xref: /openbmc/linux/fs/jbd2/journal.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 	int ret;
579 
580 	ret = __jbd2_journal_force_commit(journal);
581 	return ret > 0;
582 }
583 
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593 	int ret;
594 
595 	J_ASSERT(!current->journal_info);
596 	ret = __jbd2_journal_force_commit(journal);
597 	if (ret > 0)
598 		ret = 0;
599 	return ret;
600 }
601 
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609 	int ret = 0;
610 
611 	write_lock(&journal->j_state_lock);
612 	if (journal->j_running_transaction) {
613 		tid_t tid = journal->j_running_transaction->t_tid;
614 
615 		__jbd2_log_start_commit(journal, tid);
616 		/* There's a running transaction and we've just made sure
617 		 * it's commit has been scheduled. */
618 		if (ptid)
619 			*ptid = tid;
620 		ret = 1;
621 	} else if (journal->j_committing_transaction) {
622 		/*
623 		 * If commit has been started, then we have to wait for
624 		 * completion of that transaction.
625 		 */
626 		if (ptid)
627 			*ptid = journal->j_committing_transaction->t_tid;
628 		ret = 1;
629 	}
630 	write_unlock(&journal->j_state_lock);
631 	return ret;
632 }
633 
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642 	int ret = 0;
643 	transaction_t *commit_trans;
644 
645 	if (!(journal->j_flags & JBD2_BARRIER))
646 		return 0;
647 	read_lock(&journal->j_state_lock);
648 	/* Transaction already committed? */
649 	if (tid_geq(journal->j_commit_sequence, tid))
650 		goto out;
651 	commit_trans = journal->j_committing_transaction;
652 	if (!commit_trans || commit_trans->t_tid != tid) {
653 		ret = 1;
654 		goto out;
655 	}
656 	/*
657 	 * Transaction is being committed and we already proceeded to
658 	 * submitting a flush to fs partition?
659 	 */
660 	if (journal->j_fs_dev != journal->j_dev) {
661 		if (!commit_trans->t_need_data_flush ||
662 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
663 			goto out;
664 	} else {
665 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666 			goto out;
667 	}
668 	ret = 1;
669 out:
670 	read_unlock(&journal->j_state_lock);
671 	return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674 
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681 	int err = 0;
682 
683 	read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685 	/*
686 	 * Some callers make sure transaction is already committing and in that
687 	 * case we cannot block on open handles anymore. So don't warn in that
688 	 * case.
689 	 */
690 	if (tid_gt(tid, journal->j_commit_sequence) &&
691 	    (!journal->j_committing_transaction ||
692 	     journal->j_committing_transaction->t_tid != tid)) {
693 		read_unlock(&journal->j_state_lock);
694 		jbd2_might_wait_for_commit(journal);
695 		read_lock(&journal->j_state_lock);
696 	}
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699 	if (!tid_geq(journal->j_commit_request, tid)) {
700 		printk(KERN_ERR
701 		       "%s: error: j_commit_request=%u, tid=%u\n",
702 		       __func__, journal->j_commit_request, tid);
703 	}
704 #endif
705 	while (tid_gt(tid, journal->j_commit_sequence)) {
706 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
707 				  tid, journal->j_commit_sequence);
708 		read_unlock(&journal->j_state_lock);
709 		wake_up(&journal->j_wait_commit);
710 		wait_event(journal->j_wait_done_commit,
711 				!tid_gt(tid, journal->j_commit_sequence));
712 		read_lock(&journal->j_state_lock);
713 	}
714 	read_unlock(&journal->j_state_lock);
715 
716 	if (unlikely(is_journal_aborted(journal)))
717 		err = -EIO;
718 	return err;
719 }
720 
721 /*
722  * Start a fast commit. If there's an ongoing fast or full commit wait for
723  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
724  * if a fast commit is not needed, either because there's an already a commit
725  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
726  * commit has yet been performed.
727  */
728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
729 {
730 	if (unlikely(is_journal_aborted(journal)))
731 		return -EIO;
732 	/*
733 	 * Fast commits only allowed if at least one full commit has
734 	 * been processed.
735 	 */
736 	if (!journal->j_stats.ts_tid)
737 		return -EINVAL;
738 
739 	write_lock(&journal->j_state_lock);
740 	if (tid <= journal->j_commit_sequence) {
741 		write_unlock(&journal->j_state_lock);
742 		return -EALREADY;
743 	}
744 
745 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
746 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
747 		DEFINE_WAIT(wait);
748 
749 		prepare_to_wait(&journal->j_fc_wait, &wait,
750 				TASK_UNINTERRUPTIBLE);
751 		write_unlock(&journal->j_state_lock);
752 		schedule();
753 		finish_wait(&journal->j_fc_wait, &wait);
754 		return -EALREADY;
755 	}
756 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
757 	write_unlock(&journal->j_state_lock);
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL(jbd2_fc_begin_commit);
762 
763 /*
764  * Stop a fast commit. If fallback is set, this function starts commit of
765  * TID tid before any other fast commit can start.
766  */
767 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
768 {
769 	if (journal->j_fc_cleanup_callback)
770 		journal->j_fc_cleanup_callback(journal, 0);
771 	write_lock(&journal->j_state_lock);
772 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
773 	if (fallback)
774 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
775 	write_unlock(&journal->j_state_lock);
776 	wake_up(&journal->j_fc_wait);
777 	if (fallback)
778 		return jbd2_complete_transaction(journal, tid);
779 	return 0;
780 }
781 
782 int jbd2_fc_end_commit(journal_t *journal)
783 {
784 	return __jbd2_fc_end_commit(journal, 0, false);
785 }
786 EXPORT_SYMBOL(jbd2_fc_end_commit);
787 
788 int jbd2_fc_end_commit_fallback(journal_t *journal)
789 {
790 	tid_t tid;
791 
792 	read_lock(&journal->j_state_lock);
793 	tid = journal->j_running_transaction ?
794 		journal->j_running_transaction->t_tid : 0;
795 	read_unlock(&journal->j_state_lock);
796 	return __jbd2_fc_end_commit(journal, tid, true);
797 }
798 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
799 
800 /* Return 1 when transaction with given tid has already committed. */
801 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
802 {
803 	int ret = 1;
804 
805 	read_lock(&journal->j_state_lock);
806 	if (journal->j_running_transaction &&
807 	    journal->j_running_transaction->t_tid == tid)
808 		ret = 0;
809 	if (journal->j_committing_transaction &&
810 	    journal->j_committing_transaction->t_tid == tid)
811 		ret = 0;
812 	read_unlock(&journal->j_state_lock);
813 	return ret;
814 }
815 EXPORT_SYMBOL(jbd2_transaction_committed);
816 
817 /*
818  * When this function returns the transaction corresponding to tid
819  * will be completed.  If the transaction has currently running, start
820  * committing that transaction before waiting for it to complete.  If
821  * the transaction id is stale, it is by definition already completed,
822  * so just return SUCCESS.
823  */
824 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
825 {
826 	int	need_to_wait = 1;
827 
828 	read_lock(&journal->j_state_lock);
829 	if (journal->j_running_transaction &&
830 	    journal->j_running_transaction->t_tid == tid) {
831 		if (journal->j_commit_request != tid) {
832 			/* transaction not yet started, so request it */
833 			read_unlock(&journal->j_state_lock);
834 			jbd2_log_start_commit(journal, tid);
835 			goto wait_commit;
836 		}
837 	} else if (!(journal->j_committing_transaction &&
838 		     journal->j_committing_transaction->t_tid == tid))
839 		need_to_wait = 0;
840 	read_unlock(&journal->j_state_lock);
841 	if (!need_to_wait)
842 		return 0;
843 wait_commit:
844 	return jbd2_log_wait_commit(journal, tid);
845 }
846 EXPORT_SYMBOL(jbd2_complete_transaction);
847 
848 /*
849  * Log buffer allocation routines:
850  */
851 
852 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
853 {
854 	unsigned long blocknr;
855 
856 	write_lock(&journal->j_state_lock);
857 	J_ASSERT(journal->j_free > 1);
858 
859 	blocknr = journal->j_head;
860 	journal->j_head++;
861 	journal->j_free--;
862 	if (journal->j_head == journal->j_last)
863 		journal->j_head = journal->j_first;
864 	write_unlock(&journal->j_state_lock);
865 	return jbd2_journal_bmap(journal, blocknr, retp);
866 }
867 
868 /* Map one fast commit buffer for use by the file system */
869 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
870 {
871 	unsigned long long pblock;
872 	unsigned long blocknr;
873 	int ret = 0;
874 	struct buffer_head *bh;
875 	int fc_off;
876 
877 	*bh_out = NULL;
878 
879 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
880 		fc_off = journal->j_fc_off;
881 		blocknr = journal->j_fc_first + fc_off;
882 		journal->j_fc_off++;
883 	} else {
884 		ret = -EINVAL;
885 	}
886 
887 	if (ret)
888 		return ret;
889 
890 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
891 	if (ret)
892 		return ret;
893 
894 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
895 	if (!bh)
896 		return -ENOMEM;
897 
898 
899 	journal->j_fc_wbuf[fc_off] = bh;
900 
901 	*bh_out = bh;
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL(jbd2_fc_get_buf);
906 
907 /*
908  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
909  * for completion.
910  */
911 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
912 {
913 	struct buffer_head *bh;
914 	int i, j_fc_off;
915 
916 	j_fc_off = journal->j_fc_off;
917 
918 	/*
919 	 * Wait in reverse order to minimize chances of us being woken up before
920 	 * all IOs have completed
921 	 */
922 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
923 		bh = journal->j_fc_wbuf[i];
924 		wait_on_buffer(bh);
925 		put_bh(bh);
926 		journal->j_fc_wbuf[i] = NULL;
927 		if (unlikely(!buffer_uptodate(bh)))
928 			return -EIO;
929 	}
930 
931 	return 0;
932 }
933 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
934 
935 /*
936  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
937  * for completion.
