1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 102 EXPORT_SYMBOL(jbd2_inode_cache); 103 104 static void __journal_abort_soft (journal_t *journal, int errno); 105 static int jbd2_journal_create_slab(size_t slab_size); 106 107 #ifdef CONFIG_JBD2_DEBUG 108 void __jbd2_debug(int level, const char *file, const char *func, 109 unsigned int line, const char *fmt, ...) 110 { 111 struct va_format vaf; 112 va_list args; 113 114 if (level > jbd2_journal_enable_debug) 115 return; 116 va_start(args, fmt); 117 vaf.fmt = fmt; 118 vaf.va = &args; 119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 120 va_end(args); 121 } 122 EXPORT_SYMBOL(__jbd2_debug); 123 #endif 124 125 /* Checksumming functions */ 126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 127 { 128 if (!jbd2_journal_has_csum_v2or3_feature(j)) 129 return 1; 130 131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 132 } 133 134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 135 { 136 __u32 csum; 137 __be32 old_csum; 138 139 old_csum = sb->s_checksum; 140 sb->s_checksum = 0; 141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 142 sb->s_checksum = old_csum; 143 144 return cpu_to_be32(csum); 145 } 146 147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 148 { 149 if (!jbd2_journal_has_csum_v2or3(j)) 150 return 1; 151 152 return sb->s_checksum == jbd2_superblock_csum(j, sb); 153 } 154 155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 156 { 157 if (!jbd2_journal_has_csum_v2or3(j)) 158 return; 159 160 sb->s_checksum = jbd2_superblock_csum(j, sb); 161 } 162 163 /* 164 * Helper function used to manage commit timeouts 165 */ 166 167 static void commit_timeout(unsigned long __data) 168 { 169 struct task_struct * p = (struct task_struct *) __data; 170 171 wake_up_process(p); 172 } 173 174 /* 175 * kjournald2: The main thread function used to manage a logging device 176 * journal. 177 * 178 * This kernel thread is responsible for two things: 179 * 180 * 1) COMMIT: Every so often we need to commit the current state of the 181 * filesystem to disk. The journal thread is responsible for writing 182 * all of the metadata buffers to disk. 183 * 184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 185 * of the data in that part of the log has been rewritten elsewhere on 186 * the disk. Flushing these old buffers to reclaim space in the log is 187 * known as checkpointing, and this thread is responsible for that job. 188 */ 189 190 static int kjournald2(void *arg) 191 { 192 journal_t *journal = arg; 193 transaction_t *transaction; 194 195 /* 196 * Set up an interval timer which can be used to trigger a commit wakeup 197 * after the commit interval expires 198 */ 199 setup_timer(&journal->j_commit_timer, commit_timeout, 200 (unsigned long)current); 201 202 set_freezable(); 203 204 /* Record that the journal thread is running */ 205 journal->j_task = current; 206 wake_up(&journal->j_wait_done_commit); 207 208 /* 209 * And now, wait forever for commit wakeup events. 210 */ 211 write_lock(&journal->j_state_lock); 212 213 loop: 214 if (journal->j_flags & JBD2_UNMOUNT) 215 goto end_loop; 216 217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 218 journal->j_commit_sequence, journal->j_commit_request); 219 220 if (journal->j_commit_sequence != journal->j_commit_request) { 221 jbd_debug(1, "OK, requests differ\n"); 222 write_unlock(&journal->j_state_lock); 223 del_timer_sync(&journal->j_commit_timer); 224 jbd2_journal_commit_transaction(journal); 225 write_lock(&journal->j_state_lock); 226 goto loop; 227 } 228 229 wake_up(&journal->j_wait_done_commit); 230 if (freezing(current)) { 231 /* 232 * The simpler the better. Flushing journal isn't a 233 * good idea, because that depends on threads that may 234 * be already stopped. 235 */ 236 jbd_debug(1, "Now suspending kjournald2\n"); 237 write_unlock(&journal->j_state_lock); 238 try_to_freeze(); 239 write_lock(&journal->j_state_lock); 240 } else { 241 /* 242 * We assume on resume that commits are already there, 243 * so we don't sleep 244 */ 245 DEFINE_WAIT(wait); 246 int should_sleep = 1; 247 248 prepare_to_wait(&journal->j_wait_commit, &wait, 249 TASK_INTERRUPTIBLE); 250 if (journal->j_commit_sequence != journal->j_commit_request) 251 should_sleep = 0; 252 transaction = journal->j_running_transaction; 253 if (transaction && time_after_eq(jiffies, 254 transaction->t_expires)) 255 should_sleep = 0; 256 if (journal->j_flags & JBD2_UNMOUNT) 257 should_sleep = 0; 258 if (should_sleep) { 259 write_unlock(&journal->j_state_lock); 260 schedule(); 261 write_lock(&journal->j_state_lock); 262 } 263 finish_wait(&journal->j_wait_commit, &wait); 264 } 265 266 jbd_debug(1, "kjournald2 wakes\n"); 267 268 /* 269 * Were we woken up by a commit wakeup event? 270 */ 271 transaction = journal->j_running_transaction; 272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 273 journal->j_commit_request = transaction->t_tid; 274 jbd_debug(1, "woke because of timeout\n"); 275 } 276 goto loop; 277 278 end_loop: 279 del_timer_sync(&journal->j_commit_timer); 280 journal->j_task = NULL; 281 wake_up(&journal->j_wait_done_commit); 282 jbd_debug(1, "Journal thread exiting.\n"); 283 write_unlock(&journal->j_state_lock); 284 return 0; 285 } 286 287 static int jbd2_journal_start_thread(journal_t *journal) 288 { 289 struct task_struct *t; 290 291 t = kthread_run(kjournald2, journal, "jbd2/%s", 292 journal->j_devname); 293 if (IS_ERR(t)) 294 return PTR_ERR(t); 295 296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 297 return 0; 298 } 299 300 static void journal_kill_thread(journal_t *journal) 301 { 302 write_lock(&journal->j_state_lock); 303 journal->j_flags |= JBD2_UNMOUNT; 304 305 while (journal->j_task) { 306 write_unlock(&journal->j_state_lock); 307 wake_up(&journal->j_wait_commit); 308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 309 write_lock(&journal->j_state_lock); 310 } 311 write_unlock(&journal->j_state_lock); 312 } 313 314 /* 315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 316 * 317 * Writes a metadata buffer to a given disk block. The actual IO is not 318 * performed but a new buffer_head is constructed which labels the data 319 * to be written with the correct destination disk block. 320 * 321 * Any magic-number escaping which needs to be done will cause a 322 * copy-out here. If the buffer happens to start with the 323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 324 * magic number is only written to the log for descripter blocks. In 325 * this case, we copy the data and replace the first word with 0, and we 326 * return a result code which indicates that this buffer needs to be 327 * marked as an escaped buffer in the corresponding log descriptor 328 * block. The missing word can then be restored when the block is read 329 * during recovery. 330 * 331 * If the source buffer has already been modified by a new transaction 332 * since we took the last commit snapshot, we use the frozen copy of 333 * that data for IO. If we end up using the existing buffer_head's data 334 * for the write, then we have to make sure nobody modifies it while the 335 * IO is in progress. do_get_write_access() handles this. 336 * 337 * The function returns a pointer to the buffer_head to be used for IO. 338 * 339 * 340 * Return value: 341 * <0: Error 342 * >=0: Finished OK 343 * 344 * On success: 345 * Bit 0 set == escape performed on the data 346 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 347 */ 348 349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 350 struct journal_head *jh_in, 351 struct buffer_head **bh_out, 352 sector_t blocknr) 353 { 354 int need_copy_out = 0; 355 int done_copy_out = 0; 356 int do_escape = 0; 357 char *mapped_data; 358 struct buffer_head *new_bh; 359 struct page *new_page; 360 unsigned int new_offset; 361 struct buffer_head *bh_in = jh2bh(jh_in); 362 journal_t *journal = transaction->t_journal; 363 364 /* 365 * The buffer really shouldn't be locked: only the current committing 366 * transaction is allowed to write it, so nobody else is allowed 367 * to do any IO. 368 * 369 * akpm: except if we're journalling data, and write() output is 370 * also part of a shared mapping, and another thread has 371 * decided to launch a writepage() against this buffer. 372 */ 373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 374 375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 376 377 /* keep subsequent assertions sane */ 378 atomic_set(&new_bh->b_count, 1); 379 380 jbd_lock_bh_state(bh_in); 381 repeat: 382 /* 383 * If a new transaction has already done a buffer copy-out, then 384 * we use that version of the data for the commit. 385 */ 386 if (jh_in->b_frozen_data) { 387 done_copy_out = 1; 388 new_page = virt_to_page(jh_in->b_frozen_data); 389 new_offset = offset_in_page(jh_in->b_frozen_data); 390 } else { 391 new_page = jh2bh(jh_in)->b_page; 392 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 393 } 394 395 mapped_data = kmap_atomic(new_page); 396 /* 397 * Fire data frozen trigger if data already wasn't frozen. Do this 398 * before checking for escaping, as the trigger may modify the magic 399 * offset. If a copy-out happens afterwards, it will have the correct 400 * data in the buffer. 401 */ 402 if (!done_copy_out) 403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 404 jh_in->b_triggers); 405 406 /* 407 * Check for escaping 408 */ 409 if (*((__be32 *)(mapped_data + new_offset)) == 410 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 411 need_copy_out = 1; 412 do_escape = 1; 413 } 414 kunmap_atomic(mapped_data); 415 416 /* 417 * Do we need to do a data copy? 418 */ 419 if (need_copy_out && !done_copy_out) { 420 char *tmp; 421 422 jbd_unlock_bh_state(bh_in); 423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 424 if (!tmp) { 425 brelse(new_bh); 426 return -ENOMEM; 427 } 428 jbd_lock_bh_state(bh_in); 429 if (jh_in->b_frozen_data) { 430 jbd2_free(tmp, bh_in->b_size); 431 goto repeat; 432 } 433 434 jh_in->b_frozen_data = tmp; 435 mapped_data = kmap_atomic(new_page); 436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 437 kunmap_atomic(mapped_data); 438 439 new_page = virt_to_page(tmp); 440 new_offset = offset_in_page(tmp); 441 done_copy_out = 1; 442 443 /* 444 * This isn't strictly necessary, as we're using frozen 445 * data for the escaping, but it keeps consistency with 446 * b_frozen_data usage. 