_next, 1033 .stop = jbd2_seq_info_stop, 1034 .show = jbd2_seq_info_show, 1035 }; 1036 1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1038 { 1039 journal_t *journal = PDE_DATA(inode); 1040 struct jbd2_stats_proc_session *s; 1041 int rc, size; 1042 1043 s = kmalloc(sizeof(*s), GFP_KERNEL); 1044 if (s == NULL) 1045 return -ENOMEM; 1046 size = sizeof(struct transaction_stats_s); 1047 s->stats = kmalloc(size, GFP_KERNEL); 1048 if (s->stats == NULL) { 1049 kfree(s); 1050 return -ENOMEM; 1051 } 1052 spin_lock(&journal->j_history_lock); 1053 memcpy(s->stats, &journal->j_stats, size); 1054 s->journal = journal; 1055 spin_unlock(&journal->j_history_lock); 1056 1057 rc = seq_open(file, &jbd2_seq_info_ops); 1058 if (rc == 0) { 1059 struct seq_file *m = file->private_data; 1060 m->private = s; 1061 } else { 1062 kfree(s->stats); 1063 kfree(s); 1064 } 1065 return rc; 1066 1067 } 1068 1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1070 { 1071 struct seq_file *seq = file->private_data; 1072 struct jbd2_stats_proc_session *s = seq->private; 1073 kfree(s->stats); 1074 kfree(s); 1075 return seq_release(inode, file); 1076 } 1077 1078 static const struct file_operations jbd2_seq_info_fops = { 1079 .owner = THIS_MODULE, 1080 .open = jbd2_seq_info_open, 1081 .read = seq_read, 1082 .llseek = seq_lseek, 1083 .release = jbd2_seq_info_release, 1084 }; 1085 1086 static struct proc_dir_entry *proc_jbd2_stats; 1087 1088 static void jbd2_stats_proc_init(journal_t *journal) 1089 { 1090 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1091 if (journal->j_proc_entry) { 1092 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1093 &jbd2_seq_info_fops, journal); 1094 } 1095 } 1096 1097 static void jbd2_stats_proc_exit(journal_t *journal) 1098 { 1099 remove_proc_entry("info", journal->j_proc_entry); 1100 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1101 } 1102 1103 /* 1104 * Management for journal control blocks: functions to create and 1105 * destroy journal_t structures, and to initialise and read existing 1106 * journal blocks from disk. */ 1107 1108 /* First: create and setup a journal_t object in memory. We initialise 1109 * very few fields yet: that has to wait until we have created the 1110 * journal structures from from scratch, or loaded them from disk. */ 1111 1112 static journal_t *journal_init_common(struct block_device *bdev, 1113 struct block_device *fs_dev, 1114 unsigned long long start, int len, int blocksize) 1115 { 1116 static struct lock_class_key jbd2_trans_commit_key; 1117 journal_t *journal; 1118 int err; 1119 struct buffer_head *bh; 1120 int n; 1121 1122 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1123 if (!journal) 1124 return NULL; 1125 1126 init_waitqueue_head(&journal->j_wait_transaction_locked); 1127 init_waitqueue_head(&journal->j_wait_done_commit); 1128 init_waitqueue_head(&journal->j_wait_commit); 1129 init_waitqueue_head(&journal->j_wait_updates); 1130 init_waitqueue_head(&journal->j_wait_reserved); 1131 mutex_init(&journal->j_barrier); 1132 mutex_init(&journal->j_checkpoint_mutex); 1133 spin_lock_init(&journal->j_revoke_lock); 1134 spin_lock_init(&journal->j_list_lock); 1135 rwlock_init(&journal->j_state_lock); 1136 1137 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1138 journal->j_min_batch_time = 0; 1139 journal->j_max_batch_time = 15000; /* 15ms */ 1140 atomic_set(&journal->j_reserved_credits, 0); 1141 1142 /* The journal is marked for error until we succeed with recovery! */ 1143 journal->j_flags = JBD2_ABORT; 1144 1145 /* Set up a default-sized revoke table for the new mount. */ 1146 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1147 if (err) 1148 goto err_cleanup; 1149 1150 spin_lock_init(&journal->j_history_lock); 1151 1152 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1153 &jbd2_trans_commit_key, 0); 1154 1155 /* journal descriptor can store up to n blocks -bzzz */ 1156 journal->j_blocksize = blocksize; 1157 journal->j_dev = bdev; 1158 journal->j_fs_dev = fs_dev; 1159 journal->j_blk_offset = start; 1160 journal->j_maxlen = len; 1161 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1162 journal->j_wbufsize = n; 1163 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1164 GFP_KERNEL); 1165 if (!journal->j_wbuf) 1166 goto err_cleanup; 1167 1168 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1169 if (!bh) { 1170 pr_err("%s: Cannot get buffer for journal superblock\n", 1171 __func__); 1172 goto err_cleanup; 1173 } 1174 journal->j_sb_buffer = bh; 1175 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1176 1177 return journal; 1178 1179 err_cleanup: 1180 kfree(journal->j_wbuf); 1181 jbd2_journal_destroy_revoke(journal); 1182 kfree(journal); 1183 return NULL; 1184 } 1185 1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1187 * 1188 * Create a journal structure assigned some fixed set of disk blocks to 1189 * the journal. We don't actually touch those disk blocks yet, but we 1190 * need to set up all of the mapping information to tell the journaling 1191 * system where the journal blocks are. 1192 * 1193 */ 1194 1195 /** 1196 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1197 * @bdev: Block device on which to create the journal 1198 * @fs_dev: Device which hold journalled filesystem for this journal. 1199 * @start: Block nr Start of journal. 1200 * @len: Length of the journal in blocks. 1201 * @blocksize: blocksize of journalling device 1202 * 1203 * Returns: a newly created journal_t * 1204 * 1205 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1206 * range of blocks on an arbitrary block device. 1207 * 1208 */ 1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1210 struct block_device *fs_dev, 1211 unsigned long long start, int len, int blocksize) 1212 { 1213 journal_t *journal; 1214 1215 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1216 if (!journal) 1217 return NULL; 1218 1219 bdevname(journal->j_dev, journal->j_devname); 1220 strreplace(journal->j_devname, '/', '!'); 1221 jbd2_stats_proc_init(journal); 1222 1223 return journal; 1224 } 1225 1226 /** 1227 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1228 * @inode: An inode to create the journal in 1229 * 1230 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1231 * the journal. The inode must exist already, must support bmap() and 1232 * must have all data blocks preallocated. 