xref: /openbmc/linux/fs/jbd2/journal.c (revision 861e10be)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69 
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 EXPORT_SYMBOL(jbd2_inode_cache);
95 
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98 
99 /* Checksumming functions */
100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
101 {
102 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
103 		return 1;
104 
105 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
106 }
107 
108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
109 {
110 	__u32 csum, old_csum;
111 
112 	old_csum = sb->s_checksum;
113 	sb->s_checksum = 0;
114 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
115 	sb->s_checksum = old_csum;
116 
117 	return cpu_to_be32(csum);
118 }
119 
120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
121 {
122 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
123 		return 1;
124 
125 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
126 }
127 
128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
129 {
130 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
131 		return;
132 
133 	sb->s_checksum = jbd2_superblock_csum(j, sb);
134 }
135 
136 /*
137  * Helper function used to manage commit timeouts
138  */
139 
140 static void commit_timeout(unsigned long __data)
141 {
142 	struct task_struct * p = (struct task_struct *) __data;
143 
144 	wake_up_process(p);
145 }
146 
147 /*
148  * kjournald2: The main thread function used to manage a logging device
149  * journal.
150  *
151  * This kernel thread is responsible for two things:
152  *
153  * 1) COMMIT:  Every so often we need to commit the current state of the
154  *    filesystem to disk.  The journal thread is responsible for writing
155  *    all of the metadata buffers to disk.
156  *
157  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
158  *    of the data in that part of the log has been rewritten elsewhere on
159  *    the disk.  Flushing these old buffers to reclaim space in the log is
160  *    known as checkpointing, and this thread is responsible for that job.
161  */
162 
163 static int kjournald2(void *arg)
164 {
165 	journal_t *journal = arg;
166 	transaction_t *transaction;
167 
168 	/*
169 	 * Set up an interval timer which can be used to trigger a commit wakeup
170 	 * after the commit interval expires
171 	 */
172 	setup_timer(&journal->j_commit_timer, commit_timeout,
173 			(unsigned long)current);
174 
175 	set_freezable();
176 
177 	/* Record that the journal thread is running */
178 	journal->j_task = current;
179 	wake_up(&journal->j_wait_done_commit);
180 
181 	/*
182 	 * And now, wait forever for commit wakeup events.
183 	 */
184 	write_lock(&journal->j_state_lock);
185 
186 loop:
187 	if (journal->j_flags & JBD2_UNMOUNT)
188 		goto end_loop;
189 
190 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
191 		journal->j_commit_sequence, journal->j_commit_request);
192 
193 	if (journal->j_commit_sequence != journal->j_commit_request) {
194 		jbd_debug(1, "OK, requests differ\n");
195 		write_unlock(&journal->j_state_lock);
196 		del_timer_sync(&journal->j_commit_timer);
197 		jbd2_journal_commit_transaction(journal);
198 		write_lock(&journal->j_state_lock);
199 		goto loop;
200 	}
201 
202 	wake_up(&journal->j_wait_done_commit);
203 	if (freezing(current)) {
204 		/*
205 		 * The simpler the better. Flushing journal isn't a
206 		 * good idea, because that depends on threads that may
207 		 * be already stopped.
208 		 */
209 		jbd_debug(1, "Now suspending kjournald2\n");
210 		write_unlock(&journal->j_state_lock);
211 		try_to_freeze();
212 		write_lock(&journal->j_state_lock);
213 	} else {
214 		/*
215 		 * We assume on resume that commits are already there,
216 		 * so we don't sleep
217 		 */
218 		DEFINE_WAIT(wait);
219 		int should_sleep = 1;
220 
221 		prepare_to_wait(&journal->j_wait_commit, &wait,
222 				TASK_INTERRUPTIBLE);
223 		if (journal->j_commit_sequence != journal->j_commit_request)
224 			should_sleep = 0;
225 		transaction = journal->j_running_transaction;
226 		if (transaction && time_after_eq(jiffies,
227 						transaction->t_expires))
228 			should_sleep = 0;
229 		if (journal->j_flags & JBD2_UNMOUNT)
230 			should_sleep = 0;
231 		if (should_sleep) {
232 			write_unlock(&journal->j_state_lock);
233 			schedule();
234 			write_lock(&journal->j_state_lock);
235 		}
236 		finish_wait(&journal->j_wait_commit, &wait);
237 	}
238 
239 	jbd_debug(1, "kjournald2 wakes\n");
240 
241 	/*
242 	 * Were we woken up by a commit wakeup event?
243 	 */
244 	transaction = journal->j_running_transaction;
245 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
246 		journal->j_commit_request = transaction->t_tid;
247 		jbd_debug(1, "woke because of timeout\n");
248 	}
249 	goto loop;
250 
251 end_loop:
252 	write_unlock(&journal->j_state_lock);
253 	del_timer_sync(&journal->j_commit_timer);
254 	journal->j_task = NULL;
255 	wake_up(&journal->j_wait_done_commit);
256 	jbd_debug(1, "Journal thread exiting.\n");
257 	return 0;
258 }
259 
260 static int jbd2_journal_start_thread(journal_t *journal)
261 {
262 	struct task_struct *t;
263 
264 	t = kthread_run(kjournald2, journal, "jbd2/%s",
265 			journal->j_devname);
266 	if (IS_ERR(t))
267 		return PTR_ERR(t);
268 
269 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
270 	return 0;
271 }
272 
273 static void journal_kill_thread(journal_t *journal)
274 {
275 	write_lock(&journal->j_state_lock);
276 	journal->j_flags |= JBD2_UNMOUNT;
277 
278 	while (journal->j_task) {
279 		wake_up(&journal->j_wait_commit);
280 		write_unlock(&journal->j_state_lock);
281 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
282 		write_lock(&journal->j_state_lock);
283 	}
284 	write_unlock(&journal->j_state_lock);
285 }
286 
287 /*
288  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
289  *
290  * Writes a metadata buffer to a given disk block.  The actual IO is not
291  * performed but a new buffer_head is constructed which labels the data
292  * to be written with the correct destination disk block.
293  *
294  * Any magic-number escaping which needs to be done will cause a
295  * copy-out here.  If the buffer happens to start with the
296  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
297  * magic number is only written to the log for descripter blocks.  In
298  * this case, we copy the data and replace the first word with 0, and we
299  * return a result code which indicates that this buffer needs to be
300  * marked as an escaped buffer in the corresponding log descriptor
301  * block.  The missing word can then be restored when the block is read
302  * during recovery.
303  *
304  * If the source buffer has already been modified by a new transaction
305  * since we took the last commit snapshot, we use the frozen copy of
306  * that data for IO.  If we end up using the existing buffer_head's data
307  * for the write, then we *have* to lock the buffer to prevent anyone
308  * else from using and possibly modifying it while the IO is in
309  * progress.
310  *
311  * The function returns a pointer to the buffer_heads to be used for IO.
312  *
313  * We assume that the journal has already been locked in this function.
314  *
315  * Return value:
316  *  <0: Error
317  * >=0: Finished OK
318  *
319  * On success:
320  * Bit 0 set == escape performed on the data
321  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
322  */
323 
324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
325 				  struct journal_head  *jh_in,
326 				  struct journal_head **jh_out,
327 				  unsigned long long blocknr)
328 {
329 	int need_copy_out = 0;
330 	int done_copy_out = 0;
331 	int do_escape = 0;
332 	char *mapped_data;
333 	struct buffer_head *new_bh;
334 	struct journal_head *new_jh;
335 	struct page *new_page;
336 	unsigned int new_offset;
337 	struct buffer_head *bh_in = jh2bh(jh_in);
338 	journal_t *journal = transaction->t_journal;
339 
340 	/*
341 	 * The buffer really shouldn't be locked: only the current committing
342 	 * transaction is allowed to write it, so nobody else is allowed
343 	 * to do any IO.
344 	 *
345 	 * akpm: except if we're journalling data, and write() output is
346 	 * also part of a shared mapping, and another thread has
347 	 * decided to launch a writepage() against this buffer.
348 	 */
349 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
350 
351 retry_alloc:
352 	new_bh = alloc_buffer_head(GFP_NOFS);
353 	if (!new_bh) {
354 		/*
355 		 * Failure is not an option, but __GFP_NOFAIL is going
356 		 * away; so we retry ourselves here.
357 		 */
358 		congestion_wait(BLK_RW_ASYNC, HZ/50);
359 		goto retry_alloc;
360 	}
361 
362 	/* keep subsequent assertions sane */
363 	new_bh->b_state = 0;
364 	init_buffer(new_bh, NULL, NULL);
365 	atomic_set(&new_bh->b_count, 1);
366 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
367 
368 	/*
369 	 * If a new transaction has already done a buffer copy-out, then
370 	 * we use that version of the data for the commit.
371 	 */
372 	jbd_lock_bh_state(bh_in);
373 repeat:
374 	if (jh_in->b_frozen_data) {
375 		done_copy_out = 1;
376 		new_page = virt_to_page(jh_in->b_frozen_data);
377 		new_offset = offset_in_page(jh_in->b_frozen_data);
378 	} else {
379 		new_page = jh2bh(jh_in)->b_page;
380 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381 	}
382 
383 	mapped_data = kmap_atomic(new_page);
384 	/*
385 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
386 	 * before checking for escaping, as the trigger may modify the magic
387 	 * offset.  If a copy-out happens afterwards, it will have the correct
388 	 * data in the buffer.
389 	 */
390 	if (!done_copy_out)
391 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392 					   jh_in->b_triggers);
393 
394 	/*
395 	 * Check for escaping
396 	 */
397 	if (*((__be32 *)(mapped_data + new_offset)) ==
398 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399 		need_copy_out = 1;
400 		do_escape = 1;
401 	}
402 	kunmap_atomic(mapped_data);
403 
404 	/*
405 	 * Do we need to do a data copy?