938  */
939 int jbd2_fc_release_bufs(journal_t *journal)
940 {
941 	struct buffer_head *bh;
942 	int i, j_fc_off;
943 
944 	j_fc_off = journal->j_fc_off;
945 
946 	/*
947 	 * Wait in reverse order to minimize chances of us being woken up before
948 	 * all IOs have completed
949 	 */
950 	for (i = j_fc_off - 1; i >= 0; i--) {
951 		bh = journal->j_fc_wbuf[i];
952 		if (!bh)
953 			break;
954 		put_bh(bh);
955 		journal->j_fc_wbuf[i] = NULL;
956 	}
957 
958 	return 0;
959 }
960 EXPORT_SYMBOL(jbd2_fc_release_bufs);
961 
962 /*
963  * Conversion of logical to physical block numbers for the journal
964  *
965  * On external journals the journal blocks are identity-mapped, so
966  * this is a no-op.  If needed, we can use j_blk_offset - everything is
967  * ready.
968  */
969 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
970 		 unsigned long long *retp)
971 {
972 	int err = 0;
973 	unsigned long long ret;
974 	sector_t block = 0;
975 
976 	if (journal->j_inode) {
977 		block = blocknr;
978 		ret = bmap(journal->j_inode, &block);
979 
980 		if (ret || !block) {
981 			printk(KERN_ALERT "%s: journal block not found "
982 					"at offset %lu on %s\n",
983 			       __func__, blocknr, journal->j_devname);
984 			err = -EIO;
985 			jbd2_journal_abort(journal, err);
986 		} else {
987 			*retp = block;
988 		}
989 
990 	} else {
991 		*retp = blocknr; /* +journal->j_blk_offset */
992 	}
993 	return err;
994 }
995 
996 /*
997  * We play buffer_head aliasing tricks to write data/metadata blocks to
998  * the journal without copying their contents, but for journal
999  * descriptor blocks we do need to generate bona fide buffers.
1000  *
1001  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1002  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1003  * But we don't bother doing that, so there will be coherency problems with
1004  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1005  */
1006 struct buffer_head *
1007 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1008 {
1009 	journal_t *journal = transaction->t_journal;
1010 	struct buffer_head *bh;
1011 	unsigned long long blocknr;
1012 	journal_header_t *header;
1013 	int err;
1014 
1015 	err = jbd2_journal_next_log_block(journal, &blocknr);
1016 
1017 	if (err)
1018 		return NULL;
1019 
1020 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1021 	if (!bh)
1022 		return NULL;
1023 	atomic_dec(&transaction->t_outstanding_credits);
1024 	lock_buffer(bh);
1025 	memset(bh->b_data, 0, journal->j_blocksize);
1026 	header = (journal_header_t *)bh->b_data;
1027 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1028 	header->h_blocktype = cpu_to_be32(type);
1029 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1030 	set_buffer_uptodate(bh);
1031 	unlock_buffer(bh);
1032 	BUFFER_TRACE(bh, "return this buffer");
1033 	return bh;
1034 }
1035 
1036 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1037 {
1038 	struct jbd2_journal_block_tail *tail;
1039 	__u32 csum;
1040 
1041 	if (!jbd2_journal_has_csum_v2or3(j))
1042 		return;
1043 
1044 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1045 			sizeof(struct jbd2_journal_block_tail));
1046 	tail->t_checksum = 0;
1047 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1048 	tail->t_checksum = cpu_to_be32(csum);
1049 }
1050 
1051 /*
1052  * Return tid of the oldest transaction in the journal and block in the journal
1053  * where the transaction starts.
1054  *
1055  * If the journal is now empty, return which will be the next transaction ID
1056  * we will write and where will that transaction start.
1057  *
1058  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1059  * it can.
1060  */
1061 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1062 			      unsigned long *block)
1063 {
1064 	transaction_t *transaction;
1065 	int ret;
1066 
1067 	read_lock(&journal->j_state_lock);
1068 	spin_lock(&journal->j_list_lock);
1069 	transaction = journal->j_checkpoint_transactions;
1070 	if (transaction) {
1071 		*tid = transaction->t_tid;
1072 		*block = transaction->t_log_start;
1073 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1074 		*tid = transaction->t_tid;
1075 		*block = transaction->t_log_start;
1076 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1077 		*tid = transaction->t_tid;
1078 		*block = journal->j_head;
1079 	} else {
1080 		*tid = journal->j_transaction_sequence;
1081 		*block = journal->j_head;
1082 	}
1083 	ret = tid_gt(*tid, journal->j_tail_sequence);
1084 	spin_unlock(&journal->j_list_lock);
1085 	read_unlock(&journal->j_state_lock);
1086 
1087 	return ret;
1088 }
1089 
1090 /*
1091  * Update information in journal structure and in on disk journal superblock
1092  * about log tail. This function does not check whether information passed in
1093  * really pushes log tail further. It's responsibility of the caller to make
1094  * sure provided log tail information is valid (e.g. by holding
1095  * j_checkpoint_mutex all the time between computing log tail and calling this
1096  * function as is the case with jbd2_cleanup_journal_tail()).
1097  *
1098  * Requires j_checkpoint_mutex
1099  */
1100 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1101 {
1102 	unsigned long freed;
1103 	int ret;
1104 
1105 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1106 
1107 	/*
1108 	 * We cannot afford for write to remain in drive's caches since as
1109 	 * soon as we update j_tail, next transaction can start reusing journal
1110 	 * space and if we lose sb update during power failure we'd replay
1111 	 * old transaction with possibly newly overwritten data.
1112 	 */
1113 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1114 					      REQ_SYNC | REQ_FUA);
1115 	if (ret)
1116 		goto out;
1117 
1118 	write_lock(&journal->j_state_lock);
1119 	freed = block - journal->j_tail;
1120 	if (block < journal->j_tail)
1121 		freed += journal->j_last - journal->j_first;
1122 
1123 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1124 	jbd_debug(1,
1125 		  "Cleaning journal tail from %u to %u (offset %lu), "
1126 		  "freeing %lu\n",
1127 		  journal->j_tail_sequence, tid, block, freed);
1128 
1129 	journal->j_free += freed;
1130 	journal->j_tail_sequence = tid;
1131 	journal->j_tail = block;
1132 	write_unlock(&journal->j_state_lock);
1133 
1134 out:
1135 	return ret;
1136 }
1137 
1138 /*
1139  * This is a variation of __jbd2_update_log_tail which checks for validity of
1140  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1141  * with other threads updating log tail.
1142  */
1143 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1144 {
1145 	mutex_lock_io(&journal->j_checkpoint_mutex);
1146 	if (tid_gt(tid, journal->j_tail_sequence))
1147 		__jbd2_update_log_tail(journal, tid, block);
1148 	mutex_unlock(&journal->j_checkpoint_mutex);
1149 }
1150 
1151 struct jbd2_stats_proc_session {
1152 	journal_t *journal;
1153 	struct transaction_stats_s *stats;
1154 	int start;
1155 	int max;
1156 };
1157 
1158 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1159 {
1160 	return *pos ? NULL : SEQ_START_TOKEN;
1161 }
1162 
1163 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1164 {
1165 	(*pos)++;
1166 	return NULL;
1167 }
1168 
1169 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1170 {
1171 	struct jbd2_stats_proc_session *s = seq->private;
1172 
1173 	if (v != SEQ_START_TOKEN)
1174 		return 0;
1175 	seq_printf(seq, "%lu transactions (%lu requested), "
1176 		   "each up to %u blocks\n",
1177 		   s->stats->ts_tid, s->stats->ts_requested,
1178 		   s->journal->j_max_transaction_buffers);
1179 	if (s->stats->ts_tid == 0)
1180 		return 0;
1181 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums request delay\n",
1184 	    (s->stats->ts_requested == 0) ? 0 :
1185 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1186 			     s->stats->ts_requested));
1187 	seq_printf(seq, "  %ums running transaction\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1189 	seq_printf(seq, "  %ums transaction was being locked\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1191 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1192 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1193 	seq_printf(seq, "  %ums logging transaction\n",
1194 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1195 	seq_printf(seq, "  %lluus average transaction commit time\n",
1196 		   div_u64(s->journal->j_average_commit_time, 1000));
1197 	seq_printf(seq, "  %lu handles per transaction\n",
1198 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1199 	seq_printf(seq, "  %lu blocks per transaction\n",
1200 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1201 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1202 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1203 	return 0;
1204 }
1205 
1206 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1207 {
1208 }
1209 
1210 static const struct seq_operations jbd2_seq_info_ops = {
1211 	.start  = jbd2_seq_info_start,
1212 	.next   = jbd2_seq_info_next,
1213 	.stop   = jbd2_seq_info_stop,
1214 	.show   = jbd2_seq_info_show,
1215 };
1216 
1217 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1218 {
1219 	journal_t *journal = PDE_DATA(inode);
1220 	struct jbd2_stats_proc_session *s;
1221 	int rc, size;
1222 
1223 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1224 	if (s == NULL)
1225 		return -ENOMEM;
1226 	size = sizeof(struct transaction_stats_s);
1227 	s->stats = kmalloc(size, GFP_KERNEL);
1228 	if (s->stats == NULL) {
1229 		kfree(s);
1230 		return -ENOMEM;
1231 	}
1232 	spin_lock(&journal->j_history_lock);
