1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_file_inode); 98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 101 EXPORT_SYMBOL(jbd2_inode_cache); 102 103 static void __journal_abort_soft (journal_t *journal, int errno); 104 static int jbd2_journal_create_slab(size_t slab_size); 105 106 #ifdef CONFIG_JBD2_DEBUG 107 void __jbd2_debug(int level, const char *file, const char *func, 108 unsigned int line, const char *fmt, ...) 109 { 110 struct va_format vaf; 111 va_list args; 112 113 if (level > jbd2_journal_enable_debug) 114 return; 115 va_start(args, fmt); 116 vaf.fmt = fmt; 117 vaf.va = &args; 118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 119 va_end(args); 120 } 121 EXPORT_SYMBOL(__jbd2_debug); 122 #endif 123 124 /* Checksumming functions */ 125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 126 { 127 if (!jbd2_journal_has_csum_v2or3_feature(j)) 128 return 1; 129 130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 131 } 132 133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 134 { 135 __u32 csum; 136 __be32 old_csum; 137 138 old_csum = sb->s_checksum; 139 sb->s_checksum = 0; 140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 141 sb->s_checksum = old_csum; 142 143 return cpu_to_be32(csum); 144 } 145 146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 147 { 148 if (!jbd2_journal_has_csum_v2or3(j)) 149 return 1; 150 151 return sb->s_checksum == jbd2_superblock_csum(j, sb); 152 } 153 154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 155 { 156 if (!jbd2_journal_has_csum_v2or3(j)) 157 return; 158 159 sb->s_checksum = jbd2_superblock_csum(j, sb); 160 } 161 162 /* 163 * Helper function used to manage commit timeouts 164 */ 165 166 static void commit_timeout(unsigned long __data) 167 { 168 struct task_struct * p = (struct task_struct *) __data; 169 170 wake_up_process(p); 171 } 172 173 /* 174 * kjournald2: The main thread function used to manage a logging device 175 * journal. 176 * 177 * This kernel thread is responsible for two things: 178 * 179 * 1) COMMIT: Every so often we need to commit the current state of the 180 * filesystem to disk. The journal thread is responsible for writing 181 * all of the metadata buffers to disk. 182 * 183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 184 * of the data in that part of the log has been rewritten elsewhere on 185 * the disk. Flushing these old buffers to reclaim space in the log is 186 * known as checkpointing, and this thread is responsible for that job. 187 */ 188 189 static int kjournald2(void *arg) 190 { 191 journal_t *journal = arg; 192 transaction_t *transaction; 193 194 /* 195 * Set up an interval timer which can be used to trigger a commit wakeup 196 * after the commit interval expires 197 */ 198 setup_timer(&journal->j_commit_timer, commit_timeout, 199 (unsigned long)current); 200 201 set_freezable(); 202 203 /* Record that the journal thread is running */ 204 journal->j_task = current; 205 wake_up(&journal->j_wait_done_commit); 206 207 /* 208 * And now, wait forever for commit wakeup events. 209 */ 210 write_lock(&journal->j_state_lock); 211 212 loop: 213 if (journal->j_flags & JBD2_UNMOUNT) 214 goto end_loop; 215 216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 217 journal->j_commit_sequence, journal->j_commit_request); 218 219 if (journal->j_commit_sequence != journal->j_commit_request) { 220 jbd_debug(1, "OK, requests differ\n"); 221 write_unlock(&journal->j_state_lock); 222 del_timer_sync(&journal->j_commit_timer); 223 jbd2_journal_commit_transaction(journal); 224 write_lock(&journal->j_state_lock); 225 goto loop; 226 } 227 228 wake_up(&journal->j_wait_done_commit); 229 if (freezing(current)) { 230 /* 231 * The simpler the better. Flushing journal isn't a 232 * good idea, because that depends on threads that may 233 * be already stopped. 234 */ 235 jbd_debug(1, "Now suspending kjournald2\n"); 236 write_unlock(&journal->j_state_lock); 237 try_to_freeze(); 238 write_lock(&journal->j_state_lock); 239 } else { 240 /* 241 * We assume on resume that commits are already there, 242 * so we don't sleep 243 */ 244 DEFINE_WAIT(wait); 245 int should_sleep = 1; 246 247 prepare_to_wait(&journal->j_wait_commit, &wait, 248 TASK_INTERRUPTIBLE); 249 if (journal->j_commit_sequence != journal->j_commit_request) 250 should_sleep = 0; 251 transaction = journal->j_running_transaction; 252 if (transaction && time_after_eq(jiffies, 253 transaction->t_expires)) 254 should_sleep = 0; 255 if (journal->j_flags & JBD2_UNMOUNT) 256 should_sleep = 0; 257 if (should_sleep) { 258 write_unlock(&journal->j_state_lock); 259 schedule(); 260 write_lock(&journal->j_state_lock); 261 } 262 finish_wait(&journal->j_wait_commit, &wait); 263 } 264 265 jbd_debug(1, "kjournald2 wakes\n"); 266 267 /* 268 * Were we woken up by a commit wakeup event? 269 */ 270 transaction = journal->j_running_transaction; 271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 272 journal->j_commit_request = transaction->t_tid; 273 jbd_debug(1, "woke because of timeout\n"); 274 } 275 goto loop; 276 277 end_loop: 278 write_unlock(&journal->j_state_lock); 279 del_timer_sync(&journal->j_commit_timer); 280 journal->j_task = NULL; 281 wake_up(&journal->j_wait_done_commit); 282 jbd_debug(1, "Journal thread exiting.\n"); 283 return 0; 284 } 285 286 static int jbd2_journal_start_thread(journal_t *journal) 287 { 288 struct task_struct *t; 289 290 t = kthread_run(kjournald2, journal, "jbd2/%s", 291 journal->j_devname); 292 if (IS_ERR(t)) 293 return PTR_ERR(t); 294 295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 296 return 0; 297 } 298 299 static void journal_kill_thread(journal_t *journal) 300 { 301 write_lock(&journal->j_state_lock); 302 journal->j_flags |= JBD2_UNMOUNT; 303 304 while (journal->j_task) { 305 write_unlock(&journal->j_state_lock); 306 wake_up(&journal->j_wait_commit); 307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 308 write_lock(&journal->j_state_lock); 309 } 310 write_unlock(&journal->j_state_lock); 311 } 312 313 /* 314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 315 * 316 * Writes a metadata buffer to a given disk block. The actual IO is not 317 * performed but a new buffer_head is constructed which labels the data 318 * to be written with the correct destination disk block. 319 * 320 * Any magic-number escaping which needs to be done will cause a 321 * copy-out here. If the buffer happens to start with the 322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 323 * magic number is only written to the log for descripter blocks. In 324 * this case, we copy the data and replace the first word with 0, and we 325 * return a result code which indicates that this buffer needs to be 326 * marked as an escaped buffer in the corresponding log descriptor 327 * block. The missing word can then be restored when the block is read 328 * during recovery. 329 * 330 * If the source buffer has already been modified by a new transaction 331 * since we took the last commit snapshot, we use the frozen copy of 332 * that data for IO. If we end up using the existing buffer_head's data 333 * for the write, then we have to make sure nobody modifies it while the 334 * IO is in progress. do_get_write_access() handles this. 335 * 336 * The function returns a pointer to the buffer_head to be used for IO. 337 * 338 * 339 * Return value: 340 * <0: Error 341 * >=0: Finished OK 342 * 343 * On success: 344 * Bit 0 set == escape performed on the data 345 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 346 */ 347 348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 349 struct journal_head *jh_in, 350 struct buffer_head **bh_out, 351 sector_t blocknr) 352 { 353 int need_copy_out = 0; 354 int done_copy_out = 0; 355 int do_escape = 0; 356 char *mapped_data; 357 struct buffer_head *new_bh; 358 struct page *new_page; 359 unsigned int new_offset; 360 struct buffer_head *bh_in = jh2bh(jh_in); 361 journal_t *journal = transaction->t_journal; 362 363 /* 364 * The buffer really shouldn't be locked: only the current committing 365 * transaction is allowed to write it, so nobody else is allowed 366 * to do any IO. 367 * 368 * akpm: except if we're journalling data, and write() output is 369 * also part of a shared mapping, and another thread has 370 * decided to launch a writepage() against this buffer. 371 */ 372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 373 374 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 375 376 /* keep subsequent assertions sane */ 377 atomic_set(&new_bh->b_count, 1); 378 379 jbd_lock_bh_state(bh_in); 380 repeat: 381 /* 382 * If a new transaction has already done a buffer copy-out, then 383 * we use that version of the data for the commit. 384 */ 385 if (jh_in->b_frozen_data) { 386 done_copy_out = 1; 387 new_page = virt_to_page(jh_in->b_frozen_data); 388 new_offset = offset_in_page(jh_in->b_frozen_data); 389 } else { 390 new_page = jh2bh(jh_in)->b_page; 391 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 392 } 393 394 mapped_data = kmap_atomic(new_page); 395 /* 396 * Fire data frozen trigger if data already wasn't frozen. Do this 397 * before checking for escaping, as the trigger may modify the magic 398 * offset. If a copy-out happens afterwards, it will have the correct 399 * data in the buffer. 400 */ 401 if (!done_copy_out) 402 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 403 jh_in->b_triggers); 404 405 /* 406 * Check for escaping 407 */ 408 if (*((__be32 *)(mapped_data + new_offset)) == 409 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 410 need_copy_out = 1; 411 do_escape = 1; 412 } 413 kunmap_atomic(mapped_data); 414 415 /* 416 * Do we need to do a data copy? 417 */ 418 if (need_copy_out && !done_copy_out) { 419 char *tmp; 420 421 jbd_unlock_bh_state(bh_in); 422 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 423 if (!tmp) { 424 brelse(new_bh); 425 return -ENOMEM; 426 } 427 jbd_lock_bh_state(bh_in); 428 if (jh_in->b_frozen_data) { 429 jbd2_free(tmp, bh_in->b_size); 430 goto repeat; 431 } 432 433 jh_in->b_frozen_data = tmp; 434 mapped_data = kmap_atomic(new_page); 435 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 436 kunmap_atomic(mapped_data); 437 438 new_page = virt_to_page(tmp); 439 new_offset = offset_in_page(tmp); 440 done_copy_out = 1; 441 442 /* 443 * This isn't strictly necessary, as we're using frozen 444 * data for the escaping, but it keeps consistency with 445 * b_frozen_data usage. 