xref: /openbmc/linux/fs/jbd2/journal.c (revision adb80490)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
94 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
95 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static void __journal_abort_soft (journal_t *journal, int errno);
102 static int jbd2_journal_create_slab(size_t slab_size);
103 
104 #ifdef CONFIG_JBD2_DEBUG
105 void __jbd2_debug(int level, const char *file, const char *func,
106 		  unsigned int line, const char *fmt, ...)
107 {
108 	struct va_format vaf;
109 	va_list args;
110 
111 	if (level > jbd2_journal_enable_debug)
112 		return;
113 	va_start(args, fmt);
114 	vaf.fmt = fmt;
115 	vaf.va = &args;
116 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
117 	va_end(args);
118 }
119 EXPORT_SYMBOL(__jbd2_debug);
120 #endif
121 
122 /* Checksumming functions */
123 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
124 {
125 	if (!jbd2_journal_has_csum_v2or3_feature(j))
126 		return 1;
127 
128 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
129 }
130 
131 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
132 {
133 	__u32 csum;
134 	__be32 old_csum;
135 
136 	old_csum = sb->s_checksum;
137 	sb->s_checksum = 0;
138 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
139 	sb->s_checksum = old_csum;
140 
141 	return cpu_to_be32(csum);
142 }
143 
144 /*
145  * Helper function used to manage commit timeouts
146  */
147 
148 static void commit_timeout(struct timer_list *t)
149 {
150 	journal_t *journal = from_timer(journal, t, j_commit_timer);
151 
152 	wake_up_process(journal->j_task);
153 }
154 
155 /*
156  * kjournald2: The main thread function used to manage a logging device
157  * journal.
158  *
159  * This kernel thread is responsible for two things:
160  *
161  * 1) COMMIT:  Every so often we need to commit the current state of the
162  *    filesystem to disk.  The journal thread is responsible for writing
163  *    all of the metadata buffers to disk.
164  *
165  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
166  *    of the data in that part of the log has been rewritten elsewhere on
167  *    the disk.  Flushing these old buffers to reclaim space in the log is
168  *    known as checkpointing, and this thread is responsible for that job.
169  */
170 
171 static int kjournald2(void *arg)
172 {
173 	journal_t *journal = arg;
174 	transaction_t *transaction;
175 
176 	/*
177 	 * Set up an interval timer which can be used to trigger a commit wakeup
178 	 * after the commit interval expires
179 	 */
180 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
181 
182 	set_freezable();
183 
184 	/* Record that the journal thread is running */
185 	journal->j_task = current;
186 	wake_up(&journal->j_wait_done_commit);
187 
188 	/*
189 	 * Make sure that no allocations from this kernel thread will ever
190 	 * recurse to the fs layer because we are responsible for the
191 	 * transaction commit and any fs involvement might get stuck waiting for
192 	 * the trasn. commit.
193 	 */
194 	memalloc_nofs_save();
195 
196 	/*
197 	 * And now, wait forever for commit wakeup events.
198 	 */
199 	write_lock(&journal->j_state_lock);
200 
201 loop:
202 	if (journal->j_flags & JBD2_UNMOUNT)
203 		goto end_loop;
204 
205 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
206 		journal->j_commit_sequence, journal->j_commit_request);
207 
208 	if (journal->j_commit_sequence != journal->j_commit_request) {
209 		jbd_debug(1, "OK, requests differ\n");
210 		write_unlock(&journal->j_state_lock);
211 		del_timer_sync(&journal->j_commit_timer);
212 		jbd2_journal_commit_transaction(journal);
213 		write_lock(&journal->j_state_lock);
214 		goto loop;
215 	}
216 
217 	wake_up(&journal->j_wait_done_commit);
218 	if (freezing(current)) {
219 		/*
220 		 * The simpler the better. Flushing journal isn't a
221 		 * good idea, because that depends on threads that may
222 		 * be already stopped.
223 		 */
224 		jbd_debug(1, "Now suspending kjournald2\n");
225 		write_unlock(&journal->j_state_lock);
226 		try_to_freeze();
227 		write_lock(&journal->j_state_lock);
228 	} else {
229 		/*
230 		 * We assume on resume that commits are already there,
231 		 * so we don't sleep
232 		 */
233 		DEFINE_WAIT(wait);
234 		int should_sleep = 1;
235 
236 		prepare_to_wait(&journal->j_wait_commit, &wait,
237 				TASK_INTERRUPTIBLE);
238 		if (journal->j_commit_sequence != journal->j_commit_request)
239 			should_sleep = 0;
240 		transaction = journal->j_running_transaction;
241 		if (transaction && time_after_eq(jiffies,
242 						transaction->t_expires))
243 			should_sleep = 0;
244 		if (journal->j_flags & JBD2_UNMOUNT)
245 			should_sleep = 0;
246 		if (should_sleep) {
247 			write_unlock(&journal->j_state_lock);
248 			schedule();
249 			write_lock(&journal->j_state_lock);
250 		}
251 		finish_wait(&journal->j_wait_commit, &wait);
252 	}
253 
254 	jbd_debug(1, "kjournald2 wakes\n");
255 
256 	/*
257 	 * Were we woken up by a commit wakeup event?
258 	 */
259 	transaction = journal->j_running_transaction;
260 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
261 		journal->j_commit_request = transaction->t_tid;
262 		jbd_debug(1, "woke because of timeout\n");
263 	}
264 	goto loop;
265 
266 end_loop:
267 	del_timer_sync(&journal->j_commit_timer);
268 	journal->j_task = NULL;
269 	wake_up(&journal->j_wait_done_commit);
270 	jbd_debug(1, "Journal thread exiting.\n");
271 	write_unlock(&journal->j_state_lock);
272 	return 0;
273 }
274 
275 static int jbd2_journal_start_thread(journal_t *journal)
276 {
277 	struct task_struct *t;
278 
279 	t = kthread_run(kjournald2, journal, "jbd2/%s",
280 			journal->j_devname);
281 	if (IS_ERR(t))
282 		return PTR_ERR(t);
283 
284 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
285 	return 0;
286 }
287 
288 static void journal_kill_thread(journal_t *journal)
289 {
290 	write_lock(&journal->j_state_lock);
291 	journal->j_flags |= JBD2_UNMOUNT;
292 
293 	while (journal->j_task) {
294 		write_unlock(&journal->j_state_lock);
295 		wake_up(&journal->j_wait_commit);
296 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
297 		write_lock(&journal->j_state_lock);
298 	}
299 	write_unlock(&journal->j_state_lock);
300 }
301 
302 /*
303  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
304  *
305  * Writes a metadata buffer to a given disk block.  The actual IO is not
306  * performed but a new buffer_head is constructed which labels the data
307  * to be written with the correct destination disk block.
308  *
309  * Any magic-number escaping which needs to be done will cause a
310  * copy-out here.  If the buffer happens to start with the
311  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
312  * magic number is only written to the log for descripter blocks.  In
313  * this case, we copy the data and replace the first word with 0, and we
314  * return a result code which indicates that this buffer needs to be
315  * marked as an escaped buffer in the corresponding log descriptor
316  * block.  The missing word can then be restored when the block is read
317  * during recovery.
318  *
319  * If the source buffer has already been modified by a new transaction
320  * since we took the last commit snapshot, we use the frozen copy of
321  * that data for IO. If we end up using the existing buffer_head's data
322  * for the write, then we have to make sure nobody modifies it while the
323  * IO is in progress. do_get_write_access() handles this.
324  *
325  * The function returns a pointer to the buffer_head to be used for IO.
326  *
327  *
328  * Return value:
329  *  <0: Error
330  * >=0: Finished OK
331  *
332  * On success:
333  * Bit 0 set == escape performed on the data
334  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
335  */
336 
337 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
338 				  struct journal_head  *jh_in,
339 				  struct buffer_head **bh_out,
340 				  sector_t blocknr)
341 {
342 	int need_copy_out = 0;
343 	int done_copy_out = 0;
344 	int do_escape = 0;
345 	char *mapped_data;
346 	struct buffer_head *new_bh;
347 	struct page *new_page;
348 	unsigned int new_offset;
349 	struct buffer_head *bh_in = jh2bh(jh_in);
350 	journal_t *journal = transaction->t_journal;
351 
352 	/*
353 	 * The buffer really shouldn't be locked: only the current committing
354 	 * transaction is allowed to write it, so nobody else is allowed
355 	 * to do any IO.
356 	 *
357 	 * akpm: except if we're journalling data, and write() output is
358 	 * also part of a shared mapping, and another thread has
359 	 * decided to launch a writepage() against this buffer.
360 	 */
361 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
362 
363 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
364 
365 	/* keep subsequent assertions sane */
366 	atomic_set(&new_bh->b_count, 1);
367 
368 	jbd_lock_bh_state(bh_in);
369 repeat:
370 	/*
371 	 * If a new transaction has already done a buffer copy-out, then
372 	 * we use that version of the data for the commit.
373 	 */
374 	if (jh_in->b_frozen_data) {
375 		done_copy_out = 1;
376 		new_page = virt_to_page(jh_in->b_frozen_data);
377 		new_offset = offset_in_page(jh_in->b_frozen_data);
378 	} else {
379 		new_page = jh2bh(jh_in)->b_page;
380 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381 	}
382 
383 	mapped_data = kmap_atomic(new_page);
384 	/*
385 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
386 	 * before checking for escaping, as the trigger may modify the magic
387 	 * offset.  If a copy-out happens afterwards, it will have the correct
388 	 * data in the buffer.
389 	 */
390 	if (!done_copy_out)
391 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392 					   jh_in->b_triggers);
393 
394 	/*
395 	 * Check for escaping
396 	 */
397 	if (*((__be32 *)(mapped_data + new_offset)) ==
398 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399 		need_copy_out = 1;
400 		do_escape = 1;
401 	}
402 	kunmap_atomic(mapped_data);
403 
404 	/*
405 	 * Do we need to do a data copy?
406 	 */
407 	if (need_copy_out && !done_copy_out) {
408 		char *tmp;
409 
410 		jbd_unlock_bh_state(bh_in);
411 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412 		if (!tmp) {
413 			brelse(new_bh);
414 			return -ENOMEM;
415 		}
416 		jbd_lock_bh_state(bh_in);
417 		if (jh_in->b_frozen_data) {
418 			jbd2_free(tmp, bh_in->b_size);
419 			goto repeat;
420 		}
421 
422 		jh_in->b_frozen_data = tmp;
423 		mapped_data = kmap_atomic(new_page);
424 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
425 		kunmap_atomic(mapped_data);
426 
427 		new_page = virt_to_page(tmp);
428 		new_offset = offset_in_page(tmp);
429 		done_copy_out = 1;
430 
431 		/*
432 		 * This isn't strictly necessary, as we're using frozen
433 		 * data for the escaping, but it keeps consistency with
434 		 * b_frozen_data usage.