406 	 */
407 	if (need_copy_out && !done_copy_out) {
408 		char *tmp;
409 
410 		jbd_unlock_bh_state(bh_in);
411 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412 		if (!tmp) {
413 			jbd2_journal_put_journal_head(new_jh);
414 			return -ENOMEM;
415 		}
416 		jbd_lock_bh_state(bh_in);
417 		if (jh_in->b_frozen_data) {
418 			jbd2_free(tmp, bh_in->b_size);
419 			goto repeat;
420 		}
421 
422 		jh_in->b_frozen_data = tmp;
423 		mapped_data = kmap_atomic(new_page);
424 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
425 		kunmap_atomic(mapped_data);
426 
427 		new_page = virt_to_page(tmp);
428 		new_offset = offset_in_page(tmp);
429 		done_copy_out = 1;
430 
431 		/*
432 		 * This isn't strictly necessary, as we're using frozen
433 		 * data for the escaping, but it keeps consistency with
434 		 * b_frozen_data usage.
435 		 */
436 		jh_in->b_frozen_triggers = jh_in->b_triggers;
437 	}
438 
439 	/*
440 	 * Did we need to do an escaping?  Now we've done all the
441 	 * copying, we can finally do so.
442 	 */
443 	if (do_escape) {
444 		mapped_data = kmap_atomic(new_page);
445 		*((unsigned int *)(mapped_data + new_offset)) = 0;
446 		kunmap_atomic(mapped_data);
447 	}
448 
449 	set_bh_page(new_bh, new_page, new_offset);
450 	new_jh->b_transaction = NULL;
451 	new_bh->b_size = jh2bh(jh_in)->b_size;
452 	new_bh->b_bdev = transaction->t_journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	set_buffer_mapped(new_bh);
455 	set_buffer_dirty(new_bh);
456 
457 	*jh_out = new_jh;
458 
459 	/*
460 	 * The to-be-written buffer needs to get moved to the io queue,
461 	 * and the original buffer whose contents we are shadowing or
462 	 * copying is moved to the transaction's shadow queue.
463 	 */
464 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465 	spin_lock(&journal->j_list_lock);
466 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467 	spin_unlock(&journal->j_list_lock);
468 	jbd_unlock_bh_state(bh_in);
469 
470 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
471 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
472 
473 	return do_escape | (done_copy_out << 1);
474 }
475 
476 /*
477  * Allocation code for the journal file.  Manage the space left in the
478  * journal, so that we can begin checkpointing when appropriate.
479  */
480 
481 /*
482  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
483  *
484  * Called with the journal already locked.
485  *
486  * Called under j_state_lock
487  */
488 
489 int __jbd2_log_space_left(journal_t *journal)
490 {
491 	int left = journal->j_free;
492 
493 	/* assert_spin_locked(&journal->j_state_lock); */
494 
495 	/*
496 	 * Be pessimistic here about the number of those free blocks which
497 	 * might be required for log descriptor control blocks.
498 	 */
499 
500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
501 
502 	left -= MIN_LOG_RESERVED_BLOCKS;
503 
504 	if (left <= 0)
505 		return 0;
506 	left -= (left >> 3);
507 	return left;
508 }
509 
510 /*
511  * Called with j_state_lock locked for writing.
512  * Returns true if a transaction commit was started.
513  */
514 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
515 {
516 	/*
517 	 * The only transaction we can possibly wait upon is the
518 	 * currently running transaction (if it exists).  Otherwise,
519 	 * the target tid must be an old one.
520 	 */
521 	if (journal->j_running_transaction &&
522 	    journal->j_running_transaction->t_tid == target) {
523 		/*
524 		 * We want a new commit: OK, mark the request and wakeup the
525 		 * commit thread.  We do _not_ do the commit ourselves.
526 		 */
527 
528 		journal->j_commit_request = target;
529 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
530 			  journal->j_commit_request,
531 			  journal->j_commit_sequence);
532 		wake_up(&journal->j_wait_commit);
533 		return 1;
534 	} else if (!tid_geq(journal->j_commit_request, target))
535 		/* This should never happen, but if it does, preserve
536 		   the evidence before kjournald goes into a loop and
537 		   increments j_commit_sequence beyond all recognition. */
538 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
539 			  journal->j_commit_request,
540 			  journal->j_commit_sequence,
541 			  target, journal->j_running_transaction ?
542 			  journal->j_running_transaction->t_tid : 0);
543 	return 0;
544 }
545 
546 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
547 {
548 	int ret;
549 
550 	write_lock(&journal->j_state_lock);
551 	ret = __jbd2_log_start_commit(journal, tid);
552 	write_unlock(&journal->j_state_lock);
553 	return ret;
554 }
555 
556 /*
557  * Force and wait upon a commit if the calling process is not within
558  * transaction.  This is used for forcing out undo-protected data which contains
559  * bitmaps, when the fs is running out of space.
560  *
561  * We can only force the running transaction if we don't have an active handle;
562  * otherwise, we will deadlock.
563  *
564  * Returns true if a transaction was started.
565  */
566 int jbd2_journal_force_commit_nested(journal_t *journal)
567 {
568 	transaction_t *transaction = NULL;
569 	tid_t tid;
570 	int need_to_start = 0;
571 
572 	read_lock(&journal->j_state_lock);
573 	if (journal->j_running_transaction && !current->journal_info) {
574 		transaction = journal->j_running_transaction;
575 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
576 			need_to_start = 1;
577 	} else if (journal->j_committing_transaction)
578 		transaction = journal->j_committing_transaction;
579 
580 	if (!transaction) {
581 		read_unlock(&journal->j_state_lock);
582 		return 0;	/* Nothing to retry */
583 	}
584 
585 	tid = transaction->t_tid;
586 	read_unlock(&journal->j_state_lock);
587 	if (need_to_start)
588 		jbd2_log_start_commit(journal, tid);
589 	jbd2_log_wait_commit(journal, tid);
590 	return 1;
591 }
592 
593 /*
594  * Start a commit of the current running transaction (if any).  Returns true
595  * if a transaction is going to be committed (or is currently already
596  * committing), and fills its tid in at *ptid
597  */
598 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
599 {
600 	int ret = 0;
601 
602 	write_lock(&journal->j_state_lock);
603 	if (journal->j_running_transaction) {
604 		tid_t tid = journal->j_running_transaction->t_tid;
605 
606 		__jbd2_log_start_commit(journal, tid);
607 		/* There's a running transaction and we've just made sure
608 		 * it's commit has been scheduled. */
609 		if (ptid)
610 			*ptid = tid;
611 		ret = 1;
612 	} else if (journal->j_committing_transaction) {
613 		/*
614 		 * If commit has been started, then we have to wait for
615 		 * completion of that transaction.
616 		 */
617 		if (ptid)
618 			*ptid = journal->j_committing_transaction->t_tid;
619 		ret = 1;
620 	}
621 	write_unlock(&journal->j_state_lock);
622 	return ret;
623 }
624 
625 /*
626  * Return 1 if a given transaction has not yet sent barrier request
627  * connected with a transaction commit. If 0 is returned, transaction
628  * may or may not have sent the barrier. Used to avoid sending barrier
629  * twice in common cases.
630  */
631 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
632 {
633 	int ret = 0;
634 	transaction_t *commit_trans;
635 
636 	if (!(journal->j_flags & JBD2_BARRIER))
637 		return 0;
638 	read_lock(&journal->j_state_lock);
639 	/* Transaction already committed? */
640 	if (tid_geq(journal->j_commit_sequence, tid))
641 		goto out;
642 	commit_trans = journal->j_committing_transaction;
643 	if (!commit_trans || commit_trans->t_tid != tid) {
644 		ret = 1;
645 		goto out;
646 	}
647 	/*
648 	 * Transaction is being committed and we already proceeded to
649 	 * submitting a flush to fs partition?
650 	 */
651 	if (journal->j_fs_dev != journal->j_dev) {
652 		if (!commit_trans->t_need_data_flush ||
653 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
654 			goto out;
655 	} else {
656 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
657 			goto out;
658 	}
659 	ret = 1;
660 out:
661 	read_unlock(&journal->j_state_lock);
662 	return ret;
663 }
664 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
665 
666 /*
667  * Wait for a specified commit to complete.
668  * The caller may not hold the journal lock.
669  */
670 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
671 {
672 	int err = 0;
673 
674 	read_lock(&journal->j_state_lock);
675 #ifdef CONFIG_JBD2_DEBUG
676 	if (!tid_geq(journal->j_commit_request, tid)) {
677 		printk(KERN_EMERG
678 		       "%s: error: j_commit_request=%d, tid=%d\n",
679 		       __func__, journal->j_commit_request, tid);
680 	}
681 #endif
682 	while (tid_gt(tid, journal->j_commit_sequence)) {
683 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
684 				  tid, journal->j_commit_sequence);
685 		wake_up(&journal->j_wait_commit);
686 		read_unlock(&journal->j_state_lock);
687 		wait_event(journal->j_wait_done_commit,
688 				!tid_gt(tid, journal->j_commit_sequence));
689 		read_lock(&journal->j_state_lock);
690 	}
691 	read_unlock(&journal->j_state_lock);
692 
693 	if (unlikely(is_journal_aborted(journal))) {
694 		printk(KERN_EMERG "journal commit I/O error\n");
695 		err = -EIO;
696 	}
697 	return err;
698 }
699 
700 /*
701  * Log buffer allocation routines:
702  */
703 
704 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
705 {
706 	unsigned long blocknr;
707 
708 	write_lock(&journal->j_state_lock);
709 	J_ASSERT(journal->j_free > 1);
710 
711 	blocknr = journal->j_head;
712 	journal->j_head++;
713 	journal->j_free--;
714 	if (journal->j_head == journal->j_last)
715 		journal->j_head = journal->j_first;
716 	write_unlock(&journal->j_state_lock);
717 	return jbd2_journal_bmap(journal, blocknr, retp);
718 }
719 
720 /*
721  * Conversion of logical to physical block numbers for the journal
722  *
723  * On external journals the journal blocks are identity-mapped, so
724  * this is a no-op.  If needed, we can use j_blk_offset - everything is
725  * ready.
