1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_forget); 64 #if 0 65 EXPORT_SYMBOL(journal_sync_buffer); 66 #endif 67 EXPORT_SYMBOL(jbd2_journal_flush); 68 EXPORT_SYMBOL(jbd2_journal_revoke); 69 70 EXPORT_SYMBOL(jbd2_journal_init_dev); 71 EXPORT_SYMBOL(jbd2_journal_init_inode); 72 EXPORT_SYMBOL(jbd2_journal_check_used_features); 73 EXPORT_SYMBOL(jbd2_journal_check_available_features); 74 EXPORT_SYMBOL(jbd2_journal_set_features); 75 EXPORT_SYMBOL(jbd2_journal_load); 76 EXPORT_SYMBOL(jbd2_journal_destroy); 77 EXPORT_SYMBOL(jbd2_journal_abort); 78 EXPORT_SYMBOL(jbd2_journal_errno); 79 EXPORT_SYMBOL(jbd2_journal_ack_err); 80 EXPORT_SYMBOL(jbd2_journal_clear_err); 81 EXPORT_SYMBOL(jbd2_log_wait_commit); 82 EXPORT_SYMBOL(jbd2_log_start_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_file_inode); 91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 94 EXPORT_SYMBOL(jbd2_inode_cache); 95 96 static void __journal_abort_soft (journal_t *journal, int errno); 97 static int jbd2_journal_create_slab(size_t slab_size); 98 99 /* Checksumming functions */ 100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 101 { 102 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 103 return 1; 104 105 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 106 } 107 108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 109 { 110 __u32 csum, old_csum; 111 112 old_csum = sb->s_checksum; 113 sb->s_checksum = 0; 114 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 115 sb->s_checksum = old_csum; 116 117 return cpu_to_be32(csum); 118 } 119 120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 121 { 122 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 123 return 1; 124 125 return sb->s_checksum == jbd2_superblock_csum(j, sb); 126 } 127 128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 129 { 130 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 131 return; 132 133 sb->s_checksum = jbd2_superblock_csum(j, sb); 134 } 135 136 /* 137 * Helper function used to manage commit timeouts 138 */ 139 140 static void commit_timeout(unsigned long __data) 141 { 142 struct task_struct * p = (struct task_struct *) __data; 143 144 wake_up_process(p); 145 } 146 147 /* 148 * kjournald2: The main thread function used to manage a logging device 149 * journal. 150 * 151 * This kernel thread is responsible for two things: 152 * 153 * 1) COMMIT: Every so often we need to commit the current state of the 154 * filesystem to disk. The journal thread is responsible for writing 155 * all of the metadata buffers to disk. 156 * 157 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 158 * of the data in that part of the log has been rewritten elsewhere on 159 * the disk. Flushing these old buffers to reclaim space in the log is 160 * known as checkpointing, and this thread is responsible for that job. 161 */ 162 163 static int kjournald2(void *arg) 164 { 165 journal_t *journal = arg; 166 transaction_t *transaction; 167 168 /* 169 * Set up an interval timer which can be used to trigger a commit wakeup 170 * after the commit interval expires 171 */ 172 setup_timer(&journal->j_commit_timer, commit_timeout, 173 (unsigned long)current); 174 175 set_freezable(); 176 177 /* Record that the journal thread is running */ 178 journal->j_task = current; 179 wake_up(&journal->j_wait_done_commit); 180 181 /* 182 * And now, wait forever for commit wakeup events. 183 */ 184 write_lock(&journal->j_state_lock); 185 186 loop: 187 if (journal->j_flags & JBD2_UNMOUNT) 188 goto end_loop; 189 190 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 191 journal->j_commit_sequence, journal->j_commit_request); 192 193 if (journal->j_commit_sequence != journal->j_commit_request) { 194 jbd_debug(1, "OK, requests differ\n"); 195 write_unlock(&journal->j_state_lock); 196 del_timer_sync(&journal->j_commit_timer); 197 jbd2_journal_commit_transaction(journal); 198 write_lock(&journal->j_state_lock); 199 goto loop; 200 } 201 202 wake_up(&journal->j_wait_done_commit); 203 if (freezing(current)) { 204 /* 205 * The simpler the better. Flushing journal isn't a 206 * good idea, because that depends on threads that may 207 * be already stopped. 208 */ 209 jbd_debug(1, "Now suspending kjournald2\n"); 210 write_unlock(&journal->j_state_lock); 211 try_to_freeze(); 212 write_lock(&journal->j_state_lock); 213 } else { 214 /* 215 * We assume on resume that commits are already there, 216 * so we don't sleep 217 */ 218 DEFINE_WAIT(wait); 219 int should_sleep = 1; 220 221 prepare_to_wait(&journal->j_wait_commit, &wait, 222 TASK_INTERRUPTIBLE); 223 if (journal->j_commit_sequence != journal->j_commit_request) 224 should_sleep = 0; 225 transaction = journal->j_running_transaction; 226 if (transaction && time_after_eq(jiffies, 227 transaction->t_expires)) 228 should_sleep = 0; 229 if (journal->j_flags & JBD2_UNMOUNT) 230 should_sleep = 0; 231 if (should_sleep) { 232 write_unlock(&journal->j_state_lock); 233 schedule(); 234 write_lock(&journal->j_state_lock); 235 } 236 finish_wait(&journal->j_wait_commit, &wait); 237 } 238 239 jbd_debug(1, "kjournald2 wakes\n"); 240 241 /* 242 * Were we woken up by a commit wakeup event? 243 */ 244 transaction = journal->j_running_transaction; 245 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 246 journal->j_commit_request = transaction->t_tid; 247 jbd_debug(1, "woke because of timeout\n"); 248 } 249 goto loop; 250 251 end_loop: 252 write_unlock(&journal->j_state_lock); 253 del_timer_sync(&journal->j_commit_timer); 254 journal->j_task = NULL; 255 wake_up(&journal->j_wait_done_commit); 256 jbd_debug(1, "Journal thread exiting.\n"); 257 return 0; 258 } 259 260 static int jbd2_journal_start_thread(journal_t *journal) 261 { 262 struct task_struct *t; 263 264 t = kthread_run(kjournald2, journal, "jbd2/%s", 265 journal->j_devname); 266 if (IS_ERR(t)) 267 return PTR_ERR(t); 268 269 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 270 return 0; 271 } 272 273 static void journal_kill_thread(journal_t *journal) 274 { 275 write_lock(&journal->j_state_lock); 276 journal->j_flags |= JBD2_UNMOUNT; 277 278 while (journal->j_task) { 279 wake_up(&journal->j_wait_commit); 280 write_unlock(&journal->j_state_lock); 281 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 282 write_lock(&journal->j_state_lock); 283 } 284 write_unlock(&journal->j_state_lock); 285 } 286 287 /* 288 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 289 * 290 * Writes a metadata buffer to a given disk block. The actual IO is not 291 * performed but a new buffer_head is constructed which labels the data 292 * to be written with the correct destination disk block. 293 * 294 * Any magic-number escaping which needs to be done will cause a 295 * copy-out here. If the buffer happens to start with the 296 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 297 * magic number is only written to the log for descripter blocks. In 298 * this case, we copy the data and replace the first word with 0, and we 299 * return a result code which indicates that this buffer needs to be 300 * marked as an escaped buffer in the corresponding log descriptor 301 * block. The missing word can then be restored when the block is read 302 * during recovery. 303 * 304 * If the source buffer has already been modified by a new transaction 305 * since we took the last commit snapshot, we use the frozen copy of 306 * that data for IO. If we end up using the existing buffer_head's data 307 * for the write, then we *have* to lock the buffer to prevent anyone 308 * else from using and possibly modifying it while the IO is in 309 * progress. 310 * 311 * The function returns a pointer to the buffer_heads to be used for IO. 312 * 313 * We assume that the journal has already been locked in this function. 314 * 315 * Return value: 316 * <0: Error 317 * >=0: Finished OK 318 * 319 * On success: 320 * Bit 0 set == escape performed on the data 321 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 322 */ 323 324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 325 struct journal_head *jh_in, 326 struct journal_head **jh_out, 327 unsigned long long blocknr) 328 { 329 int need_copy_out = 0; 330 int done_copy_out = 0; 331 int do_escape = 0; 332 char *mapped_data; 333 struct buffer_head *new_bh; 334 struct journal_head *new_jh; 335 struct page *new_page; 336 unsigned int new_offset; 337 struct buffer_head *bh_in = jh2bh(jh_in); 338 journal_t *journal = transaction->t_journal; 339 340 /* 341 * The buffer really shouldn't be locked: only the current committing 342 * transaction is allowed to write it, so nobody else is allowed 343 * to do any IO. 344 * 345 * akpm: except if we're journalling data, and write() output is 346 * also part of a shared mapping, and another thread has 347 * decided to launch a writepage() against this buffer. 348 */ 349 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 350 351 retry_alloc: 352 new_bh = alloc_buffer_head(GFP_NOFS); 353 if (!new_bh) { 354 /* 355 * Failure is not an option, but __GFP_NOFAIL is going 356 * away; so we retry ourselves here. 357 */ 358 congestion_wait(BLK_RW_ASYNC, HZ/50); 359 goto retry_alloc; 360 } 361 362 /* keep subsequent assertions sane */ 363 new_bh->b_state = 0; 364 init_buffer(new_bh, NULL, NULL); 365 atomic_set(&new_bh->b_count, 1); 366 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 367 368 /* 369 * If a new transaction has already done a buffer copy-out, then 370 * we use that version of the data for the commit. 371 */ 372 jbd_lock_bh_state(bh_in); 373 repeat: 374 if (jh_in->b_frozen_data) { 375 done_copy_out = 1; 376 new_page = virt_to_page(jh_in->b_frozen_data); 377 new_offset = offset_in_page(jh_in->b_frozen_data); 378 } else { 379 new_page = jh2bh(jh_in)->b_page; 380 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 381 } 382 383 mapped_data = kmap_atomic(new_page); 384 /* 385 * Fire data frozen trigger if data already wasn't frozen. Do this 386 * before checking for escaping, as the trigger may modify the magic 387 * offset. If a copy-out happens afterwards, it will have the correct 388 * data in the buffer. 