1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static int jbd2_journal_create_slab(size_t slab_size); 100 101 #ifdef CONFIG_JBD2_DEBUG 102 void __jbd2_debug(int level, const char *file, const char *func, 103 unsigned int line, const char *fmt, ...) 104 { 105 struct va_format vaf; 106 va_list args; 107 108 if (level > jbd2_journal_enable_debug) 109 return; 110 va_start(args, fmt); 111 vaf.fmt = fmt; 112 vaf.va = &args; 113 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 114 va_end(args); 115 } 116 EXPORT_SYMBOL(__jbd2_debug); 117 #endif 118 119 /* Checksumming functions */ 120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 121 { 122 if (!jbd2_journal_has_csum_v2or3_feature(j)) 123 return 1; 124 125 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 126 } 127 128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 129 { 130 __u32 csum; 131 __be32 old_csum; 132 133 old_csum = sb->s_checksum; 134 sb->s_checksum = 0; 135 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 136 sb->s_checksum = old_csum; 137 138 return cpu_to_be32(csum); 139 } 140 141 /* 142 * Helper function used to manage commit timeouts 143 */ 144 145 static void commit_timeout(struct timer_list *t) 146 { 147 journal_t *journal = from_timer(journal, t, j_commit_timer); 148 149 wake_up_process(journal->j_task); 150 } 151 152 /* 153 * kjournald2: The main thread function used to manage a logging device 154 * journal. 155 * 156 * This kernel thread is responsible for two things: 157 * 158 * 1) COMMIT: Every so often we need to commit the current state of the 159 * filesystem to disk. The journal thread is responsible for writing 160 * all of the metadata buffers to disk. 161 * 162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 163 * of the data in that part of the log has been rewritten elsewhere on 164 * the disk. Flushing these old buffers to reclaim space in the log is 165 * known as checkpointing, and this thread is responsible for that job. 166 */ 167 168 static int kjournald2(void *arg) 169 { 170 journal_t *journal = arg; 171 transaction_t *transaction; 172 173 /* 174 * Set up an interval timer which can be used to trigger a commit wakeup 175 * after the commit interval expires 176 */ 177 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 178 179 set_freezable(); 180 181 /* Record that the journal thread is running */ 182 journal->j_task = current; 183 wake_up(&journal->j_wait_done_commit); 184 185 /* 186 * Make sure that no allocations from this kernel thread will ever 187 * recurse to the fs layer because we are responsible for the 188 * transaction commit and any fs involvement might get stuck waiting for 189 * the trasn. commit. 190 */ 191 memalloc_nofs_save(); 192 193 /* 194 * And now, wait forever for commit wakeup events. 195 */ 196 write_lock(&journal->j_state_lock); 197 198 loop: 199 if (journal->j_flags & JBD2_UNMOUNT) 200 goto end_loop; 201 202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 203 journal->j_commit_sequence, journal->j_commit_request); 204 205 if (journal->j_commit_sequence != journal->j_commit_request) { 206 jbd_debug(1, "OK, requests differ\n"); 207 write_unlock(&journal->j_state_lock); 208 del_timer_sync(&journal->j_commit_timer); 209 jbd2_journal_commit_transaction(journal); 210 write_lock(&journal->j_state_lock); 211 goto loop; 212 } 213 214 wake_up(&journal->j_wait_done_commit); 215 if (freezing(current)) { 216 /* 217 * The simpler the better. Flushing journal isn't a 218 * good idea, because that depends on threads that may 219 * be already stopped. 220 */ 221 jbd_debug(1, "Now suspending kjournald2\n"); 222 write_unlock(&journal->j_state_lock); 223 try_to_freeze(); 224 write_lock(&journal->j_state_lock); 225 } else { 226 /* 227 * We assume on resume that commits are already there, 228 * so we don't sleep 229 */ 230 DEFINE_WAIT(wait); 231 int should_sleep = 1; 232 233 prepare_to_wait(&journal->j_wait_commit, &wait, 234 TASK_INTERRUPTIBLE); 235 if (journal->j_commit_sequence != journal->j_commit_request) 236 should_sleep = 0; 237 transaction = journal->j_running_transaction; 238 if (transaction && time_after_eq(jiffies, 239 transaction->t_expires)) 240 should_sleep = 0; 241 if (journal->j_flags & JBD2_UNMOUNT) 242 should_sleep = 0; 243 if (should_sleep) { 244 write_unlock(&journal->j_state_lock); 245 schedule(); 246 write_lock(&journal->j_state_lock); 247 } 248 finish_wait(&journal->j_wait_commit, &wait); 249 } 250 251 jbd_debug(1, "kjournald2 wakes\n"); 252 253 /* 254 * Were we woken up by a commit wakeup event? 255 */ 256 transaction = journal->j_running_transaction; 257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 258 journal->j_commit_request = transaction->t_tid; 259 jbd_debug(1, "woke because of timeout\n"); 260 } 261 goto loop; 262 263 end_loop: 264 del_timer_sync(&journal->j_commit_timer); 265 journal->j_task = NULL; 266 wake_up(&journal->j_wait_done_commit); 267 jbd_debug(1, "Journal thread exiting.\n"); 268 write_unlock(&journal->j_state_lock); 269 return 0; 270 } 271 272 static int jbd2_journal_start_thread(journal_t *journal) 273 { 274 struct task_struct *t; 275 276 t = kthread_run(kjournald2, journal, "jbd2/%s", 277 journal->j_devname); 278 if (IS_ERR(t)) 279 return PTR_ERR(t); 280 281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 282 return 0; 283 } 284 285 static void journal_kill_thread(journal_t *journal) 286 { 287 write_lock(&journal->j_state_lock); 288 journal->j_flags |= JBD2_UNMOUNT; 289 290 while (journal->j_task) { 291 write_unlock(&journal->j_state_lock); 292 wake_up(&journal->j_wait_commit); 293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 294 write_lock(&journal->j_state_lock); 295 } 296 write_unlock(&journal->j_state_lock); 297 } 298 299 /* 300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 301 * 302 * Writes a metadata buffer to a given disk block. The actual IO is not 303 * performed but a new buffer_head is constructed which labels the data 304 * to be written with the correct destination disk block. 305 * 306 * Any magic-number escaping which needs to be done will cause a 307 * copy-out here. If the buffer happens to start with the 308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 309 * magic number is only written to the log for descripter blocks. In 310 * this case, we copy the data and replace the first word with 0, and we 311 * return a result code which indicates that this buffer needs to be 312 * marked as an escaped buffer in the corresponding log descriptor 313 * block. The missing word can then be restored when the block is read 314 * during recovery. 315 * 316 * If the source buffer has already been modified by a new transaction 317 * since we took the last commit snapshot, we use the frozen copy of 318 * that data for IO. If we end up using the existing buffer_head's data 319 * for the write, then we have to make sure nobody modifies it while the 320 * IO is in progress. do_get_write_access() handles this. 321 * 322 * The function returns a pointer to the buffer_head to be used for IO. 323 * 324 * 325 * Return value: 326 * <0: Error 327 * >=0: Finished OK 328 * 329 * On success: 330 * Bit 0 set == escape performed on the data 331 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 332 */ 333 334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 335 struct journal_head *jh_in, 336 struct buffer_head **bh_out, 337 sector_t blocknr) 338 { 339 int need_copy_out = 0; 340 int done_copy_out = 0; 341 int do_escape = 0; 342 char *mapped_data; 343 struct buffer_head *new_bh; 344 struct page *new_page; 345 unsigned int new_offset; 346 struct buffer_head *bh_in = jh2bh(jh_in); 347 journal_t *journal = transaction->t_journal; 348 349 /* 350 * The buffer really shouldn't be locked: only the current committing 351 * transaction is allowed to write it, so nobody else is allowed 352 * to do any IO. 353 * 354 * akpm: except if we're journalling data, and write() output is 355 * also part of a shared mapping, and another thread has 356 * decided to launch a writepage() against this buffer. 357 */ 358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 359 360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 361 362 /* keep subsequent assertions sane */ 363 atomic_set(&new_bh->b_count, 1); 364 365 spin_lock(&jh_in->b_state_lock); 366 repeat: 367 /* 368 * If a new transaction has already done a buffer copy-out, then 369 * we use that version of the data for the commit. 370 */ 371 if (jh_in->b_frozen_data) { 372 done_copy_out = 1; 373 new_page = virt_to_page(jh_in->b_frozen_data); 374 new_offset = offset_in_page(jh_in->b_frozen_data); 375 } else { 376 new_page = jh2bh(jh_in)->b_page; 377 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 378 } 379 380 mapped_data = kmap_atomic(new_page); 381 /* 382 * Fire data frozen trigger if data already wasn't frozen. Do this 383 * before checking for escaping, as the trigger may modify the magic 384 * offset. If a copy-out happens afterwards, it will have the correct 385 * data in the buffer. 386 */ 387 if (!done_copy_out) 388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 389 jh_in->b_triggers); 390 391 /* 392 * Check for escaping 393 */ 394 if (*((__be32 *)(mapped_data + new_offset)) == 395 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 396 need_copy_out = 1; 397 do_escape = 1; 398 } 399 kunmap_atomic(mapped_data); 400 401 /* 402 * Do we need to do a data copy? 403 */ 404 if (need_copy_out && !done_copy_out) { 405 char *tmp; 406 407 spin_unlock(&jh_in->b_state_lock); 408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 409 if (!tmp) { 410 brelse(new_bh); 411 return -ENOMEM; 412 } 413 spin_lock(&jh_in->b_state_lock); 414 if (jh_in->b_frozen_data) { 415 jbd2_free(tmp, bh_in->b_size); 416 goto repeat; 417 } 418 419 jh_in->b_frozen_data = tmp; 420 mapped_data = kmap_atomic(new_page); 421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 422 kunmap_atomic(mapped_data); 423 424 new_page = virt_to_page(tmp); 425 new_offset = offset_in_page(tmp); 426 done_copy_out = 1; 427 428 /* 429 * This isn't strictly necessary, as we're using frozen 430 * data for the escaping, but it keeps consistency with 431 * b_frozen_data usage. 