435 		 */
436 		jh_in->b_frozen_triggers = jh_in->b_triggers;
437 	}
438 
439 	/*
440 	 * Did we need to do an escaping?  Now we've done all the
441 	 * copying, we can finally do so.
442 	 */
443 	if (do_escape) {
444 		mapped_data = kmap_atomic(new_page);
445 		*((unsigned int *)(mapped_data + new_offset)) = 0;
446 		kunmap_atomic(mapped_data);
447 	}
448 
449 	set_bh_page(new_bh, new_page, new_offset);
450 	new_bh->b_size = bh_in->b_size;
451 	new_bh->b_bdev = journal->j_dev;
452 	new_bh->b_blocknr = blocknr;
453 	new_bh->b_private = bh_in;
454 	set_buffer_mapped(new_bh);
455 	set_buffer_dirty(new_bh);
456 
457 	*bh_out = new_bh;
458 
459 	/*
460 	 * The to-be-written buffer needs to get moved to the io queue,
461 	 * and the original buffer whose contents we are shadowing or
462 	 * copying is moved to the transaction's shadow queue.
463 	 */
464 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465 	spin_lock(&journal->j_list_lock);
466 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467 	spin_unlock(&journal->j_list_lock);
468 	set_buffer_shadow(bh_in);
469 	jbd_unlock_bh_state(bh_in);
470 
471 	return do_escape | (done_copy_out << 1);
472 }
473 
474 /*
475  * Allocation code for the journal file.  Manage the space left in the
476  * journal, so that we can begin checkpointing when appropriate.
477  */
478 
479 /*
480  * Called with j_state_lock locked for writing.
481  * Returns true if a transaction commit was started.
482  */
483 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
484 {
485 	/* Return if the txn has already requested to be committed */
486 	if (journal->j_commit_request == target)
487 		return 0;
488 
489 	/*
490 	 * The only transaction we can possibly wait upon is the
491 	 * currently running transaction (if it exists).  Otherwise,
492 	 * the target tid must be an old one.
493 	 */
494 	if (journal->j_running_transaction &&
495 	    journal->j_running_transaction->t_tid == target) {
496 		/*
497 		 * We want a new commit: OK, mark the request and wakeup the
498 		 * commit thread.  We do _not_ do the commit ourselves.
499 		 */
500 
501 		journal->j_commit_request = target;
502 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
503 			  journal->j_commit_request,
504 			  journal->j_commit_sequence);
505 		journal->j_running_transaction->t_requested = jiffies;
506 		wake_up(&journal->j_wait_commit);
507 		return 1;
508 	} else if (!tid_geq(journal->j_commit_request, target))
509 		/* This should never happen, but if it does, preserve
510 		   the evidence before kjournald goes into a loop and
511 		   increments j_commit_sequence beyond all recognition. */
512 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
513 			  journal->j_commit_request,
514 			  journal->j_commit_sequence,
515 			  target, journal->j_running_transaction ?
516 			  journal->j_running_transaction->t_tid : 0);
517 	return 0;
518 }
519 
520 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
521 {
522 	int ret;
523 
524 	write_lock(&journal->j_state_lock);
525 	ret = __jbd2_log_start_commit(journal, tid);
526 	write_unlock(&journal->j_state_lock);
527 	return ret;
528 }
529 
530 /*
531  * Force and wait any uncommitted transactions.  We can only force the running
532  * transaction if we don't have an active handle, otherwise, we will deadlock.
533  * Returns: <0 in case of error,
534  *           0 if nothing to commit,
535  *           1 if transaction was successfully committed.
536  */
537 static int __jbd2_journal_force_commit(journal_t *journal)
538 {
539 	transaction_t *transaction = NULL;
540 	tid_t tid;
541 	int need_to_start = 0, ret = 0;
542 
543 	read_lock(&journal->j_state_lock);
544 	if (journal->j_running_transaction && !current->journal_info) {
545 		transaction = journal->j_running_transaction;
546 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
547 			need_to_start = 1;
548 	} else if (journal->j_committing_transaction)
549 		transaction = journal->j_committing_transaction;
550 
551 	if (!transaction) {
552 		/* Nothing to commit */
553 		read_unlock(&journal->j_state_lock);
554 		return 0;
555 	}
556 	tid = transaction->t_tid;
557 	read_unlock(&journal->j_state_lock);
558 	if (need_to_start)
559 		jbd2_log_start_commit(journal, tid);
560 	ret = jbd2_log_wait_commit(journal, tid);
561 	if (!ret)
562 		ret = 1;
563 
564 	return ret;
565 }
566 
567 /**
568  * Force and wait upon a commit if the calling process is not within
569  * transaction.  This is used for forcing out undo-protected data which contains
570  * bitmaps, when the fs is running out of space.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  */
575 int jbd2_journal_force_commit_nested(journal_t *journal)
576 {
577 	int ret;
578 
579 	ret = __jbd2_journal_force_commit(journal);
580 	return ret > 0;
581 }
582 
583 /**
584  * int journal_force_commit() - force any uncommitted transactions
585  * @journal: journal to force
586  *
587  * Caller want unconditional commit. We can only force the running transaction
588  * if we don't have an active handle, otherwise, we will deadlock.
589  */
590 int jbd2_journal_force_commit(journal_t *journal)
591 {
592 	int ret;
593 
594 	J_ASSERT(!current->journal_info);
595 	ret = __jbd2_journal_force_commit(journal);
596 	if (ret > 0)
597 		ret = 0;
598 	return ret;
599 }
600 
601 /*
602  * Start a commit of the current running transaction (if any).  Returns true
603  * if a transaction is going to be committed (or is currently already
604  * committing), and fills its tid in at *ptid
605  */
606 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
607 {
608 	int ret = 0;
609 
610 	write_lock(&journal->j_state_lock);
611 	if (journal->j_running_transaction) {
612 		tid_t tid = journal->j_running_transaction->t_tid;
613 
614 		__jbd2_log_start_commit(journal, tid);
615 		/* There's a running transaction and we've just made sure
616 		 * it's commit has been scheduled. */
617 		if (ptid)
618 			*ptid = tid;
619 		ret = 1;
620 	} else if (journal->j_committing_transaction) {
621 		/*
622 		 * If commit has been started, then we have to wait for
623 		 * completion of that transaction.
624 		 */
625 		if (ptid)
626 			*ptid = journal->j_committing_transaction->t_tid;
627 		ret = 1;
628 	}
629 	write_unlock(&journal->j_state_lock);
630 	return ret;
631 }
632 
633 /*
634  * Return 1 if a given transaction has not yet sent barrier request
635  * connected with a transaction commit. If 0 is returned, transaction
636  * may or may not have sent the barrier. Used to avoid sending barrier
637  * twice in common cases.
638  */
639 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
640 {
641 	int ret = 0;
642 	transaction_t *commit_trans;
643 
644 	if (!(journal->j_flags & JBD2_BARRIER))
645 		return 0;
646 	read_lock(&journal->j_state_lock);
647 	/* Transaction already committed? */
648 	if (tid_geq(journal->j_commit_sequence, tid))
649 		goto out;
650 	commit_trans = journal->j_committing_transaction;
651 	if (!commit_trans || commit_trans->t_tid != tid) {
652 		ret = 1;
653 		goto out;
654 	}
655 	/*
656 	 * Transaction is being committed and we already proceeded to
657 	 * submitting a flush to fs partition?
658 	 */
659 	if (journal->j_fs_dev != journal->j_dev) {
660 		if (!commit_trans->t_need_data_flush ||
661 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
662 			goto out;
663 	} else {
664 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
665 			goto out;
666 	}
667 	ret = 1;
668 out:
669 	read_unlock(&journal->j_state_lock);
670 	return ret;
671 }
672 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
673 
674 /*
675  * Wait for a specified commit to complete.
676  * The caller may not hold the journal lock.
677  */
678 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
679 {
680 	int err = 0;
681 
682 	read_lock(&journal->j_state_lock);
683 #ifdef CONFIG_PROVE_LOCKING
684 	/*
685 	 * Some callers make sure transaction is already committing and in that
686 	 * case we cannot block on open handles anymore. So don't warn in that
687 	 * case.
688 	 */
689 	if (tid_gt(tid, journal->j_commit_sequence) &&
690 	    (!journal->j_committing_transaction ||
691 	     journal->j_committing_transaction->t_tid != tid)) {
692 		read_unlock(&journal->j_state_lock);
693 		jbd2_might_wait_for_commit(journal);
694 		read_lock(&journal->j_state_lock);
695 	}
696 #endif
697 #ifdef CONFIG_JBD2_DEBUG
698 	if (!tid_geq(journal->j_commit_request, tid)) {
699 		printk(KERN_ERR
700 		       "%s: error: j_commit_request=%u, tid=%u\n",
701 		       __func__, journal->j_commit_request, tid);
702 	}
703 #endif
704 	while (tid_gt(tid, journal->j_commit_sequence)) {
705 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
706 				  tid, journal->j_commit_sequence);
707 		read_unlock(&journal->j_state_lock);
708 		wake_up(&journal->j_wait_commit);
709 		wait_event(journal->j_wait_done_commit,
710 				!tid_gt(tid, journal->j_commit_sequence));
711 		read_lock(&journal->j_state_lock);
712 	}
713 	read_unlock(&journal->j_state_lock);
714 
715 	if (unlikely(is_journal_aborted(journal)))
716 		err = -EIO;
717 	return err;
718 }
719 
720 /* Return 1 when transaction with given tid has already committed. */
721 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
722 {
723 	int ret = 1;
724 
725 	read_lock(&journal->j_state_lock);
726 	if (journal->j_running_transaction &&
727 	    journal->j_running_transaction->t_tid == tid)
728 		ret = 0;
729 	if (journal->j_committing_transaction &&
730 	    journal->j_committing_transaction->t_tid == tid)
731 		ret = 0;
732 	read_unlock(&journal->j_state_lock);
733 	return ret;
734 }
735 EXPORT_SYMBOL(jbd2_transaction_committed);
736 
737 /*
738  * When this function returns the transaction corresponding to tid
739  * will be completed.  If the transaction has currently running, start
740  * committing that transaction before waiting for it to complete.  If
741  * the transaction id is stale, it is by definition already completed,
742  * so just return SUCCESS.