389 */ 390 if (!done_copy_out) 391 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 392 jh_in->b_triggers); 393 394 /* 395 * Check for escaping 396 */ 397 if (*((__be32 *)(mapped_data + new_offset)) == 398 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 399 need_copy_out = 1; 400 do_escape = 1; 401 } 402 kunmap_atomic(mapped_data); 403 404 /* 405 * Do we need to do a data copy? 406 */ 407 if (need_copy_out && !done_copy_out) { 408 char *tmp; 409 410 jbd_unlock_bh_state(bh_in); 411 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 412 if (!tmp) { 413 jbd2_journal_put_journal_head(new_jh); 414 return -ENOMEM; 415 } 416 jbd_lock_bh_state(bh_in); 417 if (jh_in->b_frozen_data) { 418 jbd2_free(tmp, bh_in->b_size); 419 goto repeat; 420 } 421 422 jh_in->b_frozen_data = tmp; 423 mapped_data = kmap_atomic(new_page); 424 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 425 kunmap_atomic(mapped_data); 426 427 new_page = virt_to_page(tmp); 428 new_offset = offset_in_page(tmp); 429 done_copy_out = 1; 430 431 /* 432 * This isn't strictly necessary, as we're using frozen 433 * data for the escaping, but it keeps consistency with 434 * b_frozen_data usage. 435 */ 436 jh_in->b_frozen_triggers = jh_in->b_triggers; 437 } 438 439 /* 440 * Did we need to do an escaping? Now we've done all the 441 * copying, we can finally do so. 442 */ 443 if (do_escape) { 444 mapped_data = kmap_atomic(new_page); 445 *((unsigned int *)(mapped_data + new_offset)) = 0; 446 kunmap_atomic(mapped_data); 447 } 448 449 set_bh_page(new_bh, new_page, new_offset); 450 new_jh->b_transaction = NULL; 451 new_bh->b_size = jh2bh(jh_in)->b_size; 452 new_bh->b_bdev = transaction->t_journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 set_buffer_mapped(new_bh); 455 set_buffer_dirty(new_bh); 456 457 *jh_out = new_jh; 458 459 /* 460 * The to-be-written buffer needs to get moved to the io queue, 461 * and the original buffer whose contents we are shadowing or 462 * copying is moved to the transaction's shadow queue. 463 */ 464 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 465 spin_lock(&journal->j_list_lock); 466 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 467 spin_unlock(&journal->j_list_lock); 468 jbd_unlock_bh_state(bh_in); 469 470 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 471 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 472 473 return do_escape | (done_copy_out << 1); 474 } 475 476 /* 477 * Allocation code for the journal file. Manage the space left in the 478 * journal, so that we can begin checkpointing when appropriate. 479 */ 480 481 /* 482 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 483 * 484 * Called with the journal already locked. 485 * 486 * Called under j_state_lock 487 */ 488 489 int __jbd2_log_space_left(journal_t *journal) 490 { 491 int left = journal->j_free; 492 493 /* assert_spin_locked(&journal->j_state_lock); */ 494 495 /* 496 * Be pessimistic here about the number of those free blocks which 497 * might be required for log descriptor control blocks. 498 */ 499 500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 501 502 left -= MIN_LOG_RESERVED_BLOCKS; 503 504 if (left <= 0) 505 return 0; 506 left -= (left >> 3); 507 return left; 508 } 509 510 /* 511 * Called with j_state_lock locked for writing. 512 * Returns true if a transaction commit was started. 513 */ 514 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 515 { 516 /* 517 * The only transaction we can possibly wait upon is the 518 * currently running transaction (if it exists). Otherwise, 519 * the target tid must be an old one. 520 */ 521 if (journal->j_running_transaction && 522 journal->j_running_transaction->t_tid == target) { 523 /* 524 * We want a new commit: OK, mark the request and wakeup the 525 * commit thread. We do _not_ do the commit ourselves. 526 */ 527 528 journal->j_commit_request = target; 529 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 530 journal->j_commit_request, 531 journal->j_commit_sequence); 532 wake_up(&journal->j_wait_commit); 533 return 1; 534 } else if (!tid_geq(journal->j_commit_request, target)) 535 /* This should never happen, but if it does, preserve 536 the evidence before kjournald goes into a loop and 537 increments j_commit_sequence beyond all recognition. */ 538 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 539 journal->j_commit_request, 540 journal->j_commit_sequence, 541 target, journal->j_running_transaction ? 542 journal->j_running_transaction->t_tid : 0); 543 return 0; 544 } 545 546 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 547 { 548 int ret; 549 550 write_lock(&journal->j_state_lock); 551 ret = __jbd2_log_start_commit(journal, tid); 552 write_unlock(&journal->j_state_lock); 553 return ret; 554 } 555 556 /* 557 * Force and wait upon a commit if the calling process is not within 558 * transaction. This is used for forcing out undo-protected data which contains 559 * bitmaps, when the fs is running out of space. 560 * 561 * We can only force the running transaction if we don't have an active handle; 562 * otherwise, we will deadlock. 563 * 564 * Returns true if a transaction was started. 565 */ 566 int jbd2_journal_force_commit_nested(journal_t *journal) 567 { 568 transaction_t *transaction = NULL; 569 tid_t tid; 570 int need_to_start = 0; 571 572 read_lock(&journal->j_state_lock); 573 if (journal->j_running_transaction && !current->journal_info) { 574 transaction = journal->j_running_transaction; 575 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 576 need_to_start = 1; 577 } else if (journal->j_committing_transaction) 578 transaction = journal->j_committing_transaction; 579 580 if (!transaction) { 581 read_unlock(&journal->j_state_lock); 582 return 0; /* Nothing to retry */ 583 } 584 585 tid = transaction->t_tid; 586 read_unlock(&journal->j_state_lock); 587 if (need_to_start) 588 jbd2_log_start_commit(journal, tid); 589 jbd2_log_wait_commit(journal, tid); 590 return 1; 591 } 592 593 /* 594 * Start a commit of the current running transaction (if any). Returns true 595 * if a transaction is going to be committed (or is currently already 596 * committing), and fills its tid in at *ptid 597 */ 598 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 599 { 600 int ret = 0; 601 602 write_lock(&journal->j_state_lock); 603 if (journal->j_running_transaction) { 604 tid_t tid = journal->j_running_transaction->t_tid; 605 606 __jbd2_log_start_commit(journal, tid); 607 /* There's a running transaction and we've just made sure 608 * it's commit has been scheduled. */ 609 if (ptid) 610 *ptid = tid; 611 ret = 1; 612 } else if (journal->j_committing_transaction) { 613 /* 614 * If commit has been started, then we have to wait for 615 * completion of that transaction. 616 */ 617 if (ptid) 618 *ptid = journal->j_committing_transaction->t_tid; 619 ret = 1; 620 } 621 write_unlock(&journal->j_state_lock); 622 return ret; 623 } 624 625 /* 626 * Return 1 if a given transaction has not yet sent barrier request 627 * connected with a transaction commit. If 0 is returned, transaction 628 * may or may not have sent the barrier. Used to avoid sending barrier 629 * twice in common cases. 630 */ 631 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 632 { 633 int ret = 0; 634 transaction_t *commit_trans; 635 636 if (!(journal->j_flags & JBD2_BARRIER)) 637 return 0; 638 read_lock(&journal->j_state_lock); 639 /* Transaction already committed? */ 640 if (tid_geq(journal->j_commit_sequence, tid)) 641 goto out; 642 commit_trans = journal->j_committing_transaction; 643 if (!commit_trans || commit_trans->t_tid != tid) { 644 ret = 1; 645 goto out; 646 } 647 /* 648 * Transaction is being committed and we already proceeded to 649 * submitting a flush to fs partition? 650 */ 651 if (journal->j_fs_dev != journal->j_dev) { 652 if (!commit_trans->t_need_data_flush || 653 commit_trans->t_state >= T_COMMIT_DFLUSH) 654 goto out; 655 } else { 656 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 657 goto out; 658 } 659 ret = 1; 660 out: 661 read_unlock(&journal->j_state_lock); 662 return ret; 663 } 664 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 665 666 /* 667 * Wait for a specified commit to complete. 668 * The caller may not hold the journal lock. 669 */ 670 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 671 { 672 int err = 0; 673 674 read_lock(&journal->j_state_lock); 675 #ifdef CONFIG_JBD2_DEBUG 676 if (!tid_geq(journal->j_commit_request, tid)) { 677 printk(KERN_EMERG 678 "%s: error: j_commit_request=%d, tid=%d\n", 679 __func__, journal->j_commit_request, tid); 680 } 681 #endif 682 while (tid_gt(tid, journal->j_commit_sequence)) { 683 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 684 tid, journal->j_commit_sequence); 685 wake_up(&journal->j_wait_commit); 686 read_unlock(&journal->j_state_lock); 687 wait_event(journal->j_wait_done_commit, 688 !tid_gt(tid, journal->j_commit_sequence)); 689 read_lock(&journal->j_state_lock); 690 } 691 read_unlock(&journal->j_state_lock); 692 693 if (unlikely(is_journal_aborted(journal))) { 694 printk(KERN_EMERG "journal commit I/O error\n"); 695 err = -EIO; 696 } 697 return err; 698 } 699 700 /* 701 * Log buffer allocation routines: 702 */ 703 704 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 705 { 706 unsigned long blocknr; 707 708 write_lock(&journal->j_state_lock); 709 J_ASSERT(journal->j_free > 1); 710 711 blocknr = journal->j_head; 712 journal->j_head++; 713 journal->j_free--; 714 if (journal->j_head == journal->j_last) 715 journal->j_head = journal->j_first; 716 write_unlock(&journal->j_state_lock); 717 return jbd2_journal_bmap(journal, blocknr, retp); 718 } 719 720 /* 721 * Conversion of logical to physical block numbers for the journal 722 * 723 * On external journals the journal blocks are identity-mapped, so 724 * this is a no-op. If needed, we can use j_blk_offset - everything is 725 * ready. 