1233 	memcpy(s->stats, &journal->j_stats, size);
1234 	s->journal = journal;
1235 	spin_unlock(&journal->j_history_lock);
1236 
1237 	rc = seq_open(file, &jbd2_seq_info_ops);
1238 	if (rc == 0) {
1239 		struct seq_file *m = file->private_data;
1240 		m->private = s;
1241 	} else {
1242 		kfree(s->stats);
1243 		kfree(s);
1244 	}
1245 	return rc;
1246 
1247 }
1248 
1249 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1250 {
1251 	struct seq_file *seq = file->private_data;
1252 	struct jbd2_stats_proc_session *s = seq->private;
1253 	kfree(s->stats);
1254 	kfree(s);
1255 	return seq_release(inode, file);
1256 }
1257 
1258 static const struct proc_ops jbd2_info_proc_ops = {
1259 	.proc_open	= jbd2_seq_info_open,
1260 	.proc_read	= seq_read,
1261 	.proc_lseek	= seq_lseek,
1262 	.proc_release	= jbd2_seq_info_release,
1263 };
1264 
1265 static struct proc_dir_entry *proc_jbd2_stats;
1266 
1267 static void jbd2_stats_proc_init(journal_t *journal)
1268 {
1269 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1270 	if (journal->j_proc_entry) {
1271 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1272 				 &jbd2_info_proc_ops, journal);
1273 	}
1274 }
1275 
1276 static void jbd2_stats_proc_exit(journal_t *journal)
1277 {
1278 	remove_proc_entry("info", journal->j_proc_entry);
1279 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1280 }
1281 
1282 /* Minimum size of descriptor tag */
1283 static int jbd2_min_tag_size(void)
1284 {
1285 	/*
1286 	 * Tag with 32-bit block numbers does not use last four bytes of the
1287 	 * structure
1288 	 */
1289 	return sizeof(journal_block_tag_t) - 4;
1290 }
1291 
1292 /*
1293  * Management for journal control blocks: functions to create and
1294  * destroy journal_t structures, and to initialise and read existing
1295  * journal blocks from disk.  */
1296 
1297 /* First: create and setup a journal_t object in memory.  We initialise
1298  * very few fields yet: that has to wait until we have created the
1299  * journal structures from from scratch, or loaded them from disk. */
1300 
1301 static journal_t *journal_init_common(struct block_device *bdev,
1302 			struct block_device *fs_dev,
1303 			unsigned long long start, int len, int blocksize)
1304 {
1305 	static struct lock_class_key jbd2_trans_commit_key;
1306 	journal_t *journal;
1307 	int err;
1308 	struct buffer_head *bh;
1309 	int n;
1310 
1311 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1312 	if (!journal)
1313 		return NULL;
1314 
1315 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1316 	init_waitqueue_head(&journal->j_wait_done_commit);
1317 	init_waitqueue_head(&journal->j_wait_commit);
1318 	init_waitqueue_head(&journal->j_wait_updates);
1319 	init_waitqueue_head(&journal->j_wait_reserved);
1320 	init_waitqueue_head(&journal->j_fc_wait);
1321 	mutex_init(&journal->j_abort_mutex);
1322 	mutex_init(&journal->j_barrier);
1323 	mutex_init(&journal->j_checkpoint_mutex);
1324 	spin_lock_init(&journal->j_revoke_lock);
1325 	spin_lock_init(&journal->j_list_lock);
1326 	rwlock_init(&journal->j_state_lock);
1327 
1328 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1329 	journal->j_min_batch_time = 0;
1330 	journal->j_max_batch_time = 15000; /* 15ms */
1331 	atomic_set(&journal->j_reserved_credits, 0);
1332 
1333 	/* The journal is marked for error until we succeed with recovery! */
1334 	journal->j_flags = JBD2_ABORT;
1335 
1336 	/* Set up a default-sized revoke table for the new mount. */
1337 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1338 	if (err)
1339 		goto err_cleanup;
1340 
1341 	spin_lock_init(&journal->j_history_lock);
1342 
1343 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1344 			 &jbd2_trans_commit_key, 0);
1345 
1346 	/* journal descriptor can store up to n blocks -bzzz */
1347 	journal->j_blocksize = blocksize;
1348 	journal->j_dev = bdev;
1349 	journal->j_fs_dev = fs_dev;
1350 	journal->j_blk_offset = start;
1351 	journal->j_total_len = len;
1352 	/* We need enough buffers to write out full descriptor block. */
1353 	n = journal->j_blocksize / jbd2_min_tag_size();
1354 	journal->j_wbufsize = n;
1355 	journal->j_fc_wbuf = NULL;
1356 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1357 					GFP_KERNEL);
1358 	if (!journal->j_wbuf)
1359 		goto err_cleanup;
1360 
1361 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1362 	if (!bh) {
1363 		pr_err("%s: Cannot get buffer for journal superblock\n",
1364 			__func__);
1365 		goto err_cleanup;
1366 	}
1367 	journal->j_sb_buffer = bh;
1368 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1369 
1370 	return journal;
1371 
1372 err_cleanup:
1373 	kfree(journal->j_wbuf);
1374 	jbd2_journal_destroy_revoke(journal);
1375 	kfree(journal);
1376 	return NULL;
1377 }
1378 
1379 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1380  *
1381  * Create a journal structure assigned some fixed set of disk blocks to
1382  * the journal.  We don't actually touch those disk blocks yet, but we
1383  * need to set up all of the mapping information to tell the journaling
1384  * system where the journal blocks are.
1385  *
1386  */
1387 
1388 /**
1389  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1390  *  @bdev: Block device on which to create the journal
1391  *  @fs_dev: Device which hold journalled filesystem for this journal.
1392  *  @start: Block nr Start of journal.
1393  *  @len:  Length of the journal in blocks.
1394  *  @blocksize: blocksize of journalling device
1395  *
1396  *  Returns: a newly created journal_t *
1397  *
1398  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1399  *  range of blocks on an arbitrary block device.
1400  *
1401  */
1402 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1403 			struct block_device *fs_dev,
1404 			unsigned long long start, int len, int blocksize)
1405 {
1406 	journal_t *journal;
1407 
1408 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1409 	if (!journal)
1410 		return NULL;
1411 
1412 	bdevname(journal->j_dev, journal->j_devname);
1413 	strreplace(journal->j_devname, '/', '!');
1414 	jbd2_stats_proc_init(journal);
1415 
1416 	return journal;
1417 }
1418 
1419 /**
1420  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1421  *  @inode: An inode to create the journal in
1422  *
1423  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1424  * the journal.  The inode must exist already, must support bmap() and
1425  * must have all data blocks preallocated.
1426  */
1427 journal_t *jbd2_journal_init_inode(struct inode *inode)
1428 {
1429 	journal_t *journal;
1430 	sector_t blocknr;
1431 	char *p;
1432 	int err = 0;
1433 
1434 	blocknr = 0;
1435 	err = bmap(inode, &blocknr);
1436 
1437 	if (err || !blocknr) {
1438 		pr_err("%s: Cannot locate journal superblock\n",
1439 			__func__);
1440 		return NULL;
1441 	}
1442 
1443 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1444 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1445 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1446 
1447 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1448 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1449 			inode->i_sb->s_blocksize);
1450 	if (!journal)
1451 		return NULL;
1452 
1453 	journal->j_inode = inode;
1454 	bdevname(journal->j_dev, journal->j_devname);
1455 	p = strreplace(journal->j_devname, '/', '!');
1456 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1457 	jbd2_stats_proc_init(journal);
1458 
1459 	return journal;
1460 }
1461 
1462 /*
1463  * If the journal init or create aborts, we need to mark the journal
1464  * superblock as being NULL to prevent the journal destroy from writing
1465  * back a bogus superblock.
1466  */
1467 static void journal_fail_superblock(journal_t *journal)
1468 {
1469 	struct buffer_head *bh = journal->j_sb_buffer;
1470 	brelse(bh);
1471 	journal->j_sb_buffer = NULL;
1472 }
1473 
1474 /*
1475  * Given a journal_t structure, initialise the various fields for
1476  * startup of a new journaling session.  We use this both when creating
1477  * a journal, and after recovering an old journal to reset it for
1478  * subsequent use.
1479  */
1480 
1481 static int journal_reset(journal_t *journal)
1482 {
1483 	journal_superblock_t *sb = journal->j_superblock;
1484 	unsigned long long first, last;
1485 
1486 	first = be32_to_cpu(sb->s_first);
1487 	last = be32_to_cpu(sb->s_maxlen);
1488 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1489 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1490 		       first, last);
1491 		journal_fail_superblock(journal);
1492 		return -EINVAL;
1493 	}
1494 
1495 	journal->j_first = first;
1496 	journal->j_last = last;
1497 
1498 	journal->j_head = journal->j_first;
1499 	journal->j_tail = journal->j_first;
1500 	journal->j_free = journal->j_last - journal->j_first;
1501 
1502 	journal->j_tail_sequence = journal->j_transaction_sequence;
1503 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1504 	journal->j_commit_request = journal->j_commit_sequence;
1505 
1506 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1507 
1508 	/*
1509 	 * Now that journal recovery is done, turn fast commits off here. This
1510 	 * way, if fast commit was enabled before the crash but if now FS has
1511 	 * disabled it, we don't enable fast commits.
1512 	 */
1513 	jbd2_clear_feature_fast_commit(journal);
1514 
1515 	/*
1516 	 * As a special case, if the on-disk copy is already marked as needing
1517 	 * no recovery (s_start == 0), then we can safely defer the superblock
1518 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1519 	 * attempting a write to a potential-readonly device.