743  */
744 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
745 {
746 	int	need_to_wait = 1;
747 
748 	read_lock(&journal->j_state_lock);
749 	if (journal->j_running_transaction &&
750 	    journal->j_running_transaction->t_tid == tid) {
751 		if (journal->j_commit_request != tid) {
752 			/* transaction not yet started, so request it */
753 			read_unlock(&journal->j_state_lock);
754 			jbd2_log_start_commit(journal, tid);
755 			goto wait_commit;
756 		}
757 	} else if (!(journal->j_committing_transaction &&
758 		     journal->j_committing_transaction->t_tid == tid))
759 		need_to_wait = 0;
760 	read_unlock(&journal->j_state_lock);
761 	if (!need_to_wait)
762 		return 0;
763 wait_commit:
764 	return jbd2_log_wait_commit(journal, tid);
765 }
766 EXPORT_SYMBOL(jbd2_complete_transaction);
767 
768 /*
769  * Log buffer allocation routines:
770  */
771 
772 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
773 {
774 	unsigned long blocknr;
775 
776 	write_lock(&journal->j_state_lock);
777 	J_ASSERT(journal->j_free > 1);
778 
779 	blocknr = journal->j_head;
780 	journal->j_head++;
781 	journal->j_free--;
782 	if (journal->j_head == journal->j_last)
783 		journal->j_head = journal->j_first;
784 	write_unlock(&journal->j_state_lock);
785 	return jbd2_journal_bmap(journal, blocknr, retp);
786 }
787 
788 /*
789  * Conversion of logical to physical block numbers for the journal
790  *
791  * On external journals the journal blocks are identity-mapped, so
792  * this is a no-op.  If needed, we can use j_blk_offset - everything is
793  * ready.
794  */
795 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
796 		 unsigned long long *retp)
797 {
798 	int err = 0;
799 	unsigned long long ret;
800 
801 	if (journal->j_inode) {
802 		ret = bmap(journal->j_inode, blocknr);
803 		if (ret)
804 			*retp = ret;
805 		else {
806 			printk(KERN_ALERT "%s: journal block not found "
807 					"at offset %lu on %s\n",
808 			       __func__, blocknr, journal->j_devname);
809 			err = -EIO;
810 			__journal_abort_soft(journal, err);
811 		}
812 	} else {
813 		*retp = blocknr; /* +journal->j_blk_offset */
814 	}
815 	return err;
816 }
817 
818 /*
819  * We play buffer_head aliasing tricks to write data/metadata blocks to
820  * the journal without copying their contents, but for journal
821  * descriptor blocks we do need to generate bona fide buffers.
822  *
823  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
824  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
825  * But we don't bother doing that, so there will be coherency problems with
826  * mmaps of blockdevs which hold live JBD-controlled filesystems.
827  */
828 struct buffer_head *
829 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
830 {
831 	journal_t *journal = transaction->t_journal;
832 	struct buffer_head *bh;
833 	unsigned long long blocknr;
834 	journal_header_t *header;
835 	int err;
836 
837 	err = jbd2_journal_next_log_block(journal, &blocknr);
838 
839 	if (err)
840 		return NULL;
841 
842 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
843 	if (!bh)
844 		return NULL;
845 	lock_buffer(bh);
846 	memset(bh->b_data, 0, journal->j_blocksize);
847 	header = (journal_header_t *)bh->b_data;
848 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
849 	header->h_blocktype = cpu_to_be32(type);
850 	header->h_sequence = cpu_to_be32(transaction->t_tid);
851 	set_buffer_uptodate(bh);
852 	unlock_buffer(bh);
853 	BUFFER_TRACE(bh, "return this buffer");
854 	return bh;
855 }
856 
857 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
858 {
859 	struct jbd2_journal_block_tail *tail;
860 	__u32 csum;
861 
862 	if (!jbd2_journal_has_csum_v2or3(j))
863 		return;
864 
865 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
866 			sizeof(struct jbd2_journal_block_tail));
867 	tail->t_checksum = 0;
868 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
869 	tail->t_checksum = cpu_to_be32(csum);
870 }
871 
872 /*
873  * Return tid of the oldest transaction in the journal and block in the journal
874  * where the transaction starts.
875  *
876  * If the journal is now empty, return which will be the next transaction ID
877  * we will write and where will that transaction start.
878  *
879  * The return value is 0 if journal tail cannot be pushed any further, 1 if
880  * it can.
881  */
882 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
883 			      unsigned long *block)
884 {
885 	transaction_t *transaction;
886 	int ret;
887 
888 	read_lock(&journal->j_state_lock);
889 	spin_lock(&journal->j_list_lock);
890 	transaction = journal->j_checkpoint_transactions;
891 	if (transaction) {
892 		*tid = transaction->t_tid;
893 		*block = transaction->t_log_start;
894 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
895 		*tid = transaction->t_tid;
896 		*block = transaction->t_log_start;
897 	} else if ((transaction = journal->j_running_transaction) != NULL) {
898 		*tid = transaction->t_tid;
899 		*block = journal->j_head;
900 	} else {
901 		*tid = journal->j_transaction_sequence;
902 		*block = journal->j_head;
903 	}
904 	ret = tid_gt(*tid, journal->j_tail_sequence);
905 	spin_unlock(&journal->j_list_lock);
906 	read_unlock(&journal->j_state_lock);
907 
908 	return ret;
909 }
910 
911 /*
912  * Update information in journal structure and in on disk journal superblock
913  * about log tail. This function does not check whether information passed in
914  * really pushes log tail further. It's responsibility of the caller to make
915  * sure provided log tail information is valid (e.g. by holding
916  * j_checkpoint_mutex all the time between computing log tail and calling this
917  * function as is the case with jbd2_cleanup_journal_tail()).
918  *
919  * Requires j_checkpoint_mutex
920  */
921 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
922 {
923 	unsigned long freed;
924 	int ret;
925 
926 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
927 
928 	/*
929 	 * We cannot afford for write to remain in drive's caches since as
930 	 * soon as we update j_tail, next transaction can start reusing journal
931 	 * space and if we lose sb update during power failure we'd replay
932 	 * old transaction with possibly newly overwritten data.
933 	 */
934 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
935 					      REQ_SYNC | REQ_FUA);
936 	if (ret)
937 		goto out;
938 
939 	write_lock(&journal->j_state_lock);
940 	freed = block - journal->j_tail;
941 	if (block < journal->j_tail)
942 		freed += journal->j_last - journal->j_first;
943 
944 	trace_jbd2_update_log_tail(journal, tid, block, freed);
945 	jbd_debug(1,
946 		  "Cleaning journal tail from %u to %u (offset %lu), "
947 		  "freeing %lu\n",
948 		  journal->j_tail_sequence, tid, block, freed);
949 
950 	journal->j_free += freed;
951 	journal->j_tail_sequence = tid;
952 	journal->j_tail = block;
953 	write_unlock(&journal->j_state_lock);
954 
955 out:
956 	return ret;
957 }
958 
959 /*
960  * This is a variation of __jbd2_update_log_tail which checks for validity of
961  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
962  * with other threads updating log tail.
963  */
964 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
965 {
966 	mutex_lock_io(&journal->j_checkpoint_mutex);
967 	if (tid_gt(tid, journal->j_tail_sequence))
968 		__jbd2_update_log_tail(journal, tid, block);
969 	mutex_unlock(&journal->j_checkpoint_mutex);
970 }
971 
972 struct jbd2_stats_proc_session {
973 	journal_t *journal;
974 	struct transaction_stats_s *stats;
975 	int start;
976 	int max;
977 };
978 
979 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
980 {
981 	return *pos ? NULL : SEQ_START_TOKEN;
982 }
983 
984 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
985 {
986 	return NULL;
987 }
988 
989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991 	struct jbd2_stats_proc_session *s = seq->private;
992 
993 	if (v != SEQ_START_TOKEN)
994 		return 0;
995 	seq_printf(seq, "%lu transactions (%lu requested), "
996 		   "each up to %u blocks\n",
997 		   s->stats->ts_tid, s->stats->ts_requested,
998 		   s->journal->j_max_transaction_buffers);
999 	if (s->stats->ts_tid == 0)
1000 		return 0;
1001 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003 	seq_printf(seq, "  %ums request delay\n",
1004 	    (s->stats->ts_requested == 0) ? 0 :
1005 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1006 			     s->stats->ts_requested));
1007 	seq_printf(seq, "  %ums running transaction\n",
1008 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009 	seq_printf(seq, "  %ums transaction was being locked\n",
1010 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013 	seq_printf(seq, "  %ums logging transaction\n",
1014 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015 	seq_printf(seq, "  %lluus average transaction commit time\n",
1016 		   div_u64(s->journal->j_average_commit_time, 1000));
1017 	seq_printf(seq, "  %lu handles per transaction\n",
1018 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1019 	seq_printf(seq, "  %lu blocks per transaction\n",
1020 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1021 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1022 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023 	return 0;
1024 }
1025 
1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029 
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031 	.start  = jbd2_seq_info_start,
1032 	.next   = jbd2_seq_info_next,
1033 	.stop   = jbd2_seq_info_stop,
1034 	.show   = jbd2_seq_info_show,
1035 };
1036 
1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039 	journal_t *journal = PDE_DATA(inode);
1040 	struct jbd2_stats_proc_session *s;
1041 	int rc, size;
1042 
1043 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1044 	if (s == NULL)
1045 		return -ENOMEM;
1046 	size = sizeof(struct transaction_stats_s);
1047 	s->stats = kmalloc(size, GFP_KERNEL);
1048 	if (s->stats == NULL) {
1049 		kfree(s);
1050 		return -ENOMEM;
1051 	}
1052 	spin_lock(&journal->j_history_lock);
1053 	memcpy(s->stats, &journal->j_stats, size);
1054 	s->journal = journal;
1055 	spin_unlock(&journal->j_history_lock);
1056 
1057 	rc = seq_open(file, &jbd2_seq_info_ops);
1058 	if (rc == 0) {
1059 		struct seq_file *m = file->private_data;
1060 		m->private = s;
1061 	} else {
1062 		kfree(s->stats);
1063 		kfree(s);
1064 	}
1065 	return rc;
1066 
1067 }
1068 
1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071 	struct seq_file *seq = file->private_data;
1072 	struct jbd2_stats_proc_session *s = seq->private;
1073 	kfree(s->stats);
1074 	kfree(s);
1075 	return seq_release(inode, file);
1076 }
1077 
1078 static const struct file_operations jbd2_seq_info_fops = {
1079 	.owner		= THIS_MODULE,
1080 	.open           = jbd2_seq_info_open,
1081 	.read           = seq_read,
1082 	.llseek         = seq_lseek,