447 */ 448 jh_in->b_frozen_triggers = jh_in->b_triggers; 449 } 450 451 /* 452 * Did we need to do an escaping? Now we've done all the 453 * copying, we can finally do so. 454 */ 455 if (do_escape) { 456 mapped_data = kmap_atomic(new_page); 457 *((unsigned int *)(mapped_data + new_offset)) = 0; 458 kunmap_atomic(mapped_data); 459 } 460 461 set_bh_page(new_bh, new_page, new_offset); 462 new_bh->b_size = bh_in->b_size; 463 new_bh->b_bdev = journal->j_dev; 464 new_bh->b_blocknr = blocknr; 465 new_bh->b_private = bh_in; 466 set_buffer_mapped(new_bh); 467 set_buffer_dirty(new_bh); 468 469 *bh_out = new_bh; 470 471 /* 472 * The to-be-written buffer needs to get moved to the io queue, 473 * and the original buffer whose contents we are shadowing or 474 * copying is moved to the transaction's shadow queue. 475 */ 476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 477 spin_lock(&journal->j_list_lock); 478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 479 spin_unlock(&journal->j_list_lock); 480 set_buffer_shadow(bh_in); 481 jbd_unlock_bh_state(bh_in); 482 483 return do_escape | (done_copy_out << 1); 484 } 485 486 /* 487 * Allocation code for the journal file. Manage the space left in the 488 * journal, so that we can begin checkpointing when appropriate. 489 */ 490 491 /* 492 * Called with j_state_lock locked for writing. 493 * Returns true if a transaction commit was started. 494 */ 495 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 496 { 497 /* Return if the txn has already requested to be committed */ 498 if (journal->j_commit_request == target) 499 return 0; 500 501 /* 502 * The only transaction we can possibly wait upon is the 503 * currently running transaction (if it exists). Otherwise, 504 * the target tid must be an old one. 505 */ 506 if (journal->j_running_transaction && 507 journal->j_running_transaction->t_tid == target) { 508 /* 509 * We want a new commit: OK, mark the request and wakeup the 510 * commit thread. We do _not_ do the commit ourselves. 511 */ 512 513 journal->j_commit_request = target; 514 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 515 journal->j_commit_request, 516 journal->j_commit_sequence); 517 journal->j_running_transaction->t_requested = jiffies; 518 wake_up(&journal->j_wait_commit); 519 return 1; 520 } else if (!tid_geq(journal->j_commit_request, target)) 521 /* This should never happen, but if it does, preserve 522 the evidence before kjournald goes into a loop and 523 increments j_commit_sequence beyond all recognition. */ 524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 525 journal->j_commit_request, 526 journal->j_commit_sequence, 527 target, journal->j_running_transaction ? 528 journal->j_running_transaction->t_tid : 0); 529 return 0; 530 } 531 532 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 533 { 534 int ret; 535 536 write_lock(&journal->j_state_lock); 537 ret = __jbd2_log_start_commit(journal, tid); 538 write_unlock(&journal->j_state_lock); 539 return ret; 540 } 541 542 /* 543 * Force and wait any uncommitted transactions. We can only force the running 544 * transaction if we don't have an active handle, otherwise, we will deadlock. 545 * Returns: <0 in case of error, 546 * 0 if nothing to commit, 547 * 1 if transaction was successfully committed. 548 */ 549 static int __jbd2_journal_force_commit(journal_t *journal) 550 { 551 transaction_t *transaction = NULL; 552 tid_t tid; 553 int need_to_start = 0, ret = 0; 554 555 read_lock(&journal->j_state_lock); 556 if (journal->j_running_transaction && !current->journal_info) { 557 transaction = journal->j_running_transaction; 558 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 559 need_to_start = 1; 560 } else if (journal->j_committing_transaction) 561 transaction = journal->j_committing_transaction; 562 563 if (!transaction) { 564 /* Nothing to commit */ 565 read_unlock(&journal->j_state_lock); 566 return 0; 567 } 568 tid = transaction->t_tid; 569 read_unlock(&journal->j_state_lock); 570 if (need_to_start) 571 jbd2_log_start_commit(journal, tid); 572 ret = jbd2_log_wait_commit(journal, tid); 573 if (!ret) 574 ret = 1; 575 576 return ret; 577 } 578 579 /** 580 * Force and wait upon a commit if the calling process is not within 581 * transaction. This is used for forcing out undo-protected data which contains 582 * bitmaps, when the fs is running out of space. 583 * 584 * @journal: journal to force 585 * Returns true if progress was made. 586 */ 587 int jbd2_journal_force_commit_nested(journal_t *journal) 588 { 589 int ret; 590 591 ret = __jbd2_journal_force_commit(journal); 592 return ret > 0; 593 } 594 595 /** 596 * int journal_force_commit() - force any uncommitted transactions 597 * @journal: journal to force 598 * 599 * Caller want unconditional commit. We can only force the running transaction 600 * if we don't have an active handle, otherwise, we will deadlock. 601 */ 602 int jbd2_journal_force_commit(journal_t *journal) 603 { 604 int ret; 605 606 J_ASSERT(!current->journal_info); 607 ret = __jbd2_journal_force_commit(journal); 608 if (ret > 0) 609 ret = 0; 610 return ret; 611 } 612 613 /* 614 * Start a commit of the current running transaction (if any). Returns true 615 * if a transaction is going to be committed (or is currently already 616 * committing), and fills its tid in at *ptid 617 */ 618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 619 { 620 int ret = 0; 621 622 write_lock(&journal->j_state_lock); 623 if (journal->j_running_transaction) { 624 tid_t tid = journal->j_running_transaction->t_tid; 625 626 __jbd2_log_start_commit(journal, tid); 627 /* There's a running transaction and we've just made sure 628 * it's commit has been scheduled. */ 629 if (ptid) 630 *ptid = tid; 631 ret = 1; 632 } else if (journal->j_committing_transaction) { 633 /* 634 * If commit has been started, then we have to wait for 635 * completion of that transaction. 636 */ 637 if (ptid) 638 *ptid = journal->j_committing_transaction->t_tid; 639 ret = 1; 640 } 641 write_unlock(&journal->j_state_lock); 642 return ret; 643 } 644 645 /* 646 * Return 1 if a given transaction has not yet sent barrier request 647 * connected with a transaction commit. If 0 is returned, transaction 648 * may or may not have sent the barrier. Used to avoid sending barrier 649 * twice in common cases. 650 */ 651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 652 { 653 int ret = 0; 654 transaction_t *commit_trans; 655 656 if (!(journal->j_flags & JBD2_BARRIER)) 657 return 0; 658 read_lock(&journal->j_state_lock); 659 /* Transaction already committed? */ 660 if (tid_geq(journal->j_commit_sequence, tid)) 661 goto out; 662 commit_trans = journal->j_committing_transaction; 663 if (!commit_trans || commit_trans->t_tid != tid) { 664 ret = 1; 665 goto out; 666 } 667 /* 668 * Transaction is being committed and we already proceeded to 669 * submitting a flush to fs partition? 670 */ 671 if (journal->j_fs_dev != journal->j_dev) { 672 if (!commit_trans->t_need_data_flush || 673 commit_trans->t_state >= T_COMMIT_DFLUSH) 674 goto out; 675 } else { 676 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 677 goto out; 678 } 679 ret = 1; 680 out: 681 read_unlock(&journal->j_state_lock); 682 return ret; 683 } 684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 685 686 /* 687 * Wait for a specified commit to complete. 688 * The caller may not hold the journal lock. 689 */ 690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 691 { 692 int err = 0; 693 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 #ifdef CONFIG_JBD2_DEBUG 697 if (!tid_geq(journal->j_commit_request, tid)) { 698 printk(KERN_ERR 699 "%s: error: j_commit_request=%d, tid=%d\n", 700 __func__, journal->j_commit_request, tid); 701 } 702 #endif 703 while (tid_gt(tid, journal->j_commit_sequence)) { 704 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 705 tid, journal->j_commit_sequence); 706 read_unlock(&journal->j_state_lock); 707 wake_up(&journal->j_wait_commit); 708 wait_event(journal->j_wait_done_commit, 709 !tid_gt(tid, journal->j_commit_sequence)); 710 read_lock(&journal->j_state_lock); 711 } 712 read_unlock(&journal->j_state_lock); 713 714 if (unlikely(is_journal_aborted(journal))) 715 err = -EIO; 716 return err; 717 } 718 719 /* 720 * When this function returns the transaction corresponding to tid 721 * will be completed. If the transaction has currently running, start 722 * committing that transaction before waiting for it to complete. If 723 * the transaction id is stale, it is by definition already completed, 724 * so just return SUCCESS. 725 */ 726 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 727 { 728 int need_to_wait = 1; 729 730 read_lock(&journal->j_state_lock); 731 if (journal->j_running_transaction && 732 journal->j_running_transaction->t_tid == tid) { 733 if (journal->j_commit_request != tid) { 734 /* transaction not yet started, so request it */ 735 read_unlock(&journal->j_state_lock); 736 jbd2_log_start_commit(journal, tid); 737 goto wait_commit; 738 } 739 } else if (!