446 */ 447 jh_in->b_frozen_triggers = jh_in->b_triggers; 448 } 449 450 /* 451 * Did we need to do an escaping? Now we've done all the 452 * copying, we can finally do so. 453 */ 454 if (do_escape) { 455 mapped_data = kmap_atomic(new_page); 456 *((unsigned int *)(mapped_data + new_offset)) = 0; 457 kunmap_atomic(mapped_data); 458 } 459 460 set_bh_page(new_bh, new_page, new_offset); 461 new_bh->b_size = bh_in->b_size; 462 new_bh->b_bdev = journal->j_dev; 463 new_bh->b_blocknr = blocknr; 464 new_bh->b_private = bh_in; 465 set_buffer_mapped(new_bh); 466 set_buffer_dirty(new_bh); 467 468 *bh_out = new_bh; 469 470 /* 471 * The to-be-written buffer needs to get moved to the io queue, 472 * and the original buffer whose contents we are shadowing or 473 * copying is moved to the transaction's shadow queue. 474 */ 475 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 476 spin_lock(&journal->j_list_lock); 477 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 478 spin_unlock(&journal->j_list_lock); 479 set_buffer_shadow(bh_in); 480 jbd_unlock_bh_state(bh_in); 481 482 return do_escape | (done_copy_out << 1); 483 } 484 485 /* 486 * Allocation code for the journal file. Manage the space left in the 487 * journal, so that we can begin checkpointing when appropriate. 488 */ 489 490 /* 491 * Called with j_state_lock locked for writing. 492 * Returns true if a transaction commit was started. 493 */ 494 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 495 { 496 /* Return if the txn has already requested to be committed */ 497 if (journal->j_commit_request == target) 498 return 0; 499 500 /* 501 * The only transaction we can possibly wait upon is the 502 * currently running transaction (if it exists). Otherwise, 503 * the target tid must be an old one. 504 */ 505 if (journal->j_running_transaction && 506 journal->j_running_transaction->t_tid == target) { 507 /* 508 * We want a new commit: OK, mark the request and wakeup the 509 * commit thread. We do _not_ do the commit ourselves. 510 */ 511 512 journal->j_commit_request = target; 513 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence); 516 journal->j_running_transaction->t_requested = jiffies; 517 wake_up(&journal->j_wait_commit); 518 return 1; 519 } else if (!tid_geq(journal->j_commit_request, target)) 520 /* This should never happen, but if it does, preserve 521 the evidence before kjournald goes into a loop and 522 increments j_commit_sequence beyond all recognition. */ 523 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 524 journal->j_commit_request, 525 journal->j_commit_sequence, 526 target, journal->j_running_transaction ? 527 journal->j_running_transaction->t_tid : 0); 528 return 0; 529 } 530 531 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 532 { 533 int ret; 534 535 write_lock(&journal->j_state_lock); 536 ret = __jbd2_log_start_commit(journal, tid); 537 write_unlock(&journal->j_state_lock); 538 return ret; 539 } 540 541 /* 542 * Force and wait any uncommitted transactions. We can only force the running 543 * transaction if we don't have an active handle, otherwise, we will deadlock. 544 * Returns: <0 in case of error, 545 * 0 if nothing to commit, 546 * 1 if transaction was successfully committed. 547 */ 548 static int __jbd2_journal_force_commit(journal_t *journal) 549 { 550 transaction_t *transaction = NULL; 551 tid_t tid; 552 int need_to_start = 0, ret = 0; 553 554 read_lock(&journal->j_state_lock); 555 if (journal->j_running_transaction && !current->journal_info) { 556 transaction = journal->j_running_transaction; 557 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 558 need_to_start = 1; 559 } else if (journal->j_committing_transaction) 560 transaction = journal->j_committing_transaction; 561 562 if (!transaction) { 563 /* Nothing to commit */ 564 read_unlock(&journal->j_state_lock); 565 return 0; 566 } 567 tid = transaction->t_tid; 568 read_unlock(&journal->j_state_lock); 569 if (need_to_start) 570 jbd2_log_start_commit(journal, tid); 571 ret = jbd2_log_wait_commit(journal, tid); 572 if (!ret) 573 ret = 1; 574 575 return ret; 576 } 577 578 /** 579 * Force and wait upon a commit if the calling process is not within 580 * transaction. This is used for forcing out undo-protected data which contains 581 * bitmaps, when the fs is running out of space. 582 * 583 * @journal: journal to force 584 * Returns true if progress was made. 585 */ 586 int jbd2_journal_force_commit_nested(journal_t *journal) 587 { 588 int ret; 589 590 ret = __jbd2_journal_force_commit(journal); 591 return ret > 0; 592 } 593 594 /** 595 * int journal_force_commit() - force any uncommitted transactions 596 * @journal: journal to force 597 * 598 * Caller want unconditional commit. We can only force the running transaction 599 * if we don't have an active handle, otherwise, we will deadlock. 600 */ 601 int jbd2_journal_force_commit(journal_t *journal) 602 { 603 int ret; 604 605 J_ASSERT(!current->journal_info); 606 ret = __jbd2_journal_force_commit(journal); 607 if (ret > 0) 608 ret = 0; 609 return ret; 610 } 611 612 /* 613 * Start a commit of the current running transaction (if any). Returns true 614 * if a transaction is going to be committed (or is currently already 615 * committing), and fills its tid in at *ptid 616 */ 617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 618 { 619 int ret = 0; 620 621 write_lock(&journal->j_state_lock); 622 if (journal->j_running_transaction) { 623 tid_t tid = journal->j_running_transaction->t_tid; 624 625 __jbd2_log_start_commit(journal, tid); 626 /* There's a running transaction and we've just made sure 627 * it's commit has been scheduled. */ 628 if (ptid) 629 *ptid = tid; 630 ret = 1; 631 } else if (journal->j_committing_transaction) { 632 /* 633 * If commit has been started, then we have to wait for 634 * completion of that transaction. 635 */ 636 if (ptid) 637 *ptid = journal->j_committing_transaction->t_tid; 638 ret = 1; 639 } 640 write_unlock(&journal->j_state_lock); 641 return ret; 642 } 643 644 /* 645 * Return 1 if a given transaction has not yet sent barrier request 646 * connected with a transaction commit. If 0 is returned, transaction 647 * may or may not have sent the barrier. Used to avoid sending barrier 648 * twice in common cases. 649 */ 650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 651 { 652 int ret = 0; 653 transaction_t *commit_trans; 654 655 if (!(journal->j_flags & JBD2_BARRIER)) 656 return 0; 657 read_lock(&journal->j_state_lock); 658 /* Transaction already committed? */ 659 if (tid_geq(journal->j_commit_sequence, tid)) 660 goto out; 661 commit_trans = journal->j_committing_transaction; 662 if (!commit_trans || commit_trans->t_tid != tid) { 663 ret = 1; 664 goto out; 665 } 666 /* 667 * Transaction is being committed and we already proceeded to 668 * submitting a flush to fs partition? 669 */ 670 if (journal->j_fs_dev != journal->j_dev) { 671 if (!commit_trans->t_need_data_flush || 672 commit_trans->t_state >= T_COMMIT_DFLUSH) 673 goto out; 674 } else { 675 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 676 goto out; 677 } 678 ret = 1; 679 out: 680 read_unlock(&journal->j_state_lock); 681 return ret; 682 } 683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 684 685 /* 686 * Wait for a specified commit to complete. 687 * The caller may not hold the journal lock. 688 */ 689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 690 { 691 int err = 0; 692 693 read_lock(&journal->j_state_lock); 694 #ifdef CONFIG_JBD2_DEBUG 695 if (!tid_geq(journal->j_commit_request, tid)) { 696 printk(KERN_ERR 697 "%s: error: j_commit_request=%d, tid=%d\n", 698 __func__, journal->j_commit_request, tid); 699 } 700 #endif 701 while (tid_gt(tid, journal->j_commit_sequence)) { 702 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 703 tid, journal->j_commit_sequence); 704 read_unlock(&journal->j_state_lock); 705 wake_up(&journal->j_wait_commit); 706 wait_event(journal->j_wait_done_commit, 707 !tid_gt(tid, journal->j_commit_sequence)); 708 read_lock(&journal->j_state_lock); 709 } 710 read_unlock(&journal->j_state_lock); 711 712 if (unlikely(is_journal_aborted(journal))) 713 err = -EIO; 714 return err; 715 } 716 717 /* 718 * When this function returns the transaction corresponding to tid 719 * will be completed. If the transaction has currently running, start 720 * committing that transaction before waiting for it to complete. If 721 * the transaction id is stale, it is by definition already completed, 722 * so just return SUCCESS. 723 */ 724 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 725 { 726 int need_to_wait = 1; 727 728 read_lock(&journal->j_state_lock); 729 if (journal->j_running_transaction && 730 journal->j_running_transaction->t_tid == tid) { 731 if (journal->j_commit_request != tid) { 732 /* transaction not yet started, so request it */ 733 read_unlock(&journal->j_state_lock); 734 jbd2_log_start_commit(journal, tid); 735 goto wait_commit; 736 } 737 } else if (!