726  */
727 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
728 		 unsigned long long *retp)
729 {
730 	int err = 0;
731 	unsigned long long ret;
732 
733 	if (journal->j_inode) {
734 		ret = bmap(journal->j_inode, blocknr);
735 		if (ret)
736 			*retp = ret;
737 		else {
738 			printk(KERN_ALERT "%s: journal block not found "
739 					"at offset %lu on %s\n",
740 			       __func__, blocknr, journal->j_devname);
741 			err = -EIO;
742 			__journal_abort_soft(journal, err);
743 		}
744 	} else {
745 		*retp = blocknr; /* +journal->j_blk_offset */
746 	}
747 	return err;
748 }
749 
750 /*
751  * We play buffer_head aliasing tricks to write data/metadata blocks to
752  * the journal without copying their contents, but for journal
753  * descriptor blocks we do need to generate bona fide buffers.
754  *
755  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
756  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
757  * But we don't bother doing that, so there will be coherency problems with
758  * mmaps of blockdevs which hold live JBD-controlled filesystems.
759  */
760 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
761 {
762 	struct buffer_head *bh;
763 	unsigned long long blocknr;
764 	int err;
765 
766 	err = jbd2_journal_next_log_block(journal, &blocknr);
767 
768 	if (err)
769 		return NULL;
770 
771 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
772 	if (!bh)
773 		return NULL;
774 	lock_buffer(bh);
775 	memset(bh->b_data, 0, journal->j_blocksize);
776 	set_buffer_uptodate(bh);
777 	unlock_buffer(bh);
778 	BUFFER_TRACE(bh, "return this buffer");
779 	return jbd2_journal_add_journal_head(bh);
780 }
781 
782 /*
783  * Return tid of the oldest transaction in the journal and block in the journal
784  * where the transaction starts.
785  *
786  * If the journal is now empty, return which will be the next transaction ID
787  * we will write and where will that transaction start.
788  *
789  * The return value is 0 if journal tail cannot be pushed any further, 1 if
790  * it can.
791  */
792 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
793 			      unsigned long *block)
794 {
795 	transaction_t *transaction;
796 	int ret;
797 
798 	read_lock(&journal->j_state_lock);
799 	spin_lock(&journal->j_list_lock);
800 	transaction = journal->j_checkpoint_transactions;
801 	if (transaction) {
802 		*tid = transaction->t_tid;
803 		*block = transaction->t_log_start;
804 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
805 		*tid = transaction->t_tid;
806 		*block = transaction->t_log_start;
807 	} else if ((transaction = journal->j_running_transaction) != NULL) {
808 		*tid = transaction->t_tid;
809 		*block = journal->j_head;
810 	} else {
811 		*tid = journal->j_transaction_sequence;
812 		*block = journal->j_head;
813 	}
814 	ret = tid_gt(*tid, journal->j_tail_sequence);
815 	spin_unlock(&journal->j_list_lock);
816 	read_unlock(&journal->j_state_lock);
817 
818 	return ret;
819 }
820 
821 /*
822  * Update information in journal structure and in on disk journal superblock
823  * about log tail. This function does not check whether information passed in
824  * really pushes log tail further. It's responsibility of the caller to make
825  * sure provided log tail information is valid (e.g. by holding
826  * j_checkpoint_mutex all the time between computing log tail and calling this
827  * function as is the case with jbd2_cleanup_journal_tail()).
828  *
829  * Requires j_checkpoint_mutex
830  */
831 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
832 {
833 	unsigned long freed;
834 
835 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
836 
837 	/*
838 	 * We cannot afford for write to remain in drive's caches since as
839 	 * soon as we update j_tail, next transaction can start reusing journal
840 	 * space and if we lose sb update during power failure we'd replay
841 	 * old transaction with possibly newly overwritten data.
842 	 */
843 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
844 	write_lock(&journal->j_state_lock);
845 	freed = block - journal->j_tail;
846 	if (block < journal->j_tail)
847 		freed += journal->j_last - journal->j_first;
848 
849 	trace_jbd2_update_log_tail(journal, tid, block, freed);
850 	jbd_debug(1,
851 		  "Cleaning journal tail from %d to %d (offset %lu), "
852 		  "freeing %lu\n",
853 		  journal->j_tail_sequence, tid, block, freed);
854 
855 	journal->j_free += freed;
856 	journal->j_tail_sequence = tid;
857 	journal->j_tail = block;
858 	write_unlock(&journal->j_state_lock);
859 }
860 
861 /*
862  * This is a variaon of __jbd2_update_log_tail which checks for validity of
863  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
864  * with other threads updating log tail.
865  */
866 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
867 {
868 	mutex_lock(&journal->j_checkpoint_mutex);
869 	if (tid_gt(tid, journal->j_tail_sequence))
870 		__jbd2_update_log_tail(journal, tid, block);
871 	mutex_unlock(&journal->j_checkpoint_mutex);
872 }
873 
874 struct jbd2_stats_proc_session {
875 	journal_t *journal;
876 	struct transaction_stats_s *stats;
877 	int start;
878 	int max;
879 };
880 
881 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
882 {
883 	return *pos ? NULL : SEQ_START_TOKEN;
884 }
885 
886 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
887 {
888 	return NULL;
889 }
890 
891 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
892 {
893 	struct jbd2_stats_proc_session *s = seq->private;
894 
895 	if (v != SEQ_START_TOKEN)
896 		return 0;
897 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
898 			s->stats->ts_tid,
899 			s->journal->j_max_transaction_buffers);
900 	if (s->stats->ts_tid == 0)
901 		return 0;
902 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
903 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
904 	seq_printf(seq, "  %ums running transaction\n",
905 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
906 	seq_printf(seq, "  %ums transaction was being locked\n",
907 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
908 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
909 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
910 	seq_printf(seq, "  %ums logging transaction\n",
911 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
912 	seq_printf(seq, "  %lluus average transaction commit time\n",
913 		   div_u64(s->journal->j_average_commit_time, 1000));
914 	seq_printf(seq, "  %lu handles per transaction\n",
915 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
916 	seq_printf(seq, "  %lu blocks per transaction\n",
917 	    s->stats->run.rs_blocks / s->stats->ts_tid);
918 	seq_printf(seq, "  %lu logged blocks per transaction\n",
919 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
920 	return 0;
921 }
922 
923 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
924 {
925 }
926 
927 static const struct seq_operations jbd2_seq_info_ops = {
928 	.start  = jbd2_seq_info_start,
929 	.next   = jbd2_seq_info_next,
930 	.stop   = jbd2_seq_info_stop,
931 	.show   = jbd2_seq_info_show,
932 };
933 
934 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
935 {
936 	journal_t *journal = PDE(inode)->data;
937 	struct jbd2_stats_proc_session *s;
938 	int rc, size;
939 
940 	s = kmalloc(sizeof(*s), GFP_KERNEL);
941 	if (s == NULL)
942 		return -ENOMEM;
943 	size = sizeof(struct transaction_stats_s);
944 	s->stats = kmalloc(size, GFP_KERNEL);
945 	if (s->stats == NULL) {
946 		kfree(s);
947 		return -ENOMEM;
948 	}
949 	spin_lock(&journal->j_history_lock);
950 	memcpy(s->stats, &journal->j_stats, size);
951 	s->journal = journal;
952 	spin_unlock(&journal->j_history_lock);
953 
954 	rc = seq_open(file, &jbd2_seq_info_ops);
955 	if (rc == 0) {
956 		struct seq_file *m = file->private_data;
957 		m->private = s;
958 	} else {
959 		kfree(s->stats);
960 		kfree(s);
961 	}
962 	return rc;
963 
964 }
965 
966 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
967 {
968 	struct seq_file *seq = file->private_data;
969 	struct jbd2_stats_proc_session *s = seq->private;
970 	kfree(s->stats);
971 	kfree(s);
972 	return seq_release(inode, file);
973 }
974 
975 static const struct file_operations jbd2_seq_info_fops = {
976 	.owner		= THIS_MODULE,
977 	.open           = jbd2_seq_info_open,
978 	.read           = seq_read,
979 	.llseek         = seq_lseek,
980 	.release        = jbd2_seq_info_release,
981 };
982 
983 static struct proc_dir_entry *proc_jbd2_stats;
984 
985 static void jbd2_stats_proc_init(journal_t *journal)
986 {
987 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
988 	if (journal->j_proc_entry) {
989 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
990 				 &jbd2_seq_info_fops, journal);
991 	}
992 }
993 
994 static void jbd2_stats_proc_exit(journal_t *journal)
995 {
996 	remove_proc_entry("info", journal->j_proc_entry);
997 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
998 }
999 
1000 /*
1001  * Management for journal control blocks: functions to create and
1002  * destroy journal_t structures, and to initialise and read existing
1003  * journal blocks from disk.  */
1004 
1005 /* First: create and setup a journal_t object in memory.  We initialise
1006  * very few fields yet: that has to wait until we have created the
1007  * journal structures from from scratch, or loaded them from disk. */
1008 
1009 static journal_t * journal_init_common (void)
1010 {
1011 	journal_t *journal;
1012 	int err;
1013 
1014 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1015 	if (!journal)
1016 		return NULL;
1017 
1018 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1019 	init_waitqueue_head(&journal->j_wait_logspace);
1020 	init_waitqueue_head(&journal->j_wait_done_commit);
1021 	init_waitqueue_head(&journal->j_wait_checkpoint);
1022 	init_waitqueue_head(&journal->j_wait_commit);
1023 	init_waitqueue_head(&journal->j_wait_updates);
1024 	mutex_init(&journal->j_barrier);
1025 	mutex_init(&journal->j_checkpoint_mutex);
1026 	spin_lock_init(&journal->j_revoke_lock);
1027 	spin_lock_init(&journal->j_list_lock);
1028 	rwlock_init(&journal->j_state_lock);
1029 
1030 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1031 	journal->j_min_batch_time = 0;
1032 	journal->j_max_batch_time = 15000; /* 15ms */
1033 
1034 	/* The journal is marked for error until we succeed with recovery! */
1035 	journal->j_flags = JBD2_ABORT;
1036 
1037 	/* Set up a default-sized revoke table for the new mount. */
1038 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1039 	if (err) {
1040 		kfree(journal);
1041 		return NULL;
1042 	}
1043 
1044 	spin_lock_init(&journal->j_history_lock);
1045 
1046 	return journal;
1047 }
1048 
1049 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1050  *
1051  * Create a journal structure assigned some fixed set of disk blocks to
1052  * the journal.  We don't actually touch those disk blocks yet, but we
1053  * need to set up all of the mapping information to tell the journaling
1054  * system where the journal blocks are.