(journal->j_committing_transaction && 740 journal->j_committing_transaction->t_tid == tid)) 741 need_to_wait = 0; 742 read_unlock(&journal->j_state_lock); 743 if (!need_to_wait) 744 return 0; 745 wait_commit: 746 return jbd2_log_wait_commit(journal, tid); 747 } 748 EXPORT_SYMBOL(jbd2_complete_transaction); 749 750 /* 751 * Log buffer allocation routines: 752 */ 753 754 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 755 { 756 unsigned long blocknr; 757 758 write_lock(&journal->j_state_lock); 759 J_ASSERT(journal->j_free > 1); 760 761 blocknr = journal->j_head; 762 journal->j_head++; 763 journal->j_free--; 764 if (journal->j_head == journal->j_last) 765 journal->j_head = journal->j_first; 766 write_unlock(&journal->j_state_lock); 767 return jbd2_journal_bmap(journal, blocknr, retp); 768 } 769 770 /* 771 * Conversion of logical to physical block numbers for the journal 772 * 773 * On external journals the journal blocks are identity-mapped, so 774 * this is a no-op. If needed, we can use j_blk_offset - everything is 775 * ready. 776 */ 777 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 778 unsigned long long *retp) 779 { 780 int err = 0; 781 unsigned long long ret; 782 783 if (journal->j_inode) { 784 ret = bmap(journal->j_inode, blocknr); 785 if (ret) 786 *retp = ret; 787 else { 788 printk(KERN_ALERT "%s: journal block not found " 789 "at offset %lu on %s\n", 790 __func__, blocknr, journal->j_devname); 791 err = -EIO; 792 __journal_abort_soft(journal, err); 793 } 794 } else { 795 *retp = blocknr; /* +journal->j_blk_offset */ 796 } 797 return err; 798 } 799 800 /* 801 * We play buffer_head aliasing tricks to write data/metadata blocks to 802 * the journal without copying their contents, but for journal 803 * descriptor blocks we do need to generate bona fide buffers. 804 * 805 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 806 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 807 * But we don't bother doing that, so there will be coherency problems with 808 * mmaps of blockdevs which hold live JBD-controlled filesystems. 809 */ 810 struct buffer_head * 811 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 812 { 813 journal_t *journal = transaction->t_journal; 814 struct buffer_head *bh; 815 unsigned long long blocknr; 816 journal_header_t *header; 817 int err; 818 819 err = jbd2_journal_next_log_block(journal, &blocknr); 820 821 if (err) 822 return NULL; 823 824 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 825 if (!bh) 826 return NULL; 827 lock_buffer(bh); 828 memset(bh->b_data, 0, journal->j_blocksize); 829 header = (journal_header_t *)bh->b_data; 830 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 831 header->h_blocktype = cpu_to_be32(type); 832 header->h_sequence = cpu_to_be32(transaction->t_tid); 833 set_buffer_uptodate(bh); 834 unlock_buffer(bh); 835 BUFFER_TRACE(bh, "return this buffer"); 836 return bh; 837 } 838 839 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 840 { 841 struct jbd2_journal_block_tail *tail; 842 __u32 csum; 843 844 if (!jbd2_journal_has_csum_v2or3(j)) 845 return; 846 847 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 848 sizeof(struct jbd2_journal_block_tail)); 849 tail->t_checksum = 0; 850 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 851 tail->t_checksum = cpu_to_be32(csum); 852 } 853 854 /* 855 * Return tid of the oldest transaction in the journal and block in the journal 856 * where the transaction starts. 857 * 858 * If the journal is now empty, return which will be the next transaction ID 859 * we will write and where will that transaction start. 860 * 861 * The return value is 0 if journal tail cannot be pushed any further, 1 if 862 * it can. 863 */ 864 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 865 unsigned long *block) 866 { 867 transaction_t *transaction; 868 int ret; 869 870 read_lock(&journal->j_state_lock); 871 spin_lock(&journal->j_list_lock); 872 transaction = journal->j_checkpoint_transactions; 873 if (transaction) { 874 *tid = transaction->t_tid; 875 *block = transaction->t_log_start; 876 } else if ((transaction = journal->j_committing_transaction) != NULL) { 877 *tid = transaction->t_tid; 878 *block = transaction->t_log_start; 879 } else if ((transaction = journal->j_running_transaction) != NULL) { 880 *tid = transaction->t_tid; 881 *block = journal->j_head; 882 } else { 883 *tid = journal->j_transaction_sequence; 884 *block = journal->j_head; 885 } 886 ret = tid_gt(*tid, journal->j_tail_sequence); 887 spin_unlock(&journal->j_list_lock); 888 read_unlock(&journal->j_state_lock); 889 890 return ret; 891 } 892 893 /* 894 * Update information in journal structure and in on disk journal superblock 895 * about log tail. This function does not check whether information passed in 896 * really pushes log tail further. It's responsibility of the caller to make 897 * sure provided log tail information is valid (e.g. by holding 898 * j_checkpoint_mutex all the time between computing log tail and calling this 899 * function as is the case with jbd2_cleanup_journal_tail()). 900 * 901 * Requires j_checkpoint_mutex 902 */ 903 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 904 { 905 unsigned long freed; 906 int ret; 907 908 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 909 910 /* 911 * We cannot afford for write to remain in drive's caches since as 912 * soon as we update j_tail, next transaction can start reusing journal 913 * space and if we lose sb update during power failure we'd replay 914 * old transaction with possibly newly overwritten data. 915 */ 916 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 917 if (ret) 918 goto out; 919 920 write_lock(&journal->j_state_lock); 921 freed = block - journal->j_tail; 922 if (block < journal->j_tail) 923 freed += journal->j_last - journal->j_first; 924 925 trace_jbd2_update_log_tail(journal, tid, block, freed); 926 jbd_debug(1, 927 "Cleaning journal tail from %d to %d (offset %lu), " 928 "freeing %lu\n", 929 journal->j_tail_sequence, tid, block, freed); 930 931 journal->j_free += freed; 932 journal->j_tail_sequence = tid; 933 journal->j_tail = block; 934 write_unlock(&journal->j_state_lock); 935 936 out: 937 return ret; 938 } 939 940 /* 941 * This is a variaon of __jbd2_update_log_tail which checks for validity of 942 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 943 * with other threads updating log tail. 944 */ 945 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 946 { 947 mutex_lock_io(&journal->j_checkpoint_mutex); 948 if (tid_gt(tid, journal->j_tail_sequence)) 949 __jbd2_update_log_tail(journal, tid, block); 950 mutex_unlock(&journal->j_checkpoint_mutex); 951 } 952 953 struct jbd2_stats_proc_session { 954 journal_t *journal; 955 struct transaction_stats_s *stats; 956 int start; 957 int max; 958 }; 959 960 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 961 { 962 return *pos ? NULL : SEQ_START_TOKEN; 963 } 964 965 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 966 { 967 return NULL; 968 } 969 970 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 971 { 972 struct jbd2_stats_proc_session *s = seq->private; 973 974 if (v != SEQ_START_TOKEN) 975 return 0; 976 seq_printf(seq, "%lu transactions (%lu requested), " 977 "each up to %u blocks\n", 978 s->stats->ts_tid, s->stats->ts_requested, 979 s->journal->j_max_transaction_buffers); 980 if (s->stats->ts_tid == 0) 981 return 0; 982 seq_printf(seq, "average: \n %ums waiting for transaction\n", 983 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 984 seq_printf(seq, " %ums request delay\n", 985 (s->stats->ts_requested == 0) ? 0 : 986 jiffies_to_msecs(s->stats->run.rs_request_delay / 987 s->stats->ts_requested)); 988 seq_printf(seq, " %ums running transaction\n", 989 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 990 seq_printf(seq, " %ums transaction was being locked\n", 991 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 992 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 993 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 994 seq_printf(seq, " %ums logging transaction\n", 995 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 996 seq_printf(seq, " %lluus average transaction commit time\n", 997 div_u64(s->journal->j_average_commit_time, 1000)); 998 seq_printf(seq, " %lu handles per transaction\n", 999 s->stats->run.rs_handle_count / s->stats->ts_tid); 1000 seq_printf(seq, " %lu blocks per transaction\n", 1001 s->stats->run.rs_blocks / s->stats->ts_tid); 1002 seq_printf(seq, " %lu logged blocks per transaction\n", 1003 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1004 return 0; 1005 } 1006 1007 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1008 { 1009 } 1010 1011 static const struct seq_operations jbd2_seq_info_ops = { 1012 .start = jbd2_seq_info_start, 1013 .next = jbd2_seq_info_next, 1014 .stop = jbd2_seq_info_stop, 1015 .show = jbd2_seq_info_show, 1016 }; 1017 1018 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1019 { 1020 journal_t *journal = PDE_DATA(inode); 1021 struct jbd2_stats_proc_session *s; 1022 int rc, size; 1023 1024 s = kmalloc(sizeof(*s), GFP_KERNEL); 1025 if (s == NULL) 1026 return -ENOMEM; 1027 size = sizeof(struct transaction_stats_s); 1028 s->stats = kmalloc(size, GFP_KERNEL); 1029 if (s->stats == NULL) { 1030 kfree(s); 1031 return -ENOMEM; 1032 } 1033 spin_lock(&journal->j_history_lock); 1034 memcpy(s->stats, &journal->j_stats, size); 1035 s->journal = journal; 1036 spin_unlock(&journal->j_history_lock); 1037 1038 rc = seq_open(file, &jbd2_seq_info_ops); 1039 if (rc == 0) { 1040 struct seq_file *m = file->private_data; 1041 m->private = s; 1042 } else { 1043 kfree(s->stats); 1044 kfree(s); 1045 } 1046 return rc; 1047 1048 } 1049 1050 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1051 { 1052 struct seq_file *seq = file->private_data; 1053 struct jbd2_stats_proc_session *s = seq->private; 1054 kfree(s->stats); 1055 kfree(s); 1056 return seq_release(inode, file); 1057 } 1058 1059 static const struct file_operations jbd2_seq_info_fops = { 1060 .owner = THIS_MODULE, 1061 .open = jbd2_seq_info_open, 1062 .read = seq_read, 1063 .llseek = seq_lseek, 1064 .release = jbd2_seq_info_release, 1065 }; 1066 1067 static struct proc_dir_entry *proc_jbd2_stats; 1068 1069 static void jbd2_stats_proc_init(journal_t *journal) 1070 { 1071 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1072 if (journal->j_proc_entry) { 1073 