1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 570 * calling process is not within transaction. 571 * 572 * @journal: journal to force 573 * Returns true if progress was made. 574 * 575 * This is used for forcing out undo-protected data which contains 576 * bitmaps, when the fs is running out of space. 577 */ 578 int jbd2_journal_force_commit_nested(journal_t *journal) 579 { 580 int ret; 581 582 ret = __jbd2_journal_force_commit(journal); 583 return ret > 0; 584 } 585 586 /** 587 * jbd2_journal_force_commit() - force any uncommitted transactions 588 * @journal: journal to force 589 * 590 * Caller want unconditional commit. We can only force the running transaction 591 * if we don't have an active handle, otherwise, we will deadlock. 592 */ 593 int jbd2_journal_force_commit(journal_t *journal) 594 { 595 int ret; 596 597 J_ASSERT(!current->journal_info); 598 ret = __jbd2_journal_force_commit(journal); 599 if (ret > 0) 600 ret = 0; 601 return ret; 602 } 603 604 /* 605 * Start a commit of the current running transaction (if any). Returns true 606 * if a transaction is going to be committed (or is currently already 607 * committing), and fills its tid in at *ptid 608 */ 609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 610 { 611 int ret = 0; 612 613 write_lock(&journal->j_state_lock); 614 if (journal->j_running_transaction) { 615 tid_t tid = journal->j_running_transaction->t_tid; 616 617 __jbd2_log_start_commit(journal, tid); 618 /* There's a running transaction and we've just made sure 619 * it's commit has been scheduled. */ 620 if (ptid) 621 *ptid = tid; 622 ret = 1; 623 } else if (journal->j_committing_transaction) { 624 /* 625 * If commit has been started, then we have to wait for 626 * completion of that transaction. 627 */ 628 if (ptid) 629 *ptid = journal->j_committing_transaction->t_tid; 630 ret = 1; 631 } 632 write_unlock(&journal->j_state_lock); 633 return ret; 634 } 635 636 /* 637 * Return 1 if a given transaction has not yet sent barrier request 638 * connected with a transaction commit. If 0 is returned, transaction 639 * may or may not have sent the barrier. Used to avoid sending barrier 640 * twice in common cases. 641 */ 642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 643 { 644 int ret = 0; 645 transaction_t *commit_trans; 646 647 if (!(journal->j_flags & JBD2_BARRIER)) 648 return 0; 649 read_lock(&journal->j_state_lock); 650 /* Transaction already committed? */ 651 if (tid_geq(journal->j_commit_sequence, tid)) 652 goto out; 653 commit_trans = journal->j_committing_transaction; 654 if (!commit_trans || commit_trans->t_tid != tid) { 655 ret = 1; 656 goto out; 657 } 658 /* 659 * Transaction is being committed and we already proceeded to 660 * submitting a flush to fs partition? 661 */ 662 if (journal->j_fs_dev != journal->j_dev) { 663 if (!commit_trans->t_need_data_flush || 664 commit_trans->t_state >= T_COMMIT_DFLUSH) 665 goto out; 666 } else { 667 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 668 goto out; 669 } 670 ret = 1; 671 out: 672 read_unlock(&journal->j_state_lock); 673 return ret; 674 } 675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 676 677 /* 678 * Wait for a specified commit to complete. 679 * The caller may not hold the journal lock. 680 */ 681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 682 { 683 int err = 0; 684 685 read_lock(&journal->j_state_lock); 686 #ifdef CONFIG_PROVE_LOCKING 687 /* 688 * Some callers make sure transaction is already committing and in that 689 * case we cannot block on open handles anymore. So don't warn in that 690 * case. 691 */ 692 if (tid_gt(tid, journal->j_commit_sequence) && 693 (!journal->j_committing_transaction || 694 journal->j_committing_transaction->t_tid != tid)) { 695 read_unlock(&journal->j_state_lock); 696 jbd2_might_wait_for_commit(journal); 697 read_lock(&journal->j_state_lock); 698 } 699 #endif 700 #ifdef CONFIG_JBD2_DEBUG 701 if (!tid_geq(journal->j_commit_request, tid)) { 702 printk(KERN_ERR 703 "%s: error: j_commit_request=%u, tid=%u\n", 704 __func__, journal->j_commit_request, tid); 705 } 706 #endif 707 while (tid_gt(tid, journal->j_commit_sequence)) { 708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 709 tid, journal->j_commit_sequence); 710 read_unlock(&journal->j_state_lock); 711 wake_up(&journal->j_wait_commit); 712 wait_event(journal->j_wait_done_commit, 713 !tid_gt(tid, journal->j_commit_sequence)); 714 read_lock(&journal->j_state_lock); 715 } 716 read_unlock(&journal->j_state_lock); 717 718 if (unlikely(is_journal_aborted(journal))) 719 err = -EIO; 720 return err; 721 } 722 723 /* 724 * Start a fast commit. If there's an ongoing fast or full commit wait for 725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 726 * if a fast commit is not needed, either because there's an already a commit 727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 728 * commit has yet been performed. 729 */ 730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 731 { 732 if (unlikely(is_journal_aborted(journal))) 733 return -EIO; 734 /* 735 * Fast commits only allowed if at least one full commit has 736 * been processed. 737 */ 738 if (!journal->j_stats.ts_tid) 739 return -EINVAL; 740 741 write_lock(&journal->j_state_lock); 742 if (tid <= journal->j_commit_sequence) { 743 write_unlock(&journal->j_state_lock); 744 return -EALREADY; 745 } 746 747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 749 DEFINE_WAIT(wait); 750 751 prepare_to_wait(&journal->j_fc_wait, &wait, 752 TASK_UNINTERRUPTIBLE); 753 write_unlock(&journal->j_state_lock); 754 schedule(); 755 finish_wait(&journal->j_fc_wait, &wait); 756 return -EALREADY; 757 } 758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 759 write_unlock(&journal->j_state_lock); 760 jbd2_journal_lock_updates(journal); 761 762 return 0; 763 } 764 EXPORT_SYMBOL(jbd2_fc_begin_commit); 765 766 /* 767 * Stop a fast commit. If fallback is set, this function starts commit of 768 * TID tid before any other fast commit can start. 769 */ 770 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 771 { 772 jbd2_journal_unlock_updates(journal); 773 if (journal->j_fc_cleanup_callback) 774 journal->j_fc_cleanup_callback(journal, 0); 775 write_lock(&journal->j_state_lock); 776 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 777 if (fallback) 778 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 779 write_unlock(&journal->j_state_lock); 780 wake_up(&journal->j_fc_wait); 781 if (fallback) 782 return jbd2_complete_transaction(journal, tid); 783 return 0; 784 } 785 786 int jbd2_fc_end_commit(journal_t *journal) 787 { 788 return __jbd2_fc_end_commit(journal, 0, false); 789 } 790 EXPORT_SYMBOL(jbd2_fc_end_commit); 791 792 int jbd2_fc_end_commit_fallback(journal_t *journal) 793 { 794 tid_t tid; 795 796 read_lock(&journal->j_state_lock); 797 tid = journal->j_running_transaction ? 798 journal->j_running_transaction->t_tid : 0; 799 read_unlock(&journal->j_state_lock); 800 return __jbd2_fc_end_commit(journal, tid, true); 801 } 802 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 803 804 /* Return 1 when transaction with given tid has already committed. */ 805 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 806 { 807 int ret = 1; 808 809 read_lock(&journal->j_state_lock); 810 if (journal->j_running_transaction && 811 journal->j_running_transaction->t_tid == tid) 812 ret = 0; 813 if (journal->j_committing_transaction && 814 journal->j_committing_transaction->t_tid == tid) 815 ret = 0; 816 read_unlock(&journal->j_state_lock); 817 return ret; 818 } 819 EXPORT_SYMBOL(jbd2_transaction_committed); 820 821 /* 822 * When this function returns the transaction corresponding to tid 823 * will be completed. If the transaction has currently running, start 824 * committing that transaction before waiting for it to complete. If 825 * the transaction id is stale, it is by definition already completed, 826 * so just return SUCCESS. 827 */ 828 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 829 { 830 int need_to_wait = 1; 831 832 read_lock(&journal->j_state_lock); 833 if (journal->j_running_transaction && 834 journal->j_running_transaction->t_tid == tid) { 835 if (journal->j_commit_request != tid) { 836 /* transaction not yet started, so request it */ 837 read_unlock(&journal->j_state_lock); 838 jbd2_log_start_commit(journal, tid); 839 goto wait_commit; 840 } 841 } else if (!(journal->j_committing_transaction && 842 journal->j_committing_transaction->t_tid == tid)) 843 need_to_wait = 0; 844 read_unlock(&journal->j_state_lock); 845 if (!need_to_wait) 846 return 0; 847 wait_commit: 848 return jbd2_log_wait_commit(journal, tid); 849 } 850 EXPORT_SYMBOL(jbd2_complete_transaction); 851 852 /* 853 * Log buffer allocation routines: 854 */ 855 856 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 857 { 858 unsigned long blocknr; 859 860 write_lock(&journal->j_state_lock); 861 J_ASSERT(journal->j_free > 1); 862 863 blocknr = journal->j_head; 864 journal->j_head++; 865 journal->j_free--; 866 if (journal->j_head == journal->j_last) 867 journal->j_head = journal->j_first; 868 write_unlock(&journal->j_state_lock); 869 return jbd2_journal_bmap(journal, blocknr, retp); 870 } 871 872 /* Map one fast commit buffer for use by the file system */ 873 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 874 { 875 unsigned long long pblock; 876 unsigned long blocknr; 877 int ret = 0; 878 struct buffer_head *bh; 879 int fc_off; 880 881 *bh_out = NULL; 882 883 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 884 fc_off = journal->j_fc_off; 885 blocknr = journal->j_fc_first + fc_off; 886 journal->j_fc_off++; 887 } else { 888 ret = -EINVAL; 889 } 890 891 if (ret) 892 return ret; 893 894 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 895 if (ret) 896 return ret; 897 898 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 899 if (!bh) 900 return -ENOMEM; 901 902 903 journal->j_fc_wbuf[fc_off] = bh; 904 905 *bh_out = bh; 906 907 return 0; 908 } 909 EXPORT_SYMBOL(jbd2_fc_get_buf); 910 911 /* 912 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 913 * for completion. 