1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * Force and wait upon a commit if the calling process is not within 570 * transaction. This is used for forcing out undo-protected data which contains 571 * bitmaps, when the fs is running out of space. 572 * 573 * @journal: journal to force 574 * Returns true if progress was made. 575 */ 576 int jbd2_journal_force_commit_nested(journal_t *journal) 577 { 578 int ret; 579 580 ret = __jbd2_journal_force_commit(journal); 581 return ret > 0; 582 } 583 584 /** 585 * int journal_force_commit() - force any uncommitted transactions 586 * @journal: journal to force 587 * 588 * Caller want unconditional commit. We can only force the running transaction 589 * if we don't have an active handle, otherwise, we will deadlock. 590 */ 591 int jbd2_journal_force_commit(journal_t *journal) 592 { 593 int ret; 594 595 J_ASSERT(!current->journal_info); 596 ret = __jbd2_journal_force_commit(journal); 597 if (ret > 0) 598 ret = 0; 599 return ret; 600 } 601 602 /* 603 * Start a commit of the current running transaction (if any). Returns true 604 * if a transaction is going to be committed (or is currently already 605 * committing), and fills its tid in at *ptid 606 */ 607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 608 { 609 int ret = 0; 610 611 write_lock(&journal->j_state_lock); 612 if (journal->j_running_transaction) { 613 tid_t tid = journal->j_running_transaction->t_tid; 614 615 __jbd2_log_start_commit(journal, tid); 616 /* There's a running transaction and we've just made sure 617 * it's commit has been scheduled. */ 618 if (ptid) 619 *ptid = tid; 620 ret = 1; 621 } else if (journal->j_committing_transaction) { 622 /* 623 * If commit has been started, then we have to wait for 624 * completion of that transaction. 625 */ 626 if (ptid) 627 *ptid = journal->j_committing_transaction->t_tid; 628 ret = 1; 629 } 630 write_unlock(&journal->j_state_lock); 631 return ret; 632 } 633 634 /* 635 * Return 1 if a given transaction has not yet sent barrier request 636 * connected with a transaction commit. If 0 is returned, transaction 637 * may or may not have sent the barrier. Used to avoid sending barrier 638 * twice in common cases. 639 */ 640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 641 { 642 int ret = 0; 643 transaction_t *commit_trans; 644 645 if (!(journal->j_flags & JBD2_BARRIER)) 646 return 0; 647 read_lock(&journal->j_state_lock); 648 /* Transaction already committed? */ 649 if (tid_geq(journal->j_commit_sequence, tid)) 650 goto out; 651 commit_trans = journal->j_committing_transaction; 652 if (!commit_trans || commit_trans->t_tid != tid) { 653 ret = 1; 654 goto out; 655 } 656 /* 657 * Transaction is being committed and we already proceeded to 658 * submitting a flush to fs partition? 659 */ 660 if (journal->j_fs_dev != journal->j_dev) { 661 if (!commit_trans->t_need_data_flush || 662 commit_trans->t_state >= T_COMMIT_DFLUSH) 663 goto out; 664 } else { 665 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 666 goto out; 667 } 668 ret = 1; 669 out: 670 read_unlock(&journal->j_state_lock); 671 return ret; 672 } 673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 674 675 /* 676 * Wait for a specified commit to complete. 677 * The caller may not hold the journal lock. 678 */ 679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 680 { 681 int err = 0; 682 683 read_lock(&journal->j_state_lock); 684 #ifdef CONFIG_PROVE_LOCKING 685 /* 686 * Some callers make sure transaction is already committing and in that 687 * case we cannot block on open handles anymore. So don't warn in that 688 * case. 689 */ 690 if (tid_gt(tid, journal->j_commit_sequence) && 691 (!journal->j_committing_transaction || 692 journal->j_committing_transaction->t_tid != tid)) { 693 read_unlock(&journal->j_state_lock); 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 } 697 #endif 698 #ifdef CONFIG_JBD2_DEBUG 699 if (!tid_geq(journal->j_commit_request, tid)) { 700 printk(KERN_ERR 701 "%s: error: j_commit_request=%u, tid=%u\n", 702 __func__, journal->j_commit_request, tid); 703 } 704 #endif 705 while (tid_gt(tid, journal->j_commit_sequence)) { 706 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 707 tid, journal->j_commit_sequence); 708 read_unlock(&journal->j_state_lock); 709 wake_up(&journal->j_wait_commit); 710 wait_event(journal->j_wait_done_commit, 711 !tid_gt(tid, journal->j_commit_sequence)); 712 read_lock(&journal->j_state_lock); 713 } 714 read_unlock(&journal->j_state_lock); 715 716 if (unlikely(is_journal_aborted(journal))) 717 err = -EIO; 718 return err; 719 } 720 721 /* 722 * Start a fast commit. If there's an ongoing fast or full commit wait for 723 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 724 * if a fast commit is not needed, either because there's an already a commit 725 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 726 * commit has yet been performed. 727 */ 728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 729 { 730 /* 731 * Fast commits only allowed if at least one full commit has 732 * been processed. 733 */ 734 if (!journal->j_stats.ts_tid) 735 return -EINVAL; 736 737 if (tid <= journal->j_commit_sequence) 738 return -EALREADY; 739 740 write_lock(&journal->j_state_lock); 741 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 742 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 743 DEFINE_WAIT(wait); 744 745 prepare_to_wait(&journal->j_fc_wait, &wait, 746 TASK_UNINTERRUPTIBLE); 747 write_unlock(&journal->j_state_lock); 748 schedule(); 749 finish_wait(&journal->j_fc_wait, &wait); 750 return -EALREADY; 751 } 752 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 753 write_unlock(&journal->j_state_lock); 754 755 return 0; 756 } 757 EXPORT_SYMBOL(jbd2_fc_begin_commit); 758 759 /* 760 * Stop a fast commit. If fallback is set, this function starts commit of 761 * TID tid before any other fast commit can start. 762 */ 763 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 764 { 765 if (journal->j_fc_cleanup_callback) 766 journal->j_fc_cleanup_callback(journal, 0); 767 write_lock(&journal->j_state_lock); 768 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 769 if (fallback) 770 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 771 write_unlock(&journal->j_state_lock); 772 wake_up(&journal->j_fc_wait); 773 if (fallback) 774 return jbd2_complete_transaction(journal, tid); 775 return 0; 776 } 777 778 int jbd2_fc_end_commit(journal_t *journal) 779 { 780 return __jbd2_fc_end_commit(journal, 0, 0); 781 } 782 EXPORT_SYMBOL(jbd2_fc_end_commit); 783 784 int jbd2_fc_end_commit_fallback(journal_t *journal, tid_t tid) 785 { 786 return __jbd2_fc_end_commit(journal, tid, 1); 787 } 788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 789 790 /* Return 1 when transaction with given tid has already committed. */ 791 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 792 { 793 int ret = 1; 794 795 read_lock(&journal->j_state_lock); 796 if (journal->j_running_transaction && 797 journal->j_running_transaction->t_tid == tid) 798 ret = 0; 799 if (journal->j_committing_transaction && 800 journal->j_committing_transaction->t_tid == tid) 801 ret = 0; 802 read_unlock(&journal->j_state_lock); 803 return ret; 804 } 805 EXPORT_SYMBOL(jbd2_transaction_committed); 806 807 /* 808 * When this function returns the transaction corresponding to tid 809 * will be completed. If the transaction has currently running, start 810 * committing that transaction before waiting for it to complete. If 811 * the transaction id is stale, it is by definition already completed, 812 * so just return SUCCESS. 813 */ 814 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 815 { 816 int need_to_wait = 1; 817 818 read_lock(&journal->j_state_lock); 819 if (journal->j_running_transaction && 820 journal->j_running_transaction->t_tid == tid) { 821 if (journal->j_commit_request != tid) { 822 /* transaction not yet started, so request it */ 823 read_unlock(&journal->j_state_lock); 824 jbd2_log_start_commit(journal, tid); 825 goto wait_commit; 826 } 827 } else if (!(journal->j_committing_transaction && 828 journal->j_committing_transaction->t_tid == tid)) 829 need_to_wait = 0; 830 read_unlock(&journal->j_state_lock); 831 if (!need_to_wait) 832 return 0; 833 wait_commit: 834 return jbd2_log_wait_commit(journal, tid); 835 } 836 EXPORT_SYMBOL(jbd2_complete_transaction); 837 838 /* 839 * Log buffer allocation routines: 840 */ 841 842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 843 { 844 unsigned long blocknr; 845 846 write_lock(&journal->j_state_lock); 847 J_ASSERT(journal->j_free > 1); 848 849 blocknr = journal->j_head; 850 journal->j_head++; 851 journal->j_free--; 852 if (journal->j_head == journal->j_last) 853 journal->j_head = journal->j_first; 854 write_unlock(&journal->j_state_lock); 855 return jbd2_journal_bmap(journal, blocknr, retp); 856 } 857 858 /* Map one fast commit buffer for use by the file system */ 859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 860 { 861 unsigned long long pblock; 862 unsigned long blocknr; 863 int ret = 0; 864 struct buffer_head *bh; 865 int fc_off; 866 867 *bh_out = NULL; 868 write_lock(&journal->j_state_lock); 869 870 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 871 fc_off = journal->j_fc_off; 872 blocknr = journal->j_fc_first + fc_off; 873 journal->j_fc_off++; 874 } else { 875 ret = -EINVAL; 876 } 877 write_unlock(&journal->j_state_lock); 878 879 if (ret) 880 return ret; 881 882 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 883 if (ret) 884 return ret; 885 886 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 887 if (!bh) 888 return -ENOMEM; 889 890 lock_buffer(bh); 891 892 clear_buffer_uptodate(bh); 893 set_buffer_dirty(bh); 894 unlock_buffer(bh); 895 journal->j_fc_wbuf[fc_off] = bh; 896 897 *bh_out = bh; 898 899 return 0; 900 } 901 EXPORT_SYMBOL(jbd2_fc_get_buf); 902 903 /* 904 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 905 * for completion. 