432 */ 433 jh_in->b_frozen_triggers = jh_in->b_triggers; 434 } 435 436 /* 437 * Did we need to do an escaping? Now we've done all the 438 * copying, we can finally do so. 439 */ 440 if (do_escape) { 441 mapped_data = kmap_atomic(new_page); 442 *((unsigned int *)(mapped_data + new_offset)) = 0; 443 kunmap_atomic(mapped_data); 444 } 445 446 set_bh_page(new_bh, new_page, new_offset); 447 new_bh->b_size = bh_in->b_size; 448 new_bh->b_bdev = journal->j_dev; 449 new_bh->b_blocknr = blocknr; 450 new_bh->b_private = bh_in; 451 set_buffer_mapped(new_bh); 452 set_buffer_dirty(new_bh); 453 454 *bh_out = new_bh; 455 456 /* 457 * The to-be-written buffer needs to get moved to the io queue, 458 * and the original buffer whose contents we are shadowing or 459 * copying is moved to the transaction's shadow queue. 460 */ 461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 462 spin_lock(&journal->j_list_lock); 463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 464 spin_unlock(&journal->j_list_lock); 465 set_buffer_shadow(bh_in); 466 spin_unlock(&jh_in->b_state_lock); 467 468 return do_escape | (done_copy_out << 1); 469 } 470 471 /* 472 * Allocation code for the journal file. Manage the space left in the 473 * journal, so that we can begin checkpointing when appropriate. 474 */ 475 476 /* 477 * Called with j_state_lock locked for writing. 478 * Returns true if a transaction commit was started. 479 */ 480 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 481 { 482 /* Return if the txn has already requested to be committed */ 483 if (journal->j_commit_request == target) 484 return 0; 485 486 /* 487 * The only transaction we can possibly wait upon is the 488 * currently running transaction (if it exists). Otherwise, 489 * the target tid must be an old one. 490 */ 491 if (journal->j_running_transaction && 492 journal->j_running_transaction->t_tid == target) { 493 /* 494 * We want a new commit: OK, mark the request and wakeup the 495 * commit thread. We do _not_ do the commit ourselves. 496 */ 497 498 journal->j_commit_request = target; 499 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 500 journal->j_commit_request, 501 journal->j_commit_sequence); 502 journal->j_running_transaction->t_requested = jiffies; 503 wake_up(&journal->j_wait_commit); 504 return 1; 505 } else if (!tid_geq(journal->j_commit_request, target)) 506 /* This should never happen, but if it does, preserve 507 the evidence before kjournald goes into a loop and 508 increments j_commit_sequence beyond all recognition. */ 509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 510 journal->j_commit_request, 511 journal->j_commit_sequence, 512 target, journal->j_running_transaction ? 513 journal->j_running_transaction->t_tid : 0); 514 return 0; 515 } 516 517 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 518 { 519 int ret; 520 521 write_lock(&journal->j_state_lock); 522 ret = __jbd2_log_start_commit(journal, tid); 523 write_unlock(&journal->j_state_lock); 524 return ret; 525 } 526 527 /* 528 * Force and wait any uncommitted transactions. We can only force the running 529 * transaction if we don't have an active handle, otherwise, we will deadlock. 530 * Returns: <0 in case of error, 531 * 0 if nothing to commit, 532 * 1 if transaction was successfully committed. 533 */ 534 static int __jbd2_journal_force_commit(journal_t *journal) 535 { 536 transaction_t *transaction = NULL; 537 tid_t tid; 538 int need_to_start = 0, ret = 0; 539 540 read_lock(&journal->j_state_lock); 541 if (journal->j_running_transaction && !current->journal_info) { 542 transaction = journal->j_running_transaction; 543 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 544 need_to_start = 1; 545 } else if (journal->j_committing_transaction) 546 transaction = journal->j_committing_transaction; 547 548 if (!transaction) { 549 /* Nothing to commit */ 550 read_unlock(&journal->j_state_lock); 551 return 0; 552 } 553 tid = transaction->t_tid; 554 read_unlock(&journal->j_state_lock); 555 if (need_to_start) 556 jbd2_log_start_commit(journal, tid); 557 ret = jbd2_log_wait_commit(journal, tid); 558 if (!ret) 559 ret = 1; 560 561 return ret; 562 } 563 564 /** 565 * Force and wait upon a commit if the calling process is not within 566 * transaction. This is used for forcing out undo-protected data which contains 567 * bitmaps, when the fs is running out of space. 568 * 569 * @journal: journal to force 570 * Returns true if progress was made. 571 */ 572 int jbd2_journal_force_commit_nested(journal_t *journal) 573 { 574 int ret; 575 576 ret = __jbd2_journal_force_commit(journal); 577 return ret > 0; 578 } 579 580 /** 581 * int journal_force_commit() - force any uncommitted transactions 582 * @journal: journal to force 583 * 584 * Caller want unconditional commit. We can only force the running transaction 585 * if we don't have an active handle, otherwise, we will deadlock. 586 */ 587 int jbd2_journal_force_commit(journal_t *journal) 588 { 589 int ret; 590 591 J_ASSERT(!current->journal_info); 592 ret = __jbd2_journal_force_commit(journal); 593 if (ret > 0) 594 ret = 0; 595 return ret; 596 } 597 598 /* 599 * Start a commit of the current running transaction (if any). Returns true 600 * if a transaction is going to be committed (or is currently already 601 * committing), and fills its tid in at *ptid 602 */ 603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 604 { 605 int ret = 0; 606 607 write_lock(&journal->j_state_lock); 608 if (journal->j_running_transaction) { 609 tid_t tid = journal->j_running_transaction->t_tid; 610 611 __jbd2_log_start_commit(journal, tid); 612 /* There's a running transaction and we've just made sure 613 * it's commit has been scheduled. */ 614 if (ptid) 615 *ptid = tid; 616 ret = 1; 617 } else if (journal->j_committing_transaction) { 618 /* 619 * If commit has been started, then we have to wait for 620 * completion of that transaction. 621 */ 622 if (ptid) 623 *ptid = journal->j_committing_transaction->t_tid; 624 ret = 1; 625 } 626 write_unlock(&journal->j_state_lock); 627 return ret; 628 } 629 630 /* 631 * Return 1 if a given transaction has not yet sent barrier request 632 * connected with a transaction commit. If 0 is returned, transaction 633 * may or may not have sent the barrier. Used to avoid sending barrier 634 * twice in common cases. 635 */ 636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 637 { 638 int ret = 0; 639 transaction_t *commit_trans; 640 641 if (!(journal->j_flags & JBD2_BARRIER)) 642 return 0; 643 read_lock(&journal->j_state_lock); 644 /* Transaction already committed? */ 645 if (tid_geq(journal->j_commit_sequence, tid)) 646 goto out; 647 commit_trans = journal->j_committing_transaction; 648 if (!commit_trans || commit_trans->t_tid != tid) { 649 ret = 1; 650 goto out; 651 } 652 /* 653 * Transaction is being committed and we already proceeded to 654 * submitting a flush to fs partition? 655 */ 656 if (journal->j_fs_dev != journal->j_dev) { 657 if (!commit_trans->t_need_data_flush || 658 commit_trans->t_state >= T_COMMIT_DFLUSH) 659 goto out; 660 } else { 661 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 662 goto out; 663 } 664 ret = 1; 665 out: 666 read_unlock(&journal->j_state_lock); 667 return ret; 668 } 669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 670 671 /* 672 * Wait for a specified commit to complete. 673 * The caller may not hold the journal lock. 674 */ 675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 676 { 677 int err = 0; 678 679 read_lock(&journal->j_state_lock); 680 #ifdef CONFIG_PROVE_LOCKING 681 /* 682 * Some callers make sure transaction is already committing and in that 683 * case we cannot block on open handles anymore. So don't warn in that 684 * case. 685 */ 686 if (tid_gt(tid, journal->j_commit_sequence) && 687 (!journal->j_committing_transaction || 688 journal->j_committing_transaction->t_tid != tid)) { 689 read_unlock(&journal->j_state_lock); 690 jbd2_might_wait_for_commit(journal); 691 read_lock(&journal->j_state_lock); 692 } 693 #endif 694 #ifdef CONFIG_JBD2_DEBUG 695 if (!tid_geq(journal->j_commit_request, tid)) { 696 printk(KERN_ERR 697 "%s: error: j_commit_request=%u, tid=%u\n", 698 __func__, journal->j_commit_request, tid); 699 } 700 #endif 701 while (tid_gt(tid, journal->j_commit_sequence)) { 702 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 703 tid, journal->j_commit_sequence); 704 read_unlock(&journal->j_state_lock); 705 wake_up(&journal->j_wait_commit); 706 wait_event(journal->j_wait_done_commit, 707 !tid_gt(tid, journal->j_commit_sequence)); 708 read_lock(&journal->j_state_lock); 709 } 710 read_unlock(&journal->j_state_lock); 711 712 if (unlikely(is_journal_aborted(journal))) 713 err = -EIO; 714 return err; 715 } 716 717 /* Return 1 when transaction with given tid has already committed. */ 718 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 719 { 720 int ret = 1; 721 722 read_lock(&journal->j_state_lock); 723 if (journal->j_running_transaction && 724 journal->j_running_transaction->t_tid == tid) 725 ret = 0; 726 if (journal->j_committing_transaction && 727 journal->j_committing_transaction->t_tid == tid) 728 ret = 0; 729 read_unlock(&journal->j_state_lock); 730 return ret; 731 } 732 EXPORT_SYMBOL(jbd2_transaction_committed); 733 734 /* 735 * When this function returns the transaction corresponding to tid 736 * will be completed. If the transaction has currently running, start 737 * committing that transaction before waiting for it to complete. If 738 * the transaction id is stale, it is by definition already completed, 739 * so just return SUCCESS. 740 */ 741 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 742 { 743 int need_to_wait = 1; 744 745 read_lock(&journal->j_state_lock); 746 if (journal->j_running_transaction && 747 journal->j_running_transaction->t_tid == tid) { 748 if (journal->j_commit_request != tid) { 749 /* transaction not yet started, so request it */ 750 read_unlock(&journal->j_state_lock); 751 jbd2_log_start_commit(journal, tid); 752 goto wait_commit; 753 } 754 } else if (!