1233 */ 1234 journal_t *jbd2_journal_init_inode(struct inode *inode) 1235 { 1236 journal_t *journal; 1237 char *p; 1238 unsigned long long blocknr; 1239 1240 blocknr = bmap(inode, 0); 1241 if (!blocknr) { 1242 pr_err("%s: Cannot locate journal superblock\n", 1243 __func__); 1244 return NULL; 1245 } 1246 1247 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1248 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1249 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1250 1251 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1252 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1253 inode->i_sb->s_blocksize); 1254 if (!journal) 1255 return NULL; 1256 1257 journal->j_inode = inode; 1258 bdevname(journal->j_dev, journal->j_devname); 1259 p = strreplace(journal->j_devname, '/', '!'); 1260 sprintf(p, "-%lu", journal->j_inode->i_ino); 1261 jbd2_stats_proc_init(journal); 1262 1263 return journal; 1264 } 1265 1266 /* 1267 * If the journal init or create aborts, we need to mark the journal 1268 * superblock as being NULL to prevent the journal destroy from writing 1269 * back a bogus superblock. 1270 */ 1271 static void journal_fail_superblock (journal_t *journal) 1272 { 1273 struct buffer_head *bh = journal->j_sb_buffer; 1274 brelse(bh); 1275 journal->j_sb_buffer = NULL; 1276 } 1277 1278 /* 1279 * Given a journal_t structure, initialise the various fields for 1280 * startup of a new journaling session. We use this both when creating 1281 * a journal, and after recovering an old journal to reset it for 1282 * subsequent use. 1283 */ 1284 1285 static int journal_reset(journal_t *journal) 1286 { 1287 journal_superblock_t *sb = journal->j_superblock; 1288 unsigned long long first, last; 1289 1290 first = be32_to_cpu(sb->s_first); 1291 last = be32_to_cpu(sb->s_maxlen); 1292 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1293 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1294 first, last); 1295 journal_fail_superblock(journal); 1296 return -EINVAL; 1297 } 1298 1299 journal->j_first = first; 1300 journal->j_last = last; 1301 1302 journal->j_head = first; 1303 journal->j_tail = first; 1304 journal->j_free = last - first; 1305 1306 journal->j_tail_sequence = journal->j_transaction_sequence; 1307 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1308 journal->j_commit_request = journal->j_commit_sequence; 1309 1310 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1311 1312 /* 1313 * As a special case, if the on-disk copy is already marked as needing 1314 * no recovery (s_start == 0), then we can safely defer the superblock 1315 * update until the next commit by setting JBD2_FLUSHED. This avoids 1316 * attempting a write to a potential-readonly device. 1317 */ 1318 if (sb->s_start == 0) { 1319 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1320 "(start %ld, seq %u, errno %d)\n", 1321 journal->j_tail, journal->j_tail_sequence, 1322 journal->j_errno); 1323 journal->j_flags |= JBD2_FLUSHED; 1324 } else { 1325 /* Lock here to make assertions happy... */ 1326 mutex_lock_io(&journal->j_checkpoint_mutex); 1327 /* 1328 * Update log tail information. We use REQ_FUA since new 1329 * transaction will start reusing journal space and so we 1330 * must make sure information about current log tail is on 1331 * disk before that. 1332 */ 1333 jbd2_journal_update_sb_log_tail(journal, 1334 journal->j_tail_sequence, 1335 journal->j_tail, 1336 REQ_SYNC | REQ_FUA); 1337 mutex_unlock(&journal->j_checkpoint_mutex); 1338 } 1339 return jbd2_journal_start_thread(journal); 1340 } 1341 1342 /* 1343 * This function expects that the caller will have locked the journal 1344 * buffer head, and will return with it unlocked 1345 */ 1346 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1347 { 1348 struct buffer_head *bh = journal->j_sb_buffer; 1349 journal_superblock_t *sb = journal->j_superblock; 1350 int ret; 1351 1352 /* Buffer got discarded which means block device got invalidated */ 1353 if (!buffer_mapped(bh)) 1354 return -EIO; 1355 1356 trace_jbd2_write_superblock(journal, write_flags); 1357 if (!(journal->j_flags & JBD2_BARRIER)) 1358 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1359 if (buffer_write_io_error(bh)) { 1360 /* 1361 * Oh, dear. A previous attempt to write the journal 1362 * superblock failed. This could happen because the 1363 * USB device was yanked out. Or it could happen to 1364 * be a transient write error and maybe the block will 1365 * be remapped. Nothing we can do but to retry the 1366 * write and hope for the best. 1367 */ 1368 printk(KERN_ERR "JBD2: previous I/O error detected " 1369 "for journal superblock update for %s.\n", 1370 journal->j_devname); 1371 clear_buffer_write_io_error(bh); 1372 set_buffer_uptodate(bh); 1373 } 1374 if (jbd2_journal_has_csum_v2or3(journal)) 1375 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1376 get_bh(bh); 1377 bh->b_end_io = end_buffer_write_sync; 1378 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1379 wait_on_buffer(bh); 1380 if (buffer_write_io_error(bh)) { 1381 clear_buffer_write_io_error(bh); 1382 set_buffer_uptodate(bh); 1383 ret = -EIO; 1384 } 1385 if (ret) { 1386 printk(KERN_ERR "JBD2: Error %d detected when updating " 1387 "journal superblock for %s.\n", ret, 1388 journal->j_devname); 1389 jbd2_journal_abort(journal, ret); 1390 } 1391 1392 return ret; 1393 } 1394 1395 /** 1396 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1397 * @journal: The journal to update. 1398 * @tail_tid: TID of the new transaction at the tail of the log 1399 * @tail_block: The first block of the transaction at the tail of the log 1400 * @write_op: With which operation should we write the journal sb 1401 * 1402 * Update a journal's superblock information about log tail and write it to 1403 * disk, waiting for the IO to complete. 1404 */ 1405 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1406 unsigned long tail_block, int write_op) 1407 { 1408 journal_superblock_t *sb = journal->j_superblock; 1409 int ret; 1410 1411 if (is_journal_aborted(journal)) 1412 return -EIO; 1413 1414 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1415 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1416 tail_block, tail_tid); 1417 1418 lock_buffer(journal->j_sb_buffer); 1419 sb->s_sequence = cpu_to_be32(tail_tid); 1420 sb->s_start = cpu_to_be32(tail_block); 1421 1422 ret = jbd2_write_superblock(journal, write_op); 1423 if (ret) 1424 goto out; 1425 1426 /* Log is no longer empty */ 1427 write_lock(&journal->j_state_lock); 1428 WARN_ON(!sb->s_sequence); 1429 journal->j_flags &= ~JBD2_FLUSHED; 1430 write_unlock(&journal->j_state_lock); 1431 1432 out: 1433 return ret; 1434 } 1435 1436 /** 1437 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1438 * @journal: The journal to update. 