906 */ 907 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 908 { 909 struct buffer_head *bh; 910 int i, j_fc_off; 911 912 read_lock(&journal->j_state_lock); 913 j_fc_off = journal->j_fc_off; 914 read_unlock(&journal->j_state_lock); 915 916 /* 917 * Wait in reverse order to minimize chances of us being woken up before 918 * all IOs have completed 919 */ 920 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 921 bh = journal->j_fc_wbuf[i]; 922 wait_on_buffer(bh); 923 put_bh(bh); 924 journal->j_fc_wbuf[i] = NULL; 925 if (unlikely(!buffer_uptodate(bh))) 926 return -EIO; 927 } 928 929 return 0; 930 } 931 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 932 933 /* 934 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 935 * for completion. 936 */ 937 int jbd2_fc_release_bufs(journal_t *journal) 938 { 939 struct buffer_head *bh; 940 int i, j_fc_off; 941 942 read_lock(&journal->j_state_lock); 943 j_fc_off = journal->j_fc_off; 944 read_unlock(&journal->j_state_lock); 945 946 /* 947 * Wait in reverse order to minimize chances of us being woken up before 948 * all IOs have completed 949 */ 950 for (i = j_fc_off - 1; i >= 0; i--) { 951 bh = journal->j_fc_wbuf[i]; 952 if (!bh) 953 break; 954 put_bh(bh); 955 journal->j_fc_wbuf[i] = NULL; 956 } 957 958 return 0; 959 } 960 EXPORT_SYMBOL(jbd2_fc_release_bufs); 961 962 /* 963 * Conversion of logical to physical block numbers for the journal 964 * 965 * On external journals the journal blocks are identity-mapped, so 966 * this is a no-op. If needed, we can use j_blk_offset - everything is 967 * ready. 968 */ 969 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 970 unsigned long long *retp) 971 { 972 int err = 0; 973 unsigned long long ret; 974 sector_t block = 0; 975 976 if (journal->j_inode) { 977 block = blocknr; 978 ret = bmap(journal->j_inode, &block); 979 980 if (ret || !block) { 981 printk(KERN_ALERT "%s: journal block not found " 982 "at offset %lu on %s\n", 983 __func__, blocknr, journal->j_devname); 984 err = -EIO; 985 jbd2_journal_abort(journal, err); 986 } else { 987 *retp = block; 988 } 989 990 } else { 991 *retp = blocknr; /* +journal->j_blk_offset */ 992 } 993 return err; 994 } 995 996 /* 997 * We play buffer_head aliasing tricks to write data/metadata blocks to 998 * the journal without copying their contents, but for journal 999 * descriptor blocks we do need to generate bona fide buffers. 1000 * 1001 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1002 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1003 * But we don't bother doing that, so there will be coherency problems with 1004 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1005 */ 1006 struct buffer_head * 1007 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1008 { 1009 journal_t *journal = transaction->t_journal; 1010 struct buffer_head *bh; 1011 unsigned long long blocknr; 1012 journal_header_t *header; 1013 int err; 1014 1015 err = jbd2_journal_next_log_block(journal, &blocknr); 1016 1017 if (err) 1018 return NULL; 1019 1020 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1021 if (!bh) 1022 return NULL; 1023 atomic_dec(&transaction->t_outstanding_credits); 1024 lock_buffer(bh); 1025 memset(bh->b_data, 0, journal->j_blocksize); 1026 header = (journal_header_t *)bh->b_data; 1027 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1028 header->h_blocktype = cpu_to_be32(type); 1029 header->h_sequence = cpu_to_be32(transaction->t_tid); 1030 set_buffer_uptodate(bh); 1031 unlock_buffer(bh); 1032 BUFFER_TRACE(bh, "return this buffer"); 1033 return bh; 1034 } 1035 1036 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1037 { 1038 struct jbd2_journal_block_tail *tail; 1039 __u32 csum; 1040 1041 if (!jbd2_journal_has_csum_v2or3(j)) 1042 return; 1043 1044 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1045 sizeof(struct jbd2_journal_block_tail)); 1046 tail->t_checksum = 0; 1047 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1048 tail->t_checksum = cpu_to_be32(csum); 1049 } 1050 1051 /* 1052 * Return tid of the oldest transaction in the journal and block in the journal 1053 * where the transaction starts. 1054 * 1055 * If the journal is now empty, return which will be the next transaction ID 1056 * we will write and where will that transaction start. 1057 * 1058 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1059 * it can. 1060 */ 1061 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1062 unsigned long *block) 1063 { 1064 transaction_t *transaction; 1065 int ret; 1066 1067 read_lock(&journal->j_state_lock); 1068 spin_lock(&journal->j_list_lock); 1069 transaction = journal->j_checkpoint_transactions; 1070 if (transaction) { 1071 *tid = transaction->t_tid; 1072 *block = transaction->t_log_start; 1073 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1074 *tid = transaction->t_tid; 1075 *block = transaction->t_log_start; 1076 } else if ((transaction = journal->j_running_transaction) != NULL) { 1077 *tid = transaction->t_tid; 1078 *block = journal->j_head; 1079 } else { 1080 *tid = journal->j_transaction_sequence; 1081 *block = journal->j_head; 1082 } 1083 ret = tid_gt(*tid, journal->j_tail_sequence); 1084 spin_unlock(&journal->j_list_lock); 1085 read_unlock(&journal->j_state_lock); 1086 1087 return ret; 1088 } 1089 1090 /* 1091 * Update information in journal structure and in on disk journal superblock 1092 * about log tail. This function does not check whether information passed in 1093 * really pushes log tail further. It's responsibility of the caller to make 1094 * sure provided log tail information is valid (e.g. by holding 1095 * j_checkpoint_mutex all the time between computing log tail and calling this 1096 * function as is the case with jbd2_cleanup_journal_tail()). 1097 * 1098 * Requires j_checkpoint_mutex 1099 */ 1100 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1101 { 1102 unsigned long freed; 1103 int ret; 1104 1105 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1106 1107 /* 1108 * We cannot afford for write to remain in drive's caches since as 1109 * soon as we update j_tail, next transaction can start reusing journal 1110 * space and if we lose sb update during power failure we'd replay 1111 * old transaction with possibly newly overwritten data. 1112 */ 1113 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1114 REQ_SYNC | REQ_FUA); 1115 if (ret) 1116 goto out; 1117 1118 write_lock(&journal->j_state_lock); 1119 freed = block - journal->j_tail; 1120 if (block < journal->j_tail) 1121 freed += journal->j_last - journal->j_first; 1122 1123 trace_jbd2_update_log_tail(journal, tid, block, freed); 1124 jbd_debug(1, 1125 "Cleaning journal tail from %u to %u (offset %lu), " 1126 "freeing %lu\n", 1127 journal->j_tail_sequence, tid, block, freed); 1128 1129 journal->j_free += freed; 1130 journal->j_tail_sequence = tid; 1131 journal->j_tail = block; 1132 write_unlock(&journal->j_state_lock); 1133 1134 out: 1135 return ret; 1136 } 1137 1138 /* 1139 * This is a variation of __jbd2_update_log_tail which checks for validity of 1140 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1141 * with other threads updating log tail. 1142 */ 1143 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1144 { 1145 mutex_lock_io(&journal->j_checkpoint_mutex); 1146 if (tid_gt(tid, journal->j_tail_sequence)) 1147 __jbd2_update_log_tail(journal, tid, block); 1148 mutex_unlock(&journal->j_checkpoint_mutex); 1149 } 1150 1151 struct jbd2_stats_proc_session { 1152 journal_t *journal; 1153 struct transaction_stats_s *stats; 1154 int start; 1155 int max; 1156 }; 1157 1158 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1159 { 1160 return *pos ? NULL : SEQ_START_TOKEN; 1161 } 1162 1163 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1164 { 1165 (*pos)++; 1166 return NULL; 1167 } 1168 1169 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1170 { 1171 struct jbd2_stats_proc_session *s = seq->private; 1172 1173 if (v != SEQ_START_TOKEN) 1174 return 0; 1175 seq_printf(seq, "%lu transactions (%lu requested), " 1176 "each up to %u blocks\n", 1177 s->stats->ts_tid, s->stats->ts_requested, 1178 s->journal->j_max_transaction_buffers); 1179 if (s->stats->ts_tid == 0) 1180 return 0; 1181 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1182 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1183 seq_printf(seq, " %ums request delay\n", 1184 (s->stats->ts_requested == 0) ? 