1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * Force and wait upon a commit if the calling process is not within 570 * transaction. This is used for forcing out undo-protected data which contains 571 * bitmaps, when the fs is running out of space. 572 * 573 * @journal: journal to force 574 * Returns true if progress was made. 575 */ 576 int jbd2_journal_force_commit_nested(journal_t *journal) 577 { 578 int ret; 579 580 ret = __jbd2_journal_force_commit(journal); 581 return ret > 0; 582 } 583 584 /** 585 * int journal_force_commit() - force any uncommitted transactions 586 * @journal: journal to force 587 * 588 * Caller want unconditional commit. We can only force the running transaction 589 * if we don't have an active handle, otherwise, we will deadlock. 590 */ 591 int jbd2_journal_force_commit(journal_t *journal) 592 { 593 int ret; 594 595 J_ASSERT(!current->journal_info); 596 ret = __jbd2_journal_force_commit(journal); 597 if (ret > 0) 598 ret = 0; 599 return ret; 600 } 601 602 /* 603 * Start a commit of the current running transaction (if any). Returns true 604 * if a transaction is going to be committed (or is currently already 605 * committing), and fills its tid in at *ptid 606 */ 607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 608 { 609 int ret = 0; 610 611 write_lock(&journal->j_state_lock); 612 if (journal->j_running_transaction) { 613 tid_t tid = journal->j_running_transaction->t_tid; 614 615 __jbd2_log_start_commit(journal, tid); 616 /* There's a running transaction and we've just made sure 617 * it's commit has been scheduled. */ 618 if (ptid) 619 *ptid = tid; 620 ret = 1; 621 } else if (journal->j_committing_transaction) { 622 /* 623 * If commit has been started, then we have to wait for 624 * completion of that transaction. 625 */ 626 if (ptid) 627 *ptid = journal->j_committing_transaction->t_tid; 628 ret = 1; 629 } 630 write_unlock(&journal->j_state_lock); 631 return ret; 632 } 633 634 /* 635 * Return 1 if a given transaction has not yet sent barrier request 636 * connected with a transaction commit. If 0 is returned, transaction 637 * may or may not have sent the barrier. Used to avoid sending barrier 638 * twice in common cases. 639 */ 640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 641 { 642 int ret = 0; 643 transaction_t *commit_trans; 644 645 if (!(journal->j_flags & JBD2_BARRIER)) 646 return 0; 647 read_lock(&journal->j_state_lock); 648 /* Transaction already committed? */ 649 if (tid_geq(journal->j_commit_sequence, tid)) 650 goto out; 651 commit_trans = journal->j_committing_transaction; 652 if (!commit_trans || commit_trans->t_tid != tid) { 653 ret = 1; 654 goto out; 655 } 656 /* 657 * Transaction is being committed and we already proceeded to 658 * submitting a flush to fs partition? 659 */ 660 if (journal->j_fs_dev != journal->j_dev) { 661 if (!commit_trans->t_need_data_flush || 662 commit_trans->t_state >= T_COMMIT_DFLUSH) 663 goto out; 664 } else { 665 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 666 goto out; 667 } 668 ret = 1; 669 out: 670 read_unlock(&journal->j_state_lock); 671 return ret; 672 } 673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 674 675 /* 676 * Wait for a specified commit to complete. 677 * The caller may not hold the journal lock. 678 */ 679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 680 { 681 int err = 0; 682 683 read_lock(&journal->j_state_lock); 684 #ifdef CONFIG_PROVE_LOCKING 685 /* 686 * Some callers make sure transaction is already committing and in that 687 * case we cannot block on open handles anymore. So don't warn in that 688 * case. 689 */ 690 if (tid_gt(tid, journal->j_commit_sequence) && 691 (!journal->j_committing_transaction || 692 journal->j_committing_transaction->t_tid != tid)) { 693 read_unlock(&journal->j_state_lock); 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 } 697 #endif 698 #ifdef CONFIG_JBD2_DEBUG 699 if (!tid_geq(journal->j_commit_request, tid)) { 700 printk(KERN_ERR 701 "%s: error: j_commit_request=%u, tid=%u\n", 702 __func__, journal->j_commit_request, tid); 703 } 704 #endif 705 while (tid_gt(tid, journal->j_commit_sequence)) { 706 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 707 tid, journal->j_commit_sequence); 708 read_unlock(&journal->j_state_lock); 709 wake_up(&journal->j_wait_commit); 710 wait_event(journal->j_wait_done_commit, 711 !tid_gt(tid, journal->j_commit_sequence)); 712 read_lock(&journal->j_state_lock); 713 } 714 read_unlock(&journal->j_state_lock); 715 716 if (unlikely(is_journal_aborted(journal))) 717 err = -EIO; 718 return err; 719 } 720 721 /* 722 * Start a fast commit. If there's an ongoing fast or full commit wait for 723 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 724 * if a fast commit is not needed, either because there's an already a commit 725 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 726 * commit has yet been performed. 727 */ 728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 729 { 730 if (unlikely(is_journal_aborted(journal))) 731 return -EIO; 732 /* 733 * Fast commits only allowed if at least one full commit has 734 * been processed. 735 */ 736 if (!journal->j_stats.ts_tid) 737 return -EINVAL; 738 739 write_lock(&journal->j_state_lock); 740 if (tid <= journal->j_commit_sequence) { 741 write_unlock(&journal->j_state_lock); 742 return -EALREADY; 743 } 744 745 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 746 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 747 DEFINE_WAIT(wait); 748 749 prepare_to_wait(&journal->j_fc_wait, &wait, 750 TASK_UNINTERRUPTIBLE); 751 write_unlock(&journal->j_state_lock); 752 schedule(); 753 finish_wait(&journal->j_fc_wait, &wait); 754 return -EALREADY; 755 } 756 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 757 write_unlock(&journal->j_state_lock); 758 759 return 0; 760 } 761 EXPORT_SYMBOL(jbd2_fc_begin_commit); 762 763 /* 764 * Stop a fast commit. If fallback is set, this function starts commit of 765 * TID tid before any other fast commit can start. 766 */ 767 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 768 { 769 if (journal->j_fc_cleanup_callback) 770 journal->j_fc_cleanup_callback(journal, 0); 771 write_lock(&journal->j_state_lock); 772 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 773 if (fallback) 774 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 775 write_unlock(&journal->j_state_lock); 776 wake_up(&journal->j_fc_wait); 777 if (fallback) 778 return jbd2_complete_transaction(journal, tid); 779 return 0; 780 } 781 782 int jbd2_fc_end_commit(journal_t *journal) 783 { 784 return __jbd2_fc_end_commit(journal, 0, false); 785 } 786 EXPORT_SYMBOL(jbd2_fc_end_commit); 787 788 int jbd2_fc_end_commit_fallback(journal_t *journal) 789 { 790 tid_t tid; 791 792 read_lock(&journal->j_state_lock); 793 tid = journal->j_running_transaction ? 794 journal->j_running_transaction->t_tid : 0; 795 read_unlock(&journal->j_state_lock); 796 return __jbd2_fc_end_commit(journal, tid, true); 797 } 798 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 799 800 /* Return 1 when transaction with given tid has already committed. */ 801 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 802 { 803 int ret = 1; 804 805 read_lock(&journal->j_state_lock); 806 if (journal->j_running_transaction && 807 journal->j_running_transaction->t_tid == tid) 808 ret = 0; 809 if (journal->j_committing_transaction && 810 journal->j_committing_transaction->t_tid == tid) 811 ret = 0; 812 read_unlock(&journal->j_state_lock); 813 return ret; 814 } 815 EXPORT_SYMBOL(jbd2_transaction_committed); 816 817 /* 818 * When this function returns the transaction corresponding to tid 819 * will be completed. If the transaction has currently running, start 820 * committing that transaction before waiting for it to complete. If 821 * the transaction id is stale, it is by definition already completed, 822 * so just return SUCCESS. 823 */ 824 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 825 { 826 int need_to_wait = 1; 827 828 read_lock(&journal->j_state_lock); 829 if (journal->j_running_transaction && 830 journal->j_running_transaction->t_tid == tid) { 831 if (journal->j_commit_request != tid) { 832 /* transaction not yet started, so request it */ 833 read_unlock(&journal->j_state_lock); 834 jbd2_log_start_commit(journal, tid); 835 goto wait_commit; 836 } 837 } else if (!(journal->j_committing_transaction && 838 journal->j_committing_transaction->t_tid == tid)) 839 need_to_wait = 0; 840 read_unlock(&journal->j_state_lock); 841 if (!need_to_wait) 842 return 0; 843 wait_commit: 844 return jbd2_log_wait_commit(journal, tid); 845 } 846 EXPORT_SYMBOL(jbd2_complete_transaction); 847 848 /* 849 * Log buffer allocation routines: 850 */ 851 852 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 853 { 854 unsigned long blocknr; 855 856 write_lock(&journal->j_state_lock); 857 J_ASSERT(journal->j_free > 1); 858 859 blocknr = journal->j_head; 860 journal->j_head++; 861 journal->j_free--; 862 if (journal->j_head == journal->j_last) 863 journal->j_head = journal->j_first; 864 write_unlock(&journal->j_state_lock); 865 return jbd2_journal_bmap(journal, blocknr, retp); 866 } 867 868 /* Map one fast commit buffer for use by the file system */ 869 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 870 { 871 unsigned long long pblock; 872 unsigned long blocknr; 873 int ret = 0; 874 struct buffer_head *bh; 875 int fc_off; 876 877 *bh_out = NULL; 878 879 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 880 fc_off = journal->j_fc_off; 881 blocknr = journal->j_fc_first + fc_off; 882 journal->j_fc_off++; 883 } else { 884 ret = -EINVAL; 885 } 886 887 if (ret) 888 return ret; 889 890 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 891 if (ret) 892 return ret; 893 894 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 895 if (!bh) 896 return -ENOMEM; 897 898 899 journal->j_fc_wbuf[fc_off] = bh; 900 901 *bh_out = bh; 902 903 return 0; 904 } 905 EXPORT_SYMBOL(jbd2_fc_get_buf); 906 907 /* 908 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 909 * for completion. 