1055  *
1056  */
1057 
1058 /**
1059  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1060  *  @bdev: Block device on which to create the journal
1061  *  @fs_dev: Device which hold journalled filesystem for this journal.
1062  *  @start: Block nr Start of journal.
1063  *  @len:  Length of the journal in blocks.
1064  *  @blocksize: blocksize of journalling device
1065  *
1066  *  Returns: a newly created journal_t *
1067  *
1068  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1069  *  range of blocks on an arbitrary block device.
1070  *
1071  */
1072 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1073 			struct block_device *fs_dev,
1074 			unsigned long long start, int len, int blocksize)
1075 {
1076 	journal_t *journal = journal_init_common();
1077 	struct buffer_head *bh;
1078 	char *p;
1079 	int n;
1080 
1081 	if (!journal)
1082 		return NULL;
1083 
1084 	/* journal descriptor can store up to n blocks -bzzz */
1085 	journal->j_blocksize = blocksize;
1086 	journal->j_dev = bdev;
1087 	journal->j_fs_dev = fs_dev;
1088 	journal->j_blk_offset = start;
1089 	journal->j_maxlen = len;
1090 	bdevname(journal->j_dev, journal->j_devname);
1091 	p = journal->j_devname;
1092 	while ((p = strchr(p, '/')))
1093 		*p = '!';
1094 	jbd2_stats_proc_init(journal);
1095 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1096 	journal->j_wbufsize = n;
1097 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1098 	if (!journal->j_wbuf) {
1099 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1100 			__func__);
1101 		goto out_err;
1102 	}
1103 
1104 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1105 	if (!bh) {
1106 		printk(KERN_ERR
1107 		       "%s: Cannot get buffer for journal superblock\n",
1108 		       __func__);
1109 		goto out_err;
1110 	}
1111 	journal->j_sb_buffer = bh;
1112 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1113 
1114 	return journal;
1115 out_err:
1116 	kfree(journal->j_wbuf);
1117 	jbd2_stats_proc_exit(journal);
1118 	kfree(journal);
1119 	return NULL;
1120 }
1121 
1122 /**
1123  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1124  *  @inode: An inode to create the journal in
1125  *
1126  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1127  * the journal.  The inode must exist already, must support bmap() and
1128  * must have all data blocks preallocated.
1129  */
1130 journal_t * jbd2_journal_init_inode (struct inode *inode)
1131 {
1132 	struct buffer_head *bh;
1133 	journal_t *journal = journal_init_common();
1134 	char *p;
1135 	int err;
1136 	int n;
1137 	unsigned long long blocknr;
1138 
1139 	if (!journal)
1140 		return NULL;
1141 
1142 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1143 	journal->j_inode = inode;
1144 	bdevname(journal->j_dev, journal->j_devname);
1145 	p = journal->j_devname;
1146 	while ((p = strchr(p, '/')))
1147 		*p = '!';
1148 	p = journal->j_devname + strlen(journal->j_devname);
1149 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1150 	jbd_debug(1,
1151 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1152 		  journal, inode->i_sb->s_id, inode->i_ino,
1153 		  (long long) inode->i_size,
1154 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1155 
1156 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1157 	journal->j_blocksize = inode->i_sb->s_blocksize;
1158 	jbd2_stats_proc_init(journal);
1159 
1160 	/* journal descriptor can store up to n blocks -bzzz */
1161 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162 	journal->j_wbufsize = n;
1163 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1164 	if (!journal->j_wbuf) {
1165 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1166 			__func__);
1167 		goto out_err;
1168 	}
1169 
1170 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1171 	/* If that failed, give up */
1172 	if (err) {
1173 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1174 		       __func__);
1175 		goto out_err;
1176 	}
1177 
1178 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1179 	if (!bh) {
1180 		printk(KERN_ERR
1181 		       "%s: Cannot get buffer for journal superblock\n",
1182 		       __func__);
1183 		goto out_err;
1184 	}
1185 	journal->j_sb_buffer = bh;
1186 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1187 
1188 	return journal;
1189 out_err:
1190 	kfree(journal->j_wbuf);
1191 	jbd2_stats_proc_exit(journal);
1192 	kfree(journal);
1193 	return NULL;
1194 }
1195 
1196 /*
1197  * If the journal init or create aborts, we need to mark the journal
1198  * superblock as being NULL to prevent the journal destroy from writing
1199  * back a bogus superblock.
1200  */
1201 static void journal_fail_superblock (journal_t *journal)
1202 {
1203 	struct buffer_head *bh = journal->j_sb_buffer;
1204 	brelse(bh);
1205 	journal->j_sb_buffer = NULL;
1206 }
1207 
1208 /*
1209  * Given a journal_t structure, initialise the various fields for
1210  * startup of a new journaling session.  We use this both when creating
1211  * a journal, and after recovering an old journal to reset it for
1212  * subsequent use.
1213  */
1214 
1215 static int journal_reset(journal_t *journal)
1216 {
1217 	journal_superblock_t *sb = journal->j_superblock;
1218 	unsigned long long first, last;
1219 
1220 	first = be32_to_cpu(sb->s_first);
1221 	last = be32_to_cpu(sb->s_maxlen);
1222 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1223 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1224 		       first, last);
1225 		journal_fail_superblock(journal);
1226 		return -EINVAL;
1227 	}
1228 
1229 	journal->j_first = first;
1230 	journal->j_last = last;
1231 
1232 	journal->j_head = first;
1233 	journal->j_tail = first;
1234 	journal->j_free = last - first;
1235 
1236 	journal->j_tail_sequence = journal->j_transaction_sequence;
1237 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1238 	journal->j_commit_request = journal->j_commit_sequence;
1239 
1240 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1241 
1242 	/*
1243 	 * As a special case, if the on-disk copy is already marked as needing
1244 	 * no recovery (s_start == 0), then we can safely defer the superblock
1245 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1246 	 * attempting a write to a potential-readonly device.
1247 	 */
1248 	if (sb->s_start == 0) {
1249 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1250 			"(start %ld, seq %d, errno %d)\n",
1251 			journal->j_tail, journal->j_tail_sequence,
1252 			journal->j_errno);
1253 		journal->j_flags |= JBD2_FLUSHED;
1254 	} else {
1255 		/* Lock here to make assertions happy... */
1256 		mutex_lock(&journal->j_checkpoint_mutex);
1257 		/*
1258 		 * Update log tail information. We use WRITE_FUA since new
1259 		 * transaction will start reusing journal space and so we
1260 		 * must make sure information about current log tail is on
1261 		 * disk before that.
1262 		 */
1263 		jbd2_journal_update_sb_log_tail(journal,
1264 						journal->j_tail_sequence,
1265 						journal->j_tail,
1266 						WRITE_FUA);
1267 		mutex_unlock(&journal->j_checkpoint_mutex);
1268 	}
1269 	return jbd2_journal_start_thread(journal);
1270 }
1271 
1272 static void jbd2_write_superblock(journal_t *journal, int write_op)
1273 {
1274 	struct buffer_head *bh = journal->j_sb_buffer;
1275 	int ret;
1276 
1277 	trace_jbd2_write_superblock(journal, write_op);
1278 	if (!(journal->j_flags & JBD2_BARRIER))
1279 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1280 	lock_buffer(bh);
1281 	if (buffer_write_io_error(bh)) {
1282 		/*
1283 		 * Oh, dear.  A previous attempt to write the journal
1284 		 * superblock failed.  This could happen because the
1285 		 * USB device was yanked out.  Or it could happen to
1286 		 * be a transient write error and maybe the block will
1287 		 * be remapped.  Nothing we can do but to retry the
1288 		 * write and hope for the best.
1289 		 */
1290 		printk(KERN_ERR "JBD2: previous I/O error detected "
1291 		       "for journal superblock update for %s.\n",
1292 		       journal->j_devname);
1293 		clear_buffer_write_io_error(bh);
1294 		set_buffer_uptodate(bh);
1295 	}
1296 	get_bh(bh);
1297 	bh->b_end_io = end_buffer_write_sync;
1298 	ret = submit_bh(write_op, bh);
1299 	wait_on_buffer(bh);
1300 	if (buffer_write_io_error(bh)) {
1301 		clear_buffer_write_io_error(bh);
1302 		set_buffer_uptodate(bh);
1303 		ret = -EIO;
1304 	}
1305 	if (ret) {
1306 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1307 		       "journal superblock for %s.\n", ret,
1308 		       journal->j_devname);
1309 	}
1310 }
1311 
1312 /**
1313  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1314  * @journal: The journal to update.
1315  * @tail_tid: TID of the new transaction at the tail of the log
1316  * @tail_block: The first block of the transaction at the tail of the log
1317  * @write_op: With which operation should we write the journal sb
1318  *
1319  * Update a journal's superblock information about log tail and write it to
1320  * disk, waiting for the IO to complete.
1321  */
1322 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1323 				     unsigned long tail_block, int write_op)
1324 {
1325 	journal_superblock_t *sb = journal->j_superblock;
1326 
1327 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1328 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1329 		  tail_block, tail_tid);
1330 
1331 	sb->s_sequence = cpu_to_be32(tail_tid);
1332 	sb->s_start    = cpu_to_be32(tail_block);
1333 
1334 	jbd2_write_superblock(journal, write_op);
1335 
1336 	/* Log is no longer empty */
1337 	write_lock(&journal->j_state_lock);
1338 	WARN_ON(!sb->s_sequence);
1339 	journal->j_flags &= ~JBD2_FLUSHED;
1340 	write_unlock(&journal->j_state_lock);
1341 }
1342 
1343 /**
1344  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1345  * @journal: The journal to update.
1346  *
1347  * Update a journal's dynamic superblock fields to show that journal is empty.
1348  * Write updated superblock to disk waiting for IO to complete.