0 : 1185 jiffies_to_msecs(s->stats->run.rs_request_delay / 1186 s->stats->ts_requested)); 1187 seq_printf(seq, " %ums running transaction\n", 1188 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1189 seq_printf(seq, " %ums transaction was being locked\n", 1190 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1191 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1192 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1193 seq_printf(seq, " %ums logging transaction\n", 1194 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1195 seq_printf(seq, " %lluus average transaction commit time\n", 1196 div_u64(s->journal->j_average_commit_time, 1000)); 1197 seq_printf(seq, " %lu handles per transaction\n", 1198 s->stats->run.rs_handle_count / s->stats->ts_tid); 1199 seq_printf(seq, " %lu blocks per transaction\n", 1200 s->stats->run.rs_blocks / s->stats->ts_tid); 1201 seq_printf(seq, " %lu logged blocks per transaction\n", 1202 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1203 return 0; 1204 } 1205 1206 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1207 { 1208 } 1209 1210 static const struct seq_operations jbd2_seq_info_ops = { 1211 .start = jbd2_seq_info_start, 1212 .next = jbd2_seq_info_next, 1213 .stop = jbd2_seq_info_stop, 1214 .show = jbd2_seq_info_show, 1215 }; 1216 1217 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1218 { 1219 journal_t *journal = PDE_DATA(inode); 1220 struct jbd2_stats_proc_session *s; 1221 int rc, size; 1222 1223 s = kmalloc(sizeof(*s), GFP_KERNEL); 1224 if (s == NULL) 1225 return -ENOMEM; 1226 size = sizeof(struct transaction_stats_s); 1227 s->stats = kmalloc(size, GFP_KERNEL); 1228 if (s->stats == NULL) { 1229 kfree(s); 1230 return -ENOMEM; 1231 } 1232 spin_lock(&journal->j_history_lock); 1233 memcpy(s->stats, &journal->j_stats, size); 1234 s->journal = journal; 1235 spin_unlock(&journal->j_history_lock); 1236 1237 rc = seq_open(file, &jbd2_seq_info_ops); 1238 if (rc == 0) { 1239 struct seq_file *m = file->private_data; 1240 m->private = s; 1241 } else { 1242 kfree(s->stats); 1243 kfree(s); 1244 } 1245 return rc; 1246 1247 } 1248 1249 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1250 { 1251 struct seq_file *seq = file->private_data; 1252 struct jbd2_stats_proc_session *s = seq->private; 1253 kfree(s->stats); 1254 kfree(s); 1255 return seq_release(inode, file); 1256 } 1257 1258 static const struct proc_ops jbd2_info_proc_ops = { 1259 .proc_open = jbd2_seq_info_open, 1260 .proc_read = seq_read, 1261 .proc_lseek = seq_lseek, 1262 .proc_release = jbd2_seq_info_release, 1263 }; 1264 1265 static struct proc_dir_entry *proc_jbd2_stats; 1266 1267 static void jbd2_stats_proc_init(journal_t *journal) 1268 { 1269 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1270 if (journal->j_proc_entry) { 1271 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1272 &jbd2_info_proc_ops, journal); 1273 } 1274 } 1275 1276 static void jbd2_stats_proc_exit(journal_t *journal) 1277 { 1278 remove_proc_entry("info", journal->j_proc_entry); 1279 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1280 } 1281 1282 /* Minimum size of descriptor tag */ 1283 static int jbd2_min_tag_size(void) 1284 { 1285 /* 1286 * Tag with 32-bit block numbers does not use last four bytes of the 1287 * structure 1288 */ 1289 return sizeof(journal_block_tag_t) - 4; 1290 } 1291 1292 /* 1293 * Management for journal control blocks: functions to create and 1294 * destroy journal_t structures, and to initialise and read existing 1295 * journal blocks from disk. */ 1296 1297 /* First: create and setup a journal_t object in memory. We initialise 1298 * very few fields yet: that has to wait until we have created the 1299 * journal structures from from scratch, or loaded them from disk. */ 1300 1301 static journal_t *journal_init_common(struct block_device *bdev, 1302 struct block_device *fs_dev, 1303 unsigned long long start, int len, int blocksize) 1304 { 1305 static struct lock_class_key jbd2_trans_commit_key; 1306 journal_t *journal; 1307 int err; 1308 struct buffer_head *bh; 1309 int n; 1310 1311 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1312 if (!journal) 1313 return NULL; 1314 1315 init_waitqueue_head(&journal->j_wait_transaction_locked); 1316 init_waitqueue_head(&journal->j_wait_done_commit); 1317 init_waitqueue_head(&journal->j_wait_commit); 1318 init_waitqueue_head(&journal->j_wait_updates); 1319 init_waitqueue_head(&journal->j_wait_reserved); 1320 init_waitqueue_head(&journal->j_fc_wait); 1321 mutex_init(&journal->j_abort_mutex); 1322 mutex_init(&journal->j_barrier); 1323 mutex_init(&journal->j_checkpoint_mutex); 1324 spin_lock_init(&journal->j_revoke_lock); 1325 spin_lock_init(&journal->j_list_lock); 1326 rwlock_init(&journal->j_state_lock); 1327 1328 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1329 journal->j_min_batch_time = 0; 1330 journal->j_max_batch_time = 15000; /* 15ms */ 1331 atomic_set(&journal->j_reserved_credits, 0); 1332 1333 /* The journal is marked for error until we succeed with recovery! */ 1334 journal->j_flags = JBD2_ABORT; 1335 1336 /* Set up a default-sized revoke table for the new mount. */ 1337 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1338 if (err) 1339 goto err_cleanup; 1340 1341 spin_lock_init(&journal->j_history_lock); 1342 1343 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1344 &jbd2_trans_commit_key, 0); 1345 1346 /* journal descriptor can store up to n blocks -bzzz */ 1347 journal->j_blocksize = blocksize; 1348 journal->j_dev = bdev; 1349 journal->j_fs_dev = fs_dev; 1350 journal->j_blk_offset = start; 1351 journal->j_maxlen = len; 1352 /* We need enough buffers to write out full descriptor block. */ 1353 n = journal->j_blocksize / jbd2_min_tag_size(); 1354 journal->j_wbufsize = n; 1355 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1356 GFP_KERNEL); 1357 if (!journal->j_wbuf) 1358 goto err_cleanup; 1359 1360 if (journal->j_fc_wbufsize > 0) { 1361 journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize, 1362 sizeof(struct buffer_head *), 1363 GFP_KERNEL); 1364 if (!journal->j_fc_wbuf) 1365 goto err_cleanup; 1366 } 1367 1368 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1369 if (!bh) { 1370 pr_err("%s: Cannot get buffer for journal superblock\n", 1371 __func__); 1372 goto err_cleanup; 1373 } 1374 journal->j_sb_buffer = bh; 1375 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1376 1377 return journal; 1378 1379 err_cleanup: 1380 kfree(journal->j_wbuf); 1381 kfree(journal->j_fc_wbuf); 1382 jbd2_journal_destroy_revoke(journal); 1383 kfree(journal); 1384 return NULL; 1385 } 1386 1387 int jbd2_fc_init(journal_t *journal, int num_fc_blks) 1388 { 1389 journal->j_fc_wbufsize = num_fc_blks; 1390 journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize, 1391 sizeof(struct buffer_head *), GFP_KERNEL); 1392 if (!journal->j_fc_wbuf) 1393 return -ENOMEM; 1394 return 0; 1395 } 1396 EXPORT_SYMBOL(jbd2_fc_init); 1397 1398 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1399 * 1400 * Create a journal structure assigned some fixed set of disk blocks to 1401 * the journal. We don't actually touch those disk blocks yet, but we 1402 * need to set up all of the mapping information to tell the journaling 1403 * system where the journal blocks are. 1404 * 1405 */ 1406 1407 /** 1408 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1409 * @bdev: Block device on which to create the journal 1410 * @fs_dev: Device which hold journalled filesystem for this journal. 1411 * @start: Block nr Start of journal. 1412 * @len: Length of the journal in blocks. 1413 * @blocksize: blocksize of journalling device 1414 * 1415 * Returns: a newly created journal_t * 1416 * 1417 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1418 * range of blocks on an arbitrary block device. 1419 * 1420 */ 1421 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1422 struct block_device *fs_dev, 1423 unsigned long long start, int len, int blocksize) 1424 { 1425 journal_t *journal; 1426 1427 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1428 if (!journal) 1429 return NULL; 1430 1431 bdevname(journal->j_dev, journal->j_devname); 1432 strreplace(journal->j_devname, '/', '!'); 1433 jbd2_stats_proc_init(journal); 1434 1435 return journal; 1436 } 1437 1438 /** 1439 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1440 * @inode: An inode to create the journal in 1441 * 1442 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1443 * the journal. The inode must exist already, must support bmap() and 1444 * must have all data blocks preallocated. 1445 */ 1446 journal_t *jbd2_journal_init_inode(struct inode *inode) 1447 { 1448 journal_t *journal; 1449 sector_t blocknr; 1450 char *p; 1451 int err = 0; 1452 1453 blocknr = 0; 1454 err = bmap(inode, &blocknr); 1455 1456 if (err || !blocknr) { 1457 pr_err("%s: Cannot locate journal superblock\n", 1458 __func__); 1459 return NULL; 1460 } 1461 1462 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1463 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1464 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1465 1466 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1467 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1468 inode->i_sb->s_blocksize); 1469 if (!journal) 1470 return NULL; 1471 1472 journal->j_inode = inode; 1473 bdevname(journal->j_dev, journal->j_devname); 1474 p = strreplace(journal->j_devname, '/', '!'); 1475 sprintf(p, "-%lu", journal->j_inode->i_ino); 1476 jbd2_stats_proc_init(journal); 1477 1478 return journal; 1479 } 1480 1481 /* 1482 * If the journal init or create aborts, we need to mark the journal 1483 * superblock as being NULL to prevent the journal destroy from writing 1484 * back a bogus superblock. 