914 */ 915 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 916 { 917 struct buffer_head *bh; 918 int i, j_fc_off; 919 920 j_fc_off = journal->j_fc_off; 921 922 /* 923 * Wait in reverse order to minimize chances of us being woken up before 924 * all IOs have completed 925 */ 926 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 927 bh = journal->j_fc_wbuf[i]; 928 wait_on_buffer(bh); 929 put_bh(bh); 930 journal->j_fc_wbuf[i] = NULL; 931 if (unlikely(!buffer_uptodate(bh))) 932 return -EIO; 933 } 934 935 return 0; 936 } 937 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 938 939 int jbd2_fc_release_bufs(journal_t *journal) 940 { 941 struct buffer_head *bh; 942 int i, j_fc_off; 943 944 j_fc_off = journal->j_fc_off; 945 946 for (i = j_fc_off - 1; i >= 0; i--) { 947 bh = journal->j_fc_wbuf[i]; 948 if (!bh) 949 break; 950 put_bh(bh); 951 journal->j_fc_wbuf[i] = NULL; 952 } 953 954 return 0; 955 } 956 EXPORT_SYMBOL(jbd2_fc_release_bufs); 957 958 /* 959 * Conversion of logical to physical block numbers for the journal 960 * 961 * On external journals the journal blocks are identity-mapped, so 962 * this is a no-op. If needed, we can use j_blk_offset - everything is 963 * ready. 964 */ 965 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 966 unsigned long long *retp) 967 { 968 int err = 0; 969 unsigned long long ret; 970 sector_t block = 0; 971 972 if (journal->j_inode) { 973 block = blocknr; 974 ret = bmap(journal->j_inode, &block); 975 976 if (ret || !block) { 977 printk(KERN_ALERT "%s: journal block not found " 978 "at offset %lu on %s\n", 979 __func__, blocknr, journal->j_devname); 980 err = -EIO; 981 jbd2_journal_abort(journal, err); 982 } else { 983 *retp = block; 984 } 985 986 } else { 987 *retp = blocknr; /* +journal->j_blk_offset */ 988 } 989 return err; 990 } 991 992 /* 993 * We play buffer_head aliasing tricks to write data/metadata blocks to 994 * the journal without copying their contents, but for journal 995 * descriptor blocks we do need to generate bona fide buffers. 996 * 997 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 998 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 999 * But we don't bother doing that, so there will be coherency problems with 1000 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1001 */ 1002 struct buffer_head * 1003 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1004 { 1005 journal_t *journal = transaction->t_journal; 1006 struct buffer_head *bh; 1007 unsigned long long blocknr; 1008 journal_header_t *header; 1009 int err; 1010 1011 err = jbd2_journal_next_log_block(journal, &blocknr); 1012 1013 if (err) 1014 return NULL; 1015 1016 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1017 if (!bh) 1018 return NULL; 1019 atomic_dec(&transaction->t_outstanding_credits); 1020 lock_buffer(bh); 1021 memset(bh->b_data, 0, journal->j_blocksize); 1022 header = (journal_header_t *)bh->b_data; 1023 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1024 header->h_blocktype = cpu_to_be32(type); 1025 header->h_sequence = cpu_to_be32(transaction->t_tid); 1026 set_buffer_uptodate(bh); 1027 unlock_buffer(bh); 1028 BUFFER_TRACE(bh, "return this buffer"); 1029 return bh; 1030 } 1031 1032 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1033 { 1034 struct jbd2_journal_block_tail *tail; 1035 __u32 csum; 1036 1037 if (!jbd2_journal_has_csum_v2or3(j)) 1038 return; 1039 1040 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1041 sizeof(struct jbd2_journal_block_tail)); 1042 tail->t_checksum = 0; 1043 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1044 tail->t_checksum = cpu_to_be32(csum); 1045 } 1046 1047 /* 1048 * Return tid of the oldest transaction in the journal and block in the journal 1049 * where the transaction starts. 1050 * 1051 * If the journal is now empty, return which will be the next transaction ID 1052 * we will write and where will that transaction start. 1053 * 1054 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1055 * it can. 1056 */ 1057 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1058 unsigned long *block) 1059 { 1060 transaction_t *transaction; 1061 int ret; 1062 1063 read_lock(&journal->j_state_lock); 1064 spin_lock(&journal->j_list_lock); 1065 transaction = journal->j_checkpoint_transactions; 1066 if (transaction) { 1067 *tid = transaction->t_tid; 1068 *block = transaction->t_log_start; 1069 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1070 *tid = transaction->t_tid; 1071 *block = transaction->t_log_start; 1072 } else if ((transaction = journal->j_running_transaction) != NULL) { 1073 *tid = transaction->t_tid; 1074 *block = journal->j_head; 1075 } else { 1076 *tid = journal->j_transaction_sequence; 1077 *block = journal->j_head; 1078 } 1079 ret = tid_gt(*tid, journal->j_tail_sequence); 1080 spin_unlock(&journal->j_list_lock); 1081 read_unlock(&journal->j_state_lock); 1082 1083 return ret; 1084 } 1085 1086 /* 1087 * Update information in journal structure and in on disk journal superblock 1088 * about log tail. This function does not check whether information passed in 1089 * really pushes log tail further. It's responsibility of the caller to make 1090 * sure provided log tail information is valid (e.g. by holding 1091 * j_checkpoint_mutex all the time between computing log tail and calling this 1092 * function as is the case with jbd2_cleanup_journal_tail()). 1093 * 1094 * Requires j_checkpoint_mutex 1095 */ 1096 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1097 { 1098 unsigned long freed; 1099 int ret; 1100 1101 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1102 1103 /* 1104 * We cannot afford for write to remain in drive's caches since as 1105 * soon as we update j_tail, next transaction can start reusing journal 1106 * space and if we lose sb update during power failure we'd replay 1107 * old transaction with possibly newly overwritten data. 1108 */ 1109 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1110 REQ_SYNC | REQ_FUA); 1111 if (ret) 1112 goto out; 1113 1114 write_lock(&journal->j_state_lock); 1115 freed = block - journal->j_tail; 1116 if (block < journal->j_tail) 1117 freed += journal->j_last - journal->j_first; 1118 1119 trace_jbd2_update_log_tail(journal, tid, block, freed); 1120 jbd_debug(1, 1121 "Cleaning journal tail from %u to %u (offset %lu), " 1122 "freeing %lu\n", 1123 journal->j_tail_sequence, tid, block, freed); 1124 1125 journal->j_free += freed; 1126 journal->j_tail_sequence = tid; 1127 journal->j_tail = block; 1128 write_unlock(&journal->j_state_lock); 1129 1130 out: 1131 return ret; 1132 } 1133 1134 /* 1135 * This is a variation of __jbd2_update_log_tail which checks for validity of 1136 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1137 * with other threads updating log tail. 1138 */ 1139 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1140 { 1141 mutex_lock_io(&journal->j_checkpoint_mutex); 1142 if (tid_gt(tid, journal->j_tail_sequence)) 1143 __jbd2_update_log_tail(journal, tid, block); 1144 mutex_unlock(&journal->j_checkpoint_mutex); 1145 } 1146 1147 struct jbd2_stats_proc_session { 1148 journal_t *journal; 1149 struct transaction_stats_s *stats; 1150 int start; 1151 int max; 1152 }; 1153 1154 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1155 { 1156 return *pos ? NULL : SEQ_START_TOKEN; 1157 } 1158 1159 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1160 { 1161 (*pos)++; 1162 return NULL; 1163 } 1164 1165 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1166 { 1167 struct jbd2_stats_proc_session *s = seq->private; 1168 1169 if (v != SEQ_START_TOKEN) 1170 return 0; 1171 seq_printf(seq, "%lu transactions (%lu requested), " 1172 "each up to %u blocks\n", 1173 s->stats->ts_tid, s->stats->ts_requested, 1174 s->journal->j_max_transaction_buffers); 1175 if (s->stats->ts_tid == 0) 1176 return 0; 1177 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1178 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1179 seq_printf(seq, " %ums request delay\n", 1180 (s->stats->ts_requested == 0) ? 0 : 1181 jiffies_to_msecs(s->stats->run.rs_request_delay / 1182 s->stats->ts_requested)); 1183 seq_printf(seq, " %ums running transaction\n", 1184 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1185 seq_printf(seq, " %ums transaction was being locked\n", 1186 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1187 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1188 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1189 seq_printf(seq, " %ums logging transaction\n", 1190 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1191 seq_printf(seq, " %lluus average transaction commit time\n", 1192 div_u64(s->journal->j_average_commit_time, 1000)); 1193 seq_printf(seq, " %lu handles per transaction\n", 1194 s->stats->run.rs_handle_count / s->stats->ts_tid); 1195 seq_printf(seq, " %lu blocks per transaction\n", 1196 s->stats->run.rs_blocks / s->stats->ts_tid); 1197 seq_printf(seq, " %lu logged blocks per transaction\n", 1198 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1199 return 0; 1200 } 1201 1202 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1203 { 1204 } 1205 1206 static const struct seq_operations jbd2_seq_info_ops = { 1207 .start = jbd2_seq_info_start, 1208 .next = jbd2_seq_info_next, 1209 .stop = jbd2_seq_info_stop, 1210 .show = jbd2_seq_info_show, 1211 }; 1212 1213 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1214 { 1215 journal_t *journal = pde_data(inode); 1216 struct jbd2_stats_proc_session *s; 1217 int rc, size; 1218 1219 s = kmalloc(sizeof(*s), GFP_KERNEL); 1220 if (s == NULL) 1221 return -ENOMEM; 1222 size = sizeof(struct transaction_stats_s); 1223 s->stats = kmalloc(size, GFP_KERNEL); 1224 if (s->stats == NULL) { 1225 kfree(s); 1226 return -ENOMEM; 1227 } 1228 spin_lock(&journal->j_history_lock); 1229 memcpy(s->stats, &journal->j_stats, size); 1230 s->journal = journal; 1231 spin_unlock(&journal->j_history_lock); 1232 1233 rc = seq_open(file, &jbd2_seq_info_ops); 1234 if (rc == 0) { 1235 struct seq_file *m = file->private_data; 1236 m->private = s; 1237 } else { 1238 kfree(s->stats); 1239 kfree(s); 1240 } 1241 return rc; 1242 1243 } 1244 1245 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1246 { 1247 struct seq_file *seq = file->private_data; 1248 struct