1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_file_inode); 98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 101 EXPORT_SYMBOL(jbd2_inode_cache); 102 103 static void __journal_abort_soft (journal_t *journal, int errno); 104 static int jbd2_journal_create_slab(size_t slab_size); 105 106 /* Checksumming functions */ 107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 108 { 109 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 110 return 1; 111 112 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 113 } 114 115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 116 { 117 __u32 csum, old_csum; 118 119 old_csum = sb->s_checksum; 120 sb->s_checksum = 0; 121 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 122 sb->s_checksum = old_csum; 123 124 return cpu_to_be32(csum); 125 } 126 127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 128 { 129 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 130 return 1; 131 132 return sb->s_checksum == jbd2_superblock_csum(j, sb); 133 } 134 135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 136 { 137 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 138 return; 139 140 sb->s_checksum = jbd2_superblock_csum(j, sb); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(unsigned long __data) 148 { 149 struct task_struct * p = (struct task_struct *) __data; 150 151 wake_up_process(p); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. 163 * 164 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 165 * of the data in that part of the log has been rewritten elsewhere on 166 * the disk. Flushing these old buffers to reclaim space in the log is 167 * known as checkpointing, and this thread is responsible for that job. 168 */ 169 170 static int kjournald2(void *arg) 171 { 172 journal_t *journal = arg; 173 transaction_t *transaction; 174 175 /* 176 * Set up an interval timer which can be used to trigger a commit wakeup 177 * after the commit interval expires 178 */ 179 setup_timer(&journal->j_commit_timer, commit_timeout, 180 (unsigned long)current); 181 182 set_freezable(); 183 184 /* Record that the journal thread is running */ 185 journal->j_task = current; 186 wake_up(&journal->j_wait_done_commit); 187 188 /* 189 * And now, wait forever for commit wakeup events. 190 */ 191 write_lock(&journal->j_state_lock); 192 193 loop: 194 if (journal->j_flags & JBD2_UNMOUNT) 195 goto end_loop; 196 197 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 198 journal->j_commit_sequence, journal->j_commit_request); 199 200 if (journal->j_commit_sequence != journal->j_commit_request) { 201 jbd_debug(1, "OK, requests differ\n"); 202 write_unlock(&journal->j_state_lock); 203 del_timer_sync(&journal->j_commit_timer); 204 jbd2_journal_commit_transaction(journal); 205 write_lock(&journal->j_state_lock); 206 goto loop; 207 } 208 209 wake_up(&journal->j_wait_done_commit); 210 if (freezing(current)) { 211 /* 212 * The simpler the better. Flushing journal isn't a 213 * good idea, because that depends on threads that may 214 * be already stopped. 215 */ 216 jbd_debug(1, "Now suspending kjournald2\n"); 217 write_unlock(&journal->j_state_lock); 218 try_to_freeze(); 219 write_lock(&journal->j_state_lock); 220 } else { 221 /* 222 * We assume on resume that commits are already there, 223 * so we don't sleep 224 */ 225 DEFINE_WAIT(wait); 226 int should_sleep = 1; 227 228 prepare_to_wait(&journal->j_wait_commit, &wait, 229 TASK_INTERRUPTIBLE); 230 if (journal->j_commit_sequence != journal->j_commit_request) 231 should_sleep = 0; 232 transaction = journal->j_running_transaction; 233 if (transaction && time_after_eq(jiffies, 234 transaction->t_expires)) 235 should_sleep = 0; 236 if (journal->j_flags & JBD2_UNMOUNT) 237 should_sleep = 0; 238 if (should_sleep) { 239 write_unlock(&journal->j_state_lock); 240 schedule(); 241 write_lock(&journal->j_state_lock); 242 } 243 finish_wait(&journal->j_wait_commit, &wait); 244 } 245 246 jbd_debug(1, "kjournald2 wakes\n"); 247 248 /* 249 * Were we woken up by a commit wakeup event? 250 */ 251 transaction = journal->j_running_transaction; 252 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 253 journal->j_commit_request = transaction->t_tid; 254 jbd_debug(1, "woke because of timeout\n"); 255 } 256 goto loop; 257 258 end_loop: 259 write_unlock(&journal->j_state_lock); 260 del_timer_sync(&journal->j_commit_timer); 261 journal->j_task = NULL; 262 wake_up(&journal->j_wait_done_commit); 263 jbd_debug(1, "Journal thread exiting.\n"); 264 return 0; 265 } 266 267 static int jbd2_journal_start_thread(journal_t *journal) 268 { 269 struct task_struct *t; 270 271 t = kthread_run(kjournald2, journal, "jbd2/%s", 272 journal->j_devname); 273 if (IS_ERR(t)) 274 return PTR_ERR(t); 275 276 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 277 return 0; 278 } 279 280 static void journal_kill_thread(journal_t *journal) 281 { 282 write_lock(&journal->j_state_lock); 283 journal->j_flags |= JBD2_UNMOUNT; 284 285 while (journal->j_task) { 286 wake_up(&journal->j_wait_commit); 287 write_unlock(&journal->j_state_lock); 288 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 289 write_lock(&journal->j_state_lock); 290 } 291 write_unlock(&journal->j_state_lock); 292 } 293 294 /* 295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 296 * 297 * Writes a metadata buffer to a given disk block. The actual IO is not 298 * performed but a new buffer_head is constructed which labels the data 299 * to be written with the correct destination disk block. 300 * 301 * Any magic-number escaping which needs to be done will cause a 302 * copy-out here. If the buffer happens to start with the 303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 304 * magic number is only written to the log for descripter blocks. In 305 * this case, we copy the data and replace the first word with 0, and we 306 * return a result code which indicates that this buffer needs to be 307 * marked as an escaped buffer in the corresponding log descriptor 308 * block. The missing word can then be restored when the block is read 309 * during recovery. 310 * 311 * If the source buffer has already been modified by a new transaction 312 * since we took the last commit snapshot, we use the frozen copy of 313 * that data for IO. If we end up using the existing buffer_head's data 314 * for the write, then we *have* to lock the buffer to prevent anyone 315 * else from using and possibly modifying it while the IO is in 316 * progress. 317 * 318 * The function returns a pointer to the buffer_heads to be used for IO. 319 * 320 * We assume that the journal has already been locked in this function. 321 * 322 * Return value: 323 * <0: Error 324 * >=0: Finished OK 325 * 326 * On success: 327 * Bit 0 set == escape performed on the data 328 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 329 */ 330 331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 332 struct journal_head *jh_in, 333 struct journal_head **jh_out, 334 unsigned long long blocknr) 335 { 336 int need_copy_out = 0; 337 int done_copy_out = 0; 338 int do_escape = 0; 339 char *mapped_data; 340 struct buffer_head *new_bh; 341 struct journal_head *new_jh; 342 struct page *new_page; 343 unsigned int new_offset; 344 struct buffer_head *bh_in = jh2bh(jh_in); 345 journal_t *journal = transaction->t_journal; 346 347 /* 348 * The buffer really shouldn't be locked: only the current committing 349 * transaction is allowed to write it, so nobody else is allowed 350 * to do any IO. 351 * 352 * akpm: except if we're journalling data, and write() output is 353 * also part of a shared mapping, and another thread has 354 * decided to launch a writepage() against this buffer. 355 */ 356 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 357 358 retry_alloc: 359 new_bh = alloc_buffer_head(GFP_NOFS); 360 if (!new_bh) { 361 /* 362 * Failure is not an option, but __GFP_NOFAIL is going 363 * away; so we retry ourselves here. 364 */ 365 congestion_wait(BLK_RW_ASYNC, HZ/50); 366 goto retry_alloc; 367 } 368 369 /* keep subsequent assertions sane */ 370 new_bh->b_state = 0; 371 init_buffer(new_bh, NULL, NULL); 372 atomic_set(&new_bh->b_count, 1); 373 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 374 375 /* 376 * If a new transaction has already done a buffer copy-out, then 377 * we use that version of the data for the commit. 378 */ 379 jbd_lock_bh_state(bh_in); 380 repeat: 381 if (jh_in->b_frozen_data) { 382 done_copy_out = 1; 383 new_page = virt_to_page(jh_in->b_frozen_data); 384 new_offset = offset_in_page(jh_in->b_frozen_data); 385 } else { 386 new_page = jh2bh(jh_in)->b_page; 387 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 388 } 389 390 mapped_data = kmap_atomic(new_page); 391 /* 392 * Fire data frozen trigger if data already wasn't frozen. Do this 393 * before checking for escaping, as the trigger may modify the magic 394 * offset. If a copy-out happens afterwards, it will have the correct 395 * data in the buffer. 396 */ 397 if (!done_copy_out) 398 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 399 jh_in->b_triggers); 400 401 /* 402 * Check for escaping 403 */ 404 if (*((__be32 *)(mapped_data + new_offset)) == 405 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 406 need_copy_out = 1; 407 do_escape = 1; 408 } 409 kunmap_atomic(mapped_data); 410 411 /* 412 * Do we need to do a data copy? 413 */ 414 if (need_copy_out && !done_copy_out) { 415 char *tmp; 416 417 jbd_unlock_bh_state(bh_in); 418 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 419 if (!tmp) { 420 jbd2_journal_put_journal_head(new_jh); 421 return -ENOMEM; 422 } 423 jbd_lock_bh_state(bh_in); 424 if (jh_in->b_frozen_data) { 425 jbd2_free(tmp, bh_in->b_size); 426 goto repeat; 427 } 428 429 jh_in->b_frozen_data = tmp; 430 mapped_data = kmap_atomic(new_page); 431 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 432 kunmap_atomic(mapped_data); 433 434 new_page = virt_to_page(tmp); 435 new_offset = offset_in_page(tmp); 436 done_copy_out = 1; 437 438 /* 439 * This isn't strictly necessary, as we're using frozen 440 * data for the escaping, but it keeps consistency with 441 * b_frozen_data usage. 