(journal->j_committing_transaction && 755 journal->j_committing_transaction->t_tid == tid)) 756 need_to_wait = 0; 757 read_unlock(&journal->j_state_lock); 758 if (!need_to_wait) 759 return 0; 760 wait_commit: 761 return jbd2_log_wait_commit(journal, tid); 762 } 763 EXPORT_SYMBOL(jbd2_complete_transaction); 764 765 /* 766 * Log buffer allocation routines: 767 */ 768 769 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 770 { 771 unsigned long blocknr; 772 773 write_lock(&journal->j_state_lock); 774 J_ASSERT(journal->j_free > 1); 775 776 blocknr = journal->j_head; 777 journal->j_head++; 778 journal->j_free--; 779 if (journal->j_head == journal->j_last) 780 journal->j_head = journal->j_first; 781 write_unlock(&journal->j_state_lock); 782 return jbd2_journal_bmap(journal, blocknr, retp); 783 } 784 785 /* 786 * Conversion of logical to physical block numbers for the journal 787 * 788 * On external journals the journal blocks are identity-mapped, so 789 * this is a no-op. If needed, we can use j_blk_offset - everything is 790 * ready. 791 */ 792 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 793 unsigned long long *retp) 794 { 795 int err = 0; 796 unsigned long long ret; 797 sector_t block = 0; 798 799 if (journal->j_inode) { 800 block = blocknr; 801 ret = bmap(journal->j_inode, &block); 802 803 if (ret || !block) { 804 printk(KERN_ALERT "%s: journal block not found " 805 "at offset %lu on %s\n", 806 __func__, blocknr, journal->j_devname); 807 err = -EIO; 808 jbd2_journal_abort(journal, err); 809 } else { 810 *retp = block; 811 } 812 813 } else { 814 *retp = blocknr; /* +journal->j_blk_offset */ 815 } 816 return err; 817 } 818 819 /* 820 * We play buffer_head aliasing tricks to write data/metadata blocks to 821 * the journal without copying their contents, but for journal 822 * descriptor blocks we do need to generate bona fide buffers. 823 * 824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 825 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 826 * But we don't bother doing that, so there will be coherency problems with 827 * mmaps of blockdevs which hold live JBD-controlled filesystems. 828 */ 829 struct buffer_head * 830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 831 { 832 journal_t *journal = transaction->t_journal; 833 struct buffer_head *bh; 834 unsigned long long blocknr; 835 journal_header_t *header; 836 int err; 837 838 err = jbd2_journal_next_log_block(journal, &blocknr); 839 840 if (err) 841 return NULL; 842 843 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 844 if (!bh) 845 return NULL; 846 atomic_dec(&transaction->t_outstanding_credits); 847 lock_buffer(bh); 848 memset(bh->b_data, 0, journal->j_blocksize); 849 header = (journal_header_t *)bh->b_data; 850 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 851 header->h_blocktype = cpu_to_be32(type); 852 header->h_sequence = cpu_to_be32(transaction->t_tid); 853 set_buffer_uptodate(bh); 854 unlock_buffer(bh); 855 BUFFER_TRACE(bh, "return this buffer"); 856 return bh; 857 } 858 859 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 860 { 861 struct jbd2_journal_block_tail *tail; 862 __u32 csum; 863 864 if (!jbd2_journal_has_csum_v2or3(j)) 865 return; 866 867 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 868 sizeof(struct jbd2_journal_block_tail)); 869 tail->t_checksum = 0; 870 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 871 tail->t_checksum = cpu_to_be32(csum); 872 } 873 874 /* 875 * Return tid of the oldest transaction in the journal and block in the journal 876 * where the transaction starts. 877 * 878 * If the journal is now empty, return which will be the next transaction ID 879 * we will write and where will that transaction start. 880 * 881 * The return value is 0 if journal tail cannot be pushed any further, 1 if 882 * it can. 883 */ 884 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 885 unsigned long *block) 886 { 887 transaction_t *transaction; 888 int ret; 889 890 read_lock(&journal->j_state_lock); 891 spin_lock(&journal->j_list_lock); 892 transaction = journal->j_checkpoint_transactions; 893 if (transaction) { 894 *tid = transaction->t_tid; 895 *block = transaction->t_log_start; 896 } else if ((transaction = journal->j_committing_transaction) != NULL) { 897 *tid = transaction->t_tid; 898 *block = transaction->t_log_start; 899 } else if ((transaction = journal->j_running_transaction) != NULL) { 900 *tid = transaction->t_tid; 901 *block = journal->j_head; 902 } else { 903 *tid = journal->j_transaction_sequence; 904 *block = journal->j_head; 905 } 906 ret = tid_gt(*tid, journal->j_tail_sequence); 907 spin_unlock(&journal->j_list_lock); 908 read_unlock(&journal->j_state_lock); 909 910 return ret; 911 } 912 913 /* 914 * Update information in journal structure and in on disk journal superblock 915 * about log tail. This function does not check whether information passed in 916 * really pushes log tail further. It's responsibility of the caller to make 917 * sure provided log tail information is valid (e.g. by holding 918 * j_checkpoint_mutex all the time between computing log tail and calling this 919 * function as is the case with jbd2_cleanup_journal_tail()). 920 * 921 * Requires j_checkpoint_mutex 922 */ 923 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 924 { 925 unsigned long freed; 926 int ret; 927 928 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 929 930 /* 931 * We cannot afford for write to remain in drive's caches since as 932 * soon as we update j_tail, next transaction can start reusing journal 933 * space and if we lose sb update during power failure we'd replay 934 * old transaction with possibly newly overwritten data. 935 */ 936 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 937 REQ_SYNC | REQ_FUA); 938 if (ret) 939 goto out; 940 941 write_lock(&journal->j_state_lock); 942 freed = block - journal->j_tail; 943 if (block < journal->j_tail) 944 freed += journal->j_last - journal->j_first; 945 946 trace_jbd2_update_log_tail(journal, tid, block, freed); 947 jbd_debug(1, 948 "Cleaning journal tail from %u to %u (offset %lu), " 949 "freeing %lu\n", 950 journal->j_tail_sequence, tid, block, freed); 951 952 journal->j_free += freed; 953 journal->j_tail_sequence = tid; 954 journal->j_tail = block; 955 write_unlock(&journal->j_state_lock); 956 957 out: 958 return ret; 959 } 960 961 /* 962 * This is a variation of __jbd2_update_log_tail which checks for validity of 963 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 964 * with other threads updating log tail. 965 */ 966 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 967 { 968 mutex_lock_io(&journal->j_checkpoint_mutex); 969 if (tid_gt(tid, journal->j_tail_sequence)) 970 __jbd2_update_log_tail(journal, tid, block); 971 mutex_unlock(&journal->j_checkpoint_mutex); 972 } 973 974 struct jbd2_stats_proc_session { 975 journal_t *journal; 976 struct transaction_stats_s *stats; 977 int start; 978 int max; 979 }; 980 981 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 982 { 983 return *pos ? NULL : SEQ_START_TOKEN; 984 } 985 986 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 987 { 988 (*pos)++; 989 return NULL; 990 } 991 992 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 993 { 994 struct jbd2_stats_proc_session *s = seq->private; 995 996 if (v != SEQ_START_TOKEN) 997 return 0; 998 seq_printf(seq, "%lu transactions (%lu requested), " 999 "each up to %u blocks\n", 1000 s->stats->ts_tid, s->stats->ts_requested, 1001 s->journal->j_max_transaction_buffers); 1002 if (s->stats->ts_tid == 0) 1003 return 0; 1004 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1005 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1006 seq_printf(seq, " %ums request delay\n", 1007 (s->stats->ts_requested == 0) ? 0 : 1008 jiffies_to_msecs(s->stats->run.rs_request_delay / 1009 s->stats->ts_requested)); 1010 seq_printf(seq, " %ums running transaction\n", 1011 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1012 seq_printf(seq, " %ums transaction was being locked\n", 1013 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1014 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1015 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1016 seq_printf(seq, " %ums logging transaction\n", 1017 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1018 seq_printf(seq, " %lluus average transaction commit time\n", 1019 div_u64(s->journal->j_average_commit_time, 1000)); 1020 seq_printf(seq, " %lu handles per transaction\n", 1021 s->stats->run.rs_handle_count / s->stats->ts_tid); 1022 seq_printf(seq, " %lu blocks per transaction\n", 1023 s->stats->run.rs_blocks / s->stats->ts_tid); 1024 seq_printf(seq, " %lu logged blocks per transaction\n", 1025 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1026 return 0; 1027 } 1028 1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1030 { 1031 } 1032 1033 static const struct seq_operations jbd2_seq_info_ops = { 1034 .start = jbd2_seq_info_start, 1035 .next = jbd2_seq_info_next, 1036 .stop = jbd2_seq_info_stop, 1037 .show = jbd2_seq_info_show, 1038 }; 1039 1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1041 { 1042 journal_t *journal = PDE_DATA(inode); 1043 struct jbd2_stats_proc_session *s; 1044 int rc, size; 1045 1046 s = kmalloc(sizeof(*s), GFP_KERNEL); 1047 if (s == NULL) 1048 return -ENOMEM; 1049 size = sizeof(struct transaction_stats_s); 1050 s->stats = kmalloc(size, GFP_KERNEL); 1051 if (s->stats == NULL) { 1052 kfree(s); 1053 return -ENOMEM; 1054 } 1055 spin_lock(&journal->j_history_lock); 1056 memcpy(s->stats, &journal->j_stats, size); 1057 s->journal = journal; 1058 spin_unlock(&journal->j_history_lock); 1059 1060 rc = seq_open(file, &jbd2_seq_info_ops); 1061 if (rc == 0) { 1062 struct seq_file *m = file->private_data; 1063 m->private = s; 1064 } else { 1065 kfree(s->stats); 1066 kfree(s); 1067 } 1068 return rc; 1069 1070 } 1071 1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1073 { 1074 struct seq_file *seq = file->private_data; 1075 struct jbd2_stats_proc_session *s = seq->private; 1076 kfree(s->stats); 1077 kfree(s); 1078 return seq_release(inode, file); 1079 } 1080 1081 static const struct proc_ops jbd2_info_proc_ops = { 1082 .proc_open = jbd2_seq_info_open, 1083 .proc_read = seq_read, 1084 .proc_lseek = seq_lseek, 1085 .proc_release = jbd2_seq_info_release, 1086 }; 1087 1088 static struct proc_dir_entry *proc_jbd2_stats; 1089 1090 static void jbd2_stats_proc_init(journal_t *journal) 1091 { 1092 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1093 if (journal->j_proc_entry) { 1094 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1095 &jbd2_info_proc_ops, journal); 1096 } 1097 } 1098 1099 static void jbd2_stats_proc_exit(journal_t *journal) 1100 { 1101 remove_proc_entry("info", journal->j_proc_entry); 1102 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1103 } 1104 1105 /* Minimum size of descriptor tag */ 1106 static int jbd2_min_tag_size(void) 1107 { 1108 /* 1109 * Tag with 32-bit block numbers does not use last four bytes of the 1110 * structure 1111 */ 1112 return sizeof(journal_block_tag_t) - 4; 1113 } 1114 1115 /* 1116 * Management for journal control blocks: functions to create and 1117 * destroy journal_t structures, and to initialise and read existing 1118 * journal blocks from disk. */ 1119 1120 /* First: create and setup a journal_t object in memory. We initialise 1121 * very few fields yet: that has to wait until we have created the 1122 * journal structures from from scratch, or loaded them from disk. */ 1123 1124 static journal_t *journal_init_common(struct block_device *bdev, 1125 struct block_device *fs_dev, 1126 unsigned long long start, int len, int blocksize) 1127 { 1128 static struct lock_class_key jbd2_trans_commit_key; 1129 journal_t *journal; 1130 int err; 1131 struct buffer_head *bh; 1132 int n; 1133 1134 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1135 if (!journal) 1136 return NULL; 1137 1138 init_waitqueue_head(&journal->j_wait_transaction_locked); 1139 init_waitqueue_head(&journal->j_wait_done_commit); 1140 init_waitqueue_head(&journal->j_wait_commit); 1141 init_waitqueue_head(&journal->j_wait_updates); 1142 init_waitqueue_head(&journal->j_wait_reserved); 1143 mutex_init(&journal->j_abort_mutex); 1144 mutex_init(&journal->j_barrier); 1145 mutex_init(&journal->j_checkpoint_mutex); 1146 spin_lock_init(&journal->j_revoke_lock); 1147 spin_lock_init(&journal->j_list_lock); 1148 rwlock_init(&journal->j_state_lock); 1149 1150 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1151 journal->j_min_batch_time = 0; 1152 journal->j_max_batch_time = 15000; /* 15ms */ 1153 atomic_set(&journal->j_reserved_credits, 0); 1154 1155 /* The journal is marked for error until we succeed with recovery! */ 1156 journal->j_flags = JBD2_ABORT; 1157 1158 /* Set up a default-sized revoke table for the new mount. */ 1159 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1160 if (err) 1161 goto err_cleanup; 1162 1163 spin_lock_init(&journal->j_history_lock); 1164 1165 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1166 &jbd2_trans_commit_key, 0); 1167 1168 /* journal descriptor can store up to n blocks -bzzz */ 1169 journal->j_blocksize = blocksize; 1170 journal->j_dev = bdev; 1171 journal->j_fs_dev = fs_dev; 1172 journal->j_blk_offset = start; 1173 journal->j_maxlen = len; 1174 /* We need enough buffers to write out full descriptor block. */ 1175 n = journal->j_blocksize / jbd2_min_tag_size(); 1176 journal->j_wbufsize = n; 1177 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1178 GFP_KERNEL); 1179 if (!journal->j_wbuf) 1180 goto err_cleanup; 1181 1182 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1183 if (!bh) { 1184 pr_err("%s: Cannot get buffer for journal superblock\n", 1185 __func__); 1186 goto err_cleanup; 1187 } 1188 journal->j_sb_buffer = bh; 1189 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1190 1191 return journal; 1192 1193 err_cleanup: 1194 kfree(journal->j_wbuf); 1195 jbd2_journal_destroy_revoke(journal); 1196 kfree(journal); 1197 return NULL; 1198 } 1199 1200 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1201 * 1202 * Create a journal structure assigned some fixed set of disk blocks to 1203 * the journal. We don't actually touch those disk blocks yet, but we 1204 * need to set up all of the mapping information to tell the journaling 1205 * system where the journal blocks are. 1206 * 1207 */ 1208 1209 /** 1210 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1211 * @bdev: Block device on which to create the journal 1212 * @fs_dev: Device which hold journalled filesystem for this journal. 1213 * @start: Block nr Start of journal. 1214 * @len: Length of the journal in blocks. 1215 * @blocksize: blocksize of journalling device 1216 * 1217 * Returns: a newly created journal_t * 1218 * 1219 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1220 * range of blocks on an arbitrary block device. 1221 * 1222 */ 1223 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1224 struct block_device *fs_dev, 1225 unsigned long long start, int len, int blocksize) 1226 { 1227 journal_t *journal; 1228 1229 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1230 if (!journal) 1231 return NULL; 1232 1233 bdevname(journal->j_dev, journal->j_devname); 1234 strreplace(journal->j_devname, '/', '!'); 1235 jbd2_stats_proc_init(journal); 1236 1237 return journal; 1238 } 1239 1240 /** 1241 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1242 * @inode: An inode to create the journal in 1243 * 1244 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1245 * the journal. The inode must exist already, must support bmap() and 1246 * must have all data blocks preallocated. 1247 */ 1248 journal_t *jbd2_journal_init_inode(struct inode *inode) 1249 { 1250 journal_t *journal; 1251 sector_t blocknr; 1252 char *p; 1253 int err = 0; 1254 1255 blocknr = 0; 1256 err = bmap(inode, &blocknr); 1257 1258 if (err || !blocknr) { 1259 pr_err("%s: Cannot locate journal superblock\n", 1260 __func__); 1261 return NULL; 1262 } 1263 1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1267 1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1270 inode->i_sb->s_blocksize); 1271 if (!journal) 1272 return NULL; 1273 1274 journal->j_inode = inode; 1275 bdevname(journal->j_dev, journal->j_devname); 1276 p = strreplace(journal->j_devname, '/', '!'); 1277 sprintf(p, "-%lu", journal->j_inode->i_ino); 1278 jbd2_stats_proc_init(journal); 1279 1280 return journal; 1281 } 1282 1283 /* 1284 * If the journal init or create aborts, we need to mark the journal 1285 * superblock as being NULL to prevent the journal destroy from writing 1286 * back a bogus superblock. 1287 */ 1288 static void journal_fail_superblock(journal_t *journal) 1289 { 1290 struct buffer_head *bh = journal->j_sb_buffer; 1291 brelse(bh); 1292 journal->j_sb_buffer = NULL; 1293 } 1294 1295 /* 1296 * Given a journal_t structure, initialise the various fields for 1297 * startup of a new journaling session. We use this both when creating 1298 * a journal, and after recovering an old journal to reset it for 1299 * subsequent use. 1300 */ 1301 1302 static int journal_reset(journal_t *journal) 1303 { 1304 journal_superblock_t *sb = journal->j_superblock; 1305 unsigned long long first, last; 1306 1307 first = be32_to_cpu(sb->s_first); 1308 last = be32_to_cpu(sb->s_maxlen); 1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1311 first, last); 1312 journal_fail_superblock(journal); 1313 return -EINVAL; 1314 } 1315 1316 journal->j_first = first; 1317 journal->j_last = last; 1318 1319 journal->j_head = first; 1320 journal->j_tail = first; 1321 journal->j_free = last - first; 1322 1323 journal->j_tail_sequence = journal->j_transaction_sequence; 1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1325 journal->j_commit_request = journal->j_commit_sequence; 1326 1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1328 1329 /* 1330 * As a special case, if the on-disk copy is already marked as needing 1331 * no recovery (s_start == 0), then we can safely defer the superblock 1332 * update until the next commit by setting JBD2_FLUSHED. This avoids 1333 * attempting a write to a potential-readonly device. 1334 */ 1335 if (sb->s_start == 0) { 1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1337 "(start %ld, seq %u, errno %d)\n", 1338 journal->j_tail, journal->j_tail_sequence, 1339 journal->j_errno); 1340 journal->j_flags |= JBD2_FLUSHED; 1341 } else { 1342 /* Lock here to make assertions happy... */ 1343 mutex_lock_io(&journal->j_checkpoint_mutex); 1344 /* 1345 * Update log tail information. We use REQ_FUA since new 1346 * transaction will start reusing journal space and so we 1347 * must make sure information about current log tail is on 1348 * disk before that. 1349 */ 1350 jbd2_journal_update_sb_log_tail(journal, 1351 journal->j_tail_sequence, 1352 journal->j_tail, 1353 REQ_SYNC | REQ_FUA); 1354 mutex_unlock(&journal->j_checkpoint_mutex); 1355 } 1356 return jbd2_journal_start_thread(journal); 1357 } 1358 1359 /* 1360 * This function expects that the caller will have locked the journal 1361 * buffer head, and will return with it unlocked 1362 */ 1363 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1364 { 1365 struct buffer_head *bh = journal->j_sb_buffer; 1366 journal_superblock_t *sb = journal->j_superblock; 1367 int ret; 1368 1369 /* Buffer got discarded which means block device got invalidated */ 1370 if (!buffer_mapped(bh)) { 1371 unlock_buffer(bh); 1372 return -EIO; 1373 } 1374 1375 trace_jbd2_write_superblock(journal, write_flags); 1376 if (!(journal->j_flags & JBD2_BARRIER)) 1377 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1378 if (buffer_write_io_error(bh)) { 1379 /* 1380 * Oh, dear. A previous attempt to write the journal 1381 * superblock failed. This could happen because the 1382 * USB device was yanked out. Or it could happen to 1383 * be a transient write error and maybe the block will 1384 * be remapped. Nothing we can do but to retry the 1385 * write and hope for the best. 1386 */ 1387 printk(KERN_ERR "JBD2: previous I/O error detected " 1388 "for journal superblock update for %s.\n", 1389 journal->j_devname); 1390 clear_buffer_write_io_error(bh); 1391 set_buffer_uptodate(bh); 1392 } 1393 if (jbd2_journal_has_csum_v2or3(journal)) 1394 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1395 get_bh(bh); 1396 bh->b_end_io = end_buffer_write_sync; 1397 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1398 wait_on_buffer(bh); 1399 if (buffer_write_io_error(bh)) { 1400 clear_buffer_write_io_error(bh); 1401 set_buffer_uptodate(bh); 1402 ret = -EIO; 1403 } 1404 if (ret) { 1405 printk(KERN_ERR "JBD2: Error %d detected when updating " 1406 "journal superblock for %s.\n", ret, 1407 journal->j_devname); 1408 if (!is_journal_aborted(journal)) 1409 jbd2_journal_abort(journal, ret); 1410 } 1411 1412 return ret; 1413 } 1414 1415 /** 1416 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1417 * @journal: The journal to update. 