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1074 &jbd2_seq_info_fops, journal); 1075 } 1076 } 1077 1078 static void jbd2_stats_proc_exit(journal_t *journal) 1079 { 1080 remove_proc_entry("info", journal->j_proc_entry); 1081 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1082 } 1083 1084 /* 1085 * Management for journal control blocks: functions to create and 1086 * destroy journal_t structures, and to initialise and read existing 1087 * journal blocks from disk. */ 1088 1089 /* First: create and setup a journal_t object in memory. We initialise 1090 * very few fields yet: that has to wait until we have created the 1091 * journal structures from from scratch, or loaded them from disk. */ 1092 1093 static journal_t *journal_init_common(struct block_device *bdev, 1094 struct block_device *fs_dev, 1095 unsigned long long start, int len, int blocksize) 1096 { 1097 static struct lock_class_key jbd2_trans_commit_key; 1098 journal_t *journal; 1099 int err; 1100 struct buffer_head *bh; 1101 int n; 1102 1103 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1104 if (!journal) 1105 return NULL; 1106 1107 init_waitqueue_head(&journal->j_wait_transaction_locked); 1108 init_waitqueue_head(&journal->j_wait_done_commit); 1109 init_waitqueue_head(&journal->j_wait_commit); 1110 init_waitqueue_head(&journal->j_wait_updates); 1111 init_waitqueue_head(&journal->j_wait_reserved); 1112 mutex_init(&journal->j_barrier); 1113 mutex_init(&journal->j_checkpoint_mutex); 1114 spin_lock_init(&journal->j_revoke_lock); 1115 spin_lock_init(&journal->j_list_lock); 1116 rwlock_init(&journal->j_state_lock); 1117 1118 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1119 journal->j_min_batch_time = 0; 1120 journal->j_max_batch_time = 15000; /* 15ms */ 1121 atomic_set(&journal->j_reserved_credits, 0); 1122 1123 /* The journal is marked for error until we succeed with recovery! */ 1124 journal->j_flags = JBD2_ABORT; 1125 1126 /* Set up a default-sized revoke table for the new mount. */ 1127 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1128 if (err) { 1129 kfree(journal); 1130 return NULL; 1131 } 1132 1133 spin_lock_init(&journal->j_history_lock); 1134 1135 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1136 &jbd2_trans_commit_key, 0); 1137 1138 /* journal descriptor can store up to n blocks -bzzz */ 1139 journal->j_blocksize = blocksize; 1140 journal->j_dev = bdev; 1141 journal->j_fs_dev = fs_dev; 1142 journal->j_blk_offset = start; 1143 journal->j_maxlen = len; 1144 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1145 journal->j_wbufsize = n; 1146 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1147 GFP_KERNEL); 1148 if (!journal->j_wbuf) { 1149 kfree(journal); 1150 return NULL; 1151 } 1152 1153 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1154 if (!bh) { 1155 pr_err("%s: Cannot get buffer for journal superblock\n", 1156 __func__); 1157 kfree(journal->j_wbuf); 1158 kfree(journal); 1159 return NULL; 1160 } 1161 journal->j_sb_buffer = bh; 1162 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1163 1164 return journal; 1165 } 1166 1167 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1168 * 1169 * Create a journal structure assigned some fixed set of disk blocks to 1170 * the journal. We don't actually touch those disk blocks yet, but we 1171 * need to set up all of the mapping information to tell the journaling 1172 * system where the journal blocks are. 1173 * 1174 */ 1175 1176 /** 1177 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1178 * @bdev: Block device on which to create the journal 1179 * @fs_dev: Device which hold journalled filesystem for this journal. 1180 * @start: Block nr Start of journal. 1181 * @len: Length of the journal in blocks. 1182 * @blocksize: blocksize of journalling device 1183 * 1184 * Returns: a newly created journal_t * 1185 * 1186 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1187 * range of blocks on an arbitrary block device. 1188 * 1189 */ 1190 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1191 struct block_device *fs_dev, 1192 unsigned long long start, int len, int blocksize) 1193 { 1194 journal_t *journal; 1195 1196 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1197 if (!journal) 1198 return NULL; 1199 1200 bdevname(journal->j_dev, journal->j_devname); 1201 strreplace(journal->j_devname, '/', '!'); 1202 jbd2_stats_proc_init(journal); 1203 1204 return journal; 1205 } 1206 1207 /** 1208 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1209 * @inode: An inode to create the journal in 1210 * 1211 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1212 * the journal. The inode must exist already, must support bmap() and 1213 * must have all data blocks preallocated. 1214 */ 1215 journal_t *jbd2_journal_init_inode(struct inode *inode) 1216 { 1217 journal_t *journal; 1218 char *p; 1219 unsigned long long blocknr; 1220 1221 blocknr = bmap(inode, 0); 1222 if (!blocknr) { 1223 pr_err("%s: Cannot locate journal superblock\n", 1224 __func__); 1225 return NULL; 1226 } 1227 1228 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1229 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1230 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1231 1232 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1233 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1234 inode->i_sb->s_blocksize); 1235 if (!journal) 1236 return NULL; 1237 1238 journal->j_inode = inode; 1239 bdevname(journal->j_dev, journal->j_devname); 1240 p = strreplace(journal->j_devname, '/', '!'); 1241 sprintf(p, "-%lu", journal->j_inode->i_ino); 1242 jbd2_stats_proc_init(journal); 1243 1244 return journal; 1245 } 1246 1247 /* 1248 * If the journal init or create aborts, we need to mark the journal 1249 * superblock as being NULL to prevent the journal destroy from writing 1250 * back a bogus superblock. 1251 */ 1252 static void journal_fail_superblock (journal_t *journal) 1253 { 1254 struct buffer_head *bh = journal->j_sb_buffer; 1255 brelse(bh); 1256 journal->j_sb_buffer = NULL; 1257 } 1258 1259 /* 1260 * Given a journal_t structure, initialise the various fields for 1261 * startup of a new journaling session. We use this both when creating 1262 * a journal, and after recovering an old journal to reset it for 1263 * subsequent use. 1264 */ 1265 1266 static int journal_reset(journal_t *journal) 1267 { 1268 journal_superblock_t *sb = journal->j_superblock; 1269 unsigned long long first, last; 1270 1271 first = be32_to_cpu(sb->s_first); 1272 last = be32_to_cpu(sb->s_maxlen); 1273 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1274 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1275 first, last); 1276 journal_fail_superblock(journal); 1277 return -EINVAL; 1278 } 1279 1280 journal->j_first = first; 1281 journal->j_last = last; 1282 1283 journal->j_head = first; 1284 journal->j_tail = first; 1285 journal->j_free = last - first; 1286 1287 journal->j_tail_sequence = journal->j_transaction_sequence; 1288 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1289 journal->j_commit_request = journal->j_commit_sequence; 1290 1291 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1292 1293 /* 1294 * As a special case, if the on-disk copy is already marked as needing 1295 * no recovery (s_start == 0), then we can safely defer the superblock 1296 * update until the next commit by setting JBD2_FLUSHED. This avoids 1297 * attempting a write to a potential-readonly device. 1298 */ 1299 if (sb->s_start == 0) { 1300 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1301 "(start %ld, seq %d, errno %d)\n", 1302 journal->j_tail, journal->j_tail_sequence, 1303 journal->j_errno); 1304 journal->j_flags |= JBD2_FLUSHED; 1305 } else { 1306 /* Lock here to make assertions happy... */ 1307 mutex_lock_io(&journal->j_checkpoint_mutex); 1308 /* 1309 * Update log tail information. We use REQ_FUA since new 1310 * transaction will start reusing journal space and so we 1311 * must make sure information about current log tail is on 1312 * disk before that. 1313 */ 1314 jbd2_journal_update_sb_log_tail(journal, 1315 journal->j_tail_sequence, 1316 journal->j_tail, 1317 REQ_FUA); 1318 mutex_unlock(&journal->j_checkpoint_mutex); 1319 } 1320 return jbd2_journal_start_thread(journal); 1321 } 1322 1323 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1324 { 1325 struct buffer_head *bh = journal->j_sb_buffer; 1326 journal_superblock_t *sb = journal->j_superblock; 1327 int ret; 1328 1329 trace_jbd2_write_superblock(journal, write_flags); 1330 if (!(journal->j_flags & JBD2_BARRIER)) 1331 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1332 lock_buffer(bh); 1333 if (buffer_write_io_error(bh)) { 1334 /* 1335 * Oh, dear. A previous attempt to write the journal 1336 * superblock failed. This could happen because the 1337 * USB device was yanked out. Or it could happen to 1338 * be a transient write error and maybe the block will 1339 * be remapped. Nothing we can do but to retry the 1340 * write and hope for the best. 1341 */ 1342 printk(KERN_ERR "JBD2: previous I/O error detected " 1343 "for journal superblock update for %s.\n", 1344 journal->j_devname); 1345 clear_buffer_write_io_error(bh); 1346 set_buffer_uptodate(bh); 1347 } 1348 jbd2_superblock_csum_set(journal, sb); 1349 get_bh(bh); 1350 bh->b_end_io = end_buffer_write_sync; 1351 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1352 wait_on_buffer(bh); 1353 if (buffer_write_io_error(bh)) { 1354 clear_buffer_write_io_error(bh); 1355 set_buffer_uptodate(bh); 1356 ret = -EIO; 1357 } 1358 if (ret) { 1359 printk(KERN_ERR "JBD2: Error %d detected when updating " 1360 "journal superblock for %s.\n", ret, 1361 journal->j_devname); 1362 jbd2_journal_abort(journal, ret); 1363 } 1364 1365 return ret; 1366 } 1367 1368 /** 1369 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1370 * @journal: The journal to update. 