442 */ 443 jh_in->b_frozen_triggers = jh_in->b_triggers; 444 } 445 446 /* 447 * Did we need to do an escaping? Now we've done all the 448 * copying, we can finally do so. 449 */ 450 if (do_escape) { 451 mapped_data = kmap_atomic(new_page); 452 *((unsigned int *)(mapped_data + new_offset)) = 0; 453 kunmap_atomic(mapped_data); 454 } 455 456 set_bh_page(new_bh, new_page, new_offset); 457 new_jh->b_transaction = NULL; 458 new_bh->b_size = jh2bh(jh_in)->b_size; 459 new_bh->b_bdev = transaction->t_journal->j_dev; 460 new_bh->b_blocknr = blocknr; 461 set_buffer_mapped(new_bh); 462 set_buffer_dirty(new_bh); 463 464 *jh_out = new_jh; 465 466 /* 467 * The to-be-written buffer needs to get moved to the io queue, 468 * and the original buffer whose contents we are shadowing or 469 * copying is moved to the transaction's shadow queue. 470 */ 471 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 472 spin_lock(&journal->j_list_lock); 473 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 474 spin_unlock(&journal->j_list_lock); 475 jbd_unlock_bh_state(bh_in); 476 477 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 478 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 479 480 return do_escape | (done_copy_out << 1); 481 } 482 483 /* 484 * Allocation code for the journal file. Manage the space left in the 485 * journal, so that we can begin checkpointing when appropriate. 486 */ 487 488 /* 489 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 490 * 491 * Called with the journal already locked. 492 * 493 * Called under j_state_lock 494 */ 495 496 int __jbd2_log_space_left(journal_t *journal) 497 { 498 int left = journal->j_free; 499 500 /* assert_spin_locked(&journal->j_state_lock); */ 501 502 /* 503 * Be pessimistic here about the number of those free blocks which 504 * might be required for log descriptor control blocks. 505 */ 506 507 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 508 509 left -= MIN_LOG_RESERVED_BLOCKS; 510 511 if (left <= 0) 512 return 0; 513 left -= (left >> 3); 514 return left; 515 } 516 517 /* 518 * Called with j_state_lock locked for writing. 519 * Returns true if a transaction commit was started. 520 */ 521 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 522 { 523 /* Return if the txn has already requested to be committed */ 524 if (journal->j_commit_request == target) 525 return 0; 526 527 /* 528 * The only transaction we can possibly wait upon is the 529 * currently running transaction (if it exists). Otherwise, 530 * the target tid must be an old one. 531 */ 532 if (journal->j_running_transaction && 533 journal->j_running_transaction->t_tid == target) { 534 /* 535 * We want a new commit: OK, mark the request and wakeup the 536 * commit thread. We do _not_ do the commit ourselves. 537 */ 538 539 journal->j_commit_request = target; 540 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 541 journal->j_commit_request, 542 journal->j_commit_sequence); 543 journal->j_running_transaction->t_requested = jiffies; 544 wake_up(&journal->j_wait_commit); 545 return 1; 546 } else if (!tid_geq(journal->j_commit_request, target)) 547 /* This should never happen, but if it does, preserve 548 the evidence before kjournald goes into a loop and 549 increments j_commit_sequence beyond all recognition. */ 550 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 551 journal->j_commit_request, 552 journal->j_commit_sequence, 553 target, journal->j_running_transaction ? 554 journal->j_running_transaction->t_tid : 0); 555 return 0; 556 } 557 558 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 559 { 560 int ret; 561 562 write_lock(&journal->j_state_lock); 563 ret = __jbd2_log_start_commit(journal, tid); 564 write_unlock(&journal->j_state_lock); 565 return ret; 566 } 567 568 /* 569 * Force and wait upon a commit if the calling process is not within 570 * transaction. This is used for forcing out undo-protected data which contains 571 * bitmaps, when the fs is running out of space. 572 * 573 * We can only force the running transaction if we don't have an active handle; 574 * otherwise, we will deadlock. 575 * 576 * Returns true if a transaction was started. 577 */ 578 int jbd2_journal_force_commit_nested(journal_t *journal) 579 { 580 transaction_t *transaction = NULL; 581 tid_t tid; 582 int need_to_start = 0; 583 584 read_lock(&journal->j_state_lock); 585 if (journal->j_running_transaction && !current->journal_info) { 586 transaction = journal->j_running_transaction; 587 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 588 need_to_start = 1; 589 } else if (journal->j_committing_transaction) 590 transaction = journal->j_committing_transaction; 591 592 if (!transaction) { 593 read_unlock(&journal->j_state_lock); 594 return 0; /* Nothing to retry */ 595 } 596 597 tid = transaction->t_tid; 598 read_unlock(&journal->j_state_lock); 599 if (need_to_start) 600 jbd2_log_start_commit(journal, tid); 601 jbd2_log_wait_commit(journal, tid); 602 return 1; 603 } 604 605 /* 606 * Start a commit of the current running transaction (if any). Returns true 607 * if a transaction is going to be committed (or is currently already 608 * committing), and fills its tid in at *ptid 609 */ 610 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 611 { 612 int ret = 0; 613 614 write_lock(&journal->j_state_lock); 615 if (journal->j_running_transaction) { 616 tid_t tid = journal->j_running_transaction->t_tid; 617 618 __jbd2_log_start_commit(journal, tid); 619 /* There's a running transaction and we've just made sure 620 * it's commit has been scheduled. */ 621 if (ptid) 622 *ptid = tid; 623 ret = 1; 624 } else if (journal->j_committing_transaction) { 625 /* 626 * If commit has been started, then we have to wait for 627 * completion of that transaction. 628 */ 629 if (ptid) 630 *ptid = journal->j_committing_transaction->t_tid; 631 ret = 1; 632 } 633 write_unlock(&journal->j_state_lock); 634 return ret; 635 } 636 637 /* 638 * Return 1 if a given transaction has not yet sent barrier request 639 * connected with a transaction commit. If 0 is returned, transaction 640 * may or may not have sent the barrier. Used to avoid sending barrier 641 * twice in common cases. 642 */ 643 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 644 { 645 int ret = 0; 646 transaction_t *commit_trans; 647 648 if (!(journal->j_flags & JBD2_BARRIER)) 649 return 0; 650 read_lock(&journal->j_state_lock); 651 /* Transaction already committed? */ 652 if (tid_geq(journal->j_commit_sequence, tid)) 653 goto out; 654 commit_trans = journal->j_committing_transaction; 655 if (!commit_trans || commit_trans->t_tid != tid) { 656 ret = 1; 657 goto out; 658 } 659 /* 660 * Transaction is being committed and we already proceeded to 661 * submitting a flush to fs partition? 662 */ 663 if (journal->j_fs_dev != journal->j_dev) { 664 if (!commit_trans->t_need_data_flush || 665 commit_trans->t_state >= T_COMMIT_DFLUSH) 666 goto out; 667 } else { 668 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 669 goto out; 670 } 671 ret = 1; 672 out: 673 read_unlock(&journal->j_state_lock); 674 return ret; 675 } 676 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 677 678 /* 679 * Wait for a specified commit to complete. 680 * The caller may not hold the journal lock. 681 */ 682 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 683 { 684 int err = 0; 685 686 read_lock(&journal->j_state_lock); 687 #ifdef CONFIG_JBD2_DEBUG 688 if (!tid_geq(journal->j_commit_request, tid)) { 689 printk(KERN_EMERG 690 "%s: error: j_commit_request=%d, tid=%d\n", 691 __func__, journal->j_commit_request, tid); 692 } 693 #endif 694 while (tid_gt(tid, journal->j_commit_sequence)) { 695 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 696 tid, journal->j_commit_sequence); 697 wake_up(&journal->j_wait_commit); 698 read_unlock(&journal->j_state_lock); 699 wait_event(journal->j_wait_done_commit, 700 !tid_gt(tid, journal->j_commit_sequence)); 701 read_lock(&journal->j_state_lock); 702 } 703 read_unlock(&journal->j_state_lock); 704 705 if (unlikely(is_journal_aborted(journal))) { 706 printk(KERN_EMERG "journal commit I/O error\n"); 707 err = -EIO; 708 } 709 return err; 710 } 711 712 /* 713 * Log buffer allocation routines: 714 */ 715 716 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 717 { 718 unsigned long blocknr; 719 720 write_lock(&journal->j_state_lock); 721 J_ASSERT(journal->j_free > 1); 722 723 blocknr = journal->j_head; 724 journal->j_head++; 725 journal->j_free--; 726 if (journal->j_head == journal->j_last) 727 journal->j_head = journal->j_first; 728 write_unlock(&journal->j_state_lock); 729 return jbd2_journal_bmap(journal, blocknr, retp); 730 } 731 732 /* 733 * Conversion of logical to physical block numbers for the journal 734 * 735 * On external journals the journal blocks are identity-mapped, so 736 * this is a no-op. If needed, we can use j_blk_offset - everything is 737 * ready. 