910 */ 911 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 912 { 913 struct buffer_head *bh; 914 int i, j_fc_off; 915 916 j_fc_off = journal->j_fc_off; 917 918 /* 919 * Wait in reverse order to minimize chances of us being woken up before 920 * all IOs have completed 921 */ 922 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 923 bh = journal->j_fc_wbuf[i]; 924 wait_on_buffer(bh); 925 put_bh(bh); 926 journal->j_fc_wbuf[i] = NULL; 927 if (unlikely(!buffer_uptodate(bh))) 928 return -EIO; 929 } 930 931 return 0; 932 } 933 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 934 935 /* 936 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 937 * for completion. 938 */ 939 int jbd2_fc_release_bufs(journal_t *journal) 940 { 941 struct buffer_head *bh; 942 int i, j_fc_off; 943 944 j_fc_off = journal->j_fc_off; 945 946 /* 947 * Wait in reverse order to minimize chances of us being woken up before 948 * all IOs have completed 949 */ 950 for (i = j_fc_off - 1; i >= 0; i--) { 951 bh = journal->j_fc_wbuf[i]; 952 if (!bh) 953 break; 954 put_bh(bh); 955 journal->j_fc_wbuf[i] = NULL; 956 } 957 958 return 0; 959 } 960 EXPORT_SYMBOL(jbd2_fc_release_bufs); 961 962 /* 963 * Conversion of logical to physical block numbers for the journal 964 * 965 * On external journals the journal blocks are identity-mapped, so 966 * this is a no-op. If needed, we can use j_blk_offset - everything is 967 * ready. 968 */ 969 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 970 unsigned long long *retp) 971 { 972 int err = 0; 973 unsigned long long ret; 974 sector_t block = 0; 975 976 if (journal->j_inode) { 977 block = blocknr; 978 ret = bmap(journal->j_inode, &block); 979 980 if (ret || !block) { 981 printk(KERN_ALERT "%s: journal block not found " 982 "at offset %lu on %s\n", 983 __func__, blocknr, journal->j_devname); 984 err = -EIO; 985 jbd2_journal_abort(journal, err); 986 } else { 987 *retp = block; 988 } 989 990 } else { 991 *retp = blocknr; /* +journal->j_blk_offset */ 992 } 993 return err; 994 } 995 996 /* 997 * We play buffer_head aliasing tricks to write data/metadata blocks to 998 * the journal without copying their contents, but for journal 999 * descriptor blocks we do need to generate bona fide buffers. 1000 * 1001 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1002 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1003 * But we don't bother doing that, so there will be coherency problems with 1004 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1005 */ 1006 struct buffer_head * 1007 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1008 { 1009 journal_t *journal = transaction->t_journal; 1010 struct buffer_head *bh; 1011 unsigned long long blocknr; 1012 journal_header_t *header; 1013 int err; 1014 1015 err = jbd2_journal_next_log_block(journal, &blocknr); 1016 1017 if (err) 1018 return NULL; 1019 1020 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1021 if (!bh) 1022 return NULL; 1023 atomic_dec(&transaction->t_outstanding_credits); 1024 lock_buffer(bh); 1025 memset(bh->b_data, 0, journal->j_blocksize); 1026 header = (journal_header_t *)bh->b_data; 1027 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1028 header->h_blocktype = cpu_to_be32(type); 1029 header->h_sequence = cpu_to_be32(transaction->t_tid); 1030 set_buffer_uptodate(bh); 1031 unlock_buffer(bh); 1032 BUFFER_TRACE(bh, "return this buffer"); 1033 return bh; 1034 } 1035 1036 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1037 { 1038 struct jbd2_journal_block_tail *tail; 1039 __u32 csum; 1040 1041 if (!jbd2_journal_has_csum_v2or3(j)) 1042 return; 1043 1044 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1045 sizeof(struct jbd2_journal_block_tail)); 1046 tail->t_checksum = 0; 1047 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1048 tail->t_checksum = cpu_to_be32(csum); 1049 } 1050 1051 /* 1052 * Return tid of the oldest transaction in the journal and block in the journal 1053 * where the transaction starts. 1054 * 1055 * If the journal is now empty, return which will be the next transaction ID 1056 * we will write and where will that transaction start. 1057 * 1058 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1059 * it can. 1060 */ 1061 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1062 unsigned long *block) 1063 { 1064 transaction_t *transaction; 1065 int ret; 1066 1067 read_lock(&journal->j_state_lock); 1068 spin_lock(&journal->j_list_lock); 1069 transaction = journal->j_checkpoint_transactions; 1070 if (transaction) { 1071 *tid = transaction->t_tid; 1072 *block = transaction->t_log_start; 1073 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1074 *tid = transaction->t_tid; 1075 *block = transaction->t_log_start; 1076 } else if ((transaction = journal->j_running_transaction) != NULL) { 1077 *tid = transaction->t_tid; 1078 *block = journal->j_head; 1079 } else { 1080 *tid = journal->j_transaction_sequence; 1081 *block = journal->j_head; 1082 } 1083 ret = tid_gt(*tid, journal->j_tail_sequence); 1084 spin_unlock(&journal->j_list_lock); 1085 read_unlock(&journal->j_state_lock); 1086 1087 return ret; 1088 } 1089 1090 /* 1091 * Update information in journal structure and in on disk journal superblock 1092 * about log tail. This function does not check whether information passed in 1093 * really pushes log tail further. It's responsibility of the caller to make 1094 * sure provided log tail information is valid (e.g. by holding 1095 * j_checkpoint_mutex all the time between computing log tail and calling this 1096 * function as is the case with jbd2_cleanup_journal_tail()). 1097 * 1098 * Requires j_checkpoint_mutex 1099 */ 1100 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1101 { 1102 unsigned long freed; 1103 int ret; 1104 1105 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1106 1107 /* 1108 * We cannot afford for write to remain in drive's caches since as 1109 * soon as we update j_tail, next transaction can start reusing journal 1110 * space and if we lose sb update during power failure we'd replay 1111 * old transaction with possibly newly overwritten data. 1112 */ 1113 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1114 REQ_SYNC | REQ_FUA); 1115 if (ret) 1116 goto out; 1117 1118 write_lock(&journal->j_state_lock); 1119 freed = block - journal->j_tail; 1120 if (block < journal->j_tail) 1121 freed += journal->j_last - journal->j_first; 1122 1123 trace_jbd2_update_log_tail(journal, tid, block, freed); 1124 jbd_debug(1, 1125 "Cleaning journal tail from %u to %u (offset %lu), " 1126 "freeing %lu\n", 1127 journal->j_tail_sequence, tid, block, freed); 1128 1129 journal->j_free += freed; 1130 journal->j_tail_sequence = tid; 1131 journal->j_tail = block; 1132 write_unlock(&journal->j_state_lock); 1133 1134 out: 1135 return ret; 1136 } 1137 1138 /* 1139 * This is a variation of __jbd2_update_log_tail which checks for validity of 1140 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1141 * with other threads updating log tail. 1142 */ 1143 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1144 { 1145 mutex_lock_io(&journal->j_checkpoint_mutex); 1146 if (tid_gt(tid, journal->j_tail_sequence)) 1147 __jbd2_update_log_tail(journal, tid, block); 1148 mutex_unlock(&journal->j_checkpoint_mutex); 1149 } 1150 1151 struct jbd2_stats_proc_session { 1152 journal_t *journal; 1153 struct transaction_stats_s *stats; 1154 int start; 1155 int max; 1156 }; 1157 1158 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1159 { 1160 return *pos ? NULL : SEQ_START_TOKEN; 1161 } 1162 1163 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1164 { 1165 (*pos)++; 1166 return NULL; 1167 } 1168 1169 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1170 { 1171 struct jbd2_stats_proc_session *s = seq->private; 1172 1173 if (v != SEQ_START_TOKEN) 1174 return 0; 1175 seq_printf(seq, "%lu transactions (%lu requested), " 1176 "each up to %u blocks\n", 1177 s->stats->ts_tid, s->stats->ts_requested, 1178 s->journal->j_max_transaction_buffers); 1179 if (s->stats->ts_tid == 0) 1180 return 0; 1181 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1182 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1183 seq_printf(seq, " %ums request delay\n", 1184 (s->stats->ts_requested == 0) ? 