jbd2_stats_proc_session *s = seq->private; 1249 kfree(s->stats); 1250 kfree(s); 1251 return seq_release(inode, file); 1252 } 1253 1254 static const struct proc_ops jbd2_info_proc_ops = { 1255 .proc_open = jbd2_seq_info_open, 1256 .proc_read = seq_read, 1257 .proc_lseek = seq_lseek, 1258 .proc_release = jbd2_seq_info_release, 1259 }; 1260 1261 static struct proc_dir_entry *proc_jbd2_stats; 1262 1263 static void jbd2_stats_proc_init(journal_t *journal) 1264 { 1265 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1266 if (journal->j_proc_entry) { 1267 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1268 &jbd2_info_proc_ops, journal); 1269 } 1270 } 1271 1272 static void jbd2_stats_proc_exit(journal_t *journal) 1273 { 1274 remove_proc_entry("info", journal->j_proc_entry); 1275 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1276 } 1277 1278 /* Minimum size of descriptor tag */ 1279 static int jbd2_min_tag_size(void) 1280 { 1281 /* 1282 * Tag with 32-bit block numbers does not use last four bytes of the 1283 * structure 1284 */ 1285 return sizeof(journal_block_tag_t) - 4; 1286 } 1287 1288 /** 1289 * jbd2_journal_shrink_scan() 1290 * 1291 * Scan the checkpointed buffer on the checkpoint list and release the 1292 * journal_head. 1293 */ 1294 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1295 struct shrink_control *sc) 1296 { 1297 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1298 unsigned long nr_to_scan = sc->nr_to_scan; 1299 unsigned long nr_shrunk; 1300 unsigned long count; 1301 1302 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1303 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1304 1305 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1306 1307 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1308 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1309 1310 return nr_shrunk; 1311 } 1312 1313 /** 1314 * jbd2_journal_shrink_count() 1315 * 1316 * Count the number of checkpoint buffers on the checkpoint list. 1317 */ 1318 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1319 struct shrink_control *sc) 1320 { 1321 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1322 unsigned long count; 1323 1324 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1325 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1326 1327 return count; 1328 } 1329 1330 /* 1331 * Management for journal control blocks: functions to create and 1332 * destroy journal_t structures, and to initialise and read existing 1333 * journal blocks from disk. */ 1334 1335 /* First: create and setup a journal_t object in memory. We initialise 1336 * very few fields yet: that has to wait until we have created the 1337 * journal structures from from scratch, or loaded them from disk. */ 1338 1339 static journal_t *journal_init_common(struct block_device *bdev, 1340 struct block_device *fs_dev, 1341 unsigned long long start, int len, int blocksize) 1342 { 1343 static struct lock_class_key jbd2_trans_commit_key; 1344 journal_t *journal; 1345 int err; 1346 struct buffer_head *bh; 1347 int n; 1348 1349 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1350 if (!journal) 1351 return NULL; 1352 1353 init_waitqueue_head(&journal->j_wait_transaction_locked); 1354 init_waitqueue_head(&journal->j_wait_done_commit); 1355 init_waitqueue_head(&journal->j_wait_commit); 1356 init_waitqueue_head(&journal->j_wait_updates); 1357 init_waitqueue_head(&journal->j_wait_reserved); 1358 init_waitqueue_head(&journal->j_fc_wait); 1359 mutex_init(&journal->j_abort_mutex); 1360 mutex_init(&journal->j_barrier); 1361 mutex_init(&journal->j_checkpoint_mutex); 1362 spin_lock_init(&journal->j_revoke_lock); 1363 spin_lock_init(&journal->j_list_lock); 1364 rwlock_init(&journal->j_state_lock); 1365 1366 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1367 journal->j_min_batch_time = 0; 1368 journal->j_max_batch_time = 15000; /* 15ms */ 1369 atomic_set(&journal->j_reserved_credits, 0); 1370 1371 /* The journal is marked for error until we succeed with recovery! */ 1372 journal->j_flags = JBD2_ABORT; 1373 1374 /* Set up a default-sized revoke table for the new mount. */ 1375 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1376 if (err) 1377 goto err_cleanup; 1378 1379 spin_lock_init(&journal->j_history_lock); 1380 1381 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1382 &jbd2_trans_commit_key, 0); 1383 1384 /* journal descriptor can store up to n blocks -bzzz */ 1385 journal->j_blocksize = blocksize; 1386 journal->j_dev = bdev; 1387 journal->j_fs_dev = fs_dev; 1388 journal->j_blk_offset = start; 1389 journal->j_total_len = len; 1390 /* We need enough buffers to write out full descriptor block. */ 1391 n = journal->j_blocksize / jbd2_min_tag_size(); 1392 journal->j_wbufsize = n; 1393 journal->j_fc_wbuf = NULL; 1394 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1395 GFP_KERNEL); 1396 if (!journal->j_wbuf) 1397 goto err_cleanup; 1398 1399 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1400 if (!bh) { 1401 pr_err("%s: Cannot get buffer for journal superblock\n", 1402 __func__); 1403 goto err_cleanup; 1404 } 1405 journal->j_sb_buffer = bh; 1406 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1407 1408 journal->j_shrink_transaction = NULL; 1409 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1410 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1411 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1412 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1413 1414 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL)) 1415 goto err_cleanup; 1416 1417 if (register_shrinker(&journal->j_shrinker)) { 1418 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1419 goto err_cleanup; 1420 } 1421 return journal; 1422 1423 err_cleanup: 1424 brelse(journal->j_sb_buffer); 1425 kfree(journal->j_wbuf); 1426 jbd2_journal_destroy_revoke(journal); 1427 kfree(journal); 1428 return NULL; 1429 } 1430 1431 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1432 * 1433 * Create a journal structure assigned some fixed set of disk blocks to 1434 * the journal. We don't actually touch those disk blocks yet, but we 1435 * need to set up all of the mapping information to tell the journaling 1436 * system where the journal blocks are. 1437 * 1438 */ 1439 1440 /** 1441 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1442 * @bdev: Block device on which to create the journal 1443 * @fs_dev: Device which hold journalled filesystem for this journal. 1444 * @start: Block nr Start of journal. 1445 * @len: Length of the journal in blocks. 1446 * @blocksize: blocksize of journalling device 1447 * 1448 * Returns: a newly created journal_t * 1449 * 1450 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1451 * range of blocks on an arbitrary block device. 1452 * 1453 */ 1454 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1455 struct block_device *fs_dev, 1456 unsigned long long start, int len, int blocksize) 1457 { 1458 journal_t *journal; 1459 1460 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1461 if (!journal) 1462 return NULL; 1463 1464 bdevname(journal->j_dev, journal->j_devname); 1465 strreplace(journal->j_devname, '/', '!'); 1466 jbd2_stats_proc_init(journal); 1467 1468 return journal; 1469 } 1470 1471 /** 1472 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1473 * @inode: An inode to create the journal in 1474 * 1475 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1476 * the journal. The inode must exist already, must support bmap() and 1477 * must have all data blocks preallocated. 1478 */ 1479 journal_t *jbd2_journal_init_inode(struct inode *inode) 1480 { 1481 journal_t *journal; 1482 sector_t blocknr; 1483 char *p; 1484 int err = 0; 1485 1486 blocknr = 0; 1487 err = bmap(inode, &blocknr); 1488 1489 if (err || !blocknr) { 1490 pr_err("%s: Cannot locate journal superblock\n", 1491 __func__); 1492 return NULL; 1493 } 1494 1495 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1496 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1497 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1498 1499 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1500 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1501 inode->i_sb->s_blocksize); 1502 if (!journal) 1503 return NULL; 1504 1505 journal->j_inode = inode; 1506 bdevname(journal->j_dev, journal->j_devname); 1507 p = strreplace(journal->j_devname, '/', '!'); 1508 sprintf(p, "-%lu", journal->j_inode->i_ino); 1509 jbd2_stats_proc_init(journal); 1510 1511 return journal; 1512 } 1513 1514 /* 1515 * If the journal init or create aborts, we need to mark the journal 1516 * superblock as being NULL to prevent the journal destroy from writing 1517 * back a bogus superblock. 1518 */ 1519 static void journal_fail_superblock(journal_t *journal) 1520 { 1521 struct buffer_head *bh = journal->j_sb_buffer; 1522 brelse(bh); 1523 journal->j_sb_buffer = NULL; 1524 } 1525 1526 /* 1527 * Given a journal_t structure, initialise the various fields for 1528 * startup of a new journaling session. We use this both when creating 1529 * a journal, and after recovering an old journal to reset it for 1530 * subsequent use. 1531 */ 1532 1533 static int journal_reset(journal_t *journal) 1534 { 1535 journal_superblock_t *sb = journal->j_superblock; 1536 unsigned long long first, last; 1537 1538 first = be32_to_cpu(sb->s_first); 1539 last = be32_to_cpu(sb->s_maxlen); 1540 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1541 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1542 first, last); 1543 journal_fail_superblock(journal); 1544 return -EINVAL; 1545 } 1546 1547 journal->j_first = first; 1548 journal->j_last = last; 1549 1550 journal->j_head = journal->j_first; 1551 journal->j_tail = journal->j_first; 1552 journal->j_free = journal->j_last - journal->j_first; 1553 1554 journal->j_tail_sequence = journal->j_transaction_sequence; 1555 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1556 journal->j_commit_request = journal->j_commit_sequence; 1557 1558 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1559 1560 /* 1561 * Now that journal recovery is done, turn fast commits off here. This 1562 * way, if fast commit was enabled before the crash but if now FS has 1563 * disabled it, we don't enable fast commits. 