1418 * @tail_tid: TID of the new transaction at the tail of the log 1419 * @tail_block: The first block of the transaction at the tail of the log 1420 * @write_op: With which operation should we write the journal sb 1421 * 1422 * Update a journal's superblock information about log tail and write it to 1423 * disk, waiting for the IO to complete. 1424 */ 1425 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1426 unsigned long tail_block, int write_op) 1427 { 1428 journal_superblock_t *sb = journal->j_superblock; 1429 int ret; 1430 1431 if (is_journal_aborted(journal)) 1432 return -EIO; 1433 1434 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1435 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1436 tail_block, tail_tid); 1437 1438 lock_buffer(journal->j_sb_buffer); 1439 sb->s_sequence = cpu_to_be32(tail_tid); 1440 sb->s_start = cpu_to_be32(tail_block); 1441 1442 ret = jbd2_write_superblock(journal, write_op); 1443 if (ret) 1444 goto out; 1445 1446 /* Log is no longer empty */ 1447 write_lock(&journal->j_state_lock); 1448 WARN_ON(!sb->s_sequence); 1449 journal->j_flags &= ~JBD2_FLUSHED; 1450 write_unlock(&journal->j_state_lock); 1451 1452 out: 1453 return ret; 1454 } 1455 1456 /** 1457 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1458 * @journal: The journal to update. 1459 * @write_op: With which operation should we write the journal sb 1460 * 1461 * Update a journal's dynamic superblock fields to show that journal is empty. 1462 * Write updated superblock to disk waiting for IO to complete. 1463 */ 1464 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1465 { 1466 journal_superblock_t *sb = journal->j_superblock; 1467 1468 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1469 lock_buffer(journal->j_sb_buffer); 1470 if (sb->s_start == 0) { /* Is it already empty? */ 1471 unlock_buffer(journal->j_sb_buffer); 1472 return; 1473 } 1474 1475 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1476 journal->j_tail_sequence); 1477 1478 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1479 sb->s_start = cpu_to_be32(0); 1480 1481 jbd2_write_superblock(journal, write_op); 1482 1483 /* Log is no longer empty */ 1484 write_lock(&journal->j_state_lock); 1485 journal->j_flags |= JBD2_FLUSHED; 1486 write_unlock(&journal->j_state_lock); 1487 } 1488 1489 1490 /** 1491 * jbd2_journal_update_sb_errno() - Update error in the journal. 1492 * @journal: The journal to update. 1493 * 1494 * Update a journal's errno. Write updated superblock to disk waiting for IO 1495 * to complete. 1496 */ 1497 void jbd2_journal_update_sb_errno(journal_t *journal) 1498 { 1499 journal_superblock_t *sb = journal->j_superblock; 1500 int errcode; 1501 1502 lock_buffer(journal->j_sb_buffer); 1503 errcode = journal->j_errno; 1504 if (errcode == -ESHUTDOWN) 1505 errcode = 0; 1506 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1507 sb->s_errno = cpu_to_be32(errcode); 1508 1509 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1510 } 1511 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1512 1513 static int journal_revoke_records_per_block(journal_t *journal) 1514 { 1515 int record_size; 1516 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1517 1518 if (jbd2_has_feature_64bit(journal)) 1519 record_size = 8; 1520 else 1521 record_size = 4; 1522 1523 if (jbd2_journal_has_csum_v2or3(journal)) 1524 space -= sizeof(struct jbd2_journal_block_tail); 1525 return space / record_size; 1526 } 1527 1528 /* 1529 * Read the superblock for a given journal, performing initial 1530 * validation of the format. 1531 */ 1532 static int journal_get_superblock(journal_t *journal) 1533 { 1534 struct buffer_head *bh; 1535 journal_superblock_t *sb; 1536 int err = -EIO; 1537 1538 bh = journal->j_sb_buffer; 1539 1540 J_ASSERT(bh != NULL); 1541 if (!buffer_uptodate(bh)) { 1542 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1543 wait_on_buffer(bh); 1544 if (!buffer_uptodate(bh)) { 1545 printk(KERN_ERR 1546 "JBD2: IO error reading journal superblock\n"); 1547 goto out; 1548 } 1549 } 1550 1551 if (buffer_verified(bh)) 1552 return 0; 1553 1554 sb = journal->j_superblock; 1555 1556 err = -EINVAL; 1557 1558 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1559 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1560 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1561 goto out; 1562 } 1563 1564 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1565 case JBD2_SUPERBLOCK_V1: 1566 journal->j_format_version = 1; 1567 break; 1568 case JBD2_SUPERBLOCK_V2: 1569 journal->j_format_version = 2; 1570 break; 1571 default: 1572 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1573 goto out; 1574 } 1575 1576 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1577 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1578 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1579 printk(KERN_WARNING "JBD2: journal file too short\n"); 1580 goto out; 1581 } 1582 1583 if (be32_to_cpu(sb->s_first) == 0 || 1584 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1585 printk(KERN_WARNING 1586 "JBD2: Invalid start block of journal: %u\n", 1587 be32_to_cpu(sb->s_first)); 1588 goto out; 1589 } 1590 1591 if (jbd2_has_feature_csum2(journal) && 1592 jbd2_has_feature_csum3(journal)) { 1593 /* Can't have checksum v2 and v3 at the same time! */ 1594 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1595 "at the same time!\n"); 1596 goto out; 1597 } 1598 1599 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1600 jbd2_has_feature_checksum(journal)) { 1601 /* Can't have checksum v1 and v2 on at the same time! */ 1602 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1603 "at the same time!\n"); 1604 goto out; 1605 } 1606 1607 if (!jbd2_verify_csum_type(journal, sb)) { 1608 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1609 goto out; 1610 } 1611 1612 /* Load the checksum driver */ 1613 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1614 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1615 if (IS_ERR(journal->j_chksum_driver)) { 1616 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1617 err = PTR_ERR(journal->j_chksum_driver); 1618 journal->j_chksum_driver = NULL; 1619 goto out; 1620 } 1621 } 1622 1623 if (jbd2_journal_has_csum_v2or3(journal)) { 1624 /* Check superblock checksum */ 1625 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1626 printk(KERN_ERR "JBD2: journal checksum error\n"); 1627 err = -EFSBADCRC; 1628 goto out; 1629 } 1630 1631 /* Precompute checksum seed for all metadata */ 1632 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1633 sizeof(sb->s_uuid)); 1634 } 1635 1636 journal->j_revoke_records_per_block = 1637 journal_revoke_records_per_block(journal); 1638 set_buffer_verified(bh); 1639 1640 return 0; 1641 1642 out: 1643 journal_fail_superblock(journal); 1644 return err; 1645 } 1646 1647 /* 1648 * Load the on-disk journal superblock and read the key fields into the 1649 * journal_t. 1650 */ 1651 1652 static int load_superblock(journal_t *journal) 1653 { 1654 int err; 1655 journal_superblock_t *sb; 1656 1657 err = journal_get_superblock(journal); 1658 if (err) 1659 return err; 1660 1661 sb = journal->j_superblock; 1662 1663 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1664 journal->j_tail = be32_to_cpu(sb->s_start); 1665 journal->j_first = be32_to_cpu(sb->s_first); 1666 journal->j_last = be32_to_cpu(sb->s_maxlen); 1667 journal->j_errno = be32_to_cpu(sb->s_errno); 1668 1669 return 0; 1670 } 1671 1672 1673 /** 1674 * int jbd2_journal_load() - Read journal from disk. 1675 * @journal: Journal to act on. 1676 * 1677 * Given a journal_t structure which tells us which disk blocks contain 1678 * a journal, read the journal from disk to initialise the in-memory 1679 * structures. 1680 */ 1681 int jbd2_journal_load(journal_t *journal) 1682 { 1683 int err; 1684 journal_superblock_t *sb; 1685 1686 err = load_superblock(journal); 1687 if (err) 1688 return err; 1689 1690 sb = journal->j_superblock; 1691 /* If this is a V2 superblock, then we have to check the 1692 * features flags on it. */ 1693 1694 if (journal->j_format_version >= 2) { 1695 if ((sb->s_feature_ro_compat & 1696 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1697 (sb->s_feature_incompat & 1698 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1699 printk(KERN_WARNING 1700 "JBD2: Unrecognised features on journal\n"); 1701 return -EINVAL; 1702 } 1703 } 1704 1705 /* 1706 * Create a slab for this blocksize 1707 */ 1708 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1709 if (err) 1710 return err; 1711 1712 /* Let the recovery code check whether it needs to recover any 1713 * data from the journal. */ 1714 if (jbd2_journal_recover(journal)) 1715 goto recovery_error; 1716 1717 if (journal->j_failed_commit) { 1718 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1719 "is corrupt.\n", journal->j_failed_commit, 1720 journal->j_devname); 1721 return -EFSCORRUPTED; 1722 } 1723 /* 1724 * clear JBD2_ABORT flag initialized in journal_init_common 1725 * here to update log tail information with the newest seq. 1726 */ 1727 journal->j_flags &= ~JBD2_ABORT; 1728 1729 /* OK, we've finished with the dynamic journal bits: 1730 * reinitialise the dynamic contents of the superblock in memory 1731 * and reset them on disk. */ 1732 if (journal_reset(journal)) 1733 goto recovery_error; 1734 1735 journal->j_flags |= JBD2_LOADED; 1736 return 0; 1737 1738 recovery_error: 1739 printk(KERN_WARNING "JBD2: recovery failed\n"); 1740 return -EIO; 1741 } 1742 1743 /** 1744 * void jbd2_journal_destroy() - Release a journal_t structure. 1745 * @journal: Journal to act on. 1746 * 1747 * Release a journal_t structure once it is no longer in use by the 1748 * journaled object. 1749 * Return <0 if we couldn't clean up the journal. 