738 */ 739 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 740 unsigned long long *retp) 741 { 742 int err = 0; 743 unsigned long long ret; 744 745 if (journal->j_inode) { 746 ret = bmap(journal->j_inode, blocknr); 747 if (ret) 748 *retp = ret; 749 else { 750 printk(KERN_ALERT "%s: journal block not found " 751 "at offset %lu on %s\n", 752 __func__, blocknr, journal->j_devname); 753 err = -EIO; 754 __journal_abort_soft(journal, err); 755 } 756 } else { 757 *retp = blocknr; /* +journal->j_blk_offset */ 758 } 759 return err; 760 } 761 762 /* 763 * We play buffer_head aliasing tricks to write data/metadata blocks to 764 * the journal without copying their contents, but for journal 765 * descriptor blocks we do need to generate bona fide buffers. 766 * 767 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 768 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 769 * But we don't bother doing that, so there will be coherency problems with 770 * mmaps of blockdevs which hold live JBD-controlled filesystems. 771 */ 772 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 773 { 774 struct buffer_head *bh; 775 unsigned long long blocknr; 776 int err; 777 778 err = jbd2_journal_next_log_block(journal, &blocknr); 779 780 if (err) 781 return NULL; 782 783 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 784 if (!bh) 785 return NULL; 786 lock_buffer(bh); 787 memset(bh->b_data, 0, journal->j_blocksize); 788 set_buffer_uptodate(bh); 789 unlock_buffer(bh); 790 BUFFER_TRACE(bh, "return this buffer"); 791 return jbd2_journal_add_journal_head(bh); 792 } 793 794 /* 795 * Return tid of the oldest transaction in the journal and block in the journal 796 * where the transaction starts. 797 * 798 * If the journal is now empty, return which will be the next transaction ID 799 * we will write and where will that transaction start. 800 * 801 * The return value is 0 if journal tail cannot be pushed any further, 1 if 802 * it can. 803 */ 804 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 805 unsigned long *block) 806 { 807 transaction_t *transaction; 808 int ret; 809 810 read_lock(&journal->j_state_lock); 811 spin_lock(&journal->j_list_lock); 812 transaction = journal->j_checkpoint_transactions; 813 if (transaction) { 814 *tid = transaction->t_tid; 815 *block = transaction->t_log_start; 816 } else if ((transaction = journal->j_committing_transaction) != NULL) { 817 *tid = transaction->t_tid; 818 *block = transaction->t_log_start; 819 } else if ((transaction = journal->j_running_transaction) != NULL) { 820 *tid = transaction->t_tid; 821 *block = journal->j_head; 822 } else { 823 *tid = journal->j_transaction_sequence; 824 *block = journal->j_head; 825 } 826 ret = tid_gt(*tid, journal->j_tail_sequence); 827 spin_unlock(&journal->j_list_lock); 828 read_unlock(&journal->j_state_lock); 829 830 return ret; 831 } 832 833 /* 834 * Update information in journal structure and in on disk journal superblock 835 * about log tail. This function does not check whether information passed in 836 * really pushes log tail further. It's responsibility of the caller to make 837 * sure provided log tail information is valid (e.g. by holding 838 * j_checkpoint_mutex all the time between computing log tail and calling this 839 * function as is the case with jbd2_cleanup_journal_tail()). 840 * 841 * Requires j_checkpoint_mutex 842 */ 843 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 844 { 845 unsigned long freed; 846 847 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 848 849 /* 850 * We cannot afford for write to remain in drive's caches since as 851 * soon as we update j_tail, next transaction can start reusing journal 852 * space and if we lose sb update during power failure we'd replay 853 * old transaction with possibly newly overwritten data. 854 */ 855 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 856 write_lock(&journal->j_state_lock); 857 freed = block - journal->j_tail; 858 if (block < journal->j_tail) 859 freed += journal->j_last - journal->j_first; 860 861 trace_jbd2_update_log_tail(journal, tid, block, freed); 862 jbd_debug(1, 863 "Cleaning journal tail from %d to %d (offset %lu), " 864 "freeing %lu\n", 865 journal->j_tail_sequence, tid, block, freed); 866 867 journal->j_free += freed; 868 journal->j_tail_sequence = tid; 869 journal->j_tail = block; 870 write_unlock(&journal->j_state_lock); 871 } 872 873 /* 874 * This is a variaon of __jbd2_update_log_tail which checks for validity of 875 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 876 * with other threads updating log tail. 877 */ 878 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 879 { 880 mutex_lock(&journal->j_checkpoint_mutex); 881 if (tid_gt(tid, journal->j_tail_sequence)) 882 __jbd2_update_log_tail(journal, tid, block); 883 mutex_unlock(&journal->j_checkpoint_mutex); 884 } 885 886 struct jbd2_stats_proc_session { 887 journal_t *journal; 888 struct transaction_stats_s *stats; 889 int start; 890 int max; 891 }; 892 893 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 894 { 895 return *pos ? NULL : SEQ_START_TOKEN; 896 } 897 898 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 899 { 900 return NULL; 901 } 902 903 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 904 { 905 struct jbd2_stats_proc_session *s = seq->private; 906 907 if (v != SEQ_START_TOKEN) 908 return 0; 909 seq_printf(seq, "%lu transactions (%lu requested), " 910 "each up to %u blocks\n", 911 s->stats->ts_tid, s->stats->ts_requested, 912 s->journal->j_max_transaction_buffers); 913 if (s->stats->ts_tid == 0) 914 return 0; 915 seq_printf(seq, "average: \n %ums waiting for transaction\n", 916 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 917 seq_printf(seq, " %ums request delay\n", 918 (s->stats->ts_requested == 0) ? 0 : 919 jiffies_to_msecs(s->stats->run.rs_request_delay / 920 s->stats->ts_requested)); 921 seq_printf(seq, " %ums running transaction\n", 922 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 923 seq_printf(seq, " %ums transaction was being locked\n", 924 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 925 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 926 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 927 seq_printf(seq, " %ums logging transaction\n", 928 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 929 seq_printf(seq, " %lluus average transaction commit time\n", 930 div_u64(s->journal->j_average_commit_time, 1000)); 931 seq_printf(seq, " %lu handles per transaction\n", 932 s->stats->run.rs_handle_count / s->stats->ts_tid); 933 seq_printf(seq, " %lu blocks per transaction\n", 934 s->stats->run.rs_blocks / s->stats->ts_tid); 935 seq_printf(seq, " %lu logged blocks per transaction\n", 936 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 937 return 0; 938 } 939 940 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 941 { 942 } 943 944 static const struct seq_operations jbd2_seq_info_ops = { 945 .start = jbd2_seq_info_start, 946 .next = jbd2_seq_info_next, 947 .stop = jbd2_seq_info_stop, 948 .show = jbd2_seq_info_show, 949 }; 950 951 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 952 { 953 journal_t *journal = PDE(inode)->data; 954 struct jbd2_stats_proc_session *s; 955 int rc, size; 956 957 s = kmalloc(sizeof(*s), GFP_KERNEL); 958 if (s == NULL) 959 return -ENOMEM; 960 size = sizeof(struct transaction_stats_s); 961 s->stats = kmalloc(size, GFP_KERNEL); 962 if (s->stats == NULL) { 963 kfree(s); 964 return -ENOMEM; 965 } 966 spin_lock(&journal->j_history_lock); 967 memcpy(s->stats, &journal->j_stats, size); 968 s->journal = journal; 969 spin_unlock(&journal->j_history_lock); 970 971 rc = seq_open(file, &jbd2_seq_info_ops); 972 if (rc == 0) { 973 struct seq_file *m = file->private_data; 974 m->private = s; 975 } else { 976 kfree(s->stats); 977 kfree(s); 978 } 979 return rc; 980 981 } 982 983 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 984 { 985 struct seq_file *seq = file->private_data; 986 struct jbd2_stats_proc_session *s = seq->private; 987 kfree(s->stats); 988 kfree(s); 989 return seq_release(inode, file); 990 } 991 992 static const struct file_operations jbd2_seq_info_fops = { 993 .owner = THIS_MODULE, 994 .open = jbd2_seq_info_open, 995 .read = seq_read, 996 .llseek = seq_lseek, 997 .release = jbd2_seq_info_release, 998 }; 999 1000 static struct proc_dir_entry *proc_jbd2_stats; 1001 1002 static void jbd2_stats_proc_init(journal_t *journal) 1003 { 1004 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1005 if (journal->j_proc_entry) { 1006 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1007 &jbd2_seq_info_fops, journal); 1008 } 1009 } 1010 1011 static void jbd2_stats_proc_exit(journal_t *journal) 1012 { 1013 remove_proc_entry("info", journal->j_proc_entry); 1014 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1015 } 1016 1017 /* 1018 * Management for journal control blocks: functions to create and 1019 * destroy journal_t structures, and to initialise and read existing 1020 * journal blocks from disk. */ 1021 1022 /* First: create and setup a journal_t object in memory. We initialise 1023 * very few fields yet: that has to wait until we have created the 1024 * journal structures from from scratch, or loaded them from disk. */ 1025 1026 static journal_t * journal_init_common (void) 1027 { 1028 journal_t *journal; 1029 int err; 1030 1031 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1032 if (!journal) 1033 return NULL; 1034 1035 init_waitqueue_head(&journal->j_wait_transaction_locked); 1036 init_waitqueue_head(&journal->j_wait_logspace); 1037 init_waitqueue_head(&journal->j_wait_done_commit); 1038 init_waitqueue_head(&journal->j_wait_checkpoint); 1039 init_waitqueue_head(&journal->j_wait_commit); 1040 init_waitqueue_head(&journal->j_wait_updates); 1041 mutex_init(&journal->j_barrier); 1042 mutex_init(&journal->j_checkpoint_mutex); 1043 spin_lock_init(&journal->j_revoke_lock); 1044 spin_lock_init(&journal->j_list_lock); 1045 rwlock_init(&journal->j_state_lock); 1046 1047 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1048 journal->j_min_batch_time = 0; 1049 journal->j_max_batch_time = 15000; /* 15ms */ 1050 1051 /* The journal is marked for error until we succeed with recovery! */ 1052 journal->j_flags = JBD2_ABORT; 1053 1054 /* Set up a default-sized revoke table for the new mount. */ 1055 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1056 if (err) { 1057 kfree(journal); 1058 return NULL; 1059 } 1060 1061 spin_lock_init(&journal->j_history_lock); 1062 1063 return journal; 1064 } 1065 1066 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1067 * 1068 * Create a journal structure assigned some fixed set of disk blocks to 1069 * the journal. We don't actually touch those disk blocks yet, but we 1070 * need to set up all of the mapping information to tell the journaling 1071 * system where the journal blocks are. 1072 * 1073 */ 1074 1075 /** 1076 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1077 * @bdev: Block device on which to create the journal 1078 * @fs_dev: Device which hold journalled filesystem for this journal. 