1564 */ 1565 jbd2_clear_feature_fast_commit(journal); 1566 1567 /* 1568 * As a special case, if the on-disk copy is already marked as needing 1569 * no recovery (s_start == 0), then we can safely defer the superblock 1570 * update until the next commit by setting JBD2_FLUSHED. This avoids 1571 * attempting a write to a potential-readonly device. 1572 */ 1573 if (sb->s_start == 0) { 1574 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1575 "(start %ld, seq %u, errno %d)\n", 1576 journal->j_tail, journal->j_tail_sequence, 1577 journal->j_errno); 1578 journal->j_flags |= JBD2_FLUSHED; 1579 } else { 1580 /* Lock here to make assertions happy... */ 1581 mutex_lock_io(&journal->j_checkpoint_mutex); 1582 /* 1583 * Update log tail information. We use REQ_FUA since new 1584 * transaction will start reusing journal space and so we 1585 * must make sure information about current log tail is on 1586 * disk before that. 1587 */ 1588 jbd2_journal_update_sb_log_tail(journal, 1589 journal->j_tail_sequence, 1590 journal->j_tail, 1591 REQ_SYNC | REQ_FUA); 1592 mutex_unlock(&journal->j_checkpoint_mutex); 1593 } 1594 return jbd2_journal_start_thread(journal); 1595 } 1596 1597 /* 1598 * This function expects that the caller will have locked the journal 1599 * buffer head, and will return with it unlocked 1600 */ 1601 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1602 { 1603 struct buffer_head *bh = journal->j_sb_buffer; 1604 journal_superblock_t *sb = journal->j_superblock; 1605 int ret; 1606 1607 /* Buffer got discarded which means block device got invalidated */ 1608 if (!buffer_mapped(bh)) { 1609 unlock_buffer(bh); 1610 return -EIO; 1611 } 1612 1613 trace_jbd2_write_superblock(journal, write_flags); 1614 if (!(journal->j_flags & JBD2_BARRIER)) 1615 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1616 if (buffer_write_io_error(bh)) { 1617 /* 1618 * Oh, dear. A previous attempt to write the journal 1619 * superblock failed. This could happen because the 1620 * USB device was yanked out. Or it could happen to 1621 * be a transient write error and maybe the block will 1622 * be remapped. Nothing we can do but to retry the 1623 * write and hope for the best. 1624 */ 1625 printk(KERN_ERR "JBD2: previous I/O error detected " 1626 "for journal superblock update for %s.\n", 1627 journal->j_devname); 1628 clear_buffer_write_io_error(bh); 1629 set_buffer_uptodate(bh); 1630 } 1631 if (jbd2_journal_has_csum_v2or3(journal)) 1632 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1633 get_bh(bh); 1634 bh->b_end_io = end_buffer_write_sync; 1635 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1636 wait_on_buffer(bh); 1637 if (buffer_write_io_error(bh)) { 1638 clear_buffer_write_io_error(bh); 1639 set_buffer_uptodate(bh); 1640 ret = -EIO; 1641 } 1642 if (ret) { 1643 printk(KERN_ERR "JBD2: Error %d detected when updating " 1644 "journal superblock for %s.\n", ret, 1645 journal->j_devname); 1646 if (!is_journal_aborted(journal)) 1647 jbd2_journal_abort(journal, ret); 1648 } 1649 1650 return ret; 1651 } 1652 1653 /** 1654 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1655 * @journal: The journal to update. 1656 * @tail_tid: TID of the new transaction at the tail of the log 1657 * @tail_block: The first block of the transaction at the tail of the log 1658 * @write_op: With which operation should we write the journal sb 1659 * 1660 * Update a journal's superblock information about log tail and write it to 1661 * disk, waiting for the IO to complete. 1662 */ 1663 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1664 unsigned long tail_block, int write_op) 1665 { 1666 journal_superblock_t *sb = journal->j_superblock; 1667 int ret; 1668 1669 if (is_journal_aborted(journal)) 1670 return -EIO; 1671 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1672 jbd2_journal_abort(journal, -EIO); 1673 return -EIO; 1674 } 1675 1676 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1677 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1678 tail_block, tail_tid); 1679 1680 lock_buffer(journal->j_sb_buffer); 1681 sb->s_sequence = cpu_to_be32(tail_tid); 1682 sb->s_start = cpu_to_be32(tail_block); 1683 1684 ret = jbd2_write_superblock(journal, write_op); 1685 if (ret) 1686 goto out; 1687 1688 /* Log is no longer empty */ 1689 write_lock(&journal->j_state_lock); 1690 WARN_ON(!sb->s_sequence); 1691 journal->j_flags &= ~JBD2_FLUSHED; 1692 write_unlock(&journal->j_state_lock); 1693 1694 out: 1695 return ret; 1696 } 1697 1698 /** 1699 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1700 * @journal: The journal to update. 1701 * @write_op: With which operation should we write the journal sb 1702 * 1703 * Update a journal's dynamic superblock fields to show that journal is empty. 1704 * Write updated superblock to disk waiting for IO to complete. 1705 */ 1706 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1707 { 1708 journal_superblock_t *sb = journal->j_superblock; 1709 bool had_fast_commit = false; 1710 1711 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1712 lock_buffer(journal->j_sb_buffer); 1713 if (sb->s_start == 0) { /* Is it already empty? */ 1714 unlock_buffer(journal->j_sb_buffer); 1715 return; 1716 } 1717 1718 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1719 journal->j_tail_sequence); 1720 1721 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1722 sb->s_start = cpu_to_be32(0); 1723 if (jbd2_has_feature_fast_commit(journal)) { 1724 /* 1725 * When journal is clean, no need to commit fast commit flag and 1726 * make file system incompatible with older kernels. 1727 */ 1728 jbd2_clear_feature_fast_commit(journal); 1729 had_fast_commit = true; 1730 } 1731 1732 jbd2_write_superblock(journal, write_op); 1733 1734 if (had_fast_commit) 1735 jbd2_set_feature_fast_commit(journal); 1736 1737 /* Log is no longer empty */ 1738 write_lock(&journal->j_state_lock); 1739 journal->j_flags |= JBD2_FLUSHED; 1740 write_unlock(&journal->j_state_lock); 1741 } 1742 1743 /** 1744 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1745 * @journal: The journal to erase. 1746 * @flags: A discard/zeroout request is sent for each physically contigous 1747 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1748 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1749 * to perform. 1750 * 1751 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1752 * will be explicitly written if no hardware offload is available, see 1753 * blkdev_issue_zeroout for more details. 1754 */ 1755 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1756 { 1757 int err = 0; 1758 unsigned long block, log_offset; /* logical */ 1759 unsigned long long phys_block, block_start, block_stop; /* physical */ 1760 loff_t byte_start, byte_stop, byte_count; 1761 struct request_queue *q = bdev_get_queue(journal->j_dev); 1762 1763 /* flags must be set to either discard or zeroout */ 1764 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1765 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1766 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1767 return -EINVAL; 1768 1769 if (!q) 1770 return -ENXIO; 1771 1772 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q)) 1773 return -EOPNOTSUPP; 1774 1775 /* 1776 * lookup block mapping and issue discard/zeroout for each 1777 * contiguous region 1778 */ 1779 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1780 block_start = ~0ULL; 1781 for (block = log_offset; block < journal->j_total_len; block++) { 1782 err = jbd2_journal_bmap(journal, block, &phys_block); 1783 if (err) { 1784 pr_err("JBD2: bad block at offset %lu", block); 1785 return err; 1786 } 1787 1788 if (block_start == ~0ULL) { 1789 block_start = phys_block; 1790 block_stop = block_start - 1; 1791 } 1792 1793 /* 1794 * last block not contiguous with current block, 1795 * process last contiguous region and return to this block on 1796 * next loop 1797 */ 1798 if (phys_block != block_stop + 1) { 1799 block--; 1800 } else { 1801 block_stop++; 1802 /* 1803 * if this isn't the last block of journal, 1804 * no need to process now because next block may also 1805 * be part of this contiguous region 1806 */ 1807 if (block != journal->j_total_len - 1) 1808 continue; 1809 } 1810 1811 /* 1812 * end of contiguous region or this is last block of journal, 1813 * take care of the region 1814 */ 1815 byte_start = block_start * journal->j_blocksize; 1816 byte_stop = block_stop * journal->j_blocksize; 1817 byte_count = (block_stop - block_start + 1) * 1818 journal->j_blocksize; 1819 1820 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 1821 byte_start, byte_stop); 1822 1823 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 1824 err = blkdev_issue_discard(journal->j_dev, 1825 byte_start >> SECTOR_SHIFT, 1826 byte_count >> SECTOR_SHIFT, 1827 GFP_NOFS, 0); 1828 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 1829 err = blkdev_issue_zeroout(journal->j_dev, 1830 byte_start >> SECTOR_SHIFT, 1831 byte_count >> SECTOR_SHIFT, 1832 GFP_NOFS, 0); 1833 } 1834 1835 if (unlikely(err != 0)) { 1836 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 1837 err, block_start, block_stop); 1838 return err; 1839 } 1840 1841 /* reset start and stop after processing a region */ 1842 block_start = ~0ULL; 1843 } 1844 1845 return blkdev_issue_flush(journal->j_dev); 1846 } 1847 1848 /** 1849 * jbd2_journal_update_sb_errno() - Update error in the journal. 1850 * @journal: The journal to update. 1851 * 1852 * Update a journal's errno. Write updated superblock to disk waiting for IO 1853 * to complete. 1854 */ 1855 void jbd2_journal_update_sb_errno(journal_t *journal) 1856 { 1857 journal_superblock_t *sb = journal->j_superblock; 1858 int errcode; 1859 1860 lock_buffer(journal->j_sb_buffer); 1861 errcode = journal->j_errno; 1862 if (errcode == -ESHUTDOWN) 1863 errcode = 0; 1864 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1865 sb->s_errno = cpu_to_be32(errcode); 1866 1867 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1868 } 1869 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1870 1871 static int journal_revoke_records_per_block(journal_t *journal) 1872 { 1873 int record_size; 1874 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1875 1876 if (jbd2_has_feature_64bit(journal)) 1877 record_size = 8; 1878 else 1879 record_size = 4; 1880 1881 if (jbd2_journal_has_csum_v2or3(journal)) 1882 space -= sizeof(struct jbd2_journal_block_tail); 1883 return space / record_size; 1884 } 1885 1886 /* 1887 * Read the superblock for a given journal, performing initial 1888 * validation of the format. 