1439 * @write_op: With which operation should we write the journal sb 1440 * 1441 * Update a journal's dynamic superblock fields to show that journal is empty. 1442 * Write updated superblock to disk waiting for IO to complete. 1443 */ 1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1445 { 1446 journal_superblock_t *sb = journal->j_superblock; 1447 1448 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1449 lock_buffer(journal->j_sb_buffer); 1450 if (sb->s_start == 0) { /* Is it already empty? */ 1451 unlock_buffer(journal->j_sb_buffer); 1452 return; 1453 } 1454 1455 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1456 journal->j_tail_sequence); 1457 1458 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1459 sb->s_start = cpu_to_be32(0); 1460 1461 jbd2_write_superblock(journal, write_op); 1462 1463 /* Log is no longer empty */ 1464 write_lock(&journal->j_state_lock); 1465 journal->j_flags |= JBD2_FLUSHED; 1466 write_unlock(&journal->j_state_lock); 1467 } 1468 1469 1470 /** 1471 * jbd2_journal_update_sb_errno() - Update error in the journal. 1472 * @journal: The journal to update. 1473 * 1474 * Update a journal's errno. Write updated superblock to disk waiting for IO 1475 * to complete. 1476 */ 1477 void jbd2_journal_update_sb_errno(journal_t *journal) 1478 { 1479 journal_superblock_t *sb = journal->j_superblock; 1480 int errcode; 1481 1482 lock_buffer(journal->j_sb_buffer); 1483 errcode = journal->j_errno; 1484 if (errcode == -ESHUTDOWN) 1485 errcode = 0; 1486 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1487 sb->s_errno = cpu_to_be32(errcode); 1488 1489 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1490 } 1491 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1492 1493 /* 1494 * Read the superblock for a given journal, performing initial 1495 * validation of the format. 1496 */ 1497 static int journal_get_superblock(journal_t *journal) 1498 { 1499 struct buffer_head *bh; 1500 journal_superblock_t *sb; 1501 int err = -EIO; 1502 1503 bh = journal->j_sb_buffer; 1504 1505 J_ASSERT(bh != NULL); 1506 if (!buffer_uptodate(bh)) { 1507 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1508 wait_on_buffer(bh); 1509 if (!buffer_uptodate(bh)) { 1510 printk(KERN_ERR 1511 "JBD2: IO error reading journal superblock\n"); 1512 goto out; 1513 } 1514 } 1515 1516 if (buffer_verified(bh)) 1517 return 0; 1518 1519 sb = journal->j_superblock; 1520 1521 err = -EINVAL; 1522 1523 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1524 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1525 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1526 goto out; 1527 } 1528 1529 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1530 case JBD2_SUPERBLOCK_V1: 1531 journal->j_format_version = 1; 1532 break; 1533 case JBD2_SUPERBLOCK_V2: 1534 journal->j_format_version = 2; 1535 break; 1536 default: 1537 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1538 goto out; 1539 } 1540 1541 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1542 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1543 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1544 printk(KERN_WARNING "JBD2: journal file too short\n"); 1545 goto out; 1546 } 1547 1548 if (be32_to_cpu(sb->s_first) == 0 || 1549 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1550 printk(KERN_WARNING 1551 "JBD2: Invalid start block of journal: %u\n", 1552 be32_to_cpu(sb->s_first)); 1553 goto out; 1554 } 1555 1556 if (jbd2_has_feature_csum2(journal) && 1557 jbd2_has_feature_csum3(journal)) { 1558 /* Can't have checksum v2 and v3 at the same time! */ 1559 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1560 "at the same time!\n"); 1561 goto out; 1562 } 1563 1564 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1565 jbd2_has_feature_checksum(journal)) { 1566 /* Can't have checksum v1 and v2 on at the same time! */ 1567 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1568 "at the same time!\n"); 1569 goto out; 1570 } 1571 1572 if (!jbd2_verify_csum_type(journal, sb)) { 1573 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1574 goto out; 1575 } 1576 1577 /* Load the checksum driver */ 1578 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1579 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1580 if (IS_ERR(journal->j_chksum_driver)) { 1581 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1582 err = PTR_ERR(journal->j_chksum_driver); 1583 journal->j_chksum_driver = NULL; 1584 goto out; 1585 } 1586 } 1587 1588 if (jbd2_journal_has_csum_v2or3(journal)) { 1589 /* Check superblock checksum */ 1590 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1591 printk(KERN_ERR "JBD2: journal checksum error\n"); 1592 err = -EFSBADCRC; 1593 goto out; 1594 } 1595 1596 /* Precompute checksum seed for all metadata */ 1597 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1598 sizeof(sb->s_uuid)); 1599 } 1600 1601 set_buffer_verified(bh); 1602 1603 return 0; 1604 1605 out: 1606 journal_fail_superblock(journal); 1607 return err; 1608 } 1609 1610 /* 1611 * Load the on-disk journal superblock and read the key fields into the 1612 * journal_t. 1613 */ 1614 1615 static int load_superblock(journal_t *journal) 1616 { 1617 int err; 1618 journal_superblock_t *sb; 1619 1620 err = journal_get_superblock(journal); 1621 if (err) 1622 return err; 1623 1624 sb = journal->j_superblock; 1625 1626 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1627 journal->j_tail = be32_to_cpu(sb->s_start); 1628 journal->j_first = be32_to_cpu(sb->s_first); 1629 journal->j_last = be32_to_cpu(sb->s_maxlen); 1630 journal->j_errno = be32_to_cpu(sb->s_errno); 1631 1632 return 0; 1633 } 1634 1635 1636 /** 1637 * int jbd2_journal_load() - Read journal from disk. 1638 * @journal: Journal to act on. 1639 * 1640 * Given a journal_t structure which tells us which disk blocks contain 1641 * a journal, read the journal from disk to initialise the in-memory 1642 * structures. 1643 */ 1644 int jbd2_journal_load(journal_t *journal) 1645 { 1646 int err; 1647 journal_superblock_t *sb; 1648 1649 err = load_superblock(journal); 1650 if (err) 1651 return err; 1652 1653 sb = journal->j_superblock; 1654 /* If this is a V2 superblock, then we have to check the 1655 * features flags on it. */ 1656 1657 if (journal->j_format_version >= 2) { 1658 if ((sb->s_feature_ro_compat & 1659 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1660 (sb->s_feature_incompat & 1661 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1662 printk(KERN_WARNING 1663 "JBD2: Unrecognised features on journal\n"); 1664 return -EINVAL; 1665 } 1666 } 1667 1668 /* 1669 * Create a slab for this blocksize 1670 */ 1671 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1672 if (err) 1673 return err; 1674 1675 /* Let the recovery code check whether it needs to recover any 1676 * data from the journal. */ 1677 if (jbd2_journal_recover(journal)) 1678 goto recovery_error; 1679 1680 if (journal->j_failed_commit) { 1681 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1682 "is corrupt.