0 : 1185 jiffies_to_msecs(s->stats->run.rs_request_delay / 1186 s->stats->ts_requested)); 1187 seq_printf(seq, " %ums running transaction\n", 1188 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1189 seq_printf(seq, " %ums transaction was being locked\n", 1190 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1191 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1192 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1193 seq_printf(seq, " %ums logging transaction\n", 1194 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1195 seq_printf(seq, " %lluus average transaction commit time\n", 1196 div_u64(s->journal->j_average_commit_time, 1000)); 1197 seq_printf(seq, " %lu handles per transaction\n", 1198 s->stats->run.rs_handle_count / s->stats->ts_tid); 1199 seq_printf(seq, " %lu blocks per transaction\n", 1200 s->stats->run.rs_blocks / s->stats->ts_tid); 1201 seq_printf(seq, " %lu logged blocks per transaction\n", 1202 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1203 return 0; 1204 } 1205 1206 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1207 { 1208 } 1209 1210 static const struct seq_operations jbd2_seq_info_ops = { 1211 .start = jbd2_seq_info_start, 1212 .next = jbd2_seq_info_next, 1213 .stop = jbd2_seq_info_stop, 1214 .show = jbd2_seq_info_show, 1215 }; 1216 1217 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1218 { 1219 journal_t *journal = PDE_DATA(inode); 1220 struct jbd2_stats_proc_session *s; 1221 int rc, size; 1222 1223 s = kmalloc(sizeof(*s), GFP_KERNEL); 1224 if (s == NULL) 1225 return -ENOMEM; 1226 size = sizeof(struct transaction_stats_s); 1227 s->stats = kmalloc(size, GFP_KERNEL); 1228 if (s->stats == NULL) { 1229 kfree(s); 1230 return -ENOMEM; 1231 } 1232 spin_lock(&journal->j_history_lock); 1233 memcpy(s->stats, &journal->j_stats, size); 1234 s->journal = journal; 1235 spin_unlock(&journal->j_history_lock); 1236 1237 rc = seq_open(file, &jbd2_seq_info_ops); 1238 if (rc == 0) { 1239 struct seq_file *m = file->private_data; 1240 m->private = s; 1241 } else { 1242 kfree(s->stats); 1243 kfree(s); 1244 } 1245 return rc; 1246 1247 } 1248 1249 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1250 { 1251 struct seq_file *seq = file->private_data; 1252 struct jbd2_stats_proc_session *s = seq->private; 1253 kfree(s->stats); 1254 kfree(s); 1255 return seq_release(inode, file); 1256 } 1257 1258 static const struct proc_ops jbd2_info_proc_ops = { 1259 .proc_open = jbd2_seq_info_open, 1260 .proc_read = seq_read, 1261 .proc_lseek = seq_lseek, 1262 .proc_release = jbd2_seq_info_release, 1263 }; 1264 1265 static struct proc_dir_entry *proc_jbd2_stats; 1266 1267 static void jbd2_stats_proc_init(journal_t *journal) 1268 { 1269 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1270 if (journal->j_proc_entry) { 1271 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1272 &jbd2_info_proc_ops, journal); 1273 } 1274 } 1275 1276 static void jbd2_stats_proc_exit(journal_t *journal) 1277 { 1278 remove_proc_entry("info", journal->j_proc_entry); 1279 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1280 } 1281 1282 /* Minimum size of descriptor tag */ 1283 static int jbd2_min_tag_size(void) 1284 { 1285 /* 1286 * Tag with 32-bit block numbers does not use last four bytes of the 1287 * structure 1288 */ 1289 return sizeof(journal_block_tag_t) - 4; 1290 } 1291 1292 /* 1293 * Management for journal control blocks: functions to create and 1294 * destroy journal_t structures, and to initialise and read existing 1295 * journal blocks from disk. */ 1296 1297 /* First: create and setup a journal_t object in memory. We initialise 1298 * very few fields yet: that has to wait until we have created the 1299 * journal structures from from scratch, or loaded them from disk. */ 1300 1301 static journal_t *journal_init_common(struct block_device *bdev, 1302 struct block_device *fs_dev, 1303 unsigned long long start, int len, int blocksize) 1304 { 1305 static struct lock_class_key jbd2_trans_commit_key; 1306 journal_t *journal; 1307 int err; 1308 struct buffer_head *bh; 1309 int n; 1310 1311 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1312 if (!journal) 1313 return NULL; 1314 1315 init_waitqueue_head(&journal->j_wait_transaction_locked); 1316 init_waitqueue_head(&journal->j_wait_done_commit); 1317 init_waitqueue_head(&journal->j_wait_commit); 1318 init_waitqueue_head(&journal->j_wait_updates); 1319 init_waitqueue_head(&journal->j_wait_reserved); 1320 init_waitqueue_head(&journal->j_fc_wait); 1321 mutex_init(&journal->j_abort_mutex); 1322 mutex_init(&journal->j_barrier); 1323 mutex_init(&journal->j_checkpoint_mutex); 1324 spin_lock_init(&journal->j_revoke_lock); 1325 spin_lock_init(&journal->j_list_lock); 1326 rwlock_init(&journal->j_state_lock); 1327 1328 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1329 journal->j_min_batch_time = 0; 1330 journal->j_max_batch_time = 15000; /* 15ms */ 1331 atomic_set(&journal->j_reserved_credits, 0); 1332 1333 /* The journal is marked for error until we succeed with recovery! */ 1334 journal->j_flags = JBD2_ABORT; 1335 1336 /* Set up a default-sized revoke table for the new mount. */ 1337 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1338 if (err) 1339 goto err_cleanup; 1340 1341 spin_lock_init(&journal->j_history_lock); 1342 1343 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1344 &jbd2_trans_commit_key, 0); 1345 1346 /* journal descriptor can store up to n blocks -bzzz */ 1347 journal->j_blocksize = blocksize; 1348 journal->j_dev = bdev; 1349 journal->j_fs_dev = fs_dev; 1350 journal->j_blk_offset = start; 1351 journal->j_total_len = len; 1352 /* We need enough buffers to write out full descriptor block. */ 1353 n = journal->j_blocksize / jbd2_min_tag_size(); 1354 journal->j_wbufsize = n; 1355 journal->j_fc_wbuf = NULL; 1356 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1357 GFP_KERNEL); 1358 if (!journal->j_wbuf) 1359 goto err_cleanup; 1360 1361 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1362 if (!bh) { 1363 pr_err("%s: Cannot get buffer for journal superblock\n", 1364 __func__); 1365 goto err_cleanup; 1366 } 1367 journal->j_sb_buffer = bh; 1368 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1369 1370 return journal; 1371 1372 err_cleanup: 1373 kfree(journal->j_wbuf); 1374 jbd2_journal_destroy_revoke(journal); 1375 kfree(journal); 1376 return NULL; 1377 } 1378 1379 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1380 * 1381 * Create a journal structure assigned some fixed set of disk blocks to 1382 * the journal. We don't actually touch those disk blocks yet, but we 1383 * need to set up all of the mapping information to tell the journaling 1384 * system where the journal blocks are. 1385 * 1386 */ 1387 1388 /** 1389 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1390 * @bdev: Block device on which to create the journal 1391 * @fs_dev: Device which hold journalled filesystem for this journal. 1392 * @start: Block nr Start of journal. 1393 * @len: Length of the journal in blocks. 1394 * @blocksize: blocksize of journalling device 1395 * 1396 * Returns: a newly created journal_t * 1397 * 1398 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1399 * range of blocks on an arbitrary block device. 1400 * 1401 */ 1402 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1403 struct block_device *fs_dev, 1404 unsigned long long start, int len, int blocksize) 1405 { 1406 journal_t *journal; 1407 1408 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1409 if (!journal) 1410 return NULL; 1411 1412 bdevname(journal->j_dev, journal->j_devname); 1413 strreplace(journal->j_devname, '/', '!'); 1414 jbd2_stats_proc_init(journal); 1415 1416 return journal; 1417 } 1418 1419 /** 1420 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1421 * @inode: An inode to create the journal in 1422 * 1423 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1424 * the journal. The inode must exist already, must support bmap() and 1425 * must have all data blocks preallocated. 1426 */ 1427 journal_t *jbd2_journal_init_inode(struct inode *inode) 1428 { 1429 journal_t *journal; 1430 sector_t blocknr; 1431 char *p; 1432 int err = 0; 1433 1434 blocknr = 0; 1435 err = bmap(inode, &blocknr); 1436 1437 if (err || !blocknr) { 1438 pr_err("%s: Cannot locate journal superblock\n", 1439 __func__); 1440 return NULL; 1441 } 1442 1443 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1444 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1445 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1446 1447 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1448 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1449 inode->i_sb->s_blocksize); 1450 if (!journal) 1451 return NULL; 1452 1453 journal->j_inode = inode; 1454 bdevname(journal->j_dev, journal->j_devname); 1455 p = strreplace(journal->j_devname, '/', '!'); 1456 sprintf(p, "-%lu", journal->j_inode->i_ino); 1457 jbd2_stats_proc_init(journal); 1458 1459 return journal; 1460 } 1461 1462 /* 1463 * If the journal init or create aborts, we need to mark the journal 1464 * superblock as being NULL to prevent the journal destroy from writing 1465 * back a bogus superblock. 1466 */ 1467 static void journal_fail_superblock(journal_t *journal) 1468 { 1469 struct buffer_head *bh = journal->j_sb_buffer; 1470 brelse(bh); 1471 journal->j_sb_buffer = NULL; 1472 } 1473 1474 /* 1475 * Given a journal_t structure, initialise the various fields for 1476 * startup of a new journaling session. We use this both when creating 1477 * a journal, and after recovering an old journal to reset it for 1478 * subsequent use. 1479 */ 1480 1481 static int journal_reset(journal_t *journal) 1482 { 1483 journal_superblock_t *sb = journal->j_superblock; 1484 unsigned long long first, last; 1485 1486 first = be32_to_cpu(sb->s_first); 1487 last = be32_to_cpu(sb->s_maxlen); 1488 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1489 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1490 first, last); 1491 journal_fail_superblock(journal); 1492 return -EINVAL; 1493 } 1494 1495 journal->j_first = first; 1496 journal->j_last = last; 1497 1498 journal->j_head = journal->j_first; 1499 journal->j_tail = journal->j_first; 1500 journal->j_free = journal->j_last - journal->j_first; 1501 1502 journal->j_tail_sequence = journal->j_transaction_sequence; 1503 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1504 journal->j_commit_request = journal->j_commit_sequence; 1505 1506 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1507 1508 /* 1509 * Now that journal recovery is done, turn fast commits off here. This 1510 * way, if fast commit was enabled before the crash but if now FS has 1511 * disabled it, we don't enable fast commits. 