(journal->j_committing_transaction && 738 journal->j_committing_transaction->t_tid == tid)) 739 need_to_wait = 0; 740 read_unlock(&journal->j_state_lock); 741 if (!need_to_wait) 742 return 0; 743 wait_commit: 744 return jbd2_log_wait_commit(journal, tid); 745 } 746 EXPORT_SYMBOL(jbd2_complete_transaction); 747 748 /* 749 * Log buffer allocation routines: 750 */ 751 752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 753 { 754 unsigned long blocknr; 755 756 write_lock(&journal->j_state_lock); 757 J_ASSERT(journal->j_free > 1); 758 759 blocknr = journal->j_head; 760 journal->j_head++; 761 journal->j_free--; 762 if (journal->j_head == journal->j_last) 763 journal->j_head = journal->j_first; 764 write_unlock(&journal->j_state_lock); 765 return jbd2_journal_bmap(journal, blocknr, retp); 766 } 767 768 /* 769 * Conversion of logical to physical block numbers for the journal 770 * 771 * On external journals the journal blocks are identity-mapped, so 772 * this is a no-op. If needed, we can use j_blk_offset - everything is 773 * ready. 774 */ 775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 776 unsigned long long *retp) 777 { 778 int err = 0; 779 unsigned long long ret; 780 781 if (journal->j_inode) { 782 ret = bmap(journal->j_inode, blocknr); 783 if (ret) 784 *retp = ret; 785 else { 786 printk(KERN_ALERT "%s: journal block not found " 787 "at offset %lu on %s\n", 788 __func__, blocknr, journal->j_devname); 789 err = -EIO; 790 __journal_abort_soft(journal, err); 791 } 792 } else { 793 *retp = blocknr; /* +journal->j_blk_offset */ 794 } 795 return err; 796 } 797 798 /* 799 * We play buffer_head aliasing tricks to write data/metadata blocks to 800 * the journal without copying their contents, but for journal 801 * descriptor blocks we do need to generate bona fide buffers. 802 * 803 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 804 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 805 * But we don't bother doing that, so there will be coherency problems with 806 * mmaps of blockdevs which hold live JBD-controlled filesystems. 807 */ 808 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 809 { 810 struct buffer_head *bh; 811 unsigned long long blocknr; 812 int err; 813 814 err = jbd2_journal_next_log_block(journal, &blocknr); 815 816 if (err) 817 return NULL; 818 819 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 820 if (!bh) 821 return NULL; 822 lock_buffer(bh); 823 memset(bh->b_data, 0, journal->j_blocksize); 824 set_buffer_uptodate(bh); 825 unlock_buffer(bh); 826 BUFFER_TRACE(bh, "return this buffer"); 827 return bh; 828 } 829 830 /* 831 * Return tid of the oldest transaction in the journal and block in the journal 832 * where the transaction starts. 833 * 834 * If the journal is now empty, return which will be the next transaction ID 835 * we will write and where will that transaction start. 836 * 837 * The return value is 0 if journal tail cannot be pushed any further, 1 if 838 * it can. 839 */ 840 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 841 unsigned long *block) 842 { 843 transaction_t *transaction; 844 int ret; 845 846 read_lock(&journal->j_state_lock); 847 spin_lock(&journal->j_list_lock); 848 transaction = journal->j_checkpoint_transactions; 849 if (transaction) { 850 *tid = transaction->t_tid; 851 *block = transaction->t_log_start; 852 } else if ((transaction = journal->j_committing_transaction) != NULL) { 853 *tid = transaction->t_tid; 854 *block = transaction->t_log_start; 855 } else if ((transaction = journal->j_running_transaction) != NULL) { 856 *tid = transaction->t_tid; 857 *block = journal->j_head; 858 } else { 859 *tid = journal->j_transaction_sequence; 860 *block = journal->j_head; 861 } 862 ret = tid_gt(*tid, journal->j_tail_sequence); 863 spin_unlock(&journal->j_list_lock); 864 read_unlock(&journal->j_state_lock); 865 866 return ret; 867 } 868 869 /* 870 * Update information in journal structure and in on disk journal superblock 871 * about log tail. This function does not check whether information passed in 872 * really pushes log tail further. It's responsibility of the caller to make 873 * sure provided log tail information is valid (e.g. by holding 874 * j_checkpoint_mutex all the time between computing log tail and calling this 875 * function as is the case with jbd2_cleanup_journal_tail()). 876 * 877 * Requires j_checkpoint_mutex 878 */ 879 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 880 { 881 unsigned long freed; 882 int ret; 883 884 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 885 886 /* 887 * We cannot afford for write to remain in drive's caches since as 888 * soon as we update j_tail, next transaction can start reusing journal 889 * space and if we lose sb update during power failure we'd replay 890 * old transaction with possibly newly overwritten data. 891 */ 892 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 893 if (ret) 894 goto out; 895 896 write_lock(&journal->j_state_lock); 897 freed = block - journal->j_tail; 898 if (block < journal->j_tail) 899 freed += journal->j_last - journal->j_first; 900 901 trace_jbd2_update_log_tail(journal, tid, block, freed); 902 jbd_debug(1, 903 "Cleaning journal tail from %d to %d (offset %lu), " 904 "freeing %lu\n", 905 journal->j_tail_sequence, tid, block, freed); 906 907 journal->j_free += freed; 908 journal->j_tail_sequence = tid; 909 journal->j_tail = block; 910 write_unlock(&journal->j_state_lock); 911 912 out: 913 return ret; 914 } 915 916 /* 917 * This is a variaon of __jbd2_update_log_tail which checks for validity of 918 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 919 * with other threads updating log tail. 920 */ 921 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 922 { 923 mutex_lock(&journal->j_checkpoint_mutex); 924 if (tid_gt(tid, journal->j_tail_sequence)) 925 __jbd2_update_log_tail(journal, tid, block); 926 mutex_unlock(&journal->j_checkpoint_mutex); 927 } 928 929 struct jbd2_stats_proc_session { 930 journal_t *journal; 931 struct transaction_stats_s *stats; 932 int start; 933 int max; 934 }; 935 936 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 937 { 938 return *pos ? NULL : SEQ_START_TOKEN; 939 } 940 941 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 942 { 943 return NULL; 944 } 945 946 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 947 { 948 struct jbd2_stats_proc_session *s = seq->private; 949 950 if (v != SEQ_START_TOKEN) 951 return 0; 952 seq_printf(seq, "%lu transactions (%lu requested), " 953 "each up to %u blocks\n", 954 s->stats->ts_tid, s->stats->ts_requested, 955 s->journal->j_max_transaction_buffers); 956 if (s->stats->ts_tid == 0) 957 return 0; 958 seq_printf(seq, "average: \n %ums waiting for transaction\n", 959 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 960 seq_printf(seq, " %ums request delay\n", 961 (s->stats->ts_requested == 0) ? 0 : 962 jiffies_to_msecs(s->stats->run.rs_request_delay / 963 s->stats->ts_requested)); 964 seq_printf(seq, " %ums running transaction\n", 965 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 966 seq_printf(seq, " %ums transaction was being locked\n", 967 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 968 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 969 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 970 seq_printf(seq, " %ums logging transaction\n", 971 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 972 seq_printf(seq, " %lluus average transaction commit time\n", 973 div_u64(s->journal->j_average_commit_time, 1000)); 974 seq_printf(seq, " %lu handles per transaction\n", 975 s->stats->run.rs_handle_count / s->stats->ts_tid); 976 seq_printf(seq, " %lu blocks per transaction\n", 977 s->stats->run.rs_blocks / s->stats->ts_tid); 978 seq_printf(seq, " %lu logged blocks per transaction\n", 979 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 980 return 0; 981 } 982 983 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 984 { 985 } 986 987 static const struct seq_operations jbd2_seq_info_ops = { 988 .start = jbd2_seq_info_start, 989 .next = jbd2_seq_info_next, 990 .stop = jbd2_seq_info_stop, 991 .show = jbd2_seq_info_show, 992 }; 993 994 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 995 { 996 journal_t *journal = PDE_DATA(inode); 997 struct jbd2_stats_proc_session *s; 998 int rc, size; 999 1000 s = kmalloc(sizeof(*s), GFP_KERNEL); 1001 if (s == NULL) 1002 return -ENOMEM; 1003 size = sizeof(struct transaction_stats_s); 1004 s->stats = kmalloc(size, GFP_KERNEL); 1005 if (s->stats == NULL) { 1006 kfree(s); 1007 return -ENOMEM; 1008 } 1009 spin_lock(&journal->j_history_lock); 1010 memcpy(s->stats, &journal->j_stats, size); 1011 s->journal = journal; 1012 spin_unlock(&journal->j_history_lock); 1013 1014 rc = seq_open(file, &jbd2_seq_info_ops); 1015 if (rc == 0) { 1016 struct seq_file *m = file->private_data; 1017 m->private = s; 1018 } else { 1019 kfree(s->stats); 1020 kfree(s); 1021 } 1022 return rc; 1023 1024 } 1025 1026 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1027 { 1028 struct seq_file *seq = file->private_data; 1029 struct jbd2_stats_proc_session *s = seq->private; 1030 kfree(s->stats); 1031 kfree(s); 1032 return seq_release(inode, file); 1033 } 1034 1035 static const struct file_operations jbd2_seq_info_fops = { 1036 .owner = THIS_MODULE, 1037 .open = jbd2_seq_info_open, 1038 .read = seq_read, 1039 .llseek = seq_lseek, 1040 .release = jbd2_seq_info_release, 1041 }; 1042 1043 static struct proc_dir_entry *proc_jbd2_stats; 1044 1045 static void jbd2_stats_proc_init(journal_t *journal) 1046 { 1047 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1048 if (journal->j_proc_entry) { 1049 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1050 &jbd2_seq_info_fops, journal); 1051 } 1052 } 1053 1054 static void jbd2_stats_proc_exit(journal_t *journal) 1055 { 1056 remove_proc_entry("info", journal->j_proc_entry); 1057 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1058 } 1059 1060 /* 1061 * Management for journal control blocks: functions to create and 1062 * destroy journal_t structures, and to initialise and read existing 1063 * journal blocks from disk. */ 1064 1065 /* First: create and setup a journal_t object in memory. We initialise 1066 * very few fields yet: that has to wait until we have created the 1067 * journal structures from from scratch, or loaded them from disk. */ 1068 1069 static journal_t * journal_init_common (void) 1070 { 1071 journal_t *journal; 1072 int err; 1073 1074 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1075 if (!journal) 1076 return NULL; 1077 1078 init_waitqueue_head(&journal->j_wait_transaction_locked); 1079 init_waitqueue_head(&journal->j_wait_done_commit); 1080 init_waitqueue_head(&journal->j_wait_commit); 1081 init_waitqueue_head(&journal->j_wait_updates); 1082 init_waitqueue_head(&journal->j_wait_reserved); 1083 mutex_init(&journal->j_barrier); 1084 mutex_init(&journal->j_checkpoint_mutex); 1085 spin_lock_init(&journal->j_revoke_lock); 1086 spin_lock_init(&journal->j_list_lock); 1087 rwlock_init(&journal->j_state_lock); 1088 1089 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1090 journal->j_min_batch_time = 0; 1091 journal->j_max_batch_time = 15000; /* 15ms */ 1092 atomic_set(&journal->j_reserved_credits, 0); 1093 1094 /* The journal is marked for error until we succeed with recovery! */ 1095 journal->j_flags = JBD2_ABORT; 1096 1097 /* Set up a default-sized revoke table for the new mount. */ 1098 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1099 if (err) { 1100 kfree(journal); 1101 return NULL; 1102 } 1103 1104 spin_lock_init(&journal->j_history_lock); 1105 1106 return journal; 1107 } 1108 1109 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1110 * 1111 * Create a journal structure assigned some fixed set of disk blocks to 1112 * the journal. We don't actually touch those disk blocks yet, but we 1113 * need to set up all of the mapping information to tell the journaling 1114 * system where the journal blocks are. 1115 * 1116 */ 1117 1118 /** 1119 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1120 * @bdev: Block device on which to create the journal 1121 * @fs_dev: Device which hold journalled filesystem for this journal. 1122 * @start: Block nr Start of journal. 1123 * @len: Length of the journal in blocks. 1124 * @blocksize: blocksize of journalling device 1125 * 1126 * Returns: a newly created journal_t * 1127 * 1128 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1129 * range of blocks on an arbitrary block device. 1130 * 1131 */ 1132 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1133 struct block_device *fs_dev, 1134 unsigned long long start, int len, int blocksize) 1135 { 1136 journal_t *journal = journal_init_common(); 1137 struct buffer_head *bh; 1138 int n; 1139 1140 if (!journal) 1141 return NULL; 1142 1143 /* journal descriptor can store up to n blocks -bzzz */ 1144 journal->j_blocksize = blocksize; 1145 journal->j_dev = bdev; 1146 journal->j_fs_dev = fs_dev; 1147 journal->j_blk_offset = start; 1148 journal->j_maxlen = len; 1149 bdevname(journal->j_dev, journal->j_devname); 1150 strreplace(journal->j_devname, '/', '!'); 1151 jbd2_stats_proc_init(journal); 1152 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1153 journal->j_wbufsize = n; 1154 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1155 if (!journal->j_wbuf) { 1156 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1157 __func__); 1158 goto out_err; 1159 } 1160 1161 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1162 if (!bh) { 1163 printk(KERN_ERR 1164 "%s: Cannot get buffer for journal superblock\n", 1165 __func__); 1166 goto out_err; 1167 } 1168 journal->j_sb_buffer = bh; 1169 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1170 1171 return journal; 1172 out_err: 1173 kfree(journal->j_wbuf); 1174 jbd2_stats_proc_exit(journal); 1175 kfree(journal); 1176 return NULL; 1177 } 1178 1179 /** 1180 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1181 * @inode: An inode to create the journal in 1182 * 1183 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1184 * the journal. The inode must exist already, must support bmap() and 1185 * must have all data blocks preallocated. 1186 */ 1187 journal_t * jbd2_journal_init_inode (struct inode *inode) 1188 { 1189 struct buffer_head *bh; 1190 journal_t *journal = journal_init_common(); 1191 char *p; 1192 int err; 1193 int n; 1194 unsigned long long blocknr; 1195 1196 if (!journal) 1197 return NULL; 1198 1199 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1200 journal->j_inode = inode; 1201 bdevname(journal->j_dev, journal->j_devname); 1202 p = strreplace(journal->j_devname, '/', '!'); 1203 sprintf(p, "-%lu", journal->j_inode->i_ino); 1204 jbd_debug(1, 1205 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1206 journal, inode->i_sb->s_id, inode->i_ino, 1207 (long long) inode->i_size, 1208 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1209 1210 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1211 journal->j_blocksize = inode->i_sb->s_blocksize; 1212 jbd2_stats_proc_init(journal); 1213 1214 /* journal descriptor can store up to n blocks -bzzz */ 1215 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1216 journal->j_wbufsize = n; 1217 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1218 if (!journal->j_wbuf) { 1219 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1220 __func__); 1221 goto out_err; 1222 } 1223 1224 err = jbd2_journal_bmap(journal, 0, &blocknr); 1225 /* If that failed, give up */ 1226 if (err) { 1227 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1228 __func__); 1229 goto out_err; 1230 } 1231 1232 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize); 1233 if (!bh) { 1234 printk(KERN_ERR 1235 "%s: Cannot get buffer for journal superblock\n", 1236 __func__); 1237 goto out_err; 1238 } 1239 journal->j_sb_buffer = bh; 1240 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1241 1242 return journal; 1243 out_err: 1244 kfree(journal->j_wbuf); 1245 jbd2_stats_proc_exit(journal); 1246 kfree(journal); 1247 return NULL; 1248 } 1249 1250 /* 1251 * If the journal init or create aborts, we need to mark the journal 1252 * superblock as being NULL to prevent the journal destroy from writing 1253 * back a bogus superblock. 1254 */ 1255 static void journal_fail_superblock (journal_t *journal) 1256 { 1257 struct buffer_head *bh = journal->j_sb_buffer; 1258 brelse(bh); 1259 journal->j_sb_buffer = NULL; 1260 } 1261 1262 /* 1263 * Given a journal_t structure, initialise the various fields for 1264 * startup of a new journaling session. We use this both when creating 1265 * a journal, and after recovering an old journal to reset it for 1266 * subsequent use. 1267 */ 1268 1269 static int journal_reset(journal_t *journal) 1270 { 1271 journal_superblock_t *sb = journal->j_superblock; 1272 unsigned long long first, last; 1273 1274 first = be32_to_cpu(sb->s_first); 1275 last = be32_to_cpu(sb->s_maxlen); 1276 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1277 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1278 first, last); 1279 journal_fail_superblock(journal); 1280 return -EINVAL; 1281 } 1282 1283 journal->j_first = first; 1284 journal->j_last = last; 1285 1286 journal->j_head = first; 1287 journal->j_tail = first; 1288 journal->j_free = last - first; 1289 1290 journal->j_tail_sequence = journal->j_transaction_sequence; 1291 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1292 journal->j_commit_request = journal->j_commit_sequence; 1293 1294 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1295 1296 /* 1297 * As a special case, if the on-disk copy is already marked as needing 1298 * no recovery (s_start == 0), then we can safely defer the superblock 1299 * update until the next commit by setting JBD2_FLUSHED. This avoids 1300 * attempting a write to a potential-readonly device. 1301 */ 1302 if (sb->s_start == 0) { 1303 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1304 "(start %ld, seq %d, errno %d)\n", 1305 journal->j_tail, journal->j_tail_sequence, 1306 journal->j_errno); 1307 journal->j_flags |= JBD2_FLUSHED; 1308 } else { 1309 /* Lock here to make assertions happy... */ 1310 mutex_lock(&journal->j_checkpoint_mutex); 1311 /* 1312 * Update log tail information. We use WRITE_FUA since new 1313 * transaction will start reusing journal space and so we 1314 * must make sure information about current log tail is on 1315 * disk before that. 1316 */ 1317 jbd2_journal_update_sb_log_tail(journal, 1318 journal->j_tail_sequence, 1319 journal->j_tail, 1320 WRITE_FUA); 1321 mutex_unlock(&journal->j_checkpoint_mutex); 1322 } 1323 return jbd2_journal_start_thread(journal); 1324 } 1325 1326 static int jbd2_write_superblock(journal_t *journal, int write_op) 1327 { 1328 struct buffer_head *bh = journal->j_sb_buffer; 1329 journal_superblock_t *sb = journal->j_superblock; 1330 int ret; 1331 1332 trace_jbd2_write_superblock(journal, write_op); 1333 if (!(journal->j_flags & JBD2_BARRIER)) 1334 write_op &= ~(REQ_FUA | REQ_FLUSH); 1335 lock_buffer(bh); 1336 if (buffer_write_io_error(bh)) { 1337 /* 1338 * Oh, dear. A previous attempt to write the journal 1339 * superblock failed. This could happen because the 1340 * USB device was yanked out. Or it could happen to 1341 * be a transient write error and maybe the block will 1342 * be remapped. Nothing we can do but to retry the 1343 * write and hope for the best. 1344 */ 1345 printk(KERN_ERR "JBD2: previous I/O error detected " 1346 "for journal superblock update for %s.\n", 1347 journal->j_devname); 1348 clear_buffer_write_io_error(bh); 1349 set_buffer_uptodate(bh); 1350 } 1351 jbd2_superblock_csum_set(journal, sb); 1352 get_bh(bh); 1353 bh->b_end_io = end_buffer_write_sync; 1354 ret = submit_bh(write_op, bh); 1355 wait_on_buffer(bh); 1356 if (buffer_write_io_error(bh)) { 1357 clear_buffer_write_io_error(bh); 1358 set_buffer_uptodate(bh); 1359 ret = -EIO; 1360 } 1361 if (ret) { 1362 printk(KERN_ERR "JBD2: Error %d detected when updating " 1363 "journal superblock for %s.\n", ret, 1364 journal->j_devname); 1365 jbd2_journal_abort(journal, ret); 1366 } 1367 1368 return ret; 1369 } 1370 1371 /** 1372 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1373 * @journal: The journal to update. 