1083 	.release        = jbd2_seq_info_release,
1084 };
1085 
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087 
1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091 	if (journal->j_proc_entry) {
1092 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093 				 &jbd2_seq_info_fops, journal);
1094 	}
1095 }
1096 
1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099 	remove_proc_entry("info", journal->j_proc_entry);
1100 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102 
1103 /*
1104  * Management for journal control blocks: functions to create and
1105  * destroy journal_t structures, and to initialise and read existing
1106  * journal blocks from disk.  */
1107 
1108 /* First: create and setup a journal_t object in memory.  We initialise
1109  * very few fields yet: that has to wait until we have created the
1110  * journal structures from from scratch, or loaded them from disk. */
1111 
1112 static journal_t *journal_init_common(struct block_device *bdev,
1113 			struct block_device *fs_dev,
1114 			unsigned long long start, int len, int blocksize)
1115 {
1116 	static struct lock_class_key jbd2_trans_commit_key;
1117 	journal_t *journal;
1118 	int err;
1119 	struct buffer_head *bh;
1120 	int n;
1121 
1122 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123 	if (!journal)
1124 		return NULL;
1125 
1126 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1127 	init_waitqueue_head(&journal->j_wait_done_commit);
1128 	init_waitqueue_head(&journal->j_wait_commit);
1129 	init_waitqueue_head(&journal->j_wait_updates);
1130 	init_waitqueue_head(&journal->j_wait_reserved);
1131 	mutex_init(&journal->j_barrier);
1132 	mutex_init(&journal->j_checkpoint_mutex);
1133 	spin_lock_init(&journal->j_revoke_lock);
1134 	spin_lock_init(&journal->j_list_lock);
1135 	rwlock_init(&journal->j_state_lock);
1136 
1137 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138 	journal->j_min_batch_time = 0;
1139 	journal->j_max_batch_time = 15000; /* 15ms */
1140 	atomic_set(&journal->j_reserved_credits, 0);
1141 
1142 	/* The journal is marked for error until we succeed with recovery! */
1143 	journal->j_flags = JBD2_ABORT;
1144 
1145 	/* Set up a default-sized revoke table for the new mount. */
1146 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147 	if (err)
1148 		goto err_cleanup;
1149 
1150 	spin_lock_init(&journal->j_history_lock);
1151 
1152 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153 			 &jbd2_trans_commit_key, 0);
1154 
1155 	/* journal descriptor can store up to n blocks -bzzz */
1156 	journal->j_blocksize = blocksize;
1157 	journal->j_dev = bdev;
1158 	journal->j_fs_dev = fs_dev;
1159 	journal->j_blk_offset = start;
1160 	journal->j_maxlen = len;
1161 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162 	journal->j_wbufsize = n;
1163 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164 					GFP_KERNEL);
1165 	if (!journal->j_wbuf)
1166 		goto err_cleanup;
1167 
1168 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169 	if (!bh) {
1170 		pr_err("%s: Cannot get buffer for journal superblock\n",
1171 			__func__);
1172 		goto err_cleanup;
1173 	}
1174 	journal->j_sb_buffer = bh;
1175 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176 
1177 	return journal;
1178 
1179 err_cleanup:
1180 	kfree(journal->j_wbuf);
1181 	jbd2_journal_destroy_revoke(journal);
1182 	kfree(journal);
1183 	return NULL;
1184 }
1185 
1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187  *
1188  * Create a journal structure assigned some fixed set of disk blocks to
1189  * the journal.  We don't actually touch those disk blocks yet, but we
1190  * need to set up all of the mapping information to tell the journaling
1191  * system where the journal blocks are.
1192  *
1193  */
1194 
1195 /**
1196  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197  *  @bdev: Block device on which to create the journal
1198  *  @fs_dev: Device which hold journalled filesystem for this journal.
1199  *  @start: Block nr Start of journal.
1200  *  @len:  Length of the journal in blocks.
1201  *  @blocksize: blocksize of journalling device
1202  *
1203  *  Returns: a newly created journal_t *
1204  *
1205  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206  *  range of blocks on an arbitrary block device.
1207  *
1208  */
1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210 			struct block_device *fs_dev,
1211 			unsigned long long start, int len, int blocksize)
1212 {
1213 	journal_t *journal;
1214 
1215 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216 	if (!journal)
1217 		return NULL;
1218 
1219 	bdevname(journal->j_dev, journal->j_devname);
1220 	strreplace(journal->j_devname, '/', '!');
1221 	jbd2_stats_proc_init(journal);
1222 
1223 	return journal;
1224 }
1225 
1226 /**
1227  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228  *  @inode: An inode to create the journal in
1229  *
1230  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231  * the journal.  The inode must exist already, must support bmap() and
1232  * must have all data blocks preallocated.
1233  */
1234 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 {
1236 	journal_t *journal;
1237 	char *p;
1238 	unsigned long long blocknr;
1239 
1240 	blocknr = bmap(inode, 0);
1241 	if (!blocknr) {
1242 		pr_err("%s: Cannot locate journal superblock\n",
1243 			__func__);
1244 		return NULL;
1245 	}
1246 
1247 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250 
1251 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253 			inode->i_sb->s_blocksize);
1254 	if (!journal)
1255 		return NULL;
1256 
1257 	journal->j_inode = inode;
1258 	bdevname(journal->j_dev, journal->j_devname);
1259 	p = strreplace(journal->j_devname, '/', '!');
1260 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1261 	jbd2_stats_proc_init(journal);
1262 
1263 	return journal;
1264 }
1265 
1266 /*
1267  * If the journal init or create aborts, we need to mark the journal
1268  * superblock as being NULL to prevent the journal destroy from writing
1269  * back a bogus superblock.
1270  */
1271 static void journal_fail_superblock (journal_t *journal)
1272 {
1273 	struct buffer_head *bh = journal->j_sb_buffer;
1274 	brelse(bh);
1275 	journal->j_sb_buffer = NULL;
1276 }
1277 
1278 /*
1279  * Given a journal_t structure, initialise the various fields for
1280  * startup of a new journaling session.  We use this both when creating
1281  * a journal, and after recovering an old journal to reset it for
1282  * subsequent use.
1283  */
1284 
1285 static int journal_reset(journal_t *journal)
1286 {
1287 	journal_superblock_t *sb = journal->j_superblock;
1288 	unsigned long long first, last;
1289 
1290 	first = be32_to_cpu(sb->s_first);
1291 	last = be32_to_cpu(sb->s_maxlen);
1292 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294 		       first, last);
1295 		journal_fail_superblock(journal);
1296 		return -EINVAL;
1297 	}
1298 
1299 	journal->j_first = first;
1300 	journal->j_last = last;
1301 
1302 	journal->j_head = first;
1303 	journal->j_tail = first;
1304 	journal->j_free = last - first;
1305 
1306 	journal->j_tail_sequence = journal->j_transaction_sequence;
1307 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308 	journal->j_commit_request = journal->j_commit_sequence;
1309 
1310 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311 
1312 	/*
1313 	 * As a special case, if the on-disk copy is already marked as needing
1314 	 * no recovery (s_start == 0), then we can safely defer the superblock
1315 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1316 	 * attempting a write to a potential-readonly device.
1317 	 */
1318 	if (sb->s_start == 0) {
1319 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320 			"(start %ld, seq %u, errno %d)\n",
1321 			journal->j_tail, journal->j_tail_sequence,
1322 			journal->j_errno);
1323 		journal->j_flags |= JBD2_FLUSHED;
1324 	} else {
1325 		/* Lock here to make assertions happy... */
1326 		mutex_lock_io(&journal->j_checkpoint_mutex);
1327 		/*
1328 		 * Update log tail information. We use REQ_FUA since new
1329 		 * transaction will start reusing journal space and so we
1330 		 * must make sure information about current log tail is on
1331 		 * disk before that.
1332 		 */
1333 		jbd2_journal_update_sb_log_tail(journal,
1334 						journal->j_tail_sequence,
1335 						journal->j_tail,
1336 						REQ_SYNC | REQ_FUA);
1337 		mutex_unlock(&journal->j_checkpoint_mutex);
1338 	}
1339 	return jbd2_journal_start_thread(journal);
1340 }
1341 
1342 /*
1343  * This function expects that the caller will have locked the journal
1344  * buffer head, and will return with it unlocked
1345  */
1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348 	struct buffer_head *bh = journal->j_sb_buffer;
1349 	journal_superblock_t *sb = journal->j_superblock;
1350 	int ret;
1351 
1352 	/* Buffer got discarded which means block device got invalidated */
1353 	if (!buffer_mapped(bh))
1354 		return -EIO;
1355 
1356 	trace_jbd2_write_superblock(journal, write_flags);
1357 	if (!(journal->j_flags & JBD2_BARRIER))
1358 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1359 	if (buffer_write_io_error(bh)) {
1360 		/*
1361 		 * Oh, dear.  A previous attempt to write the journal
1362 		 * superblock failed.  This could happen because the
1363 		 * USB device was yanked out.  Or it could happen to
1364 		 * be a transient write error and maybe the block will
1365 		 * be remapped.  Nothing we can do but to retry the
1366 		 * write and hope for the best.
1367 		 */
1368 		printk(KERN_ERR "JBD2: previous I/O error detected "
1369 		       "for journal superblock update for %s.\n",
1370 		       journal->j_devname);
1371 		clear_buffer_write_io_error(bh);
1372 		set_buffer_uptodate(bh);
1373 	}
1374 	if (jbd2_journal_has_csum_v2or3(journal))
1375 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1376 	get_bh(bh);
1377 	bh->b_end_io = end_buffer_write_sync;
1378 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1379 	wait_on_buffer(bh);
1380 	if (buffer_write_io_error(bh)) {
1381 		clear_buffer_write_io_error(bh);
1382 		set_buffer_uptodate(bh);
1383 		ret = -EIO;
1384 	}
1385 	if (ret) {
1386 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1387 		       "journal superblock for %s.\n", ret,
1388 		       journal->j_devname);
1389 		jbd2_journal_abort(journal, ret);
1390 	}
1391 
1392 	return ret;
1393 }
1394 
1395 /**
1396  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1397  * @journal: The journal to update.
1398  * @tail_tid: TID of the new transaction at the tail of the log
1399  * @tail_block: The first block of the transaction at the tail of the log
1400  * @write_op: With which operation should we write the journal sb
1401  *
1402  * Update a journal's superblock information about log tail and write it to
1403  * disk, waiting for the IO to complete.