1512 */ 1513 jbd2_clear_feature_fast_commit(journal); 1514 1515 /* 1516 * As a special case, if the on-disk copy is already marked as needing 1517 * no recovery (s_start == 0), then we can safely defer the superblock 1518 * update until the next commit by setting JBD2_FLUSHED. This avoids 1519 * attempting a write to a potential-readonly device. 1520 */ 1521 if (sb->s_start == 0) { 1522 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1523 "(start %ld, seq %u, errno %d)\n", 1524 journal->j_tail, journal->j_tail_sequence, 1525 journal->j_errno); 1526 journal->j_flags |= JBD2_FLUSHED; 1527 } else { 1528 /* Lock here to make assertions happy... */ 1529 mutex_lock_io(&journal->j_checkpoint_mutex); 1530 /* 1531 * Update log tail information. We use REQ_FUA since new 1532 * transaction will start reusing journal space and so we 1533 * must make sure information about current log tail is on 1534 * disk before that. 1535 */ 1536 jbd2_journal_update_sb_log_tail(journal, 1537 journal->j_tail_sequence, 1538 journal->j_tail, 1539 REQ_SYNC | REQ_FUA); 1540 mutex_unlock(&journal->j_checkpoint_mutex); 1541 } 1542 return jbd2_journal_start_thread(journal); 1543 } 1544 1545 /* 1546 * This function expects that the caller will have locked the journal 1547 * buffer head, and will return with it unlocked 1548 */ 1549 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1550 { 1551 struct buffer_head *bh = journal->j_sb_buffer; 1552 journal_superblock_t *sb = journal->j_superblock; 1553 int ret; 1554 1555 /* Buffer got discarded which means block device got invalidated */ 1556 if (!buffer_mapped(bh)) { 1557 unlock_buffer(bh); 1558 return -EIO; 1559 } 1560 1561 trace_jbd2_write_superblock(journal, write_flags); 1562 if (!(journal->j_flags & JBD2_BARRIER)) 1563 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1564 if (buffer_write_io_error(bh)) { 1565 /* 1566 * Oh, dear. A previous attempt to write the journal 1567 * superblock failed. This could happen because the 1568 * USB device was yanked out. Or it could happen to 1569 * be a transient write error and maybe the block will 1570 * be remapped. Nothing we can do but to retry the 1571 * write and hope for the best. 1572 */ 1573 printk(KERN_ERR "JBD2: previous I/O error detected " 1574 "for journal superblock update for %s.\n", 1575 journal->j_devname); 1576 clear_buffer_write_io_error(bh); 1577 set_buffer_uptodate(bh); 1578 } 1579 if (jbd2_journal_has_csum_v2or3(journal)) 1580 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1581 get_bh(bh); 1582 bh->b_end_io = end_buffer_write_sync; 1583 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1584 wait_on_buffer(bh); 1585 if (buffer_write_io_error(bh)) { 1586 clear_buffer_write_io_error(bh); 1587 set_buffer_uptodate(bh); 1588 ret = -EIO; 1589 } 1590 if (ret) { 1591 printk(KERN_ERR "JBD2: Error %d detected when updating " 1592 "journal superblock for %s.\n", ret, 1593 journal->j_devname); 1594 if (!is_journal_aborted(journal)) 1595 jbd2_journal_abort(journal, ret); 1596 } 1597 1598 return ret; 1599 } 1600 1601 /** 1602 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1603 * @journal: The journal to update. 1604 * @tail_tid: TID of the new transaction at the tail of the log 1605 * @tail_block: The first block of the transaction at the tail of the log 1606 * @write_op: With which operation should we write the journal sb 1607 * 1608 * Update a journal's superblock information about log tail and write it to 1609 * disk, waiting for the IO to complete. 1610 */ 1611 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1612 unsigned long tail_block, int write_op) 1613 { 1614 journal_superblock_t *sb = journal->j_superblock; 1615 int ret; 1616 1617 if (is_journal_aborted(journal)) 1618 return -EIO; 1619 1620 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1621 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1622 tail_block, tail_tid); 1623 1624 lock_buffer(journal->j_sb_buffer); 1625 sb->s_sequence = cpu_to_be32(tail_tid); 1626 sb->s_start = cpu_to_be32(tail_block); 1627 1628 ret = jbd2_write_superblock(journal, write_op); 1629 if (ret) 1630 goto out; 1631 1632 /* Log is no longer empty */ 1633 write_lock(&journal->j_state_lock); 1634 WARN_ON(!sb->s_sequence); 1635 journal->j_flags &= ~JBD2_FLUSHED; 1636 write_unlock(&journal->j_state_lock); 1637 1638 out: 1639 return ret; 1640 } 1641 1642 /** 1643 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1644 * @journal: The journal to update. 1645 * @write_op: With which operation should we write the journal sb 1646 * 1647 * Update a journal's dynamic superblock fields to show that journal is empty. 1648 * Write updated superblock to disk waiting for IO to complete. 1649 */ 1650 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1651 { 1652 journal_superblock_t *sb = journal->j_superblock; 1653 bool had_fast_commit = false; 1654 1655 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1656 lock_buffer(journal->j_sb_buffer); 1657 if (sb->s_start == 0) { /* Is it already empty? */ 1658 unlock_buffer(journal->j_sb_buffer); 1659 return; 1660 } 1661 1662 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1663 journal->j_tail_sequence); 1664 1665 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1666 sb->s_start = cpu_to_be32(0); 1667 if (jbd2_has_feature_fast_commit(journal)) { 1668 /* 1669 * When journal is clean, no need to commit fast commit flag and 1670 * make file system incompatible with older kernels. 1671 */ 1672 jbd2_clear_feature_fast_commit(journal); 1673 had_fast_commit = true; 1674 } 1675 1676 jbd2_write_superblock(journal, write_op); 1677 1678 if (had_fast_commit) 1679 jbd2_set_feature_fast_commit(journal); 1680 1681 /* Log is no longer empty */ 1682 write_lock(&journal->j_state_lock); 1683 journal->j_flags |= JBD2_FLUSHED; 1684 write_unlock(&journal->j_state_lock); 1685 } 1686 1687 1688 /** 1689 * jbd2_journal_update_sb_errno() - Update error in the journal. 1690 * @journal: The journal to update. 1691 * 1692 * Update a journal's errno. Write updated superblock to disk waiting for IO 1693 * to complete. 1694 */ 1695 void jbd2_journal_update_sb_errno(journal_t *journal) 1696 { 1697 journal_superblock_t *sb = journal->j_superblock; 1698 int errcode; 1699 1700 lock_buffer(journal->j_sb_buffer); 1701 errcode = journal->j_errno; 1702 if (errcode == -ESHUTDOWN) 1703 errcode = 0; 1704 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1705 sb->s_errno = cpu_to_be32(errcode); 1706 1707 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1708 } 1709 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1710 1711 static int journal_revoke_records_per_block(journal_t *journal) 1712 { 1713 int record_size; 1714 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1715 1716 if (jbd2_has_feature_64bit(journal)) 1717 record_size = 8; 1718 else 1719 record_size = 4; 1720 1721 if (jbd2_journal_has_csum_v2or3(journal)) 1722 space -= sizeof(struct jbd2_journal_block_tail); 1723 return space / record_size; 1724 } 1725 1726 /* 1727 * Read the superblock for a given journal, performing initial 1728 * validation of the format. 1729 */ 1730 static int journal_get_superblock(journal_t *journal) 1731 { 1732 struct buffer_head *bh; 1733 journal_superblock_t *sb; 1734 int err = -EIO; 1735 1736 bh = journal->j_sb_buffer; 1737 1738 J_ASSERT(bh != NULL); 1739 if (!buffer_uptodate(bh)) { 1740 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1741 wait_on_buffer(bh); 1742 if (!buffer_uptodate(bh)) { 1743 printk(KERN_ERR 1744 "JBD2: IO error reading journal superblock\n"); 1745 goto out; 1746 } 1747 } 1748 1749 if (buffer_verified(bh)) 1750 return 0; 1751 1752 sb = journal->j_superblock; 1753 1754 err = -EINVAL; 1755 1756 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1757 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1758 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1759 goto out; 1760 } 1761 1762 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1763 case JBD2_SUPERBLOCK_V1: 1764 journal->j_format_version = 1; 1765 break; 1766 case JBD2_SUPERBLOCK_V2: 1767 journal->j_format_version = 2; 1768 break; 1769 default: 1770 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1771 goto out; 1772 } 1773 1774 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1775 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1776 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1777 printk(KERN_WARNING "JBD2: journal file too short\n"); 1778 goto out; 1779 } 1780 1781 if (be32_to_cpu(sb->s_first) == 0 || 1782 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1783 printk(KERN_WARNING 1784 "JBD2: Invalid start block of journal: %u\n", 1785 be32_to_cpu(sb->s_first)); 1786 goto out; 1787 } 1788 1789 if (jbd2_has_feature_csum2(journal) && 1790 jbd2_has_feature_csum3(journal)) { 1791 /* Can't have checksum v2 and v3 at the same time! */ 1792 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1793 "at the same time!