1520 	 */
1521 	if (sb->s_start == 0) {
1522 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1523 			"(start %ld, seq %u, errno %d)\n",
1524 			journal->j_tail, journal->j_tail_sequence,
1525 			journal->j_errno);
1526 		journal->j_flags |= JBD2_FLUSHED;
1527 	} else {
1528 		/* Lock here to make assertions happy... */
1529 		mutex_lock_io(&journal->j_checkpoint_mutex);
1530 		/*
1531 		 * Update log tail information. We use REQ_FUA since new
1532 		 * transaction will start reusing journal space and so we
1533 		 * must make sure information about current log tail is on
1534 		 * disk before that.
1535 		 */
1536 		jbd2_journal_update_sb_log_tail(journal,
1537 						journal->j_tail_sequence,
1538 						journal->j_tail,
1539 						REQ_SYNC | REQ_FUA);
1540 		mutex_unlock(&journal->j_checkpoint_mutex);
1541 	}
1542 	return jbd2_journal_start_thread(journal);
1543 }
1544 
1545 /*
1546  * This function expects that the caller will have locked the journal
1547  * buffer head, and will return with it unlocked
1548  */
1549 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1550 {
1551 	struct buffer_head *bh = journal->j_sb_buffer;
1552 	journal_superblock_t *sb = journal->j_superblock;
1553 	int ret;
1554 
1555 	/* Buffer got discarded which means block device got invalidated */
1556 	if (!buffer_mapped(bh)) {
1557 		unlock_buffer(bh);
1558 		return -EIO;
1559 	}
1560 
1561 	trace_jbd2_write_superblock(journal, write_flags);
1562 	if (!(journal->j_flags & JBD2_BARRIER))
1563 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1564 	if (buffer_write_io_error(bh)) {
1565 		/*
1566 		 * Oh, dear.  A previous attempt to write the journal
1567 		 * superblock failed.  This could happen because the
1568 		 * USB device was yanked out.  Or it could happen to
1569 		 * be a transient write error and maybe the block will
1570 		 * be remapped.  Nothing we can do but to retry the
1571 		 * write and hope for the best.
1572 		 */
1573 		printk(KERN_ERR "JBD2: previous I/O error detected "
1574 		       "for journal superblock update for %s.\n",
1575 		       journal->j_devname);
1576 		clear_buffer_write_io_error(bh);
1577 		set_buffer_uptodate(bh);
1578 	}
1579 	if (jbd2_journal_has_csum_v2or3(journal))
1580 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1581 	get_bh(bh);
1582 	bh->b_end_io = end_buffer_write_sync;
1583 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1584 	wait_on_buffer(bh);
1585 	if (buffer_write_io_error(bh)) {
1586 		clear_buffer_write_io_error(bh);
1587 		set_buffer_uptodate(bh);
1588 		ret = -EIO;
1589 	}
1590 	if (ret) {
1591 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1592 		       "journal superblock for %s.\n", ret,
1593 		       journal->j_devname);
1594 		if (!is_journal_aborted(journal))
1595 			jbd2_journal_abort(journal, ret);
1596 	}
1597 
1598 	return ret;
1599 }
1600 
1601 /**
1602  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1603  * @journal: The journal to update.
1604  * @tail_tid: TID of the new transaction at the tail of the log
1605  * @tail_block: The first block of the transaction at the tail of the log
1606  * @write_op: With which operation should we write the journal sb
1607  *
1608  * Update a journal's superblock information about log tail and write it to
1609  * disk, waiting for the IO to complete.
1610  */
1611 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1612 				     unsigned long tail_block, int write_op)
1613 {
1614 	journal_superblock_t *sb = journal->j_superblock;
1615 	int ret;
1616 
1617 	if (is_journal_aborted(journal))
1618 		return -EIO;
1619 
1620 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1621 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1622 		  tail_block, tail_tid);
1623 
1624 	lock_buffer(journal->j_sb_buffer);
1625 	sb->s_sequence = cpu_to_be32(tail_tid);
1626 	sb->s_start    = cpu_to_be32(tail_block);
1627 
1628 	ret = jbd2_write_superblock(journal, write_op);
1629 	if (ret)
1630 		goto out;
1631 
1632 	/* Log is no longer empty */
1633 	write_lock(&journal->j_state_lock);
1634 	WARN_ON(!sb->s_sequence);
1635 	journal->j_flags &= ~JBD2_FLUSHED;
1636 	write_unlock(&journal->j_state_lock);
1637 
1638 out:
1639 	return ret;
1640 }
1641 
1642 /**
1643  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1644  * @journal: The journal to update.
1645  * @write_op: With which operation should we write the journal sb
1646  *
1647  * Update a journal's dynamic superblock fields to show that journal is empty.
1648  * Write updated superblock to disk waiting for IO to complete.
1649  */
1650 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1651 {
1652 	journal_superblock_t *sb = journal->j_superblock;
1653 	bool had_fast_commit = false;
1654 
1655 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1656 	lock_buffer(journal->j_sb_buffer);
1657 	if (sb->s_start == 0) {		/* Is it already empty? */
1658 		unlock_buffer(journal->j_sb_buffer);
1659 		return;
1660 	}
1661 
1662 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1663 		  journal->j_tail_sequence);
1664 
1665 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1666 	sb->s_start    = cpu_to_be32(0);
1667 	if (jbd2_has_feature_fast_commit(journal)) {
1668 		/*
1669 		 * When journal is clean, no need to commit fast commit flag and
1670 		 * make file system incompatible with older kernels.
1671 		 */
1672 		jbd2_clear_feature_fast_commit(journal);
1673 		had_fast_commit = true;
1674 	}
1675 
1676 	jbd2_write_superblock(journal, write_op);
1677 
1678 	if (had_fast_commit)
1679 		jbd2_set_feature_fast_commit(journal);
1680 
1681 	/* Log is no longer empty */
1682 	write_lock(&journal->j_state_lock);
1683 	journal->j_flags |= JBD2_FLUSHED;
1684 	write_unlock(&journal->j_state_lock);
1685 }
1686 
1687 
1688 /**
1689  * jbd2_journal_update_sb_errno() - Update error in the journal.
1690  * @journal: The journal to update.
1691  *
1692  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1693  * to complete.
1694  */
1695 void jbd2_journal_update_sb_errno(journal_t *journal)
1696 {
1697 	journal_superblock_t *sb = journal->j_superblock;
1698 	int errcode;
1699 
1700 	lock_buffer(journal->j_sb_buffer);
1701 	errcode = journal->j_errno;
1702 	if (errcode == -ESHUTDOWN)
1703 		errcode = 0;
1704 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1705 	sb->s_errno    = cpu_to_be32(errcode);
1706 
1707 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1708 }
1709 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1710 
1711 static int journal_revoke_records_per_block(journal_t *journal)
1712 {
1713 	int record_size;
1714 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1715 
1716 	if (jbd2_has_feature_64bit(journal))
1717 		record_size = 8;
1718 	else
1719 		record_size = 4;
1720 
1721 	if (jbd2_journal_has_csum_v2or3(journal))
1722 		space -= sizeof(struct jbd2_journal_block_tail);
1723 	return space / record_size;
1724 }
1725 
1726 /*
1727  * Read the superblock for a given journal, performing initial
1728  * validation of the format.
1729  */
1730 static int journal_get_superblock(journal_t *journal)
1731 {
1732 	struct buffer_head *bh;
1733 	journal_superblock_t *sb;
1734 	int err = -EIO;
1735 
1736 	bh = journal->j_sb_buffer;
1737 
1738 	J_ASSERT(bh != NULL);
1739 	if (!buffer_uptodate(bh)) {
1740 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1741 		wait_on_buffer(bh);
1742 		if (!buffer_uptodate(bh)) {
1743 			printk(KERN_ERR
1744 				"JBD2: IO error reading journal superblock\n");
1745 			goto out;
1746 		}
1747 	}
1748 
1749 	if (buffer_verified(bh))
1750 		return 0;
1751 
1752 	sb = journal->j_superblock;
1753 
1754 	err = -EINVAL;
1755 
1756 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1757 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1758 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1759 		goto out;
1760 	}
1761 
1762 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1763 	case JBD2_SUPERBLOCK_V1:
1764 		journal->j_format_version = 1;
1765 		break;
1766 	case JBD2_SUPERBLOCK_V2:
1767 		journal->j_format_version = 2;
1768 		break;
1769 	default:
1770 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1771 		goto out;
1772 	}
1773 
1774 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1775 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1776 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1777 		printk(KERN_WARNING "JBD2: journal file too short\n");
1778 		goto out;
1779 	}
1780 
1781 	if (be32_to_cpu(sb->s_first) == 0 ||
1782 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1783 		printk(KERN_WARNING
1784 			"JBD2: Invalid start block of journal: %u\n",
1785 			be32_to_cpu(sb->s_first));
1786 		goto out;
1787 	}
1788 
1789 	if (jbd2_has_feature_csum2(journal) &&
1790 	    jbd2_has_feature_csum3(journal)) {
1791 		/* Can't have checksum v2 and v3 at the same time! */
1792 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1793 		       "at the same time!\n");
1794 		goto out;
1795 	}
1796 
1797 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1798 	    jbd2_has_feature_checksum(journal)) {
1799 		/* Can't have checksum v1 and v2 on at the same time! */
1800 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1801 		       "at the same time!\n");
1802 		goto out;
1803 	}
1804 
1805 	if (!jbd2_verify_csum_type(journal, sb)) {
1806 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1807 		goto out;
1808 	}
1809 
1810 	/* Load the checksum driver */
1811 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1812 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1813 		if (IS_ERR(journal->j_chksum_driver)) {
1814 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1815 			err = PTR_ERR(journal->j_chksum_driver);
1816 			journal->j_chksum_driver = NULL;
1817 			goto out;
1818 		}
1819 	}
1820 
1821 	if (jbd2_journal_has_csum_v2or3(journal)) {
1822 		/* Check superblock checksum */
1823 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1824 			printk(KERN_ERR "JBD2: journal checksum error\n");
1825 			err = -EFSBADCRC;
1826 			goto out;
1827 		}
1828 
1829 		/* Precompute checksum seed for all metadata */
1830 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1831 						   sizeof(sb->s_uuid));
1832 	}
1833 
1834 	journal->j_revoke_records_per_block =
1835 				journal_revoke_records_per_block(journal);
1836 	set_buffer_verified(bh);
1837 
1838 	return 0;
1839 
1840 out:
1841 	journal_fail_superblock(journal);
1842 	return err;
1843 }
1844 
1845 /*
1846  * Load the on-disk journal superblock and read the key fields into the
1847  * journal_t.