1374 * @tail_tid: TID of the new transaction at the tail of the log 1375 * @tail_block: The first block of the transaction at the tail of the log 1376 * @write_op: With which operation should we write the journal sb 1377 * 1378 * Update a journal's superblock information about log tail and write it to 1379 * disk, waiting for the IO to complete. 1380 */ 1381 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1382 unsigned long tail_block, int write_op) 1383 { 1384 journal_superblock_t *sb = journal->j_superblock; 1385 int ret; 1386 1387 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1388 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1389 tail_block, tail_tid); 1390 1391 sb->s_sequence = cpu_to_be32(tail_tid); 1392 sb->s_start = cpu_to_be32(tail_block); 1393 1394 ret = jbd2_write_superblock(journal, write_op); 1395 if (ret) 1396 goto out; 1397 1398 /* Log is no longer empty */ 1399 write_lock(&journal->j_state_lock); 1400 WARN_ON(!sb->s_sequence); 1401 journal->j_flags &= ~JBD2_FLUSHED; 1402 write_unlock(&journal->j_state_lock); 1403 1404 out: 1405 return ret; 1406 } 1407 1408 /** 1409 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1410 * @journal: The journal to update. 1411 * 1412 * Update a journal's dynamic superblock fields to show that journal is empty. 1413 * Write updated superblock to disk waiting for IO to complete. 1414 */ 1415 static void jbd2_mark_journal_empty(journal_t *journal) 1416 { 1417 journal_superblock_t *sb = journal->j_superblock; 1418 1419 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1420 read_lock(&journal->j_state_lock); 1421 /* Is it already empty? */ 1422 if (sb->s_start == 0) { 1423 read_unlock(&journal->j_state_lock); 1424 return; 1425 } 1426 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1427 journal->j_tail_sequence); 1428 1429 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1430 sb->s_start = cpu_to_be32(0); 1431 read_unlock(&journal->j_state_lock); 1432 1433 jbd2_write_superblock(journal, WRITE_FUA); 1434 1435 /* Log is no longer empty */ 1436 write_lock(&journal->j_state_lock); 1437 journal->j_flags |= JBD2_FLUSHED; 1438 write_unlock(&journal->j_state_lock); 1439 } 1440 1441 1442 /** 1443 * jbd2_journal_update_sb_errno() - Update error in the journal. 1444 * @journal: The journal to update. 1445 * 1446 * Update a journal's errno. Write updated superblock to disk waiting for IO 1447 * to complete. 1448 */ 1449 void jbd2_journal_update_sb_errno(journal_t *journal) 1450 { 1451 journal_superblock_t *sb = journal->j_superblock; 1452 1453 read_lock(&journal->j_state_lock); 1454 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1455 journal->j_errno); 1456 sb->s_errno = cpu_to_be32(journal->j_errno); 1457 read_unlock(&journal->j_state_lock); 1458 1459 jbd2_write_superblock(journal, WRITE_FUA); 1460 } 1461 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1462 1463 /* 1464 * Read the superblock for a given journal, performing initial 1465 * validation of the format. 1466 */ 1467 static int journal_get_superblock(journal_t *journal) 1468 { 1469 struct buffer_head *bh; 1470 journal_superblock_t *sb; 1471 int err = -EIO; 1472 1473 bh = journal->j_sb_buffer; 1474 1475 J_ASSERT(bh != NULL); 1476 if (!buffer_uptodate(bh)) { 1477 ll_rw_block(READ, 1, &bh); 1478 wait_on_buffer(bh); 1479 if (!buffer_uptodate(bh)) { 1480 printk(KERN_ERR 1481 "JBD2: IO error reading journal superblock\n"); 1482 goto out; 1483 } 1484 } 1485 1486 if (buffer_verified(bh)) 1487 return 0; 1488 1489 sb = journal->j_superblock; 1490 1491 err = -EINVAL; 1492 1493 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1494 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1495 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1496 goto out; 1497 } 1498 1499 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1500 case JBD2_SUPERBLOCK_V1: 1501 journal->j_format_version = 1; 1502 break; 1503 case JBD2_SUPERBLOCK_V2: 1504 journal->j_format_version = 2; 1505 break; 1506 default: 1507 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1508 goto out; 1509 } 1510 1511 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1512 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1513 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1514 printk(KERN_WARNING "JBD2: journal file too short\n"); 1515 goto out; 1516 } 1517 1518 if (be32_to_cpu(sb->s_first) == 0 || 1519 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1520 printk(KERN_WARNING 1521 "JBD2: Invalid start block of journal: %u\n", 1522 be32_to_cpu(sb->s_first)); 1523 goto out; 1524 } 1525 1526 if (jbd2_has_feature_csum2(journal) && 1527 jbd2_has_feature_csum3(journal)) { 1528 /* Can't have checksum v2 and v3 at the same time! */ 1529 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1530 "at the same time!\n"); 1531 goto out; 1532 } 1533 1534 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1535 jbd2_has_feature_checksum(journal)) { 1536 /* Can't have checksum v1 and v2 on at the same time! */ 1537 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1538 "at the same time!\n"); 1539 goto out; 1540 } 1541 1542 if (!jbd2_verify_csum_type(journal, sb)) { 1543 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1544 goto out; 1545 } 1546 1547 /* Load the checksum driver */ 1548 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1549 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1550 if (IS_ERR(journal->j_chksum_driver)) { 1551 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1552 err = PTR_ERR(journal->j_chksum_driver); 1553 journal->j_chksum_driver = NULL; 1554 goto out; 1555 } 1556 } 1557 1558 /* Check superblock checksum */ 1559 if (!jbd2_superblock_csum_verify(journal, sb)) { 1560 printk(KERN_ERR "JBD2: journal checksum error\n"); 1561 err = -EFSBADCRC; 1562 goto out; 1563 } 1564 1565 /* Precompute checksum seed for all metadata */ 1566 if (jbd2_journal_has_csum_v2or3(journal)) 1567 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1568 sizeof(sb->s_uuid)); 1569 1570 set_buffer_verified(bh); 1571 1572 return 0; 1573 1574 out: 1575 journal_fail_superblock(journal); 1576 return err; 1577 } 1578 1579 /* 1580 * Load the on-disk journal superblock and read the key fields into the 1581 * journal_t. 1582 */ 1583 1584 static int load_superblock(journal_t *journal) 1585 { 1586 int err; 1587 journal_superblock_t *sb; 1588 1589 err = journal_get_superblock(journal); 1590 if (err) 1591 return err; 1592 1593 sb = journal->j_superblock; 1594 1595 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1596 journal->j_tail = be32_to_cpu(sb->s_start); 1597 journal->j_first = be32_to_cpu(sb->s_first); 1598 journal->j_last = be32_to_cpu(sb->s_maxlen); 1599 journal->j_errno = be32_to_cpu(sb->s_errno); 1600 1601 return 0; 1602 } 1603 1604 1605 /** 1606 * int jbd2_journal_load() - Read journal from disk. 1607 * @journal: Journal to act on. 1608 * 1609 * Given a journal_t structure which tells us which disk blocks contain 1610 * a journal, read the journal from disk to initialise the in-memory 1611 * structures. 1612 */ 1613 int jbd2_journal_load(journal_t *journal) 1614 { 1615 int err; 1616 journal_superblock_t *sb; 1617 1618 err = load_superblock(journal); 1619 if (err) 1620 return err; 1621 1622 sb = journal->j_superblock; 1623 /* If this is a V2 superblock, then we have to check the 1624 * features flags on it. */ 1625 1626 if (journal->j_format_version >= 2) { 1627 if ((sb->s_feature_ro_compat & 1628 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1629 (sb->s_feature_incompat & 1630 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1631 printk(KERN_WARNING 1632 "JBD2: Unrecognised features on journal\n"); 1633 return -EINVAL; 1634 } 1635 } 1636 1637 /* 1638 * Create a slab for this blocksize 1639 */ 1640 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1641 if (err) 1642 return err; 1643 1644 /* Let the recovery code check whether it needs to recover any 1645 * data from the journal. */ 1646 if (jbd2_journal_recover(journal)) 1647 goto recovery_error; 1648 1649 if (journal->j_failed_commit) { 1650 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1651 "is corrupt.\n", journal->j_failed_commit, 1652 journal->j_devname); 1653 return -EFSCORRUPTED; 1654 } 1655 1656 /* OK, we've finished with the dynamic journal bits: 1657 * reinitialise the dynamic contents of the superblock in memory 1658 * and reset them on disk. */ 1659 if (journal_reset(journal)) 1660 goto recovery_error; 1661 1662 journal->j_flags &= ~JBD2_ABORT; 1663 journal->j_flags |= JBD2_LOADED; 1664 return 0; 1665 1666 recovery_error: 1667 printk(KERN_WARNING "JBD2: recovery failed\n"); 1668 return -EIO; 1669 } 1670 1671 /** 1672 * void jbd2_journal_destroy() - Release a journal_t structure. 1673 * @journal: Journal to act on. 1674 * 1675 * Release a journal_t structure once it is no longer in use by the 1676 * journaled object. 1677 * Return <0 if we couldn't clean up the journal. 1678 */ 1679 int jbd2_journal_destroy(journal_t *journal) 1680 { 1681 int err = 0; 1682 1683 /* Wait for the commit thread to wake up and die. */ 1684 journal_kill_thread(journal); 1685 1686 /* Force a final log commit */ 1687 if (journal->j_running_transaction) 1688 jbd2_journal_commit_transaction(journal); 1689 1690 /* Force any old transactions to disk */ 1691 1692 /* Totally anal locking here... */ 1693 spin_lock(&journal->j_list_lock); 1694 while (journal->j_checkpoint_transactions != NULL) { 1695 spin_unlock(&journal->j_list_lock); 1696 mutex_lock(&journal->j_checkpoint_mutex); 1697 err = jbd2_log_do_checkpoint(journal); 1698 mutex_unlock(&journal->j_checkpoint_mutex); 1699 /* 1700 * If checkpointing failed, just free the buffers to avoid 1701 * looping forever 1702 */ 1703 if (err) { 1704 jbd2_journal_destroy_checkpoint(journal); 1705 spin_lock(&journal->j_list_lock); 1706 break; 1707 } 1708 spin_lock(&journal->j_list_lock); 1709 } 1710 1711 J_ASSERT(journal->j_running_transaction == NULL); 1712 J_ASSERT(journal->j_committing_transaction == NULL); 1713 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1714 spin_unlock(&journal->j_list_lock); 1715 1716 if (journal->j_sb_buffer) { 1717 if (!is_journal_aborted(journal)) { 1718 mutex_lock(&journal->j_checkpoint_mutex); 1719 jbd2_mark_journal_empty(journal); 1720 mutex_unlock(&journal->j_checkpoint_mutex); 1721 } else 1722 err = -EIO; 1723 brelse(journal->j_sb_buffer); 1724 } 1725 1726 if (journal->j_proc_entry) 1727 jbd2_stats_proc_exit(journal); 1728 iput(journal->j_inode); 1729 if (journal->j_revoke) 1730 jbd2_journal_destroy_revoke(journal); 1731 if (journal->j_chksum_driver) 1732 crypto_free_shash(journal->j_chksum_driver); 1733 kfree(journal->j_wbuf); 1734 kfree(journal); 1735 1736 return err; 1737 } 1738 1739 1740 /** 1741 *int jbd2_journal_check_used_features () - Check if features specified are used. 1742 * @journal: Journal to check. 