1371 * @tail_tid: TID of the new transaction at the tail of the log 1372 * @tail_block: The first block of the transaction at the tail of the log 1373 * @write_op: With which operation should we write the journal sb 1374 * 1375 * Update a journal's superblock information about log tail and write it to 1376 * disk, waiting for the IO to complete. 1377 */ 1378 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1379 unsigned long tail_block, int write_op) 1380 { 1381 journal_superblock_t *sb = journal->j_superblock; 1382 int ret; 1383 1384 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1385 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1386 tail_block, tail_tid); 1387 1388 sb->s_sequence = cpu_to_be32(tail_tid); 1389 sb->s_start = cpu_to_be32(tail_block); 1390 1391 ret = jbd2_write_superblock(journal, write_op); 1392 if (ret) 1393 goto out; 1394 1395 /* Log is no longer empty */ 1396 write_lock(&journal->j_state_lock); 1397 WARN_ON(!sb->s_sequence); 1398 journal->j_flags &= ~JBD2_FLUSHED; 1399 write_unlock(&journal->j_state_lock); 1400 1401 out: 1402 return ret; 1403 } 1404 1405 /** 1406 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1407 * @journal: The journal to update. 1408 * @write_op: With which operation should we write the journal sb 1409 * 1410 * Update a journal's dynamic superblock fields to show that journal is empty. 1411 * Write updated superblock to disk waiting for IO to complete. 1412 */ 1413 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1414 { 1415 journal_superblock_t *sb = journal->j_superblock; 1416 1417 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1418 read_lock(&journal->j_state_lock); 1419 /* Is it already empty? */ 1420 if (sb->s_start == 0) { 1421 read_unlock(&journal->j_state_lock); 1422 return; 1423 } 1424 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1425 journal->j_tail_sequence); 1426 1427 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1428 sb->s_start = cpu_to_be32(0); 1429 read_unlock(&journal->j_state_lock); 1430 1431 jbd2_write_superblock(journal, write_op); 1432 1433 /* Log is no longer empty */ 1434 write_lock(&journal->j_state_lock); 1435 journal->j_flags |= JBD2_FLUSHED; 1436 write_unlock(&journal->j_state_lock); 1437 } 1438 1439 1440 /** 1441 * jbd2_journal_update_sb_errno() - Update error in the journal. 1442 * @journal: The journal to update. 1443 * 1444 * Update a journal's errno. Write updated superblock to disk waiting for IO 1445 * to complete. 1446 */ 1447 void jbd2_journal_update_sb_errno(journal_t *journal) 1448 { 1449 journal_superblock_t *sb = journal->j_superblock; 1450 1451 read_lock(&journal->j_state_lock); 1452 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1453 journal->j_errno); 1454 sb->s_errno = cpu_to_be32(journal->j_errno); 1455 read_unlock(&journal->j_state_lock); 1456 1457 jbd2_write_superblock(journal, REQ_FUA); 1458 } 1459 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1460 1461 /* 1462 * Read the superblock for a given journal, performing initial 1463 * validation of the format. 1464 */ 1465 static int journal_get_superblock(journal_t *journal) 1466 { 1467 struct buffer_head *bh; 1468 journal_superblock_t *sb; 1469 int err = -EIO; 1470 1471 bh = journal->j_sb_buffer; 1472 1473 J_ASSERT(bh != NULL); 1474 if (!buffer_uptodate(bh)) { 1475 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1476 wait_on_buffer(bh); 1477 if (!buffer_uptodate(bh)) { 1478 printk(KERN_ERR 1479 "JBD2: IO error reading journal superblock\n"); 1480 goto out; 1481 } 1482 } 1483 1484 if (buffer_verified(bh)) 1485 return 0; 1486 1487 sb = journal->j_superblock; 1488 1489 err = -EINVAL; 1490 1491 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1492 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1493 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1494 goto out; 1495 } 1496 1497 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1498 case JBD2_SUPERBLOCK_V1: 1499 journal->j_format_version = 1; 1500 break; 1501 case JBD2_SUPERBLOCK_V2: 1502 journal->j_format_version = 2; 1503 break; 1504 default: 1505 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1506 goto out; 1507 } 1508 1509 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1510 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1511 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1512 printk(KERN_WARNING "JBD2: journal file too short\n"); 1513 goto out; 1514 } 1515 1516 if (be32_to_cpu(sb->s_first) == 0 || 1517 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1518 printk(KERN_WARNING 1519 "JBD2: Invalid start block of journal: %u\n", 1520 be32_to_cpu(sb->s_first)); 1521 goto out; 1522 } 1523 1524 if (jbd2_has_feature_csum2(journal) && 1525 jbd2_has_feature_csum3(journal)) { 1526 /* Can't have checksum v2 and v3 at the same time! */ 1527 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1528 "at the same time!\n"); 1529 goto out; 1530 } 1531 1532 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1533 jbd2_has_feature_checksum(journal)) { 1534 /* Can't have checksum v1 and v2 on at the same time! */ 1535 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1536 "at the same time!\n"); 1537 goto out; 1538 } 1539 1540 if (!jbd2_verify_csum_type(journal, sb)) { 1541 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1542 goto out; 1543 } 1544 1545 /* Load the checksum driver */ 1546 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1547 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1548 if (IS_ERR(journal->j_chksum_driver)) { 1549 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1550 err = PTR_ERR(journal->j_chksum_driver); 1551 journal->j_chksum_driver = NULL; 1552 goto out; 1553 } 1554 } 1555 1556 /* Check superblock checksum */ 1557 if (!jbd2_superblock_csum_verify(journal, sb)) { 1558 printk(KERN_ERR "JBD2: journal checksum error\n"); 1559 err = -EFSBADCRC; 1560 goto out; 1561 } 1562 1563 /* Precompute checksum seed for all metadata */ 1564 if (jbd2_journal_has_csum_v2or3(journal)) 1565 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1566 sizeof(sb->s_uuid)); 1567 1568 set_buffer_verified(bh); 1569 1570 return 0; 1571 1572 out: 1573 journal_fail_superblock(journal); 1574 return err; 1575 } 1576 1577 /* 1578 * Load the on-disk journal superblock and read the key fields into the 1579 * journal_t. 1580 */ 1581 1582 static int load_superblock(journal_t *journal) 1583 { 1584 int err; 1585 journal_superblock_t *sb; 1586 1587 err = journal_get_superblock(journal); 1588 if (err) 1589 return err; 1590 1591 sb = journal->j_superblock; 1592 1593 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1594 journal->j_tail = be32_to_cpu(sb->s_start); 1595 journal->j_first = be32_to_cpu(sb->s_first); 1596 journal->j_last = be32_to_cpu(sb->s_maxlen); 1597 journal->j_errno = be32_to_cpu(sb->s_errno); 1598 1599 return 0; 1600 } 1601 1602 1603 /** 1604 * int jbd2_journal_load() - Read journal from disk. 1605 * @journal: Journal to act on. 1606 * 1607 * Given a journal_t structure which tells us which disk blocks contain 1608 * a journal, read the journal from disk to initialise the in-memory 1609 * structures. 1610 */ 1611 int jbd2_journal_load(journal_t *journal) 1612 { 1613 int err; 1614 journal_superblock_t *sb; 1615 1616 err = load_superblock(journal); 1617 if (err) 1618 return err; 1619 1620 sb = journal->j_superblock; 1621 /* If this is a V2 superblock, then we have to check the 1622 * features flags on it. */ 1623 1624 if (journal->j_format_version >= 2) { 1625 if ((sb->s_feature_ro_compat & 1626 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1627 (sb->s_feature_incompat & 1628 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1629 printk(KERN_WARNING 1630 "JBD2: Unrecognised features on journal\n"); 1631 return -EINVAL; 1632 } 1633 } 1634 1635 /* 1636 * Create a slab for this blocksize 1637 */ 1638 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1639 if (err) 1640 return err; 1641 1642 /* Let the recovery code check whether it needs to recover any 1643 * data from the journal. */ 1644 if (jbd2_journal_recover(journal)) 1645 goto recovery_error; 1646 1647 if (journal->j_failed_commit) { 1648 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1649 "is corrupt.\n", journal->j_failed_commit, 1650 journal->j_devname); 1651 return -EFSCORRUPTED; 1652 } 1653 1654 /* OK, we've finished with the dynamic journal bits: 1655 * reinitialise the dynamic contents of the superblock in memory 1656 * and reset them on disk. */ 1657 if (journal_reset(journal)) 1658 goto recovery_error; 1659 1660 journal->j_flags &= ~JBD2_ABORT; 1661 journal->j_flags |= JBD2_LOADED; 1662 return 0; 1663 1664 recovery_error: 1665 printk(KERN_WARNING "JBD2: recovery failed\n"); 1666 return -EIO; 1667 } 1668 1669 /** 1670 * void jbd2_journal_destroy() - Release a journal_t structure. 1671 * @journal: Journal to act on. 1672 * 1673 * Release a journal_t structure once it is no longer in use by the 1674 * journaled object. 1675 * Return <0 if we couldn't clean up the journal. 