726 */ 727 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 728 unsigned long long *retp) 729 { 730 int err = 0; 731 unsigned long long ret; 732 733 if (journal->j_inode) { 734 ret = bmap(journal->j_inode, blocknr); 735 if (ret) 736 *retp = ret; 737 else { 738 printk(KERN_ALERT "%s: journal block not found " 739 "at offset %lu on %s\n", 740 __func__, blocknr, journal->j_devname); 741 err = -EIO; 742 __journal_abort_soft(journal, err); 743 } 744 } else { 745 *retp = blocknr; /* +journal->j_blk_offset */ 746 } 747 return err; 748 } 749 750 /* 751 * We play buffer_head aliasing tricks to write data/metadata blocks to 752 * the journal without copying their contents, but for journal 753 * descriptor blocks we do need to generate bona fide buffers. 754 * 755 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 756 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 757 * But we don't bother doing that, so there will be coherency problems with 758 * mmaps of blockdevs which hold live JBD-controlled filesystems. 759 */ 760 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 761 { 762 struct buffer_head *bh; 763 unsigned long long blocknr; 764 int err; 765 766 err = jbd2_journal_next_log_block(journal, &blocknr); 767 768 if (err) 769 return NULL; 770 771 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 772 if (!bh) 773 return NULL; 774 lock_buffer(bh); 775 memset(bh->b_data, 0, journal->j_blocksize); 776 set_buffer_uptodate(bh); 777 unlock_buffer(bh); 778 BUFFER_TRACE(bh, "return this buffer"); 779 return jbd2_journal_add_journal_head(bh); 780 } 781 782 /* 783 * Return tid of the oldest transaction in the journal and block in the journal 784 * where the transaction starts. 785 * 786 * If the journal is now empty, return which will be the next transaction ID 787 * we will write and where will that transaction start. 788 * 789 * The return value is 0 if journal tail cannot be pushed any further, 1 if 790 * it can. 791 */ 792 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 793 unsigned long *block) 794 { 795 transaction_t *transaction; 796 int ret; 797 798 read_lock(&journal->j_state_lock); 799 spin_lock(&journal->j_list_lock); 800 transaction = journal->j_checkpoint_transactions; 801 if (transaction) { 802 *tid = transaction->t_tid; 803 *block = transaction->t_log_start; 804 } else if ((transaction = journal->j_committing_transaction) != NULL) { 805 *tid = transaction->t_tid; 806 *block = transaction->t_log_start; 807 } else if ((transaction = journal->j_running_transaction) != NULL) { 808 *tid = transaction->t_tid; 809 *block = journal->j_head; 810 } else { 811 *tid = journal->j_transaction_sequence; 812 *block = journal->j_head; 813 } 814 ret = tid_gt(*tid, journal->j_tail_sequence); 815 spin_unlock(&journal->j_list_lock); 816 read_unlock(&journal->j_state_lock); 817 818 return ret; 819 } 820 821 /* 822 * Update information in journal structure and in on disk journal superblock 823 * about log tail. This function does not check whether information passed in 824 * really pushes log tail further. It's responsibility of the caller to make 825 * sure provided log tail information is valid (e.g. by holding 826 * j_checkpoint_mutex all the time between computing log tail and calling this 827 * function as is the case with jbd2_cleanup_journal_tail()). 828 * 829 * Requires j_checkpoint_mutex 830 */ 831 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 832 { 833 unsigned long freed; 834 835 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 836 837 /* 838 * We cannot afford for write to remain in drive's caches since as 839 * soon as we update j_tail, next transaction can start reusing journal 840 * space and if we lose sb update during power failure we'd replay 841 * old transaction with possibly newly overwritten data. 842 */ 843 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 844 write_lock(&journal->j_state_lock); 845 freed = block - journal->j_tail; 846 if (block < journal->j_tail) 847 freed += journal->j_last - journal->j_first; 848 849 trace_jbd2_update_log_tail(journal, tid, block, freed); 850 jbd_debug(1, 851 "Cleaning journal tail from %d to %d (offset %lu), " 852 "freeing %lu\n", 853 journal->j_tail_sequence, tid, block, freed); 854 855 journal->j_free += freed; 856 journal->j_tail_sequence = tid; 857 journal->j_tail = block; 858 write_unlock(&journal->j_state_lock); 859 } 860 861 /* 862 * This is a variaon of __jbd2_update_log_tail which checks for validity of 863 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 864 * with other threads updating log tail. 865 */ 866 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 867 { 868 mutex_lock(&journal->j_checkpoint_mutex); 869 if (tid_gt(tid, journal->j_tail_sequence)) 870 __jbd2_update_log_tail(journal, tid, block); 871 mutex_unlock(&journal->j_checkpoint_mutex); 872 } 873 874 struct jbd2_stats_proc_session { 875 journal_t *journal; 876 struct transaction_stats_s *stats; 877 int start; 878 int max; 879 }; 880 881 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 882 { 883 return *pos ? NULL : SEQ_START_TOKEN; 884 } 885 886 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 887 { 888 return NULL; 889 } 890 891 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 892 { 893 struct jbd2_stats_proc_session *s = seq->private; 894 895 if (v != SEQ_START_TOKEN) 896 return 0; 897 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 898 s->stats->ts_tid, 899 s->journal->j_max_transaction_buffers); 900 if (s->stats->ts_tid == 0) 901 return 0; 902 seq_printf(seq, "average: \n %ums waiting for transaction\n", 903 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 904 seq_printf(seq, " %ums running transaction\n", 905 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 906 seq_printf(seq, " %ums transaction was being locked\n", 907 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 908 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 909 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 910 seq_printf(seq, " %ums logging transaction\n", 911 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 912 seq_printf(seq, " %lluus average transaction commit time\n", 913 div_u64(s->journal->j_average_commit_time, 1000)); 914 seq_printf(seq, " %lu handles per transaction\n", 915 s->stats->run.rs_handle_count / s->stats->ts_tid); 916 seq_printf(seq, " %lu blocks per transaction\n", 917 s->stats->run.rs_blocks / s->stats->ts_tid); 918 seq_printf(seq, " %lu logged blocks per transaction\n", 919 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 920 return 0; 921 } 922 923 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 924 { 925 } 926 927 static const struct seq_operations jbd2_seq_info_ops = { 928 .start = jbd2_seq_info_start, 929 .next = jbd2_seq_info_next, 930 .stop = jbd2_seq_info_stop, 931 .show = jbd2_seq_info_show, 932 }; 933 934 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 935 { 936 journal_t *journal = PDE(inode)->data; 937 struct jbd2_stats_proc_session *s; 938 int rc, size; 939 940 s = kmalloc(sizeof(*s), GFP_KERNEL); 941 if (s == NULL) 942 return -ENOMEM; 943 size = sizeof(struct transaction_stats_s); 944 s->stats = kmalloc(size, GFP_KERNEL); 945 if (s->stats == NULL) { 946 kfree(s); 947 return -ENOMEM; 948 } 949 spin_lock(&journal->j_history_lock); 950 memcpy(s->stats, &journal->j_stats, size); 951 s->journal = journal; 952 spin_unlock(&journal->j_history_lock); 953 954 rc = seq_open(file, &jbd2_seq_info_ops); 955 if (rc == 0) { 956 struct seq_file *m = file->private_data; 957 m->private = s; 958 } else { 959 kfree(s->stats); 960 kfree(s); 961 } 962 return rc; 963 964 } 965 966 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 967 { 968 struct seq_file *seq = file->private_data; 969 struct jbd2_stats_proc_session *s = seq->private; 970 kfree(s->stats); 971 kfree(s); 972 return seq_release(inode, file); 973 } 974 975 static const struct file_operations jbd2_seq_info_fops = { 976 .owner = THIS_MODULE, 977 .open = jbd2_seq_info_open, 978 .read = seq_read, 979 .llseek = seq_lseek, 980 .release = jbd2_seq_info_release, 981 }; 982 983 static struct proc_dir_entry *proc_jbd2_stats; 984 985 static void jbd2_stats_proc_init(journal_t *journal) 986 { 987 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 988 if (journal->j_proc_entry) { 989 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 990 &jbd2_seq_info_fops, journal); 991 } 992 } 993 994 static void jbd2_stats_proc_exit(journal_t *journal) 995 { 996 remove_proc_entry("info", journal->j_proc_entry); 997 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 998 } 999 1000 /* 1001 * Management for journal control blocks: functions to create and 1002 * destroy journal_t structures, and to initialise and read existing 1003 * journal blocks from disk. */ 1004 1005 /* First: create and setup a journal_t object in memory. We initialise 1006 * very few fields yet: that has to wait until we have created the 1007 * journal structures from from scratch, or loaded them from disk. */ 1008 1009 static journal_t * journal_init_common (void) 1010 { 1011 journal_t *journal; 1012 int err; 1013 1014 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1015 if (!journal) 1016 return NULL; 1017 1018 init_waitqueue_head(&journal->j_wait_transaction_locked); 1019 init_waitqueue_head(&journal->j_wait_logspace); 1020 init_waitqueue_head(&journal->j_wait_done_commit); 1021 init_waitqueue_head(&journal->j_wait_checkpoint); 1022 init_waitqueue_head(&journal->j_wait_commit); 1023 init_waitqueue_head(&journal->j_wait_updates); 1024 mutex_init(&journal->j_barrier); 1025 mutex_init(&journal->j_checkpoint_mutex); 1026 spin_lock_init(&journal->j_revoke_lock); 1027 spin_lock_init(&journal->j_list_lock); 1028 rwlock_init(&journal->j_state_lock); 1029 1030 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1031 journal->j_min_batch_time = 0; 1032 journal->j_max_batch_time = 15000; /* 15ms */ 1033 1034 /* The journal is marked for error until we succeed with recovery! */ 1035 journal->j_flags = JBD2_ABORT; 1036 1037 /* Set up a default-sized revoke table for the new mount. */ 1038 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1039 if (err) { 1040 kfree(journal); 1041 return NULL; 1042 } 1043 1044 spin_lock_init(&journal->j_history_lock); 1045 1046 return journal; 1047 } 1048 1049 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1050 * 1051 * Create a journal structure assigned some fixed set of disk blocks to 1052 * the journal. We don't actually touch those disk blocks yet, but we 1053 * need to set up all of the mapping information to tell the journaling 1054 * system where the journal blocks are. 1055 * 1056 */ 1057 1058 /** 1059 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1060 * @bdev: Block device on which to create the journal 1061 * @fs_dev: Device which hold journalled filesystem for this journal. 