1889 */ 1890 static int journal_get_superblock(journal_t *journal) 1891 { 1892 struct buffer_head *bh; 1893 journal_superblock_t *sb; 1894 int err = -EIO; 1895 1896 bh = journal->j_sb_buffer; 1897 1898 J_ASSERT(bh != NULL); 1899 if (!buffer_uptodate(bh)) { 1900 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1901 wait_on_buffer(bh); 1902 if (!buffer_uptodate(bh)) { 1903 printk(KERN_ERR 1904 "JBD2: IO error reading journal superblock\n"); 1905 goto out; 1906 } 1907 } 1908 1909 if (buffer_verified(bh)) 1910 return 0; 1911 1912 sb = journal->j_superblock; 1913 1914 err = -EINVAL; 1915 1916 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1917 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1918 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1919 goto out; 1920 } 1921 1922 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1923 case JBD2_SUPERBLOCK_V1: 1924 journal->j_format_version = 1; 1925 break; 1926 case JBD2_SUPERBLOCK_V2: 1927 journal->j_format_version = 2; 1928 break; 1929 default: 1930 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1931 goto out; 1932 } 1933 1934 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1935 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1936 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1937 printk(KERN_WARNING "JBD2: journal file too short\n"); 1938 goto out; 1939 } 1940 1941 if (be32_to_cpu(sb->s_first) == 0 || 1942 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1943 printk(KERN_WARNING 1944 "JBD2: Invalid start block of journal: %u\n", 1945 be32_to_cpu(sb->s_first)); 1946 goto out; 1947 } 1948 1949 if (jbd2_has_feature_csum2(journal) && 1950 jbd2_has_feature_csum3(journal)) { 1951 /* Can't have checksum v2 and v3 at the same time! */ 1952 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1953 "at the same time!\n"); 1954 goto out; 1955 } 1956 1957 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1958 jbd2_has_feature_checksum(journal)) { 1959 /* Can't have checksum v1 and v2 on at the same time! */ 1960 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1961 "at the same time!\n"); 1962 goto out; 1963 } 1964 1965 if (!jbd2_verify_csum_type(journal, sb)) { 1966 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1967 goto out; 1968 } 1969 1970 /* Load the checksum driver */ 1971 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1972 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1973 if (IS_ERR(journal->j_chksum_driver)) { 1974 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1975 err = PTR_ERR(journal->j_chksum_driver); 1976 journal->j_chksum_driver = NULL; 1977 goto out; 1978 } 1979 } 1980 1981 if (jbd2_journal_has_csum_v2or3(journal)) { 1982 /* Check superblock checksum */ 1983 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1984 printk(KERN_ERR "JBD2: journal checksum error\n"); 1985 err = -EFSBADCRC; 1986 goto out; 1987 } 1988 1989 /* Precompute checksum seed for all metadata */ 1990 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1991 sizeof(sb->s_uuid)); 1992 } 1993 1994 journal->j_revoke_records_per_block = 1995 journal_revoke_records_per_block(journal); 1996 set_buffer_verified(bh); 1997 1998 return 0; 1999 2000 out: 2001 journal_fail_superblock(journal); 2002 return err; 2003 } 2004 2005 /* 2006 * Load the on-disk journal superblock and read the key fields into the 2007 * journal_t. 2008 */ 2009 2010 static int load_superblock(journal_t *journal) 2011 { 2012 int err; 2013 journal_superblock_t *sb; 2014 int num_fc_blocks; 2015 2016 err = journal_get_superblock(journal); 2017 if (err) 2018 return err; 2019 2020 sb = journal->j_superblock; 2021 2022 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 2023 journal->j_tail = be32_to_cpu(sb->s_start); 2024 journal->j_first = be32_to_cpu(sb->s_first); 2025 journal->j_errno = be32_to_cpu(sb->s_errno); 2026 journal->j_last = be32_to_cpu(sb->s_maxlen); 2027 2028 if (jbd2_has_feature_fast_commit(journal)) { 2029 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 2030 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb); 2031 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 2032 journal->j_last = journal->j_fc_last - num_fc_blocks; 2033 journal->j_fc_first = journal->j_last + 1; 2034 journal->j_fc_off = 0; 2035 } 2036 2037 return 0; 2038 } 2039 2040 2041 /** 2042 * jbd2_journal_load() - Read journal from disk. 2043 * @journal: Journal to act on. 2044 * 2045 * Given a journal_t structure which tells us which disk blocks contain 2046 * a journal, read the journal from disk to initialise the in-memory 2047 * structures. 2048 */ 2049 int jbd2_journal_load(journal_t *journal) 2050 { 2051 int err; 2052 journal_superblock_t *sb; 2053 2054 err = load_superblock(journal); 2055 if (err) 2056 return err; 2057 2058 sb = journal->j_superblock; 2059 /* If this is a V2 superblock, then we have to check the 2060 * features flags on it. */ 2061 2062 if (journal->j_format_version >= 2) { 2063 if ((sb->s_feature_ro_compat & 2064 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 2065 (sb->s_feature_incompat & 2066 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 2067 printk(KERN_WARNING 2068 "JBD2: Unrecognised features on journal\n"); 2069 return -EINVAL; 2070 } 2071 } 2072 2073 /* 2074 * Create a slab for this blocksize 2075 */ 2076 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2077 if (err) 2078 return err; 2079 2080 /* Let the recovery code check whether it needs to recover any 2081 * data from the journal. */ 2082 if (jbd2_journal_recover(journal)) 2083 goto recovery_error; 2084 2085 if (journal->j_failed_commit) { 2086 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2087 "is corrupt.\n", journal->j_failed_commit, 2088 journal->j_devname); 2089 return -EFSCORRUPTED; 2090 } 2091 /* 2092 * clear JBD2_ABORT flag initialized in journal_init_common 2093 * here to update log tail information with the newest seq. 2094 */ 2095 journal->j_flags &= ~JBD2_ABORT; 2096 2097 /* OK, we've finished with the dynamic journal bits: 2098 * reinitialise the dynamic contents of the superblock in memory 2099 * and reset them on disk. */ 2100 if (journal_reset(journal)) 2101 goto recovery_error; 2102 2103 journal->j_flags |= JBD2_LOADED; 2104 return 0; 2105 2106 recovery_error: 2107 printk(KERN_WARNING "JBD2: recovery failed\n"); 2108 return -EIO; 2109 } 2110 2111 /** 2112 * jbd2_journal_destroy() - Release a journal_t structure. 2113 * @journal: Journal to act on. 2114 * 2115 * Release a journal_t structure once it is no longer in use by the 2116 * journaled object. 2117 * Return <0 if we couldn't clean up the journal. 2118 */ 2119 int jbd2_journal_destroy(journal_t *journal) 2120 { 2121 int err = 0; 2122 2123 /* Wait for the commit thread to wake up and die. */ 2124 journal_kill_thread(journal); 2125 2126 /* Force a final log commit */ 2127 if (journal->j_running_transaction) 2128 jbd2_journal_commit_transaction(journal); 2129 2130 /* Force any old transactions to disk */ 2131 2132 /* Totally anal locking here... */ 2133 spin_lock(&journal->j_list_lock); 2134 while (journal->j_checkpoint_transactions != NULL) { 2135 spin_unlock(&journal->j_list_lock); 2136 mutex_lock_io(&journal->j_checkpoint_mutex); 2137 err = jbd2_log_do_checkpoint(journal); 2138 mutex_unlock(&journal->j_checkpoint_mutex); 2139 /* 2140 * If checkpointing failed, just free the buffers to avoid 2141 * looping forever 2142 */ 2143 if (err) { 2144 jbd2_journal_destroy_checkpoint(journal); 2145 spin_lock(&journal->j_list_lock); 2146 break; 2147 } 2148 spin_lock(&journal->j_list_lock); 2149 } 2150 2151 J_ASSERT(journal->j_running_transaction == NULL); 2152 J_ASSERT(journal->j_committing_transaction == NULL); 2153 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2154 spin_unlock(&journal->j_list_lock); 2155 2156 /* 2157 * OK, all checkpoint transactions have been checked, now check the 2158 * write out io error flag and abort the journal if some buffer failed 2159 * to write back to the original location, otherwise the filesystem 2160 * may become inconsistent. 2161 */ 2162 if (!is_journal_aborted(journal) && 2163 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2164 jbd2_journal_abort(journal, -EIO); 2165 2166 if (journal->j_sb_buffer) { 2167 if (!is_journal_aborted(journal)) { 2168 mutex_lock_io(&journal->j_checkpoint_mutex); 2169 2170 write_lock(&journal->j_state_lock); 2171 journal->j_tail_sequence = 2172 ++journal->j_transaction_sequence; 2173 write_unlock(&journal->j_state_lock); 2174 2175 jbd2_mark_journal_empty(journal, 2176 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2177 mutex_unlock(&journal->j_checkpoint_mutex); 2178 } else 2179 err = -EIO; 2180 brelse(journal->j_sb_buffer); 2181 } 2182 2183 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2184 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2185 unregister_shrinker(&journal->j_shrinker); 2186 } 2187 if (journal->j_proc_entry) 2188 jbd2_stats_proc_exit(journal); 2189 iput(journal->j_inode); 2190 if (journal->j_revoke) 2191 jbd2_journal_destroy_revoke(journal); 2192 if (journal->j_chksum_driver) 2193 crypto_free_shash(journal->j_chksum_driver); 2194 kfree(journal->j_fc_wbuf); 2195 kfree(journal->j_wbuf); 2196 kfree(journal); 2197 2198 return err; 2199 } 2200 2201 2202 /** 2203 * jbd2_journal_check_used_features() - Check if features specified are used. 2204 * @journal: Journal to check. 