\n", journal->j_failed_commit, 1683 journal->j_devname); 1684 return -EFSCORRUPTED; 1685 } 1686 1687 /* OK, we've finished with the dynamic journal bits: 1688 * reinitialise the dynamic contents of the superblock in memory 1689 * and reset them on disk. */ 1690 if (journal_reset(journal)) 1691 goto recovery_error; 1692 1693 journal->j_flags &= ~JBD2_ABORT; 1694 journal->j_flags |= JBD2_LOADED; 1695 return 0; 1696 1697 recovery_error: 1698 printk(KERN_WARNING "JBD2: recovery failed\n"); 1699 return -EIO; 1700 } 1701 1702 /** 1703 * void jbd2_journal_destroy() - Release a journal_t structure. 1704 * @journal: Journal to act on. 1705 * 1706 * Release a journal_t structure once it is no longer in use by the 1707 * journaled object. 1708 * Return <0 if we couldn't clean up the journal. 1709 */ 1710 int jbd2_journal_destroy(journal_t *journal) 1711 { 1712 int err = 0; 1713 1714 /* Wait for the commit thread to wake up and die. */ 1715 journal_kill_thread(journal); 1716 1717 /* Force a final log commit */ 1718 if (journal->j_running_transaction) 1719 jbd2_journal_commit_transaction(journal); 1720 1721 /* Force any old transactions to disk */ 1722 1723 /* Totally anal locking here... */ 1724 spin_lock(&journal->j_list_lock); 1725 while (journal->j_checkpoint_transactions != NULL) { 1726 spin_unlock(&journal->j_list_lock); 1727 mutex_lock_io(&journal->j_checkpoint_mutex); 1728 err = jbd2_log_do_checkpoint(journal); 1729 mutex_unlock(&journal->j_checkpoint_mutex); 1730 /* 1731 * If checkpointing failed, just free the buffers to avoid 1732 * looping forever 1733 */ 1734 if (err) { 1735 jbd2_journal_destroy_checkpoint(journal); 1736 spin_lock(&journal->j_list_lock); 1737 break; 1738 } 1739 spin_lock(&journal->j_list_lock); 1740 } 1741 1742 J_ASSERT(journal->j_running_transaction == NULL); 1743 J_ASSERT(journal->j_committing_transaction == NULL); 1744 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1745 spin_unlock(&journal->j_list_lock); 1746 1747 if (journal->j_sb_buffer) { 1748 if (!is_journal_aborted(journal)) { 1749 mutex_lock_io(&journal->j_checkpoint_mutex); 1750 1751 write_lock(&journal->j_state_lock); 1752 journal->j_tail_sequence = 1753 ++journal->j_transaction_sequence; 1754 write_unlock(&journal->j_state_lock); 1755 1756 jbd2_mark_journal_empty(journal, 1757 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1758 mutex_unlock(&journal->j_checkpoint_mutex); 1759 } else 1760 err = -EIO; 1761 brelse(journal->j_sb_buffer); 1762 } 1763 1764 if (journal->j_proc_entry) 1765 jbd2_stats_proc_exit(journal); 1766 iput(journal->j_inode); 1767 if (journal->j_revoke) 1768 jbd2_journal_destroy_revoke(journal); 1769 if (journal->j_chksum_driver) 1770 crypto_free_shash(journal->j_chksum_driver); 1771 kfree(journal->j_wbuf); 1772 kfree(journal); 1773 1774 return err; 1775 } 1776 1777 1778 /** 1779 *int jbd2_journal_check_used_features () - Check if features specified are used. 1780 * @journal: Journal to check. 1781 * @compat: bitmask of compatible features 1782 * @ro: bitmask of features that force read-only mount 1783 * @incompat: bitmask of incompatible features 1784 * 1785 * Check whether the journal uses all of a given set of 1786 * features. Return true (non-zero) if it does. 1787 **/ 1788 1789 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1790 unsigned long ro, unsigned long incompat) 1791 { 1792 journal_superblock_t *sb; 1793 1794 if (!compat && !ro && !incompat) 1795 return 1; 1796 /* Load journal superblock if it is not loaded yet. */ 1797 if (journal->j_format_version == 0 && 1798 journal_get_superblock(journal) != 0) 1799 return 0; 1800 if (journal->j_format_version == 1) 1801 return 0; 1802 1803 sb = journal->j_superblock; 1804 1805 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1806 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1807 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1808 return 1; 1809 1810 return 0; 1811 } 1812 1813 /** 1814 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1815 * @journal: Journal to check. 1816 * @compat: bitmask of compatible features 1817 * @ro: bitmask of features that force read-only mount 1818 * @incompat: bitmask of incompatible features 1819 * 1820 * Check whether the journaling code supports the use of 1821 * all of a given set of features on this journal. Return true 1822 * (non-zero) if it can. */ 1823 1824 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1825 unsigned long ro, unsigned long incompat) 1826 { 1827 if (!compat && !ro && !incompat) 1828 return 1; 1829 1830 /* We can support any known requested features iff the 1831 * superblock is in version 2. Otherwise we fail to support any 1832 * extended sb features. */ 1833 1834 if (journal->j_format_version != 2) 1835 return 0; 1836 1837 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1838 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1839 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1840 return 1; 1841 1842 return 0; 1843 } 1844 1845 /** 1846 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1847 * @journal: Journal to act on. 1848 * @compat: bitmask of compatible features 1849 * @ro: bitmask of features that force read-only mount 1850 * @incompat: bitmask of incompatible features 1851 * 1852 * Mark a given journal feature as present on the 1853 * superblock. Returns true if the requested features could be set. 1854 * 1855 */ 1856 1857 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1858 unsigned long ro, unsigned long incompat) 1859 { 1860 #define INCOMPAT_FEATURE_ON(f) \ 1861 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1862 #define COMPAT_FEATURE_ON(f) \ 1863 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1864 journal_superblock_t *sb; 1865 1866 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1867 return 1; 1868 1869 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1870 return 0; 1871 1872 /* If enabling v2 checksums, turn on v3 instead */ 1873 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1874 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1875 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1876 } 1877 