1743 * @compat: bitmask of compatible features 1744 * @ro: bitmask of features that force read-only mount 1745 * @incompat: bitmask of incompatible features 1746 * 1747 * Check whether the journal uses all of a given set of 1748 * features. Return true (non-zero) if it does. 1749 **/ 1750 1751 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1752 unsigned long ro, unsigned long incompat) 1753 { 1754 journal_superblock_t *sb; 1755 1756 if (!compat && !ro && !incompat) 1757 return 1; 1758 /* Load journal superblock if it is not loaded yet. */ 1759 if (journal->j_format_version == 0 && 1760 journal_get_superblock(journal) != 0) 1761 return 0; 1762 if (journal->j_format_version == 1) 1763 return 0; 1764 1765 sb = journal->j_superblock; 1766 1767 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1768 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1769 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1770 return 1; 1771 1772 return 0; 1773 } 1774 1775 /** 1776 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1777 * @journal: Journal to check. 1778 * @compat: bitmask of compatible features 1779 * @ro: bitmask of features that force read-only mount 1780 * @incompat: bitmask of incompatible features 1781 * 1782 * Check whether the journaling code supports the use of 1783 * all of a given set of features on this journal. Return true 1784 * (non-zero) if it can. */ 1785 1786 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1787 unsigned long ro, unsigned long incompat) 1788 { 1789 if (!compat && !ro && !incompat) 1790 return 1; 1791 1792 /* We can support any known requested features iff the 1793 * superblock is in version 2. Otherwise we fail to support any 1794 * extended sb features. */ 1795 1796 if (journal->j_format_version != 2) 1797 return 0; 1798 1799 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1800 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1801 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1802 return 1; 1803 1804 return 0; 1805 } 1806 1807 /** 1808 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1809 * @journal: Journal to act on. 1810 * @compat: bitmask of compatible features 1811 * @ro: bitmask of features that force read-only mount 1812 * @incompat: bitmask of incompatible features 1813 * 1814 * Mark a given journal feature as present on the 1815 * superblock. Returns true if the requested features could be set. 1816 * 1817 */ 1818 1819 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1820 unsigned long ro, unsigned long incompat) 1821 { 1822 #define INCOMPAT_FEATURE_ON(f) \ 1823 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1824 #define COMPAT_FEATURE_ON(f) \ 1825 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1826 journal_superblock_t *sb; 1827 1828 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1829 return 1; 1830 1831 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1832 return 0; 1833 1834 /* If enabling v2 checksums, turn on v3 instead */ 1835 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1836 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1837 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1838 } 1839 1840 /* Asking for checksumming v3 and v1? Only give them v3. */ 1841 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1842 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1843 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1844 1845 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1846 compat, ro, incompat); 1847 1848 sb = journal->j_superblock; 1849 1850 /* If enabling v3 checksums, update superblock */ 1851 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1852 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1853 sb->s_feature_compat &= 1854 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1855 1856 /* Load the checksum driver */ 1857 if (journal->j_chksum_driver == NULL) { 1858 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1859 0, 0); 1860 if (IS_ERR(journal->j_chksum_driver)) { 1861 printk(KERN_ERR "JBD2: Cannot load crc32c " 1862 "driver.\n"); 1863 journal->j_chksum_driver = NULL; 1864 return 0; 1865 } 1866 1867 /* Precompute checksum seed for all metadata */ 1868 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1869 sb->s_uuid, 1870 sizeof(sb->s_uuid)); 1871 } 1872 } 1873 1874 /* If enabling v1 checksums, downgrade superblock */ 1875 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1876 sb->s_feature_incompat &= 1877 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1878 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1879 1880 sb->s_feature_compat |= cpu_to_be32(compat); 1881 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1882 sb->s_feature_incompat |= cpu_to_be32(incompat); 1883 1884 return 1; 1885 #undef COMPAT_FEATURE_ON 1886 #undef INCOMPAT_FEATURE_ON 1887 } 1888 1889 /* 1890 * jbd2_journal_clear_features () - Clear a given journal feature in the 1891 * superblock 1892 * @journal: Journal to act on. 1893 * @compat: bitmask of compatible features 1894 * @ro: bitmask of features that force read-only mount 1895 * @incompat: bitmask of incompatible features 1896 * 1897 * Clear a given journal feature as present on the 1898 * superblock. 1899 */ 1900 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1901 unsigned long ro, unsigned long incompat) 1902 { 1903 journal_superblock_t *sb; 1904 1905 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1906 compat, ro, incompat); 1907 1908 sb = journal->j_superblock; 1909 1910 sb->s_feature_compat &= ~cpu_to_be32(compat); 1911 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1912 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1913 } 1914 EXPORT_SYMBOL(jbd2_journal_clear_features); 1915 1916 /** 1917 * int jbd2_journal_flush () - Flush journal 1918 * @journal: Journal to act on. 1919 * 1920 * Flush all data for a given journal to disk and empty the journal. 1921 * Filesystems can use this when remounting readonly to ensure that 1922 * recovery does not need to happen on remount. 1923 */ 1924 1925 int jbd2_journal_flush(journal_t *journal) 1926 { 1927 int err = 0; 1928 transaction_t *transaction = NULL; 1929 1930 write_lock(&journal->j_state_lock); 1931 1932 /* Force everything buffered to the log... */ 1933 if (journal->j_running_transaction) { 1934 transaction = journal->j_running_transaction; 1935 __jbd2_log_start_commit(journal, transaction->t_tid); 1936 } else if (journal->j_committing_transaction) 1937 transaction = journal->j_committing_transaction; 1938 1939 /* Wait for the log commit to complete... */ 1940 if (transaction) { 1941 tid_t tid = transaction->t_tid; 1942 1943 write_unlock(&journal->j_state_lock); 1944 jbd2_log_wait_commit(journal, tid); 1945 } else { 1946 write_unlock(&journal->j_state_lock); 1947 } 1948 1949 /* ...and flush everything in the log out to disk. */ 1950 spin_lock(&journal->j_list_lock); 1951 while (!err && journal->j_checkpoint_transactions != NULL) { 1952 spin_unlock(&journal->j_list_lock); 1953 mutex_lock(&journal->j_checkpoint_mutex); 1954 err = jbd2_log_do_checkpoint(journal); 1955 mutex_unlock(&journal->j_checkpoint_mutex); 1956 spin_lock(&journal->j_list_lock); 1957 } 1958 spin_unlock(&journal->j_list_lock); 1959 1960 if (is_journal_aborted(journal)) 1961 return -EIO; 1962 1963 mutex_lock(&journal->j_checkpoint_mutex); 1964 if (!err) { 1965 err = jbd2_cleanup_journal_tail(journal); 1966 if (err < 0) { 1967 mutex_unlock(&journal->j_checkpoint_mutex); 1968 goto out; 1969 } 1970 err = 0; 1971 } 1972 1973 /* Finally, mark the journal as really needing no recovery. 1974 * This sets s_start==0 in the underlying superblock, which is 1975 * the magic code for a fully-recovered superblock. Any future 1976 * commits of data to the journal will restore the current 1977 * s_start value. */ 1978 jbd2_mark_journal_empty(journal); 1979 mutex_unlock(&journal->j_checkpoint_mutex); 1980 write_lock(&journal->j_state_lock); 1981 J_ASSERT(!journal->j_running_transaction); 1982 J_ASSERT(!journal->j_committing_transaction); 1983 J_ASSERT(!journal->j_checkpoint_transactions); 1984 J_ASSERT(journal->j_head == journal->j_tail); 1985 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1986 write_unlock(&journal->j_state_lock); 1987 out: 1988 return err; 1989 } 1990 1991 /** 1992 * int jbd2_journal_wipe() - Wipe journal contents 1993 * @journal: Journal to act on. 1994 * @write: flag (see below) 1995 * 1996 * Wipe out all of the contents of a journal, safely. This will produce 1997 * a warning if the journal contains any valid recovery information. 1998 * Must be called between journal_init_*() and jbd2_journal_load(). 1999 * 2000 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2001 * we merely suppress recovery. 2002 */ 2003 2004 int jbd2_journal_wipe(journal_t *journal, int write) 2005 { 2006 int err = 0; 2007 2008 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2009 2010 err = load_superblock(journal); 2011 if (err) 2012 return err; 2013 2014 if (!journal->j_tail) 2015 goto no_recovery; 2016 2017 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2018 write ? "Clearing" : "Ignoring"); 2019 2020 err = jbd2_journal_skip_recovery(journal); 2021 if (write) { 2022 /* Lock to make assertions happy... */ 2023 mutex_lock(&journal->j_checkpoint_mutex); 2024 jbd2_mark_journal_empty(journal); 2025 mutex_unlock(&journal->j_checkpoint_mutex); 2026 } 2027 2028 no_recovery: 2029 return err; 2030 } 2031 2032 /* 2033 * Journal abort has very specific semantics, which we describe 2034 * for journal abort. 