1750 */ 1751 int jbd2_journal_destroy(journal_t *journal) 1752 { 1753 int err = 0; 1754 1755 /* Wait for the commit thread to wake up and die. */ 1756 journal_kill_thread(journal); 1757 1758 /* Force a final log commit */ 1759 if (journal->j_running_transaction) 1760 jbd2_journal_commit_transaction(journal); 1761 1762 /* Force any old transactions to disk */ 1763 1764 /* Totally anal locking here... */ 1765 spin_lock(&journal->j_list_lock); 1766 while (journal->j_checkpoint_transactions != NULL) { 1767 spin_unlock(&journal->j_list_lock); 1768 mutex_lock_io(&journal->j_checkpoint_mutex); 1769 err = jbd2_log_do_checkpoint(journal); 1770 mutex_unlock(&journal->j_checkpoint_mutex); 1771 /* 1772 * If checkpointing failed, just free the buffers to avoid 1773 * looping forever 1774 */ 1775 if (err) { 1776 jbd2_journal_destroy_checkpoint(journal); 1777 spin_lock(&journal->j_list_lock); 1778 break; 1779 } 1780 spin_lock(&journal->j_list_lock); 1781 } 1782 1783 J_ASSERT(journal->j_running_transaction == NULL); 1784 J_ASSERT(journal->j_committing_transaction == NULL); 1785 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1786 spin_unlock(&journal->j_list_lock); 1787 1788 if (journal->j_sb_buffer) { 1789 if (!is_journal_aborted(journal)) { 1790 mutex_lock_io(&journal->j_checkpoint_mutex); 1791 1792 write_lock(&journal->j_state_lock); 1793 journal->j_tail_sequence = 1794 ++journal->j_transaction_sequence; 1795 write_unlock(&journal->j_state_lock); 1796 1797 jbd2_mark_journal_empty(journal, 1798 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1799 mutex_unlock(&journal->j_checkpoint_mutex); 1800 } else 1801 err = -EIO; 1802 brelse(journal->j_sb_buffer); 1803 } 1804 1805 if (journal->j_proc_entry) 1806 jbd2_stats_proc_exit(journal); 1807 iput(journal->j_inode); 1808 if (journal->j_revoke) 1809 jbd2_journal_destroy_revoke(journal); 1810 if (journal->j_chksum_driver) 1811 crypto_free_shash(journal->j_chksum_driver); 1812 kfree(journal->j_wbuf); 1813 kfree(journal); 1814 1815 return err; 1816 } 1817 1818 1819 /** 1820 *int jbd2_journal_check_used_features() - Check if features specified are used. 1821 * @journal: Journal to check. 1822 * @compat: bitmask of compatible features 1823 * @ro: bitmask of features that force read-only mount 1824 * @incompat: bitmask of incompatible features 1825 * 1826 * Check whether the journal uses all of a given set of 1827 * features. Return true (non-zero) if it does. 1828 **/ 1829 1830 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 1831 unsigned long ro, unsigned long incompat) 1832 { 1833 journal_superblock_t *sb; 1834 1835 if (!compat && !ro && !incompat) 1836 return 1; 1837 /* Load journal superblock if it is not loaded yet. */ 1838 if (journal->j_format_version == 0 && 1839 journal_get_superblock(journal) != 0) 1840 return 0; 1841 if (journal->j_format_version == 1) 1842 return 0; 1843 1844 sb = journal->j_superblock; 1845 1846 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1847 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1848 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1849 return 1; 1850 1851 return 0; 1852 } 1853 1854 /** 1855 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1856 * @journal: Journal to check. 1857 * @compat: bitmask of compatible features 1858 * @ro: bitmask of features that force read-only mount 1859 * @incompat: bitmask of incompatible features 1860 * 1861 * Check whether the journaling code supports the use of 1862 * all of a given set of features on this journal. Return true 1863 * (non-zero) if it can. */ 1864 1865 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 1866 unsigned long ro, unsigned long incompat) 1867 { 1868 if (!compat && !ro && !incompat) 1869 return 1; 1870 1871 /* We can support any known requested features iff the 1872 * superblock is in version 2. Otherwise we fail to support any 1873 * extended sb features. */ 1874 1875 if (journal->j_format_version != 2) 1876 return 0; 1877 1878 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1879 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1880 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1881 return 1; 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * int jbd2_journal_set_features() - Mark a given journal feature in the superblock 1888 * @journal: Journal to act on. 1889 * @compat: bitmask of compatible features 1890 * @ro: bitmask of features that force read-only mount 1891 * @incompat: bitmask of incompatible features 1892 * 1893 * Mark a given journal feature as present on the 1894 * superblock. Returns true if the requested features could be set. 1895 * 1896 */ 1897 1898 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 1899 unsigned long ro, unsigned long incompat) 1900 { 1901 #define INCOMPAT_FEATURE_ON(f) \ 1902 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1903 #define COMPAT_FEATURE_ON(f) \ 1904 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1905 journal_superblock_t *sb; 1906 1907 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1908 return 1; 1909 1910 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1911 return 0; 1912 1913 /* If enabling v2 checksums, turn on v3 instead */ 1914 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1915 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1916 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1917 } 1918 1919 /* Asking for checksumming v3 and v1? Only give them v3. */ 1920 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1921 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1922 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1923 1924 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1925 compat, ro, incompat); 1926 1927 sb = journal->j_superblock; 1928 1929 /* Load the checksum driver if necessary */ 1930 if ((journal->j_chksum_driver == NULL) && 1931 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1932 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1933 if (IS_ERR(journal->j_chksum_driver)) { 1934 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1935 journal->j_chksum_driver = NULL; 1936 return 0; 1937 } 1938 /* Precompute checksum seed for all metadata */ 1939 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1940 sizeof(sb->s_uuid)); 1941 } 1942 1943 lock_buffer(journal->j_sb_buffer); 1944 1945 /* If enabling v3 checksums, update superblock */ 1946 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1947 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1948 sb->s_feature_compat &= 1949 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1950 } 1951 1952 /* If enabling v1 checksums, downgrade superblock */ 1953 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1954 sb->s_feature_incompat &= 1955 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1956 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1957 1958 sb->s_feature_compat |= cpu_to_be32(compat); 1959 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1960 sb->s_feature_incompat |= cpu_to_be32(incompat); 1961 unlock_buffer(journal->j_sb_buffer); 1962 journal->j_revoke_records_per_block = 1963 journal_revoke_records_per_block(journal); 1964 1965 return 1; 1966 #undef COMPAT_FEATURE_ON 1967 #undef INCOMPAT_FEATURE_ON 1968 } 1969 1970 /* 1971 * jbd2_journal_clear_features () - Clear a given journal feature in the 1972 * superblock 1973 * @journal: Journal to act on. 1974 * @compat: bitmask of compatible features 1975 * @ro: bitmask of features that force read-only mount 1976 * @incompat: bitmask of incompatible features 1977 * 1978 * Clear a given journal feature as present on the 1979 * superblock. 1980 */ 1981 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1982 unsigned long ro, unsigned long incompat) 1983 { 1984 journal_superblock_t *sb; 1985 1986 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1987 compat, ro, incompat); 1988 1989 sb = journal->j_superblock; 1990 1991 sb->s_feature_compat &= ~cpu_to_be32(compat); 1992 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1993 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1994 journal->j_revoke_records_per_block = 1995 journal_revoke_records_per_block(journal); 1996 } 1997 EXPORT_SYMBOL(jbd2_journal_clear_features); 1998 1999 /** 2000 * int jbd2_journal_flush () - Flush journal 2001 * @journal: Journal to act on. 2002 * 2003 * Flush all data for a given journal to disk and empty the journal. 2004 * Filesystems can use this when remounting readonly to ensure that 2005 * recovery does not need to happen on remount. 2006 */ 2007 2008 int jbd2_journal_flush(journal_t *journal) 2009 { 2010 int err = 0; 2011 transaction_t *transaction = NULL; 2012 2013 write_lock(&journal->j_state_lock); 2014 2015 /* Force everything buffered to the log... */ 2016 if (journal->j_running_transaction) { 2017 transaction = journal->j_running_transaction; 2018 __jbd2_log_start_commit(journal, transaction->t_tid); 2019 } else if (journal->j_committing_transaction) 2020 transaction = journal->j_committing_transaction; 2021 2022 /* Wait for the log commit to complete... */ 2023 if (transaction) { 2024 tid_t tid = transaction->t_tid; 2025 2026 write_unlock(&journal->j_state_lock); 2027 jbd2_log_wait_commit(journal, tid); 2028 } else { 2029 write_unlock(&journal->j_state_lock); 2030 } 2031 2032 /* ...and flush everything in the log out to disk. */ 2033 spin_lock(&journal->j_list_lock); 2034 while (!err && journal->j_checkpoint_transactions != NULL) { 2035 spin_unlock(&journal->j_list_lock); 2036 mutex_lock_io(&journal->j_checkpoint_mutex); 2037 err = jbd2_log_do_checkpoint(journal); 2038 mutex_unlock(&journal->j_checkpoint_mutex); 2039 spin_lock(&journal->j_list_lock); 2040 } 2041 spin_unlock(&journal->j_list_lock); 2042 2043 if (is_journal_aborted(journal)) 2044 return -EIO; 2045 2046 mutex_lock_io(&journal->j_checkpoint_mutex); 2047 if (!err) { 2048 err = jbd2_cleanup_journal_tail(journal); 2049 if (err < 0) { 2050 mutex_unlock(&journal->j_checkpoint_mutex); 2051 goto out; 2052 } 2053 err = 0; 2054 } 2055 2056 /* Finally, mark the journal as really needing no recovery. 2057 * This sets s_start==0 in the underlying superblock, which is 2058 * the magic code for a fully-recovered superblock. Any future 2059 * commits of data to the journal will restore the current 2060 * s_start value. */ 2061 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2062 mutex_unlock(&journal->j_checkpoint_mutex); 2063 write_lock(&journal->j_state_lock); 2064 J_ASSERT(!journal->j_running_transaction); 2065 J_ASSERT(!journal->j_committing_transaction); 2066 J_ASSERT(!journal->j_checkpoint_transactions); 2067 J_ASSERT(journal->j_head == journal->j_tail); 2068 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2069 write_unlock(&journal->j_state_lock); 2070 out: 2071 return err; 2072 } 2073 2074 /** 2075 * int jbd2_journal_wipe() - Wipe journal contents 2076 * @journal: Journal to act on. 2077 * @write: flag (see below) 2078 * 2079 * Wipe out all of the contents of a journal, safely. This will produce 2080 * a warning if the journal contains any valid recovery information. 