1878 /* Asking for checksumming v3 and v1? Only give them v3. */ 1879 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1880 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1881 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1882 1883 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1884 compat, ro, incompat); 1885 1886 sb = journal->j_superblock; 1887 1888 /* Load the checksum driver if necessary */ 1889 if ((journal->j_chksum_driver == NULL) && 1890 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1891 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1892 if (IS_ERR(journal->j_chksum_driver)) { 1893 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1894 journal->j_chksum_driver = NULL; 1895 return 0; 1896 } 1897 /* Precompute checksum seed for all metadata */ 1898 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1899 sizeof(sb->s_uuid)); 1900 } 1901 1902 lock_buffer(journal->j_sb_buffer); 1903 1904 /* If enabling v3 checksums, update superblock */ 1905 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1906 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1907 sb->s_feature_compat &= 1908 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1909 } 1910 1911 /* If enabling v1 checksums, downgrade superblock */ 1912 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1913 sb->s_feature_incompat &= 1914 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1915 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1916 1917 sb->s_feature_compat |= cpu_to_be32(compat); 1918 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1919 sb->s_feature_incompat |= cpu_to_be32(incompat); 1920 unlock_buffer(journal->j_sb_buffer); 1921 1922 return 1; 1923 #undef COMPAT_FEATURE_ON 1924 #undef INCOMPAT_FEATURE_ON 1925 } 1926 1927 /* 1928 * jbd2_journal_clear_features () - Clear a given journal feature in the 1929 * superblock 1930 * @journal: Journal to act on. 1931 * @compat: bitmask of compatible features 1932 * @ro: bitmask of features that force read-only mount 1933 * @incompat: bitmask of incompatible features 1934 * 1935 * Clear a given journal feature as present on the 1936 * superblock. 1937 */ 1938 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1939 unsigned long ro, unsigned long incompat) 1940 { 1941 journal_superblock_t *sb; 1942 1943 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1944 compat, ro, incompat); 1945 1946 sb = journal->j_superblock; 1947 1948 sb->s_feature_compat &= ~cpu_to_be32(compat); 1949 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1950 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1951 } 1952 EXPORT_SYMBOL(jbd2_journal_clear_features); 1953 1954 /** 1955 * int jbd2_journal_flush () - Flush journal 1956 * @journal: Journal to act on. 1957 * 1958 * Flush all data for a given journal to disk and empty the journal. 1959 * Filesystems can use this when remounting readonly to ensure that 1960 * recovery does not need to happen on remount. 1961 */ 1962 1963 int jbd2_journal_flush(journal_t *journal) 1964 { 1965 int err = 0; 1966 transaction_t *transaction = NULL; 1967 1968 write_lock(&journal->j_state_lock); 1969 1970 /* Force everything buffered to the log... */ 1971 if (journal->j_running_transaction) { 1972 transaction = journal->j_running_transaction; 1973 __jbd2_log_start_commit(journal, transaction->t_tid); 1974 } else if (journal->j_committing_transaction) 1975 transaction = journal->j_committing_transaction; 1976 1977 /* Wait for the log commit to complete... */ 1978 if (transaction) { 1979 tid_t tid = transaction->t_tid; 1980 1981 write_unlock(&journal->j_state_lock); 1982 jbd2_log_wait_commit(journal, tid); 1983 } else { 1984 write_unlock(&journal->j_state_lock); 1985 } 1986 1987 /* ...and flush everything in the log out to disk. */ 1988 spin_lock(&journal->j_list_lock); 1989 while (!err && journal->j_checkpoint_transactions != NULL) { 1990 spin_unlock(&journal->j_list_lock); 1991 mutex_lock_io(&journal->j_checkpoint_mutex); 1992 err = jbd2_log_do_checkpoint(journal); 1993 mutex_unlock(&journal->j_checkpoint_mutex); 1994 spin_lock(&journal->j_list_lock); 1995 } 1996 spin_unlock(&journal->j_list_lock); 1997 1998 if (is_journal_aborted(journal)) 1999 return -EIO; 2000 2001 mutex_lock_io(&journal->j_checkpoint_mutex); 2002 if (!err) { 2003 err = jbd2_cleanup_journal_tail(journal); 2004 if (err < 0) { 2005 mutex_unlock(&journal->j_checkpoint_mutex); 2006 goto out; 2007 } 2008 err = 0; 2009 } 2010 2011 /* Finally, mark the journal as really needing no recovery. 2012 * This sets s_start==0 in the underlying superblock, which is 2013 * the magic code for a fully-recovered superblock. Any future 2014 * commits of data to the journal will restore the current 2015 * s_start value. */ 2016 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2017 mutex_unlock(&journal->j_checkpoint_mutex); 2018 write_lock(&journal->j_state_lock); 2019 J_ASSERT(!journal->j_running_transaction); 2020 J_ASSERT(!journal->j_committing_transaction); 2021 J_ASSERT(!journal->j_checkpoint_transactions); 2022 J_ASSERT(journal->j_head == journal->j_tail); 2023 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2024 write_unlock(&journal->j_state_lock); 2025 out: 2026 return err; 2027 } 2028 2029 /** 2030 * int jbd2_journal_wipe() - Wipe journal contents 2031 * @journal: Journal to act on. 2032 * @write: flag (see below) 2033 * 2034 * Wipe out all of the contents of a journal, safely. This will produce 2035 * a warning if the journal contains any valid recovery information. 2036 * Must be called between journal_init_*() and jbd2_journal_load(). 2037 * 2038 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2039 * we merely suppress recovery. 2040 */ 2041 2042 int jbd2_journal_wipe(journal_t *journal, int write) 2043 { 2044 int err = 0; 2045 2046 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2047 2048 err = load_superblock(journal); 2049 if (err) 2050 return err; 2051 2052 if (!journal->j_tail) 2053 goto no_recovery; 2054 2055 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2056 write ? "Clearing" : "Ignoring"); 2057 2058 err = jbd2_journal_skip_recovery(journal); 2059 if (write) { 2060 /* Lock to make assertions happy... */ 2061 mutex_lock_io(&journal->j_checkpoint_mutex); 2062 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2063 mutex_unlock(&journal->j_checkpoint_mutex); 2064 } 2065 2066 no_recovery: 2067 return err; 2068 } 2069 2070 /* 2071 * Journal abort has very specific semantics, which we describe 2072 * for journal abort. 