\n"); 1794 goto out; 1795 } 1796 1797 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1798 jbd2_has_feature_checksum(journal)) { 1799 /* Can't have checksum v1 and v2 on at the same time! */ 1800 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1801 "at the same time!\n"); 1802 goto out; 1803 } 1804 1805 if (!jbd2_verify_csum_type(journal, sb)) { 1806 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1807 goto out; 1808 } 1809 1810 /* Load the checksum driver */ 1811 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1812 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1813 if (IS_ERR(journal->j_chksum_driver)) { 1814 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1815 err = PTR_ERR(journal->j_chksum_driver); 1816 journal->j_chksum_driver = NULL; 1817 goto out; 1818 } 1819 } 1820 1821 if (jbd2_journal_has_csum_v2or3(journal)) { 1822 /* Check superblock checksum */ 1823 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1824 printk(KERN_ERR "JBD2: journal checksum error\n"); 1825 err = -EFSBADCRC; 1826 goto out; 1827 } 1828 1829 /* Precompute checksum seed for all metadata */ 1830 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1831 sizeof(sb->s_uuid)); 1832 } 1833 1834 journal->j_revoke_records_per_block = 1835 journal_revoke_records_per_block(journal); 1836 set_buffer_verified(bh); 1837 1838 return 0; 1839 1840 out: 1841 journal_fail_superblock(journal); 1842 return err; 1843 } 1844 1845 /* 1846 * Load the on-disk journal superblock and read the key fields into the 1847 * journal_t. 1848 */ 1849 1850 static int load_superblock(journal_t *journal) 1851 { 1852 int err; 1853 journal_superblock_t *sb; 1854 int num_fc_blocks; 1855 1856 err = journal_get_superblock(journal); 1857 if (err) 1858 return err; 1859 1860 sb = journal->j_superblock; 1861 1862 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1863 journal->j_tail = be32_to_cpu(sb->s_start); 1864 journal->j_first = be32_to_cpu(sb->s_first); 1865 journal->j_errno = be32_to_cpu(sb->s_errno); 1866 journal->j_last = be32_to_cpu(sb->s_maxlen); 1867 1868 if (jbd2_has_feature_fast_commit(journal)) { 1869 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1870 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks); 1871 if (!num_fc_blocks) 1872 num_fc_blocks = JBD2_MIN_FC_BLOCKS; 1873 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 1874 journal->j_last = journal->j_fc_last - num_fc_blocks; 1875 journal->j_fc_first = journal->j_last + 1; 1876 journal->j_fc_off = 0; 1877 } 1878 1879 return 0; 1880 } 1881 1882 1883 /** 1884 * int jbd2_journal_load() - Read journal from disk. 1885 * @journal: Journal to act on. 1886 * 1887 * Given a journal_t structure which tells us which disk blocks contain 1888 * a journal, read the journal from disk to initialise the in-memory 1889 * structures. 1890 */ 1891 int jbd2_journal_load(journal_t *journal) 1892 { 1893 int err; 1894 journal_superblock_t *sb; 1895 1896 err = load_superblock(journal); 1897 if (err) 1898 return err; 1899 1900 sb = journal->j_superblock; 1901 /* If this is a V2 superblock, then we have to check the 1902 * features flags on it. */ 1903 1904 if (journal->j_format_version >= 2) { 1905 if ((sb->s_feature_ro_compat & 1906 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1907 (sb->s_feature_incompat & 1908 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1909 printk(KERN_WARNING 1910 "JBD2: Unrecognised features on journal\n"); 1911 return -EINVAL; 1912 } 1913 } 1914 1915 /* 1916 * Create a slab for this blocksize 1917 */ 1918 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1919 if (err) 1920 return err; 1921 1922 /* Let the recovery code check whether it needs to recover any 1923 * data from the journal. */ 1924 if (jbd2_journal_recover(journal)) 1925 goto recovery_error; 1926 1927 if (journal->j_failed_commit) { 1928 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1929 "is corrupt.\n", journal->j_failed_commit, 1930 journal->j_devname); 1931 return -EFSCORRUPTED; 1932 } 1933 /* 1934 * clear JBD2_ABORT flag initialized in journal_init_common 1935 * here to update log tail information with the newest seq. 1936 */ 1937 journal->j_flags &= ~JBD2_ABORT; 1938 1939 /* OK, we've finished with the dynamic journal bits: 1940 * reinitialise the dynamic contents of the superblock in memory 1941 * and reset them on disk. */ 1942 if (journal_reset(journal)) 1943 goto recovery_error; 1944 1945 journal->j_flags |= JBD2_LOADED; 1946 return 0; 1947 1948 recovery_error: 1949 printk(KERN_WARNING "JBD2: recovery failed\n"); 1950 return -EIO; 1951 } 1952 1953 /** 1954 * void jbd2_journal_destroy() - Release a journal_t structure. 1955 * @journal: Journal to act on. 1956 * 1957 * Release a journal_t structure once it is no longer in use by the 1958 * journaled object. 1959 * Return <0 if we couldn't clean up the journal. 1960 */ 1961 int jbd2_journal_destroy(journal_t *journal) 1962 { 1963 int err = 0; 1964 1965 /* Wait for the commit thread to wake up and die. */ 1966 journal_kill_thread(journal); 1967 1968 /* Force a final log commit */ 1969 if (journal->j_running_transaction) 1970 jbd2_journal_commit_transaction(journal); 1971 1972 /* Force any old transactions to disk */ 1973 1974 /* Totally anal locking here... */ 1975 spin_lock(&journal->j_list_lock); 1976 while (journal->j_checkpoint_transactions != NULL) { 1977 spin_unlock(&journal->j_list_lock); 1978 mutex_lock_io(&journal->j_checkpoint_mutex); 1979 err = jbd2_log_do_checkpoint(journal); 1980 mutex_unlock(&journal->j_checkpoint_mutex); 1981 /* 1982 * If checkpointing failed, just free the buffers to avoid 1983 * looping forever 1984 */ 1985 if (err) { 1986 jbd2_journal_destroy_checkpoint(journal); 1987 spin_lock(&journal->j_list_lock); 1988 break; 1989 } 1990 spin_lock(&journal->j_list_lock); 1991 } 1992 1993 J_ASSERT(journal->j_running_transaction == NULL); 1994 J_ASSERT(journal->j_committing_transaction == NULL); 1995 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1996 spin_unlock(&journal->j_list_lock); 1997 1998 if (journal->j_sb_buffer) { 1999 if (!is_journal_aborted(journal)) { 2000 mutex_lock_io(&journal->j_checkpoint_mutex); 2001 2002 write_lock(&journal->j_state_lock); 2003 journal->j_tail_sequence = 2004 ++journal->j_transaction_sequence; 2005 write_unlock(&journal->j_state_lock); 2006 2007 jbd2_mark_journal_empty(journal, 2008 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2009 mutex_unlock(&journal->j_checkpoint_mutex); 2010 } else 2011 err = -EIO; 2012 brelse(journal->j_sb_buffer); 2013 } 2014 2015 if (journal->j_proc_entry) 2016 jbd2_stats_proc_exit(journal); 2017 iput(journal->j_inode); 2018 if (journal->j_revoke) 2019 jbd2_journal_destroy_revoke(journal); 2020 if (journal->j_chksum_driver) 2021 crypto_free_shash(journal->j_chksum_driver); 2022 kfree(journal->j_fc_wbuf); 2023 kfree(journal->j_wbuf); 2024 kfree(journal); 2025 2026 return err; 2027 } 2028 2029 2030 /** 2031 *int jbd2_journal_check_used_features() - Check if features specified are used. 2032 * @journal: Journal to check. 2033 * @compat: bitmask of compatible features 2034 * @ro: bitmask of features that force read-only mount 2035 * @incompat: bitmask of incompatible features 2036 * 2037 * Check whether the journal uses all of a given set of 2038 * features. Return true (non-zero) if it does. 2039 **/ 2040 2041 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2042 unsigned long ro, unsigned long incompat) 2043 { 2044 journal_superblock_t *sb; 2045 2046 if (!compat && !ro && !incompat) 2047 return 1; 2048 /* Load journal superblock if it is not loaded yet. */ 2049 if (journal->j_format_version == 0 && 2050 journal_get_superblock(journal) != 0) 2051 return 0; 2052 if (journal->j_format_version == 1) 2053 return 0; 2054 2055 sb = journal->j_superblock; 2056 2057 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2058 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2059 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2060 return 1; 2061 2062 return 0; 2063 } 2064 2065 /** 2066 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 2067 * @journal: Journal to check. 