1485 */ 1486 static void journal_fail_superblock(journal_t *journal) 1487 { 1488 struct buffer_head *bh = journal->j_sb_buffer; 1489 brelse(bh); 1490 journal->j_sb_buffer = NULL; 1491 } 1492 1493 /* 1494 * Given a journal_t structure, initialise the various fields for 1495 * startup of a new journaling session. We use this both when creating 1496 * a journal, and after recovering an old journal to reset it for 1497 * subsequent use. 1498 */ 1499 1500 static int journal_reset(journal_t *journal) 1501 { 1502 journal_superblock_t *sb = journal->j_superblock; 1503 unsigned long long first, last; 1504 1505 first = be32_to_cpu(sb->s_first); 1506 last = be32_to_cpu(sb->s_maxlen); 1507 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1508 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1509 first, last); 1510 journal_fail_superblock(journal); 1511 return -EINVAL; 1512 } 1513 1514 journal->j_first = first; 1515 1516 if (jbd2_has_feature_fast_commit(journal) && 1517 journal->j_fc_wbufsize > 0) { 1518 journal->j_fc_last = last; 1519 journal->j_last = last - journal->j_fc_wbufsize; 1520 journal->j_fc_first = journal->j_last + 1; 1521 journal->j_fc_off = 0; 1522 } else { 1523 journal->j_last = last; 1524 } 1525 1526 journal->j_head = journal->j_first; 1527 journal->j_tail = journal->j_first; 1528 journal->j_free = journal->j_last - journal->j_first; 1529 1530 journal->j_tail_sequence = journal->j_transaction_sequence; 1531 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1532 journal->j_commit_request = journal->j_commit_sequence; 1533 1534 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1535 1536 /* 1537 * As a special case, if the on-disk copy is already marked as needing 1538 * no recovery (s_start == 0), then we can safely defer the superblock 1539 * update until the next commit by setting JBD2_FLUSHED. This avoids 1540 * attempting a write to a potential-readonly device. 1541 */ 1542 if (sb->s_start == 0) { 1543 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1544 "(start %ld, seq %u, errno %d)\n", 1545 journal->j_tail, journal->j_tail_sequence, 1546 journal->j_errno); 1547 journal->j_flags |= JBD2_FLUSHED; 1548 } else { 1549 /* Lock here to make assertions happy... */ 1550 mutex_lock_io(&journal->j_checkpoint_mutex); 1551 /* 1552 * Update log tail information. We use REQ_FUA since new 1553 * transaction will start reusing journal space and so we 1554 * must make sure information about current log tail is on 1555 * disk before that. 1556 */ 1557 jbd2_journal_update_sb_log_tail(journal, 1558 journal->j_tail_sequence, 1559 journal->j_tail, 1560 REQ_SYNC | REQ_FUA); 1561 mutex_unlock(&journal->j_checkpoint_mutex); 1562 } 1563 return jbd2_journal_start_thread(journal); 1564 } 1565 1566 /* 1567 * This function expects that the caller will have locked the journal 1568 * buffer head, and will return with it unlocked 1569 */ 1570 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1571 { 1572 struct buffer_head *bh = journal->j_sb_buffer; 1573 journal_superblock_t *sb = journal->j_superblock; 1574 int ret; 1575 1576 /* Buffer got discarded which means block device got invalidated */ 1577 if (!buffer_mapped(bh)) { 1578 unlock_buffer(bh); 1579 return -EIO; 1580 } 1581 1582 trace_jbd2_write_superblock(journal, write_flags); 1583 if (!(journal->j_flags & JBD2_BARRIER)) 1584 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1585 if (buffer_write_io_error(bh)) { 1586 /* 1587 * Oh, dear. A previous attempt to write the journal 1588 * superblock failed. This could happen because the 1589 * USB device was yanked out. Or it could happen to 1590 * be a transient write error and maybe the block will 1591 * be remapped. Nothing we can do but to retry the 1592 * write and hope for the best. 1593 */ 1594 printk(KERN_ERR "JBD2: previous I/O error detected " 1595 "for journal superblock update for %s.\n", 1596 journal->j_devname); 1597 clear_buffer_write_io_error(bh); 1598 set_buffer_uptodate(bh); 1599 } 1600 if (jbd2_journal_has_csum_v2or3(journal)) 1601 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1602 get_bh(bh); 1603 bh->b_end_io = end_buffer_write_sync; 1604 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1605 wait_on_buffer(bh); 1606 if (buffer_write_io_error(bh)) { 1607 clear_buffer_write_io_error(bh); 1608 set_buffer_uptodate(bh); 1609 ret = -EIO; 1610 } 1611 if (ret) { 1612 printk(KERN_ERR "JBD2: Error %d detected when updating " 1613 "journal superblock for %s.\n", ret, 1614 journal->j_devname); 1615 if (!is_journal_aborted(journal)) 1616 jbd2_journal_abort(journal, ret); 1617 } 1618 1619 return ret; 1620 } 1621 1622 /** 1623 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1624 * @journal: The journal to update. 1625 * @tail_tid: TID of the new transaction at the tail of the log 1626 * @tail_block: The first block of the transaction at the tail of the log 1627 * @write_op: With which operation should we write the journal sb 1628 * 1629 * Update a journal's superblock information about log tail and write it to 1630 * disk, waiting for the IO to complete. 1631 */ 1632 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1633 unsigned long tail_block, int write_op) 1634 { 1635 journal_superblock_t *sb = journal->j_superblock; 1636 int ret; 1637 1638 if (is_journal_aborted(journal)) 1639 return -EIO; 1640 1641 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1642 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1643 tail_block, tail_tid); 1644 1645 lock_buffer(journal->j_sb_buffer); 1646 sb->s_sequence = cpu_to_be32(tail_tid); 1647 sb->s_start = cpu_to_be32(tail_block); 1648 1649 ret = jbd2_write_superblock(journal, write_op); 1650 if (ret) 1651 goto out; 1652 1653 /* Log is no longer empty */ 1654 write_lock(&journal->j_state_lock); 1655 WARN_ON(!sb->s_sequence); 1656 journal->j_flags &= ~JBD2_FLUSHED; 1657 write_unlock(&journal->j_state_lock); 1658 1659 out: 1660 return ret; 1661 } 1662 1663 /** 1664 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1665 * @journal: The journal to update. 1666 * @write_op: With which operation should we write the journal sb 1667 * 1668 * Update a journal's dynamic superblock fields to show that journal is empty. 1669 * Write updated superblock to disk waiting for IO to complete. 1670 */ 1671 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1672 { 1673 journal_superblock_t *sb = journal->j_superblock; 1674 bool had_fast_commit = false; 1675 1676 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1677 lock_buffer(journal->j_sb_buffer); 1678 if (sb->s_start == 0) { /* Is it already empty? */ 1679 unlock_buffer(journal->j_sb_buffer); 1680 return; 1681 } 1682 1683 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1684 journal->j_tail_sequence); 1685 1686 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1687 sb->s_start = cpu_to_be32(0); 1688 if (jbd2_has_feature_fast_commit(journal)) { 1689 /* 1690 * When journal is clean, no need to commit fast commit flag and 1691 * make file system incompatible with older kernels. 1692 */ 1693 jbd2_clear_feature_fast_commit(journal); 1694 had_fast_commit = true; 1695 } 1696 1697 jbd2_write_superblock(journal, write_op); 1698 1699 if (had_fast_commit) 1700 jbd2_set_feature_fast_commit(journal); 1701 1702 /* Log is no longer empty */ 1703 write_lock(&journal->j_state_lock); 1704 journal->j_flags |= JBD2_FLUSHED; 1705 write_unlock(&journal->j_state_lock); 1706 } 1707 1708 1709 /** 1710 * jbd2_journal_update_sb_errno() - Update error in the journal. 1711 * @journal: The journal to update. 1712 * 1713 * Update a journal's errno. Write updated superblock to disk waiting for IO 1714 * to complete. 1715 */ 1716 void jbd2_journal_update_sb_errno(journal_t *journal) 1717 { 1718 journal_superblock_t *sb = journal->j_superblock; 1719 int errcode; 1720 1721 lock_buffer(journal->j_sb_buffer); 1722 errcode = journal->j_errno; 1723 if (errcode == -ESHUTDOWN) 1724 errcode = 0; 1725 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1726 sb->s_errno = cpu_to_be32(errcode); 1727 1728 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1729 } 1730 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1731 1732 static int journal_revoke_records_per_block(journal_t *journal) 1733 { 1734 int record_size; 1735 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1736 1737 if (jbd2_has_feature_64bit(journal)) 1738 record_size = 8; 1739 else 1740 record_size = 4; 1741 1742 if (jbd2_journal_has_csum_v2or3(journal)) 1743 space -= sizeof(struct jbd2_journal_block_tail); 1744 return space / record_size; 1745 } 1746 1747 /* 1748 * Read the superblock for a given journal, performing initial 1749 * validation of the format. 