2081 * Must be called between journal_init_*() and jbd2_journal_load(). 2082 * 2083 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2084 * we merely suppress recovery. 2085 */ 2086 2087 int jbd2_journal_wipe(journal_t *journal, int write) 2088 { 2089 int err = 0; 2090 2091 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2092 2093 err = load_superblock(journal); 2094 if (err) 2095 return err; 2096 2097 if (!journal->j_tail) 2098 goto no_recovery; 2099 2100 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2101 write ? "Clearing" : "Ignoring"); 2102 2103 err = jbd2_journal_skip_recovery(journal); 2104 if (write) { 2105 /* Lock to make assertions happy... */ 2106 mutex_lock_io(&journal->j_checkpoint_mutex); 2107 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2108 mutex_unlock(&journal->j_checkpoint_mutex); 2109 } 2110 2111 no_recovery: 2112 return err; 2113 } 2114 2115 /** 2116 * void jbd2_journal_abort () - Shutdown the journal immediately. 2117 * @journal: the journal to shutdown. 2118 * @errno: an error number to record in the journal indicating 2119 * the reason for the shutdown. 2120 * 2121 * Perform a complete, immediate shutdown of the ENTIRE 2122 * journal (not of a single transaction). This operation cannot be 2123 * undone without closing and reopening the journal. 2124 * 2125 * The jbd2_journal_abort function is intended to support higher level error 2126 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2127 * mode. 2128 * 2129 * Journal abort has very specific semantics. Any existing dirty, 2130 * unjournaled buffers in the main filesystem will still be written to 2131 * disk by bdflush, but the journaling mechanism will be suspended 2132 * immediately and no further transaction commits will be honoured. 2133 * 2134 * Any dirty, journaled buffers will be written back to disk without 2135 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2136 * filesystem, but we _do_ attempt to leave as much data as possible 2137 * behind for fsck to use for cleanup. 2138 * 2139 * Any attempt to get a new transaction handle on a journal which is in 2140 * ABORT state will just result in an -EROFS error return. A 2141 * jbd2_journal_stop on an existing handle will return -EIO if we have 2142 * entered abort state during the update. 2143 * 2144 * Recursive transactions are not disturbed by journal abort until the 2145 * final jbd2_journal_stop, which will receive the -EIO error. 2146 * 2147 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2148 * which will be recorded (if possible) in the journal superblock. This 2149 * allows a client to record failure conditions in the middle of a 2150 * transaction without having to complete the transaction to record the 2151 * failure to disk. ext3_error, for example, now uses this 2152 * functionality. 2153 * 2154 */ 2155 2156 void jbd2_journal_abort(journal_t *journal, int errno) 2157 { 2158 transaction_t *transaction; 2159 2160 /* 2161 * Lock the aborting procedure until everything is done, this avoid 2162 * races between filesystem's error handling flow (e.g. ext4_abort()), 2163 * ensure panic after the error info is written into journal's 2164 * superblock. 2165 */ 2166 mutex_lock(&journal->j_abort_mutex); 2167 /* 2168 * ESHUTDOWN always takes precedence because a file system check 2169 * caused by any other journal abort error is not required after 2170 * a shutdown triggered. 2171 */ 2172 write_lock(&journal->j_state_lock); 2173 if (journal->j_flags & JBD2_ABORT) { 2174 int old_errno = journal->j_errno; 2175 2176 write_unlock(&journal->j_state_lock); 2177 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2178 journal->j_errno = errno; 2179 jbd2_journal_update_sb_errno(journal); 2180 } 2181 mutex_unlock(&journal->j_abort_mutex); 2182 return; 2183 } 2184 2185 /* 2186 * Mark the abort as occurred and start current running transaction 2187 * to release all journaled buffer. 2188 */ 2189 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2190 2191 journal->j_flags |= JBD2_ABORT; 2192 journal->j_errno = errno; 2193 transaction = journal->j_running_transaction; 2194 if (transaction) 2195 __jbd2_log_start_commit(journal, transaction->t_tid); 2196 write_unlock(&journal->j_state_lock); 2197 2198 /* 2199 * Record errno to the journal super block, so that fsck and jbd2 2200 * layer could realise that a filesystem check is needed. 2201 */ 2202 jbd2_journal_update_sb_errno(journal); 2203 mutex_unlock(&journal->j_abort_mutex); 2204 } 2205 2206 /** 2207 * int jbd2_journal_errno () - returns the journal's error state. 2208 * @journal: journal to examine. 2209 * 2210 * This is the errno number set with jbd2_journal_abort(), the last 2211 * time the journal was mounted - if the journal was stopped 2212 * without calling abort this will be 0. 2213 * 2214 * If the journal has been aborted on this mount time -EROFS will 2215 * be returned. 2216 */ 2217 int jbd2_journal_errno(journal_t *journal) 2218 { 2219 int err; 2220 2221 read_lock(&journal->j_state_lock); 2222 if (journal->j_flags & JBD2_ABORT) 2223 err = -EROFS; 2224 else 2225 err = journal->j_errno; 2226 read_unlock(&journal->j_state_lock); 2227 return err; 2228 } 2229 2230 /** 2231 * int jbd2_journal_clear_err () - clears the journal's error state 2232 * @journal: journal to act on. 2233 * 2234 * An error must be cleared or acked to take a FS out of readonly 2235 * mode. 2236 */ 2237 int jbd2_journal_clear_err(journal_t *journal) 2238 { 2239 int err = 0; 2240 2241 write_lock(&journal->j_state_lock); 2242 if (journal->j_flags & JBD2_ABORT) 2243 err = -EROFS; 2244 else 2245 journal->j_errno = 0; 2246 write_unlock(&journal->j_state_lock); 2247 return err; 2248 } 2249 2250 /** 2251 * void jbd2_journal_ack_err() - Ack journal err. 2252 * @journal: journal to act on. 2253 * 2254 * An error must be cleared or acked to take a FS out of readonly 2255 * mode. 2256 */ 2257 void jbd2_journal_ack_err(journal_t *journal) 2258 { 2259 write_lock(&journal->j_state_lock); 2260 if (journal->j_errno) 2261 journal->j_flags |= JBD2_ACK_ERR; 2262 write_unlock(&journal->j_state_lock); 2263 } 2264 2265 int jbd2_journal_blocks_per_page(struct inode *inode) 2266 { 2267 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2268 } 2269 2270 /* 2271 * helper functions to deal with 32 or 64bit block numbers. 2272 */ 2273 size_t journal_tag_bytes(journal_t *journal) 2274 { 2275 size_t sz; 2276 2277 if (jbd2_has_feature_csum3(journal)) 2278 return sizeof(journal_block_tag3_t); 2279 2280 sz = sizeof(journal_block_tag_t); 2281 2282 if (jbd2_has_feature_csum2(journal)) 2283 sz += sizeof(__u16); 2284 2285 if (jbd2_has_feature_64bit(journal)) 2286 return sz; 2287 else 2288 return sz - sizeof(__u32); 2289 } 2290 2291 /* 2292 * JBD memory management 2293 * 2294 * These functions are used to allocate block-sized chunks of memory 2295 * used for making copies of buffer_head data. Very often it will be 2296 * page-sized chunks of data, but sometimes it will be in 2297 * sub-page-size chunks. (For example, 16k pages on Power systems 2298 * with a 4k block file system.) For blocks smaller than a page, we 2299 * use a SLAB allocator. There are slab caches for each block size, 2300 * which are allocated at mount time, if necessary, and we only free 2301 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2302 * this reason we don't need to a mutex to protect access to 2303 * jbd2_slab[] allocating or releasing memory; only in 2304 * jbd2_journal_create_slab(). 2305 */ 2306 #define JBD2_MAX_SLABS 8 2307 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2308 2309 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2310 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2311 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2312 }; 2313 2314 2315 static void jbd2_journal_destroy_slabs(void) 2316 { 2317 int i; 2318 2319 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2320 kmem_cache_destroy(jbd2_slab[i]); 2321 jbd2_slab[i] = NULL; 2322 } 2323 } 2324 2325 static int jbd2_journal_create_slab(size_t size) 2326 { 2327 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2328 int i = order_base_2(size) - 10; 2329 size_t slab_size; 2330 2331 if (size == PAGE_SIZE) 2332 return 0; 2333 2334 if (i >= JBD2_MAX_SLABS) 2335 return -EINVAL; 2336 2337 if (unlikely(i < 0)) 2338 i = 0; 2339 mutex_lock(&jbd2_slab_create_mutex); 2340 if (jbd2_slab[i]) { 2341 mutex_unlock(&jbd2_slab_create_mutex); 2342 return 0; /* Already created */ 2343 } 2344 2345 slab_size = 1 << (i+10); 2346 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2347 slab_size, 0, NULL); 2348 mutex_unlock(&jbd2_slab_create_mutex); 2349 if (!jbd2_slab[i]) { 2350 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2351 return -ENOMEM; 2352 } 2353 return 0; 2354 } 2355 2356 static struct kmem_cache *get_slab(size_t size) 2357 { 2358 int i = order_base_2(size) - 10; 2359 2360 BUG_ON(i >= JBD2_MAX_SLABS); 2361 if (unlikely(i < 0)) 2362 i = 0; 2363 BUG_ON(jbd2_slab[i] == NULL); 2364 return jbd2_slab[i]; 2365 } 2366 2367 void *jbd2_alloc(size_t size, gfp_t flags) 2368 { 2369 void *ptr; 2370 2371 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2372 2373 if (size < PAGE_SIZE) 2374 ptr = kmem_cache_alloc(get_slab(size), flags); 2375 else 2376 ptr = (void *)__get_free_pages(flags, get_order(size)); 2377 2378 /* Check alignment; SLUB has gotten this wrong in the past, 2379 * and this can lead to user data corruption! */ 2380 BUG_ON(((unsigned long) ptr) & (size-1)); 2381 2382 return ptr; 2383 } 2384 2385 void jbd2_free(void *ptr, size_t size) 2386 { 2387 if (size < PAGE_SIZE) 2388 kmem_cache_free(get_slab(size), ptr); 2389 else 2390 free_pages((unsigned long)ptr, get_order(size)); 2391 }; 2392 2393 /* 2394 * Journal_head storage management 2395 */ 2396 static struct kmem_cache *jbd2_journal_head_cache; 2397 #ifdef CONFIG_JBD2_DEBUG 2398 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2399 #endif 2400 2401 static int __init jbd2_journal_init_journal_head_cache(void) 2402 { 2403 J_ASSERT(!jbd2_journal_head_cache); 2404 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2405 sizeof(struct journal_head), 2406 0, /* offset */ 2407 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2408 NULL); /* ctor */ 2409 if (!jbd2_journal_head_cache) { 2410 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2411 return -ENOMEM; 2412 } 2413 return 0; 2414 } 2415 2416 static void jbd2_journal_destroy_journal_head_cache(void) 2417 { 2418 kmem_cache_destroy(jbd2_journal_head_cache); 2419 jbd2_journal_head_cache = NULL; 2420 } 2421 2422 /* 2423 * journal_head splicing and dicing 2424 */ 2425 static struct journal_head *journal_alloc_journal_head(void) 2426 { 2427 struct journal_head *ret; 2428 2429 #ifdef CONFIG_JBD2_DEBUG 2430 atomic_inc(&nr_journal_heads); 2431 #endif 2432 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2433 if (!ret) { 2434 jbd_debug(1, "out of memory for journal_head\n"); 2435 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2436 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2437 GFP_NOFS | __GFP_NOFAIL); 2438 } 2439 if (ret) 2440 spin_lock_init(&ret->b_state_lock); 2441 return ret; 2442 } 2443 2444 static void journal_free_journal_head(struct journal_head *jh) 2445 { 2446 #ifdef CONFIG_JBD2_DEBUG 2447 atomic_dec(&nr_journal_heads); 2448 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2449 #endif 2450 kmem_cache_free(jbd2_journal_head_cache, jh); 2451 } 2452 2453 /* 2454 * A journal_head is attached to a buffer_head whenever JBD has an 2455 * interest in the buffer. 