2073 * 2074 * Two internal functions, which provide abort to the jbd layer 2075 * itself are here. 2076 */ 2077 2078 /* 2079 * Quick version for internal journal use (doesn't lock the journal). 2080 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2081 * and don't attempt to make any other journal updates. 2082 */ 2083 void __jbd2_journal_abort_hard(journal_t *journal) 2084 { 2085 transaction_t *transaction; 2086 2087 if (journal->j_flags & JBD2_ABORT) 2088 return; 2089 2090 printk(KERN_ERR "Aborting journal on device %s.\n", 2091 journal->j_devname); 2092 2093 write_lock(&journal->j_state_lock); 2094 journal->j_flags |= JBD2_ABORT; 2095 transaction = journal->j_running_transaction; 2096 if (transaction) 2097 __jbd2_log_start_commit(journal, transaction->t_tid); 2098 write_unlock(&journal->j_state_lock); 2099 } 2100 2101 /* Soft abort: record the abort error status in the journal superblock, 2102 * but don't do any other IO. */ 2103 static void __journal_abort_soft (journal_t *journal, int errno) 2104 { 2105 int old_errno; 2106 2107 write_lock(&journal->j_state_lock); 2108 old_errno = journal->j_errno; 2109 if (!journal->j_errno || errno == -ESHUTDOWN) 2110 journal->j_errno = errno; 2111 2112 if (journal->j_flags & JBD2_ABORT) { 2113 write_unlock(&journal->j_state_lock); 2114 if (!old_errno && old_errno != -ESHUTDOWN && 2115 errno == -ESHUTDOWN) 2116 jbd2_journal_update_sb_errno(journal); 2117 return; 2118 } 2119 write_unlock(&journal->j_state_lock); 2120 2121 __jbd2_journal_abort_hard(journal); 2122 2123 if (errno) { 2124 jbd2_journal_update_sb_errno(journal); 2125 write_lock(&journal->j_state_lock); 2126 journal->j_flags |= JBD2_REC_ERR; 2127 write_unlock(&journal->j_state_lock); 2128 } 2129 } 2130 2131 /** 2132 * void jbd2_journal_abort () - Shutdown the journal immediately. 2133 * @journal: the journal to shutdown. 2134 * @errno: an error number to record in the journal indicating 2135 * the reason for the shutdown. 2136 * 2137 * Perform a complete, immediate shutdown of the ENTIRE 2138 * journal (not of a single transaction). This operation cannot be 2139 * undone without closing and reopening the journal. 2140 * 2141 * The jbd2_journal_abort function is intended to support higher level error 2142 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2143 * mode. 2144 * 2145 * Journal abort has very specific semantics. Any existing dirty, 2146 * unjournaled buffers in the main filesystem will still be written to 2147 * disk by bdflush, but the journaling mechanism will be suspended 2148 * immediately and no further transaction commits will be honoured. 2149 * 2150 * Any dirty, journaled buffers will be written back to disk without 2151 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2152 * filesystem, but we _do_ attempt to leave as much data as possible 2153 * behind for fsck to use for cleanup. 2154 * 2155 * Any attempt to get a new transaction handle on a journal which is in 2156 * ABORT state will just result in an -EROFS error return. A 2157 * jbd2_journal_stop on an existing handle will return -EIO if we have 2158 * entered abort state during the update. 2159 * 2160 * Recursive transactions are not disturbed by journal abort until the 2161 * final jbd2_journal_stop, which will receive the -EIO error. 2162 * 2163 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2164 * which will be recorded (if possible) in the journal superblock. This 2165 * allows a client to record failure conditions in the middle of a 2166 * transaction without having to complete the transaction to record the 2167 * failure to disk. ext3_error, for example, now uses this 2168 * functionality. 2169 * 2170 * Errors which originate from within the journaling layer will NOT 2171 * supply an errno; a null errno implies that absolutely no further 2172 * writes are done to the journal (unless there are any already in 2173 * progress). 2174 * 2175 */ 2176 2177 void jbd2_journal_abort(journal_t *journal, int errno) 2178 { 2179 __journal_abort_soft(journal, errno); 2180 } 2181 2182 /** 2183 * int jbd2_journal_errno () - returns the journal's error state. 2184 * @journal: journal to examine. 2185 * 2186 * This is the errno number set with jbd2_journal_abort(), the last 2187 * time the journal was mounted - if the journal was stopped 2188 * without calling abort this will be 0. 2189 * 2190 * If the journal has been aborted on this mount time -EROFS will 2191 * be returned. 2192 */ 2193 int jbd2_journal_errno(journal_t *journal) 2194 { 2195 int err; 2196 2197 read_lock(&journal->j_state_lock); 2198 if (journal->j_flags & JBD2_ABORT) 2199 err = -EROFS; 2200 else 2201 err = journal->j_errno; 2202 read_unlock(&journal->j_state_lock); 2203 return err; 2204 } 2205 2206 /** 2207 * int jbd2_journal_clear_err () - clears the journal's error state 2208 * @journal: journal to act on. 2209 * 2210 * An error must be cleared or acked to take a FS out of readonly 2211 * mode. 2212 */ 2213 int jbd2_journal_clear_err(journal_t *journal) 2214 { 2215 int err = 0; 2216 2217 write_lock(&journal->j_state_lock); 2218 if (journal->j_flags & JBD2_ABORT) 2219 err = -EROFS; 2220 else 2221 journal->j_errno = 0; 2222 write_unlock(&journal->j_state_lock); 2223 return err; 2224 } 2225 2226 /** 2227 * void jbd2_journal_ack_err() - Ack journal err. 2228 * @journal: journal to act on. 2229 * 2230 * An error must be cleared or acked to take a FS out of readonly 2231 * mode. 2232 */ 2233 void jbd2_journal_ack_err(journal_t *journal) 2234 { 2235 write_lock(&journal->j_state_lock); 2236 if (journal->j_errno) 2237 journal->j_flags |= JBD2_ACK_ERR; 2238 write_unlock(&journal->j_state_lock); 2239 } 2240 2241 int jbd2_journal_blocks_per_page(struct inode *inode) 2242 { 2243 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2244 } 2245 2246 /* 2247 * helper functions to deal with 32 or 64bit block numbers. 2248 */ 2249 size_t journal_tag_bytes(journal_t *journal) 2250 { 2251 size_t sz; 2252 2253 if (jbd2_has_feature_csum3(journal)) 2254 return sizeof(journal_block_tag3_t); 2255 2256 sz = sizeof(journal_block_tag_t); 2257 2258 if (jbd2_has_feature_csum2(journal)) 2259 sz += sizeof(__u16); 2260 2261 if (jbd2_has_feature_64bit(journal)) 2262 return sz; 2263 else 2264 return sz - sizeof(__u32); 2265 } 2266 2267 /* 2268 * JBD memory management 2269 * 2270 * These functions are used to allocate block-sized chunks of memory 2271 * used for making copies of buffer_head data. Very often it will be 2272 * page-sized chunks of data, but sometimes it will be in 2273 * sub-page-size chunks. (For example, 16k pages on Power systems 2274 * with a 4k block file system.) For blocks smaller than a page, we 2275 * use a SLAB allocator. There are slab caches for each block size, 2276 * which are allocated at mount time, if necessary, and we only free 2277 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2278 * this reason we don't need to a mutex to protect access to 2279 * jbd2_slab[] allocating or releasing memory; only in 2280 * jbd2_journal_create_slab(). 