1848  */
1849 
1850 static int load_superblock(journal_t *journal)
1851 {
1852 	int err;
1853 	journal_superblock_t *sb;
1854 	int num_fc_blocks;
1855 
1856 	err = journal_get_superblock(journal);
1857 	if (err)
1858 		return err;
1859 
1860 	sb = journal->j_superblock;
1861 
1862 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1863 	journal->j_tail = be32_to_cpu(sb->s_start);
1864 	journal->j_first = be32_to_cpu(sb->s_first);
1865 	journal->j_errno = be32_to_cpu(sb->s_errno);
1866 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1867 
1868 	if (jbd2_has_feature_fast_commit(journal)) {
1869 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1870 		num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1871 		if (!num_fc_blocks)
1872 			num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1873 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1874 			journal->j_last = journal->j_fc_last - num_fc_blocks;
1875 		journal->j_fc_first = journal->j_last + 1;
1876 		journal->j_fc_off = 0;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 
1883 /**
1884  * int jbd2_journal_load() - Read journal from disk.
1885  * @journal: Journal to act on.
1886  *
1887  * Given a journal_t structure which tells us which disk blocks contain
1888  * a journal, read the journal from disk to initialise the in-memory
1889  * structures.
1890  */
1891 int jbd2_journal_load(journal_t *journal)
1892 {
1893 	int err;
1894 	journal_superblock_t *sb;
1895 
1896 	err = load_superblock(journal);
1897 	if (err)
1898 		return err;
1899 
1900 	sb = journal->j_superblock;
1901 	/* If this is a V2 superblock, then we have to check the
1902 	 * features flags on it. */
1903 
1904 	if (journal->j_format_version >= 2) {
1905 		if ((sb->s_feature_ro_compat &
1906 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1907 		    (sb->s_feature_incompat &
1908 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1909 			printk(KERN_WARNING
1910 				"JBD2: Unrecognised features on journal\n");
1911 			return -EINVAL;
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * Create a slab for this blocksize
1917 	 */
1918 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1919 	if (err)
1920 		return err;
1921 
1922 	/* Let the recovery code check whether it needs to recover any
1923 	 * data from the journal. */
1924 	if (jbd2_journal_recover(journal))
1925 		goto recovery_error;
1926 
1927 	if (journal->j_failed_commit) {
1928 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1929 		       "is corrupt.\n", journal->j_failed_commit,
1930 		       journal->j_devname);
1931 		return -EFSCORRUPTED;
1932 	}
1933 	/*
1934 	 * clear JBD2_ABORT flag initialized in journal_init_common
1935 	 * here to update log tail information with the newest seq.
1936 	 */
1937 	journal->j_flags &= ~JBD2_ABORT;
1938 
1939 	/* OK, we've finished with the dynamic journal bits:
1940 	 * reinitialise the dynamic contents of the superblock in memory
1941 	 * and reset them on disk. */
1942 	if (journal_reset(journal))
1943 		goto recovery_error;
1944 
1945 	journal->j_flags |= JBD2_LOADED;
1946 	return 0;
1947 
1948 recovery_error:
1949 	printk(KERN_WARNING "JBD2: recovery failed\n");
1950 	return -EIO;
1951 }
1952 
1953 /**
1954  * void jbd2_journal_destroy() - Release a journal_t structure.
1955  * @journal: Journal to act on.
1956  *
1957  * Release a journal_t structure once it is no longer in use by the
1958  * journaled object.
1959  * Return <0 if we couldn't clean up the journal.
1960  */
1961 int jbd2_journal_destroy(journal_t *journal)
1962 {
1963 	int err = 0;
1964 
1965 	/* Wait for the commit thread to wake up and die. */
1966 	journal_kill_thread(journal);
1967 
1968 	/* Force a final log commit */
1969 	if (journal->j_running_transaction)
1970 		jbd2_journal_commit_transaction(journal);
1971 
1972 	/* Force any old transactions to disk */
1973 
1974 	/* Totally anal locking here... */
1975 	spin_lock(&journal->j_list_lock);
1976 	while (journal->j_checkpoint_transactions != NULL) {
1977 		spin_unlock(&journal->j_list_lock);
1978 		mutex_lock_io(&journal->j_checkpoint_mutex);
1979 		err = jbd2_log_do_checkpoint(journal);
1980 		mutex_unlock(&journal->j_checkpoint_mutex);
1981 		/*
1982 		 * If checkpointing failed, just free the buffers to avoid
1983 		 * looping forever
1984 		 */
1985 		if (err) {
1986 			jbd2_journal_destroy_checkpoint(journal);
1987 			spin_lock(&journal->j_list_lock);
1988 			break;
1989 		}
1990 		spin_lock(&journal->j_list_lock);
1991 	}
1992 
1993 	J_ASSERT(journal->j_running_transaction == NULL);
1994 	J_ASSERT(journal->j_committing_transaction == NULL);
1995 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1996 	spin_unlock(&journal->j_list_lock);
1997 
1998 	if (journal->j_sb_buffer) {
1999 		if (!is_journal_aborted(journal)) {
2000 			mutex_lock_io(&journal->j_checkpoint_mutex);
2001 
2002 			write_lock(&journal->j_state_lock);
2003 			journal->j_tail_sequence =
2004 				++journal->j_transaction_sequence;
2005 			write_unlock(&journal->j_state_lock);
2006 
2007 			jbd2_mark_journal_empty(journal,
2008 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2009 			mutex_unlock(&journal->j_checkpoint_mutex);
2010 		} else
2011 			err = -EIO;
2012 		brelse(journal->j_sb_buffer);
2013 	}
2014 
2015 	if (journal->j_proc_entry)
2016 		jbd2_stats_proc_exit(journal);
2017 	iput(journal->j_inode);
2018 	if (journal->j_revoke)
2019 		jbd2_journal_destroy_revoke(journal);
2020 	if (journal->j_chksum_driver)
2021 		crypto_free_shash(journal->j_chksum_driver);
2022 	kfree(journal->j_fc_wbuf);
2023 	kfree(journal->j_wbuf);
2024 	kfree(journal);
2025 
2026 	return err;
2027 }
2028 
2029 
2030 /**
2031  *int jbd2_journal_check_used_features() - Check if features specified are used.
2032  * @journal: Journal to check.
2033  * @compat: bitmask of compatible features
2034  * @ro: bitmask of features that force read-only mount
2035  * @incompat: bitmask of incompatible features
2036  *
2037  * Check whether the journal uses all of a given set of
2038  * features.  Return true (non-zero) if it does.
2039  **/
2040 
2041 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2042 				 unsigned long ro, unsigned long incompat)
2043 {
2044 	journal_superblock_t *sb;
2045 
2046 	if (!compat && !ro && !incompat)
2047 		return 1;
2048 	/* Load journal superblock if it is not loaded yet. */
2049 	if (journal->j_format_version == 0 &&
2050 	    journal_get_superblock(journal) != 0)
2051 		return 0;
2052 	if (journal->j_format_version == 1)
2053 		return 0;
2054 
2055 	sb = journal->j_superblock;
2056 
2057 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2058 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2059 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2060 		return 1;
2061 
2062 	return 0;
2063 }
2064 
2065 /**
2066  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
2067  * @journal: Journal to check.
2068  * @compat: bitmask of compatible features
2069  * @ro: bitmask of features that force read-only mount
2070  * @incompat: bitmask of incompatible features
2071  *
2072  * Check whether the journaling code supports the use of
2073  * all of a given set of features on this journal.  Return true
2074  * (non-zero) if it can. */
2075 
2076 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2077 				      unsigned long ro, unsigned long incompat)
2078 {
2079 	if (!compat && !ro && !incompat)
2080 		return 1;
2081 
2082 	/* We can support any known requested features iff the
2083 	 * superblock is in version 2.  Otherwise we fail to support any
2084 	 * extended sb features. */
2085 
2086 	if (journal->j_format_version != 2)
2087 		return 0;
2088 
2089 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2090 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2091 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2092 		return 1;
2093 
2094 	return 0;
2095 }
2096 
2097 static int
2098 jbd2_journal_initialize_fast_commit(journal_t *journal)
2099 {
2100 	journal_superblock_t *sb = journal->j_superblock;
2101 	unsigned long long num_fc_blks;
2102 
2103 	num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2104 	if (num_fc_blks == 0)
2105 		num_fc_blks = JBD2_MIN_FC_BLOCKS;
2106 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2107 		return -ENOSPC;
2108 
2109 	/* Are we called twice? */
2110 	WARN_ON(journal->j_fc_wbuf != NULL);
2111 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2112 				sizeof(struct buffer_head *), GFP_KERNEL);
2113 	if (!journal->j_fc_wbuf)
2114 		return -ENOMEM;
2115 
2116 	journal->j_fc_wbufsize = num_fc_blks;
2117 	journal->j_fc_last = journal->j_last;
2118 	journal->j_last = journal->j_fc_last - num_fc_blks;
2119 	journal->j_fc_first = journal->j_last + 1;
2120 	journal->j_fc_off = 0;
2121 	journal->j_free = journal->j_last - journal->j_first;
2122 	journal->j_max_transaction_buffers =
2123 		jbd2_journal_get_max_txn_bufs(journal);
2124 
2125 	return 0;
2126 }
2127 
2128 /**
2129  * int jbd2_journal_set_features() - Mark a given journal feature in the superblock
2130  * @journal: Journal to act on.