2035 * 2036 * Two internal functions, which provide abort to the jbd layer 2037 * itself are here. 2038 */ 2039 2040 /* 2041 * Quick version for internal journal use (doesn't lock the journal). 2042 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2043 * and don't attempt to make any other journal updates. 2044 */ 2045 void __jbd2_journal_abort_hard(journal_t *journal) 2046 { 2047 transaction_t *transaction; 2048 2049 if (journal->j_flags & JBD2_ABORT) 2050 return; 2051 2052 printk(KERN_ERR "Aborting journal on device %s.\n", 2053 journal->j_devname); 2054 2055 write_lock(&journal->j_state_lock); 2056 journal->j_flags |= JBD2_ABORT; 2057 transaction = journal->j_running_transaction; 2058 if (transaction) 2059 __jbd2_log_start_commit(journal, transaction->t_tid); 2060 write_unlock(&journal->j_state_lock); 2061 } 2062 2063 /* Soft abort: record the abort error status in the journal superblock, 2064 * but don't do any other IO. */ 2065 static void __journal_abort_soft (journal_t *journal, int errno) 2066 { 2067 if (journal->j_flags & JBD2_ABORT) 2068 return; 2069 2070 if (!journal->j_errno) 2071 journal->j_errno = errno; 2072 2073 __jbd2_journal_abort_hard(journal); 2074 2075 if (errno) { 2076 jbd2_journal_update_sb_errno(journal); 2077 write_lock(&journal->j_state_lock); 2078 journal->j_flags |= JBD2_REC_ERR; 2079 write_unlock(&journal->j_state_lock); 2080 } 2081 } 2082 2083 /** 2084 * void jbd2_journal_abort () - Shutdown the journal immediately. 2085 * @journal: the journal to shutdown. 2086 * @errno: an error number to record in the journal indicating 2087 * the reason for the shutdown. 2088 * 2089 * Perform a complete, immediate shutdown of the ENTIRE 2090 * journal (not of a single transaction). This operation cannot be 2091 * undone without closing and reopening the journal. 2092 * 2093 * The jbd2_journal_abort function is intended to support higher level error 2094 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2095 * mode. 2096 * 2097 * Journal abort has very specific semantics. Any existing dirty, 2098 * unjournaled buffers in the main filesystem will still be written to 2099 * disk by bdflush, but the journaling mechanism will be suspended 2100 * immediately and no further transaction commits will be honoured. 2101 * 2102 * Any dirty, journaled buffers will be written back to disk without 2103 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2104 * filesystem, but we _do_ attempt to leave as much data as possible 2105 * behind for fsck to use for cleanup. 2106 * 2107 * Any attempt to get a new transaction handle on a journal which is in 2108 * ABORT state will just result in an -EROFS error return. A 2109 * jbd2_journal_stop on an existing handle will return -EIO if we have 2110 * entered abort state during the update. 2111 * 2112 * Recursive transactions are not disturbed by journal abort until the 2113 * final jbd2_journal_stop, which will receive the -EIO error. 2114 * 2115 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2116 * which will be recorded (if possible) in the journal superblock. This 2117 * allows a client to record failure conditions in the middle of a 2118 * transaction without having to complete the transaction to record the 2119 * failure to disk. ext3_error, for example, now uses this 2120 * functionality. 2121 * 2122 * Errors which originate from within the journaling layer will NOT 2123 * supply an errno; a null errno implies that absolutely no further 2124 * writes are done to the journal (unless there are any already in 2125 * progress). 2126 * 2127 */ 2128 2129 void jbd2_journal_abort(journal_t *journal, int errno) 2130 { 2131 __journal_abort_soft(journal, errno); 2132 } 2133 2134 /** 2135 * int jbd2_journal_errno () - returns the journal's error state. 2136 * @journal: journal to examine. 2137 * 2138 * This is the errno number set with jbd2_journal_abort(), the last 2139 * time the journal was mounted - if the journal was stopped 2140 * without calling abort this will be 0. 2141 * 2142 * If the journal has been aborted on this mount time -EROFS will 2143 * be returned. 2144 */ 2145 int jbd2_journal_errno(journal_t *journal) 2146 { 2147 int err; 2148 2149 read_lock(&journal->j_state_lock); 2150 if (journal->j_flags & JBD2_ABORT) 2151 err = -EROFS; 2152 else 2153 err = journal->j_errno; 2154 read_unlock(&journal->j_state_lock); 2155 return err; 2156 } 2157 2158 /** 2159 * int jbd2_journal_clear_err () - clears the journal's error state 2160 * @journal: journal to act on. 2161 * 2162 * An error must be cleared or acked to take a FS out of readonly 2163 * mode. 2164 */ 2165 int jbd2_journal_clear_err(journal_t *journal) 2166 { 2167 int err = 0; 2168 2169 write_lock(&journal->j_state_lock); 2170 if (journal->j_flags & JBD2_ABORT) 2171 err = -EROFS; 2172 else 2173 journal->j_errno = 0; 2174 write_unlock(&journal->j_state_lock); 2175 return err; 2176 } 2177 2178 /** 2179 * void jbd2_journal_ack_err() - Ack journal err. 2180 * @journal: journal to act on. 2181 * 2182 * An error must be cleared or acked to take a FS out of readonly 2183 * mode. 2184 */ 2185 void jbd2_journal_ack_err(journal_t *journal) 2186 { 2187 write_lock(&journal->j_state_lock); 2188 if (journal->j_errno) 2189 journal->j_flags |= JBD2_ACK_ERR; 2190 write_unlock(&journal->j_state_lock); 2191 } 2192 2193 int jbd2_journal_blocks_per_page(struct inode *inode) 2194 { 2195 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2196 } 2197 2198 /* 2199 * helper functions to deal with 32 or 64bit block numbers. 2200 */ 2201 size_t journal_tag_bytes(journal_t *journal) 2202 { 2203 size_t sz; 2204 2205 if (jbd2_has_feature_csum3(journal)) 2206 return sizeof(journal_block_tag3_t); 2207 2208 sz = sizeof(journal_block_tag_t); 2209 2210 if (jbd2_has_feature_csum2(journal)) 2211 sz += sizeof(__u16); 2212 2213 if (jbd2_has_feature_64bit(journal)) 2214 return sz; 2215 else 2216 return sz - sizeof(__u32); 2217 } 2218 2219 /* 2220 * JBD memory management 2221 * 2222 * These functions are used to allocate block-sized chunks of memory 2223 * used for making copies of buffer_head data. Very often it will be 2224 * page-sized chunks of data, but sometimes it will be in 2225 * sub-page-size chunks. (For example, 16k pages on Power systems 2226 * with a 4k block file system.) For blocks smaller than a page, we 2227 * use a SLAB allocator. There are slab caches for each block size, 2228 * which are allocated at mount time, if necessary, and we only free 2229 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2230 * this reason we don't need to a mutex to protect access to 2231 * jbd2_slab[] allocating or releasing memory; only in 2232 * jbd2_journal_create_slab(). 2233 */ 2234 #define JBD2_MAX_SLABS 8 2235 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2236 2237 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2238 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2239 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2240 }; 2241 2242 2243 static void jbd2_journal_destroy_slabs(void) 2244 { 2245 int i; 2246 2247 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2248 if (jbd2_slab[i]) 2249 kmem_cache_destroy(jbd2_slab[i]); 2250 jbd2_slab[i] = NULL; 2251 } 2252 } 2253 2254 static int jbd2_journal_create_slab(size_t size) 2255 { 2256 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2257 int i = order_base_2(size) - 10; 2258 size_t slab_size; 2259 2260 if (size == PAGE_SIZE) 2261 return 0; 2262 2263 if (i >= JBD2_MAX_SLABS) 2264 return -EINVAL; 2265 2266 if (unlikely(i < 0)) 2267 i = 0; 2268 mutex_lock(&jbd2_slab_create_mutex); 2269 if (jbd2_slab[i]) { 2270 mutex_unlock(&jbd2_slab_create_mutex); 2271 return 0; /* Already created */ 2272 } 2273 2274 slab_size = 1 << (i+10); 2275 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2276 slab_size, 0, NULL); 2277 mutex_unlock(&jbd2_slab_create_mutex); 2278 if (!jbd2_slab[i]) { 2279 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2280 return -ENOMEM; 2281 } 2282 return 0; 2283 } 2284 2285 static struct kmem_cache *get_slab(size_t size) 2286 { 2287 int i = order_base_2(size) - 10; 2288 2289 BUG_ON(i >= JBD2_MAX_SLABS); 2290 if (unlikely(i < 0)) 2291 i = 0; 2292 BUG_ON(jbd2_slab[i] == NULL); 2293 return jbd2_slab[i]; 2294 } 2295 2296 void *jbd2_alloc(size_t size, gfp_t flags) 2297 { 2298 void *ptr; 2299 2300 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2301 2302 flags |= __GFP_REPEAT; 2303 if (size == PAGE_SIZE) 2304 ptr = (void *)__get_free_pages(flags, 0); 2305 else if (size > PAGE_SIZE) { 2306 int order = get_order(size); 2307 2308 if (order < 3) 2309 ptr = (void *)__get_free_pages(flags, order); 2310 else 2311 ptr = vmalloc(size); 2312 } else 2313 ptr = kmem_cache_alloc(get_slab(size), flags); 2314 2315 /* Check alignment; SLUB has gotten this wrong in the past, 2316 * and this can lead to user data corruption! */ 2317 BUG_ON(((unsigned long) ptr) & (size-1)); 2318 2319 return ptr; 2320 } 2321 2322 void jbd2_free(void *ptr, size_t size) 2323 { 2324 if (size == PAGE_SIZE) { 2325 free_pages((unsigned long)ptr, 0); 2326 return; 2327 } 2328 if (size > PAGE_SIZE) { 2329 int order = get_order(size); 2330 2331 if (order < 3) 2332 free_pages((unsigned long)ptr, order); 2333 else 2334 vfree(ptr); 2335 return; 2336 } 2337 kmem_cache_free(get_slab(size), ptr); 2338 }; 2339 2340 /* 2341 * Journal_head storage management 2342 */ 2343 static struct kmem_cache *jbd2_journal_head_cache; 2344 #ifdef CONFIG_JBD2_DEBUG 2345 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2346 #endif 2347 2348 static int