1750 */ 1751 static int journal_get_superblock(journal_t *journal) 1752 { 1753 struct buffer_head *bh; 1754 journal_superblock_t *sb; 1755 int err = -EIO; 1756 1757 bh = journal->j_sb_buffer; 1758 1759 J_ASSERT(bh != NULL); 1760 if (!buffer_uptodate(bh)) { 1761 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1762 wait_on_buffer(bh); 1763 if (!buffer_uptodate(bh)) { 1764 printk(KERN_ERR 1765 "JBD2: IO error reading journal superblock\n"); 1766 goto out; 1767 } 1768 } 1769 1770 if (buffer_verified(bh)) 1771 return 0; 1772 1773 sb = journal->j_superblock; 1774 1775 err = -EINVAL; 1776 1777 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1778 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1779 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1780 goto out; 1781 } 1782 1783 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1784 case JBD2_SUPERBLOCK_V1: 1785 journal->j_format_version = 1; 1786 break; 1787 case JBD2_SUPERBLOCK_V2: 1788 journal->j_format_version = 2; 1789 break; 1790 default: 1791 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1792 goto out; 1793 } 1794 1795 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1796 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1797 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1798 printk(KERN_WARNING "JBD2: journal file too short\n"); 1799 goto out; 1800 } 1801 1802 if (be32_to_cpu(sb->s_first) == 0 || 1803 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1804 printk(KERN_WARNING 1805 "JBD2: Invalid start block of journal: %u\n", 1806 be32_to_cpu(sb->s_first)); 1807 goto out; 1808 } 1809 1810 if (jbd2_has_feature_csum2(journal) && 1811 jbd2_has_feature_csum3(journal)) { 1812 /* Can't have checksum v2 and v3 at the same time! */ 1813 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1814 "at the same time!\n"); 1815 goto out; 1816 } 1817 1818 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1819 jbd2_has_feature_checksum(journal)) { 1820 /* Can't have checksum v1 and v2 on at the same time! */ 1821 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1822 "at the same time!\n"); 1823 goto out; 1824 } 1825 1826 if (!jbd2_verify_csum_type(journal, sb)) { 1827 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1828 goto out; 1829 } 1830 1831 /* Load the checksum driver */ 1832 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1833 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1834 if (IS_ERR(journal->j_chksum_driver)) { 1835 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1836 err = PTR_ERR(journal->j_chksum_driver); 1837 journal->j_chksum_driver = NULL; 1838 goto out; 1839 } 1840 } 1841 1842 if (jbd2_journal_has_csum_v2or3(journal)) { 1843 /* Check superblock checksum */ 1844 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1845 printk(KERN_ERR "JBD2: journal checksum error\n"); 1846 err = -EFSBADCRC; 1847 goto out; 1848 } 1849 1850 /* Precompute checksum seed for all metadata */ 1851 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1852 sizeof(sb->s_uuid)); 1853 } 1854 1855 journal->j_revoke_records_per_block = 1856 journal_revoke_records_per_block(journal); 1857 set_buffer_verified(bh); 1858 1859 return 0; 1860 1861 out: 1862 journal_fail_superblock(journal); 1863 return err; 1864 } 1865 1866 /* 1867 * Load the on-disk journal superblock and read the key fields into the 1868 * journal_t. 1869 */ 1870 1871 static int load_superblock(journal_t *journal) 1872 { 1873 int err; 1874 journal_superblock_t *sb; 1875 1876 err = journal_get_superblock(journal); 1877 if (err) 1878 return err; 1879 1880 sb = journal->j_superblock; 1881 1882 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1883 journal->j_tail = be32_to_cpu(sb->s_start); 1884 journal->j_first = be32_to_cpu(sb->s_first); 1885 journal->j_errno = be32_to_cpu(sb->s_errno); 1886 1887 if (jbd2_has_feature_fast_commit(journal) && 1888 journal->j_fc_wbufsize > 0) { 1889 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1890 journal->j_last = journal->j_fc_last - journal->j_fc_wbufsize; 1891 journal->j_fc_first = journal->j_last + 1; 1892 journal->j_fc_off = 0; 1893 } else { 1894 journal->j_last = be32_to_cpu(sb->s_maxlen); 1895 } 1896 1897 return 0; 1898 } 1899 1900 1901 /** 1902 * int jbd2_journal_load() - Read journal from disk. 1903 * @journal: Journal to act on. 1904 * 1905 * Given a journal_t structure which tells us which disk blocks contain 1906 * a journal, read the journal from disk to initialise the in-memory 1907 * structures. 1908 */ 1909 int jbd2_journal_load(journal_t *journal) 1910 { 1911 int err; 1912 journal_superblock_t *sb; 1913 1914 err = load_superblock(journal); 1915 if (err) 1916 return err; 1917 1918 sb = journal->j_superblock; 1919 /* If this is a V2 superblock, then we have to check the 1920 * features flags on it. */ 1921 1922 if (journal->j_format_version >= 2) { 1923 if ((sb->s_feature_ro_compat & 1924 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1925 (sb->s_feature_incompat & 1926 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1927 printk(KERN_WARNING 1928 "JBD2: Unrecognised features on journal\n"); 1929 return -EINVAL; 1930 } 1931 } 1932 1933 /* 1934 * Create a slab for this blocksize 1935 */ 1936 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1937 if (err) 1938 return err; 1939 1940 /* Let the recovery code check whether it needs to recover any 1941 * data from the journal. */ 1942 if (jbd2_journal_recover(journal)) 1943 goto recovery_error; 1944 1945 if (journal->j_failed_commit) { 1946 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1947 "is corrupt.\n", journal->j_failed_commit, 1948 journal->j_devname); 1949 return -EFSCORRUPTED; 1950 } 1951 /* 1952 * clear JBD2_ABORT flag initialized in journal_init_common 1953 * here to update log tail information with the newest seq. 1954 */ 1955 journal->j_flags &= ~JBD2_ABORT; 1956 1957 if (journal->j_fc_wbufsize > 0) 1958 jbd2_journal_set_features(journal, 0, 0, 1959 JBD2_FEATURE_INCOMPAT_FAST_COMMIT); 1960 /* OK, we've finished with the dynamic journal bits: 1961 * reinitialise the dynamic contents of the superblock in memory 1962 * and reset them on disk. */ 1963 if (journal_reset(journal)) 1964 goto recovery_error; 1965 1966 journal->j_flags |= JBD2_LOADED; 1967 return 0; 1968 1969 recovery_error: 1970 printk(KERN_WARNING "JBD2: recovery failed\n"); 1971 return -EIO; 1972 } 1973 1974 /** 1975 * void jbd2_journal_destroy() - Release a journal_t structure. 1976 * @journal: Journal to act on. 1977 * 1978 * Release a journal_t structure once it is no longer in use by the 1979 * journaled object. 1980 * Return <0 if we couldn't clean up the journal. 1981 */ 1982 int jbd2_journal_destroy(journal_t *journal) 1983 { 1984 int err = 0; 1985 1986 /* Wait for the commit thread to wake up and die. */ 1987 journal_kill_thread(journal); 1988 1989 /* Force a final log commit */ 1990 if (journal->j_running_transaction) 1991 jbd2_journal_commit_transaction(journal); 1992 1993 /* Force any old transactions to disk */ 1994 1995 /* Totally anal locking here... */ 1996 spin_lock(&journal->j_list_lock); 1997 while (journal->j_checkpoint_transactions != NULL) { 1998 spin_unlock(&journal->j_list_lock); 1999 mutex_lock_io(&journal->j_checkpoint_mutex); 2000 err = jbd2_log_do_checkpoint(journal); 2001 mutex_unlock(&journal->j_checkpoint_mutex); 2002 /* 2003 * If checkpointing failed, just free the buffers to avoid 2004 * looping forever 2005 */ 2006 if (err) { 2007 jbd2_journal_destroy_checkpoint(journal); 2008 spin_lock(&journal->j_list_lock); 2009 break; 2010 } 2011 spin_lock(&journal->j_list_lock); 2012 } 2013 2014 J_ASSERT(journal->j_running_transaction == NULL); 2015 J_ASSERT(journal->j_committing_transaction == NULL); 2016 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2017 spin_unlock(&journal->j_list_lock); 2018 2019 if (journal->j_sb_buffer) { 2020 if (!is_journal_aborted(journal)) { 2021 mutex_lock_io(&journal->j_checkpoint_mutex); 2022 2023 write_lock(&journal->j_state_lock); 2024 journal->j_tail_sequence = 2025 ++journal->j_transaction_sequence; 2026 write_unlock(&journal->j_state_lock); 2027 2028 jbd2_mark_journal_empty(journal, 2029 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2030 mutex_unlock(&journal->j_checkpoint_mutex); 2031 } else 2032 err = -EIO; 2033 brelse(journal->j_sb_buffer); 2034 } 2035 2036 if (journal->j_proc_entry) 2037 jbd2_stats_proc_exit(journal); 2038 iput(journal->j_inode); 2039 if (journal->j_revoke) 2040 jbd2_journal_destroy_revoke(journal); 2041 if (journal->j_chksum_driver) 2042 crypto_free_shash(journal->j_chksum_driver); 2043 if (journal->j_fc_wbufsize > 0) 2044 kfree(journal->j_fc_wbuf); 2045 kfree(journal->j_wbuf); 2046 kfree(journal); 2047 2048 return err; 2049 } 2050 2051 2052 /** 2053 *int jbd2_journal_check_used_features() - Check if features specified are used. 2054 * @journal: Journal to check. 2055 * @compat: bitmask of compatible features 2056 * @ro: bitmask of features that force read-only mount 2057 * @incompat: bitmask of incompatible features 2058 * 2059 * Check whether the journal uses all of a given set of 2060 * features. Return true (non-zero) if it does. 2061 **/ 2062 2063 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2064 unsigned long ro, unsigned long incompat) 2065 { 2066 journal_superblock_t *sb; 2067 2068 if (!compat && !ro && !incompat) 2069 return 1; 2070 /* Load journal superblock if it is not loaded yet. */ 2071 if (journal->j_format_version == 0 && 2072 journal_get_superblock(journal) != 0) 2073 return 0; 2074 if (journal->j_format_version == 1) 2075 return 0; 2076 2077 sb = journal->j_superblock; 2078 2079 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2080 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2081 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2082 return 1; 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 2089 * @journal: Journal to check. 