1062 * @start: Block nr Start of journal. 1063 * @len: Length of the journal in blocks. 1064 * @blocksize: blocksize of journalling device 1065 * 1066 * Returns: a newly created journal_t * 1067 * 1068 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1069 * range of blocks on an arbitrary block device. 1070 * 1071 */ 1072 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1073 struct block_device *fs_dev, 1074 unsigned long long start, int len, int blocksize) 1075 { 1076 journal_t *journal = journal_init_common(); 1077 struct buffer_head *bh; 1078 char *p; 1079 int n; 1080 1081 if (!journal) 1082 return NULL; 1083 1084 /* journal descriptor can store up to n blocks -bzzz */ 1085 journal->j_blocksize = blocksize; 1086 journal->j_dev = bdev; 1087 journal->j_fs_dev = fs_dev; 1088 journal->j_blk_offset = start; 1089 journal->j_maxlen = len; 1090 bdevname(journal->j_dev, journal->j_devname); 1091 p = journal->j_devname; 1092 while ((p = strchr(p, '/'))) 1093 *p = '!'; 1094 jbd2_stats_proc_init(journal); 1095 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1096 journal->j_wbufsize = n; 1097 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1098 if (!journal->j_wbuf) { 1099 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1100 __func__); 1101 goto out_err; 1102 } 1103 1104 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1105 if (!bh) { 1106 printk(KERN_ERR 1107 "%s: Cannot get buffer for journal superblock\n", 1108 __func__); 1109 goto out_err; 1110 } 1111 journal->j_sb_buffer = bh; 1112 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1113 1114 return journal; 1115 out_err: 1116 kfree(journal->j_wbuf); 1117 jbd2_stats_proc_exit(journal); 1118 kfree(journal); 1119 return NULL; 1120 } 1121 1122 /** 1123 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1124 * @inode: An inode to create the journal in 1125 * 1126 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1127 * the journal. The inode must exist already, must support bmap() and 1128 * must have all data blocks preallocated. 1129 */ 1130 journal_t * jbd2_journal_init_inode (struct inode *inode) 1131 { 1132 struct buffer_head *bh; 1133 journal_t *journal = journal_init_common(); 1134 char *p; 1135 int err; 1136 int n; 1137 unsigned long long blocknr; 1138 1139 if (!journal) 1140 return NULL; 1141 1142 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1143 journal->j_inode = inode; 1144 bdevname(journal->j_dev, journal->j_devname); 1145 p = journal->j_devname; 1146 while ((p = strchr(p, '/'))) 1147 *p = '!'; 1148 p = journal->j_devname + strlen(journal->j_devname); 1149 sprintf(p, "-%lu", journal->j_inode->i_ino); 1150 jbd_debug(1, 1151 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1152 journal, inode->i_sb->s_id, inode->i_ino, 1153 (long long) inode->i_size, 1154 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1155 1156 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1157 journal->j_blocksize = inode->i_sb->s_blocksize; 1158 jbd2_stats_proc_init(journal); 1159 1160 /* journal descriptor can store up to n blocks -bzzz */ 1161 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1162 journal->j_wbufsize = n; 1163 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1164 if (!journal->j_wbuf) { 1165 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1166 __func__); 1167 goto out_err; 1168 } 1169 1170 err = jbd2_journal_bmap(journal, 0, &blocknr); 1171 /* If that failed, give up */ 1172 if (err) { 1173 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1174 __func__); 1175 goto out_err; 1176 } 1177 1178 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1179 if (!bh) { 1180 printk(KERN_ERR 1181 "%s: Cannot get buffer for journal superblock\n", 1182 __func__); 1183 goto out_err; 1184 } 1185 journal->j_sb_buffer = bh; 1186 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1187 1188 return journal; 1189 out_err: 1190 kfree(journal->j_wbuf); 1191 jbd2_stats_proc_exit(journal); 1192 kfree(journal); 1193 return NULL; 1194 } 1195 1196 /* 1197 * If the journal init or create aborts, we need to mark the journal 1198 * superblock as being NULL to prevent the journal destroy from writing 1199 * back a bogus superblock. 1200 */ 1201 static void journal_fail_superblock (journal_t *journal) 1202 { 1203 struct buffer_head *bh = journal->j_sb_buffer; 1204 brelse(bh); 1205 journal->j_sb_buffer = NULL; 1206 } 1207 1208 /* 1209 * Given a journal_t structure, initialise the various fields for 1210 * startup of a new journaling session. We use this both when creating 1211 * a journal, and after recovering an old journal to reset it for 1212 * subsequent use. 1213 */ 1214 1215 static int journal_reset(journal_t *journal) 1216 { 1217 journal_superblock_t *sb = journal->j_superblock; 1218 unsigned long long first, last; 1219 1220 first = be32_to_cpu(sb->s_first); 1221 last = be32_to_cpu(sb->s_maxlen); 1222 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1223 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1224 first, last); 1225 journal_fail_superblock(journal); 1226 return -EINVAL; 1227 } 1228 1229 journal->j_first = first; 1230 journal->j_last = last; 1231 1232 journal->j_head = first; 1233 journal->j_tail = first; 1234 journal->j_free = last - first; 1235 1236 journal->j_tail_sequence = journal->j_transaction_sequence; 1237 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1238 journal->j_commit_request = journal->j_commit_sequence; 1239 1240 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1241 1242 /* 1243 * As a special case, if the on-disk copy is already marked as needing 1244 * no recovery (s_start == 0), then we can safely defer the superblock 1245 * update until the next commit by setting JBD2_FLUSHED. This avoids 1246 * attempting a write to a potential-readonly device. 1247 */ 1248 if (sb->s_start == 0) { 1249 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1250 "(start %ld, seq %d, errno %d)\n", 1251 journal->j_tail, journal->j_tail_sequence, 1252 journal->j_errno); 1253 journal->j_flags |= JBD2_FLUSHED; 1254 } else { 1255 /* Lock here to make assertions happy... */ 1256 mutex_lock(&journal->j_checkpoint_mutex); 1257 /* 1258 * Update log tail information. We use WRITE_FUA since new 1259 * transaction will start reusing journal space and so we 1260 * must make sure information about current log tail is on 1261 * disk before that. 1262 */ 1263 jbd2_journal_update_sb_log_tail(journal, 1264 journal->j_tail_sequence, 1265 journal->j_tail, 1266 WRITE_FUA); 1267 mutex_unlock(&journal->j_checkpoint_mutex); 1268 } 1269 return jbd2_journal_start_thread(journal); 1270 } 1271 1272 static void jbd2_write_superblock(journal_t *journal, int write_op) 1273 { 1274 struct buffer_head *bh = journal->j_sb_buffer; 1275 int ret; 1276 1277 trace_jbd2_write_superblock(journal, write_op); 1278 if (!(journal->j_flags & JBD2_BARRIER)) 1279 write_op &= ~(REQ_FUA | REQ_FLUSH); 1280 lock_buffer(bh); 1281 if (buffer_write_io_error(bh)) { 1282 /* 1283 * Oh, dear. A previous attempt to write the journal 1284 * superblock failed. This could happen because the 1285 * USB device was yanked out. Or it could happen to 1286 * be a transient write error and maybe the block will 1287 * be remapped. Nothing we can do but to retry the 1288 * write and hope for the best. 1289 */ 1290 printk(KERN_ERR "JBD2: previous I/O error detected " 1291 "for journal superblock update for %s.\n", 1292 journal->j_devname); 1293 clear_buffer_write_io_error(bh); 1294 set_buffer_uptodate(bh); 1295 } 1296 get_bh(bh); 1297 bh->b_end_io = end_buffer_write_sync; 1298 ret = submit_bh(write_op, bh); 1299 wait_on_buffer(bh); 1300 if (buffer_write_io_error(bh)) { 1301 clear_buffer_write_io_error(bh); 1302 set_buffer_uptodate(bh); 1303 ret = -EIO; 1304 } 1305 if (ret) { 1306 printk(KERN_ERR "JBD2: Error %d detected when updating " 1307 "journal superblock for %s.\n", ret, 1308 journal->j_devname); 1309 } 1310 } 1311 1312 /** 1313 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1314 * @journal: The journal to update. 1315 * @tail_tid: TID of the new transaction at the tail of the log 1316 * @tail_block: The first block of the transaction at the tail of the log 1317 * @write_op: With which operation should we write the journal sb 1318 * 1319 * Update a journal's superblock information about log tail and write it to 1320 * disk, waiting for the IO to complete. 