2068 * @compat: bitmask of compatible features 2069 * @ro: bitmask of features that force read-only mount 2070 * @incompat: bitmask of incompatible features 2071 * 2072 * Check whether the journaling code supports the use of 2073 * all of a given set of features on this journal. Return true 2074 * (non-zero) if it can. */ 2075 2076 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2077 unsigned long ro, unsigned long incompat) 2078 { 2079 if (!compat && !ro && !incompat) 2080 return 1; 2081 2082 /* We can support any known requested features iff the 2083 * superblock is in version 2. Otherwise we fail to support any 2084 * extended sb features. */ 2085 2086 if (journal->j_format_version != 2) 2087 return 0; 2088 2089 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2090 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2091 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2092 return 1; 2093 2094 return 0; 2095 } 2096 2097 static int 2098 jbd2_journal_initialize_fast_commit(journal_t *journal) 2099 { 2100 journal_superblock_t *sb = journal->j_superblock; 2101 unsigned long long num_fc_blks; 2102 2103 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks); 2104 if (num_fc_blks == 0) 2105 num_fc_blks = JBD2_MIN_FC_BLOCKS; 2106 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2107 return -ENOSPC; 2108 2109 /* Are we called twice? */ 2110 WARN_ON(journal->j_fc_wbuf != NULL); 2111 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2112 sizeof(struct buffer_head *), GFP_KERNEL); 2113 if (!journal->j_fc_wbuf) 2114 return -ENOMEM; 2115 2116 journal->j_fc_wbufsize = num_fc_blks; 2117 journal->j_fc_last = journal->j_last; 2118 journal->j_last = journal->j_fc_last - num_fc_blks; 2119 journal->j_fc_first = journal->j_last + 1; 2120 journal->j_fc_off = 0; 2121 journal->j_free = journal->j_last - journal->j_first; 2122 journal->j_max_transaction_buffers = 2123 jbd2_journal_get_max_txn_bufs(journal); 2124 2125 return 0; 2126 } 2127 2128 /** 2129 * int jbd2_journal_set_features() - Mark a given journal feature in the superblock 2130 * @journal: Journal to act on. 2131 * @compat: bitmask of compatible features 2132 * @ro: bitmask of features that force read-only mount 2133 * @incompat: bitmask of incompatible features 2134 * 2135 * Mark a given journal feature as present on the 2136 * superblock. Returns true if the requested features could be set. 2137 * 2138 */ 2139 2140 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2141 unsigned long ro, unsigned long incompat) 2142 { 2143 #define INCOMPAT_FEATURE_ON(f) \ 2144 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2145 #define COMPAT_FEATURE_ON(f) \ 2146 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2147 journal_superblock_t *sb; 2148 2149 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2150 return 1; 2151 2152 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2153 return 0; 2154 2155 /* If enabling v2 checksums, turn on v3 instead */ 2156 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2157 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2158 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2159 } 2160 2161 /* Asking for checksumming v3 and v1? Only give them v3. */ 2162 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2163 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2164 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2165 2166 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2167 compat, ro, incompat); 2168 2169 sb = journal->j_superblock; 2170 2171 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2172 if (jbd2_journal_initialize_fast_commit(journal)) { 2173 pr_err("JBD2: Cannot enable fast commits.\n"); 2174 return 0; 2175 } 2176 } 2177 2178 /* Load the checksum driver if necessary */ 2179 if ((journal->j_chksum_driver == NULL) && 2180 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2181 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2182 if (IS_ERR(journal->j_chksum_driver)) { 2183 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2184 journal->j_chksum_driver = NULL; 2185 return 0; 2186 } 2187 /* Precompute checksum seed for all metadata */ 2188 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2189 sizeof(sb->s_uuid)); 2190 } 2191 2192 lock_buffer(journal->j_sb_buffer); 2193 2194 /* If enabling v3 checksums, update superblock */ 2195 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2196 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2197 sb->s_feature_compat &= 2198 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2199 } 2200 2201 /* If enabling v1 checksums, downgrade superblock */ 2202 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2203 sb->s_feature_incompat &= 2204 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2205 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2206 2207 sb->s_feature_compat |= cpu_to_be32(compat); 2208 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2209 sb->s_feature_incompat |= cpu_to_be32(incompat); 2210 unlock_buffer(journal->j_sb_buffer); 2211 journal->j_revoke_records_per_block = 2212 journal_revoke_records_per_block(journal); 2213 2214 return 1; 2215 #undef COMPAT_FEATURE_ON 2216 #undef INCOMPAT_FEATURE_ON 2217 } 2218 2219 /* 2220 * jbd2_journal_clear_features () - Clear a given journal feature in the 2221 * superblock 2222 * @journal: Journal to act on. 2223 * @compat: bitmask of compatible features 2224 * @ro: bitmask of features that force read-only mount 2225 * @incompat: bitmask of incompatible features 2226 * 2227 * Clear a given journal feature as present on the 2228 * superblock. 2229 */ 2230 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2231 unsigned long ro, unsigned long incompat) 2232 { 2233 journal_superblock_t *sb; 2234 2235 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2236 compat, ro, incompat); 2237 2238 sb = journal->j_superblock; 2239 2240 sb->s_feature_compat &= ~cpu_to_be32(compat); 2241 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2242 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2243 journal->j_revoke_records_per_block = 2244 journal_revoke_records_per_block(journal); 2245 } 2246 EXPORT_SYMBOL(jbd2_journal_clear_features); 2247 2248 /** 2249 * int jbd2_journal_flush () - Flush journal 2250 * @journal: Journal to act on. 2251 * 2252 * Flush all data for a given journal to disk and empty the journal. 2253 * Filesystems can use this when remounting readonly to ensure that 2254 * recovery does not need to happen on remount. 2255 */ 2256 2257 int jbd2_journal_flush(journal_t *journal) 2258 { 2259 int err = 0; 2260 transaction_t *transaction = NULL; 2261 2262 write_lock(&journal->j_state_lock); 2263 2264 /* Force everything buffered to the log... */ 2265 if (journal->j_running_transaction) { 2266 transaction = journal->j_running_transaction; 2267 __jbd2_log_start_commit(journal, transaction->t_tid); 2268 } else if (journal->j_committing_transaction) 2269 transaction = journal->j_committing_transaction; 2270 2271 /* Wait for the log commit to complete... */ 2272 if (transaction) { 2273 tid_t tid = transaction->t_tid; 2274 2275 write_unlock(&journal->j_state_lock); 2276 jbd2_log_wait_commit(journal, tid); 2277 } else { 2278 write_unlock(&journal->j_state_lock); 2279 } 2280 2281 /* ...and flush everything in the log out to disk. */ 2282 spin_lock(&journal->j_list_lock); 2283 while (!err && journal->j_checkpoint_transactions != NULL) { 2284 spin_unlock(&journal->j_list_lock); 2285 mutex_lock_io(&journal->j_checkpoint_mutex); 2286 err = jbd2_log_do_checkpoint(journal); 2287 mutex_unlock(&journal->j_checkpoint_mutex); 2288 spin_lock(&journal->j_list_lock); 2289 } 2290 spin_unlock(&journal->j_list_lock); 2291 2292 if (is_journal_aborted(journal)) 2293 return -EIO; 2294 2295 mutex_lock_io(&journal->j_checkpoint_mutex); 2296 if (!err) { 2297 err = jbd2_cleanup_journal_tail(journal); 2298 if (err < 0) { 2299 mutex_unlock(&journal->j_checkpoint_mutex); 2300 goto out; 2301 } 2302 err = 0; 2303 } 2304 2305 /* Finally, mark the journal as really needing no recovery. 2306 * This sets s_start==0 in the underlying superblock, which is 2307 * the magic code for a fully-recovered superblock. Any future 2308 * commits of data to the journal will restore the current 2309 * s_start value. */ 2310 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2311 mutex_unlock(&journal->j_checkpoint_mutex); 2312 write_lock(&journal->j_state_lock); 2313 J_ASSERT(!journal->j_running_transaction); 2314 J_ASSERT(!journal->j_committing_transaction); 2315 J_ASSERT(!journal->j_checkpoint_transactions); 2316 J_ASSERT(journal->j_head == journal->j_tail); 2317 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2318 write_unlock(&journal->j_state_lock); 2319 out: 2320 return err; 2321 } 2322 2323 /** 2324 * int jbd2_journal_wipe() - Wipe journal contents 2325 * @journal: Journal to act on. 2326 * @write: flag (see below) 2327 * 2328 * Wipe out all of the contents of a journal, safely. This will produce 2329 * a warning if the journal contains any valid recovery information. 2330 * Must be called between journal_init_*() and jbd2_journal_load(). 2331 * 2332 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2333 * we merely suppress recovery. 2334 */ 2335 2336 int jbd2_journal_wipe(journal_t *journal, int write) 2337 { 2338 int err = 0; 2339 2340 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2341 2342 err = load_superblock(journal); 2343 if (err) 2344 return err; 2345 2346 if (!journal->j_tail) 2347 goto no_recovery; 2348 2349 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2350 write ? "Clearing" : "Ignoring"); 2351 2352 err = jbd2_journal_skip_recovery(journal); 2353 if (write) { 2354 /* Lock to make assertions happy... */ 2355 mutex_lock_io(&journal->j_checkpoint_mutex); 2356 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2357 mutex_unlock(&journal->j_checkpoint_mutex); 2358 } 2359 2360 no_recovery: 2361 return err; 2362 } 2363 2364 /** 2365 * void jbd2_journal_abort () - Shutdown the journal immediately. 2366 * @journal: the journal to shutdown. 2367 * @errno: an error number to record in the journal indicating 2368 * the reason for the shutdown. 2369 * 2370 * Perform a complete, immediate shutdown of the ENTIRE 2371 * journal (not of a single transaction). This operation cannot be 2372 * undone without closing and reopening the journal. 