2090 * @compat: bitmask of compatible features 2091 * @ro: bitmask of features that force read-only mount 2092 * @incompat: bitmask of incompatible features 2093 * 2094 * Check whether the journaling code supports the use of 2095 * all of a given set of features on this journal. Return true 2096 * (non-zero) if it can. */ 2097 2098 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2099 unsigned long ro, unsigned long incompat) 2100 { 2101 if (!compat && !ro && !incompat) 2102 return 1; 2103 2104 /* We can support any known requested features iff the 2105 * superblock is in version 2. Otherwise we fail to support any 2106 * extended sb features. */ 2107 2108 if (journal->j_format_version != 2) 2109 return 0; 2110 2111 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2112 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2113 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2114 return 1; 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * int jbd2_journal_set_features() - Mark a given journal feature in the superblock 2121 * @journal: Journal to act on. 2122 * @compat: bitmask of compatible features 2123 * @ro: bitmask of features that force read-only mount 2124 * @incompat: bitmask of incompatible features 2125 * 2126 * Mark a given journal feature as present on the 2127 * superblock. Returns true if the requested features could be set. 2128 * 2129 */ 2130 2131 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2132 unsigned long ro, unsigned long incompat) 2133 { 2134 #define INCOMPAT_FEATURE_ON(f) \ 2135 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2136 #define COMPAT_FEATURE_ON(f) \ 2137 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2138 journal_superblock_t *sb; 2139 2140 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2141 return 1; 2142 2143 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2144 return 0; 2145 2146 /* If enabling v2 checksums, turn on v3 instead */ 2147 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2148 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2149 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2150 } 2151 2152 /* Asking for checksumming v3 and v1? Only give them v3. */ 2153 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2154 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2155 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2156 2157 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2158 compat, ro, incompat); 2159 2160 sb = journal->j_superblock; 2161 2162 /* Load the checksum driver if necessary */ 2163 if ((journal->j_chksum_driver == NULL) && 2164 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2165 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2166 if (IS_ERR(journal->j_chksum_driver)) { 2167 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2168 journal->j_chksum_driver = NULL; 2169 return 0; 2170 } 2171 /* Precompute checksum seed for all metadata */ 2172 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2173 sizeof(sb->s_uuid)); 2174 } 2175 2176 lock_buffer(journal->j_sb_buffer); 2177 2178 /* If enabling v3 checksums, update superblock */ 2179 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2180 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2181 sb->s_feature_compat &= 2182 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2183 } 2184 2185 /* If enabling v1 checksums, downgrade superblock */ 2186 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2187 sb->s_feature_incompat &= 2188 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2189 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2190 2191 sb->s_feature_compat |= cpu_to_be32(compat); 2192 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2193 sb->s_feature_incompat |= cpu_to_be32(incompat); 2194 unlock_buffer(journal->j_sb_buffer); 2195 journal->j_revoke_records_per_block = 2196 journal_revoke_records_per_block(journal); 2197 2198 return 1; 2199 #undef COMPAT_FEATURE_ON 2200 #undef INCOMPAT_FEATURE_ON 2201 } 2202 2203 /* 2204 * jbd2_journal_clear_features () - Clear a given journal feature in the 2205 * superblock 2206 * @journal: Journal to act on. 2207 * @compat: bitmask of compatible features 2208 * @ro: bitmask of features that force read-only mount 2209 * @incompat: bitmask of incompatible features 2210 * 2211 * Clear a given journal feature as present on the 2212 * superblock. 2213 */ 2214 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2215 unsigned long ro, unsigned long incompat) 2216 { 2217 journal_superblock_t *sb; 2218 2219 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2220 compat, ro, incompat); 2221 2222 sb = journal->j_superblock; 2223 2224 sb->s_feature_compat &= ~cpu_to_be32(compat); 2225 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2226 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2227 journal->j_revoke_records_per_block = 2228 journal_revoke_records_per_block(journal); 2229 } 2230 EXPORT_SYMBOL(jbd2_journal_clear_features); 2231 2232 /** 2233 * int jbd2_journal_flush () - Flush journal 2234 * @journal: Journal to act on. 2235 * 2236 * Flush all data for a given journal to disk and empty the journal. 2237 * Filesystems can use this when remounting readonly to ensure that 2238 * recovery does not need to happen on remount. 2239 */ 2240 2241 int jbd2_journal_flush(journal_t *journal) 2242 { 2243 int err = 0; 2244 transaction_t *transaction = NULL; 2245 2246 write_lock(&journal->j_state_lock); 2247 2248 /* Force everything buffered to the log... */ 2249 if (journal->j_running_transaction) { 2250 transaction = journal->j_running_transaction; 2251 __jbd2_log_start_commit(journal, transaction->t_tid); 2252 } else if (journal->j_committing_transaction) 2253 transaction = journal->j_committing_transaction; 2254 2255 /* Wait for the log commit to complete... */ 2256 if (transaction) { 2257 tid_t tid = transaction->t_tid; 2258 2259 write_unlock(&journal->j_state_lock); 2260 jbd2_log_wait_commit(journal, tid); 2261 } else { 2262 write_unlock(&journal->j_state_lock); 2263 } 2264 2265 /* ...and flush everything in the log out to disk. */ 2266 spin_lock(&journal->j_list_lock); 2267 while (!err && journal->j_checkpoint_transactions != NULL) { 2268 spin_unlock(&journal->j_list_lock); 2269 mutex_lock_io(&journal->j_checkpoint_mutex); 2270 err = jbd2_log_do_checkpoint(journal); 2271 mutex_unlock(&journal->j_checkpoint_mutex); 2272 spin_lock(&journal->j_list_lock); 2273 } 2274 spin_unlock(&journal->j_list_lock); 2275 2276 if (is_journal_aborted(journal)) 2277 return -EIO; 2278 2279 mutex_lock_io(&journal->j_checkpoint_mutex); 2280 if (!err) { 2281 err = jbd2_cleanup_journal_tail(journal); 2282 if (err < 0) { 2283 mutex_unlock(&journal->j_checkpoint_mutex); 2284 goto out; 2285 } 2286 err = 0; 2287 } 2288 2289 /* Finally, mark the journal as really needing no recovery. 2290 * This sets s_start==0 in the underlying superblock, which is 2291 * the magic code for a fully-recovered superblock. Any future 2292 * commits of data to the journal will restore the current 2293 * s_start value. */ 2294 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2295 mutex_unlock(&journal->j_checkpoint_mutex); 2296 write_lock(&journal->j_state_lock); 2297 J_ASSERT(!journal->j_running_transaction); 2298 J_ASSERT(!journal->j_committing_transaction); 2299 J_ASSERT(!journal->j_checkpoint_transactions); 2300 J_ASSERT(journal->j_head == journal->j_tail); 2301 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2302 write_unlock(&journal->j_state_lock); 2303 out: 2304 return err; 2305 } 2306 2307 /** 2308 * int jbd2_journal_wipe() - Wipe journal contents 2309 * @journal: Journal to act on. 2310 * @write: flag (see below) 2311 * 2312 * Wipe out all of the contents of a journal, safely. This will produce 2313 * a warning if the journal contains any valid recovery information. 2314 * Must be called between journal_init_*() and jbd2_journal_load(). 2315 * 2316 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2317 * we merely suppress recovery. 2318 */ 2319 2320 int jbd2_journal_wipe(journal_t *journal, int write) 2321 { 2322 int err = 0; 2323 2324 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2325 2326 err = load_superblock(journal); 2327 if (err) 2328 return err; 2329 2330 if (!journal->j_tail) 2331 goto no_recovery; 2332 2333 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2334 write ? "Clearing" : "Ignoring"); 2335 2336 err = jbd2_journal_skip_recovery(journal); 2337 if (write) { 2338 /* Lock to make assertions happy... */ 2339 mutex_lock_io(&journal->j_checkpoint_mutex); 2340 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2341 mutex_unlock(&journal->j_checkpoint_mutex); 2342 } 2343 2344 no_recovery: 2345 return err; 2346 } 2347 2348 /** 2349 * void jbd2_journal_abort () - Shutdown the journal immediately. 2350 * @journal: the journal to shutdown. 2351 * @errno: an error number to record in the journal indicating 2352 * the reason for the shutdown. 2353 * 2354 * Perform a complete, immediate shutdown of the ENTIRE 2355 * journal (not of a single transaction). This operation cannot be 2356 * undone without closing and reopening the journal. 2357 * 2358 * The jbd2_journal_abort function is intended to support higher level error 2359 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2360 * mode. 2361 * 2362 * Journal abort has very specific semantics. Any existing dirty, 2363 * unjournaled buffers in the main filesystem will still be written to 2364 * disk by bdflush, but the journaling mechanism will be suspended 2365 * immediately and no further transaction commits will be honoured. 