jbd2_journal_init_journal_head_cache(void) 2349 { 2350 int retval; 2351 2352 J_ASSERT(jbd2_journal_head_cache == NULL); 2353 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2354 sizeof(struct journal_head), 2355 0, /* offset */ 2356 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU, 2357 NULL); /* ctor */ 2358 retval = 0; 2359 if (!jbd2_journal_head_cache) { 2360 retval = -ENOMEM; 2361 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2362 } 2363 return retval; 2364 } 2365 2366 static void jbd2_journal_destroy_journal_head_cache(void) 2367 { 2368 if (jbd2_journal_head_cache) { 2369 kmem_cache_destroy(jbd2_journal_head_cache); 2370 jbd2_journal_head_cache = NULL; 2371 } 2372 } 2373 2374 /* 2375 * journal_head splicing and dicing 2376 */ 2377 static struct journal_head *journal_alloc_journal_head(void) 2378 { 2379 struct journal_head *ret; 2380 2381 #ifdef CONFIG_JBD2_DEBUG 2382 atomic_inc(&nr_journal_heads); 2383 #endif 2384 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2385 if (!ret) { 2386 jbd_debug(1, "out of memory for journal_head\n"); 2387 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2388 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2389 GFP_NOFS | __GFP_NOFAIL); 2390 } 2391 return ret; 2392 } 2393 2394 static void journal_free_journal_head(struct journal_head *jh) 2395 { 2396 #ifdef CONFIG_JBD2_DEBUG 2397 atomic_dec(&nr_journal_heads); 2398 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2399 #endif 2400 kmem_cache_free(jbd2_journal_head_cache, jh); 2401 } 2402 2403 /* 2404 * A journal_head is attached to a buffer_head whenever JBD has an 2405 * interest in the buffer. 2406 * 2407 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2408 * is set. This bit is tested in core kernel code where we need to take 2409 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2410 * there. 2411 * 2412 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2413 * 2414 * When a buffer has its BH_JBD bit set it is immune from being released by 2415 * core kernel code, mainly via ->b_count. 2416 * 2417 * A journal_head is detached from its buffer_head when the journal_head's 2418 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2419 * transaction (b_cp_transaction) hold their references to b_jcount. 2420 * 2421 * Various places in the kernel want to attach a journal_head to a buffer_head 2422 * _before_ attaching the journal_head to a transaction. To protect the 2423 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2424 * journal_head's b_jcount refcount by one. The caller must call 2425 * jbd2_journal_put_journal_head() to undo this. 2426 * 2427 * So the typical usage would be: 2428 * 2429 * (Attach a journal_head if needed. Increments b_jcount) 2430 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2431 * ... 2432 * (Get another reference for transaction) 2433 * jbd2_journal_grab_journal_head(bh); 2434 * jh->b_transaction = xxx; 2435 * (Put original reference) 2436 * jbd2_journal_put_journal_head(jh); 2437 */ 2438 2439 /* 2440 * Give a buffer_head a journal_head. 2441 * 2442 * May sleep. 2443 */ 2444 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2445 { 2446 struct journal_head *jh; 2447 struct journal_head *new_jh = NULL; 2448 2449 repeat: 2450 if (!buffer_jbd(bh)) 2451 new_jh = journal_alloc_journal_head(); 2452 2453 jbd_lock_bh_journal_head(bh); 2454 if (buffer_jbd(bh)) { 2455 jh = bh2jh(bh); 2456 } else { 2457 J_ASSERT_BH(bh, 2458 (atomic_read(&bh->b_count) > 0) || 2459 (bh->b_page && bh->b_page->mapping)); 2460 2461 if (!new_jh) { 2462 jbd_unlock_bh_journal_head(bh); 2463 goto repeat; 2464 } 2465 2466 jh = new_jh; 2467 new_jh = NULL; /* We consumed it */ 2468 set_buffer_jbd(bh); 2469 bh->b_private = jh; 2470 jh->b_bh = bh; 2471 get_bh(bh); 2472 BUFFER_TRACE(bh, "added journal_head"); 2473 } 2474 jh->b_jcount++; 2475 jbd_unlock_bh_journal_head(bh); 2476 if (new_jh) 2477 journal_free_journal_head(new_jh); 2478 return bh->b_private; 2479 } 2480 2481 /* 2482 * Grab a ref against this buffer_head's journal_head. If it ended up not 2483 * having a journal_head, return NULL 2484 */ 2485 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2486 { 2487 struct journal_head *jh = NULL; 2488 2489 jbd_lock_bh_journal_head(bh); 2490 if (buffer_jbd(bh)) { 2491 jh = bh2jh(bh); 2492 jh->b_jcount++; 2493 } 2494 jbd_unlock_bh_journal_head(bh); 2495 return jh; 2496 } 2497 2498 static void __journal_remove_journal_head(struct buffer_head *bh) 2499 { 2500 struct journal_head *jh = bh2jh(bh); 2501 2502 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2503 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2504 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2505 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2506 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2507 J_ASSERT_BH(bh, buffer_jbd(bh)); 2508 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2509 BUFFER_TRACE(bh, "remove journal_head"); 2510 if (jh->b_frozen_data) { 2511 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2512 jbd2_free(jh->b_frozen_data, bh->b_size); 2513 } 2514 if (jh->b_committed_data) { 2515 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2516 jbd2_free(jh->b_committed_data, bh->b_size); 2517 } 2518 bh->b_private = NULL; 2519 jh->b_bh = NULL; /* debug, really */ 2520 clear_buffer_jbd(bh); 2521 journal_free_journal_head(jh); 2522 } 2523 2524 /* 2525 * Drop a reference on the passed journal_head. If it fell to zero then 2526 * release the journal_head from the buffer_head. 2527 */ 2528 void jbd2_journal_put_journal_head(struct journal_head *jh) 2529 { 2530 struct buffer_head *bh = jh2bh(jh); 2531 2532 jbd_lock_bh_journal_head(bh); 2533 J_ASSERT_JH(jh, jh->b_jcount > 0); 2534 --jh->b_jcount; 2535 if (!jh->b_jcount) { 2536 __journal_remove_journal_head(bh); 2537 jbd_unlock_bh_journal_head(bh); 2538 __brelse(bh); 2539 } else 2540 jbd_unlock_bh_journal_head(bh); 2541 } 2542 2543 /* 2544 * Initialize jbd inode head 2545 */ 2546 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2547 { 2548 jinode->i_transaction = NULL; 2549 jinode->i_next_transaction = NULL; 2550 jinode->i_vfs_inode = inode; 2551 jinode->i_flags = 0; 2552 INIT_LIST_HEAD(&jinode->i_list); 2553 } 2554 2555 /* 2556 * Function to be called before we start removing inode from memory (i.e., 2557 * clear_inode() is a fine place to be called from). It removes inode from 2558 * transaction's lists. 2559 */ 2560 void jbd2_journal_release_jbd_inode(journal_t *journal, 2561 struct jbd2_inode *jinode) 2562 { 2563 if (!journal) 2564 return; 2565 restart: 2566 spin_lock(&journal->j_list_lock); 2567 /* Is commit writing out inode - we have to wait */ 2568 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2569 wait_queue_head_t *wq; 2570 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2571 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2572 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2573 spin_unlock(&journal->j_list_lock); 2574 schedule(); 2575 finish_wait(wq, &wait.wait); 2576 goto restart; 2577 } 2578 2579 if (jinode->i_transaction) { 2580 list_del(&jinode->i_list); 2581 jinode->i_transaction = NULL; 2582 } 2583 spin_unlock(&journal->j_list_lock); 2584 } 2585 2586 2587 #ifdef CONFIG_PROC_FS 2588 2589 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2590 2591 static void __init jbd2_create_jbd_stats_proc_entry(void) 2592 { 2593 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2594 } 2595 2596 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2597 { 2598 if (proc_jbd2_stats) 2599 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2600 } 2601 2602 #else 2603 2604 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2605 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2606 2607 #endif 2608 2609 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2610 2611 static int __init jbd2_journal_init_handle_cache(void) 2612 { 2613 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2614 if (jbd2_handle_cache == NULL) { 2615 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2616 return -ENOMEM; 2617 } 2618 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2619 if (jbd2_inode_cache == NULL) { 2620 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2621 kmem_cache_destroy(jbd2_handle_cache); 2622 return -ENOMEM; 2623 } 2624 return 0; 2625 } 2626 2627 static void jbd2_journal_destroy_handle_cache(void) 2628 { 2629 if (jbd2_handle_cache) 2630 kmem_cache_destroy(jbd2_handle_cache); 2631 if (jbd2_inode_cache) 2632 kmem_cache_destroy(jbd2_inode_cache); 2633 2634 } 2635 2636 /* 2637 * Module startup and shutdown 2638 */ 2639 2640 static int __init journal_init_caches(void) 2641 { 2642 int ret; 2643 2644 ret = jbd2_journal_init_revoke_caches(); 2645 if (ret == 0) 2646 ret = jbd2_journal_init_journal_head_cache(); 2647 if (ret == 0) 2648 ret = jbd2_journal_init_handle_cache(); 2649 if (ret == 0) 2650 ret = jbd2_journal_init_transaction_cache(); 2651 return ret; 2652 } 2653 2654 static void jbd2_journal_destroy_caches(void) 2655 { 2656 jbd2_journal_destroy_revoke_caches(); 2657 jbd2_journal_destroy_journal_head_cache(); 2658 jbd2_journal_destroy_handle_cache(); 2659 jbd2_journal_destroy_transaction_cache(); 2660 jbd2_journal_destroy_slabs(); 2661 } 2662 2663 static int __init journal_init(void) 2664 { 2665 int ret; 2666 2667 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2668 2669 ret = journal_init_caches(); 2670 if (ret == 0) { 2671 jbd2_create_jbd_stats_proc_entry(); 2672 } else { 2673 jbd2_journal_destroy_caches(); 2674 } 2675 return ret; 2676 } 2677 2678 static void __exit journal_exit(void) 2679 { 2680 #ifdef CONFIG_JBD2_DEBUG 2681 int n = atomic_read(&nr_journal_heads); 2682 if (n) 2683 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2684 #endif 2685 jbd2_remove_jbd_stats_proc_entry(); 2686 jbd2_journal_destroy_caches(); 2687 } 2688 2689 MODULE_LICENSE("GPL"); 2690 module_init(journal_init); 2691 module_exit(journal_exit); 2692 2693