2456 * 2457 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2458 * is set. This bit is tested in core kernel code where we need to take 2459 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2460 * there. 2461 * 2462 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2463 * 2464 * When a buffer has its BH_JBD bit set it is immune from being released by 2465 * core kernel code, mainly via ->b_count. 2466 * 2467 * A journal_head is detached from its buffer_head when the journal_head's 2468 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2469 * transaction (b_cp_transaction) hold their references to b_jcount. 2470 * 2471 * Various places in the kernel want to attach a journal_head to a buffer_head 2472 * _before_ attaching the journal_head to a transaction. To protect the 2473 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2474 * journal_head's b_jcount refcount by one. The caller must call 2475 * jbd2_journal_put_journal_head() to undo this. 2476 * 2477 * So the typical usage would be: 2478 * 2479 * (Attach a journal_head if needed. Increments b_jcount) 2480 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2481 * ... 2482 * (Get another reference for transaction) 2483 * jbd2_journal_grab_journal_head(bh); 2484 * jh->b_transaction = xxx; 2485 * (Put original reference) 2486 * jbd2_journal_put_journal_head(jh); 2487 */ 2488 2489 /* 2490 * Give a buffer_head a journal_head. 2491 * 2492 * May sleep. 2493 */ 2494 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2495 { 2496 struct journal_head *jh; 2497 struct journal_head *new_jh = NULL; 2498 2499 repeat: 2500 if (!buffer_jbd(bh)) 2501 new_jh = journal_alloc_journal_head(); 2502 2503 jbd_lock_bh_journal_head(bh); 2504 if (buffer_jbd(bh)) { 2505 jh = bh2jh(bh); 2506 } else { 2507 J_ASSERT_BH(bh, 2508 (atomic_read(&bh->b_count) > 0) || 2509 (bh->b_page && bh->b_page->mapping)); 2510 2511 if (!new_jh) { 2512 jbd_unlock_bh_journal_head(bh); 2513 goto repeat; 2514 } 2515 2516 jh = new_jh; 2517 new_jh = NULL; /* We consumed it */ 2518 set_buffer_jbd(bh); 2519 bh->b_private = jh; 2520 jh->b_bh = bh; 2521 get_bh(bh); 2522 BUFFER_TRACE(bh, "added journal_head"); 2523 } 2524 jh->b_jcount++; 2525 jbd_unlock_bh_journal_head(bh); 2526 if (new_jh) 2527 journal_free_journal_head(new_jh); 2528 return bh->b_private; 2529 } 2530 2531 /* 2532 * Grab a ref against this buffer_head's journal_head. If it ended up not 2533 * having a journal_head, return NULL 2534 */ 2535 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2536 { 2537 struct journal_head *jh = NULL; 2538 2539 jbd_lock_bh_journal_head(bh); 2540 if (buffer_jbd(bh)) { 2541 jh = bh2jh(bh); 2542 jh->b_jcount++; 2543 } 2544 jbd_unlock_bh_journal_head(bh); 2545 return jh; 2546 } 2547 2548 static void __journal_remove_journal_head(struct buffer_head *bh) 2549 { 2550 struct journal_head *jh = bh2jh(bh); 2551 2552 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2553 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2554 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2555 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2556 J_ASSERT_BH(bh, buffer_jbd(bh)); 2557 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2558 BUFFER_TRACE(bh, "remove journal_head"); 2559 2560 /* Unlink before dropping the lock */ 2561 bh->b_private = NULL; 2562 jh->b_bh = NULL; /* debug, really */ 2563 clear_buffer_jbd(bh); 2564 } 2565 2566 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2567 { 2568 if (jh->b_frozen_data) { 2569 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2570 jbd2_free(jh->b_frozen_data, b_size); 2571 } 2572 if (jh->b_committed_data) { 2573 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2574 jbd2_free(jh->b_committed_data, b_size); 2575 } 2576 journal_free_journal_head(jh); 2577 } 2578 2579 /* 2580 * Drop a reference on the passed journal_head. If it fell to zero then 2581 * release the journal_head from the buffer_head. 2582 */ 2583 void jbd2_journal_put_journal_head(struct journal_head *jh) 2584 { 2585 struct buffer_head *bh = jh2bh(jh); 2586 2587 jbd_lock_bh_journal_head(bh); 2588 J_ASSERT_JH(jh, jh->b_jcount > 0); 2589 --jh->b_jcount; 2590 if (!jh->b_jcount) { 2591 __journal_remove_journal_head(bh); 2592 jbd_unlock_bh_journal_head(bh); 2593 journal_release_journal_head(jh, bh->b_size); 2594 __brelse(bh); 2595 } else { 2596 jbd_unlock_bh_journal_head(bh); 2597 } 2598 } 2599 2600 /* 2601 * Initialize jbd inode head 2602 */ 2603 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2604 { 2605 jinode->i_transaction = NULL; 2606 jinode->i_next_transaction = NULL; 2607 jinode->i_vfs_inode = inode; 2608 jinode->i_flags = 0; 2609 jinode->i_dirty_start = 0; 2610 jinode->i_dirty_end = 0; 2611 INIT_LIST_HEAD(&jinode->i_list); 2612 } 2613 2614 /* 2615 * Function to be called before we start removing inode from memory (i.e., 2616 * clear_inode() is a fine place to be called from). It removes inode from 2617 * transaction's lists. 2618 */ 2619 void jbd2_journal_release_jbd_inode(journal_t *journal, 2620 struct jbd2_inode *jinode) 2621 { 2622 if (!journal) 2623 return; 2624 restart: 2625 spin_lock(&journal->j_list_lock); 2626 /* Is commit writing out inode - we have to wait */ 2627 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2628 wait_queue_head_t *wq; 2629 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2630 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2631 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2632 spin_unlock(&journal->j_list_lock); 2633 schedule(); 2634 finish_wait(wq, &wait.wq_entry); 2635 goto restart; 2636 } 2637 2638 if (jinode->i_transaction) { 2639 list_del(&jinode->i_list); 2640 jinode->i_transaction = NULL; 2641 } 2642 spin_unlock(&journal->j_list_lock); 2643 } 2644 2645 2646 #ifdef CONFIG_PROC_FS 2647 2648 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2649 2650 static void __init jbd2_create_jbd_stats_proc_entry(void) 2651 { 2652 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2653 } 2654 2655 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2656 { 2657 if (proc_jbd2_stats) 2658 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2659 } 2660 2661 #else 2662 2663 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2664 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2665 2666 #endif 2667 2668 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2669 2670 static int __init jbd2_journal_init_inode_cache(void) 2671 { 2672 J_ASSERT(!jbd2_inode_cache); 2673 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2674 if (!jbd2_inode_cache) { 2675 pr_emerg("JBD2: failed to create inode cache\n"); 2676 return -ENOMEM; 2677 } 2678 return 0; 2679 } 2680 2681 static int __init jbd2_journal_init_handle_cache(void) 2682 { 2683 J_ASSERT(!jbd2_handle_cache); 2684 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2685 if (!jbd2_handle_cache) { 2686 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2687 return -ENOMEM; 2688 } 2689 return 0; 2690 } 2691 2692 static void jbd2_journal_destroy_inode_cache(void) 2693 { 2694 kmem_cache_destroy(jbd2_inode_cache); 2695 jbd2_inode_cache = NULL; 2696 } 2697 2698 static void jbd2_journal_destroy_handle_cache(void) 2699 { 2700 kmem_cache_destroy(jbd2_handle_cache); 2701 jbd2_handle_cache = NULL; 2702 } 2703 2704 /* 2705 * Module startup and shutdown 2706 */ 2707 2708 static int __init journal_init_caches(void) 2709 { 2710 int ret; 2711 2712 ret = jbd2_journal_init_revoke_record_cache(); 2713 if (ret == 0) 2714 ret = jbd2_journal_init_revoke_table_cache(); 2715 if (ret == 0) 2716 ret = jbd2_journal_init_journal_head_cache(); 2717 if (ret == 0) 2718 ret = jbd2_journal_init_handle_cache(); 2719 if (ret == 0) 2720 ret = jbd2_journal_init_inode_cache(); 2721 if (ret == 0) 2722 ret = jbd2_journal_init_transaction_cache(); 2723 return ret; 2724 } 2725 2726 static void jbd2_journal_destroy_caches(void) 2727 { 2728 jbd2_journal_destroy_revoke_record_cache(); 2729 jbd2_journal_destroy_revoke_table_cache(); 2730 jbd2_journal_destroy_journal_head_cache(); 2731 jbd2_journal_destroy_handle_cache(); 2732 jbd2_journal_destroy_inode_cache(); 2733 jbd2_journal_destroy_transaction_cache(); 2734 jbd2_journal_destroy_slabs(); 2735 } 2736 2737 static int __init journal_init(void) 2738 { 2739 int ret; 2740 2741 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2742 2743 ret = journal_init_caches(); 2744 if (ret == 0) { 2745 jbd2_create_jbd_stats_proc_entry(); 2746 } else { 2747 jbd2_journal_destroy_caches(); 2748 } 2749 return ret; 2750 } 2751 2752 static void __exit journal_exit(void) 2753 { 2754 #ifdef CONFIG_JBD2_DEBUG 2755 int n = atomic_read(&nr_journal_heads); 2756 if (n) 2757 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2758 #endif 2759 jbd2_remove_jbd_stats_proc_entry(); 2760 jbd2_journal_destroy_caches(); 2761 } 2762 2763 MODULE_LICENSE("GPL"); 2764 module_init(journal_init); 2765 module_exit(journal_exit); 2766 2767