1349  */
1350 static void jbd2_mark_journal_empty(journal_t *journal)
1351 {
1352 	journal_superblock_t *sb = journal->j_superblock;
1353 
1354 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1355 	read_lock(&journal->j_state_lock);
1356 	/* Is it already empty? */
1357 	if (sb->s_start == 0) {
1358 		read_unlock(&journal->j_state_lock);
1359 		return;
1360 	}
1361 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1362 		  journal->j_tail_sequence);
1363 
1364 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1365 	sb->s_start    = cpu_to_be32(0);
1366 	read_unlock(&journal->j_state_lock);
1367 
1368 	jbd2_write_superblock(journal, WRITE_FUA);
1369 
1370 	/* Log is no longer empty */
1371 	write_lock(&journal->j_state_lock);
1372 	journal->j_flags |= JBD2_FLUSHED;
1373 	write_unlock(&journal->j_state_lock);
1374 }
1375 
1376 
1377 /**
1378  * jbd2_journal_update_sb_errno() - Update error in the journal.
1379  * @journal: The journal to update.
1380  *
1381  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1382  * to complete.
1383  */
1384 void jbd2_journal_update_sb_errno(journal_t *journal)
1385 {
1386 	journal_superblock_t *sb = journal->j_superblock;
1387 
1388 	read_lock(&journal->j_state_lock);
1389 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1390 		  journal->j_errno);
1391 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1392 	jbd2_superblock_csum_set(journal, sb);
1393 	read_unlock(&journal->j_state_lock);
1394 
1395 	jbd2_write_superblock(journal, WRITE_SYNC);
1396 }
1397 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1398 
1399 /*
1400  * Read the superblock for a given journal, performing initial
1401  * validation of the format.
1402  */
1403 static int journal_get_superblock(journal_t *journal)
1404 {
1405 	struct buffer_head *bh;
1406 	journal_superblock_t *sb;
1407 	int err = -EIO;
1408 
1409 	bh = journal->j_sb_buffer;
1410 
1411 	J_ASSERT(bh != NULL);
1412 	if (!buffer_uptodate(bh)) {
1413 		ll_rw_block(READ, 1, &bh);
1414 		wait_on_buffer(bh);
1415 		if (!buffer_uptodate(bh)) {
1416 			printk(KERN_ERR
1417 				"JBD2: IO error reading journal superblock\n");
1418 			goto out;
1419 		}
1420 	}
1421 
1422 	if (buffer_verified(bh))
1423 		return 0;
1424 
1425 	sb = journal->j_superblock;
1426 
1427 	err = -EINVAL;
1428 
1429 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1430 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1431 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1432 		goto out;
1433 	}
1434 
1435 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1436 	case JBD2_SUPERBLOCK_V1:
1437 		journal->j_format_version = 1;
1438 		break;
1439 	case JBD2_SUPERBLOCK_V2:
1440 		journal->j_format_version = 2;
1441 		break;
1442 	default:
1443 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1444 		goto out;
1445 	}
1446 
1447 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1448 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1449 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1450 		printk(KERN_WARNING "JBD2: journal file too short\n");
1451 		goto out;
1452 	}
1453 
1454 	if (be32_to_cpu(sb->s_first) == 0 ||
1455 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1456 		printk(KERN_WARNING
1457 			"JBD2: Invalid start block of journal: %u\n",
1458 			be32_to_cpu(sb->s_first));
1459 		goto out;
1460 	}
1461 
1462 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1463 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1464 		/* Can't have checksum v1 and v2 on at the same time! */
1465 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1466 		       "at the same time!\n");
1467 		goto out;
1468 	}
1469 
1470 	if (!jbd2_verify_csum_type(journal, sb)) {
1471 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1472 		goto out;
1473 	}
1474 
1475 	/* Load the checksum driver */
1476 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1477 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1478 		if (IS_ERR(journal->j_chksum_driver)) {
1479 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1480 			err = PTR_ERR(journal->j_chksum_driver);
1481 			journal->j_chksum_driver = NULL;
1482 			goto out;
1483 		}
1484 	}
1485 
1486 	/* Check superblock checksum */
1487 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1488 		printk(KERN_ERR "JBD: journal checksum error\n");
1489 		goto out;
1490 	}
1491 
1492 	/* Precompute checksum seed for all metadata */
1493 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1494 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1495 						   sizeof(sb->s_uuid));
1496 
1497 	set_buffer_verified(bh);
1498 
1499 	return 0;
1500 
1501 out:
1502 	journal_fail_superblock(journal);
1503 	return err;
1504 }
1505 
1506 /*
1507  * Load the on-disk journal superblock and read the key fields into the
1508  * journal_t.
1509  */
1510 
1511 static int load_superblock(journal_t *journal)
1512 {
1513 	int err;
1514 	journal_superblock_t *sb;
1515 
1516 	err = journal_get_superblock(journal);
1517 	if (err)
1518 		return err;
1519 
1520 	sb = journal->j_superblock;
1521 
1522 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1523 	journal->j_tail = be32_to_cpu(sb->s_start);
1524 	journal->j_first = be32_to_cpu(sb->s_first);
1525 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1526 	journal->j_errno = be32_to_cpu(sb->s_errno);
1527 
1528 	return 0;
1529 }
1530 
1531 
1532 /**
1533  * int jbd2_journal_load() - Read journal from disk.
1534  * @journal: Journal to act on.
1535  *
1536  * Given a journal_t structure which tells us which disk blocks contain
1537  * a journal, read the journal from disk to initialise the in-memory
1538  * structures.
1539  */
1540 int jbd2_journal_load(journal_t *journal)
1541 {
1542 	int err;
1543 	journal_superblock_t *sb;
1544 
1545 	err = load_superblock(journal);
1546 	if (err)
1547 		return err;
1548 
1549 	sb = journal->j_superblock;
1550 	/* If this is a V2 superblock, then we have to check the
1551 	 * features flags on it. */
1552 
1553 	if (journal->j_format_version >= 2) {
1554 		if ((sb->s_feature_ro_compat &
1555 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1556 		    (sb->s_feature_incompat &
1557 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1558 			printk(KERN_WARNING
1559 				"JBD2: Unrecognised features on journal\n");
1560 			return -EINVAL;
1561 		}
1562 	}
1563 
1564 	/*
1565 	 * Create a slab for this blocksize
1566 	 */
1567 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1568 	if (err)
1569 		return err;
1570 
1571 	/* Let the recovery code check whether it needs to recover any
1572 	 * data from the journal. */
1573 	if (jbd2_journal_recover(journal))
1574 		goto recovery_error;
1575 
1576 	if (journal->j_failed_commit) {
1577 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1578 		       "is corrupt.\n", journal->j_failed_commit,
1579 		       journal->j_devname);
1580 		return -EIO;
1581 	}
1582 
1583 	/* OK, we've finished with the dynamic journal bits:
1584 	 * reinitialise the dynamic contents of the superblock in memory
1585 	 * and reset them on disk. */
1586 	if (journal_reset(journal))
1587 		goto recovery_error;
1588 
1589 	journal->j_flags &= ~JBD2_ABORT;
1590 	journal->j_flags |= JBD2_LOADED;
1591 	return 0;
1592 
1593 recovery_error:
1594 	printk(KERN_WARNING "JBD2: recovery failed\n");
1595 	return -EIO;
1596 }
1597 
1598 /**
1599  * void jbd2_journal_destroy() - Release a journal_t structure.
1600  * @journal: Journal to act on.
1601  *
1602  * Release a journal_t structure once it is no longer in use by the
1603  * journaled object.
1604  * Return <0 if we couldn't clean up the journal.
1605  */
1606 int jbd2_journal_destroy(journal_t *journal)
1607 {
1608 	int err = 0;
1609 
1610 	/* Wait for the commit thread to wake up and die. */
1611 	journal_kill_thread(journal);
1612 
1613 	/* Force a final log commit */
1614 	if (journal->j_running_transaction)
1615 		jbd2_journal_commit_transaction(journal);
1616 
1617 	/* Force any old transactions to disk */
1618 
1619 	/* Totally anal locking here... */
1620 	spin_lock(&journal->j_list_lock);
1621 	while (journal->j_checkpoint_transactions != NULL) {
1622 		spin_unlock(&journal->j_list_lock);
1623 		mutex_lock(&journal->j_checkpoint_mutex);
1624 		jbd2_log_do_checkpoint(journal);
1625 		mutex_unlock(&journal->j_checkpoint_mutex);
1626 		spin_lock(&journal->j_list_lock);
1627 	}
1628 
1629 	J_ASSERT(journal->j_running_transaction == NULL);
1630 	J_ASSERT(journal->j_committing_transaction == NULL);
1631 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1632 	spin_unlock(&journal->j_list_lock);
1633 
1634 	if (journal->j_sb_buffer) {
1635 		if (!is_journal_aborted(journal)) {
1636 			mutex_lock(&journal->j_checkpoint_mutex);
1637 			jbd2_mark_journal_empty(journal);
1638 			mutex_unlock(&journal->j_checkpoint_mutex);
1639 		} else
1640 			err = -EIO;
1641 		brelse(journal->j_sb_buffer);
1642 	}
1643 
1644 	if (journal->j_proc_entry)
1645 		jbd2_stats_proc_exit(journal);
1646 	if (journal->j_inode)
1647 		iput(journal->j_inode);
1648 	if (journal->j_revoke)
1649 		jbd2_journal_destroy_revoke(journal);
1650 	if (journal->j_chksum_driver)
1651 		crypto_free_shash(journal->j_chksum_driver);
1652 	kfree(journal->j_wbuf);
1653 	kfree(journal);
1654 
1655 	return err;
1656 }
1657 
1658 
1659 /**
1660  *int jbd2_journal_check_used_features () - Check if features specified are used.
1661  * @journal: Journal to check.
1662  * @compat: bitmask of compatible features
1663  * @ro: bitmask of features that force read-only mount
1664  * @incompat: bitmask of incompatible features
1665  *
1666  * Check whether the journal uses all of a given set of
1667  * features.  Return true (non-zero) if it does.
1668  **/
1669 
1670 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1671 				 unsigned long ro, unsigned long incompat)
1672 {
1673 	journal_superblock_t *sb;
1674 
1675 	if (!compat && !ro && !incompat)
1676 		return 1;
1677 	/* Load journal superblock if it is not loaded yet. */
1678 	if (journal->j_format_version == 0 &&
1679 	    journal_get_superblock(journal) != 0)
1680 		return 0;
1681 	if (journal->j_format_version == 1)
1682 		return 0;
1683 
1684 	sb = journal->j_superblock;
1685 
1686 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1687 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1688 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1689 		return 1;
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1696  * @journal: Journal to check.