2131  * @compat: bitmask of compatible features
2132  * @ro: bitmask of features that force read-only mount
2133  * @incompat: bitmask of incompatible features
2134  *
2135  * Mark a given journal feature as present on the
2136  * superblock.  Returns true if the requested features could be set.
2137  *
2138  */
2139 
2140 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2141 			  unsigned long ro, unsigned long incompat)
2142 {
2143 #define INCOMPAT_FEATURE_ON(f) \
2144 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2145 #define COMPAT_FEATURE_ON(f) \
2146 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2147 	journal_superblock_t *sb;
2148 
2149 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2150 		return 1;
2151 
2152 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2153 		return 0;
2154 
2155 	/* If enabling v2 checksums, turn on v3 instead */
2156 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2157 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2158 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2159 	}
2160 
2161 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2162 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2163 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2164 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2165 
2166 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2167 		  compat, ro, incompat);
2168 
2169 	sb = journal->j_superblock;
2170 
2171 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2172 		if (jbd2_journal_initialize_fast_commit(journal)) {
2173 			pr_err("JBD2: Cannot enable fast commits.\n");
2174 			return 0;
2175 		}
2176 	}
2177 
2178 	/* Load the checksum driver if necessary */
2179 	if ((journal->j_chksum_driver == NULL) &&
2180 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2181 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2182 		if (IS_ERR(journal->j_chksum_driver)) {
2183 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2184 			journal->j_chksum_driver = NULL;
2185 			return 0;
2186 		}
2187 		/* Precompute checksum seed for all metadata */
2188 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2189 						   sizeof(sb->s_uuid));
2190 	}
2191 
2192 	lock_buffer(journal->j_sb_buffer);
2193 
2194 	/* If enabling v3 checksums, update superblock */
2195 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2196 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2197 		sb->s_feature_compat &=
2198 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2199 	}
2200 
2201 	/* If enabling v1 checksums, downgrade superblock */
2202 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2203 		sb->s_feature_incompat &=
2204 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2205 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2206 
2207 	sb->s_feature_compat    |= cpu_to_be32(compat);
2208 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2209 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2210 	unlock_buffer(journal->j_sb_buffer);
2211 	journal->j_revoke_records_per_block =
2212 				journal_revoke_records_per_block(journal);
2213 
2214 	return 1;
2215 #undef COMPAT_FEATURE_ON
2216 #undef INCOMPAT_FEATURE_ON
2217 }
2218 
2219 /*
2220  * jbd2_journal_clear_features () - Clear a given journal feature in the
2221  * 				    superblock
2222  * @journal: Journal to act on.
2223  * @compat: bitmask of compatible features
2224  * @ro: bitmask of features that force read-only mount
2225  * @incompat: bitmask of incompatible features
2226  *
2227  * Clear a given journal feature as present on the
2228  * superblock.
2229  */
2230 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2231 				unsigned long ro, unsigned long incompat)
2232 {
2233 	journal_superblock_t *sb;
2234 
2235 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2236 		  compat, ro, incompat);
2237 
2238 	sb = journal->j_superblock;
2239 
2240 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2241 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2242 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2243 	journal->j_revoke_records_per_block =
2244 				journal_revoke_records_per_block(journal);
2245 }
2246 EXPORT_SYMBOL(jbd2_journal_clear_features);
2247 
2248 /**
2249  * int jbd2_journal_flush () - Flush journal
2250  * @journal: Journal to act on.
2251  *
2252  * Flush all data for a given journal to disk and empty the journal.
2253  * Filesystems can use this when remounting readonly to ensure that
2254  * recovery does not need to happen on remount.
2255  */
2256 
2257 int jbd2_journal_flush(journal_t *journal)
2258 {
2259 	int err = 0;
2260 	transaction_t *transaction = NULL;
2261 
2262 	write_lock(&journal->j_state_lock);
2263 
2264 	/* Force everything buffered to the log... */
2265 	if (journal->j_running_transaction) {
2266 		transaction = journal->j_running_transaction;
2267 		__jbd2_log_start_commit(journal, transaction->t_tid);
2268 	} else if (journal->j_committing_transaction)
2269 		transaction = journal->j_committing_transaction;
2270 
2271 	/* Wait for the log commit to complete... */
2272 	if (transaction) {
2273 		tid_t tid = transaction->t_tid;
2274 
2275 		write_unlock(&journal->j_state_lock);
2276 		jbd2_log_wait_commit(journal, tid);
2277 	} else {
2278 		write_unlock(&journal->j_state_lock);
2279 	}
2280 
2281 	/* ...and flush everything in the log out to disk. */
2282 	spin_lock(&journal->j_list_lock);
2283 	while (!err && journal->j_checkpoint_transactions != NULL) {
2284 		spin_unlock(&journal->j_list_lock);
2285 		mutex_lock_io(&journal->j_checkpoint_mutex);
2286 		err = jbd2_log_do_checkpoint(journal);
2287 		mutex_unlock(&journal->j_checkpoint_mutex);
2288 		spin_lock(&journal->j_list_lock);
2289 	}
2290 	spin_unlock(&journal->j_list_lock);
2291 
2292 	if (is_journal_aborted(journal))
2293 		return -EIO;
2294 
2295 	mutex_lock_io(&journal->j_checkpoint_mutex);
2296 	if (!err) {
2297 		err = jbd2_cleanup_journal_tail(journal);
2298 		if (err < 0) {
2299 			mutex_unlock(&journal->j_checkpoint_mutex);
2300 			goto out;
2301 		}
2302 		err = 0;
2303 	}
2304 
2305 	/* Finally, mark the journal as really needing no recovery.
2306 	 * This sets s_start==0 in the underlying superblock, which is
2307 	 * the magic code for a fully-recovered superblock.  Any future
2308 	 * commits of data to the journal will restore the current
2309 	 * s_start value. */
2310 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2311 	mutex_unlock(&journal->j_checkpoint_mutex);
2312 	write_lock(&journal->j_state_lock);
2313 	J_ASSERT(!journal->j_running_transaction);
2314 	J_ASSERT(!journal->j_committing_transaction);
2315 	J_ASSERT(!journal->j_checkpoint_transactions);
2316 	J_ASSERT(journal->j_head == journal->j_tail);
2317 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2318 	write_unlock(&journal->j_state_lock);
2319 out:
2320 	return err;
2321 }
2322 
2323 /**
2324  * int jbd2_journal_wipe() - Wipe journal contents
2325  * @journal: Journal to act on.
2326  * @write: flag (see below)
2327  *
2328  * Wipe out all of the contents of a journal, safely.  This will produce
2329  * a warning if the journal contains any valid recovery information.
2330  * Must be called between journal_init_*() and jbd2_journal_load().
2331  *
2332  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2333  * we merely suppress recovery.
2334  */
2335 
2336 int jbd2_journal_wipe(journal_t *journal, int write)
2337 {
2338 	int err = 0;
2339 
2340 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2341 
2342 	err = load_superblock(journal);
2343 	if (err)
2344 		return err;
2345 
2346 	if (!journal->j_tail)
2347 		goto no_recovery;
2348 
2349 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2350 		write ? "Clearing" : "Ignoring");
2351 
2352 	err = jbd2_journal_skip_recovery(journal);
2353 	if (write) {
2354 		/* Lock to make assertions happy... */
2355 		mutex_lock_io(&journal->j_checkpoint_mutex);
2356 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2357 		mutex_unlock(&journal->j_checkpoint_mutex);
2358 	}
2359 
2360  no_recovery:
2361 	return err;
2362 }
2363 
2364 /**
2365  * void jbd2_journal_abort () - Shutdown the journal immediately.
2366  * @journal: the journal to shutdown.
2367  * @errno:   an error number to record in the journal indicating
2368  *           the reason for the shutdown.
2369  *
2370  * Perform a complete, immediate shutdown of the ENTIRE
2371  * journal (not of a single transaction).  This operation cannot be
2372  * undone without closing and reopening the journal.
2373  *
2374  * The jbd2_journal_abort function is intended to support higher level error
2375  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2376  * mode.
2377  *
2378  * Journal abort has very specific semantics.  Any existing dirty,
2379  * unjournaled buffers in the main filesystem will still be written to
2380  * disk by bdflush, but the journaling mechanism will be suspended
2381  * immediately and no further transaction commits will be honoured.
2382  *
2383  * Any dirty, journaled buffers will be written back to disk without
2384  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2385  * filesystem, but we _do_ attempt to leave as much data as possible
2386  * behind for fsck to use for cleanup.
2387  *
2388  * Any attempt to get a new transaction handle on a journal which is in
2389  * ABORT state will just result in an -EROFS error return.  A
2390  * jbd2_journal_stop on an existing handle will return -EIO if we have
2391  * entered abort state during the update.
2392  *
2393  * Recursive transactions are not disturbed by journal abort until the
2394  * final jbd2_journal_stop, which will receive the -EIO error.
2395  *
2396  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2397  * which will be recorded (if possible) in the journal superblock.  This
2398  * allows a client to record failure conditions in the middle of a
2399  * transaction without having to complete the transaction to record the
2400  * failure to disk.  ext3_error, for example, now uses this
2401  * functionality.
2402  *
2403  */
2404 
2405 void jbd2_journal_abort(journal_t *journal, int errno)
2406 {
2407 	transaction_t *transaction;
2408 
2409 	/*
2410 	 * Lock the aborting procedure until everything is done, this avoid
2411 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2412 	 * ensure panic after the error info is written into journal's
2413 	 * superblock.