1321 */ 1322 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1323 unsigned long tail_block, int write_op) 1324 { 1325 journal_superblock_t *sb = journal->j_superblock; 1326 1327 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1328 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1329 tail_block, tail_tid); 1330 1331 sb->s_sequence = cpu_to_be32(tail_tid); 1332 sb->s_start = cpu_to_be32(tail_block); 1333 1334 jbd2_write_superblock(journal, write_op); 1335 1336 /* Log is no longer empty */ 1337 write_lock(&journal->j_state_lock); 1338 WARN_ON(!sb->s_sequence); 1339 journal->j_flags &= ~JBD2_FLUSHED; 1340 write_unlock(&journal->j_state_lock); 1341 } 1342 1343 /** 1344 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1345 * @journal: The journal to update. 1346 * 1347 * Update a journal's dynamic superblock fields to show that journal is empty. 1348 * Write updated superblock to disk waiting for IO to complete. 1349 */ 1350 static void jbd2_mark_journal_empty(journal_t *journal) 1351 { 1352 journal_superblock_t *sb = journal->j_superblock; 1353 1354 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1355 read_lock(&journal->j_state_lock); 1356 /* Is it already empty? */ 1357 if (sb->s_start == 0) { 1358 read_unlock(&journal->j_state_lock); 1359 return; 1360 } 1361 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1362 journal->j_tail_sequence); 1363 1364 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1365 sb->s_start = cpu_to_be32(0); 1366 read_unlock(&journal->j_state_lock); 1367 1368 jbd2_write_superblock(journal, WRITE_FUA); 1369 1370 /* Log is no longer empty */ 1371 write_lock(&journal->j_state_lock); 1372 journal->j_flags |= JBD2_FLUSHED; 1373 write_unlock(&journal->j_state_lock); 1374 } 1375 1376 1377 /** 1378 * jbd2_journal_update_sb_errno() - Update error in the journal. 1379 * @journal: The journal to update. 1380 * 1381 * Update a journal's errno. Write updated superblock to disk waiting for IO 1382 * to complete. 1383 */ 1384 void jbd2_journal_update_sb_errno(journal_t *journal) 1385 { 1386 journal_superblock_t *sb = journal->j_superblock; 1387 1388 read_lock(&journal->j_state_lock); 1389 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1390 journal->j_errno); 1391 sb->s_errno = cpu_to_be32(journal->j_errno); 1392 jbd2_superblock_csum_set(journal, sb); 1393 read_unlock(&journal->j_state_lock); 1394 1395 jbd2_write_superblock(journal, WRITE_SYNC); 1396 } 1397 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1398 1399 /* 1400 * Read the superblock for a given journal, performing initial 1401 * validation of the format. 1402 */ 1403 static int journal_get_superblock(journal_t *journal) 1404 { 1405 struct buffer_head *bh; 1406 journal_superblock_t *sb; 1407 int err = -EIO; 1408 1409 bh = journal->j_sb_buffer; 1410 1411 J_ASSERT(bh != NULL); 1412 if (!buffer_uptodate(bh)) { 1413 ll_rw_block(READ, 1, &bh); 1414 wait_on_buffer(bh); 1415 if (!buffer_uptodate(bh)) { 1416 printk(KERN_ERR 1417 "JBD2: IO error reading journal superblock\n"); 1418 goto out; 1419 } 1420 } 1421 1422 if (buffer_verified(bh)) 1423 return 0; 1424 1425 sb = journal->j_superblock; 1426 1427 err = -EINVAL; 1428 1429 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1430 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1431 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1432 goto out; 1433 } 1434 1435 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1436 case JBD2_SUPERBLOCK_V1: 1437 journal->j_format_version = 1; 1438 break; 1439 case JBD2_SUPERBLOCK_V2: 1440 journal->j_format_version = 2; 1441 break; 1442 default: 1443 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1444 goto out; 1445 } 1446 1447 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1448 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1449 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1450 printk(KERN_WARNING "JBD2: journal file too short\n"); 1451 goto out; 1452 } 1453 1454 if (be32_to_cpu(sb->s_first) == 0 || 1455 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1456 printk(KERN_WARNING 1457 "JBD2: Invalid start block of journal: %u\n", 1458 be32_to_cpu(sb->s_first)); 1459 goto out; 1460 } 1461 1462 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1463 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1464 /* Can't have checksum v1 and v2 on at the same time! */ 1465 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1466 "at the same time!\n"); 1467 goto out; 1468 } 1469 1470 if (!jbd2_verify_csum_type(journal, sb)) { 1471 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1472 goto out; 1473 } 1474 1475 /* Load the checksum driver */ 1476 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1477 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1478 if (IS_ERR(journal->j_chksum_driver)) { 1479 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1480 err = PTR_ERR(journal->j_chksum_driver); 1481 journal->j_chksum_driver = NULL; 1482 goto out; 1483 } 1484 } 1485 1486 /* Check superblock checksum */ 1487 if (!jbd2_superblock_csum_verify(journal, sb)) { 1488 printk(KERN_ERR "JBD: journal checksum error\n"); 1489 goto out; 1490 } 1491 1492 /* Precompute checksum seed for all metadata */ 1493 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1494 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1495 sizeof(sb->s_uuid)); 1496 1497 set_buffer_verified(bh); 1498 1499 return 0; 1500 1501 out: 1502 journal_fail_superblock(journal); 1503 return err; 1504 } 1505 1506 /* 1507 * Load the on-disk journal superblock and read the key fields into the 1508 * journal_t. 1509 */ 1510 1511 static int load_superblock(journal_t *journal) 1512 { 1513 int err; 1514 journal_superblock_t *sb; 1515 1516 err = journal_get_superblock(journal); 1517 if (err) 1518 return err; 1519 1520 sb = journal->j_superblock; 1521 1522 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1523 journal->j_tail = be32_to_cpu(sb->s_start); 1524 journal->j_first = be32_to_cpu(sb->s_first); 1525 journal->j_last = be32_to_cpu(sb->s_maxlen); 1526 journal->j_errno = be32_to_cpu(sb->s_errno); 1527 1528 return 0; 1529 } 1530 1531 1532 /** 1533 * int jbd2_journal_load() - Read journal from disk. 1534 * @journal: Journal to act on. 1535 * 1536 * Given a journal_t structure which tells us which disk blocks contain 1537 * a journal, read the journal from disk to initialise the in-memory 1538 * structures. 1539 */ 1540 int jbd2_journal_load(journal_t *journal) 1541 { 1542 int err; 1543 journal_superblock_t *sb; 1544 1545 err = load_superblock(journal); 1546 if (err) 1547 return err; 1548 1549 sb = journal->j_superblock; 1550 /* If this is a V2 superblock, then we have to check the 1551 * features flags on it. */ 1552 1553 if (journal->j_format_version >= 2) { 1554 if ((sb->s_feature_ro_compat & 1555 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1556 (sb->s_feature_incompat & 1557 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1558 printk(KERN_WARNING 1559 "JBD2: Unrecognised features on journal\n"); 1560 return -EINVAL; 1561 } 1562 } 1563 1564 /* 1565 * Create a slab for this blocksize 1566 */ 1567 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1568 if (err) 1569 return err; 1570 1571 /* Let the recovery code check whether it needs to recover any 1572 * data from the journal. */ 1573 if (jbd2_journal_recover(journal)) 1574 goto recovery_error; 1575 1576 if (journal->j_failed_commit) { 1577 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1578 "is corrupt.\n", journal->j_failed_commit, 1579 journal->j_devname); 1580 return -EIO; 1581 } 1582 1583 /* OK, we've finished with the dynamic journal bits: 1584 * reinitialise the dynamic contents of the superblock in memory 1585 * and reset them on disk. */ 1586 if (journal_reset(journal)) 1587 goto recovery_error; 1588 1589 journal->j_flags &= ~JBD2_ABORT; 1590 journal->j_flags |= JBD2_LOADED; 1591 return 0; 1592 1593 recovery_error: 1594 printk(KERN_WARNING "JBD2: recovery failed\n"); 1595 return -EIO; 1596 } 1597 1598 /** 1599 * void jbd2_journal_destroy() - Release a journal_t structure. 1600 * @journal: Journal to act on. 1601 * 1602 * Release a journal_t structure once it is no longer in use by the 1603 * journaled object. 1604 * Return <0 if we couldn't clean up the journal. 1605 */ 1606 int jbd2_journal_destroy(journal_t *journal) 1607 { 1608 int err = 0; 1609 1610 /* Wait for the commit thread to wake up and die. */ 1611 journal_kill_thread(journal); 1612 1613 /* Force a final log commit */ 1614 if (journal->j_running_transaction) 1615 jbd2_journal_commit_transaction(journal); 1616 1617 /* Force any old transactions to disk */ 1618 1619 /* Totally anal locking here... */ 1620 spin_lock(&journal->j_list_lock); 1621 while (journal->j_checkpoint_transactions != NULL) { 1622 spin_unlock(&journal->j_list_lock); 1623 mutex_lock(&journal->j_checkpoint_mutex); 1624 jbd2_log_do_checkpoint(journal); 1625 mutex_unlock(&journal->j_checkpoint_mutex); 1626 spin_lock(&journal->j_list_lock); 1627 } 1628 1629 J_ASSERT(journal->j_running_transaction == NULL); 1630 J_ASSERT(journal->j_committing_transaction == NULL); 1631 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1632 spin_unlock(&journal->j_list_lock); 1633 1634 if (journal->j_sb_buffer) { 1635 if (!is_journal_aborted(journal)) { 1636 mutex_lock(&journal->j_checkpoint_mutex); 1637 jbd2_mark_journal_empty(journal); 1638 mutex_unlock(&journal->j_checkpoint_mutex); 1639 } else 1640 err = -EIO; 1641 brelse(journal->j_sb_buffer); 1642 } 1643 1644 if (journal->j_proc_entry) 1645 jbd2_stats_proc_exit(journal); 1646 if (journal->j_inode) 1647 iput(journal->j_inode); 1648 if (journal->j_revoke) 1649 jbd2_journal_destroy_revoke(journal); 1650 if (journal->j_chksum_driver) 1651 crypto_free_shash(journal->j_chksum_driver); 1652 kfree(journal->j_wbuf); 1653 kfree(journal); 1654 1655 return err; 1656 } 1657 1658 1659 /** 1660 *int jbd2_journal_check_used_features () - Check if features specified are used. 1661 * @journal: Journal to check. 