1676 */ 1677 int jbd2_journal_destroy(journal_t *journal) 1678 { 1679 int err = 0; 1680 1681 /* Wait for the commit thread to wake up and die. */ 1682 journal_kill_thread(journal); 1683 1684 /* Force a final log commit */ 1685 if (journal->j_running_transaction) 1686 jbd2_journal_commit_transaction(journal); 1687 1688 /* Force any old transactions to disk */ 1689 1690 /* Totally anal locking here... */ 1691 spin_lock(&journal->j_list_lock); 1692 while (journal->j_checkpoint_transactions != NULL) { 1693 spin_unlock(&journal->j_list_lock); 1694 mutex_lock_io(&journal->j_checkpoint_mutex); 1695 err = jbd2_log_do_checkpoint(journal); 1696 mutex_unlock(&journal->j_checkpoint_mutex); 1697 /* 1698 * If checkpointing failed, just free the buffers to avoid 1699 * looping forever 1700 */ 1701 if (err) { 1702 jbd2_journal_destroy_checkpoint(journal); 1703 spin_lock(&journal->j_list_lock); 1704 break; 1705 } 1706 spin_lock(&journal->j_list_lock); 1707 } 1708 1709 J_ASSERT(journal->j_running_transaction == NULL); 1710 J_ASSERT(journal->j_committing_transaction == NULL); 1711 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1712 spin_unlock(&journal->j_list_lock); 1713 1714 if (journal->j_sb_buffer) { 1715 if (!is_journal_aborted(journal)) { 1716 mutex_lock_io(&journal->j_checkpoint_mutex); 1717 1718 write_lock(&journal->j_state_lock); 1719 journal->j_tail_sequence = 1720 ++journal->j_transaction_sequence; 1721 write_unlock(&journal->j_state_lock); 1722 1723 jbd2_mark_journal_empty(journal, 1724 REQ_PREFLUSH | REQ_FUA); 1725 mutex_unlock(&journal->j_checkpoint_mutex); 1726 } else 1727 err = -EIO; 1728 brelse(journal->j_sb_buffer); 1729 } 1730 1731 if (journal->j_proc_entry) 1732 jbd2_stats_proc_exit(journal); 1733 iput(journal->j_inode); 1734 if (journal->j_revoke) 1735 jbd2_journal_destroy_revoke(journal); 1736 if (journal->j_chksum_driver) 1737 crypto_free_shash(journal->j_chksum_driver); 1738 kfree(journal->j_wbuf); 1739 kfree(journal); 1740 1741 return err; 1742 } 1743 1744 1745 /** 1746 *int jbd2_journal_check_used_features () - Check if features specified are used. 1747 * @journal: Journal to check. 1748 * @compat: bitmask of compatible features 1749 * @ro: bitmask of features that force read-only mount 1750 * @incompat: bitmask of incompatible features 1751 * 1752 * Check whether the journal uses all of a given set of 1753 * features. Return true (non-zero) if it does. 1754 **/ 1755 1756 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1757 unsigned long ro, unsigned long incompat) 1758 { 1759 journal_superblock_t *sb; 1760 1761 if (!compat && !ro && !incompat) 1762 return 1; 1763 /* Load journal superblock if it is not loaded yet. */ 1764 if (journal->j_format_version == 0 && 1765 journal_get_superblock(journal) != 0) 1766 return 0; 1767 if (journal->j_format_version == 1) 1768 return 0; 1769 1770 sb = journal->j_superblock; 1771 1772 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1773 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1774 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1775 return 1; 1776 1777 return 0; 1778 } 1779 1780 /** 1781 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1782 * @journal: Journal to check. 1783 * @compat: bitmask of compatible features 1784 * @ro: bitmask of features that force read-only mount 1785 * @incompat: bitmask of incompatible features 1786 * 1787 * Check whether the journaling code supports the use of 1788 * all of a given set of features on this journal. Return true 1789 * (non-zero) if it can. */ 1790 1791 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1792 unsigned long ro, unsigned long incompat) 1793 { 1794 if (!compat && !ro && !incompat) 1795 return 1; 1796 1797 /* We can support any known requested features iff the 1798 * superblock is in version 2. Otherwise we fail to support any 1799 * extended sb features. */ 1800 1801 if (journal->j_format_version != 2) 1802 return 0; 1803 1804 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1805 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1806 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1807 return 1; 1808 1809 return 0; 1810 } 1811 1812 /** 1813 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1814 * @journal: Journal to act on. 1815 * @compat: bitmask of compatible features 1816 * @ro: bitmask of features that force read-only mount 1817 * @incompat: bitmask of incompatible features 1818 * 1819 * Mark a given journal feature as present on the 1820 * superblock. Returns true if the requested features could be set. 1821 * 1822 */ 1823 1824 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1825 unsigned long ro, unsigned long incompat) 1826 { 1827 #define INCOMPAT_FEATURE_ON(f) \ 1828 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1829 #define COMPAT_FEATURE_ON(f) \ 1830 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1831 journal_superblock_t *sb; 1832 1833 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1834 return 1; 1835 1836 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1837 return 0; 1838 1839 /* If enabling v2 checksums, turn on v3 instead */ 1840 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1841 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1842 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1843 } 1844 1845 /* Asking for checksumming v3 and v1? Only give them v3. */ 1846 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1847 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1848 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1849 1850 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1851 compat, ro, incompat); 1852 1853 sb = journal->j_superblock; 1854 1855 /* If enabling v3 checksums, update superblock */ 1856 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1857 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1858 sb->s_feature_compat &= 1859 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1860 1861 /* Load the checksum driver */ 1862 if (journal->j_chksum_driver == NULL) { 1863 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1864 0, 0); 1865 if (IS_ERR(journal->j_chksum_driver)) { 1866 printk(KERN_ERR "JBD2: Cannot load crc32c " 1867 "driver.\n"); 1868 journal->j_chksum_driver = NULL; 1869 return 0; 1870 } 1871 1872 /* Precompute checksum seed for all metadata */ 1873 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1874 sb->s_uuid, 1875 sizeof(sb->s_uuid)); 1876 } 1877 } 1878 1879 /* If enabling v1 checksums, downgrade superblock */ 1880 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1881 sb->s_feature_incompat &= 1882 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1883 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1884 1885 sb->s_feature_compat |= cpu_to_be32(compat); 1886 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1887 sb->s_feature_incompat |= cpu_to_be32(incompat); 1888 1889 return 1; 1890 #undef COMPAT_FEATURE_ON 1891 #undef INCOMPAT_FEATURE_ON 1892 } 1893 1894 /* 1895 * jbd2_journal_clear_features () - Clear a given journal feature in the 1896 * superblock 1897 * @journal: Journal to act on. 1898 * @compat: bitmask of compatible features 1899 * @ro: bitmask of features that force read-only mount 1900 * @incompat: bitmask of incompatible features 1901 * 1902 * Clear a given journal feature as present on the 1903 * superblock. 1904 */ 1905 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1906 unsigned long ro, unsigned long incompat) 1907 { 1908 journal_superblock_t *sb; 1909 1910 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1911 compat, ro, incompat); 1912 1913 sb = journal->j_superblock; 1914 1915 sb->s_feature_compat &= ~cpu_to_be32(compat); 1916 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1917 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1918 } 1919 EXPORT_SYMBOL(jbd2_journal_clear_features); 1920 1921 /** 1922 * int jbd2_journal_flush () - Flush journal 1923 * @journal: Journal to act on. 1924 * 1925 * Flush all data for a given journal to disk and empty the journal. 1926 * Filesystems can use this when remounting readonly to ensure that 1927 * recovery does not need to happen on remount. 1928 */ 1929 1930 int jbd2_journal_flush(journal_t *journal) 1931 { 1932 int err = 0; 1933 transaction_t *transaction = NULL; 1934 1935 write_lock(&journal->j_state_lock); 1936 1937 /* Force everything buffered to the log... */ 1938 if (journal->j_running_transaction) { 1939 transaction = journal->j_running_transaction; 1940 __jbd2_log_start_commit(journal, transaction->t_tid); 1941 } else if (journal->j_committing_transaction) 1942 transaction = journal->j_committing_transaction; 1943 1944 /* Wait for the log commit to complete... */ 1945 if (transaction) { 1946 tid_t tid = transaction->t_tid; 1947 1948 write_unlock(&journal->j_state_lock); 1949 jbd2_log_wait_commit(journal, tid); 1950 } else { 1951 write_unlock(&journal->j_state_lock); 1952 } 1953 1954 /* ...and flush everything in the log out to disk. */ 1955 spin_lock(&journal->j_list_lock); 1956 while (!err && journal->j_checkpoint_transactions != NULL) { 1957 spin_unlock(&journal->j_list_lock); 1958 mutex_lock_io(&journal->j_checkpoint_mutex); 1959 err = jbd2_log_do_checkpoint(journal); 1960 mutex_unlock(&journal->j_checkpoint_mutex); 1961 spin_lock(&journal->j_list_lock); 1962 } 1963 spin_unlock(&journal->j_list_lock); 1964 1965 if (is_journal_aborted(journal)) 1966 return -EIO; 1967 1968 mutex_lock_io(&journal->j_checkpoint_mutex); 1969 if (!err) { 1970 err = jbd2_cleanup_journal_tail(journal); 1971 if (err < 0) { 1972 mutex_unlock(&journal->j_checkpoint_mutex); 1973 goto out; 1974 } 1975 err = 0; 1976 } 1977 1978 /* Finally, mark the journal as really needing no recovery. 1979 * This sets s_start==0 in the underlying superblock, which is 1980 * the magic code for a fully-recovered superblock. Any future 1981 * commits of data to the journal will restore the current 1982 * s_start value. */ 1983 jbd2_mark_journal_empty(journal, REQ_FUA); 1984 mutex_unlock(&journal->j_checkpoint_mutex); 1985 write_lock(&journal->j_state_lock); 1986 J_ASSERT(!journal->j_running_transaction); 1987 J_ASSERT(!journal->j_committing_transaction); 1988 J_ASSERT(!journal->j_checkpoint_transactions); 1989 J_ASSERT(journal->j_head == journal->j_tail); 1990 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1991 write_unlock(&journal->j_state_lock); 1992 out: 1993 return err; 1994 } 1995 1996 /** 1997 * int jbd2_journal_wipe() - Wipe journal contents 1998 * @journal: Journal to act on. 1999 * @write: flag (see below) 2000 * 2001 * Wipe out all of the contents of a journal, safely. This will produce 2002 * a warning if the journal contains any valid recovery information. 2003 * Must be called between journal_init_*() and jbd2_journal_load(). 2004 * 2005 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2006 * we merely suppress recovery. 