2205 * @compat: bitmask of compatible features 2206 * @ro: bitmask of features that force read-only mount 2207 * @incompat: bitmask of incompatible features 2208 * 2209 * Check whether the journal uses all of a given set of 2210 * features. Return true (non-zero) if it does. 2211 **/ 2212 2213 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2214 unsigned long ro, unsigned long incompat) 2215 { 2216 journal_superblock_t *sb; 2217 2218 if (!compat && !ro && !incompat) 2219 return 1; 2220 /* Load journal superblock if it is not loaded yet. */ 2221 if (journal->j_format_version == 0 && 2222 journal_get_superblock(journal) != 0) 2223 return 0; 2224 if (journal->j_format_version == 1) 2225 return 0; 2226 2227 sb = journal->j_superblock; 2228 2229 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2230 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2231 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2232 return 1; 2233 2234 return 0; 2235 } 2236 2237 /** 2238 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2239 * @journal: Journal to check. 2240 * @compat: bitmask of compatible features 2241 * @ro: bitmask of features that force read-only mount 2242 * @incompat: bitmask of incompatible features 2243 * 2244 * Check whether the journaling code supports the use of 2245 * all of a given set of features on this journal. Return true 2246 * (non-zero) if it can. */ 2247 2248 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2249 unsigned long ro, unsigned long incompat) 2250 { 2251 if (!compat && !ro && !incompat) 2252 return 1; 2253 2254 /* We can support any known requested features iff the 2255 * superblock is in version 2. Otherwise we fail to support any 2256 * extended sb features. */ 2257 2258 if (journal->j_format_version != 2) 2259 return 0; 2260 2261 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2262 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2263 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2264 return 1; 2265 2266 return 0; 2267 } 2268 2269 static int 2270 jbd2_journal_initialize_fast_commit(journal_t *journal) 2271 { 2272 journal_superblock_t *sb = journal->j_superblock; 2273 unsigned long long num_fc_blks; 2274 2275 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2276 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2277 return -ENOSPC; 2278 2279 /* Are we called twice? */ 2280 WARN_ON(journal->j_fc_wbuf != NULL); 2281 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2282 sizeof(struct buffer_head *), GFP_KERNEL); 2283 if (!journal->j_fc_wbuf) 2284 return -ENOMEM; 2285 2286 journal->j_fc_wbufsize = num_fc_blks; 2287 journal->j_fc_last = journal->j_last; 2288 journal->j_last = journal->j_fc_last - num_fc_blks; 2289 journal->j_fc_first = journal->j_last + 1; 2290 journal->j_fc_off = 0; 2291 journal->j_free = journal->j_last - journal->j_first; 2292 journal->j_max_transaction_buffers = 2293 jbd2_journal_get_max_txn_bufs(journal); 2294 2295 return 0; 2296 } 2297 2298 /** 2299 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2300 * @journal: Journal to act on. 2301 * @compat: bitmask of compatible features 2302 * @ro: bitmask of features that force read-only mount 2303 * @incompat: bitmask of incompatible features 2304 * 2305 * Mark a given journal feature as present on the 2306 * superblock. Returns true if the requested features could be set. 2307 * 2308 */ 2309 2310 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2311 unsigned long ro, unsigned long incompat) 2312 { 2313 #define INCOMPAT_FEATURE_ON(f) \ 2314 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2315 #define COMPAT_FEATURE_ON(f) \ 2316 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2317 journal_superblock_t *sb; 2318 2319 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2320 return 1; 2321 2322 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2323 return 0; 2324 2325 /* If enabling v2 checksums, turn on v3 instead */ 2326 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2327 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2328 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2329 } 2330 2331 /* Asking for checksumming v3 and v1? Only give them v3. */ 2332 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2333 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2334 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2335 2336 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2337 compat, ro, incompat); 2338 2339 sb = journal->j_superblock; 2340 2341 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2342 if (jbd2_journal_initialize_fast_commit(journal)) { 2343 pr_err("JBD2: Cannot enable fast commits.\n"); 2344 return 0; 2345 } 2346 } 2347 2348 /* Load the checksum driver if necessary */ 2349 if ((journal->j_chksum_driver == NULL) && 2350 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2351 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2352 if (IS_ERR(journal->j_chksum_driver)) { 2353 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2354 journal->j_chksum_driver = NULL; 2355 return 0; 2356 } 2357 /* Precompute checksum seed for all metadata */ 2358 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2359 sizeof(sb->s_uuid)); 2360 } 2361 2362 lock_buffer(journal->j_sb_buffer); 2363 2364 /* If enabling v3 checksums, update superblock */ 2365 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2366 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2367 sb->s_feature_compat &= 2368 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2369 } 2370 2371 /* If enabling v1 checksums, downgrade superblock */ 2372 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2373 sb->s_feature_incompat &= 2374 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2375 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2376 2377 sb->s_feature_compat |= cpu_to_be32(compat); 2378 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2379 sb->s_feature_incompat |= cpu_to_be32(incompat); 2380 unlock_buffer(journal->j_sb_buffer); 2381 journal->j_revoke_records_per_block = 2382 journal_revoke_records_per_block(journal); 2383 2384 return 1; 2385 #undef COMPAT_FEATURE_ON 2386 #undef INCOMPAT_FEATURE_ON 2387 } 2388 2389 /* 2390 * jbd2_journal_clear_features() - Clear a given journal feature in the 2391 * superblock 2392 * @journal: Journal to act on. 2393 * @compat: bitmask of compatible features 2394 * @ro: bitmask of features that force read-only mount 2395 * @incompat: bitmask of incompatible features 2396 * 2397 * Clear a given journal feature as present on the 2398 * superblock. 2399 */ 2400 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2401 unsigned long ro, unsigned long incompat) 2402 { 2403 journal_superblock_t *sb; 2404 2405 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2406 compat, ro, incompat); 2407 2408 sb = journal->j_superblock; 2409 2410 sb->s_feature_compat &= ~cpu_to_be32(compat); 2411 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2412 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2413 journal->j_revoke_records_per_block = 2414 journal_revoke_records_per_block(journal); 2415 } 2416 EXPORT_SYMBOL(jbd2_journal_clear_features); 2417 2418 /** 2419 * jbd2_journal_flush() - Flush journal 2420 * @journal: Journal to act on. 2421 * @flags: optional operation on the journal blocks after the flush (see below) 2422 * 2423 * Flush all data for a given journal to disk and empty the journal. 2424 * Filesystems can use this when remounting readonly to ensure that 2425 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2426 * can be issued on the journal blocks after flushing. 2427 * 2428 * flags: 2429 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2430 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2431 */ 2432 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2433 { 2434 int err = 0; 2435 transaction_t *transaction = NULL; 2436 2437 write_lock(&journal->j_state_lock); 2438 2439 /* Force everything buffered to the log... */ 2440 if (journal->j_running_transaction) { 2441 transaction = journal->j_running_transaction; 2442 __jbd2_log_start_commit(journal, transaction->t_tid); 2443 } else if (journal->j_committing_transaction) 2444 transaction = journal->j_committing_transaction; 2445 2446 /* Wait for the log commit to complete... */ 2447 if (transaction) { 2448 tid_t tid = transaction->t_tid; 2449 2450 write_unlock(&journal->j_state_lock); 2451 jbd2_log_wait_commit(journal, tid); 2452 } else { 2453 write_unlock(&journal->j_state_lock); 2454 } 2455 2456 /* ...and flush everything in the log out to disk. */ 2457 spin_lock(&journal->j_list_lock); 2458 while (!err && journal->j_checkpoint_transactions != NULL) { 2459 spin_unlock(&journal->j_list_lock); 2460 mutex_lock_io(&journal->j_checkpoint_mutex); 2461 err = jbd2_log_do_checkpoint(journal); 2462 mutex_unlock(&journal->j_checkpoint_mutex); 2463 spin_lock(&journal->j_list_lock); 2464 } 2465 spin_unlock(&journal->j_list_lock); 2466 2467 if (is_journal_aborted(journal)) 2468 return -EIO; 2469 2470 mutex_lock_io(&journal->j_checkpoint_mutex); 2471 if (!err) { 2472 err = jbd2_cleanup_journal_tail(journal); 2473 if (err < 0) { 2474 mutex_unlock(&journal->j_checkpoint_mutex); 2475 goto out; 2476 } 2477 err = 0; 2478 } 2479 2480 /* Finally, mark the journal as really needing no recovery. 2481 * This sets s_start==0 in the underlying superblock, which is 2482 * the magic code for a fully-recovered superblock. Any future 2483 * commits of data to the journal will restore the current 2484 * s_start value. */ 2485 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2486 2487 if (flags) 2488 err = __jbd2_journal_erase(journal, flags); 2489 2490 mutex_unlock(&journal->j_checkpoint_mutex); 2491 write_lock(&journal->j_state_lock); 2492 J_ASSERT(!journal->j_running_transaction); 2493 J_ASSERT(!journal->j_committing_transaction); 2494 J_ASSERT(!journal->j_checkpoint_transactions); 2495 J_ASSERT(journal->j_head == journal->j_tail); 2496 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2497 write_unlock(&journal->j_state_lock); 2498 out: 2499 return err; 2500 } 2501 2502 /** 2503 * jbd2_journal_wipe() - Wipe journal contents 2504 * @journal: Journal to act on. 2505 * @write: flag (see below) 2506 * 2507 * Wipe out all of the contents of a journal, safely. This will produce 2508 * a warning if the journal contains any valid recovery information. 2509 * Must be called between journal_init_*() and jbd2_journal_load(). 2510 * 2511 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2512 * we merely suppress recovery. 