2373 * 2374 * The jbd2_journal_abort function is intended to support higher level error 2375 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2376 * mode. 2377 * 2378 * Journal abort has very specific semantics. Any existing dirty, 2379 * unjournaled buffers in the main filesystem will still be written to 2380 * disk by bdflush, but the journaling mechanism will be suspended 2381 * immediately and no further transaction commits will be honoured. 2382 * 2383 * Any dirty, journaled buffers will be written back to disk without 2384 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2385 * filesystem, but we _do_ attempt to leave as much data as possible 2386 * behind for fsck to use for cleanup. 2387 * 2388 * Any attempt to get a new transaction handle on a journal which is in 2389 * ABORT state will just result in an -EROFS error return. A 2390 * jbd2_journal_stop on an existing handle will return -EIO if we have 2391 * entered abort state during the update. 2392 * 2393 * Recursive transactions are not disturbed by journal abort until the 2394 * final jbd2_journal_stop, which will receive the -EIO error. 2395 * 2396 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2397 * which will be recorded (if possible) in the journal superblock. This 2398 * allows a client to record failure conditions in the middle of a 2399 * transaction without having to complete the transaction to record the 2400 * failure to disk. ext3_error, for example, now uses this 2401 * functionality. 2402 * 2403 */ 2404 2405 void jbd2_journal_abort(journal_t *journal, int errno) 2406 { 2407 transaction_t *transaction; 2408 2409 /* 2410 * Lock the aborting procedure until everything is done, this avoid 2411 * races between filesystem's error handling flow (e.g. ext4_abort()), 2412 * ensure panic after the error info is written into journal's 2413 * superblock. 2414 */ 2415 mutex_lock(&journal->j_abort_mutex); 2416 /* 2417 * ESHUTDOWN always takes precedence because a file system check 2418 * caused by any other journal abort error is not required after 2419 * a shutdown triggered. 2420 */ 2421 write_lock(&journal->j_state_lock); 2422 if (journal->j_flags & JBD2_ABORT) { 2423 int old_errno = journal->j_errno; 2424 2425 write_unlock(&journal->j_state_lock); 2426 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2427 journal->j_errno = errno; 2428 jbd2_journal_update_sb_errno(journal); 2429 } 2430 mutex_unlock(&journal->j_abort_mutex); 2431 return; 2432 } 2433 2434 /* 2435 * Mark the abort as occurred and start current running transaction 2436 * to release all journaled buffer. 2437 */ 2438 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2439 2440 journal->j_flags |= JBD2_ABORT; 2441 journal->j_errno = errno; 2442 transaction = journal->j_running_transaction; 2443 if (transaction) 2444 __jbd2_log_start_commit(journal, transaction->t_tid); 2445 write_unlock(&journal->j_state_lock); 2446 2447 /* 2448 * Record errno to the journal super block, so that fsck and jbd2 2449 * layer could realise that a filesystem check is needed. 2450 */ 2451 jbd2_journal_update_sb_errno(journal); 2452 mutex_unlock(&journal->j_abort_mutex); 2453 } 2454 2455 /** 2456 * int jbd2_journal_errno () - returns the journal's error state. 2457 * @journal: journal to examine. 2458 * 2459 * This is the errno number set with jbd2_journal_abort(), the last 2460 * time the journal was mounted - if the journal was stopped 2461 * without calling abort this will be 0. 2462 * 2463 * If the journal has been aborted on this mount time -EROFS will 2464 * be returned. 2465 */ 2466 int jbd2_journal_errno(journal_t *journal) 2467 { 2468 int err; 2469 2470 read_lock(&journal->j_state_lock); 2471 if (journal->j_flags & JBD2_ABORT) 2472 err = -EROFS; 2473 else 2474 err = journal->j_errno; 2475 read_unlock(&journal->j_state_lock); 2476 return err; 2477 } 2478 2479 /** 2480 * int jbd2_journal_clear_err () - clears the journal's error state 2481 * @journal: journal to act on. 2482 * 2483 * An error must be cleared or acked to take a FS out of readonly 2484 * mode. 2485 */ 2486 int jbd2_journal_clear_err(journal_t *journal) 2487 { 2488 int err = 0; 2489 2490 write_lock(&journal->j_state_lock); 2491 if (journal->j_flags & JBD2_ABORT) 2492 err = -EROFS; 2493 else 2494 journal->j_errno = 0; 2495 write_unlock(&journal->j_state_lock); 2496 return err; 2497 } 2498 2499 /** 2500 * void jbd2_journal_ack_err() - Ack journal err. 2501 * @journal: journal to act on. 2502 * 2503 * An error must be cleared or acked to take a FS out of readonly 2504 * mode. 2505 */ 2506 void jbd2_journal_ack_err(journal_t *journal) 2507 { 2508 write_lock(&journal->j_state_lock); 2509 if (journal->j_errno) 2510 journal->j_flags |= JBD2_ACK_ERR; 2511 write_unlock(&journal->j_state_lock); 2512 } 2513 2514 int jbd2_journal_blocks_per_page(struct inode *inode) 2515 { 2516 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2517 } 2518 2519 /* 2520 * helper functions to deal with 32 or 64bit block numbers. 2521 */ 2522 size_t journal_tag_bytes(journal_t *journal) 2523 { 2524 size_t sz; 2525 2526 if (jbd2_has_feature_csum3(journal)) 2527 return sizeof(journal_block_tag3_t); 2528 2529 sz = sizeof(journal_block_tag_t); 2530 2531 if (jbd2_has_feature_csum2(journal)) 2532 sz += sizeof(__u16); 2533 2534 if (jbd2_has_feature_64bit(journal)) 2535 return sz; 2536 else 2537 return sz - sizeof(__u32); 2538 } 2539 2540 /* 2541 * JBD memory management 2542 * 2543 * These functions are used to allocate block-sized chunks of memory 2544 * used for making copies of buffer_head data. Very often it will be 2545 * page-sized chunks of data, but sometimes it will be in 2546 * sub-page-size chunks. (For example, 16k pages on Power systems 2547 * with a 4k block file system.) For blocks smaller than a page, we 2548 * use a SLAB allocator. There are slab caches for each block size, 2549 * which are allocated at mount time, if necessary, and we only free 2550 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2551 * this reason we don't need to a mutex to protect access to 2552 * jbd2_slab[] allocating or releasing memory; only in 2553 * jbd2_journal_create_slab(). 2554 */ 2555 #define JBD2_MAX_SLABS 8 2556 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2557 2558 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2559 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2560 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2561 }; 2562 2563 2564 static void jbd2_journal_destroy_slabs(void) 2565 { 2566 int i; 2567 2568 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2569 kmem_cache_destroy(jbd2_slab[i]); 2570 jbd2_slab[i] = NULL; 2571 } 2572 } 2573 2574 static int jbd2_journal_create_slab(size_t size) 2575 { 2576 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2577 int i = order_base_2(size) - 10; 2578 size_t slab_size; 2579 2580 if (size == PAGE_SIZE) 2581 return 0; 2582 2583 if (i >= JBD2_MAX_SLABS) 2584 return -EINVAL; 2585 2586 if (unlikely(i < 0)) 2587 i = 0; 2588 mutex_lock(&jbd2_slab_create_mutex); 2589 if (jbd2_slab[i]) { 2590 mutex_unlock(&jbd2_slab_create_mutex); 2591 return 0; /* Already created */ 2592 } 2593 2594 slab_size = 1 << (i+10); 2595 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2596 slab_size, 0, NULL); 2597 mutex_unlock(&jbd2_slab_create_mutex); 2598 if (!jbd2_slab[i]) { 2599 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2600 return -ENOMEM; 2601 } 2602 return 0; 2603 } 2604 2605 static struct kmem_cache *get_slab(size_t size) 2606 { 2607 int i = order_base_2(size) - 10; 2608 2609 BUG_ON(i >= JBD2_MAX_SLABS); 2610 if (unlikely(i < 0)) 2611 i = 0; 2612 BUG_ON(jbd2_slab[i] == NULL); 2613 return jbd2_slab[i]; 2614 } 2615 2616 void *jbd2_alloc(size_t size, gfp_t flags) 2617 { 2618 void *ptr; 2619 2620 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2621 2622 if (size < PAGE_SIZE) 2623 ptr = kmem_cache_alloc(get_slab(size), flags); 2624 else 2625 ptr = (void *)__get_free_pages(flags, get_order(size)); 2626 2627 /* Check alignment; SLUB has gotten this wrong in the past, 2628 * and this can lead to user data corruption! */ 2629 BUG_ON(((unsigned long) ptr) & (size-1)); 2630 2631 return ptr; 2632 } 2633 2634 void jbd2_free(void *ptr, size_t size) 2635 { 2636 if (size < PAGE_SIZE) 2637 kmem_cache_free(get_slab(size), ptr); 2638 else 2639 free_pages((unsigned long)ptr, get_order(size)); 2640 }; 2641 2642 /* 2643 * Journal_head storage management 2644 */ 2645 static struct kmem_cache *jbd2_journal_head_cache; 2646 #ifdef CONFIG_JBD2_DEBUG 2647 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2648 #endif 2649 2650 static int __init jbd2_journal_init_journal_head_cache(void) 2651 { 2652 J_ASSERT(!jbd2_journal_head_cache); 2653 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2654 sizeof(struct journal_head), 2655 0, /* offset */ 2656 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2657 NULL); /* ctor */ 2658 if (!jbd2_journal_head_cache) { 2659 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2660 return -ENOMEM; 2661 } 2662 return 0; 2663 } 2664 2665 static void jbd2_journal_destroy_journal_head_cache(void) 2666 { 2667 kmem_cache_destroy(jbd2_journal_head_cache); 2668 jbd2_journal_head_cache = NULL; 2669 } 2670 2671 /* 2672 * journal_head splicing and dicing 2673 */ 2674 static struct journal_head *journal_alloc_journal_head(void) 2675 { 2676 struct journal_head *ret; 2677 2678 #ifdef CONFIG_JBD2_DEBUG 2679 atomic_inc(&nr_journal_heads); 2680 #endif 2681 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2682 if (!ret) { 2683 jbd_debug(1, "out of memory for journal_head\n"); 2684 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2685 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2686 GFP_NOFS | __GFP_NOFAIL); 2687 } 2688 if (ret) 2689 spin_lock_init(&ret->b_state_lock); 2690 return ret; 2691 } 2692 2693 static void journal_free_journal_head(struct journal_head *jh) 2694 { 2695 #ifdef CONFIG_JBD2_DEBUG 2696 atomic_dec(&nr_journal_heads); 2697 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2698 #endif 2699 kmem_cache_free(jbd2_journal_head_cache, jh); 2700 } 2701 2702 /* 2703 * A journal_head is attached to a buffer_head whenever JBD has an 2704 * interest in the buffer. 