2366 * 2367 * Any dirty, journaled buffers will be written back to disk without 2368 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2369 * filesystem, but we _do_ attempt to leave as much data as possible 2370 * behind for fsck to use for cleanup. 2371 * 2372 * Any attempt to get a new transaction handle on a journal which is in 2373 * ABORT state will just result in an -EROFS error return. A 2374 * jbd2_journal_stop on an existing handle will return -EIO if we have 2375 * entered abort state during the update. 2376 * 2377 * Recursive transactions are not disturbed by journal abort until the 2378 * final jbd2_journal_stop, which will receive the -EIO error. 2379 * 2380 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2381 * which will be recorded (if possible) in the journal superblock. This 2382 * allows a client to record failure conditions in the middle of a 2383 * transaction without having to complete the transaction to record the 2384 * failure to disk. ext3_error, for example, now uses this 2385 * functionality. 2386 * 2387 */ 2388 2389 void jbd2_journal_abort(journal_t *journal, int errno) 2390 { 2391 transaction_t *transaction; 2392 2393 /* 2394 * Lock the aborting procedure until everything is done, this avoid 2395 * races between filesystem's error handling flow (e.g. ext4_abort()), 2396 * ensure panic after the error info is written into journal's 2397 * superblock. 2398 */ 2399 mutex_lock(&journal->j_abort_mutex); 2400 /* 2401 * ESHUTDOWN always takes precedence because a file system check 2402 * caused by any other journal abort error is not required after 2403 * a shutdown triggered. 2404 */ 2405 write_lock(&journal->j_state_lock); 2406 if (journal->j_flags & JBD2_ABORT) { 2407 int old_errno = journal->j_errno; 2408 2409 write_unlock(&journal->j_state_lock); 2410 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2411 journal->j_errno = errno; 2412 jbd2_journal_update_sb_errno(journal); 2413 } 2414 mutex_unlock(&journal->j_abort_mutex); 2415 return; 2416 } 2417 2418 /* 2419 * Mark the abort as occurred and start current running transaction 2420 * to release all journaled buffer. 2421 */ 2422 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2423 2424 journal->j_flags |= JBD2_ABORT; 2425 journal->j_errno = errno; 2426 transaction = journal->j_running_transaction; 2427 if (transaction) 2428 __jbd2_log_start_commit(journal, transaction->t_tid); 2429 write_unlock(&journal->j_state_lock); 2430 2431 /* 2432 * Record errno to the journal super block, so that fsck and jbd2 2433 * layer could realise that a filesystem check is needed. 2434 */ 2435 jbd2_journal_update_sb_errno(journal); 2436 mutex_unlock(&journal->j_abort_mutex); 2437 } 2438 2439 /** 2440 * int jbd2_journal_errno () - returns the journal's error state. 2441 * @journal: journal to examine. 2442 * 2443 * This is the errno number set with jbd2_journal_abort(), the last 2444 * time the journal was mounted - if the journal was stopped 2445 * without calling abort this will be 0. 2446 * 2447 * If the journal has been aborted on this mount time -EROFS will 2448 * be returned. 2449 */ 2450 int jbd2_journal_errno(journal_t *journal) 2451 { 2452 int err; 2453 2454 read_lock(&journal->j_state_lock); 2455 if (journal->j_flags & JBD2_ABORT) 2456 err = -EROFS; 2457 else 2458 err = journal->j_errno; 2459 read_unlock(&journal->j_state_lock); 2460 return err; 2461 } 2462 2463 /** 2464 * int jbd2_journal_clear_err () - clears the journal's error state 2465 * @journal: journal to act on. 2466 * 2467 * An error must be cleared or acked to take a FS out of readonly 2468 * mode. 2469 */ 2470 int jbd2_journal_clear_err(journal_t *journal) 2471 { 2472 int err = 0; 2473 2474 write_lock(&journal->j_state_lock); 2475 if (journal->j_flags & JBD2_ABORT) 2476 err = -EROFS; 2477 else 2478 journal->j_errno = 0; 2479 write_unlock(&journal->j_state_lock); 2480 return err; 2481 } 2482 2483 /** 2484 * void jbd2_journal_ack_err() - Ack journal err. 2485 * @journal: journal to act on. 2486 * 2487 * An error must be cleared or acked to take a FS out of readonly 2488 * mode. 2489 */ 2490 void jbd2_journal_ack_err(journal_t *journal) 2491 { 2492 write_lock(&journal->j_state_lock); 2493 if (journal->j_errno) 2494 journal->j_flags |= JBD2_ACK_ERR; 2495 write_unlock(&journal->j_state_lock); 2496 } 2497 2498 int jbd2_journal_blocks_per_page(struct inode *inode) 2499 { 2500 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2501 } 2502 2503 /* 2504 * helper functions to deal with 32 or 64bit block numbers. 2505 */ 2506 size_t journal_tag_bytes(journal_t *journal) 2507 { 2508 size_t sz; 2509 2510 if (jbd2_has_feature_csum3(journal)) 2511 return sizeof(journal_block_tag3_t); 2512 2513 sz = sizeof(journal_block_tag_t); 2514 2515 if (jbd2_has_feature_csum2(journal)) 2516 sz += sizeof(__u16); 2517 2518 if (jbd2_has_feature_64bit(journal)) 2519 return sz; 2520 else 2521 return sz - sizeof(__u32); 2522 } 2523 2524 /* 2525 * JBD memory management 2526 * 2527 * These functions are used to allocate block-sized chunks of memory 2528 * used for making copies of buffer_head data. Very often it will be 2529 * page-sized chunks of data, but sometimes it will be in 2530 * sub-page-size chunks. (For example, 16k pages on Power systems 2531 * with a 4k block file system.) For blocks smaller than a page, we 2532 * use a SLAB allocator. There are slab caches for each block size, 2533 * which are allocated at mount time, if necessary, and we only free 2534 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2535 * this reason we don't need to a mutex to protect access to 2536 * jbd2_slab[] allocating or releasing memory; only in 2537 * jbd2_journal_create_slab(). 2538 */ 2539 #define JBD2_MAX_SLABS 8 2540 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2541 2542 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2543 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2544 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2545 }; 2546 2547 2548 static void jbd2_journal_destroy_slabs(void) 2549 { 2550 int i; 2551 2552 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2553 kmem_cache_destroy(jbd2_slab[i]); 2554 jbd2_slab[i] = NULL; 2555 } 2556 } 2557 2558 static int jbd2_journal_create_slab(size_t size) 2559 { 2560 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2561 int i = order_base_2(size) - 10; 2562 size_t slab_size; 2563 2564 if (size == PAGE_SIZE) 2565 return 0; 2566 2567 if (i >= JBD2_MAX_SLABS) 2568 return -EINVAL; 2569 2570 if (unlikely(i < 0)) 2571 i = 0; 2572 mutex_lock(&jbd2_slab_create_mutex); 2573 if (jbd2_slab[i]) { 2574 mutex_unlock(&jbd2_slab_create_mutex); 2575 return 0; /* Already created */ 2576 } 2577 2578 slab_size = 1 << (i+10); 2579 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2580 slab_size, 0, NULL); 2581 mutex_unlock(&jbd2_slab_create_mutex); 2582 if (!jbd2_slab[i]) { 2583 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2584 return -ENOMEM; 2585 } 2586 return 0; 2587 } 2588 2589 static struct kmem_cache *get_slab(size_t size) 2590 { 2591 int i = order_base_2(size) - 10; 2592 2593 BUG_ON(i >= JBD2_MAX_SLABS); 2594 if (unlikely(i < 0)) 2595 i = 0; 2596 BUG_ON(jbd2_slab[i] == NULL); 2597 return jbd2_slab[i]; 2598 } 2599 2600 void *jbd2_alloc(size_t size, gfp_t flags) 2601 { 2602 void *ptr; 2603 2604 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2605 2606 if (size < PAGE_SIZE) 2607 ptr = kmem_cache_alloc(get_slab(size), flags); 2608 else 2609 ptr = (void *)__get_free_pages(flags, get_order(size)); 2610 2611 /* Check alignment; SLUB has gotten this wrong in the past, 2612 * and this can lead to user data corruption! */ 2613 BUG_ON(((unsigned long) ptr) & (size-1)); 2614 2615 return ptr; 2616 } 2617 2618 void jbd2_free(void *ptr, size_t size) 2619 { 2620 if (size < PAGE_SIZE) 2621 kmem_cache_free(get_slab(size), ptr); 2622 else 2623 free_pages((unsigned long)ptr, get_order(size)); 2624 }; 2625 2626 /* 2627 * Journal_head storage management 2628 */ 2629 static struct kmem_cache *jbd2_journal_head_cache; 2630 #ifdef CONFIG_JBD2_DEBUG 2631 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2632 #endif 2633 2634 static int __init jbd2_journal_init_journal_head_cache(void) 2635 { 2636 J_ASSERT(!jbd2_journal_head_cache); 2637 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2638 sizeof(struct journal_head), 2639 0, /* offset */ 2640 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2641 NULL); /* ctor */ 2642 if (!jbd2_journal_head_cache) { 2643 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2644 return -ENOMEM; 2645 } 2646 return 0; 2647 } 2648 2649 static void jbd2_journal_destroy_journal_head_cache(void) 2650 { 2651 kmem_cache_destroy(jbd2_journal_head_cache); 2652 jbd2_journal_head_cache = NULL; 2653 } 2654 2655 /* 2656 * journal_head splicing and dicing 2657 */ 2658 static struct journal_head *journal_alloc_journal_head(void) 2659 { 2660 struct journal_head *ret; 2661 2662 #ifdef CONFIG_JBD2_DEBUG 2663 atomic_inc(&nr_journal_heads); 2664 #endif 2665 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2666 if (!ret) { 2667 jbd_debug(1, "out of memory for journal_head\n"); 2668 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2669 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2670 GFP_NOFS | __GFP_NOFAIL); 2671 } 2672 if (ret) 2673 spin_lock_init(&ret->b_state_lock); 2674 return ret; 2675 } 2676 2677 static void journal_free_journal_head(struct journal_head *jh) 2678 { 2679 #ifdef CONFIG_JBD2_DEBUG 2680 atomic_dec(&nr_journal_heads); 2681 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2682 #endif 2683 kmem_cache_free(jbd2_journal_head_cache, jh); 2684 } 2685 2686 /* 2687 * A journal_head is attached to a buffer_head whenever JBD has an 2688 * interest in the buffer. 