1662 * @compat: bitmask of compatible features 1663 * @ro: bitmask of features that force read-only mount 1664 * @incompat: bitmask of incompatible features 1665 * 1666 * Check whether the journal uses all of a given set of 1667 * features. Return true (non-zero) if it does. 1668 **/ 1669 1670 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1671 unsigned long ro, unsigned long incompat) 1672 { 1673 journal_superblock_t *sb; 1674 1675 if (!compat && !ro && !incompat) 1676 return 1; 1677 /* Load journal superblock if it is not loaded yet. */ 1678 if (journal->j_format_version == 0 && 1679 journal_get_superblock(journal) != 0) 1680 return 0; 1681 if (journal->j_format_version == 1) 1682 return 0; 1683 1684 sb = journal->j_superblock; 1685 1686 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1687 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1688 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1689 return 1; 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1696 * @journal: Journal to check. 1697 * @compat: bitmask of compatible features 1698 * @ro: bitmask of features that force read-only mount 1699 * @incompat: bitmask of incompatible features 1700 * 1701 * Check whether the journaling code supports the use of 1702 * all of a given set of features on this journal. Return true 1703 * (non-zero) if it can. */ 1704 1705 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1706 unsigned long ro, unsigned long incompat) 1707 { 1708 if (!compat && !ro && !incompat) 1709 return 1; 1710 1711 /* We can support any known requested features iff the 1712 * superblock is in version 2. Otherwise we fail to support any 1713 * extended sb features. */ 1714 1715 if (journal->j_format_version != 2) 1716 return 0; 1717 1718 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1719 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1720 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1721 return 1; 1722 1723 return 0; 1724 } 1725 1726 /** 1727 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1728 * @journal: Journal to act on. 1729 * @compat: bitmask of compatible features 1730 * @ro: bitmask of features that force read-only mount 1731 * @incompat: bitmask of incompatible features 1732 * 1733 * Mark a given journal feature as present on the 1734 * superblock. Returns true if the requested features could be set. 1735 * 1736 */ 1737 1738 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1739 unsigned long ro, unsigned long incompat) 1740 { 1741 #define INCOMPAT_FEATURE_ON(f) \ 1742 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1743 #define COMPAT_FEATURE_ON(f) \ 1744 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1745 journal_superblock_t *sb; 1746 1747 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1748 return 1; 1749 1750 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1751 return 0; 1752 1753 /* Asking for checksumming v2 and v1? Only give them v2. */ 1754 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1755 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1756 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1757 1758 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1759 compat, ro, incompat); 1760 1761 sb = journal->j_superblock; 1762 1763 /* If enabling v2 checksums, update superblock */ 1764 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1765 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1766 sb->s_feature_compat &= 1767 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1768 1769 /* Load the checksum driver */ 1770 if (journal->j_chksum_driver == NULL) { 1771 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1772 0, 0); 1773 if (IS_ERR(journal->j_chksum_driver)) { 1774 printk(KERN_ERR "JBD: Cannot load crc32c " 1775 "driver.\n"); 1776 journal->j_chksum_driver = NULL; 1777 return 0; 1778 } 1779 } 1780 1781 /* Precompute checksum seed for all metadata */ 1782 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1783 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1784 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1785 sb->s_uuid, 1786 sizeof(sb->s_uuid)); 1787 } 1788 1789 /* If enabling v1 checksums, downgrade superblock */ 1790 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1791 sb->s_feature_incompat &= 1792 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1793 1794 sb->s_feature_compat |= cpu_to_be32(compat); 1795 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1796 sb->s_feature_incompat |= cpu_to_be32(incompat); 1797 1798 return 1; 1799 #undef COMPAT_FEATURE_ON 1800 #undef INCOMPAT_FEATURE_ON 1801 } 1802 1803 /* 1804 * jbd2_journal_clear_features () - Clear a given journal feature in the 1805 * superblock 1806 * @journal: Journal to act on. 1807 * @compat: bitmask of compatible features 1808 * @ro: bitmask of features that force read-only mount 1809 * @incompat: bitmask of incompatible features 1810 * 1811 * Clear a given journal feature as present on the 1812 * superblock. 1813 */ 1814 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1815 unsigned long ro, unsigned long incompat) 1816 { 1817 journal_superblock_t *sb; 1818 1819 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1820 compat, ro, incompat); 1821 1822 sb = journal->j_superblock; 1823 1824 sb->s_feature_compat &= ~cpu_to_be32(compat); 1825 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1826 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1827 } 1828 EXPORT_SYMBOL(jbd2_journal_clear_features); 1829 1830 /** 1831 * int jbd2_journal_flush () - Flush journal 1832 * @journal: Journal to act on. 1833 * 1834 * Flush all data for a given journal to disk and empty the journal. 1835 * Filesystems can use this when remounting readonly to ensure that 1836 * recovery does not need to happen on remount. 1837 */ 1838 1839 int jbd2_journal_flush(journal_t *journal) 1840 { 1841 int err = 0; 1842 transaction_t *transaction = NULL; 1843 1844 write_lock(&journal->j_state_lock); 1845 1846 /* Force everything buffered to the log... */ 1847 if (journal->j_running_transaction) { 1848 transaction = journal->j_running_transaction; 1849 __jbd2_log_start_commit(journal, transaction->t_tid); 1850 } else if (journal->j_committing_transaction) 1851 transaction = journal->j_committing_transaction; 1852 1853 /* Wait for the log commit to complete... */ 1854 if (transaction) { 1855 tid_t tid = transaction->t_tid; 1856 1857 write_unlock(&journal->j_state_lock); 1858 jbd2_log_wait_commit(journal, tid); 1859 } else { 1860 write_unlock(&journal->j_state_lock); 1861 } 1862 1863 /* ...and flush everything in the log out to disk. */ 1864 spin_lock(&journal->j_list_lock); 1865 while (!err && journal->j_checkpoint_transactions != NULL) { 1866 spin_unlock(&journal->j_list_lock); 1867 mutex_lock(&journal->j_checkpoint_mutex); 1868 err = jbd2_log_do_checkpoint(journal); 1869 mutex_unlock(&journal->j_checkpoint_mutex); 1870 spin_lock(&journal->j_list_lock); 1871 } 1872 spin_unlock(&journal->j_list_lock); 1873 1874 if (is_journal_aborted(journal)) 1875 return -EIO; 1876 1877 mutex_lock(&journal->j_checkpoint_mutex); 1878 jbd2_cleanup_journal_tail(journal); 1879 1880 /* Finally, mark the journal as really needing no recovery. 1881 * This sets s_start==0 in the underlying superblock, which is 1882 * the magic code for a fully-recovered superblock. Any future 1883 * commits of data to the journal will restore the current 1884 * s_start value. */ 1885 jbd2_mark_journal_empty(journal); 1886 mutex_unlock(&journal->j_checkpoint_mutex); 1887 write_lock(&journal->j_state_lock); 1888 J_ASSERT(!journal->j_running_transaction); 1889 J_ASSERT(!journal->j_committing_transaction); 1890 J_ASSERT(!journal->j_checkpoint_transactions); 1891 J_ASSERT(journal->j_head == journal->j_tail); 1892 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1893 write_unlock(&journal->j_state_lock); 1894 return 0; 1895 } 1896 1897 /** 1898 * int jbd2_journal_wipe() - Wipe journal contents 1899 * @journal: Journal to act on. 1900 * @write: flag (see below) 1901 * 1902 * Wipe out all of the contents of a journal, safely. This will produce 1903 * a warning if the journal contains any valid recovery information. 1904 * Must be called between journal_init_*() and jbd2_journal_load(). 1905 * 1906 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1907 * we merely suppress recovery. 1908 */ 1909 1910 int jbd2_journal_wipe(journal_t *journal, int write) 1911 { 1912 int err = 0; 1913 1914 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1915 1916 err = load_superblock(journal); 1917 if (err) 1918 return err; 1919 1920 if (!journal->j_tail) 1921 goto no_recovery; 1922 1923 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1924 write ? "Clearing" : "Ignoring"); 1925 1926 err = jbd2_journal_skip_recovery(journal); 1927 if (write) { 1928 /* Lock to make assertions happy... */ 1929 mutex_lock(&journal->j_checkpoint_mutex); 1930 jbd2_mark_journal_empty(journal); 1931 mutex_unlock(&journal->j_checkpoint_mutex); 1932 } 1933 1934 no_recovery: 1935 return err; 1936 } 1937 1938 /* 1939 * Journal abort has very specific semantics, which we describe 1940 * for journal abort. 1941 * 1942 * Two internal functions, which provide abort to the jbd layer 1943 * itself are here. 1944 */ 1945 1946 /* 1947 * Quick version for internal journal use (doesn't lock the journal). 1948 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1949 * and don't attempt to make any other journal updates. 1950 */ 1951 void __jbd2_journal_abort_hard(journal_t *journal) 1952 { 1953 transaction_t *transaction; 1954 1955 if (journal->j_flags & JBD2_ABORT) 1956 return; 1957 1958 printk(KERN_ERR "Aborting journal on device %s.