1404  */
1405 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1406 				     unsigned long tail_block, int write_op)
1407 {
1408 	journal_superblock_t *sb = journal->j_superblock;
1409 	int ret;
1410 
1411 	if (is_journal_aborted(journal))
1412 		return -EIO;
1413 
1414 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1415 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1416 		  tail_block, tail_tid);
1417 
1418 	lock_buffer(journal->j_sb_buffer);
1419 	sb->s_sequence = cpu_to_be32(tail_tid);
1420 	sb->s_start    = cpu_to_be32(tail_block);
1421 
1422 	ret = jbd2_write_superblock(journal, write_op);
1423 	if (ret)
1424 		goto out;
1425 
1426 	/* Log is no longer empty */
1427 	write_lock(&journal->j_state_lock);
1428 	WARN_ON(!sb->s_sequence);
1429 	journal->j_flags &= ~JBD2_FLUSHED;
1430 	write_unlock(&journal->j_state_lock);
1431 
1432 out:
1433 	return ret;
1434 }
1435 
1436 /**
1437  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438  * @journal: The journal to update.
1439  * @write_op: With which operation should we write the journal sb
1440  *
1441  * Update a journal's dynamic superblock fields to show that journal is empty.
1442  * Write updated superblock to disk waiting for IO to complete.
1443  */
1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 {
1446 	journal_superblock_t *sb = journal->j_superblock;
1447 
1448 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449 	lock_buffer(journal->j_sb_buffer);
1450 	if (sb->s_start == 0) {		/* Is it already empty? */
1451 		unlock_buffer(journal->j_sb_buffer);
1452 		return;
1453 	}
1454 
1455 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1456 		  journal->j_tail_sequence);
1457 
1458 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459 	sb->s_start    = cpu_to_be32(0);
1460 
1461 	jbd2_write_superblock(journal, write_op);
1462 
1463 	/* Log is no longer empty */
1464 	write_lock(&journal->j_state_lock);
1465 	journal->j_flags |= JBD2_FLUSHED;
1466 	write_unlock(&journal->j_state_lock);
1467 }
1468 
1469 
1470 /**
1471  * jbd2_journal_update_sb_errno() - Update error in the journal.
1472  * @journal: The journal to update.
1473  *
1474  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1475  * to complete.
1476  */
1477 void jbd2_journal_update_sb_errno(journal_t *journal)
1478 {
1479 	journal_superblock_t *sb = journal->j_superblock;
1480 	int errcode;
1481 
1482 	lock_buffer(journal->j_sb_buffer);
1483 	errcode = journal->j_errno;
1484 	if (errcode == -ESHUTDOWN)
1485 		errcode = 0;
1486 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1487 	sb->s_errno    = cpu_to_be32(errcode);
1488 
1489 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1490 }
1491 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1492 
1493 /*
1494  * Read the superblock for a given journal, performing initial
1495  * validation of the format.
1496  */
1497 static int journal_get_superblock(journal_t *journal)
1498 {
1499 	struct buffer_head *bh;
1500 	journal_superblock_t *sb;
1501 	int err = -EIO;
1502 
1503 	bh = journal->j_sb_buffer;
1504 
1505 	J_ASSERT(bh != NULL);
1506 	if (!buffer_uptodate(bh)) {
1507 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1508 		wait_on_buffer(bh);
1509 		if (!buffer_uptodate(bh)) {
1510 			printk(KERN_ERR
1511 				"JBD2: IO error reading journal superblock\n");
1512 			goto out;
1513 		}
1514 	}
1515 
1516 	if (buffer_verified(bh))
1517 		return 0;
1518 
1519 	sb = journal->j_superblock;
1520 
1521 	err = -EINVAL;
1522 
1523 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1524 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1525 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1526 		goto out;
1527 	}
1528 
1529 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1530 	case JBD2_SUPERBLOCK_V1:
1531 		journal->j_format_version = 1;
1532 		break;
1533 	case JBD2_SUPERBLOCK_V2:
1534 		journal->j_format_version = 2;
1535 		break;
1536 	default:
1537 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1538 		goto out;
1539 	}
1540 
1541 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1542 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1543 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1544 		printk(KERN_WARNING "JBD2: journal file too short\n");
1545 		goto out;
1546 	}
1547 
1548 	if (be32_to_cpu(sb->s_first) == 0 ||
1549 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1550 		printk(KERN_WARNING
1551 			"JBD2: Invalid start block of journal: %u\n",
1552 			be32_to_cpu(sb->s_first));
1553 		goto out;
1554 	}
1555 
1556 	if (jbd2_has_feature_csum2(journal) &&
1557 	    jbd2_has_feature_csum3(journal)) {
1558 		/* Can't have checksum v2 and v3 at the same time! */
1559 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1560 		       "at the same time!\n");
1561 		goto out;
1562 	}
1563 
1564 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1565 	    jbd2_has_feature_checksum(journal)) {
1566 		/* Can't have checksum v1 and v2 on at the same time! */
1567 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1568 		       "at the same time!\n");
1569 		goto out;
1570 	}
1571 
1572 	if (!jbd2_verify_csum_type(journal, sb)) {
1573 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1574 		goto out;
1575 	}
1576 
1577 	/* Load the checksum driver */
1578 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1579 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1580 		if (IS_ERR(journal->j_chksum_driver)) {
1581 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1582 			err = PTR_ERR(journal->j_chksum_driver);
1583 			journal->j_chksum_driver = NULL;
1584 			goto out;
1585 		}
1586 	}
1587 
1588 	if (jbd2_journal_has_csum_v2or3(journal)) {
1589 		/* Check superblock checksum */
1590 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1591 			printk(KERN_ERR "JBD2: journal checksum error\n");
1592 			err = -EFSBADCRC;
1593 			goto out;
1594 		}
1595 
1596 		/* Precompute checksum seed for all metadata */
1597 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1598 						   sizeof(sb->s_uuid));
1599 	}
1600 
1601 	set_buffer_verified(bh);
1602 
1603 	return 0;
1604 
1605 out:
1606 	journal_fail_superblock(journal);
1607 	return err;
1608 }
1609 
1610 /*
1611  * Load the on-disk journal superblock and read the key fields into the
1612  * journal_t.
1613  */
1614 
1615 static int load_superblock(journal_t *journal)
1616 {
1617 	int err;
1618 	journal_superblock_t *sb;
1619 
1620 	err = journal_get_superblock(journal);
1621 	if (err)
1622 		return err;
1623 
1624 	sb = journal->j_superblock;
1625 
1626 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1627 	journal->j_tail = be32_to_cpu(sb->s_start);
1628 	journal->j_first = be32_to_cpu(sb->s_first);
1629 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1630 	journal->j_errno = be32_to_cpu(sb->s_errno);
1631 
1632 	return 0;
1633 }
1634 
1635 
1636 /**
1637  * int jbd2_journal_load() - Read journal from disk.
1638  * @journal: Journal to act on.
1639  *
1640  * Given a journal_t structure which tells us which disk blocks contain
1641  * a journal, read the journal from disk to initialise the in-memory
1642  * structures.
1643  */
1644 int jbd2_journal_load(journal_t *journal)
1645 {
1646 	int err;
1647 	journal_superblock_t *sb;
1648 
1649 	err = load_superblock(journal);
1650 	if (err)
1651 		return err;
1652 
1653 	sb = journal->j_superblock;
1654 	/* If this is a V2 superblock, then we have to check the
1655 	 * features flags on it. */
1656 
1657 	if (journal->j_format_version >= 2) {
1658 		if ((sb->s_feature_ro_compat &
1659 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1660 		    (sb->s_feature_incompat &
1661 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1662 			printk(KERN_WARNING
1663 				"JBD2: Unrecognised features on journal\n");
1664 			return -EINVAL;
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Create a slab for this blocksize
1670 	 */
1671 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1672 	if (err)
1673 		return err;
1674 
1675 	/* Let the recovery code check whether it needs to recover any
1676 	 * data from the journal. */
1677 	if (jbd2_journal_recover(journal))
1678 		goto recovery_error;
1679 
1680 	if (journal->j_failed_commit) {
1681 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1682 		       "is corrupt.\n", journal->j_failed_commit,
1683 		       journal->j_devname);
1684 		return -EFSCORRUPTED;
1685 	}
1686 
1687 	/* OK, we've finished with the dynamic journal bits:
1688 	 * reinitialise the dynamic contents of the superblock in memory
1689 	 * and reset them on disk. */
1690 	if (journal_reset(journal))
1691 		goto recovery_error;
1692 
1693 	journal->j_flags &= ~JBD2_ABORT;
1694 	journal->j_flags |= JBD2_LOADED;
1695 	return 0;
1696 
1697 recovery_error:
1698 	printk(KERN_WARNING "JBD2: recovery failed\n");
1699 	return -EIO;
1700 }
1701 
1702 /**
1703  * void jbd2_journal_destroy() - Release a journal_t structure.
1704  * @journal: Journal to act on.
1705  *
1706  * Release a journal_t structure once it is no longer in use by the
1707  * journaled object.
1708  * Return <0 if we couldn't clean up the journal.
1709  */
1710 int jbd2_journal_destroy(journal_t *journal)
1711 {
1712 	int err = 0;
1713 
1714 	/* Wait for the commit thread to wake up and die. */
1715 	journal_kill_thread(journal);
1716 
1717 	/* Force a final log commit */
1718 	if (journal->j_running_transaction)
1719 		jbd2_journal_commit_transaction(journal);
1720 
1721 	/* Force any old transactions to disk */
1722 
1723 	/* Totally anal locking here... */
1724 	spin_lock(&journal->j_list_lock);
1725 	while (journal->j_checkpoint_transactions != NULL) {
1726 		spin_unlock(&journal->j_list_lock);
1727 		mutex_lock_io(&journal->j_checkpoint_mutex);
1728 		err = jbd2_log_do_checkpoint(journal);
1729 		mutex_unlock(&journal->j_checkpoint_mutex);
1730 		/*
1731 		 * If checkpointing failed, just free the buffers to avoid
1732 		 * looping forever
1733 		 */
1734 		if (err) {
1735 			jbd2_journal_destroy_checkpoint(journal);
1736 			spin_lock(&journal->j_list_lock);
1737 			break;
1738 		}
1739 		spin_lock(&journal->j_list_lock);
1740 	}
1741 
1742 	J_ASSERT(journal->j_running_transaction == NULL);
1743 	J_ASSERT(journal->j_committing_transaction == NULL);
1744 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1745 	spin_unlock(&journal->j_list_lock);
1746 
1747 	if (journal->j_sb_buffer) {
1748 		if (!is_journal_aborted(journal)) {
1749 			mutex_lock_io(&journal->j_checkpoint_mutex);
1750 
1751 			write_lock(&journal->j_state_lock);
1752 			journal->j_tail_sequence =
1753 				++journal->j_transaction_sequence;
1754 			write_unlock(&journal->j_state_lock);
1755 
1756 			jbd2_mark_journal_empty(journal,
1757 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1758 			mutex_unlock(&journal->j_checkpoint_mutex);
1759 		} else
1760 			err = -EIO;
1761 		brelse(journal->j_sb_buffer);
1762 	}
1763 
1764 	if (journal->j_proc_entry)
1765 		jbd2_stats_proc_exit(journal);
1766 	iput(journal->j_inode);
1767 	if (journal->j_revoke)
1768 		jbd2_journal_destroy_revoke(journal);
1769 	if (journal->j_chksum_driver)
1770 		crypto_free_shash(journal->j_chksum_driver);
1771 	kfree(journal->j_wbuf);
1772 	kfree(journal);
1773 
1774 	return err;
1775 }
1776 
1777 
1778 /**
1779  *int jbd2_journal_check_used_features () - Check if features specified are used.