1079 * @start: Block nr Start of journal. 1080 * @len: Length of the journal in blocks. 1081 * @blocksize: blocksize of journalling device 1082 * 1083 * Returns: a newly created journal_t * 1084 * 1085 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1086 * range of blocks on an arbitrary block device. 1087 * 1088 */ 1089 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1090 struct block_device *fs_dev, 1091 unsigned long long start, int len, int blocksize) 1092 { 1093 journal_t *journal = journal_init_common(); 1094 struct buffer_head *bh; 1095 char *p; 1096 int n; 1097 1098 if (!journal) 1099 return NULL; 1100 1101 /* journal descriptor can store up to n blocks -bzzz */ 1102 journal->j_blocksize = blocksize; 1103 journal->j_dev = bdev; 1104 journal->j_fs_dev = fs_dev; 1105 journal->j_blk_offset = start; 1106 journal->j_maxlen = len; 1107 bdevname(journal->j_dev, journal->j_devname); 1108 p = journal->j_devname; 1109 while ((p = strchr(p, '/'))) 1110 *p = '!'; 1111 jbd2_stats_proc_init(journal); 1112 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1113 journal->j_wbufsize = n; 1114 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1115 if (!journal->j_wbuf) { 1116 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1117 __func__); 1118 goto out_err; 1119 } 1120 1121 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1122 if (!bh) { 1123 printk(KERN_ERR 1124 "%s: Cannot get buffer for journal superblock\n", 1125 __func__); 1126 goto out_err; 1127 } 1128 journal->j_sb_buffer = bh; 1129 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1130 1131 return journal; 1132 out_err: 1133 kfree(journal->j_wbuf); 1134 jbd2_stats_proc_exit(journal); 1135 kfree(journal); 1136 return NULL; 1137 } 1138 1139 /** 1140 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1141 * @inode: An inode to create the journal in 1142 * 1143 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1144 * the journal. The inode must exist already, must support bmap() and 1145 * must have all data blocks preallocated. 1146 */ 1147 journal_t * jbd2_journal_init_inode (struct inode *inode) 1148 { 1149 struct buffer_head *bh; 1150 journal_t *journal = journal_init_common(); 1151 char *p; 1152 int err; 1153 int n; 1154 unsigned long long blocknr; 1155 1156 if (!journal) 1157 return NULL; 1158 1159 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1160 journal->j_inode = inode; 1161 bdevname(journal->j_dev, journal->j_devname); 1162 p = journal->j_devname; 1163 while ((p = strchr(p, '/'))) 1164 *p = '!'; 1165 p = journal->j_devname + strlen(journal->j_devname); 1166 sprintf(p, "-%lu", journal->j_inode->i_ino); 1167 jbd_debug(1, 1168 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1169 journal, inode->i_sb->s_id, inode->i_ino, 1170 (long long) inode->i_size, 1171 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1172 1173 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1174 journal->j_blocksize = inode->i_sb->s_blocksize; 1175 jbd2_stats_proc_init(journal); 1176 1177 /* journal descriptor can store up to n blocks -bzzz */ 1178 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1179 journal->j_wbufsize = n; 1180 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1181 if (!journal->j_wbuf) { 1182 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1183 __func__); 1184 goto out_err; 1185 } 1186 1187 err = jbd2_journal_bmap(journal, 0, &blocknr); 1188 /* If that failed, give up */ 1189 if (err) { 1190 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1191 __func__); 1192 goto out_err; 1193 } 1194 1195 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1196 if (!bh) { 1197 printk(KERN_ERR 1198 "%s: Cannot get buffer for journal superblock\n", 1199 __func__); 1200 goto out_err; 1201 } 1202 journal->j_sb_buffer = bh; 1203 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1204 1205 return journal; 1206 out_err: 1207 kfree(journal->j_wbuf); 1208 jbd2_stats_proc_exit(journal); 1209 kfree(journal); 1210 return NULL; 1211 } 1212 1213 /* 1214 * If the journal init or create aborts, we need to mark the journal 1215 * superblock as being NULL to prevent the journal destroy from writing 1216 * back a bogus superblock. 1217 */ 1218 static void journal_fail_superblock (journal_t *journal) 1219 { 1220 struct buffer_head *bh = journal->j_sb_buffer; 1221 brelse(bh); 1222 journal->j_sb_buffer = NULL; 1223 } 1224 1225 /* 1226 * Given a journal_t structure, initialise the various fields for 1227 * startup of a new journaling session. We use this both when creating 1228 * a journal, and after recovering an old journal to reset it for 1229 * subsequent use. 1230 */ 1231 1232 static int journal_reset(journal_t *journal) 1233 { 1234 journal_superblock_t *sb = journal->j_superblock; 1235 unsigned long long first, last; 1236 1237 first = be32_to_cpu(sb->s_first); 1238 last = be32_to_cpu(sb->s_maxlen); 1239 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1240 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1241 first, last); 1242 journal_fail_superblock(journal); 1243 return -EINVAL; 1244 } 1245 1246 journal->j_first = first; 1247 journal->j_last = last; 1248 1249 journal->j_head = first; 1250 journal->j_tail = first; 1251 journal->j_free = last - first; 1252 1253 journal->j_tail_sequence = journal->j_transaction_sequence; 1254 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1255 journal->j_commit_request = journal->j_commit_sequence; 1256 1257 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1258 1259 /* 1260 * As a special case, if the on-disk copy is already marked as needing 1261 * no recovery (s_start == 0), then we can safely defer the superblock 1262 * update until the next commit by setting JBD2_FLUSHED. This avoids 1263 * attempting a write to a potential-readonly device. 1264 */ 1265 if (sb->s_start == 0) { 1266 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1267 "(start %ld, seq %d, errno %d)\n", 1268 journal->j_tail, journal->j_tail_sequence, 1269 journal->j_errno); 1270 journal->j_flags |= JBD2_FLUSHED; 1271 } else { 1272 /* Lock here to make assertions happy... */ 1273 mutex_lock(&journal->j_checkpoint_mutex); 1274 /* 1275 * Update log tail information. We use WRITE_FUA since new 1276 * transaction will start reusing journal space and so we 1277 * must make sure information about current log tail is on 1278 * disk before that. 1279 */ 1280 jbd2_journal_update_sb_log_tail(journal, 1281 journal->j_tail_sequence, 1282 journal->j_tail, 1283 WRITE_FUA); 1284 mutex_unlock(&journal->j_checkpoint_mutex); 1285 } 1286 return jbd2_journal_start_thread(journal); 1287 } 1288 1289 static void jbd2_write_superblock(journal_t *journal, int write_op) 1290 { 1291 struct buffer_head *bh = journal->j_sb_buffer; 1292 int ret; 1293 1294 trace_jbd2_write_superblock(journal, write_op); 1295 if (!(journal->j_flags & JBD2_BARRIER)) 1296 write_op &= ~(REQ_FUA | REQ_FLUSH); 1297 lock_buffer(bh); 1298 if (buffer_write_io_error(bh)) { 1299 /* 1300 * Oh, dear. A previous attempt to write the journal 1301 * superblock failed. This could happen because the 1302 * USB device was yanked out. Or it could happen to 1303 * be a transient write error and maybe the block will 1304 * be remapped. Nothing we can do but to retry the 1305 * write and hope for the best. 1306 */ 1307 printk(KERN_ERR "JBD2: previous I/O error detected " 1308 "for journal superblock update for %s.\n", 1309 journal->j_devname); 1310 clear_buffer_write_io_error(bh); 1311 set_buffer_uptodate(bh); 1312 } 1313 get_bh(bh); 1314 bh->b_end_io = end_buffer_write_sync; 1315 ret = submit_bh(write_op, bh); 1316 wait_on_buffer(bh); 1317 if (buffer_write_io_error(bh)) { 1318 clear_buffer_write_io_error(bh); 1319 set_buffer_uptodate(bh); 1320 ret = -EIO; 1321 } 1322 if (ret) { 1323 printk(KERN_ERR "JBD2: Error %d detected when updating " 1324 "journal superblock for %s.\n", ret, 1325 journal->j_devname); 1326 } 1327 } 1328 1329 /** 1330 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1331 * @journal: The journal to update. 1332 * @tail_tid: TID of the new transaction at the tail of the log 1333 * @tail_block: The first block of the transaction at the tail of the log 1334 * @write_op: With which operation should we write the journal sb 1335 * 1336 * Update a journal's superblock information about log tail and write it to 1337 * disk, waiting for the IO to complete. 