1697  * @compat: bitmask of compatible features
1698  * @ro: bitmask of features that force read-only mount
1699  * @incompat: bitmask of incompatible features
1700  *
1701  * Check whether the journaling code supports the use of
1702  * all of a given set of features on this journal.  Return true
1703  * (non-zero) if it can. */
1704 
1705 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1706 				      unsigned long ro, unsigned long incompat)
1707 {
1708 	if (!compat && !ro && !incompat)
1709 		return 1;
1710 
1711 	/* We can support any known requested features iff the
1712 	 * superblock is in version 2.  Otherwise we fail to support any
1713 	 * extended sb features. */
1714 
1715 	if (journal->j_format_version != 2)
1716 		return 0;
1717 
1718 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1719 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1720 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1721 		return 1;
1722 
1723 	return 0;
1724 }
1725 
1726 /**
1727  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1728  * @journal: Journal to act on.
1729  * @compat: bitmask of compatible features
1730  * @ro: bitmask of features that force read-only mount
1731  * @incompat: bitmask of incompatible features
1732  *
1733  * Mark a given journal feature as present on the
1734  * superblock.  Returns true if the requested features could be set.
1735  *
1736  */
1737 
1738 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1739 			  unsigned long ro, unsigned long incompat)
1740 {
1741 #define INCOMPAT_FEATURE_ON(f) \
1742 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1743 #define COMPAT_FEATURE_ON(f) \
1744 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1745 	journal_superblock_t *sb;
1746 
1747 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1748 		return 1;
1749 
1750 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1751 		return 0;
1752 
1753 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1754 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1755 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1756 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1757 
1758 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1759 		  compat, ro, incompat);
1760 
1761 	sb = journal->j_superblock;
1762 
1763 	/* If enabling v2 checksums, update superblock */
1764 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1765 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1766 		sb->s_feature_compat &=
1767 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1768 
1769 		/* Load the checksum driver */
1770 		if (journal->j_chksum_driver == NULL) {
1771 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1772 								      0, 0);
1773 			if (IS_ERR(journal->j_chksum_driver)) {
1774 				printk(KERN_ERR "JBD: Cannot load crc32c "
1775 				       "driver.\n");
1776 				journal->j_chksum_driver = NULL;
1777 				return 0;
1778 			}
1779 		}
1780 
1781 		/* Precompute checksum seed for all metadata */
1782 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1783 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1784 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1785 							   sb->s_uuid,
1786 							   sizeof(sb->s_uuid));
1787 	}
1788 
1789 	/* If enabling v1 checksums, downgrade superblock */
1790 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1791 		sb->s_feature_incompat &=
1792 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1793 
1794 	sb->s_feature_compat    |= cpu_to_be32(compat);
1795 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1796 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1797 
1798 	return 1;
1799 #undef COMPAT_FEATURE_ON
1800 #undef INCOMPAT_FEATURE_ON
1801 }
1802 
1803 /*
1804  * jbd2_journal_clear_features () - Clear a given journal feature in the
1805  * 				    superblock
1806  * @journal: Journal to act on.
1807  * @compat: bitmask of compatible features
1808  * @ro: bitmask of features that force read-only mount
1809  * @incompat: bitmask of incompatible features
1810  *
1811  * Clear a given journal feature as present on the
1812  * superblock.
1813  */
1814 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1815 				unsigned long ro, unsigned long incompat)
1816 {
1817 	journal_superblock_t *sb;
1818 
1819 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1820 		  compat, ro, incompat);
1821 
1822 	sb = journal->j_superblock;
1823 
1824 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1825 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1826 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1827 }
1828 EXPORT_SYMBOL(jbd2_journal_clear_features);
1829 
1830 /**
1831  * int jbd2_journal_flush () - Flush journal
1832  * @journal: Journal to act on.
1833  *
1834  * Flush all data for a given journal to disk and empty the journal.
1835  * Filesystems can use this when remounting readonly to ensure that
1836  * recovery does not need to happen on remount.
1837  */
1838 
1839 int jbd2_journal_flush(journal_t *journal)
1840 {
1841 	int err = 0;
1842 	transaction_t *transaction = NULL;
1843 
1844 	write_lock(&journal->j_state_lock);
1845 
1846 	/* Force everything buffered to the log... */
1847 	if (journal->j_running_transaction) {
1848 		transaction = journal->j_running_transaction;
1849 		__jbd2_log_start_commit(journal, transaction->t_tid);
1850 	} else if (journal->j_committing_transaction)
1851 		transaction = journal->j_committing_transaction;
1852 
1853 	/* Wait for the log commit to complete... */
1854 	if (transaction) {
1855 		tid_t tid = transaction->t_tid;
1856 
1857 		write_unlock(&journal->j_state_lock);
1858 		jbd2_log_wait_commit(journal, tid);
1859 	} else {
1860 		write_unlock(&journal->j_state_lock);
1861 	}
1862 
1863 	/* ...and flush everything in the log out to disk. */
1864 	spin_lock(&journal->j_list_lock);
1865 	while (!err && journal->j_checkpoint_transactions != NULL) {
1866 		spin_unlock(&journal->j_list_lock);
1867 		mutex_lock(&journal->j_checkpoint_mutex);
1868 		err = jbd2_log_do_checkpoint(journal);
1869 		mutex_unlock(&journal->j_checkpoint_mutex);
1870 		spin_lock(&journal->j_list_lock);
1871 	}
1872 	spin_unlock(&journal->j_list_lock);
1873 
1874 	if (is_journal_aborted(journal))
1875 		return -EIO;
1876 
1877 	mutex_lock(&journal->j_checkpoint_mutex);
1878 	jbd2_cleanup_journal_tail(journal);
1879 
1880 	/* Finally, mark the journal as really needing no recovery.
1881 	 * This sets s_start==0 in the underlying superblock, which is
1882 	 * the magic code for a fully-recovered superblock.  Any future
1883 	 * commits of data to the journal will restore the current
1884 	 * s_start value. */
1885 	jbd2_mark_journal_empty(journal);
1886 	mutex_unlock(&journal->j_checkpoint_mutex);
1887 	write_lock(&journal->j_state_lock);
1888 	J_ASSERT(!journal->j_running_transaction);
1889 	J_ASSERT(!journal->j_committing_transaction);
1890 	J_ASSERT(!journal->j_checkpoint_transactions);
1891 	J_ASSERT(journal->j_head == journal->j_tail);
1892 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1893 	write_unlock(&journal->j_state_lock);
1894 	return 0;
1895 }
1896 
1897 /**
1898  * int jbd2_journal_wipe() - Wipe journal contents
1899  * @journal: Journal to act on.
1900  * @write: flag (see below)
1901  *
1902  * Wipe out all of the contents of a journal, safely.  This will produce
1903  * a warning if the journal contains any valid recovery information.
1904  * Must be called between journal_init_*() and jbd2_journal_load().
1905  *
1906  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1907  * we merely suppress recovery.
1908  */
1909 
1910 int jbd2_journal_wipe(journal_t *journal, int write)
1911 {
1912 	int err = 0;
1913 
1914 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1915 
1916 	err = load_superblock(journal);
1917 	if (err)
1918 		return err;
1919 
1920 	if (!journal->j_tail)
1921 		goto no_recovery;
1922 
1923 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1924 		write ? "Clearing" : "Ignoring");
1925 
1926 	err = jbd2_journal_skip_recovery(journal);
1927 	if (write) {
1928 		/* Lock to make assertions happy... */
1929 		mutex_lock(&journal->j_checkpoint_mutex);
1930 		jbd2_mark_journal_empty(journal);
1931 		mutex_unlock(&journal->j_checkpoint_mutex);
1932 	}
1933 
1934  no_recovery:
1935 	return err;
1936 }
1937 
1938 /*
1939  * Journal abort has very specific semantics, which we describe
1940  * for journal abort.
1941  *
1942  * Two internal functions, which provide abort to the jbd layer
1943  * itself are here.
1944  */
1945 
1946 /*
1947  * Quick version for internal journal use (doesn't lock the journal).
1948  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1949  * and don't attempt to make any other journal updates.
1950  */
1951 void __jbd2_journal_abort_hard(journal_t *journal)
1952 {
1953 	transaction_t *transaction;
1954 
1955 	if (journal->j_flags & JBD2_ABORT)
1956 		return;
1957 
1958 	printk(KERN_ERR "Aborting journal on device %s.\n",
1959 	       journal->j_devname);
1960 
1961 	write_lock(&journal->j_state_lock);
1962 	journal->j_flags |= JBD2_ABORT;
1963 	transaction = journal->j_running_transaction;
1964 	if (transaction)
1965 		__jbd2_log_start_commit(journal, transaction->t_tid);
1966 	write_unlock(&journal->j_state_lock);
1967 }
1968 
1969 /* Soft abort: record the abort error status in the journal superblock,
1970  * but don't do any other IO. */
1971 static void __journal_abort_soft (journal_t *journal, int errno)
1972 {
1973 	if (journal->j_flags & JBD2_ABORT)
1974 		return;
1975 
1976 	if (!journal->j_errno)
1977 		journal->j_errno = errno;
1978 
1979 	__jbd2_journal_abort_hard(journal);
1980 
1981 	if (errno)
1982 		jbd2_journal_update_sb_errno(journal);
1983 }
1984 
1985 /**
1986  * void jbd2_journal_abort () - Shutdown the journal immediately.
1987  * @journal: the journal to shutdown.
1988  * @errno:   an error number to record in the journal indicating
1989  *           the reason for the shutdown.
1990  *
1991  * Perform a complete, immediate shutdown of the ENTIRE
1992  * journal (not of a single transaction).  This operation cannot be
1993  * undone without closing and reopening the journal.
1994  *
1995  * The jbd2_journal_abort function is intended to support higher level error
1996  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1997  * mode.