1780  * @journal: Journal to check.
1781  * @compat: bitmask of compatible features
1782  * @ro: bitmask of features that force read-only mount
1783  * @incompat: bitmask of incompatible features
1784  *
1785  * Check whether the journal uses all of a given set of
1786  * features.  Return true (non-zero) if it does.
1787  **/
1788 
1789 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1790 				 unsigned long ro, unsigned long incompat)
1791 {
1792 	journal_superblock_t *sb;
1793 
1794 	if (!compat && !ro && !incompat)
1795 		return 1;
1796 	/* Load journal superblock if it is not loaded yet. */
1797 	if (journal->j_format_version == 0 &&
1798 	    journal_get_superblock(journal) != 0)
1799 		return 0;
1800 	if (journal->j_format_version == 1)
1801 		return 0;
1802 
1803 	sb = journal->j_superblock;
1804 
1805 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1806 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1807 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1808 		return 1;
1809 
1810 	return 0;
1811 }
1812 
1813 /**
1814  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1815  * @journal: Journal to check.
1816  * @compat: bitmask of compatible features
1817  * @ro: bitmask of features that force read-only mount
1818  * @incompat: bitmask of incompatible features
1819  *
1820  * Check whether the journaling code supports the use of
1821  * all of a given set of features on this journal.  Return true
1822  * (non-zero) if it can. */
1823 
1824 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1825 				      unsigned long ro, unsigned long incompat)
1826 {
1827 	if (!compat && !ro && !incompat)
1828 		return 1;
1829 
1830 	/* We can support any known requested features iff the
1831 	 * superblock is in version 2.  Otherwise we fail to support any
1832 	 * extended sb features. */
1833 
1834 	if (journal->j_format_version != 2)
1835 		return 0;
1836 
1837 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1838 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1839 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1840 		return 1;
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1847  * @journal: Journal to act on.
1848  * @compat: bitmask of compatible features
1849  * @ro: bitmask of features that force read-only mount
1850  * @incompat: bitmask of incompatible features
1851  *
1852  * Mark a given journal feature as present on the
1853  * superblock.  Returns true if the requested features could be set.
1854  *
1855  */
1856 
1857 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1858 			  unsigned long ro, unsigned long incompat)
1859 {
1860 #define INCOMPAT_FEATURE_ON(f) \
1861 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1862 #define COMPAT_FEATURE_ON(f) \
1863 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1864 	journal_superblock_t *sb;
1865 
1866 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1867 		return 1;
1868 
1869 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1870 		return 0;
1871 
1872 	/* If enabling v2 checksums, turn on v3 instead */
1873 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1874 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1875 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1876 	}
1877 
1878 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1879 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1880 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1881 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1882 
1883 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1884 		  compat, ro, incompat);
1885 
1886 	sb = journal->j_superblock;
1887 
1888 	/* Load the checksum driver if necessary */
1889 	if ((journal->j_chksum_driver == NULL) &&
1890 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1891 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1892 		if (IS_ERR(journal->j_chksum_driver)) {
1893 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1894 			journal->j_chksum_driver = NULL;
1895 			return 0;
1896 		}
1897 		/* Precompute checksum seed for all metadata */
1898 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1899 						   sizeof(sb->s_uuid));
1900 	}
1901 
1902 	lock_buffer(journal->j_sb_buffer);
1903 
1904 	/* If enabling v3 checksums, update superblock */
1905 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1906 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1907 		sb->s_feature_compat &=
1908 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1909 	}
1910 
1911 	/* If enabling v1 checksums, downgrade superblock */
1912 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1913 		sb->s_feature_incompat &=
1914 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1915 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1916 
1917 	sb->s_feature_compat    |= cpu_to_be32(compat);
1918 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1919 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1920 	unlock_buffer(journal->j_sb_buffer);
1921 
1922 	return 1;
1923 #undef COMPAT_FEATURE_ON
1924 #undef INCOMPAT_FEATURE_ON
1925 }
1926 
1927 /*
1928  * jbd2_journal_clear_features () - Clear a given journal feature in the
1929  * 				    superblock
1930  * @journal: Journal to act on.
1931  * @compat: bitmask of compatible features
1932  * @ro: bitmask of features that force read-only mount
1933  * @incompat: bitmask of incompatible features
1934  *
1935  * Clear a given journal feature as present on the
1936  * superblock.
1937  */
1938 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1939 				unsigned long ro, unsigned long incompat)
1940 {
1941 	journal_superblock_t *sb;
1942 
1943 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1944 		  compat, ro, incompat);
1945 
1946 	sb = journal->j_superblock;
1947 
1948 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1949 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1950 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1951 }
1952 EXPORT_SYMBOL(jbd2_journal_clear_features);
1953 
1954 /**
1955  * int jbd2_journal_flush () - Flush journal
1956  * @journal: Journal to act on.
1957  *
1958  * Flush all data for a given journal to disk and empty the journal.
1959  * Filesystems can use this when remounting readonly to ensure that
1960  * recovery does not need to happen on remount.
1961  */
1962 
1963 int jbd2_journal_flush(journal_t *journal)
1964 {
1965 	int err = 0;
1966 	transaction_t *transaction = NULL;
1967 
1968 	write_lock(&journal->j_state_lock);
1969 
1970 	/* Force everything buffered to the log... */
1971 	if (journal->j_running_transaction) {
1972 		transaction = journal->j_running_transaction;
1973 		__jbd2_log_start_commit(journal, transaction->t_tid);
1974 	} else if (journal->j_committing_transaction)
1975 		transaction = journal->j_committing_transaction;
1976 
1977 	/* Wait for the log commit to complete... */
1978 	if (transaction) {
1979 		tid_t tid = transaction->t_tid;
1980 
1981 		write_unlock(&journal->j_state_lock);
1982 		jbd2_log_wait_commit(journal, tid);
1983 	} else {
1984 		write_unlock(&journal->j_state_lock);
1985 	}
1986 
1987 	/* ...and flush everything in the log out to disk. */
1988 	spin_lock(&journal->j_list_lock);
1989 	while (!err && journal->j_checkpoint_transactions != NULL) {
1990 		spin_unlock(&journal->j_list_lock);
1991 		mutex_lock_io(&journal->j_checkpoint_mutex);
1992 		err = jbd2_log_do_checkpoint(journal);
1993 		mutex_unlock(&journal->j_checkpoint_mutex);
1994 		spin_lock(&journal->j_list_lock);
1995 	}
1996 	spin_unlock(&journal->j_list_lock);
1997 
1998 	if (is_journal_aborted(journal))
1999 		return -EIO;
2000 
2001 	mutex_lock_io(&journal->j_checkpoint_mutex);
2002 	if (!err) {
2003 		err = jbd2_cleanup_journal_tail(journal);
2004 		if (err < 0) {
2005 			mutex_unlock(&journal->j_checkpoint_mutex);
2006 			goto out;
2007 		}
2008 		err = 0;
2009 	}
2010 
2011 	/* Finally, mark the journal as really needing no recovery.
2012 	 * This sets s_start==0 in the underlying superblock, which is
2013 	 * the magic code for a fully-recovered superblock.  Any future
2014 	 * commits of data to the journal will restore the current
2015 	 * s_start value. */
2016 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2017 	mutex_unlock(&journal->j_checkpoint_mutex);
2018 	write_lock(&journal->j_state_lock);
2019 	J_ASSERT(!journal->j_running_transaction);
2020 	J_ASSERT(!journal->j_committing_transaction);
2021 	J_ASSERT(!journal->j_checkpoint_transactions);
2022 	J_ASSERT(journal->j_head == journal->j_tail);
2023 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2024 	write_unlock(&journal->j_state_lock);
2025 out:
2026 	return err;
2027 }
2028 
2029 /**
2030  * int jbd2_journal_wipe() - Wipe journal contents
2031  * @journal: Journal to act on.
2032  * @write: flag (see below)
2033  *
2034  * Wipe out all of the contents of a journal, safely.  This will produce
2035  * a warning if the journal contains any valid recovery information.
2036  * Must be called between journal_init_*() and jbd2_journal_load().
2037  *
2038  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2039  * we merely suppress recovery.
2040  */
2041 
2042 int jbd2_journal_wipe(journal_t *journal, int write)
2043 {
2044 	int err = 0;
2045 
2046 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2047 
2048 	err = load_superblock(journal);
2049 	if (err)
2050 		return err;
2051 
2052 	if (!journal->j_tail)
2053 		goto no_recovery;
2054 
2055 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2056 		write ? "Clearing" : "Ignoring");
2057 
2058 	err = jbd2_journal_skip_recovery(journal);
2059 	if (write) {
2060 		/* Lock to make assertions happy... */
2061 		mutex_lock_io(&journal->j_checkpoint_mutex);
2062 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2063 		mutex_unlock(&journal->j_checkpoint_mutex);
2064 	}
2065 
2066  no_recovery:
2067 	return err;
2068 }
2069 
2070 /*
2071  * Journal abort has very specific semantics, which we describe
2072  * for journal abort.
2073  *
2074  * Two internal functions, which provide abort to the jbd layer
2075  * itself are here.
2076  */
2077 
2078 /*
2079  * Quick version for internal journal use (doesn't lock the journal).
2080  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2081  * and don't attempt to make any other journal updates.