2513 */ 2514 2515 int jbd2_journal_wipe(journal_t *journal, int write) 2516 { 2517 int err = 0; 2518 2519 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2520 2521 err = load_superblock(journal); 2522 if (err) 2523 return err; 2524 2525 if (!journal->j_tail) 2526 goto no_recovery; 2527 2528 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2529 write ? "Clearing" : "Ignoring"); 2530 2531 err = jbd2_journal_skip_recovery(journal); 2532 if (write) { 2533 /* Lock to make assertions happy... */ 2534 mutex_lock_io(&journal->j_checkpoint_mutex); 2535 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2536 mutex_unlock(&journal->j_checkpoint_mutex); 2537 } 2538 2539 no_recovery: 2540 return err; 2541 } 2542 2543 /** 2544 * jbd2_journal_abort () - Shutdown the journal immediately. 2545 * @journal: the journal to shutdown. 2546 * @errno: an error number to record in the journal indicating 2547 * the reason for the shutdown. 2548 * 2549 * Perform a complete, immediate shutdown of the ENTIRE 2550 * journal (not of a single transaction). This operation cannot be 2551 * undone without closing and reopening the journal. 2552 * 2553 * The jbd2_journal_abort function is intended to support higher level error 2554 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2555 * mode. 2556 * 2557 * Journal abort has very specific semantics. Any existing dirty, 2558 * unjournaled buffers in the main filesystem will still be written to 2559 * disk by bdflush, but the journaling mechanism will be suspended 2560 * immediately and no further transaction commits will be honoured. 2561 * 2562 * Any dirty, journaled buffers will be written back to disk without 2563 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2564 * filesystem, but we _do_ attempt to leave as much data as possible 2565 * behind for fsck to use for cleanup. 2566 * 2567 * Any attempt to get a new transaction handle on a journal which is in 2568 * ABORT state will just result in an -EROFS error return. A 2569 * jbd2_journal_stop on an existing handle will return -EIO if we have 2570 * entered abort state during the update. 2571 * 2572 * Recursive transactions are not disturbed by journal abort until the 2573 * final jbd2_journal_stop, which will receive the -EIO error. 2574 * 2575 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2576 * which will be recorded (if possible) in the journal superblock. This 2577 * allows a client to record failure conditions in the middle of a 2578 * transaction without having to complete the transaction to record the 2579 * failure to disk. ext3_error, for example, now uses this 2580 * functionality. 2581 * 2582 */ 2583 2584 void jbd2_journal_abort(journal_t *journal, int errno) 2585 { 2586 transaction_t *transaction; 2587 2588 /* 2589 * Lock the aborting procedure until everything is done, this avoid 2590 * races between filesystem's error handling flow (e.g. ext4_abort()), 2591 * ensure panic after the error info is written into journal's 2592 * superblock. 2593 */ 2594 mutex_lock(&journal->j_abort_mutex); 2595 /* 2596 * ESHUTDOWN always takes precedence because a file system check 2597 * caused by any other journal abort error is not required after 2598 * a shutdown triggered. 2599 */ 2600 write_lock(&journal->j_state_lock); 2601 if (journal->j_flags & JBD2_ABORT) { 2602 int old_errno = journal->j_errno; 2603 2604 write_unlock(&journal->j_state_lock); 2605 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2606 journal->j_errno = errno; 2607 jbd2_journal_update_sb_errno(journal); 2608 } 2609 mutex_unlock(&journal->j_abort_mutex); 2610 return; 2611 } 2612 2613 /* 2614 * Mark the abort as occurred and start current running transaction 2615 * to release all journaled buffer. 2616 */ 2617 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2618 2619 journal->j_flags |= JBD2_ABORT; 2620 journal->j_errno = errno; 2621 transaction = journal->j_running_transaction; 2622 if (transaction) 2623 __jbd2_log_start_commit(journal, transaction->t_tid); 2624 write_unlock(&journal->j_state_lock); 2625 2626 /* 2627 * Record errno to the journal super block, so that fsck and jbd2 2628 * layer could realise that a filesystem check is needed. 2629 */ 2630 jbd2_journal_update_sb_errno(journal); 2631 mutex_unlock(&journal->j_abort_mutex); 2632 } 2633 2634 /** 2635 * jbd2_journal_errno() - returns the journal's error state. 2636 * @journal: journal to examine. 2637 * 2638 * This is the errno number set with jbd2_journal_abort(), the last 2639 * time the journal was mounted - if the journal was stopped 2640 * without calling abort this will be 0. 2641 * 2642 * If the journal has been aborted on this mount time -EROFS will 2643 * be returned. 2644 */ 2645 int jbd2_journal_errno(journal_t *journal) 2646 { 2647 int err; 2648 2649 read_lock(&journal->j_state_lock); 2650 if (journal->j_flags & JBD2_ABORT) 2651 err = -EROFS; 2652 else 2653 err = journal->j_errno; 2654 read_unlock(&journal->j_state_lock); 2655 return err; 2656 } 2657 2658 /** 2659 * jbd2_journal_clear_err() - clears the journal's error state 2660 * @journal: journal to act on. 2661 * 2662 * An error must be cleared or acked to take a FS out of readonly 2663 * mode. 2664 */ 2665 int jbd2_journal_clear_err(journal_t *journal) 2666 { 2667 int err = 0; 2668 2669 write_lock(&journal->j_state_lock); 2670 if (journal->j_flags & JBD2_ABORT) 2671 err = -EROFS; 2672 else 2673 journal->j_errno = 0; 2674 write_unlock(&journal->j_state_lock); 2675 return err; 2676 } 2677 2678 /** 2679 * jbd2_journal_ack_err() - Ack journal err. 2680 * @journal: journal to act on. 2681 * 2682 * An error must be cleared or acked to take a FS out of readonly 2683 * mode. 2684 */ 2685 void jbd2_journal_ack_err(journal_t *journal) 2686 { 2687 write_lock(&journal->j_state_lock); 2688 if (journal->j_errno) 2689 journal->j_flags |= JBD2_ACK_ERR; 2690 write_unlock(&journal->j_state_lock); 2691 } 2692 2693 int jbd2_journal_blocks_per_page(struct inode *inode) 2694 { 2695 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2696 } 2697 2698 /* 2699 * helper functions to deal with 32 or 64bit block numbers. 2700 */ 2701 size_t journal_tag_bytes(journal_t *journal) 2702 { 2703 size_t sz; 2704 2705 if (jbd2_has_feature_csum3(journal)) 2706 return sizeof(journal_block_tag3_t); 2707 2708 sz = sizeof(journal_block_tag_t); 2709 2710 if (jbd2_has_feature_csum2(journal)) 2711 sz += sizeof(__u16); 2712 2713 if (jbd2_has_feature_64bit(journal)) 2714 return sz; 2715 else 2716 return sz - sizeof(__u32); 2717 } 2718 2719 /* 2720 * JBD memory management 2721 * 2722 * These functions are used to allocate block-sized chunks of memory 2723 * used for making copies of buffer_head data. Very often it will be 2724 * page-sized chunks of data, but sometimes it will be in 2725 * sub-page-size chunks. (For example, 16k pages on Power systems 2726 * with a 4k block file system.) For blocks smaller than a page, we 2727 * use a SLAB allocator. There are slab caches for each block size, 2728 * which are allocated at mount time, if necessary, and we only free 2729 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2730 * this reason we don't need to a mutex to protect access to 2731 * jbd2_slab[] allocating or releasing memory; only in 2732 * jbd2_journal_create_slab(). 2733 */ 2734 #define JBD2_MAX_SLABS 8 2735 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2736 2737 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2738 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2739 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2740 }; 2741 2742 2743 static void jbd2_journal_destroy_slabs(void) 2744 { 2745 int i; 2746 2747 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2748 kmem_cache_destroy(jbd2_slab[i]); 2749 jbd2_slab[i] = NULL; 2750 } 2751 } 2752 2753 static int jbd2_journal_create_slab(size_t size) 2754 { 2755 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2756 int i = order_base_2(size) - 10; 2757 size_t slab_size; 2758 2759 if (size == PAGE_SIZE) 2760 return 0; 2761 2762 if (i >= JBD2_MAX_SLABS) 2763 return -EINVAL; 2764 2765 if (unlikely(i < 0)) 2766 i = 0; 2767 mutex_lock(&jbd2_slab_create_mutex); 2768 if (jbd2_slab[i]) { 2769 mutex_unlock(&jbd2_slab_create_mutex); 2770 return 0; /* Already created */ 2771 } 2772 2773 slab_size = 1 << (i+10); 2774 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2775 slab_size, 0, NULL); 2776 mutex_unlock(&jbd2_slab_create_mutex); 2777 if (!jbd2_slab[i]) { 2778 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2779 return -ENOMEM; 2780 } 2781 return 0; 2782 } 2783 2784 static struct kmem_cache *get_slab(size_t size) 2785 { 2786 int i = order_base_2(size) - 10; 2787 2788 BUG_ON(i >= JBD2_MAX_SLABS); 2789 if (unlikely(i < 0)) 2790 i = 0; 2791 BUG_ON(jbd2_slab[i] == NULL); 2792 return jbd2_slab[i]; 2793 } 2794 2795 void *jbd2_alloc(size_t size, gfp_t flags) 2796 { 2797 void *ptr; 2798 2799 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2800 2801 if (size < PAGE_SIZE) 2802 ptr = kmem_cache_alloc(get_slab(size), flags); 2803 else 2804 ptr = (void *)__get_free_pages(flags, get_order(size)); 2805 2806 /* Check alignment; SLUB has gotten this wrong in the past, 2807 * and this can lead to user data corruption! */ 2808 BUG_ON(((unsigned long) ptr) & (size-1)); 2809 2810 return ptr; 2811 } 2812 2813 void jbd2_free(void *ptr, size_t size) 2814 { 2815 if (size < PAGE_SIZE) 2816 kmem_cache_free(get_slab(size), ptr); 2817 else 2818 free_pages((unsigned long)ptr, get_order(size)); 2819 }; 2820 2821 /* 2822 * Journal_head storage management 2823 */ 2824 static struct kmem_cache *jbd2_journal_head_cache; 2825 #ifdef CONFIG_JBD2_DEBUG 2826 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2827 #endif 2828 2829 static int __init jbd2_journal_init_journal_head_cache(void) 2830 { 2831 J_ASSERT(!jbd2_journal_head_cache); 2832 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2833 sizeof(struct journal_head), 2834 0, /* offset */ 2835 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2836 NULL); /* ctor */ 2837 if (!jbd2_journal_head_cache) { 2838 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2839 return -ENOMEM; 2840 } 2841 return 0; 2842 } 2843 2844 static void jbd2_journal_destroy_journal_head_cache(void) 2845 { 2846 kmem_cache_destroy(jbd2_journal_head_cache); 2847 jbd2_journal_head_cache = NULL; 2848 } 2849 2850 /* 2851 * journal_head splicing and dicing 2852 */ 2853 static struct journal_head *journal_alloc_journal_head(void) 2854 { 2855 struct journal_head *ret; 2856 2857 #ifdef CONFIG_JBD2_DEBUG 2858 atomic_inc(&nr_journal_heads); 2859 #endif 2860 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2861 if (!ret) { 2862 jbd_debug(1, "out of memory for journal_head\n"); 2863 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2864 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2865 GFP_NOFS | __GFP_NOFAIL); 2866 } 2867 if (ret) 2868 spin_lock_init(&ret->b_state_lock); 2869 return ret; 2870 } 2871 2872 static void journal_free_journal_head(struct journal_head *jh) 2873 { 2874 #ifdef CONFIG_JBD2_DEBUG 2875 atomic_dec(&nr_journal_heads); 2876 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2877 #endif 2878 kmem_cache_free(jbd2_journal_head_cache, jh); 2879 } 2880 2881 /* 2882 * A journal_head is attached to a buffer_head whenever JBD has an 2883 * interest in the buffer. 