1998  *
1999  * Journal abort has very specific semantics.  Any existing dirty,
2000  * unjournaled buffers in the main filesystem will still be written to
2001  * disk by bdflush, but the journaling mechanism will be suspended
2002  * immediately and no further transaction commits will be honoured.
2003  *
2004  * Any dirty, journaled buffers will be written back to disk without
2005  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2006  * filesystem, but we _do_ attempt to leave as much data as possible
2007  * behind for fsck to use for cleanup.
2008  *
2009  * Any attempt to get a new transaction handle on a journal which is in
2010  * ABORT state will just result in an -EROFS error return.  A
2011  * jbd2_journal_stop on an existing handle will return -EIO if we have
2012  * entered abort state during the update.
2013  *
2014  * Recursive transactions are not disturbed by journal abort until the
2015  * final jbd2_journal_stop, which will receive the -EIO error.
2016  *
2017  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2018  * which will be recorded (if possible) in the journal superblock.  This
2019  * allows a client to record failure conditions in the middle of a
2020  * transaction without having to complete the transaction to record the
2021  * failure to disk.  ext3_error, for example, now uses this
2022  * functionality.
2023  *
2024  * Errors which originate from within the journaling layer will NOT
2025  * supply an errno; a null errno implies that absolutely no further
2026  * writes are done to the journal (unless there are any already in
2027  * progress).
2028  *
2029  */
2030 
2031 void jbd2_journal_abort(journal_t *journal, int errno)
2032 {
2033 	__journal_abort_soft(journal, errno);
2034 }
2035 
2036 /**
2037  * int jbd2_journal_errno () - returns the journal's error state.
2038  * @journal: journal to examine.
2039  *
2040  * This is the errno number set with jbd2_journal_abort(), the last
2041  * time the journal was mounted - if the journal was stopped
2042  * without calling abort this will be 0.
2043  *
2044  * If the journal has been aborted on this mount time -EROFS will
2045  * be returned.
2046  */
2047 int jbd2_journal_errno(journal_t *journal)
2048 {
2049 	int err;
2050 
2051 	read_lock(&journal->j_state_lock);
2052 	if (journal->j_flags & JBD2_ABORT)
2053 		err = -EROFS;
2054 	else
2055 		err = journal->j_errno;
2056 	read_unlock(&journal->j_state_lock);
2057 	return err;
2058 }
2059 
2060 /**
2061  * int jbd2_journal_clear_err () - clears the journal's error state
2062  * @journal: journal to act on.
2063  *
2064  * An error must be cleared or acked to take a FS out of readonly
2065  * mode.
2066  */
2067 int jbd2_journal_clear_err(journal_t *journal)
2068 {
2069 	int err = 0;
2070 
2071 	write_lock(&journal->j_state_lock);
2072 	if (journal->j_flags & JBD2_ABORT)
2073 		err = -EROFS;
2074 	else
2075 		journal->j_errno = 0;
2076 	write_unlock(&journal->j_state_lock);
2077 	return err;
2078 }
2079 
2080 /**
2081  * void jbd2_journal_ack_err() - Ack journal err.
2082  * @journal: journal to act on.
2083  *
2084  * An error must be cleared or acked to take a FS out of readonly
2085  * mode.
2086  */
2087 void jbd2_journal_ack_err(journal_t *journal)
2088 {
2089 	write_lock(&journal->j_state_lock);
2090 	if (journal->j_errno)
2091 		journal->j_flags |= JBD2_ACK_ERR;
2092 	write_unlock(&journal->j_state_lock);
2093 }
2094 
2095 int jbd2_journal_blocks_per_page(struct inode *inode)
2096 {
2097 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2098 }
2099 
2100 /*
2101  * helper functions to deal with 32 or 64bit block numbers.
2102  */
2103 size_t journal_tag_bytes(journal_t *journal)
2104 {
2105 	journal_block_tag_t tag;
2106 	size_t x = 0;
2107 
2108 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2109 		x += sizeof(tag.t_checksum);
2110 
2111 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2112 		return x + JBD2_TAG_SIZE64;
2113 	else
2114 		return x + JBD2_TAG_SIZE32;
2115 }
2116 
2117 /*
2118  * JBD memory management
2119  *
2120  * These functions are used to allocate block-sized chunks of memory
2121  * used for making copies of buffer_head data.  Very often it will be
2122  * page-sized chunks of data, but sometimes it will be in
2123  * sub-page-size chunks.  (For example, 16k pages on Power systems
2124  * with a 4k block file system.)  For blocks smaller than a page, we
2125  * use a SLAB allocator.  There are slab caches for each block size,
2126  * which are allocated at mount time, if necessary, and we only free
2127  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2128  * this reason we don't need to a mutex to protect access to
2129  * jbd2_slab[] allocating or releasing memory; only in
2130  * jbd2_journal_create_slab().
2131  */
2132 #define JBD2_MAX_SLABS 8
2133 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2134 
2135 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2136 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2137 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2138 };
2139 
2140 
2141 static void jbd2_journal_destroy_slabs(void)
2142 {
2143 	int i;
2144 
2145 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2146 		if (jbd2_slab[i])
2147 			kmem_cache_destroy(jbd2_slab[i]);
2148 		jbd2_slab[i] = NULL;
2149 	}
2150 }
2151 
2152 static int jbd2_journal_create_slab(size_t size)
2153 {
2154 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2155 	int i = order_base_2(size) - 10;
2156 	size_t slab_size;
2157 
2158 	if (size == PAGE_SIZE)
2159 		return 0;
2160 
2161 	if (i >= JBD2_MAX_SLABS)
2162 		return -EINVAL;
2163 
2164 	if (unlikely(i < 0))
2165 		i = 0;
2166 	mutex_lock(&jbd2_slab_create_mutex);
2167 	if (jbd2_slab[i]) {
2168 		mutex_unlock(&jbd2_slab_create_mutex);
2169 		return 0;	/* Already created */
2170 	}
2171 
2172 	slab_size = 1 << (i+10);
2173 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2174 					 slab_size, 0, NULL);
2175 	mutex_unlock(&jbd2_slab_create_mutex);
2176 	if (!jbd2_slab[i]) {
2177 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2178 		return -ENOMEM;
2179 	}
2180 	return 0;
2181 }
2182 
2183 static struct kmem_cache *get_slab(size_t size)
2184 {
2185 	int i = order_base_2(size) - 10;
2186 
2187 	BUG_ON(i >= JBD2_MAX_SLABS);
2188 	if (unlikely(i < 0))
2189 		i = 0;
2190 	BUG_ON(jbd2_slab[i] == NULL);
2191 	return jbd2_slab[i];
2192 }
2193 
2194 void *jbd2_alloc(size_t size, gfp_t flags)
2195 {
2196 	void *ptr;
2197 
2198 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2199 
2200 	flags |= __GFP_REPEAT;
2201 	if (size == PAGE_SIZE)
2202 		ptr = (void *)__get_free_pages(flags, 0);
2203 	else if (size > PAGE_SIZE) {
2204 		int order = get_order(size);
2205 
2206 		if (order < 3)
2207 			ptr = (void *)__get_free_pages(flags, order);
2208 		else
2209 			ptr = vmalloc(size);
2210 	} else
2211 		ptr = kmem_cache_alloc(get_slab(size), flags);
2212 
2213 	/* Check alignment; SLUB has gotten this wrong in the past,
2214 	 * and this can lead to user data corruption! */
2215 	BUG_ON(((unsigned long) ptr) & (size-1));
2216 
2217 	return ptr;
2218 }
2219 
2220 void jbd2_free(void *ptr, size_t size)
2221 {
2222 	if (size == PAGE_SIZE) {
2223 		free_pages((unsigned long)ptr, 0);
2224 		return;
2225 	}
2226 	if (size > PAGE_SIZE) {
2227 		int order = get_order(size);
2228 
2229 		if (order < 3)
2230 			free_pages((unsigned long)ptr, order);
2231 		else
2232 			vfree(ptr);
2233 		return;
2234 	}
2235 	kmem_cache_free(get_slab(size), ptr);
2236 };
2237 
2238 /*
2239  * Journal_head storage management
2240  */
2241 static struct kmem_cache *jbd2_journal_head_cache;
2242 #ifdef CONFIG_JBD2_DEBUG
2243 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2244 #endif
2245 
2246 static int jbd2_journal_init_journal_head_cache(void)
2247 {
2248 	int retval;
2249 
2250 	J_ASSERT(jbd2_journal_head_cache == NULL);
2251 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2252 				sizeof(struct journal_head),
2253 				0,		/* offset */
2254 				SLAB_TEMPORARY,	/* flags */
2255 				NULL);		/* ctor */
2256 	retval = 0;
2257 	if (!jbd2_journal_head_cache) {
2258 		retval = -ENOMEM;
2259 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2260 	}
2261 	return retval;
2262 }
2263 
2264 static void jbd2_journal_destroy_journal_head_cache(void)
2265 {
2266 	if (jbd2_journal_head_cache) {
2267 		kmem_cache_destroy(jbd2_journal_head_cache);
2268 		jbd2_journal_head_cache = NULL;
2269 	}
2270 }
2271 
2272 /*
2273  * journal_head splicing and dicing
2274  */
2275 static struct journal_head *journal_alloc_journal_head(void)
2276 {
2277 	struct journal_head *ret;
2278 
2279 #ifdef CONFIG_JBD2_DEBUG
2280 	atomic_inc(&nr_journal_heads);
2281 #endif
2282 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2283 	if (!ret) {
2284 		jbd_debug(1, "out of memory for journal_head\n");
2285 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2286 		while (!ret) {
2287 			yield();
2288 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2289 		}
2290 	}
2291 	return ret;
2292 }
2293 
2294 static void journal_free_journal_head(struct journal_head *jh)
2295 {
2296 #ifdef CONFIG_JBD2_DEBUG
2297 	atomic_dec(&nr_journal_heads);
2298 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2299 #endif
2300 	kmem_cache_free(jbd2_journal_head_cache, jh);
2301 }
2302 
2303 /*
2304  * A journal_head is attached to a buffer_head whenever JBD has an
2305  * interest in the buffer.
2306  *
2307  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2308  * is set.  This bit is tested in core kernel code where we need to take
2309  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2310  * there.