\n", 1959 journal->j_devname); 1960 1961 write_lock(&journal->j_state_lock); 1962 journal->j_flags |= JBD2_ABORT; 1963 transaction = journal->j_running_transaction; 1964 if (transaction) 1965 __jbd2_log_start_commit(journal, transaction->t_tid); 1966 write_unlock(&journal->j_state_lock); 1967 } 1968 1969 /* Soft abort: record the abort error status in the journal superblock, 1970 * but don't do any other IO. */ 1971 static void __journal_abort_soft (journal_t *journal, int errno) 1972 { 1973 if (journal->j_flags & JBD2_ABORT) 1974 return; 1975 1976 if (!journal->j_errno) 1977 journal->j_errno = errno; 1978 1979 __jbd2_journal_abort_hard(journal); 1980 1981 if (errno) 1982 jbd2_journal_update_sb_errno(journal); 1983 } 1984 1985 /** 1986 * void jbd2_journal_abort () - Shutdown the journal immediately. 1987 * @journal: the journal to shutdown. 1988 * @errno: an error number to record in the journal indicating 1989 * the reason for the shutdown. 1990 * 1991 * Perform a complete, immediate shutdown of the ENTIRE 1992 * journal (not of a single transaction). This operation cannot be 1993 * undone without closing and reopening the journal. 1994 * 1995 * The jbd2_journal_abort function is intended to support higher level error 1996 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1997 * mode. 1998 * 1999 * Journal abort has very specific semantics. Any existing dirty, 2000 * unjournaled buffers in the main filesystem will still be written to 2001 * disk by bdflush, but the journaling mechanism will be suspended 2002 * immediately and no further transaction commits will be honoured. 2003 * 2004 * Any dirty, journaled buffers will be written back to disk without 2005 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2006 * filesystem, but we _do_ attempt to leave as much data as possible 2007 * behind for fsck to use for cleanup. 2008 * 2009 * Any attempt to get a new transaction handle on a journal which is in 2010 * ABORT state will just result in an -EROFS error return. A 2011 * jbd2_journal_stop on an existing handle will return -EIO if we have 2012 * entered abort state during the update. 2013 * 2014 * Recursive transactions are not disturbed by journal abort until the 2015 * final jbd2_journal_stop, which will receive the -EIO error. 2016 * 2017 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2018 * which will be recorded (if possible) in the journal superblock. This 2019 * allows a client to record failure conditions in the middle of a 2020 * transaction without having to complete the transaction to record the 2021 * failure to disk. ext3_error, for example, now uses this 2022 * functionality. 2023 * 2024 * Errors which originate from within the journaling layer will NOT 2025 * supply an errno; a null errno implies that absolutely no further 2026 * writes are done to the journal (unless there are any already in 2027 * progress). 2028 * 2029 */ 2030 2031 void jbd2_journal_abort(journal_t *journal, int errno) 2032 { 2033 __journal_abort_soft(journal, errno); 2034 } 2035 2036 /** 2037 * int jbd2_journal_errno () - returns the journal's error state. 2038 * @journal: journal to examine. 2039 * 2040 * This is the errno number set with jbd2_journal_abort(), the last 2041 * time the journal was mounted - if the journal was stopped 2042 * without calling abort this will be 0. 2043 * 2044 * If the journal has been aborted on this mount time -EROFS will 2045 * be returned. 2046 */ 2047 int jbd2_journal_errno(journal_t *journal) 2048 { 2049 int err; 2050 2051 read_lock(&journal->j_state_lock); 2052 if (journal->j_flags & JBD2_ABORT) 2053 err = -EROFS; 2054 else 2055 err = journal->j_errno; 2056 read_unlock(&journal->j_state_lock); 2057 return err; 2058 } 2059 2060 /** 2061 * int jbd2_journal_clear_err () - clears the journal's error state 2062 * @journal: journal to act on. 2063 * 2064 * An error must be cleared or acked to take a FS out of readonly 2065 * mode. 2066 */ 2067 int jbd2_journal_clear_err(journal_t *journal) 2068 { 2069 int err = 0; 2070 2071 write_lock(&journal->j_state_lock); 2072 if (journal->j_flags & JBD2_ABORT) 2073 err = -EROFS; 2074 else 2075 journal->j_errno = 0; 2076 write_unlock(&journal->j_state_lock); 2077 return err; 2078 } 2079 2080 /** 2081 * void jbd2_journal_ack_err() - Ack journal err. 2082 * @journal: journal to act on. 2083 * 2084 * An error must be cleared or acked to take a FS out of readonly 2085 * mode. 2086 */ 2087 void jbd2_journal_ack_err(journal_t *journal) 2088 { 2089 write_lock(&journal->j_state_lock); 2090 if (journal->j_errno) 2091 journal->j_flags |= JBD2_ACK_ERR; 2092 write_unlock(&journal->j_state_lock); 2093 } 2094 2095 int jbd2_journal_blocks_per_page(struct inode *inode) 2096 { 2097 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2098 } 2099 2100 /* 2101 * helper functions to deal with 32 or 64bit block numbers. 2102 */ 2103 size_t journal_tag_bytes(journal_t *journal) 2104 { 2105 journal_block_tag_t tag; 2106 size_t x = 0; 2107 2108 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2109 x += sizeof(tag.t_checksum); 2110 2111 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2112 return x + JBD2_TAG_SIZE64; 2113 else 2114 return x + JBD2_TAG_SIZE32; 2115 } 2116 2117 /* 2118 * JBD memory management 2119 * 2120 * These functions are used to allocate block-sized chunks of memory 2121 * used for making copies of buffer_head data. Very often it will be 2122 * page-sized chunks of data, but sometimes it will be in 2123 * sub-page-size chunks. (For example, 16k pages on Power systems 2124 * with a 4k block file system.) For blocks smaller than a page, we 2125 * use a SLAB allocator. There are slab caches for each block size, 2126 * which are allocated at mount time, if necessary, and we only free 2127 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2128 * this reason we don't need to a mutex to protect access to 2129 * jbd2_slab[] allocating or releasing memory; only in 2130 * jbd2_journal_create_slab(). 2131 */ 2132 #define JBD2_MAX_SLABS 8 2133 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2134 2135 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2136 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2137 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2138 }; 2139 2140 2141 static void jbd2_journal_destroy_slabs(void) 2142 { 2143 int i; 2144 2145 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2146 if (jbd2_slab[i]) 2147 kmem_cache_destroy(jbd2_slab[i]); 2148 jbd2_slab[i] = NULL; 2149 } 2150 } 2151 2152 static int jbd2_journal_create_slab(size_t size) 2153 { 2154 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2155 int i = order_base_2(size) - 10; 2156 size_t slab_size; 2157 2158 if (size == PAGE_SIZE) 2159 return 0; 2160 2161 if (i >= JBD2_MAX_SLABS) 2162 return -EINVAL; 2163 2164 if (unlikely(i < 0)) 2165 i = 0; 2166 mutex_lock(&jbd2_slab_create_mutex); 2167 if (jbd2_slab[i]) { 2168 mutex_unlock(&jbd2_slab_create_mutex); 2169 return 0; /* Already created */ 2170 } 2171 2172 slab_size = 1 << (i+10); 2173 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2174 slab_size, 0, NULL); 2175 mutex_unlock(&jbd2_slab_create_mutex); 2176 if (!jbd2_slab[i]) { 2177 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2178 return -ENOMEM; 2179 } 2180 return 0; 2181 } 2182 2183 static struct kmem_cache *get_slab(size_t size) 2184 { 2185 int i = order_base_2(size) - 10; 2186 2187 BUG_ON(i >= JBD2_MAX_SLABS); 2188 if (unlikely(i < 0)) 2189 i = 0; 2190 BUG_ON(jbd2_slab[i] == NULL); 2191 return jbd2_slab[i]; 2192 } 2193 2194 void *jbd2_alloc(size_t size, gfp_t flags) 2195 { 2196 void *ptr; 2197 2198 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2199 2200 flags |= __GFP_REPEAT; 2201 if (size == PAGE_SIZE) 2202 ptr = (void *)__get_free_pages(flags, 0); 2203 else if (size > PAGE_SIZE) { 2204 int order = get_order(size); 2205 2206 if (order < 3) 2207 ptr = (void *)__get_free_pages(flags, order); 2208 else 2209 ptr = vmalloc(size); 2210 } else 2211 ptr = kmem_cache_alloc(get_slab(size), flags); 2212 2213 /* Check alignment; SLUB has gotten this wrong in the past, 2214 * and this can lead to user data corruption! */ 2215 BUG_ON(((unsigned long) ptr) & (size-1)); 2216 2217 return ptr; 2218 } 2219 2220 void jbd2_free(void *ptr, size_t size) 2221 { 2222 if (size == PAGE_SIZE) { 2223 free_pages((unsigned long)ptr, 0); 2224 return; 2225 } 2226 if (size > PAGE_SIZE) { 2227 int order = get_order(size); 2228 2229 if (order < 3) 2230 free_pages((unsigned long)ptr, order); 2231 else 2232 vfree(ptr); 2233 return; 2234 } 2235 kmem_cache_free(get_slab(size), ptr); 2236 }; 2237 2238 /* 2239 * Journal_head storage management 2240 */ 2241 static struct kmem_cache *jbd2_journal_head_cache; 2242 #ifdef CONFIG_JBD2_DEBUG 2243 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2244 #endif 2245 2246 static int jbd2_journal_init_journal_head_cache(void) 2247 { 2248 int retval; 2249 2250 J_ASSERT(jbd2_journal_head_cache == NULL); 2251 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2252 sizeof(struct journal_head), 2253 0, /* offset */ 2254 SLAB_TEMPORARY, /* flags */ 2255 NULL); /* ctor */ 2256 retval = 0; 2257 if (!jbd2_journal_head_cache) { 2258 retval = -ENOMEM; 2259 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2260 } 2261 return retval; 2262 } 2263 2264 static void jbd2_journal_destroy_journal_head_cache(void) 2265 { 2266 if (jbd2_journal_head_cache) { 2267 kmem_cache_destroy(jbd2_journal_head_cache); 2268 jbd2_journal_head_cache = NULL; 2269 } 2270 } 2271 2272 /* 2273 * journal_head splicing and dicing 2274 */ 2275 static struct journal_head *journal_alloc_journal_head(void) 2276 { 2277 struct journal_head *ret; 2278 2279 #ifdef CONFIG_JBD2_DEBUG 2280 atomic_inc(&nr_journal_heads); 2281 #endif 2282 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2283 if (!ret) { 2284 jbd_debug(1, "out of memory for journal_head\n"); 2285 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2286 while (!ret) { 2287 yield(); 2288 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2289 } 2290 } 2291 return ret; 2292 } 2293 2294 static void journal_free_journal_head(struct journal_head *jh) 2295 { 2296 #ifdef CONFIG_JBD2_DEBUG 2297 atomic_dec(&nr_journal_heads); 2298 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2299 #endif 2300 kmem_cache_free(jbd2_journal_head_cache, jh); 2301 } 2302 2303 /* 2304 * A journal_head is attached to a buffer_head whenever JBD has an 2305 * interest in the buffer. 