2414 	 */
2415 	mutex_lock(&journal->j_abort_mutex);
2416 	/*
2417 	 * ESHUTDOWN always takes precedence because a file system check
2418 	 * caused by any other journal abort error is not required after
2419 	 * a shutdown triggered.
2420 	 */
2421 	write_lock(&journal->j_state_lock);
2422 	if (journal->j_flags & JBD2_ABORT) {
2423 		int old_errno = journal->j_errno;
2424 
2425 		write_unlock(&journal->j_state_lock);
2426 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2427 			journal->j_errno = errno;
2428 			jbd2_journal_update_sb_errno(journal);
2429 		}
2430 		mutex_unlock(&journal->j_abort_mutex);
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Mark the abort as occurred and start current running transaction
2436 	 * to release all journaled buffer.
2437 	 */
2438 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2439 
2440 	journal->j_flags |= JBD2_ABORT;
2441 	journal->j_errno = errno;
2442 	transaction = journal->j_running_transaction;
2443 	if (transaction)
2444 		__jbd2_log_start_commit(journal, transaction->t_tid);
2445 	write_unlock(&journal->j_state_lock);
2446 
2447 	/*
2448 	 * Record errno to the journal super block, so that fsck and jbd2
2449 	 * layer could realise that a filesystem check is needed.
2450 	 */
2451 	jbd2_journal_update_sb_errno(journal);
2452 	mutex_unlock(&journal->j_abort_mutex);
2453 }
2454 
2455 /**
2456  * int jbd2_journal_errno () - returns the journal's error state.
2457  * @journal: journal to examine.
2458  *
2459  * This is the errno number set with jbd2_journal_abort(), the last
2460  * time the journal was mounted - if the journal was stopped
2461  * without calling abort this will be 0.
2462  *
2463  * If the journal has been aborted on this mount time -EROFS will
2464  * be returned.
2465  */
2466 int jbd2_journal_errno(journal_t *journal)
2467 {
2468 	int err;
2469 
2470 	read_lock(&journal->j_state_lock);
2471 	if (journal->j_flags & JBD2_ABORT)
2472 		err = -EROFS;
2473 	else
2474 		err = journal->j_errno;
2475 	read_unlock(&journal->j_state_lock);
2476 	return err;
2477 }
2478 
2479 /**
2480  * int jbd2_journal_clear_err () - clears the journal's error state
2481  * @journal: journal to act on.
2482  *
2483  * An error must be cleared or acked to take a FS out of readonly
2484  * mode.
2485  */
2486 int jbd2_journal_clear_err(journal_t *journal)
2487 {
2488 	int err = 0;
2489 
2490 	write_lock(&journal->j_state_lock);
2491 	if (journal->j_flags & JBD2_ABORT)
2492 		err = -EROFS;
2493 	else
2494 		journal->j_errno = 0;
2495 	write_unlock(&journal->j_state_lock);
2496 	return err;
2497 }
2498 
2499 /**
2500  * void jbd2_journal_ack_err() - Ack journal err.
2501  * @journal: journal to act on.
2502  *
2503  * An error must be cleared or acked to take a FS out of readonly
2504  * mode.
2505  */
2506 void jbd2_journal_ack_err(journal_t *journal)
2507 {
2508 	write_lock(&journal->j_state_lock);
2509 	if (journal->j_errno)
2510 		journal->j_flags |= JBD2_ACK_ERR;
2511 	write_unlock(&journal->j_state_lock);
2512 }
2513 
2514 int jbd2_journal_blocks_per_page(struct inode *inode)
2515 {
2516 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2517 }
2518 
2519 /*
2520  * helper functions to deal with 32 or 64bit block numbers.
2521  */
2522 size_t journal_tag_bytes(journal_t *journal)
2523 {
2524 	size_t sz;
2525 
2526 	if (jbd2_has_feature_csum3(journal))
2527 		return sizeof(journal_block_tag3_t);
2528 
2529 	sz = sizeof(journal_block_tag_t);
2530 
2531 	if (jbd2_has_feature_csum2(journal))
2532 		sz += sizeof(__u16);
2533 
2534 	if (jbd2_has_feature_64bit(journal))
2535 		return sz;
2536 	else
2537 		return sz - sizeof(__u32);
2538 }
2539 
2540 /*
2541  * JBD memory management
2542  *
2543  * These functions are used to allocate block-sized chunks of memory
2544  * used for making copies of buffer_head data.  Very often it will be
2545  * page-sized chunks of data, but sometimes it will be in
2546  * sub-page-size chunks.  (For example, 16k pages on Power systems
2547  * with a 4k block file system.)  For blocks smaller than a page, we
2548  * use a SLAB allocator.  There are slab caches for each block size,
2549  * which are allocated at mount time, if necessary, and we only free
2550  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2551  * this reason we don't need to a mutex to protect access to
2552  * jbd2_slab[] allocating or releasing memory; only in
2553  * jbd2_journal_create_slab().
2554  */
2555 #define JBD2_MAX_SLABS 8
2556 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2557 
2558 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2559 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2560 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2561 };
2562 
2563 
2564 static void jbd2_journal_destroy_slabs(void)
2565 {
2566 	int i;
2567 
2568 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2569 		kmem_cache_destroy(jbd2_slab[i]);
2570 		jbd2_slab[i] = NULL;
2571 	}
2572 }
2573 
2574 static int jbd2_journal_create_slab(size_t size)
2575 {
2576 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2577 	int i = order_base_2(size) - 10;
2578 	size_t slab_size;
2579 
2580 	if (size == PAGE_SIZE)
2581 		return 0;
2582 
2583 	if (i >= JBD2_MAX_SLABS)
2584 		return -EINVAL;
2585 
2586 	if (unlikely(i < 0))
2587 		i = 0;
2588 	mutex_lock(&jbd2_slab_create_mutex);
2589 	if (jbd2_slab[i]) {
2590 		mutex_unlock(&jbd2_slab_create_mutex);
2591 		return 0;	/* Already created */
2592 	}
2593 
2594 	slab_size = 1 << (i+10);
2595 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2596 					 slab_size, 0, NULL);
2597 	mutex_unlock(&jbd2_slab_create_mutex);
2598 	if (!jbd2_slab[i]) {
2599 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2600 		return -ENOMEM;
2601 	}
2602 	return 0;
2603 }
2604 
2605 static struct kmem_cache *get_slab(size_t size)
2606 {
2607 	int i = order_base_2(size) - 10;
2608 
2609 	BUG_ON(i >= JBD2_MAX_SLABS);
2610 	if (unlikely(i < 0))
2611 		i = 0;
2612 	BUG_ON(jbd2_slab[i] == NULL);
2613 	return jbd2_slab[i];
2614 }
2615 
2616 void *jbd2_alloc(size_t size, gfp_t flags)
2617 {
2618 	void *ptr;
2619 
2620 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2621 
2622 	if (size < PAGE_SIZE)
2623 		ptr = kmem_cache_alloc(get_slab(size), flags);
2624 	else
2625 		ptr = (void *)__get_free_pages(flags, get_order(size));
2626 
2627 	/* Check alignment; SLUB has gotten this wrong in the past,
2628 	 * and this can lead to user data corruption! */
2629 	BUG_ON(((unsigned long) ptr) & (size-1));
2630 
2631 	return ptr;
2632 }
2633 
2634 void jbd2_free(void *ptr, size_t size)
2635 {
2636 	if (size < PAGE_SIZE)
2637 		kmem_cache_free(get_slab(size), ptr);
2638 	else
2639 		free_pages((unsigned long)ptr, get_order(size));
2640 };
2641 
2642 /*
2643  * Journal_head storage management
2644  */
2645 static struct kmem_cache *jbd2_journal_head_cache;
2646 #ifdef CONFIG_JBD2_DEBUG
2647 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2648 #endif
2649 
2650 static int __init jbd2_journal_init_journal_head_cache(void)
2651 {
2652 	J_ASSERT(!jbd2_journal_head_cache);
2653 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2654 				sizeof(struct journal_head),
2655 				0,		/* offset */
2656 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2657 				NULL);		/* ctor */
2658 	if (!jbd2_journal_head_cache) {
2659 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2660 		return -ENOMEM;
2661 	}
2662 	return 0;
2663 }
2664 
2665 static void jbd2_journal_destroy_journal_head_cache(void)
2666 {
2667 	kmem_cache_destroy(jbd2_journal_head_cache);
2668 	jbd2_journal_head_cache = NULL;
2669 }
2670 
2671 /*
2672  * journal_head splicing and dicing
2673  */
2674 static struct journal_head *journal_alloc_journal_head(void)
2675 {
2676 	struct journal_head *ret;
2677 
2678 #ifdef CONFIG_JBD2_DEBUG
2679 	atomic_inc(&nr_journal_heads);
2680 #endif
2681 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2682 	if (!ret) {
2683 		jbd_debug(1, "out of memory for journal_head\n");
2684 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2685 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2686 				GFP_NOFS | __GFP_NOFAIL);
2687 	}
2688 	if (ret)
2689 		spin_lock_init(&ret->b_state_lock);
2690 	return ret;
2691 }
2692 
2693 static void journal_free_journal_head(struct journal_head *jh)
2694 {
2695 #ifdef CONFIG_JBD2_DEBUG
2696 	atomic_dec(&nr_journal_heads);
2697 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2698 #endif
2699 	kmem_cache_free(jbd2_journal_head_cache, jh);
2700 }
2701 
2702 /*
2703  * A journal_head is attached to a buffer_head whenever JBD has an
2704  * interest in the buffer.
2705  *
2706  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2707  * is set.  This bit is tested in core kernel code where we need to take
2708  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2709  * there.