2311  *
2312  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2313  *
2314  * When a buffer has its BH_JBD bit set it is immune from being released by
2315  * core kernel code, mainly via ->b_count.
2316  *
2317  * A journal_head is detached from its buffer_head when the journal_head's
2318  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2319  * transaction (b_cp_transaction) hold their references to b_jcount.
2320  *
2321  * Various places in the kernel want to attach a journal_head to a buffer_head
2322  * _before_ attaching the journal_head to a transaction.  To protect the
2323  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2324  * journal_head's b_jcount refcount by one.  The caller must call
2325  * jbd2_journal_put_journal_head() to undo this.
2326  *
2327  * So the typical usage would be:
2328  *
2329  *	(Attach a journal_head if needed.  Increments b_jcount)
2330  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2331  *	...
2332  *      (Get another reference for transaction)
2333  *	jbd2_journal_grab_journal_head(bh);
2334  *	jh->b_transaction = xxx;
2335  *	(Put original reference)
2336  *	jbd2_journal_put_journal_head(jh);
2337  */
2338 
2339 /*
2340  * Give a buffer_head a journal_head.
2341  *
2342  * May sleep.
2343  */
2344 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2345 {
2346 	struct journal_head *jh;
2347 	struct journal_head *new_jh = NULL;
2348 
2349 repeat:
2350 	if (!buffer_jbd(bh)) {
2351 		new_jh = journal_alloc_journal_head();
2352 		memset(new_jh, 0, sizeof(*new_jh));
2353 	}
2354 
2355 	jbd_lock_bh_journal_head(bh);
2356 	if (buffer_jbd(bh)) {
2357 		jh = bh2jh(bh);
2358 	} else {
2359 		J_ASSERT_BH(bh,
2360 			(atomic_read(&bh->b_count) > 0) ||
2361 			(bh->b_page && bh->b_page->mapping));
2362 
2363 		if (!new_jh) {
2364 			jbd_unlock_bh_journal_head(bh);
2365 			goto repeat;
2366 		}
2367 
2368 		jh = new_jh;
2369 		new_jh = NULL;		/* We consumed it */
2370 		set_buffer_jbd(bh);
2371 		bh->b_private = jh;
2372 		jh->b_bh = bh;
2373 		get_bh(bh);
2374 		BUFFER_TRACE(bh, "added journal_head");
2375 	}
2376 	jh->b_jcount++;
2377 	jbd_unlock_bh_journal_head(bh);
2378 	if (new_jh)
2379 		journal_free_journal_head(new_jh);
2380 	return bh->b_private;
2381 }
2382 
2383 /*
2384  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2385  * having a journal_head, return NULL
2386  */
2387 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2388 {
2389 	struct journal_head *jh = NULL;
2390 
2391 	jbd_lock_bh_journal_head(bh);
2392 	if (buffer_jbd(bh)) {
2393 		jh = bh2jh(bh);
2394 		jh->b_jcount++;
2395 	}
2396 	jbd_unlock_bh_journal_head(bh);
2397 	return jh;
2398 }
2399 
2400 static void __journal_remove_journal_head(struct buffer_head *bh)
2401 {
2402 	struct journal_head *jh = bh2jh(bh);
2403 
2404 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2405 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2406 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2407 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2408 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2409 	J_ASSERT_BH(bh, buffer_jbd(bh));
2410 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2411 	BUFFER_TRACE(bh, "remove journal_head");
2412 	if (jh->b_frozen_data) {
2413 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2414 		jbd2_free(jh->b_frozen_data, bh->b_size);
2415 	}
2416 	if (jh->b_committed_data) {
2417 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2418 		jbd2_free(jh->b_committed_data, bh->b_size);
2419 	}
2420 	bh->b_private = NULL;
2421 	jh->b_bh = NULL;	/* debug, really */
2422 	clear_buffer_jbd(bh);
2423 	journal_free_journal_head(jh);
2424 }
2425 
2426 /*
2427  * Drop a reference on the passed journal_head.  If it fell to zero then
2428  * release the journal_head from the buffer_head.
2429  */
2430 void jbd2_journal_put_journal_head(struct journal_head *jh)
2431 {
2432 	struct buffer_head *bh = jh2bh(jh);
2433 
2434 	jbd_lock_bh_journal_head(bh);
2435 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2436 	--jh->b_jcount;
2437 	if (!jh->b_jcount) {
2438 		__journal_remove_journal_head(bh);
2439 		jbd_unlock_bh_journal_head(bh);
2440 		__brelse(bh);
2441 	} else
2442 		jbd_unlock_bh_journal_head(bh);
2443 }
2444 
2445 /*
2446  * Initialize jbd inode head
2447  */
2448 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2449 {
2450 	jinode->i_transaction = NULL;
2451 	jinode->i_next_transaction = NULL;
2452 	jinode->i_vfs_inode = inode;
2453 	jinode->i_flags = 0;
2454 	INIT_LIST_HEAD(&jinode->i_list);
2455 }
2456 
2457 /*
2458  * Function to be called before we start removing inode from memory (i.e.,
2459  * clear_inode() is a fine place to be called from). It removes inode from
2460  * transaction's lists.
2461  */
2462 void jbd2_journal_release_jbd_inode(journal_t *journal,
2463 				    struct jbd2_inode *jinode)
2464 {
2465 	if (!journal)
2466 		return;
2467 restart:
2468 	spin_lock(&journal->j_list_lock);
2469 	/* Is commit writing out inode - we have to wait */
2470 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2471 		wait_queue_head_t *wq;
2472 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2473 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2474 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2475 		spin_unlock(&journal->j_list_lock);
2476 		schedule();
2477 		finish_wait(wq, &wait.wait);
2478 		goto restart;
2479 	}
2480 
2481 	if (jinode->i_transaction) {
2482 		list_del(&jinode->i_list);
2483 		jinode->i_transaction = NULL;
2484 	}
2485 	spin_unlock(&journal->j_list_lock);
2486 }
2487 
2488 /*
2489  * debugfs tunables
2490  */
2491 #ifdef CONFIG_JBD2_DEBUG
2492 u8 jbd2_journal_enable_debug __read_mostly;
2493 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2494 
2495 #define JBD2_DEBUG_NAME "jbd2-debug"
2496 
2497 static struct dentry *jbd2_debugfs_dir;
2498 static struct dentry *jbd2_debug;
2499 
2500 static void __init jbd2_create_debugfs_entry(void)
2501 {
2502 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2503 	if (jbd2_debugfs_dir)
2504 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2505 					       S_IRUGO | S_IWUSR,
2506 					       jbd2_debugfs_dir,
2507 					       &jbd2_journal_enable_debug);
2508 }
2509 
2510 static void __exit jbd2_remove_debugfs_entry(void)
2511 {
2512 	debugfs_remove(jbd2_debug);
2513 	debugfs_remove(jbd2_debugfs_dir);
2514 }
2515 
2516 #else
2517 
2518 static void __init jbd2_create_debugfs_entry(void)
2519 {
2520 }
2521 
2522 static void __exit jbd2_remove_debugfs_entry(void)
2523 {
2524 }
2525 
2526 #endif
2527 
2528 #ifdef CONFIG_PROC_FS
2529 
2530 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2531 
2532 static void __init jbd2_create_jbd_stats_proc_entry(void)
2533 {
2534 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2535 }
2536 
2537 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2538 {
2539 	if (proc_jbd2_stats)
2540 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2541 }
2542 
2543 #else
2544 
2545 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2546 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2547 
2548 #endif
2549 
2550 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2551 
2552 static int __init jbd2_journal_init_handle_cache(void)
2553 {
2554 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2555 	if (jbd2_handle_cache == NULL) {
2556 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2557 		return -ENOMEM;
2558 	}
2559 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2560 	if (jbd2_inode_cache == NULL) {
2561 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2562 		kmem_cache_destroy(jbd2_handle_cache);
2563 		return -ENOMEM;
2564 	}
2565 	return 0;
2566 }
2567 
2568 static void jbd2_journal_destroy_handle_cache(void)
2569 {
2570 	if (jbd2_handle_cache)
2571 		kmem_cache_destroy(jbd2_handle_cache);
2572 	if (jbd2_inode_cache)
2573 		kmem_cache_destroy(jbd2_inode_cache);
2574 
2575 }
2576 
2577 /*
2578  * Module startup and shutdown
2579  */
2580 
2581 static int __init journal_init_caches(void)
2582 {
2583 	int ret;
2584 
2585 	ret = jbd2_journal_init_revoke_caches();
2586 	if (ret == 0)
2587 		ret = jbd2_journal_init_journal_head_cache();
2588 	if (ret == 0)
2589 		ret = jbd2_journal_init_handle_cache();
2590 	if (ret == 0)
2591 		ret = jbd2_journal_init_transaction_cache();
2592 	return ret;
2593 }
2594 
2595 static void jbd2_journal_destroy_caches(void)
2596 {
2597 	jbd2_journal_destroy_revoke_caches();
2598 	jbd2_journal_destroy_journal_head_cache();
2599 	jbd2_journal_destroy_handle_cache();
2600 	jbd2_journal_destroy_transaction_cache();
2601 	jbd2_journal_destroy_slabs();
2602 }
2603 
2604 static int __init journal_init(void)
2605 {
2606 	int ret;
2607 
2608 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2609 
2610 	ret = journal_init_caches();
2611 	if (ret == 0) {
2612 		jbd2_create_debugfs_entry();
2613 		jbd2_create_jbd_stats_proc_entry();
2614 	} else {
2615 		jbd2_journal_destroy_caches();
2616 	}
2617 	return ret;
2618 }
2619 
2620 static void __exit journal_exit(void)
2621 {
2622 #ifdef CONFIG_JBD2_DEBUG
2623 	int n = atomic_read(&nr_journal_heads);
2624 	if (n)
2625 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2626 #endif
2627 	jbd2_remove_debugfs_entry();
2628 	jbd2_remove_jbd_stats_proc_entry();
2629 	jbd2_journal_destroy_caches();
2630 }
2631 
2632 MODULE_LICENSE("GPL");
2633 module_init(journal_init);
2634 module_exit(journal_exit);
2635 
2636