2007 */ 2008 2009 int jbd2_journal_wipe(journal_t *journal, int write) 2010 { 2011 int err = 0; 2012 2013 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2014 2015 err = load_superblock(journal); 2016 if (err) 2017 return err; 2018 2019 if (!journal->j_tail) 2020 goto no_recovery; 2021 2022 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2023 write ? "Clearing" : "Ignoring"); 2024 2025 err = jbd2_journal_skip_recovery(journal); 2026 if (write) { 2027 /* Lock to make assertions happy... */ 2028 mutex_lock(&journal->j_checkpoint_mutex); 2029 jbd2_mark_journal_empty(journal, REQ_FUA); 2030 mutex_unlock(&journal->j_checkpoint_mutex); 2031 } 2032 2033 no_recovery: 2034 return err; 2035 } 2036 2037 /* 2038 * Journal abort has very specific semantics, which we describe 2039 * for journal abort. 2040 * 2041 * Two internal functions, which provide abort to the jbd layer 2042 * itself are here. 2043 */ 2044 2045 /* 2046 * Quick version for internal journal use (doesn't lock the journal). 2047 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2048 * and don't attempt to make any other journal updates. 2049 */ 2050 void __jbd2_journal_abort_hard(journal_t *journal) 2051 { 2052 transaction_t *transaction; 2053 2054 if (journal->j_flags & JBD2_ABORT) 2055 return; 2056 2057 printk(KERN_ERR "Aborting journal on device %s.\n", 2058 journal->j_devname); 2059 2060 write_lock(&journal->j_state_lock); 2061 journal->j_flags |= JBD2_ABORT; 2062 transaction = journal->j_running_transaction; 2063 if (transaction) 2064 __jbd2_log_start_commit(journal, transaction->t_tid); 2065 write_unlock(&journal->j_state_lock); 2066 } 2067 2068 /* Soft abort: record the abort error status in the journal superblock, 2069 * but don't do any other IO. */ 2070 static void __journal_abort_soft (journal_t *journal, int errno) 2071 { 2072 if (journal->j_flags & JBD2_ABORT) 2073 return; 2074 2075 if (!journal->j_errno) 2076 journal->j_errno = errno; 2077 2078 __jbd2_journal_abort_hard(journal); 2079 2080 if (errno) { 2081 jbd2_journal_update_sb_errno(journal); 2082 write_lock(&journal->j_state_lock); 2083 journal->j_flags |= JBD2_REC_ERR; 2084 write_unlock(&journal->j_state_lock); 2085 } 2086 } 2087 2088 /** 2089 * void jbd2_journal_abort () - Shutdown the journal immediately. 2090 * @journal: the journal to shutdown. 2091 * @errno: an error number to record in the journal indicating 2092 * the reason for the shutdown. 2093 * 2094 * Perform a complete, immediate shutdown of the ENTIRE 2095 * journal (not of a single transaction). This operation cannot be 2096 * undone without closing and reopening the journal. 2097 * 2098 * The jbd2_journal_abort function is intended to support higher level error 2099 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2100 * mode. 2101 * 2102 * Journal abort has very specific semantics. Any existing dirty, 2103 * unjournaled buffers in the main filesystem will still be written to 2104 * disk by bdflush, but the journaling mechanism will be suspended 2105 * immediately and no further transaction commits will be honoured. 2106 * 2107 * Any dirty, journaled buffers will be written back to disk without 2108 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2109 * filesystem, but we _do_ attempt to leave as much data as possible 2110 * behind for fsck to use for cleanup. 2111 * 2112 * Any attempt to get a new transaction handle on a journal which is in 2113 * ABORT state will just result in an -EROFS error return. A 2114 * jbd2_journal_stop on an existing handle will return -EIO if we have 2115 * entered abort state during the update. 2116 * 2117 * Recursive transactions are not disturbed by journal abort until the 2118 * final jbd2_journal_stop, which will receive the -EIO error. 2119 * 2120 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2121 * which will be recorded (if possible) in the journal superblock. This 2122 * allows a client to record failure conditions in the middle of a 2123 * transaction without having to complete the transaction to record the 2124 * failure to disk. ext3_error, for example, now uses this 2125 * functionality. 2126 * 2127 * Errors which originate from within the journaling layer will NOT 2128 * supply an errno; a null errno implies that absolutely no further 2129 * writes are done to the journal (unless there are any already in 2130 * progress). 2131 * 2132 */ 2133 2134 void jbd2_journal_abort(journal_t *journal, int errno) 2135 { 2136 __journal_abort_soft(journal, errno); 2137 } 2138 2139 /** 2140 * int jbd2_journal_errno () - returns the journal's error state. 2141 * @journal: journal to examine. 2142 * 2143 * This is the errno number set with jbd2_journal_abort(), the last 2144 * time the journal was mounted - if the journal was stopped 2145 * without calling abort this will be 0. 2146 * 2147 * If the journal has been aborted on this mount time -EROFS will 2148 * be returned. 2149 */ 2150 int jbd2_journal_errno(journal_t *journal) 2151 { 2152 int err; 2153 2154 read_lock(&journal->j_state_lock); 2155 if (journal->j_flags & JBD2_ABORT) 2156 err = -EROFS; 2157 else 2158 err = journal->j_errno; 2159 read_unlock(&journal->j_state_lock); 2160 return err; 2161 } 2162 2163 /** 2164 * int jbd2_journal_clear_err () - clears the journal's error state 2165 * @journal: journal to act on. 2166 * 2167 * An error must be cleared or acked to take a FS out of readonly 2168 * mode. 2169 */ 2170 int jbd2_journal_clear_err(journal_t *journal) 2171 { 2172 int err = 0; 2173 2174 write_lock(&journal->j_state_lock); 2175 if (journal->j_flags & JBD2_ABORT) 2176 err = -EROFS; 2177 else 2178 journal->j_errno = 0; 2179 write_unlock(&journal->j_state_lock); 2180 return err; 2181 } 2182 2183 /** 2184 * void jbd2_journal_ack_err() - Ack journal err. 2185 * @journal: journal to act on. 2186 * 2187 * An error must be cleared or acked to take a FS out of readonly 2188 * mode. 2189 */ 2190 void jbd2_journal_ack_err(journal_t *journal) 2191 { 2192 write_lock(&journal->j_state_lock); 2193 if (journal->j_errno) 2194 journal->j_flags |= JBD2_ACK_ERR; 2195 write_unlock(&journal->j_state_lock); 2196 } 2197 2198 int jbd2_journal_blocks_per_page(struct inode *inode) 2199 { 2200 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2201 } 2202 2203 /* 2204 * helper functions to deal with 32 or 64bit block numbers. 2205 */ 2206 size_t journal_tag_bytes(journal_t *journal) 2207 { 2208 size_t sz; 2209 2210 if (jbd2_has_feature_csum3(journal)) 2211 return sizeof(journal_block_tag3_t); 2212 2213 sz = sizeof(journal_block_tag_t); 2214 2215 if (jbd2_has_feature_csum2(journal)) 2216 sz += sizeof(__u16); 2217 2218 if (jbd2_has_feature_64bit(journal)) 2219 return sz; 2220 else 2221 return sz - sizeof(__u32); 2222 } 2223 2224 /* 2225 * JBD memory management 2226 * 2227 * These functions are used to allocate block-sized chunks of memory 2228 * used for making copies of buffer_head data. Very often it will be 2229 * page-sized chunks of data, but sometimes it will be in 2230 * sub-page-size chunks. (For example, 16k pages on Power systems 2231 * with a 4k block file system.) For blocks smaller than a page, we 2232 * use a SLAB allocator. There are slab caches for each block size, 2233 * which are allocated at mount time, if necessary, and we only free 2234 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2235 * this reason we don't need to a mutex to protect access to 2236 * jbd2_slab[] allocating or releasing memory; only in 2237 * jbd2_journal_create_slab(). 2238 */ 2239 #define JBD2_MAX_SLABS 8 2240 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2241 2242 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2243 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2244 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2245 }; 2246 2247 2248 static void jbd2_journal_destroy_slabs(void) 2249 { 2250 int i; 2251 2252 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2253 if (jbd2_slab[i]) 2254 kmem_cache_destroy(jbd2_slab[i]); 2255 jbd2_slab[i] = NULL; 2256 } 2257 } 2258 2259 static int jbd2_journal_create_slab(size_t size) 2260 { 2261 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2262 int i = order_base_2(size) - 10; 2263 size_t slab_size; 2264 2265 if (size == PAGE_SIZE) 2266 return 0; 2267 2268 if (i >= JBD2_MAX_SLABS) 2269 return -EINVAL; 2270 2271 if (unlikely(i < 0)) 2272 i = 0; 2273 mutex_lock(&jbd2_slab_create_mutex); 2274 if (jbd2_slab[i]) { 2275 mutex_unlock(&jbd2_slab_create_mutex); 2276 return 0; /* Already created */ 2277 } 2278 2279 slab_size = 1 << (i+10); 2280 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2281 slab_size, 0, NULL); 2282 mutex_unlock(&jbd2_slab_create_mutex); 2283 if (!jbd2_slab[i]) { 2284 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2285 return -ENOMEM; 2286 } 2287 return 0; 2288 } 2289 2290 static struct kmem_cache *get_slab(size_t size) 2291 { 2292 int i = order_base_2(size) - 10; 2293 2294 BUG_ON(i >= JBD2_MAX_SLABS); 2295 if (unlikely(i < 0)) 2296 i = 0; 2297 BUG_ON(jbd2_slab[i] == NULL); 2298 return jbd2_slab[i]; 2299 } 2300 2301 void *jbd2_alloc(size_t size, gfp_t flags) 2302 { 2303 void *ptr; 2304 2305 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2306 2307 if (size < PAGE_SIZE) 2308 ptr = kmem_cache_alloc(get_slab(size), flags); 2309 else 2310 ptr = (void *)__get_free_pages(flags, get_order(size)); 2311 2312 /* Check alignment; SLUB has gotten this wrong in the past, 2313 * and this can lead to user data corruption! */ 2314 BUG_ON(((unsigned long) ptr) & (size-1)); 2315 2316 return ptr; 2317 } 2318 2319 void jbd2_free(void *ptr, size_t size) 2320 { 2321 if (size < PAGE_SIZE) 2322 kmem_cache_free(get_slab(size), ptr); 2323 else 2324 free_pages((unsigned long)ptr, get_order(size)); 2325 }; 2326 2327 /* 2328 * Journal_head storage management 2329 */ 2330 static struct kmem_cache *jbd2_journal_head_cache; 2331 #ifdef CONFIG_JBD2_DEBUG 2332 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2333 #endif 2334 2335 static int