2689 * 2690 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2691 * is set. This bit is tested in core kernel code where we need to take 2692 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2693 * there. 2694 * 2695 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2696 * 2697 * When a buffer has its BH_JBD bit set it is immune from being released by 2698 * core kernel code, mainly via ->b_count. 2699 * 2700 * A journal_head is detached from its buffer_head when the journal_head's 2701 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2702 * transaction (b_cp_transaction) hold their references to b_jcount. 2703 * 2704 * Various places in the kernel want to attach a journal_head to a buffer_head 2705 * _before_ attaching the journal_head to a transaction. To protect the 2706 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2707 * journal_head's b_jcount refcount by one. The caller must call 2708 * jbd2_journal_put_journal_head() to undo this. 2709 * 2710 * So the typical usage would be: 2711 * 2712 * (Attach a journal_head if needed. Increments b_jcount) 2713 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2714 * ... 2715 * (Get another reference for transaction) 2716 * jbd2_journal_grab_journal_head(bh); 2717 * jh->b_transaction = xxx; 2718 * (Put original reference) 2719 * jbd2_journal_put_journal_head(jh); 2720 */ 2721 2722 /* 2723 * Give a buffer_head a journal_head. 2724 * 2725 * May sleep. 2726 */ 2727 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2728 { 2729 struct journal_head *jh; 2730 struct journal_head *new_jh = NULL; 2731 2732 repeat: 2733 if (!buffer_jbd(bh)) 2734 new_jh = journal_alloc_journal_head(); 2735 2736 jbd_lock_bh_journal_head(bh); 2737 if (buffer_jbd(bh)) { 2738 jh = bh2jh(bh); 2739 } else { 2740 J_ASSERT_BH(bh, 2741 (atomic_read(&bh->b_count) > 0) || 2742 (bh->b_page && bh->b_page->mapping)); 2743 2744 if (!new_jh) { 2745 jbd_unlock_bh_journal_head(bh); 2746 goto repeat; 2747 } 2748 2749 jh = new_jh; 2750 new_jh = NULL; /* We consumed it */ 2751 set_buffer_jbd(bh); 2752 bh->b_private = jh; 2753 jh->b_bh = bh; 2754 get_bh(bh); 2755 BUFFER_TRACE(bh, "added journal_head"); 2756 } 2757 jh->b_jcount++; 2758 jbd_unlock_bh_journal_head(bh); 2759 if (new_jh) 2760 journal_free_journal_head(new_jh); 2761 return bh->b_private; 2762 } 2763 2764 /* 2765 * Grab a ref against this buffer_head's journal_head. If it ended up not 2766 * having a journal_head, return NULL 2767 */ 2768 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2769 { 2770 struct journal_head *jh = NULL; 2771 2772 jbd_lock_bh_journal_head(bh); 2773 if (buffer_jbd(bh)) { 2774 jh = bh2jh(bh); 2775 jh->b_jcount++; 2776 } 2777 jbd_unlock_bh_journal_head(bh); 2778 return jh; 2779 } 2780 2781 static void __journal_remove_journal_head(struct buffer_head *bh) 2782 { 2783 struct journal_head *jh = bh2jh(bh); 2784 2785 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2786 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2787 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2788 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2789 J_ASSERT_BH(bh, buffer_jbd(bh)); 2790 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2791 BUFFER_TRACE(bh, "remove journal_head"); 2792 2793 /* Unlink before dropping the lock */ 2794 bh->b_private = NULL; 2795 jh->b_bh = NULL; /* debug, really */ 2796 clear_buffer_jbd(bh); 2797 } 2798 2799 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2800 { 2801 if (jh->b_frozen_data) { 2802 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2803 jbd2_free(jh->b_frozen_data, b_size); 2804 } 2805 if (jh->b_committed_data) { 2806 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2807 jbd2_free(jh->b_committed_data, b_size); 2808 } 2809 journal_free_journal_head(jh); 2810 } 2811 2812 /* 2813 * Drop a reference on the passed journal_head. If it fell to zero then 2814 * release the journal_head from the buffer_head. 2815 */ 2816 void jbd2_journal_put_journal_head(struct journal_head *jh) 2817 { 2818 struct buffer_head *bh = jh2bh(jh); 2819 2820 jbd_lock_bh_journal_head(bh); 2821 J_ASSERT_JH(jh, jh->b_jcount > 0); 2822 --jh->b_jcount; 2823 if (!jh->b_jcount) { 2824 __journal_remove_journal_head(bh); 2825 jbd_unlock_bh_journal_head(bh); 2826 journal_release_journal_head(jh, bh->b_size); 2827 __brelse(bh); 2828 } else { 2829 jbd_unlock_bh_journal_head(bh); 2830 } 2831 } 2832 2833 /* 2834 * Initialize jbd inode head 2835 */ 2836 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2837 { 2838 jinode->i_transaction = NULL; 2839 jinode->i_next_transaction = NULL; 2840 jinode->i_vfs_inode = inode; 2841 jinode->i_flags = 0; 2842 jinode->i_dirty_start = 0; 2843 jinode->i_dirty_end = 0; 2844 INIT_LIST_HEAD(&jinode->i_list); 2845 } 2846 2847 /* 2848 * Function to be called before we start removing inode from memory (i.e., 2849 * clear_inode() is a fine place to be called from). It removes inode from 2850 * transaction's lists. 2851 */ 2852 void jbd2_journal_release_jbd_inode(journal_t *journal, 2853 struct jbd2_inode *jinode) 2854 { 2855 if (!journal) 2856 return; 2857 restart: 2858 spin_lock(&journal->j_list_lock); 2859 /* Is commit writing out inode - we have to wait */ 2860 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2861 wait_queue_head_t *wq; 2862 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2863 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2864 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2865 spin_unlock(&journal->j_list_lock); 2866 schedule(); 2867 finish_wait(wq, &wait.wq_entry); 2868 goto restart; 2869 } 2870 2871 if (jinode->i_transaction) { 2872 list_del(&jinode->i_list); 2873 jinode->i_transaction = NULL; 2874 } 2875 spin_unlock(&journal->j_list_lock); 2876 } 2877 2878 2879 #ifdef CONFIG_PROC_FS 2880 2881 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2882 2883 static void __init jbd2_create_jbd_stats_proc_entry(void) 2884 { 2885 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2886 } 2887 2888 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2889 { 2890 if (proc_jbd2_stats) 2891 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2892 } 2893 2894 #else 2895 2896 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2897 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2898 2899 #endif 2900 2901 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2902 2903 static int __init jbd2_journal_init_inode_cache(void) 2904 { 2905 J_ASSERT(!jbd2_inode_cache); 2906 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2907 if (!jbd2_inode_cache) { 2908 pr_emerg("JBD2: failed to create inode cache\n"); 2909 return -ENOMEM; 2910 } 2911 return 0; 2912 } 2913 2914 static int __init jbd2_journal_init_handle_cache(void) 2915 { 2916 J_ASSERT(!jbd2_handle_cache); 2917 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2918 if (!jbd2_handle_cache) { 2919 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2920 return -ENOMEM; 2921 } 2922 return 0; 2923 } 2924 2925 static void jbd2_journal_destroy_inode_cache(void) 2926 { 2927 kmem_cache_destroy(jbd2_inode_cache); 2928 jbd2_inode_cache = NULL; 2929 } 2930 2931 static void jbd2_journal_destroy_handle_cache(void) 2932 { 2933 kmem_cache_destroy(jbd2_handle_cache); 2934 jbd2_handle_cache = NULL; 2935 } 2936 2937 /* 2938 * Module startup and shutdown 2939 */ 2940 2941 static int __init journal_init_caches(void) 2942 { 2943 int ret; 2944 2945 ret = jbd2_journal_init_revoke_record_cache(); 2946 if (ret == 0) 2947 ret = jbd2_journal_init_revoke_table_cache(); 2948 if (ret == 0) 2949 ret = jbd2_journal_init_journal_head_cache(); 2950 if (ret == 0) 2951 ret = jbd2_journal_init_handle_cache(); 2952 if (ret == 0) 2953 ret = jbd2_journal_init_inode_cache(); 2954 if (ret == 0) 2955 ret = jbd2_journal_init_transaction_cache(); 2956 return ret; 2957 } 2958 2959 static void jbd2_journal_destroy_caches(void) 2960 { 2961 jbd2_journal_destroy_revoke_record_cache(); 2962 jbd2_journal_destroy_revoke_table_cache(); 2963 jbd2_journal_destroy_journal_head_cache(); 2964 jbd2_journal_destroy_handle_cache(); 2965 jbd2_journal_destroy_inode_cache(); 2966 jbd2_journal_destroy_transaction_cache(); 2967 jbd2_journal_destroy_slabs(); 2968 } 2969 2970 static int __init journal_init(void) 2971 { 2972 int ret; 2973 2974 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2975 2976 ret = journal_init_caches(); 2977 if (ret == 0) { 2978 jbd2_create_jbd_stats_proc_entry(); 2979 } else { 2980 jbd2_journal_destroy_caches(); 2981 } 2982 return ret; 2983 } 2984 2985 static void __exit journal_exit(void) 2986 { 2987 #ifdef CONFIG_JBD2_DEBUG 2988 int n = atomic_read(&nr_journal_heads); 2989 if (n) 2990 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2991 #endif 2992 jbd2_remove_jbd_stats_proc_entry(); 2993 jbd2_journal_destroy_caches(); 2994 } 2995 2996 MODULE_LICENSE("GPL"); 2997 module_init(journal_init); 2998 module_exit(journal_exit); 2999 3000