1338 */ 1339 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1340 unsigned long tail_block, int write_op) 1341 { 1342 journal_superblock_t *sb = journal->j_superblock; 1343 1344 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1345 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1346 tail_block, tail_tid); 1347 1348 sb->s_sequence = cpu_to_be32(tail_tid); 1349 sb->s_start = cpu_to_be32(tail_block); 1350 1351 jbd2_write_superblock(journal, write_op); 1352 1353 /* Log is no longer empty */ 1354 write_lock(&journal->j_state_lock); 1355 WARN_ON(!sb->s_sequence); 1356 journal->j_flags &= ~JBD2_FLUSHED; 1357 write_unlock(&journal->j_state_lock); 1358 } 1359 1360 /** 1361 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1362 * @journal: The journal to update. 1363 * 1364 * Update a journal's dynamic superblock fields to show that journal is empty. 1365 * Write updated superblock to disk waiting for IO to complete. 1366 */ 1367 static void jbd2_mark_journal_empty(journal_t *journal) 1368 { 1369 journal_superblock_t *sb = journal->j_superblock; 1370 1371 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1372 read_lock(&journal->j_state_lock); 1373 /* Is it already empty? */ 1374 if (sb->s_start == 0) { 1375 read_unlock(&journal->j_state_lock); 1376 return; 1377 } 1378 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1379 journal->j_tail_sequence); 1380 1381 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1382 sb->s_start = cpu_to_be32(0); 1383 read_unlock(&journal->j_state_lock); 1384 1385 jbd2_write_superblock(journal, WRITE_FUA); 1386 1387 /* Log is no longer empty */ 1388 write_lock(&journal->j_state_lock); 1389 journal->j_flags |= JBD2_FLUSHED; 1390 write_unlock(&journal->j_state_lock); 1391 } 1392 1393 1394 /** 1395 * jbd2_journal_update_sb_errno() - Update error in the journal. 1396 * @journal: The journal to update. 1397 * 1398 * Update a journal's errno. Write updated superblock to disk waiting for IO 1399 * to complete. 1400 */ 1401 void jbd2_journal_update_sb_errno(journal_t *journal) 1402 { 1403 journal_superblock_t *sb = journal->j_superblock; 1404 1405 read_lock(&journal->j_state_lock); 1406 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1407 journal->j_errno); 1408 sb->s_errno = cpu_to_be32(journal->j_errno); 1409 jbd2_superblock_csum_set(journal, sb); 1410 read_unlock(&journal->j_state_lock); 1411 1412 jbd2_write_superblock(journal, WRITE_SYNC); 1413 } 1414 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1415 1416 /* 1417 * Read the superblock for a given journal, performing initial 1418 * validation of the format. 1419 */ 1420 static int journal_get_superblock(journal_t *journal) 1421 { 1422 struct buffer_head *bh; 1423 journal_superblock_t *sb; 1424 int err = -EIO; 1425 1426 bh = journal->j_sb_buffer; 1427 1428 J_ASSERT(bh != NULL); 1429 if (!buffer_uptodate(bh)) { 1430 ll_rw_block(READ, 1, &bh); 1431 wait_on_buffer(bh); 1432 if (!buffer_uptodate(bh)) { 1433 printk(KERN_ERR 1434 "JBD2: IO error reading journal superblock\n"); 1435 goto out; 1436 } 1437 } 1438 1439 if (buffer_verified(bh)) 1440 return 0; 1441 1442 sb = journal->j_superblock; 1443 1444 err = -EINVAL; 1445 1446 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1447 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1448 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1449 goto out; 1450 } 1451 1452 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1453 case JBD2_SUPERBLOCK_V1: 1454 journal->j_format_version = 1; 1455 break; 1456 case JBD2_SUPERBLOCK_V2: 1457 journal->j_format_version = 2; 1458 break; 1459 default: 1460 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1461 goto out; 1462 } 1463 1464 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1465 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1466 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1467 printk(KERN_WARNING "JBD2: journal file too short\n"); 1468 goto out; 1469 } 1470 1471 if (be32_to_cpu(sb->s_first) == 0 || 1472 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1473 printk(KERN_WARNING 1474 "JBD2: Invalid start block of journal: %u\n", 1475 be32_to_cpu(sb->s_first)); 1476 goto out; 1477 } 1478 1479 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1480 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1481 /* Can't have checksum v1 and v2 on at the same time! */ 1482 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1483 "at the same time!\n"); 1484 goto out; 1485 } 1486 1487 if (!jbd2_verify_csum_type(journal, sb)) { 1488 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1489 goto out; 1490 } 1491 1492 /* Load the checksum driver */ 1493 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1494 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1495 if (IS_ERR(journal->j_chksum_driver)) { 1496 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1497 err = PTR_ERR(journal->j_chksum_driver); 1498 journal->j_chksum_driver = NULL; 1499 goto out; 1500 } 1501 } 1502 1503 /* Check superblock checksum */ 1504 if (!jbd2_superblock_csum_verify(journal, sb)) { 1505 printk(KERN_ERR "JBD: journal checksum error\n"); 1506 goto out; 1507 } 1508 1509 /* Precompute checksum seed for all metadata */ 1510 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1511 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1512 sizeof(sb->s_uuid)); 1513 1514 set_buffer_verified(bh); 1515 1516 return 0; 1517 1518 out: 1519 journal_fail_superblock(journal); 1520 return err; 1521 } 1522 1523 /* 1524 * Load the on-disk journal superblock and read the key fields into the 1525 * journal_t. 1526 */ 1527 1528 static int load_superblock(journal_t *journal) 1529 { 1530 int err; 1531 journal_superblock_t *sb; 1532 1533 err = journal_get_superblock(journal); 1534 if (err) 1535 return err; 1536 1537 sb = journal->j_superblock; 1538 1539 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1540 journal->j_tail = be32_to_cpu(sb->s_start); 1541 journal->j_first = be32_to_cpu(sb->s_first); 1542 journal->j_last = be32_to_cpu(sb->s_maxlen); 1543 journal->j_errno = be32_to_cpu(sb->s_errno); 1544 1545 return 0; 1546 } 1547 1548 1549 /** 1550 * int jbd2_journal_load() - Read journal from disk. 1551 * @journal: Journal to act on. 1552 * 1553 * Given a journal_t structure which tells us which disk blocks contain 1554 * a journal, read the journal from disk to initialise the in-memory 1555 * structures. 1556 */ 1557 int jbd2_journal_load(journal_t *journal) 1558 { 1559 int err; 1560 journal_superblock_t *sb; 1561 1562 err = load_superblock(journal); 1563 if (err) 1564 return err; 1565 1566 sb = journal->j_superblock; 1567 /* If this is a V2 superblock, then we have to check the 1568 * features flags on it. */ 1569 1570 if (journal->j_format_version >= 2) { 1571 if ((sb->s_feature_ro_compat & 1572 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1573 (sb->s_feature_incompat & 1574 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1575 printk(KERN_WARNING 1576 "JBD2: Unrecognised features on journal\n"); 1577 return -EINVAL; 1578 } 1579 } 1580 1581 /* 1582 * Create a slab for this blocksize 1583 */ 1584 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1585 if (err) 1586 return err; 1587 1588 /* Let the recovery code check whether it needs to recover any 1589 * data from the journal. */ 1590 if (jbd2_journal_recover(journal)) 1591 goto recovery_error; 1592 1593 if (journal->j_failed_commit) { 1594 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1595 "is corrupt.\n", journal->j_failed_commit, 1596 journal->j_devname); 1597 return -EIO; 1598 } 1599 1600 /* OK, we've finished with the dynamic journal bits: 1601 * reinitialise the dynamic contents of the superblock in memory 1602 * and reset them on disk. */ 1603 if (journal_reset(journal)) 1604 goto recovery_error; 1605 1606 journal->j_flags &= ~JBD2_ABORT; 1607 journal->j_flags |= JBD2_LOADED; 1608 return 0; 1609 1610 recovery_error: 1611 printk(KERN_WARNING "JBD2: recovery failed\n"); 1612 return -EIO; 1613 } 1614 1615 /** 1616 * void jbd2_journal_destroy() - Release a journal_t structure. 1617 * @journal: Journal to act on. 1618 * 1619 * Release a journal_t structure once it is no longer in use by the 1620 * journaled object. 1621 * Return <0 if we couldn't clean up the journal. 1622 */ 1623 int jbd2_journal_destroy(journal_t *journal) 1624 { 1625 int err = 0; 1626 1627 /* Wait for the commit thread to wake up and die. */ 1628 journal_kill_thread(journal); 1629 1630 /* Force a final log commit */ 1631 if (journal->j_running_transaction) 1632 jbd2_journal_commit_transaction(journal); 1633 1634 /* Force any old transactions to disk */ 1635 1636 /* Totally anal locking here... */ 1637 spin_lock(&journal->j_list_lock); 1638 while (journal->j_checkpoint_transactions != NULL) { 1639 spin_unlock(&journal->j_list_lock); 1640 mutex_lock(&journal->j_checkpoint_mutex); 1641 jbd2_log_do_checkpoint(journal); 1642 mutex_unlock(&journal->j_checkpoint_mutex); 1643 spin_lock(&journal->j_list_lock); 1644 } 1645 1646 J_ASSERT(journal->j_running_transaction == NULL); 1647 J_ASSERT(journal->j_committing_transaction == NULL); 1648 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1649 spin_unlock(&journal->j_list_lock); 1650 1651 if (journal->j_sb_buffer) { 1652 if (!is_journal_aborted(journal)) { 1653 mutex_lock(&journal->j_checkpoint_mutex); 1654 jbd2_mark_journal_empty(journal); 1655 mutex_unlock(&journal->j_checkpoint_mutex); 1656 } else 1657 err = -EIO; 1658 brelse(journal->j_sb_buffer); 1659 } 1660 1661 if (journal->j_proc_entry) 1662 jbd2_stats_proc_exit(journal); 1663 if (journal->j_inode) 1664 iput(journal->j_inode); 1665 if (journal->j_revoke) 1666 jbd2_journal_destroy_revoke(journal); 1667 if (journal->j_chksum_driver) 1668 crypto_free_shash(journal->j_chksum_driver); 1669 kfree(journal->j_wbuf); 1670 kfree(journal); 1671 1672 return err; 1673 } 1674 1675 1676 /** 1677 *int jbd2_journal_check_used_features () - Check if features specified are used. 1678 * @journal: Journal to check. 