jbd2_journal_init_journal_head_cache(void) 2336 { 2337 int retval; 2338 2339 J_ASSERT(jbd2_journal_head_cache == NULL); 2340 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2341 sizeof(struct journal_head), 2342 0, /* offset */ 2343 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU, 2344 NULL); /* ctor */ 2345 retval = 0; 2346 if (!jbd2_journal_head_cache) { 2347 retval = -ENOMEM; 2348 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2349 } 2350 return retval; 2351 } 2352 2353 static void jbd2_journal_destroy_journal_head_cache(void) 2354 { 2355 if (jbd2_journal_head_cache) { 2356 kmem_cache_destroy(jbd2_journal_head_cache); 2357 jbd2_journal_head_cache = NULL; 2358 } 2359 } 2360 2361 /* 2362 * journal_head splicing and dicing 2363 */ 2364 static struct journal_head *journal_alloc_journal_head(void) 2365 { 2366 struct journal_head *ret; 2367 2368 #ifdef CONFIG_JBD2_DEBUG 2369 atomic_inc(&nr_journal_heads); 2370 #endif 2371 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2372 if (!ret) { 2373 jbd_debug(1, "out of memory for journal_head\n"); 2374 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2375 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2376 GFP_NOFS | __GFP_NOFAIL); 2377 } 2378 return ret; 2379 } 2380 2381 static void journal_free_journal_head(struct journal_head *jh) 2382 { 2383 #ifdef CONFIG_JBD2_DEBUG 2384 atomic_dec(&nr_journal_heads); 2385 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2386 #endif 2387 kmem_cache_free(jbd2_journal_head_cache, jh); 2388 } 2389 2390 /* 2391 * A journal_head is attached to a buffer_head whenever JBD has an 2392 * interest in the buffer. 2393 * 2394 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2395 * is set. This bit is tested in core kernel code where we need to take 2396 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2397 * there. 2398 * 2399 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2400 * 2401 * When a buffer has its BH_JBD bit set it is immune from being released by 2402 * core kernel code, mainly via ->b_count. 2403 * 2404 * A journal_head is detached from its buffer_head when the journal_head's 2405 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2406 * transaction (b_cp_transaction) hold their references to b_jcount. 2407 * 2408 * Various places in the kernel want to attach a journal_head to a buffer_head 2409 * _before_ attaching the journal_head to a transaction. To protect the 2410 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2411 * journal_head's b_jcount refcount by one. The caller must call 2412 * jbd2_journal_put_journal_head() to undo this. 2413 * 2414 * So the typical usage would be: 2415 * 2416 * (Attach a journal_head if needed. Increments b_jcount) 2417 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2418 * ... 2419 * (Get another reference for transaction) 2420 * jbd2_journal_grab_journal_head(bh); 2421 * jh->b_transaction = xxx; 2422 * (Put original reference) 2423 * jbd2_journal_put_journal_head(jh); 2424 */ 2425 2426 /* 2427 * Give a buffer_head a journal_head. 2428 * 2429 * May sleep. 2430 */ 2431 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2432 { 2433 struct journal_head *jh; 2434 struct journal_head *new_jh = NULL; 2435 2436 repeat: 2437 if (!buffer_jbd(bh)) 2438 new_jh = journal_alloc_journal_head(); 2439 2440 jbd_lock_bh_journal_head(bh); 2441 if (buffer_jbd(bh)) { 2442 jh = bh2jh(bh); 2443 } else { 2444 J_ASSERT_BH(bh, 2445 (atomic_read(&bh->b_count) > 0) || 2446 (bh->b_page && bh->b_page->mapping)); 2447 2448 if (!new_jh) { 2449 jbd_unlock_bh_journal_head(bh); 2450 goto repeat; 2451 } 2452 2453 jh = new_jh; 2454 new_jh = NULL; /* We consumed it */ 2455 set_buffer_jbd(bh); 2456 bh->b_private = jh; 2457 jh->b_bh = bh; 2458 get_bh(bh); 2459 BUFFER_TRACE(bh, "added journal_head"); 2460 } 2461 jh->b_jcount++; 2462 jbd_unlock_bh_journal_head(bh); 2463 if (new_jh) 2464 journal_free_journal_head(new_jh); 2465 return bh->b_private; 2466 } 2467 2468 /* 2469 * Grab a ref against this buffer_head's journal_head. If it ended up not 2470 * having a journal_head, return NULL 2471 */ 2472 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2473 { 2474 struct journal_head *jh = NULL; 2475 2476 jbd_lock_bh_journal_head(bh); 2477 if (buffer_jbd(bh)) { 2478 jh = bh2jh(bh); 2479 jh->b_jcount++; 2480 } 2481 jbd_unlock_bh_journal_head(bh); 2482 return jh; 2483 } 2484 2485 static void __journal_remove_journal_head(struct buffer_head *bh) 2486 { 2487 struct journal_head *jh = bh2jh(bh); 2488 2489 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2490 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2491 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2492 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2493 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2494 J_ASSERT_BH(bh, buffer_jbd(bh)); 2495 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2496 BUFFER_TRACE(bh, "remove journal_head"); 2497 if (jh->b_frozen_data) { 2498 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2499 jbd2_free(jh->b_frozen_data, bh->b_size); 2500 } 2501 if (jh->b_committed_data) { 2502 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2503 jbd2_free(jh->b_committed_data, bh->b_size); 2504 } 2505 bh->b_private = NULL; 2506 jh->b_bh = NULL; /* debug, really */ 2507 clear_buffer_jbd(bh); 2508 journal_free_journal_head(jh); 2509 } 2510 2511 /* 2512 * Drop a reference on the passed journal_head. If it fell to zero then 2513 * release the journal_head from the buffer_head. 2514 */ 2515 void jbd2_journal_put_journal_head(struct journal_head *jh) 2516 { 2517 struct buffer_head *bh = jh2bh(jh); 2518 2519 jbd_lock_bh_journal_head(bh); 2520 J_ASSERT_JH(jh, jh->b_jcount > 0); 2521 --jh->b_jcount; 2522 if (!jh->b_jcount) { 2523 __journal_remove_journal_head(bh); 2524 jbd_unlock_bh_journal_head(bh); 2525 __brelse(bh); 2526 } else 2527 jbd_unlock_bh_journal_head(bh); 2528 } 2529 2530 /* 2531 * Initialize jbd inode head 2532 */ 2533 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2534 { 2535 jinode->i_transaction = NULL; 2536 jinode->i_next_transaction = NULL; 2537 jinode->i_vfs_inode = inode; 2538 jinode->i_flags = 0; 2539 INIT_LIST_HEAD(&jinode->i_list); 2540 } 2541 2542 /* 2543 * Function to be called before we start removing inode from memory (i.e., 2544 * clear_inode() is a fine place to be called from). It removes inode from 2545 * transaction's lists. 2546 */ 2547 void jbd2_journal_release_jbd_inode(journal_t *journal, 2548 struct jbd2_inode *jinode) 2549 { 2550 if (!journal) 2551 return; 2552 restart: 2553 spin_lock(&journal->j_list_lock); 2554 /* Is commit writing out inode - we have to wait */ 2555 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2556 wait_queue_head_t *wq; 2557 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2558 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2559 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2560 spin_unlock(&journal->j_list_lock); 2561 schedule(); 2562 finish_wait(wq, &wait.wait); 2563 goto restart; 2564 } 2565 2566 if (jinode->i_transaction) { 2567 list_del(&jinode->i_list); 2568 jinode->i_transaction = NULL; 2569 } 2570 spin_unlock(&journal->j_list_lock); 2571 } 2572 2573 2574 #ifdef CONFIG_PROC_FS 2575 2576 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2577 2578 static void __init jbd2_create_jbd_stats_proc_entry(void) 2579 { 2580 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2581 } 2582 2583 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2584 { 2585 if (proc_jbd2_stats) 2586 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2587 } 2588 2589 #else 2590 2591 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2592 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2593 2594 #endif 2595 2596 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2597 2598 static int __init jbd2_journal_init_handle_cache(void) 2599 { 2600 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2601 if (jbd2_handle_cache == NULL) { 2602 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2603 return -ENOMEM; 2604 } 2605 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2606 if (jbd2_inode_cache == NULL) { 2607 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2608 kmem_cache_destroy(jbd2_handle_cache); 2609 return -ENOMEM; 2610 } 2611 return 0; 2612 } 2613 2614 static void jbd2_journal_destroy_handle_cache(void) 2615 { 2616 if (jbd2_handle_cache) 2617 kmem_cache_destroy(jbd2_handle_cache); 2618 if (jbd2_inode_cache) 2619 kmem_cache_destroy(jbd2_inode_cache); 2620 2621 } 2622 2623 /* 2624 * Module startup and shutdown 2625 */ 2626 2627 static int __init journal_init_caches(void) 2628 { 2629 int ret; 2630 2631 ret = jbd2_journal_init_revoke_caches(); 2632 if (ret == 0) 2633 ret = jbd2_journal_init_journal_head_cache(); 2634 if (ret == 0) 2635 ret = jbd2_journal_init_handle_cache(); 2636 if (ret == 0) 2637 ret = jbd2_journal_init_transaction_cache(); 2638 return ret; 2639 } 2640 2641 static void jbd2_journal_destroy_caches(void) 2642 { 2643 jbd2_journal_destroy_revoke_caches(); 2644 jbd2_journal_destroy_journal_head_cache(); 2645 jbd2_journal_destroy_handle_cache(); 2646 jbd2_journal_destroy_transaction_cache(); 2647 jbd2_journal_destroy_slabs(); 2648 } 2649 2650 static int __init journal_init(void) 2651 { 2652 int ret; 2653 2654 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2655 2656 ret = journal_init_caches(); 2657 if (ret == 0) { 2658 jbd2_create_jbd_stats_proc_entry(); 2659 } else { 2660 jbd2_journal_destroy_caches(); 2661 } 2662 return ret; 2663 } 2664 2665 static void __exit journal_exit(void) 2666 { 2667 #ifdef CONFIG_JBD2_DEBUG 2668 int n = atomic_read(&nr_journal_heads); 2669 if (n) 2670 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2671 #endif 2672 jbd2_remove_jbd_stats_proc_entry(); 2673 jbd2_journal_destroy_caches(); 2674 } 2675 2676 MODULE_LICENSE("GPL"); 2677 module_init(journal_init); 2678 module_exit(journal_exit); 2679 2680