2082  */
2083 void __jbd2_journal_abort_hard(journal_t *journal)
2084 {
2085 	transaction_t *transaction;
2086 
2087 	if (journal->j_flags & JBD2_ABORT)
2088 		return;
2089 
2090 	printk(KERN_ERR "Aborting journal on device %s.\n",
2091 	       journal->j_devname);
2092 
2093 	write_lock(&journal->j_state_lock);
2094 	journal->j_flags |= JBD2_ABORT;
2095 	transaction = journal->j_running_transaction;
2096 	if (transaction)
2097 		__jbd2_log_start_commit(journal, transaction->t_tid);
2098 	write_unlock(&journal->j_state_lock);
2099 }
2100 
2101 /* Soft abort: record the abort error status in the journal superblock,
2102  * but don't do any other IO. */
2103 static void __journal_abort_soft (journal_t *journal, int errno)
2104 {
2105 	int old_errno;
2106 
2107 	write_lock(&journal->j_state_lock);
2108 	old_errno = journal->j_errno;
2109 	if (!journal->j_errno || errno == -ESHUTDOWN)
2110 		journal->j_errno = errno;
2111 
2112 	if (journal->j_flags & JBD2_ABORT) {
2113 		write_unlock(&journal->j_state_lock);
2114 		if (!old_errno && old_errno != -ESHUTDOWN &&
2115 		    errno == -ESHUTDOWN)
2116 			jbd2_journal_update_sb_errno(journal);
2117 		return;
2118 	}
2119 	write_unlock(&journal->j_state_lock);
2120 
2121 	__jbd2_journal_abort_hard(journal);
2122 
2123 	if (errno) {
2124 		jbd2_journal_update_sb_errno(journal);
2125 		write_lock(&journal->j_state_lock);
2126 		journal->j_flags |= JBD2_REC_ERR;
2127 		write_unlock(&journal->j_state_lock);
2128 	}
2129 }
2130 
2131 /**
2132  * void jbd2_journal_abort () - Shutdown the journal immediately.
2133  * @journal: the journal to shutdown.
2134  * @errno:   an error number to record in the journal indicating
2135  *           the reason for the shutdown.
2136  *
2137  * Perform a complete, immediate shutdown of the ENTIRE
2138  * journal (not of a single transaction).  This operation cannot be
2139  * undone without closing and reopening the journal.
2140  *
2141  * The jbd2_journal_abort function is intended to support higher level error
2142  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2143  * mode.
2144  *
2145  * Journal abort has very specific semantics.  Any existing dirty,
2146  * unjournaled buffers in the main filesystem will still be written to
2147  * disk by bdflush, but the journaling mechanism will be suspended
2148  * immediately and no further transaction commits will be honoured.
2149  *
2150  * Any dirty, journaled buffers will be written back to disk without
2151  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2152  * filesystem, but we _do_ attempt to leave as much data as possible
2153  * behind for fsck to use for cleanup.
2154  *
2155  * Any attempt to get a new transaction handle on a journal which is in
2156  * ABORT state will just result in an -EROFS error return.  A
2157  * jbd2_journal_stop on an existing handle will return -EIO if we have
2158  * entered abort state during the update.
2159  *
2160  * Recursive transactions are not disturbed by journal abort until the
2161  * final jbd2_journal_stop, which will receive the -EIO error.
2162  *
2163  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2164  * which will be recorded (if possible) in the journal superblock.  This
2165  * allows a client to record failure conditions in the middle of a
2166  * transaction without having to complete the transaction to record the
2167  * failure to disk.  ext3_error, for example, now uses this
2168  * functionality.
2169  *
2170  * Errors which originate from within the journaling layer will NOT
2171  * supply an errno; a null errno implies that absolutely no further
2172  * writes are done to the journal (unless there are any already in
2173  * progress).
2174  *
2175  */
2176 
2177 void jbd2_journal_abort(journal_t *journal, int errno)
2178 {
2179 	__journal_abort_soft(journal, errno);
2180 }
2181 
2182 /**
2183  * int jbd2_journal_errno () - returns the journal's error state.
2184  * @journal: journal to examine.
2185  *
2186  * This is the errno number set with jbd2_journal_abort(), the last
2187  * time the journal was mounted - if the journal was stopped
2188  * without calling abort this will be 0.
2189  *
2190  * If the journal has been aborted on this mount time -EROFS will
2191  * be returned.
2192  */
2193 int jbd2_journal_errno(journal_t *journal)
2194 {
2195 	int err;
2196 
2197 	read_lock(&journal->j_state_lock);
2198 	if (journal->j_flags & JBD2_ABORT)
2199 		err = -EROFS;
2200 	else
2201 		err = journal->j_errno;
2202 	read_unlock(&journal->j_state_lock);
2203 	return err;
2204 }
2205 
2206 /**
2207  * int jbd2_journal_clear_err () - clears the journal's error state
2208  * @journal: journal to act on.
2209  *
2210  * An error must be cleared or acked to take a FS out of readonly
2211  * mode.
2212  */
2213 int jbd2_journal_clear_err(journal_t *journal)
2214 {
2215 	int err = 0;
2216 
2217 	write_lock(&journal->j_state_lock);
2218 	if (journal->j_flags & JBD2_ABORT)
2219 		err = -EROFS;
2220 	else
2221 		journal->j_errno = 0;
2222 	write_unlock(&journal->j_state_lock);
2223 	return err;
2224 }
2225 
2226 /**
2227  * void jbd2_journal_ack_err() - Ack journal err.
2228  * @journal: journal to act on.
2229  *
2230  * An error must be cleared or acked to take a FS out of readonly
2231  * mode.
2232  */
2233 void jbd2_journal_ack_err(journal_t *journal)
2234 {
2235 	write_lock(&journal->j_state_lock);
2236 	if (journal->j_errno)
2237 		journal->j_flags |= JBD2_ACK_ERR;
2238 	write_unlock(&journal->j_state_lock);
2239 }
2240 
2241 int jbd2_journal_blocks_per_page(struct inode *inode)
2242 {
2243 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2244 }
2245 
2246 /*
2247  * helper functions to deal with 32 or 64bit block numbers.
2248  */
2249 size_t journal_tag_bytes(journal_t *journal)
2250 {
2251 	size_t sz;
2252 
2253 	if (jbd2_has_feature_csum3(journal))
2254 		return sizeof(journal_block_tag3_t);
2255 
2256 	sz = sizeof(journal_block_tag_t);
2257 
2258 	if (jbd2_has_feature_csum2(journal))
2259 		sz += sizeof(__u16);
2260 
2261 	if (jbd2_has_feature_64bit(journal))
2262 		return sz;
2263 	else
2264 		return sz - sizeof(__u32);
2265 }
2266 
2267 /*
2268  * JBD memory management
2269  *
2270  * These functions are used to allocate block-sized chunks of memory
2271  * used for making copies of buffer_head data.  Very often it will be
2272  * page-sized chunks of data, but sometimes it will be in
2273  * sub-page-size chunks.  (For example, 16k pages on Power systems
2274  * with a 4k block file system.)  For blocks smaller than a page, we
2275  * use a SLAB allocator.  There are slab caches for each block size,
2276  * which are allocated at mount time, if necessary, and we only free
2277  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2278  * this reason we don't need to a mutex to protect access to
2279  * jbd2_slab[] allocating or releasing memory; only in
2280  * jbd2_journal_create_slab().
2281  */
2282 #define JBD2_MAX_SLABS 8
2283 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2284 
2285 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2286 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2287 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2288 };
2289 
2290 
2291 static void jbd2_journal_destroy_slabs(void)
2292 {
2293 	int i;
2294 
2295 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2296 		kmem_cache_destroy(jbd2_slab[i]);
2297 		jbd2_slab[i] = NULL;
2298 	}
2299 }
2300 
2301 static int jbd2_journal_create_slab(size_t size)
2302 {
2303 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2304 	int i = order_base_2(size) - 10;
2305 	size_t slab_size;
2306 
2307 	if (size == PAGE_SIZE)
2308 		return 0;
2309 
2310 	if (i >= JBD2_MAX_SLABS)
2311 		return -EINVAL;
2312 
2313 	if (unlikely(i < 0))
2314 		i = 0;
2315 	mutex_lock(&jbd2_slab_create_mutex);
2316 	if (jbd2_slab[i]) {
2317 		mutex_unlock(&jbd2_slab_create_mutex);
2318 		return 0;	/* Already created */
2319 	}
2320 
2321 	slab_size = 1 << (i+10);
2322 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2323 					 slab_size, 0, NULL);
2324 	mutex_unlock(&jbd2_slab_create_mutex);
2325 	if (!jbd2_slab[i]) {
2326 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2327 		return -ENOMEM;
2328 	}
2329 	return 0;
2330 }
2331 
2332 static struct kmem_cache *get_slab(size_t size)
2333 {
2334 	int i = order_base_2(size) - 10;
2335 
2336 	BUG_ON(i >= JBD2_MAX_SLABS);
2337 	if (unlikely(i < 0))
2338 		i = 0;
2339 	BUG_ON(jbd2_slab[i] == NULL);
2340 	return jbd2_slab[i];
2341 }
2342 
2343 void *jbd2_alloc(size_t size, gfp_t flags)
2344 {
2345 	void *ptr;
2346 
2347 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2348 
2349 	if (size < PAGE_SIZE)
2350 		ptr = kmem_cache_alloc(get_slab(size), flags);
2351 	else
2352 		ptr = (void *)__get_free_pages(flags, get_order(size));
2353 
2354 	/* Check alignment; SLUB has gotten this wrong in the past,
2355 	 * and this can lead to user data corruption! */
2356 	BUG_ON(((unsigned long) ptr) & (size-1));
2357 
2358 	return ptr;
2359 }
2360 
2361 void jbd2_free(void *ptr, size_t size)
2362 {
2363 	if (size < PAGE_SIZE)
2364 		kmem_cache_free(get_slab(size), ptr);
2365 	else
2366 		free_pages((unsigned long)ptr, get_order(size));
2367 };
2368 
2369 /*
2370  * Journal_head storage management
2371  */
2372 static struct kmem_cache *jbd2_journal_head_cache;
2373 #ifdef CONFIG_JBD2_DEBUG
2374 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375 #endif
2376 
2377 static int __init jbd2_journal_init_journal_head_cache(void)
2378 {
2379 	J_ASSERT(!jbd2_journal_head_cache);
2380 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2381 				sizeof(struct journal_head),
2382 				0,		/* offset */
2383 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2384 				NULL);		/* ctor */
2385 	if (!jbd2_journal_head_cache) {
2386 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2387 		return -ENOMEM;
2388 	}
2389 	return 0;
2390 }
2391 
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394 	kmem_cache_destroy(jbd2_journal_head_cache);
2395 	jbd2_journal_head_cache = NULL;
2396 }
2397 
2398 /*
2399  * journal_head splicing and dicing
2400  */
2401 static struct journal_head *journal_alloc_journal_head(void)
2402 {
2403 	struct journal_head *ret;
2404 
2405 #ifdef CONFIG_JBD2_DEBUG
2406 	atomic_inc(&nr_journal_heads);
2407 #endif
2408 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2409 	if (!ret) {
2410 		jbd_debug(1, "out of memory for journal_head\n");
2411 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2412 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2413 				GFP_NOFS | __GFP_NOFAIL);
2414 	}
2415 	return ret;
2416 }
2417 
2418 static void journal_free_journal_head(struct journal_head *jh)
2419 {
2420 #ifdef CONFIG_JBD2_DEBUG
2421 	atomic_dec(&nr_journal_heads);
2422 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423 #endif
2424 	kmem_cache_free(jbd2_journal_head_cache, jh);
2425 }
2426 
2427 /*
2428  * A journal_head is attached to a buffer_head whenever JBD has an
2429  * interest in the buffer.