1679 * @compat: bitmask of compatible features 1680 * @ro: bitmask of features that force read-only mount 1681 * @incompat: bitmask of incompatible features 1682 * 1683 * Check whether the journal uses all of a given set of 1684 * features. Return true (non-zero) if it does. 1685 **/ 1686 1687 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1688 unsigned long ro, unsigned long incompat) 1689 { 1690 journal_superblock_t *sb; 1691 1692 if (!compat && !ro && !incompat) 1693 return 1; 1694 /* Load journal superblock if it is not loaded yet. */ 1695 if (journal->j_format_version == 0 && 1696 journal_get_superblock(journal) != 0) 1697 return 0; 1698 if (journal->j_format_version == 1) 1699 return 0; 1700 1701 sb = journal->j_superblock; 1702 1703 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1704 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1705 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1706 return 1; 1707 1708 return 0; 1709 } 1710 1711 /** 1712 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1713 * @journal: Journal to check. 1714 * @compat: bitmask of compatible features 1715 * @ro: bitmask of features that force read-only mount 1716 * @incompat: bitmask of incompatible features 1717 * 1718 * Check whether the journaling code supports the use of 1719 * all of a given set of features on this journal. Return true 1720 * (non-zero) if it can. */ 1721 1722 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1723 unsigned long ro, unsigned long incompat) 1724 { 1725 if (!compat && !ro && !incompat) 1726 return 1; 1727 1728 /* We can support any known requested features iff the 1729 * superblock is in version 2. Otherwise we fail to support any 1730 * extended sb features. */ 1731 1732 if (journal->j_format_version != 2) 1733 return 0; 1734 1735 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1736 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1737 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1738 return 1; 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1745 * @journal: Journal to act on. 1746 * @compat: bitmask of compatible features 1747 * @ro: bitmask of features that force read-only mount 1748 * @incompat: bitmask of incompatible features 1749 * 1750 * Mark a given journal feature as present on the 1751 * superblock. Returns true if the requested features could be set. 1752 * 1753 */ 1754 1755 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1756 unsigned long ro, unsigned long incompat) 1757 { 1758 #define INCOMPAT_FEATURE_ON(f) \ 1759 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1760 #define COMPAT_FEATURE_ON(f) \ 1761 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1762 journal_superblock_t *sb; 1763 1764 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1765 return 1; 1766 1767 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1768 return 0; 1769 1770 /* Asking for checksumming v2 and v1? Only give them v2. */ 1771 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1772 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1773 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1774 1775 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1776 compat, ro, incompat); 1777 1778 sb = journal->j_superblock; 1779 1780 /* If enabling v2 checksums, update superblock */ 1781 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1782 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1783 sb->s_feature_compat &= 1784 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1785 1786 /* Load the checksum driver */ 1787 if (journal->j_chksum_driver == NULL) { 1788 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1789 0, 0); 1790 if (IS_ERR(journal->j_chksum_driver)) { 1791 printk(KERN_ERR "JBD: Cannot load crc32c " 1792 "driver.\n"); 1793 journal->j_chksum_driver = NULL; 1794 return 0; 1795 } 1796 } 1797 1798 /* Precompute checksum seed for all metadata */ 1799 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1800 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1801 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1802 sb->s_uuid, 1803 sizeof(sb->s_uuid)); 1804 } 1805 1806 /* If enabling v1 checksums, downgrade superblock */ 1807 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1808 sb->s_feature_incompat &= 1809 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1810 1811 sb->s_feature_compat |= cpu_to_be32(compat); 1812 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1813 sb->s_feature_incompat |= cpu_to_be32(incompat); 1814 1815 return 1; 1816 #undef COMPAT_FEATURE_ON 1817 #undef INCOMPAT_FEATURE_ON 1818 } 1819 1820 /* 1821 * jbd2_journal_clear_features () - Clear a given journal feature in the 1822 * superblock 1823 * @journal: Journal to act on. 1824 * @compat: bitmask of compatible features 1825 * @ro: bitmask of features that force read-only mount 1826 * @incompat: bitmask of incompatible features 1827 * 1828 * Clear a given journal feature as present on the 1829 * superblock. 1830 */ 1831 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1832 unsigned long ro, unsigned long incompat) 1833 { 1834 journal_superblock_t *sb; 1835 1836 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1837 compat, ro, incompat); 1838 1839 sb = journal->j_superblock; 1840 1841 sb->s_feature_compat &= ~cpu_to_be32(compat); 1842 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1843 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1844 } 1845 EXPORT_SYMBOL(jbd2_journal_clear_features); 1846 1847 /** 1848 * int jbd2_journal_flush () - Flush journal 1849 * @journal: Journal to act on. 1850 * 1851 * Flush all data for a given journal to disk and empty the journal. 1852 * Filesystems can use this when remounting readonly to ensure that 1853 * recovery does not need to happen on remount. 1854 */ 1855 1856 int jbd2_journal_flush(journal_t *journal) 1857 { 1858 int err = 0; 1859 transaction_t *transaction = NULL; 1860 1861 write_lock(&journal->j_state_lock); 1862 1863 /* Force everything buffered to the log... */ 1864 if (journal->j_running_transaction) { 1865 transaction = journal->j_running_transaction; 1866 __jbd2_log_start_commit(journal, transaction->t_tid); 1867 } else if (journal->j_committing_transaction) 1868 transaction = journal->j_committing_transaction; 1869 1870 /* Wait for the log commit to complete... */ 1871 if (transaction) { 1872 tid_t tid = transaction->t_tid; 1873 1874 write_unlock(&journal->j_state_lock); 1875 jbd2_log_wait_commit(journal, tid); 1876 } else { 1877 write_unlock(&journal->j_state_lock); 1878 } 1879 1880 /* ...and flush everything in the log out to disk. */ 1881 spin_lock(&journal->j_list_lock); 1882 while (!err && journal->j_checkpoint_transactions != NULL) { 1883 spin_unlock(&journal->j_list_lock); 1884 mutex_lock(&journal->j_checkpoint_mutex); 1885 err = jbd2_log_do_checkpoint(journal); 1886 mutex_unlock(&journal->j_checkpoint_mutex); 1887 spin_lock(&journal->j_list_lock); 1888 } 1889 spin_unlock(&journal->j_list_lock); 1890 1891 if (is_journal_aborted(journal)) 1892 return -EIO; 1893 1894 mutex_lock(&journal->j_checkpoint_mutex); 1895 jbd2_cleanup_journal_tail(journal); 1896 1897 /* Finally, mark the journal as really needing no recovery. 1898 * This sets s_start==0 in the underlying superblock, which is 1899 * the magic code for a fully-recovered superblock. Any future 1900 * commits of data to the journal will restore the current 1901 * s_start value. */ 1902 jbd2_mark_journal_empty(journal); 1903 mutex_unlock(&journal->j_checkpoint_mutex); 1904 write_lock(&journal->j_state_lock); 1905 J_ASSERT(!journal->j_running_transaction); 1906 J_ASSERT(!journal->j_committing_transaction); 1907 J_ASSERT(!journal->j_checkpoint_transactions); 1908 J_ASSERT(journal->j_head == journal->j_tail); 1909 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1910 write_unlock(&journal->j_state_lock); 1911 return 0; 1912 } 1913 1914 /** 1915 * int jbd2_journal_wipe() - Wipe journal contents 1916 * @journal: Journal to act on. 1917 * @write: flag (see below) 1918 * 1919 * Wipe out all of the contents of a journal, safely. This will produce 1920 * a warning if the journal contains any valid recovery information. 1921 * Must be called between journal_init_*() and jbd2_journal_load(). 1922 * 1923 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1924 * we merely suppress recovery. 1925 */ 1926 1927 int jbd2_journal_wipe(journal_t *journal, int write) 1928 { 1929 int err = 0; 1930 1931 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1932 1933 err = load_superblock(journal); 1934 if (err) 1935 return err; 1936 1937 if (!journal->j_tail) 1938 goto no_recovery; 1939 1940 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1941 write ? "Clearing" : "Ignoring"); 1942 1943 err = jbd2_journal_skip_recovery(journal); 1944 if (write) { 1945 /* Lock to make assertions happy... */ 1946 mutex_lock(&journal->j_checkpoint_mutex); 1947 jbd2_mark_journal_empty(journal); 1948 mutex_unlock(&journal->j_checkpoint_mutex); 1949 } 1950 1951 no_recovery: 1952 return err; 1953 } 1954 1955 /* 1956 * Journal abort has very specific semantics, which we describe 1957 * for journal abort. 