2306 * 2307 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2308 * is set. This bit is tested in core kernel code where we need to take 2309 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2310 * there. 2311 * 2312 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2313 * 2314 * When a buffer has its BH_JBD bit set it is immune from being released by 2315 * core kernel code, mainly via ->b_count. 2316 * 2317 * A journal_head is detached from its buffer_head when the journal_head's 2318 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2319 * transaction (b_cp_transaction) hold their references to b_jcount. 2320 * 2321 * Various places in the kernel want to attach a journal_head to a buffer_head 2322 * _before_ attaching the journal_head to a transaction. To protect the 2323 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2324 * journal_head's b_jcount refcount by one. The caller must call 2325 * jbd2_journal_put_journal_head() to undo this. 2326 * 2327 * So the typical usage would be: 2328 * 2329 * (Attach a journal_head if needed. Increments b_jcount) 2330 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2331 * ... 2332 * (Get another reference for transaction) 2333 * jbd2_journal_grab_journal_head(bh); 2334 * jh->b_transaction = xxx; 2335 * (Put original reference) 2336 * jbd2_journal_put_journal_head(jh); 2337 */ 2338 2339 /* 2340 * Give a buffer_head a journal_head. 2341 * 2342 * May sleep. 2343 */ 2344 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2345 { 2346 struct journal_head *jh; 2347 struct journal_head *new_jh = NULL; 2348 2349 repeat: 2350 if (!buffer_jbd(bh)) { 2351 new_jh = journal_alloc_journal_head(); 2352 memset(new_jh, 0, sizeof(*new_jh)); 2353 } 2354 2355 jbd_lock_bh_journal_head(bh); 2356 if (buffer_jbd(bh)) { 2357 jh = bh2jh(bh); 2358 } else { 2359 J_ASSERT_BH(bh, 2360 (atomic_read(&bh->b_count) > 0) || 2361 (bh->b_page && bh->b_page->mapping)); 2362 2363 if (!new_jh) { 2364 jbd_unlock_bh_journal_head(bh); 2365 goto repeat; 2366 } 2367 2368 jh = new_jh; 2369 new_jh = NULL; /* We consumed it */ 2370 set_buffer_jbd(bh); 2371 bh->b_private = jh; 2372 jh->b_bh = bh; 2373 get_bh(bh); 2374 BUFFER_TRACE(bh, "added journal_head"); 2375 } 2376 jh->b_jcount++; 2377 jbd_unlock_bh_journal_head(bh); 2378 if (new_jh) 2379 journal_free_journal_head(new_jh); 2380 return bh->b_private; 2381 } 2382 2383 /* 2384 * Grab a ref against this buffer_head's journal_head. If it ended up not 2385 * having a journal_head, return NULL 2386 */ 2387 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2388 { 2389 struct journal_head *jh = NULL; 2390 2391 jbd_lock_bh_journal_head(bh); 2392 if (buffer_jbd(bh)) { 2393 jh = bh2jh(bh); 2394 jh->b_jcount++; 2395 } 2396 jbd_unlock_bh_journal_head(bh); 2397 return jh; 2398 } 2399 2400 static void __journal_remove_journal_head(struct buffer_head *bh) 2401 { 2402 struct journal_head *jh = bh2jh(bh); 2403 2404 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2405 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2406 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2407 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2408 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2409 J_ASSERT_BH(bh, buffer_jbd(bh)); 2410 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2411 BUFFER_TRACE(bh, "remove journal_head"); 2412 if (jh->b_frozen_data) { 2413 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2414 jbd2_free(jh->b_frozen_data, bh->b_size); 2415 } 2416 if (jh->b_committed_data) { 2417 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2418 jbd2_free(jh->b_committed_data, bh->b_size); 2419 } 2420 bh->b_private = NULL; 2421 jh->b_bh = NULL; /* debug, really */ 2422 clear_buffer_jbd(bh); 2423 journal_free_journal_head(jh); 2424 } 2425 2426 /* 2427 * Drop a reference on the passed journal_head. If it fell to zero then 2428 * release the journal_head from the buffer_head. 2429 */ 2430 void jbd2_journal_put_journal_head(struct journal_head *jh) 2431 { 2432 struct buffer_head *bh = jh2bh(jh); 2433 2434 jbd_lock_bh_journal_head(bh); 2435 J_ASSERT_JH(jh, jh->b_jcount > 0); 2436 --jh->b_jcount; 2437 if (!jh->b_jcount) { 2438 __journal_remove_journal_head(bh); 2439 jbd_unlock_bh_journal_head(bh); 2440 __brelse(bh); 2441 } else 2442 jbd_unlock_bh_journal_head(bh); 2443 } 2444 2445 /* 2446 * Initialize jbd inode head 2447 */ 2448 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2449 { 2450 jinode->i_transaction = NULL; 2451 jinode->i_next_transaction = NULL; 2452 jinode->i_vfs_inode = inode; 2453 jinode->i_flags = 0; 2454 INIT_LIST_HEAD(&jinode->i_list); 2455 } 2456 2457 /* 2458 * Function to be called before we start removing inode from memory (i.e., 2459 * clear_inode() is a fine place to be called from). It removes inode from 2460 * transaction's lists. 2461 */ 2462 void jbd2_journal_release_jbd_inode(journal_t *journal, 2463 struct jbd2_inode *jinode) 2464 { 2465 if (!journal) 2466 return; 2467 restart: 2468 spin_lock(&journal->j_list_lock); 2469 /* Is commit writing out inode - we have to wait */ 2470 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2471 wait_queue_head_t *wq; 2472 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2473 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2474 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2475 spin_unlock(&journal->j_list_lock); 2476 schedule(); 2477 finish_wait(wq, &wait.wait); 2478 goto restart; 2479 } 2480 2481 if (jinode->i_transaction) { 2482 list_del(&jinode->i_list); 2483 jinode->i_transaction = NULL; 2484 } 2485 spin_unlock(&journal->j_list_lock); 2486 } 2487 2488 /* 2489 * debugfs tunables 2490 */ 2491 #ifdef CONFIG_JBD2_DEBUG 2492 u8 jbd2_journal_enable_debug __read_mostly; 2493 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2494 2495 #define JBD2_DEBUG_NAME "jbd2-debug" 2496 2497 static struct dentry *jbd2_debugfs_dir; 2498 static struct dentry *jbd2_debug; 2499 2500 static void __init jbd2_create_debugfs_entry(void) 2501 { 2502 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2503 if (jbd2_debugfs_dir) 2504 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2505 S_IRUGO | S_IWUSR, 2506 jbd2_debugfs_dir, 2507 &jbd2_journal_enable_debug); 2508 } 2509 2510 static void __exit jbd2_remove_debugfs_entry(void) 2511 { 2512 debugfs_remove(jbd2_debug); 2513 debugfs_remove(jbd2_debugfs_dir); 2514 } 2515 2516 #else 2517 2518 static void __init jbd2_create_debugfs_entry(void) 2519 { 2520 } 2521 2522 static void __exit jbd2_remove_debugfs_entry(void) 2523 { 2524 } 2525 2526 #endif 2527 2528 #ifdef CONFIG_PROC_FS 2529 2530 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2531 2532 static void __init jbd2_create_jbd_stats_proc_entry(void) 2533 { 2534 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2535 } 2536 2537 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2538 { 2539 if (proc_jbd2_stats) 2540 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2541 } 2542 2543 #else 2544 2545 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2546 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2547 2548 #endif 2549 2550 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2551 2552 static int __init jbd2_journal_init_handle_cache(void) 2553 { 2554 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2555 if (jbd2_handle_cache == NULL) { 2556 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2557 return -ENOMEM; 2558 } 2559 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2560 if (jbd2_inode_cache == NULL) { 2561 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2562 kmem_cache_destroy(jbd2_handle_cache); 2563 return -ENOMEM; 2564 } 2565 return 0; 2566 } 2567 2568 static void jbd2_journal_destroy_handle_cache(void) 2569 { 2570 if (jbd2_handle_cache) 2571 kmem_cache_destroy(jbd2_handle_cache); 2572 if (jbd2_inode_cache) 2573 kmem_cache_destroy(jbd2_inode_cache); 2574 2575 } 2576 2577 /* 2578 * Module startup and shutdown 2579 */ 2580 2581 static int __init journal_init_caches(void) 2582 { 2583 int ret; 2584 2585 ret = jbd2_journal_init_revoke_caches(); 2586 if (ret == 0) 2587 ret = jbd2_journal_init_journal_head_cache(); 2588 if (ret == 0) 2589 ret = jbd2_journal_init_handle_cache(); 2590 if (ret == 0) 2591 ret = jbd2_journal_init_transaction_cache(); 2592 return ret; 2593 } 2594 2595 static void jbd2_journal_destroy_caches(void) 2596 { 2597 jbd2_journal_destroy_revoke_caches(); 2598 jbd2_journal_destroy_journal_head_cache(); 2599 jbd2_journal_destroy_handle_cache(); 2600 jbd2_journal_destroy_transaction_cache(); 2601 jbd2_journal_destroy_slabs(); 2602 } 2603 2604 static int __init journal_init(void) 2605 { 2606 int ret; 2607 2608 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2609 2610 ret = journal_init_caches(); 2611 if (ret == 0) { 2612 jbd2_create_debugfs_entry(); 2613 jbd2_create_jbd_stats_proc_entry(); 2614 } else { 2615 jbd2_journal_destroy_caches(); 2616 } 2617 return ret; 2618 } 2619 2620 static void __exit journal_exit(void) 2621 { 2622 #ifdef CONFIG_JBD2_DEBUG 2623 int n = atomic_read(&nr_journal_heads); 2624 if (n) 2625 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2626 #endif 2627 jbd2_remove_debugfs_entry(); 2628 jbd2_remove_jbd_stats_proc_entry(); 2629 jbd2_journal_destroy_caches(); 2630 } 2631 2632 MODULE_LICENSE("GPL"); 2633 module_init(journal_init); 2634 module_exit(journal_exit); 2635 2636