2705 * 2706 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2707 * is set. This bit is tested in core kernel code where we need to take 2708 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2709 * there. 2710 * 2711 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2712 * 2713 * When a buffer has its BH_JBD bit set it is immune from being released by 2714 * core kernel code, mainly via ->b_count. 2715 * 2716 * A journal_head is detached from its buffer_head when the journal_head's 2717 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2718 * transaction (b_cp_transaction) hold their references to b_jcount. 2719 * 2720 * Various places in the kernel want to attach a journal_head to a buffer_head 2721 * _before_ attaching the journal_head to a transaction. To protect the 2722 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2723 * journal_head's b_jcount refcount by one. The caller must call 2724 * jbd2_journal_put_journal_head() to undo this. 2725 * 2726 * So the typical usage would be: 2727 * 2728 * (Attach a journal_head if needed. Increments b_jcount) 2729 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2730 * ... 2731 * (Get another reference for transaction) 2732 * jbd2_journal_grab_journal_head(bh); 2733 * jh->b_transaction = xxx; 2734 * (Put original reference) 2735 * jbd2_journal_put_journal_head(jh); 2736 */ 2737 2738 /* 2739 * Give a buffer_head a journal_head. 2740 * 2741 * May sleep. 2742 */ 2743 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2744 { 2745 struct journal_head *jh; 2746 struct journal_head *new_jh = NULL; 2747 2748 repeat: 2749 if (!buffer_jbd(bh)) 2750 new_jh = journal_alloc_journal_head(); 2751 2752 jbd_lock_bh_journal_head(bh); 2753 if (buffer_jbd(bh)) { 2754 jh = bh2jh(bh); 2755 } else { 2756 J_ASSERT_BH(bh, 2757 (atomic_read(&bh->b_count) > 0) || 2758 (bh->b_page && bh->b_page->mapping)); 2759 2760 if (!new_jh) { 2761 jbd_unlock_bh_journal_head(bh); 2762 goto repeat; 2763 } 2764 2765 jh = new_jh; 2766 new_jh = NULL; /* We consumed it */ 2767 set_buffer_jbd(bh); 2768 bh->b_private = jh; 2769 jh->b_bh = bh; 2770 get_bh(bh); 2771 BUFFER_TRACE(bh, "added journal_head"); 2772 } 2773 jh->b_jcount++; 2774 jbd_unlock_bh_journal_head(bh); 2775 if (new_jh) 2776 journal_free_journal_head(new_jh); 2777 return bh->b_private; 2778 } 2779 2780 /* 2781 * Grab a ref against this buffer_head's journal_head. If it ended up not 2782 * having a journal_head, return NULL 2783 */ 2784 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2785 { 2786 struct journal_head *jh = NULL; 2787 2788 jbd_lock_bh_journal_head(bh); 2789 if (buffer_jbd(bh)) { 2790 jh = bh2jh(bh); 2791 jh->b_jcount++; 2792 } 2793 jbd_unlock_bh_journal_head(bh); 2794 return jh; 2795 } 2796 2797 static void __journal_remove_journal_head(struct buffer_head *bh) 2798 { 2799 struct journal_head *jh = bh2jh(bh); 2800 2801 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2802 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2803 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2804 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2805 J_ASSERT_BH(bh, buffer_jbd(bh)); 2806 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2807 BUFFER_TRACE(bh, "remove journal_head"); 2808 2809 /* Unlink before dropping the lock */ 2810 bh->b_private = NULL; 2811 jh->b_bh = NULL; /* debug, really */ 2812 clear_buffer_jbd(bh); 2813 } 2814 2815 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2816 { 2817 if (jh->b_frozen_data) { 2818 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2819 jbd2_free(jh->b_frozen_data, b_size); 2820 } 2821 if (jh->b_committed_data) { 2822 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2823 jbd2_free(jh->b_committed_data, b_size); 2824 } 2825 journal_free_journal_head(jh); 2826 } 2827 2828 /* 2829 * Drop a reference on the passed journal_head. If it fell to zero then 2830 * release the journal_head from the buffer_head. 2831 */ 2832 void jbd2_journal_put_journal_head(struct journal_head *jh) 2833 { 2834 struct buffer_head *bh = jh2bh(jh); 2835 2836 jbd_lock_bh_journal_head(bh); 2837 J_ASSERT_JH(jh, jh->b_jcount > 0); 2838 --jh->b_jcount; 2839 if (!jh->b_jcount) { 2840 __journal_remove_journal_head(bh); 2841 jbd_unlock_bh_journal_head(bh); 2842 journal_release_journal_head(jh, bh->b_size); 2843 __brelse(bh); 2844 } else { 2845 jbd_unlock_bh_journal_head(bh); 2846 } 2847 } 2848 2849 /* 2850 * Initialize jbd inode head 2851 */ 2852 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2853 { 2854 jinode->i_transaction = NULL; 2855 jinode->i_next_transaction = NULL; 2856 jinode->i_vfs_inode = inode; 2857 jinode->i_flags = 0; 2858 jinode->i_dirty_start = 0; 2859 jinode->i_dirty_end = 0; 2860 INIT_LIST_HEAD(&jinode->i_list); 2861 } 2862 2863 /* 2864 * Function to be called before we start removing inode from memory (i.e., 2865 * clear_inode() is a fine place to be called from). It removes inode from 2866 * transaction's lists. 2867 */ 2868 void jbd2_journal_release_jbd_inode(journal_t *journal, 2869 struct jbd2_inode *jinode) 2870 { 2871 if (!journal) 2872 return; 2873 restart: 2874 spin_lock(&journal->j_list_lock); 2875 /* Is commit writing out inode - we have to wait */ 2876 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2877 wait_queue_head_t *wq; 2878 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2879 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2880 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2881 spin_unlock(&journal->j_list_lock); 2882 schedule(); 2883 finish_wait(wq, &wait.wq_entry); 2884 goto restart; 2885 } 2886 2887 if (jinode->i_transaction) { 2888 list_del(&jinode->i_list); 2889 jinode->i_transaction = NULL; 2890 } 2891 spin_unlock(&journal->j_list_lock); 2892 } 2893 2894 2895 #ifdef CONFIG_PROC_FS 2896 2897 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2898 2899 static void __init jbd2_create_jbd_stats_proc_entry(void) 2900 { 2901 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2902 } 2903 2904 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2905 { 2906 if (proc_jbd2_stats) 2907 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2908 } 2909 2910 #else 2911 2912 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2913 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2914 2915 #endif 2916 2917 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2918 2919 static int __init jbd2_journal_init_inode_cache(void) 2920 { 2921 J_ASSERT(!jbd2_inode_cache); 2922 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2923 if (!jbd2_inode_cache) { 2924 pr_emerg("JBD2: failed to create inode cache\n"); 2925 return -ENOMEM; 2926 } 2927 return 0; 2928 } 2929 2930 static int __init jbd2_journal_init_handle_cache(void) 2931 { 2932 J_ASSERT(!jbd2_handle_cache); 2933 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2934 if (!jbd2_handle_cache) { 2935 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2936 return -ENOMEM; 2937 } 2938 return 0; 2939 } 2940 2941 static void jbd2_journal_destroy_inode_cache(void) 2942 { 2943 kmem_cache_destroy(jbd2_inode_cache); 2944 jbd2_inode_cache = NULL; 2945 } 2946 2947 static void jbd2_journal_destroy_handle_cache(void) 2948 { 2949 kmem_cache_destroy(jbd2_handle_cache); 2950 jbd2_handle_cache = NULL; 2951 } 2952 2953 /* 2954 * Module startup and shutdown 2955 */ 2956 2957 static int __init journal_init_caches(void) 2958 { 2959 int ret; 2960 2961 ret = jbd2_journal_init_revoke_record_cache(); 2962 if (ret == 0) 2963 ret = jbd2_journal_init_revoke_table_cache(); 2964 if (ret == 0) 2965 ret = jbd2_journal_init_journal_head_cache(); 2966 if (ret == 0) 2967 ret = jbd2_journal_init_handle_cache(); 2968 if (ret == 0) 2969 ret = jbd2_journal_init_inode_cache(); 2970 if (ret == 0) 2971 ret = jbd2_journal_init_transaction_cache(); 2972 return ret; 2973 } 2974 2975 static void jbd2_journal_destroy_caches(void) 2976 { 2977 jbd2_journal_destroy_revoke_record_cache(); 2978 jbd2_journal_destroy_revoke_table_cache(); 2979 jbd2_journal_destroy_journal_head_cache(); 2980 jbd2_journal_destroy_handle_cache(); 2981 jbd2_journal_destroy_inode_cache(); 2982 jbd2_journal_destroy_transaction_cache(); 2983 jbd2_journal_destroy_slabs(); 2984 } 2985 2986 static int __init journal_init(void) 2987 { 2988 int ret; 2989 2990 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2991 2992 ret = journal_init_caches(); 2993 if (ret == 0) { 2994 jbd2_create_jbd_stats_proc_entry(); 2995 } else { 2996 jbd2_journal_destroy_caches(); 2997 } 2998 return ret; 2999 } 3000 3001 static void __exit journal_exit(void) 3002 { 3003 #ifdef CONFIG_JBD2_DEBUG 3004 int n = atomic_read(&nr_journal_heads); 3005 if (n) 3006 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3007 #endif 3008 jbd2_remove_jbd_stats_proc_entry(); 3009 jbd2_journal_destroy_caches(); 3010 } 3011 3012 MODULE_LICENSE("GPL"); 3013 module_init(journal_init); 3014 module_exit(journal_exit); 3015 3016