1958 * 1959 * Two internal functions, which provide abort to the jbd layer 1960 * itself are here. 1961 */ 1962 1963 /* 1964 * Quick version for internal journal use (doesn't lock the journal). 1965 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1966 * and don't attempt to make any other journal updates. 1967 */ 1968 void __jbd2_journal_abort_hard(journal_t *journal) 1969 { 1970 transaction_t *transaction; 1971 1972 if (journal->j_flags & JBD2_ABORT) 1973 return; 1974 1975 printk(KERN_ERR "Aborting journal on device %s.\n", 1976 journal->j_devname); 1977 1978 write_lock(&journal->j_state_lock); 1979 journal->j_flags |= JBD2_ABORT; 1980 transaction = journal->j_running_transaction; 1981 if (transaction) 1982 __jbd2_log_start_commit(journal, transaction->t_tid); 1983 write_unlock(&journal->j_state_lock); 1984 } 1985 1986 /* Soft abort: record the abort error status in the journal superblock, 1987 * but don't do any other IO. */ 1988 static void __journal_abort_soft (journal_t *journal, int errno) 1989 { 1990 if (journal->j_flags & JBD2_ABORT) 1991 return; 1992 1993 if (!journal->j_errno) 1994 journal->j_errno = errno; 1995 1996 __jbd2_journal_abort_hard(journal); 1997 1998 if (errno) 1999 jbd2_journal_update_sb_errno(journal); 2000 } 2001 2002 /** 2003 * void jbd2_journal_abort () - Shutdown the journal immediately. 2004 * @journal: the journal to shutdown. 2005 * @errno: an error number to record in the journal indicating 2006 * the reason for the shutdown. 2007 * 2008 * Perform a complete, immediate shutdown of the ENTIRE 2009 * journal (not of a single transaction). This operation cannot be 2010 * undone without closing and reopening the journal. 2011 * 2012 * The jbd2_journal_abort function is intended to support higher level error 2013 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2014 * mode. 2015 * 2016 * Journal abort has very specific semantics. Any existing dirty, 2017 * unjournaled buffers in the main filesystem will still be written to 2018 * disk by bdflush, but the journaling mechanism will be suspended 2019 * immediately and no further transaction commits will be honoured. 2020 * 2021 * Any dirty, journaled buffers will be written back to disk without 2022 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2023 * filesystem, but we _do_ attempt to leave as much data as possible 2024 * behind for fsck to use for cleanup. 2025 * 2026 * Any attempt to get a new transaction handle on a journal which is in 2027 * ABORT state will just result in an -EROFS error return. A 2028 * jbd2_journal_stop on an existing handle will return -EIO if we have 2029 * entered abort state during the update. 2030 * 2031 * Recursive transactions are not disturbed by journal abort until the 2032 * final jbd2_journal_stop, which will receive the -EIO error. 2033 * 2034 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2035 * which will be recorded (if possible) in the journal superblock. This 2036 * allows a client to record failure conditions in the middle of a 2037 * transaction without having to complete the transaction to record the 2038 * failure to disk. ext3_error, for example, now uses this 2039 * functionality. 2040 * 2041 * Errors which originate from within the journaling layer will NOT 2042 * supply an errno; a null errno implies that absolutely no further 2043 * writes are done to the journal (unless there are any already in 2044 * progress). 2045 * 2046 */ 2047 2048 void jbd2_journal_abort(journal_t *journal, int errno) 2049 { 2050 __journal_abort_soft(journal, errno); 2051 } 2052 2053 /** 2054 * int jbd2_journal_errno () - returns the journal's error state. 2055 * @journal: journal to examine. 2056 * 2057 * This is the errno number set with jbd2_journal_abort(), the last 2058 * time the journal was mounted - if the journal was stopped 2059 * without calling abort this will be 0. 2060 * 2061 * If the journal has been aborted on this mount time -EROFS will 2062 * be returned. 2063 */ 2064 int jbd2_journal_errno(journal_t *journal) 2065 { 2066 int err; 2067 2068 read_lock(&journal->j_state_lock); 2069 if (journal->j_flags & JBD2_ABORT) 2070 err = -EROFS; 2071 else 2072 err = journal->j_errno; 2073 read_unlock(&journal->j_state_lock); 2074 return err; 2075 } 2076 2077 /** 2078 * int jbd2_journal_clear_err () - clears the journal's error state 2079 * @journal: journal to act on. 2080 * 2081 * An error must be cleared or acked to take a FS out of readonly 2082 * mode. 2083 */ 2084 int jbd2_journal_clear_err(journal_t *journal) 2085 { 2086 int err = 0; 2087 2088 write_lock(&journal->j_state_lock); 2089 if (journal->j_flags & JBD2_ABORT) 2090 err = -EROFS; 2091 else 2092 journal->j_errno = 0; 2093 write_unlock(&journal->j_state_lock); 2094 return err; 2095 } 2096 2097 /** 2098 * void jbd2_journal_ack_err() - Ack journal err. 2099 * @journal: journal to act on. 2100 * 2101 * An error must be cleared or acked to take a FS out of readonly 2102 * mode. 2103 */ 2104 void jbd2_journal_ack_err(journal_t *journal) 2105 { 2106 write_lock(&journal->j_state_lock); 2107 if (journal->j_errno) 2108 journal->j_flags |= JBD2_ACK_ERR; 2109 write_unlock(&journal->j_state_lock); 2110 } 2111 2112 int jbd2_journal_blocks_per_page(struct inode *inode) 2113 { 2114 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2115 } 2116 2117 /* 2118 * helper functions to deal with 32 or 64bit block numbers. 2119 */ 2120 size_t journal_tag_bytes(journal_t *journal) 2121 { 2122 journal_block_tag_t tag; 2123 size_t x = 0; 2124 2125 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2126 x += sizeof(tag.t_checksum); 2127 2128 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2129 return x + JBD2_TAG_SIZE64; 2130 else 2131 return x + JBD2_TAG_SIZE32; 2132 } 2133 2134 /* 2135 * JBD memory management 2136 * 2137 * These functions are used to allocate block-sized chunks of memory 2138 * used for making copies of buffer_head data. Very often it will be 2139 * page-sized chunks of data, but sometimes it will be in 2140 * sub-page-size chunks. (For example, 16k pages on Power systems 2141 * with a 4k block file system.) For blocks smaller than a page, we 2142 * use a SLAB allocator. There are slab caches for each block size, 2143 * which are allocated at mount time, if necessary, and we only free 2144 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2145 * this reason we don't need to a mutex to protect access to 2146 * jbd2_slab[] allocating or releasing memory; only in 2147 * jbd2_journal_create_slab(). 2148 */ 2149 #define JBD2_MAX_SLABS 8 2150 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2151 2152 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2153 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2154 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2155 }; 2156 2157 2158 static void jbd2_journal_destroy_slabs(void) 2159 { 2160 int i; 2161 2162 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2163 if (jbd2_slab[i]) 2164 kmem_cache_destroy(jbd2_slab[i]); 2165 jbd2_slab[i] = NULL; 2166 } 2167 } 2168 2169 static int jbd2_journal_create_slab(size_t size) 2170 { 2171 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2172 int i = order_base_2(size) - 10; 2173 size_t slab_size; 2174 2175 if (size == PAGE_SIZE) 2176 return 0; 2177 2178 if (i >= JBD2_MAX_SLABS) 2179 return -EINVAL; 2180 2181 if (unlikely(i < 0)) 2182 i = 0; 2183 mutex_lock(&jbd2_slab_create_mutex); 2184 if (jbd2_slab[i]) { 2185 mutex_unlock(&jbd2_slab_create_mutex); 2186 return 0; /* Already created */ 2187 } 2188 2189 slab_size = 1 << (i+10); 2190 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2191 slab_size, 0, NULL); 2192 mutex_unlock(&jbd2_slab_create_mutex); 2193 if (!jbd2_slab[i]) { 2194 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2195 return -ENOMEM; 2196 } 2197 return 0; 2198 } 2199 2200 static struct kmem_cache *get_slab(size_t size) 2201 { 2202 int i = order_base_2(size) - 10; 2203 2204 BUG_ON(i >= JBD2_MAX_SLABS); 2205 if (unlikely(i < 0)) 2206 i = 0; 2207 BUG_ON(jbd2_slab[i] == NULL); 2208 return jbd2_slab[i]; 2209 } 2210 2211 void *jbd2_alloc(size_t size, gfp_t flags) 2212 { 2213 void *ptr; 2214 2215 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2216 2217 flags |= __GFP_REPEAT; 2218 if (size == PAGE_SIZE) 2219 ptr = (void *)__get_free_pages(flags, 0); 2220 else if (size > PAGE_SIZE) { 2221 int order = get_order(size); 2222 2223 if (order < 3) 2224 ptr = (void *)__get_free_pages(flags, order); 2225 else 2226 ptr = vmalloc(size); 2227 } else 2228 ptr = kmem_cache_alloc(get_slab(size), flags); 2229 2230 /* Check alignment; SLUB has gotten this wrong in the past, 2231 * and this can lead to user data corruption! */ 2232 BUG_ON(((unsigned long) ptr) & (size-1)); 2233 2234 return ptr; 2235 } 2236 2237 void jbd2_free(void *ptr, size_t size) 2238 { 2239 if (size == PAGE_SIZE) { 2240 free_pages((unsigned long)ptr, 0); 2241 return; 2242 } 2243 if (size > PAGE_SIZE) { 2244 int order = get_order(size); 2245 2246 if (order < 3) 2247 free_pages((unsigned long)ptr, order); 2248 else 2249 vfree(ptr); 2250 return; 2251 } 2252 kmem_cache_free(get_slab(size), ptr); 2253 }; 2254 2255 /* 2256 * Journal_head storage management 2257 */ 2258 static struct kmem_cache *jbd2_journal_head_cache; 2259 #ifdef CONFIG_JBD2_DEBUG 2260 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2261 #endif 2262 2263 static int jbd2_journal_init_journal_head_cache(void) 2264 { 2265 int retval; 2266 2267 J_ASSERT(jbd2_journal_head_cache == NULL); 2268 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2269 sizeof(struct journal_head), 2270 0, /* offset */ 2271 SLAB_TEMPORARY, /* flags */ 2272 NULL); /* ctor */ 2273 retval = 0; 2274 if (!jbd2_journal_head_cache) { 2275 retval = -ENOMEM; 2276 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2277 } 2278 return retval; 2279 } 2280 2281 static void jbd2_journal_destroy_journal_head_cache(void) 2282 { 2283 if (jbd2_journal_head_cache) { 2284 kmem_cache_destroy(jbd2_journal_head_cache); 2285 jbd2_journal_head_cache = NULL; 2286 } 2287 } 2288 2289 /* 2290 * journal_head splicing and dicing 2291 */ 2292 static struct journal_head *journal_alloc_journal_head(void) 2293 { 2294 struct journal_head *ret; 2295 2296 #ifdef CONFIG_JBD2_DEBUG 2297 atomic_inc(&nr_journal_heads); 2298 #endif 2299 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2300 if (!ret) { 2301 jbd_debug(1, "out of memory for journal_head\n"); 2302 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2303 while (!ret) { 2304 yield(); 2305 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2306 } 2307 } 2308 return ret; 2309 } 2310 2311 static void journal_free_journal_head(struct journal_head *jh) 2312 { 2313 #ifdef CONFIG_JBD2_DEBUG 2314 atomic_dec(&nr_journal_heads); 2315 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2316 #endif 2317 kmem_cache_free(jbd2_journal_head_cache, jh); 2318 } 2319 2320 /* 2321 * A journal_head is attached to a buffer_head whenever JBD has an 2322 * interest in the buffer. 