2281 */ 2282 #define JBD2_MAX_SLABS 8 2283 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2284 2285 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2286 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2287 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2288 }; 2289 2290 2291 static void jbd2_journal_destroy_slabs(void) 2292 { 2293 int i; 2294 2295 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2296 kmem_cache_destroy(jbd2_slab[i]); 2297 jbd2_slab[i] = NULL; 2298 } 2299 } 2300 2301 static int jbd2_journal_create_slab(size_t size) 2302 { 2303 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2304 int i = order_base_2(size) - 10; 2305 size_t slab_size; 2306 2307 if (size == PAGE_SIZE) 2308 return 0; 2309 2310 if (i >= JBD2_MAX_SLABS) 2311 return -EINVAL; 2312 2313 if (unlikely(i < 0)) 2314 i = 0; 2315 mutex_lock(&jbd2_slab_create_mutex); 2316 if (jbd2_slab[i]) { 2317 mutex_unlock(&jbd2_slab_create_mutex); 2318 return 0; /* Already created */ 2319 } 2320 2321 slab_size = 1 << (i+10); 2322 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2323 slab_size, 0, NULL); 2324 mutex_unlock(&jbd2_slab_create_mutex); 2325 if (!jbd2_slab[i]) { 2326 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2327 return -ENOMEM; 2328 } 2329 return 0; 2330 } 2331 2332 static struct kmem_cache *get_slab(size_t size) 2333 { 2334 int i = order_base_2(size) - 10; 2335 2336 BUG_ON(i >= JBD2_MAX_SLABS); 2337 if (unlikely(i < 0)) 2338 i = 0; 2339 BUG_ON(jbd2_slab[i] == NULL); 2340 return jbd2_slab[i]; 2341 } 2342 2343 void *jbd2_alloc(size_t size, gfp_t flags) 2344 { 2345 void *ptr; 2346 2347 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2348 2349 if (size < PAGE_SIZE) 2350 ptr = kmem_cache_alloc(get_slab(size), flags); 2351 else 2352 ptr = (void *)__get_free_pages(flags, get_order(size)); 2353 2354 /* Check alignment; SLUB has gotten this wrong in the past, 2355 * and this can lead to user data corruption! */ 2356 BUG_ON(((unsigned long) ptr) & (size-1)); 2357 2358 return ptr; 2359 } 2360 2361 void jbd2_free(void *ptr, size_t size) 2362 { 2363 if (size < PAGE_SIZE) 2364 kmem_cache_free(get_slab(size), ptr); 2365 else 2366 free_pages((unsigned long)ptr, get_order(size)); 2367 }; 2368 2369 /* 2370 * Journal_head storage management 2371 */ 2372 static struct kmem_cache *jbd2_journal_head_cache; 2373 #ifdef CONFIG_JBD2_DEBUG 2374 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2375 #endif 2376 2377 static int __init jbd2_journal_init_journal_head_cache(void) 2378 { 2379 J_ASSERT(!jbd2_journal_head_cache); 2380 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2381 sizeof(struct journal_head), 2382 0, /* offset */ 2383 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2384 NULL); /* ctor */ 2385 if (!jbd2_journal_head_cache) { 2386 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2387 return -ENOMEM; 2388 } 2389 return 0; 2390 } 2391 2392 static void jbd2_journal_destroy_journal_head_cache(void) 2393 { 2394 kmem_cache_destroy(jbd2_journal_head_cache); 2395 jbd2_journal_head_cache = NULL; 2396 } 2397 2398 /* 2399 * journal_head splicing and dicing 2400 */ 2401 static struct journal_head *journal_alloc_journal_head(void) 2402 { 2403 struct journal_head *ret; 2404 2405 #ifdef CONFIG_JBD2_DEBUG 2406 atomic_inc(&nr_journal_heads); 2407 #endif 2408 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2409 if (!ret) { 2410 jbd_debug(1, "out of memory for journal_head\n"); 2411 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2412 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2413 GFP_NOFS | __GFP_NOFAIL); 2414 } 2415 return ret; 2416 } 2417 2418 static void journal_free_journal_head(struct journal_head *jh) 2419 { 2420 #ifdef CONFIG_JBD2_DEBUG 2421 atomic_dec(&nr_journal_heads); 2422 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2423 #endif 2424 kmem_cache_free(jbd2_journal_head_cache, jh); 2425 } 2426 2427 /* 2428 * A journal_head is attached to a buffer_head whenever JBD has an 2429 * interest in the buffer. 2430 * 2431 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2432 * is set. This bit is tested in core kernel code where we need to take 2433 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2434 * there. 2435 * 2436 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2437 * 2438 * When a buffer has its BH_JBD bit set it is immune from being released by 2439 * core kernel code, mainly via ->b_count. 2440 * 2441 * A journal_head is detached from its buffer_head when the journal_head's 2442 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2443 * transaction (b_cp_transaction) hold their references to b_jcount. 2444 * 2445 * Various places in the kernel want to attach a journal_head to a buffer_head 2446 * _before_ attaching the journal_head to a transaction. To protect the 2447 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2448 * journal_head's b_jcount refcount by one. The caller must call 2449 * jbd2_journal_put_journal_head() to undo this. 2450 * 2451 * So the typical usage would be: 2452 * 2453 * (Attach a journal_head if needed. Increments b_jcount) 2454 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2455 * ... 2456 * (Get another reference for transaction) 2457 * jbd2_journal_grab_journal_head(bh); 2458 * jh->b_transaction = xxx; 2459 * (Put original reference) 2460 * jbd2_journal_put_journal_head(jh); 2461 */ 2462 2463 /* 2464 * Give a buffer_head a journal_head. 2465 * 2466 * May sleep. 