2710  *
2711  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2712  *
2713  * When a buffer has its BH_JBD bit set it is immune from being released by
2714  * core kernel code, mainly via ->b_count.
2715  *
2716  * A journal_head is detached from its buffer_head when the journal_head's
2717  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2718  * transaction (b_cp_transaction) hold their references to b_jcount.
2719  *
2720  * Various places in the kernel want to attach a journal_head to a buffer_head
2721  * _before_ attaching the journal_head to a transaction.  To protect the
2722  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2723  * journal_head's b_jcount refcount by one.  The caller must call
2724  * jbd2_journal_put_journal_head() to undo this.
2725  *
2726  * So the typical usage would be:
2727  *
2728  *	(Attach a journal_head if needed.  Increments b_jcount)
2729  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2730  *	...
2731  *      (Get another reference for transaction)
2732  *	jbd2_journal_grab_journal_head(bh);
2733  *	jh->b_transaction = xxx;
2734  *	(Put original reference)
2735  *	jbd2_journal_put_journal_head(jh);
2736  */
2737 
2738 /*
2739  * Give a buffer_head a journal_head.
2740  *
2741  * May sleep.
2742  */
2743 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2744 {
2745 	struct journal_head *jh;
2746 	struct journal_head *new_jh = NULL;
2747 
2748 repeat:
2749 	if (!buffer_jbd(bh))
2750 		new_jh = journal_alloc_journal_head();
2751 
2752 	jbd_lock_bh_journal_head(bh);
2753 	if (buffer_jbd(bh)) {
2754 		jh = bh2jh(bh);
2755 	} else {
2756 		J_ASSERT_BH(bh,
2757 			(atomic_read(&bh->b_count) > 0) ||
2758 			(bh->b_page && bh->b_page->mapping));
2759 
2760 		if (!new_jh) {
2761 			jbd_unlock_bh_journal_head(bh);
2762 			goto repeat;
2763 		}
2764 
2765 		jh = new_jh;
2766 		new_jh = NULL;		/* We consumed it */
2767 		set_buffer_jbd(bh);
2768 		bh->b_private = jh;
2769 		jh->b_bh = bh;
2770 		get_bh(bh);
2771 		BUFFER_TRACE(bh, "added journal_head");
2772 	}
2773 	jh->b_jcount++;
2774 	jbd_unlock_bh_journal_head(bh);
2775 	if (new_jh)
2776 		journal_free_journal_head(new_jh);
2777 	return bh->b_private;
2778 }
2779 
2780 /*
2781  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2782  * having a journal_head, return NULL
2783  */
2784 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2785 {
2786 	struct journal_head *jh = NULL;
2787 
2788 	jbd_lock_bh_journal_head(bh);
2789 	if (buffer_jbd(bh)) {
2790 		jh = bh2jh(bh);
2791 		jh->b_jcount++;
2792 	}
2793 	jbd_unlock_bh_journal_head(bh);
2794 	return jh;
2795 }
2796 
2797 static void __journal_remove_journal_head(struct buffer_head *bh)
2798 {
2799 	struct journal_head *jh = bh2jh(bh);
2800 
2801 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2802 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2803 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2804 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2805 	J_ASSERT_BH(bh, buffer_jbd(bh));
2806 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2807 	BUFFER_TRACE(bh, "remove journal_head");
2808 
2809 	/* Unlink before dropping the lock */
2810 	bh->b_private = NULL;
2811 	jh->b_bh = NULL;	/* debug, really */
2812 	clear_buffer_jbd(bh);
2813 }
2814 
2815 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2816 {
2817 	if (jh->b_frozen_data) {
2818 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2819 		jbd2_free(jh->b_frozen_data, b_size);
2820 	}
2821 	if (jh->b_committed_data) {
2822 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2823 		jbd2_free(jh->b_committed_data, b_size);
2824 	}
2825 	journal_free_journal_head(jh);
2826 }
2827 
2828 /*
2829  * Drop a reference on the passed journal_head.  If it fell to zero then
2830  * release the journal_head from the buffer_head.
2831  */
2832 void jbd2_journal_put_journal_head(struct journal_head *jh)
2833 {
2834 	struct buffer_head *bh = jh2bh(jh);
2835 
2836 	jbd_lock_bh_journal_head(bh);
2837 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2838 	--jh->b_jcount;
2839 	if (!jh->b_jcount) {
2840 		__journal_remove_journal_head(bh);
2841 		jbd_unlock_bh_journal_head(bh);
2842 		journal_release_journal_head(jh, bh->b_size);
2843 		__brelse(bh);
2844 	} else {
2845 		jbd_unlock_bh_journal_head(bh);
2846 	}
2847 }
2848 
2849 /*
2850  * Initialize jbd inode head
2851  */
2852 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2853 {
2854 	jinode->i_transaction = NULL;
2855 	jinode->i_next_transaction = NULL;
2856 	jinode->i_vfs_inode = inode;
2857 	jinode->i_flags = 0;
2858 	jinode->i_dirty_start = 0;
2859 	jinode->i_dirty_end = 0;
2860 	INIT_LIST_HEAD(&jinode->i_list);
2861 }
2862 
2863 /*
2864  * Function to be called before we start removing inode from memory (i.e.,
2865  * clear_inode() is a fine place to be called from). It removes inode from
2866  * transaction's lists.
2867  */
2868 void jbd2_journal_release_jbd_inode(journal_t *journal,
2869 				    struct jbd2_inode *jinode)
2870 {
2871 	if (!journal)
2872 		return;
2873 restart:
2874 	spin_lock(&journal->j_list_lock);
2875 	/* Is commit writing out inode - we have to wait */
2876 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2877 		wait_queue_head_t *wq;
2878 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2879 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2880 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2881 		spin_unlock(&journal->j_list_lock);
2882 		schedule();
2883 		finish_wait(wq, &wait.wq_entry);
2884 		goto restart;
2885 	}
2886 
2887 	if (jinode->i_transaction) {
2888 		list_del(&jinode->i_list);
2889 		jinode->i_transaction = NULL;
2890 	}
2891 	spin_unlock(&journal->j_list_lock);
2892 }
2893 
2894 
2895 #ifdef CONFIG_PROC_FS
2896 
2897 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2898 
2899 static void __init jbd2_create_jbd_stats_proc_entry(void)
2900 {
2901 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2902 }
2903 
2904 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2905 {
2906 	if (proc_jbd2_stats)
2907 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2908 }
2909 
2910 #else
2911 
2912 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2913 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2914 
2915 #endif
2916 
2917 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2918 
2919 static int __init jbd2_journal_init_inode_cache(void)
2920 {
2921 	J_ASSERT(!jbd2_inode_cache);
2922 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2923 	if (!jbd2_inode_cache) {
2924 		pr_emerg("JBD2: failed to create inode cache\n");
2925 		return -ENOMEM;
2926 	}
2927 	return 0;
2928 }
2929 
2930 static int __init jbd2_journal_init_handle_cache(void)
2931 {
2932 	J_ASSERT(!jbd2_handle_cache);
2933 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2934 	if (!jbd2_handle_cache) {
2935 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2936 		return -ENOMEM;
2937 	}
2938 	return 0;
2939 }
2940 
2941 static void jbd2_journal_destroy_inode_cache(void)
2942 {
2943 	kmem_cache_destroy(jbd2_inode_cache);
2944 	jbd2_inode_cache = NULL;
2945 }
2946 
2947 static void jbd2_journal_destroy_handle_cache(void)
2948 {
2949 	kmem_cache_destroy(jbd2_handle_cache);
2950 	jbd2_handle_cache = NULL;
2951 }
2952 
2953 /*
2954  * Module startup and shutdown
2955  */
2956 
2957 static int __init journal_init_caches(void)
2958 {
2959 	int ret;
2960 
2961 	ret = jbd2_journal_init_revoke_record_cache();
2962 	if (ret == 0)
2963 		ret = jbd2_journal_init_revoke_table_cache();
2964 	if (ret == 0)
2965 		ret = jbd2_journal_init_journal_head_cache();
2966 	if (ret == 0)
2967 		ret = jbd2_journal_init_handle_cache();
2968 	if (ret == 0)
2969 		ret = jbd2_journal_init_inode_cache();
2970 	if (ret == 0)
2971 		ret = jbd2_journal_init_transaction_cache();
2972 	return ret;
2973 }
2974 
2975 static void jbd2_journal_destroy_caches(void)
2976 {
2977 	jbd2_journal_destroy_revoke_record_cache();
2978 	jbd2_journal_destroy_revoke_table_cache();
2979 	jbd2_journal_destroy_journal_head_cache();
2980 	jbd2_journal_destroy_handle_cache();
2981 	jbd2_journal_destroy_inode_cache();
2982 	jbd2_journal_destroy_transaction_cache();
2983 	jbd2_journal_destroy_slabs();
2984 }
2985 
2986 static int __init journal_init(void)
2987 {
2988 	int ret;
2989 
2990 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2991 
2992 	ret = journal_init_caches();
2993 	if (ret == 0) {
2994 		jbd2_create_jbd_stats_proc_entry();
2995 	} else {
2996 		jbd2_journal_destroy_caches();
2997 	}
2998 	return ret;
2999 }
3000 
3001 static void __exit journal_exit(void)
3002 {
3003 #ifdef CONFIG_JBD2_DEBUG
3004 	int n = atomic_read(&nr_journal_heads);
3005 	if (n)
3006 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3007 #endif
3008 	jbd2_remove_jbd_stats_proc_entry();
3009 	jbd2_journal_destroy_caches();
3010 }
3011 
3012 MODULE_LICENSE("GPL");
3013 module_init(journal_init);
3014 module_exit(journal_exit);
3015 
3016