2323 * 2324 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2325 * is set. This bit is tested in core kernel code where we need to take 2326 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2327 * there. 2328 * 2329 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2330 * 2331 * When a buffer has its BH_JBD bit set it is immune from being released by 2332 * core kernel code, mainly via ->b_count. 2333 * 2334 * A journal_head is detached from its buffer_head when the journal_head's 2335 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2336 * transaction (b_cp_transaction) hold their references to b_jcount. 2337 * 2338 * Various places in the kernel want to attach a journal_head to a buffer_head 2339 * _before_ attaching the journal_head to a transaction. To protect the 2340 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2341 * journal_head's b_jcount refcount by one. The caller must call 2342 * jbd2_journal_put_journal_head() to undo this. 2343 * 2344 * So the typical usage would be: 2345 * 2346 * (Attach a journal_head if needed. Increments b_jcount) 2347 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2348 * ... 2349 * (Get another reference for transaction) 2350 * jbd2_journal_grab_journal_head(bh); 2351 * jh->b_transaction = xxx; 2352 * (Put original reference) 2353 * jbd2_journal_put_journal_head(jh); 2354 */ 2355 2356 /* 2357 * Give a buffer_head a journal_head. 2358 * 2359 * May sleep. 2360 */ 2361 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2362 { 2363 struct journal_head *jh; 2364 struct journal_head *new_jh = NULL; 2365 2366 repeat: 2367 if (!buffer_jbd(bh)) { 2368 new_jh = journal_alloc_journal_head(); 2369 memset(new_jh, 0, sizeof(*new_jh)); 2370 } 2371 2372 jbd_lock_bh_journal_head(bh); 2373 if (buffer_jbd(bh)) { 2374 jh = bh2jh(bh); 2375 } else { 2376 J_ASSERT_BH(bh, 2377 (atomic_read(&bh->b_count) > 0) || 2378 (bh->b_page && bh->b_page->mapping)); 2379 2380 if (!new_jh) { 2381 jbd_unlock_bh_journal_head(bh); 2382 goto repeat; 2383 } 2384 2385 jh = new_jh; 2386 new_jh = NULL; /* We consumed it */ 2387 set_buffer_jbd(bh); 2388 bh->b_private = jh; 2389 jh->b_bh = bh; 2390 get_bh(bh); 2391 BUFFER_TRACE(bh, "added journal_head"); 2392 } 2393 jh->b_jcount++; 2394 jbd_unlock_bh_journal_head(bh); 2395 if (new_jh) 2396 journal_free_journal_head(new_jh); 2397 return bh->b_private; 2398 } 2399 2400 /* 2401 * Grab a ref against this buffer_head's journal_head. If it ended up not 2402 * having a journal_head, return NULL 2403 */ 2404 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2405 { 2406 struct journal_head *jh = NULL; 2407 2408 jbd_lock_bh_journal_head(bh); 2409 if (buffer_jbd(bh)) { 2410 jh = bh2jh(bh); 2411 jh->b_jcount++; 2412 } 2413 jbd_unlock_bh_journal_head(bh); 2414 return jh; 2415 } 2416 2417 static void __journal_remove_journal_head(struct buffer_head *bh) 2418 { 2419 struct journal_head *jh = bh2jh(bh); 2420 2421 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2422 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2423 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2424 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2425 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2426 J_ASSERT_BH(bh, buffer_jbd(bh)); 2427 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2428 BUFFER_TRACE(bh, "remove journal_head"); 2429 if (jh->b_frozen_data) { 2430 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2431 jbd2_free(jh->b_frozen_data, bh->b_size); 2432 } 2433 if (jh->b_committed_data) { 2434 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2435 jbd2_free(jh->b_committed_data, bh->b_size); 2436 } 2437 bh->b_private = NULL; 2438 jh->b_bh = NULL; /* debug, really */ 2439 clear_buffer_jbd(bh); 2440 journal_free_journal_head(jh); 2441 } 2442 2443 /* 2444 * Drop a reference on the passed journal_head. If it fell to zero then 2445 * release the journal_head from the buffer_head. 2446 */ 2447 void jbd2_journal_put_journal_head(struct journal_head *jh) 2448 { 2449 struct buffer_head *bh = jh2bh(jh); 2450 2451 jbd_lock_bh_journal_head(bh); 2452 J_ASSERT_JH(jh, jh->b_jcount > 0); 2453 --jh->b_jcount; 2454 if (!jh->b_jcount) { 2455 __journal_remove_journal_head(bh); 2456 jbd_unlock_bh_journal_head(bh); 2457 __brelse(bh); 2458 } else 2459 jbd_unlock_bh_journal_head(bh); 2460 } 2461 2462 /* 2463 * Initialize jbd inode head 2464 */ 2465 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2466 { 2467 jinode->i_transaction = NULL; 2468 jinode->i_next_transaction = NULL; 2469 jinode->i_vfs_inode = inode; 2470 jinode->i_flags = 0; 2471 INIT_LIST_HEAD(&jinode->i_list); 2472 } 2473 2474 /* 2475 * Function to be called before we start removing inode from memory (i.e., 2476 * clear_inode() is a fine place to be called from). It removes inode from 2477 * transaction's lists. 2478 */ 2479 void jbd2_journal_release_jbd_inode(journal_t *journal, 2480 struct jbd2_inode *jinode) 2481 { 2482 if (!journal) 2483 return; 2484 restart: 2485 spin_lock(&journal->j_list_lock); 2486 /* Is commit writing out inode - we have to wait */ 2487 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2488 wait_queue_head_t *wq; 2489 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2490 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2491 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2492 spin_unlock(&journal->j_list_lock); 2493 schedule(); 2494 finish_wait(wq, &wait.wait); 2495 goto restart; 2496 } 2497 2498 if (jinode->i_transaction) { 2499 list_del(&jinode->i_list); 2500 jinode->i_transaction = NULL; 2501 } 2502 spin_unlock(&journal->j_list_lock); 2503 } 2504 2505 2506 #ifdef CONFIG_PROC_FS 2507 2508 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2509 2510 static void __init jbd2_create_jbd_stats_proc_entry(void) 2511 { 2512 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2513 } 2514 2515 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2516 { 2517 if (proc_jbd2_stats) 2518 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2519 } 2520 2521 #else 2522 2523 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2524 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2525 2526 #endif 2527 2528 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2529 2530 static int __init jbd2_journal_init_handle_cache(void) 2531 { 2532 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2533 if (jbd2_handle_cache == NULL) { 2534 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2535 return -ENOMEM; 2536 } 2537 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2538 if (jbd2_inode_cache == NULL) { 2539 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2540 kmem_cache_destroy(jbd2_handle_cache); 2541 return -ENOMEM; 2542 } 2543 return 0; 2544 } 2545 2546 static void jbd2_journal_destroy_handle_cache(void) 2547 { 2548 if (jbd2_handle_cache) 2549 kmem_cache_destroy(jbd2_handle_cache); 2550 if (jbd2_inode_cache) 2551 kmem_cache_destroy(jbd2_inode_cache); 2552 2553 } 2554 2555 /* 2556 * Module startup and shutdown 2557 */ 2558 2559 static int __init journal_init_caches(void) 2560 { 2561 int ret; 2562 2563 ret = jbd2_journal_init_revoke_caches(); 2564 if (ret == 0) 2565 ret = jbd2_journal_init_journal_head_cache(); 2566 if (ret == 0) 2567 ret = jbd2_journal_init_handle_cache(); 2568 if (ret == 0) 2569 ret = jbd2_journal_init_transaction_cache(); 2570 return ret; 2571 } 2572 2573 static void jbd2_journal_destroy_caches(void) 2574 { 2575 jbd2_journal_destroy_revoke_caches(); 2576 jbd2_journal_destroy_journal_head_cache(); 2577 jbd2_journal_destroy_handle_cache(); 2578 jbd2_journal_destroy_transaction_cache(); 2579 jbd2_journal_destroy_slabs(); 2580 } 2581 2582 static int __init journal_init(void) 2583 { 2584 int ret; 2585 2586 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2587 2588 ret = journal_init_caches(); 2589 if (ret == 0) { 2590 jbd2_create_jbd_stats_proc_entry(); 2591 } else { 2592 jbd2_journal_destroy_caches(); 2593 } 2594 return ret; 2595 } 2596 2597 static void __exit journal_exit(void) 2598 { 2599 #ifdef CONFIG_JBD2_DEBUG 2600 int n = atomic_read(&nr_journal_heads); 2601 if (n) 2602 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2603 #endif 2604 jbd2_remove_jbd_stats_proc_entry(); 2605 jbd2_journal_destroy_caches(); 2606 } 2607 2608 MODULE_LICENSE("GPL"); 2609 module_init(journal_init); 2610 module_exit(journal_exit); 2611 2612