2467 */ 2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2469 { 2470 struct journal_head *jh; 2471 struct journal_head *new_jh = NULL; 2472 2473 repeat: 2474 if (!buffer_jbd(bh)) 2475 new_jh = journal_alloc_journal_head(); 2476 2477 jbd_lock_bh_journal_head(bh); 2478 if (buffer_jbd(bh)) { 2479 jh = bh2jh(bh); 2480 } else { 2481 J_ASSERT_BH(bh, 2482 (atomic_read(&bh->b_count) > 0) || 2483 (bh->b_page && bh->b_page->mapping)); 2484 2485 if (!new_jh) { 2486 jbd_unlock_bh_journal_head(bh); 2487 goto repeat; 2488 } 2489 2490 jh = new_jh; 2491 new_jh = NULL; /* We consumed it */ 2492 set_buffer_jbd(bh); 2493 bh->b_private = jh; 2494 jh->b_bh = bh; 2495 get_bh(bh); 2496 BUFFER_TRACE(bh, "added journal_head"); 2497 } 2498 jh->b_jcount++; 2499 jbd_unlock_bh_journal_head(bh); 2500 if (new_jh) 2501 journal_free_journal_head(new_jh); 2502 return bh->b_private; 2503 } 2504 2505 /* 2506 * Grab a ref against this buffer_head's journal_head. If it ended up not 2507 * having a journal_head, return NULL 2508 */ 2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2510 { 2511 struct journal_head *jh = NULL; 2512 2513 jbd_lock_bh_journal_head(bh); 2514 if (buffer_jbd(bh)) { 2515 jh = bh2jh(bh); 2516 jh->b_jcount++; 2517 } 2518 jbd_unlock_bh_journal_head(bh); 2519 return jh; 2520 } 2521 2522 static void __journal_remove_journal_head(struct buffer_head *bh) 2523 { 2524 struct journal_head *jh = bh2jh(bh); 2525 2526 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2527 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2528 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2529 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2530 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2531 J_ASSERT_BH(bh, buffer_jbd(bh)); 2532 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2533 BUFFER_TRACE(bh, "remove journal_head"); 2534 if (jh->b_frozen_data) { 2535 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2536 jbd2_free(jh->b_frozen_data, bh->b_size); 2537 } 2538 if (jh->b_committed_data) { 2539 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2540 jbd2_free(jh->b_committed_data, bh->b_size); 2541 } 2542 bh->b_private = NULL; 2543 jh->b_bh = NULL; /* debug, really */ 2544 clear_buffer_jbd(bh); 2545 journal_free_journal_head(jh); 2546 } 2547 2548 /* 2549 * Drop a reference on the passed journal_head. If it fell to zero then 2550 * release the journal_head from the buffer_head. 2551 */ 2552 void jbd2_journal_put_journal_head(struct journal_head *jh) 2553 { 2554 struct buffer_head *bh = jh2bh(jh); 2555 2556 jbd_lock_bh_journal_head(bh); 2557 J_ASSERT_JH(jh, jh->b_jcount > 0); 2558 --jh->b_jcount; 2559 if (!jh->b_jcount) { 2560 __journal_remove_journal_head(bh); 2561 jbd_unlock_bh_journal_head(bh); 2562 __brelse(bh); 2563 } else 2564 jbd_unlock_bh_journal_head(bh); 2565 } 2566 2567 /* 2568 * Initialize jbd inode head 2569 */ 2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2571 { 2572 jinode->i_transaction = NULL; 2573 jinode->i_next_transaction = NULL; 2574 jinode->i_vfs_inode = inode; 2575 jinode->i_flags = 0; 2576 jinode->i_dirty_start = 0; 2577 jinode->i_dirty_end = 0; 2578 INIT_LIST_HEAD(&jinode->i_list); 2579 } 2580 2581 /* 2582 * Function to be called before we start removing inode from memory (i.e., 2583 * clear_inode() is a fine place to be called from). It removes inode from 2584 * transaction's lists. 2585 */ 2586 void jbd2_journal_release_jbd_inode(journal_t *journal, 2587 struct jbd2_inode *jinode) 2588 { 2589 if (!journal) 2590 return; 2591 restart: 2592 spin_lock(&journal->j_list_lock); 2593 /* Is commit writing out inode - we have to wait */ 2594 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2595 wait_queue_head_t *wq; 2596 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2597 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2598 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2599 spin_unlock(&journal->j_list_lock); 2600 schedule(); 2601 finish_wait(wq, &wait.wq_entry); 2602 goto restart; 2603 } 2604 2605 if (jinode->i_transaction) { 2606 list_del(&jinode->i_list); 2607 jinode->i_transaction = NULL; 2608 } 2609 spin_unlock(&journal->j_list_lock); 2610 } 2611 2612 2613 #ifdef CONFIG_PROC_FS 2614 2615 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2616 2617 static void __init jbd2_create_jbd_stats_proc_entry(void) 2618 { 2619 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2620 } 2621 2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2623 { 2624 if (proc_jbd2_stats) 2625 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2626 } 2627 2628 #else 2629 2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2632 2633 #endif 2634 2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2636 2637 static int __init jbd2_journal_init_inode_cache(void) 2638 { 2639 J_ASSERT(!jbd2_inode_cache); 2640 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2641 if (!jbd2_inode_cache) { 2642 pr_emerg("JBD2: failed to create inode cache\n"); 2643 return -ENOMEM; 2644 } 2645 return 0; 2646 } 2647 2648 static int __init jbd2_journal_init_handle_cache(void) 2649 { 2650 J_ASSERT(!jbd2_handle_cache); 2651 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2652 if (!jbd2_handle_cache) { 2653 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2654 return -ENOMEM; 2655 } 2656 return 0; 2657 } 2658 2659 static void jbd2_journal_destroy_inode_cache(void) 2660 { 2661 kmem_cache_destroy(jbd2_inode_cache); 2662 jbd2_inode_cache = NULL; 2663 } 2664 2665 static void jbd2_journal_destroy_handle_cache(void) 2666 { 2667 kmem_cache_destroy(jbd2_handle_cache); 2668 jbd2_handle_cache = NULL; 2669 } 2670 2671 /* 2672 * Module startup and shutdown 2673 */ 2674 2675 static int __init journal_init_caches(void) 2676 { 2677 int ret; 2678 2679 ret = jbd2_journal_init_revoke_record_cache(); 2680 if (ret == 0) 2681 ret = jbd2_journal_init_revoke_table_cache(); 2682 if (ret == 0) 2683 ret = jbd2_journal_init_journal_head_cache(); 2684 if (ret == 0) 2685 ret = jbd2_journal_init_handle_cache(); 2686 if (ret == 0) 2687 ret = jbd2_journal_init_inode_cache(); 2688 if (ret == 0) 2689 ret = jbd2_journal_init_transaction_cache(); 2690 return ret; 2691 } 2692 2693 static void jbd2_journal_destroy_caches(void) 2694 { 2695 jbd2_journal_destroy_revoke_record_cache(); 2696 jbd2_journal_destroy_revoke_table_cache(); 2697 jbd2_journal_destroy_journal_head_cache(); 2698 jbd2_journal_destroy_handle_cache(); 2699 jbd2_journal_destroy_inode_cache(); 2700 jbd2_journal_destroy_transaction_cache(); 2701 jbd2_journal_destroy_slabs(); 2702 } 2703 2704 static int __init journal_init(void) 2705 { 2706 int ret; 2707 2708 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2709 2710 ret = journal_init_caches(); 2711 if (ret == 0) { 2712 jbd2_create_jbd_stats_proc_entry(); 2713 } else { 2714 jbd2_journal_destroy_caches(); 2715 } 2716 return ret; 2717 } 2718 2719 static void __exit journal_exit(void) 2720 { 2721 #ifdef CONFIG_JBD2_DEBUG 2722 int n = atomic_read(&nr_journal_heads); 2723 if (n) 2724 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2725 #endif 2726 jbd2_remove_jbd_stats_proc_entry(); 2727 jbd2_journal_destroy_caches(); 2728 } 2729 2730 MODULE_LICENSE("GPL"); 2731 module_init(journal_init); 2732 module_exit(journal_exit); 2733 2734