2430  *
2431  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432  * is set.  This bit is tested in core kernel code where we need to take
2433  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2434  * there.
2435  *
2436  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437  *
2438  * When a buffer has its BH_JBD bit set it is immune from being released by
2439  * core kernel code, mainly via ->b_count.
2440  *
2441  * A journal_head is detached from its buffer_head when the journal_head's
2442  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443  * transaction (b_cp_transaction) hold their references to b_jcount.
2444  *
2445  * Various places in the kernel want to attach a journal_head to a buffer_head
2446  * _before_ attaching the journal_head to a transaction.  To protect the
2447  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448  * journal_head's b_jcount refcount by one.  The caller must call
2449  * jbd2_journal_put_journal_head() to undo this.
2450  *
2451  * So the typical usage would be:
2452  *
2453  *	(Attach a journal_head if needed.  Increments b_jcount)
2454  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455  *	...
2456  *      (Get another reference for transaction)
2457  *	jbd2_journal_grab_journal_head(bh);
2458  *	jh->b_transaction = xxx;
2459  *	(Put original reference)
2460  *	jbd2_journal_put_journal_head(jh);
2461  */
2462 
2463 /*
2464  * Give a buffer_head a journal_head.
2465  *
2466  * May sleep.
2467  */
2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 {
2470 	struct journal_head *jh;
2471 	struct journal_head *new_jh = NULL;
2472 
2473 repeat:
2474 	if (!buffer_jbd(bh))
2475 		new_jh = journal_alloc_journal_head();
2476 
2477 	jbd_lock_bh_journal_head(bh);
2478 	if (buffer_jbd(bh)) {
2479 		jh = bh2jh(bh);
2480 	} else {
2481 		J_ASSERT_BH(bh,
2482 			(atomic_read(&bh->b_count) > 0) ||
2483 			(bh->b_page && bh->b_page->mapping));
2484 
2485 		if (!new_jh) {
2486 			jbd_unlock_bh_journal_head(bh);
2487 			goto repeat;
2488 		}
2489 
2490 		jh = new_jh;
2491 		new_jh = NULL;		/* We consumed it */
2492 		set_buffer_jbd(bh);
2493 		bh->b_private = jh;
2494 		jh->b_bh = bh;
2495 		get_bh(bh);
2496 		BUFFER_TRACE(bh, "added journal_head");
2497 	}
2498 	jh->b_jcount++;
2499 	jbd_unlock_bh_journal_head(bh);
2500 	if (new_jh)
2501 		journal_free_journal_head(new_jh);
2502 	return bh->b_private;
2503 }
2504 
2505 /*
2506  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2507  * having a journal_head, return NULL
2508  */
2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 {
2511 	struct journal_head *jh = NULL;
2512 
2513 	jbd_lock_bh_journal_head(bh);
2514 	if (buffer_jbd(bh)) {
2515 		jh = bh2jh(bh);
2516 		jh->b_jcount++;
2517 	}
2518 	jbd_unlock_bh_journal_head(bh);
2519 	return jh;
2520 }
2521 
2522 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 {
2524 	struct journal_head *jh = bh2jh(bh);
2525 
2526 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531 	J_ASSERT_BH(bh, buffer_jbd(bh));
2532 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533 	BUFFER_TRACE(bh, "remove journal_head");
2534 	if (jh->b_frozen_data) {
2535 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536 		jbd2_free(jh->b_frozen_data, bh->b_size);
2537 	}
2538 	if (jh->b_committed_data) {
2539 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540 		jbd2_free(jh->b_committed_data, bh->b_size);
2541 	}
2542 	bh->b_private = NULL;
2543 	jh->b_bh = NULL;	/* debug, really */
2544 	clear_buffer_jbd(bh);
2545 	journal_free_journal_head(jh);
2546 }
2547 
2548 /*
2549  * Drop a reference on the passed journal_head.  If it fell to zero then
2550  * release the journal_head from the buffer_head.
2551  */
2552 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 {
2554 	struct buffer_head *bh = jh2bh(jh);
2555 
2556 	jbd_lock_bh_journal_head(bh);
2557 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2558 	--jh->b_jcount;
2559 	if (!jh->b_jcount) {
2560 		__journal_remove_journal_head(bh);
2561 		jbd_unlock_bh_journal_head(bh);
2562 		__brelse(bh);
2563 	} else
2564 		jbd_unlock_bh_journal_head(bh);
2565 }
2566 
2567 /*
2568  * Initialize jbd inode head
2569  */
2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 {
2572 	jinode->i_transaction = NULL;
2573 	jinode->i_next_transaction = NULL;
2574 	jinode->i_vfs_inode = inode;
2575 	jinode->i_flags = 0;
2576 	jinode->i_dirty_start = 0;
2577 	jinode->i_dirty_end = 0;
2578 	INIT_LIST_HEAD(&jinode->i_list);
2579 }
2580 
2581 /*
2582  * Function to be called before we start removing inode from memory (i.e.,
2583  * clear_inode() is a fine place to be called from). It removes inode from
2584  * transaction's lists.
2585  */
2586 void jbd2_journal_release_jbd_inode(journal_t *journal,
2587 				    struct jbd2_inode *jinode)
2588 {
2589 	if (!journal)
2590 		return;
2591 restart:
2592 	spin_lock(&journal->j_list_lock);
2593 	/* Is commit writing out inode - we have to wait */
2594 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595 		wait_queue_head_t *wq;
2596 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599 		spin_unlock(&journal->j_list_lock);
2600 		schedule();
2601 		finish_wait(wq, &wait.wq_entry);
2602 		goto restart;
2603 	}
2604 
2605 	if (jinode->i_transaction) {
2606 		list_del(&jinode->i_list);
2607 		jinode->i_transaction = NULL;
2608 	}
2609 	spin_unlock(&journal->j_list_lock);
2610 }
2611 
2612 
2613 #ifdef CONFIG_PROC_FS
2614 
2615 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2616 
2617 static void __init jbd2_create_jbd_stats_proc_entry(void)
2618 {
2619 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620 }
2621 
2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623 {
2624 	if (proc_jbd2_stats)
2625 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626 }
2627 
2628 #else
2629 
2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632 
2633 #endif
2634 
2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636 
2637 static int __init jbd2_journal_init_inode_cache(void)
2638 {
2639 	J_ASSERT(!jbd2_inode_cache);
2640 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2641 	if (!jbd2_inode_cache) {
2642 		pr_emerg("JBD2: failed to create inode cache\n");
2643 		return -ENOMEM;
2644 	}
2645 	return 0;
2646 }
2647 
2648 static int __init jbd2_journal_init_handle_cache(void)
2649 {
2650 	J_ASSERT(!jbd2_handle_cache);
2651 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2652 	if (!jbd2_handle_cache) {
2653 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2654 		return -ENOMEM;
2655 	}
2656 	return 0;
2657 }
2658 
2659 static void jbd2_journal_destroy_inode_cache(void)
2660 {
2661 	kmem_cache_destroy(jbd2_inode_cache);
2662 	jbd2_inode_cache = NULL;
2663 }
2664 
2665 static void jbd2_journal_destroy_handle_cache(void)
2666 {
2667 	kmem_cache_destroy(jbd2_handle_cache);
2668 	jbd2_handle_cache = NULL;
2669 }
2670 
2671 /*
2672  * Module startup and shutdown
2673  */
2674 
2675 static int __init journal_init_caches(void)
2676 {
2677 	int ret;
2678 
2679 	ret = jbd2_journal_init_revoke_record_cache();
2680 	if (ret == 0)
2681 		ret = jbd2_journal_init_revoke_table_cache();
2682 	if (ret == 0)
2683 		ret = jbd2_journal_init_journal_head_cache();
2684 	if (ret == 0)
2685 		ret = jbd2_journal_init_handle_cache();
2686 	if (ret == 0)
2687 		ret = jbd2_journal_init_inode_cache();
2688 	if (ret == 0)
2689 		ret = jbd2_journal_init_transaction_cache();
2690 	return ret;
2691 }
2692 
2693 static void jbd2_journal_destroy_caches(void)
2694 {
2695 	jbd2_journal_destroy_revoke_record_cache();
2696 	jbd2_journal_destroy_revoke_table_cache();
2697 	jbd2_journal_destroy_journal_head_cache();
2698 	jbd2_journal_destroy_handle_cache();
2699 	jbd2_journal_destroy_inode_cache();
2700 	jbd2_journal_destroy_transaction_cache();
2701 	jbd2_journal_destroy_slabs();
2702 }
2703 
2704 static int __init journal_init(void)
2705 {
2706 	int ret;
2707 
2708 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2709 
2710 	ret = journal_init_caches();
2711 	if (ret == 0) {
2712 		jbd2_create_jbd_stats_proc_entry();
2713 	} else {
2714 		jbd2_journal_destroy_caches();
2715 	}
2716 	return ret;
2717 }
2718 
2719 static void __exit journal_exit(void)
2720 {
2721 #ifdef CONFIG_JBD2_DEBUG
2722 	int n = atomic_read(&nr_journal_heads);
2723 	if (n)
2724 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2725 #endif
2726 	jbd2_remove_jbd_stats_proc_entry();
2727 	jbd2_journal_destroy_caches();
2728 }
2729 
2730 MODULE_LICENSE("GPL");
2731 module_init(journal_init);
2732 module_exit(journal_exit);
2733 
2734