2884 * 2885 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2886 * is set. This bit is tested in core kernel code where we need to take 2887 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2888 * there. 2889 * 2890 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2891 * 2892 * When a buffer has its BH_JBD bit set it is immune from being released by 2893 * core kernel code, mainly via ->b_count. 2894 * 2895 * A journal_head is detached from its buffer_head when the journal_head's 2896 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2897 * transaction (b_cp_transaction) hold their references to b_jcount. 2898 * 2899 * Various places in the kernel want to attach a journal_head to a buffer_head 2900 * _before_ attaching the journal_head to a transaction. To protect the 2901 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2902 * journal_head's b_jcount refcount by one. The caller must call 2903 * jbd2_journal_put_journal_head() to undo this. 2904 * 2905 * So the typical usage would be: 2906 * 2907 * (Attach a journal_head if needed. Increments b_jcount) 2908 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2909 * ... 2910 * (Get another reference for transaction) 2911 * jbd2_journal_grab_journal_head(bh); 2912 * jh->b_transaction = xxx; 2913 * (Put original reference) 2914 * jbd2_journal_put_journal_head(jh); 2915 */ 2916 2917 /* 2918 * Give a buffer_head a journal_head. 2919 * 2920 * May sleep. 2921 */ 2922 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2923 { 2924 struct journal_head *jh; 2925 struct journal_head *new_jh = NULL; 2926 2927 repeat: 2928 if (!buffer_jbd(bh)) 2929 new_jh = journal_alloc_journal_head(); 2930 2931 jbd_lock_bh_journal_head(bh); 2932 if (buffer_jbd(bh)) { 2933 jh = bh2jh(bh); 2934 } else { 2935 J_ASSERT_BH(bh, 2936 (atomic_read(&bh->b_count) > 0) || 2937 (bh->b_page && bh->b_page->mapping)); 2938 2939 if (!new_jh) { 2940 jbd_unlock_bh_journal_head(bh); 2941 goto repeat; 2942 } 2943 2944 jh = new_jh; 2945 new_jh = NULL; /* We consumed it */ 2946 set_buffer_jbd(bh); 2947 bh->b_private = jh; 2948 jh->b_bh = bh; 2949 get_bh(bh); 2950 BUFFER_TRACE(bh, "added journal_head"); 2951 } 2952 jh->b_jcount++; 2953 jbd_unlock_bh_journal_head(bh); 2954 if (new_jh) 2955 journal_free_journal_head(new_jh); 2956 return bh->b_private; 2957 } 2958 2959 /* 2960 * Grab a ref against this buffer_head's journal_head. If it ended up not 2961 * having a journal_head, return NULL 2962 */ 2963 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2964 { 2965 struct journal_head *jh = NULL; 2966 2967 jbd_lock_bh_journal_head(bh); 2968 if (buffer_jbd(bh)) { 2969 jh = bh2jh(bh); 2970 jh->b_jcount++; 2971 } 2972 jbd_unlock_bh_journal_head(bh); 2973 return jh; 2974 } 2975 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2976 2977 static void __journal_remove_journal_head(struct buffer_head *bh) 2978 { 2979 struct journal_head *jh = bh2jh(bh); 2980 2981 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2982 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2983 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2984 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2985 J_ASSERT_BH(bh, buffer_jbd(bh)); 2986 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2987 BUFFER_TRACE(bh, "remove journal_head"); 2988 2989 /* Unlink before dropping the lock */ 2990 bh->b_private = NULL; 2991 jh->b_bh = NULL; /* debug, really */ 2992 clear_buffer_jbd(bh); 2993 } 2994 2995 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2996 { 2997 if (jh->b_frozen_data) { 2998 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2999 jbd2_free(jh->b_frozen_data, b_size); 3000 } 3001 if (jh->b_committed_data) { 3002 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3003 jbd2_free(jh->b_committed_data, b_size); 3004 } 3005 journal_free_journal_head(jh); 3006 } 3007 3008 /* 3009 * Drop a reference on the passed journal_head. If it fell to zero then 3010 * release the journal_head from the buffer_head. 3011 */ 3012 void jbd2_journal_put_journal_head(struct journal_head *jh) 3013 { 3014 struct buffer_head *bh = jh2bh(jh); 3015 3016 jbd_lock_bh_journal_head(bh); 3017 J_ASSERT_JH(jh, jh->b_jcount > 0); 3018 --jh->b_jcount; 3019 if (!jh->b_jcount) { 3020 __journal_remove_journal_head(bh); 3021 jbd_unlock_bh_journal_head(bh); 3022 journal_release_journal_head(jh, bh->b_size); 3023 __brelse(bh); 3024 } else { 3025 jbd_unlock_bh_journal_head(bh); 3026 } 3027 } 3028 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3029 3030 /* 3031 * Initialize jbd inode head 3032 */ 3033 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3034 { 3035 jinode->i_transaction = NULL; 3036 jinode->i_next_transaction = NULL; 3037 jinode->i_vfs_inode = inode; 3038 jinode->i_flags = 0; 3039 jinode->i_dirty_start = 0; 3040 jinode->i_dirty_end = 0; 3041 INIT_LIST_HEAD(&jinode->i_list); 3042 } 3043 3044 /* 3045 * Function to be called before we start removing inode from memory (i.e., 3046 * clear_inode() is a fine place to be called from). It removes inode from 3047 * transaction's lists. 3048 */ 3049 void jbd2_journal_release_jbd_inode(journal_t *journal, 3050 struct jbd2_inode *jinode) 3051 { 3052 if (!journal) 3053 return; 3054 restart: 3055 spin_lock(&journal->j_list_lock); 3056 /* Is commit writing out inode - we have to wait */ 3057 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3058 wait_queue_head_t *wq; 3059 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3060 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3061 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3062 spin_unlock(&journal->j_list_lock); 3063 schedule(); 3064 finish_wait(wq, &wait.wq_entry); 3065 goto restart; 3066 } 3067 3068 if (jinode->i_transaction) { 3069 list_del(&jinode->i_list); 3070 jinode->i_transaction = NULL; 3071 } 3072 spin_unlock(&journal->j_list_lock); 3073 } 3074 3075 3076 #ifdef CONFIG_PROC_FS 3077 3078 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3079 3080 static void __init jbd2_create_jbd_stats_proc_entry(void) 3081 { 3082 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3083 } 3084 3085 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3086 { 3087 if (proc_jbd2_stats) 3088 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3089 } 3090 3091 #else 3092 3093 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3094 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3095 3096 #endif 3097 3098 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3099 3100 static int __init jbd2_journal_init_inode_cache(void) 3101 { 3102 J_ASSERT(!jbd2_inode_cache); 3103 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3104 if (!jbd2_inode_cache) { 3105 pr_emerg("JBD2: failed to create inode cache\n"); 3106 return -ENOMEM; 3107 } 3108 return 0; 3109 } 3110 3111 static int __init jbd2_journal_init_handle_cache(void) 3112 { 3113 J_ASSERT(!jbd2_handle_cache); 3114 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3115 if (!jbd2_handle_cache) { 3116 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3117 return -ENOMEM; 3118 } 3119 return 0; 3120 } 3121 3122 static void jbd2_journal_destroy_inode_cache(void) 3123 { 3124 kmem_cache_destroy(jbd2_inode_cache); 3125 jbd2_inode_cache = NULL; 3126 } 3127 3128 static void jbd2_journal_destroy_handle_cache(void) 3129 { 3130 kmem_cache_destroy(jbd2_handle_cache); 3131 jbd2_handle_cache = NULL; 3132 } 3133 3134 /* 3135 * Module startup and shutdown 3136 */ 3137 3138 static int __init journal_init_caches(void) 3139 { 3140 int ret; 3141 3142 ret = jbd2_journal_init_revoke_record_cache(); 3143 if (ret == 0) 3144 ret = jbd2_journal_init_revoke_table_cache(); 3145 if (ret == 0) 3146 ret = jbd2_journal_init_journal_head_cache(); 3147 if (ret == 0) 3148 ret = jbd2_journal_init_handle_cache(); 3149 if (ret == 0) 3150 ret = jbd2_journal_init_inode_cache(); 3151 if (ret == 0) 3152 ret = jbd2_journal_init_transaction_cache(); 3153 return ret; 3154 } 3155 3156 static void jbd2_journal_destroy_caches(void) 3157 { 3158 jbd2_journal_destroy_revoke_record_cache(); 3159 jbd2_journal_destroy_revoke_table_cache(); 3160 jbd2_journal_destroy_journal_head_cache(); 3161 jbd2_journal_destroy_handle_cache(); 3162 jbd2_journal_destroy_inode_cache(); 3163 jbd2_journal_destroy_transaction_cache(); 3164 jbd2_journal_destroy_slabs(); 3165 } 3166 3167 static int __init journal_init(void) 3168 { 3169 int ret; 3170 3171 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3172 3173 ret = journal_init_caches(); 3174 if (ret == 0) { 3175 jbd2_create_jbd_stats_proc_entry(); 3176 } else { 3177 jbd2_journal_destroy_caches(); 3178 } 3179 return ret; 3180 } 3181 3182 static void __exit journal_exit(void) 3183 { 3184 #ifdef CONFIG_JBD2_DEBUG 3185 int n = atomic_read(&nr_journal_heads); 3186 if (n) 3187 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3188 #endif 3189 jbd2_remove_jbd_stats_proc_entry(); 3190 jbd2_journal_destroy_caches(); 3191 } 3192 3193 MODULE_LICENSE("GPL"); 3194 module_init(journal_init); 3195 module_exit(journal_exit); 3196 3197