xref: /openbmc/linux/fs/jbd2/journal.c (revision 7dd65feb)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/jbd2.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/page.h>
48 
49 EXPORT_SYMBOL(jbd2_journal_start);
50 EXPORT_SYMBOL(jbd2_journal_restart);
51 EXPORT_SYMBOL(jbd2_journal_extend);
52 EXPORT_SYMBOL(jbd2_journal_stop);
53 EXPORT_SYMBOL(jbd2_journal_lock_updates);
54 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
55 EXPORT_SYMBOL(jbd2_journal_get_write_access);
56 EXPORT_SYMBOL(jbd2_journal_get_create_access);
57 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
58 EXPORT_SYMBOL(jbd2_journal_set_triggers);
59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
60 EXPORT_SYMBOL(jbd2_journal_release_buffer);
61 EXPORT_SYMBOL(jbd2_journal_forget);
62 #if 0
63 EXPORT_SYMBOL(journal_sync_buffer);
64 #endif
65 EXPORT_SYMBOL(jbd2_journal_flush);
66 EXPORT_SYMBOL(jbd2_journal_revoke);
67 
68 EXPORT_SYMBOL(jbd2_journal_init_dev);
69 EXPORT_SYMBOL(jbd2_journal_init_inode);
70 EXPORT_SYMBOL(jbd2_journal_update_format);
71 EXPORT_SYMBOL(jbd2_journal_check_used_features);
72 EXPORT_SYMBOL(jbd2_journal_check_available_features);
73 EXPORT_SYMBOL(jbd2_journal_set_features);
74 EXPORT_SYMBOL(jbd2_journal_load);
75 EXPORT_SYMBOL(jbd2_journal_destroy);
76 EXPORT_SYMBOL(jbd2_journal_abort);
77 EXPORT_SYMBOL(jbd2_journal_errno);
78 EXPORT_SYMBOL(jbd2_journal_ack_err);
79 EXPORT_SYMBOL(jbd2_journal_clear_err);
80 EXPORT_SYMBOL(jbd2_log_wait_commit);
81 EXPORT_SYMBOL(jbd2_log_start_commit);
82 EXPORT_SYMBOL(jbd2_journal_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
84 EXPORT_SYMBOL(jbd2_journal_wipe);
85 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
86 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
87 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
88 EXPORT_SYMBOL(jbd2_journal_force_commit);
89 EXPORT_SYMBOL(jbd2_journal_file_inode);
90 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
91 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
93 
94 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
95 static void __journal_abort_soft (journal_t *journal, int errno);
96 
97 /*
98  * Helper function used to manage commit timeouts
99  */
100 
101 static void commit_timeout(unsigned long __data)
102 {
103 	struct task_struct * p = (struct task_struct *) __data;
104 
105 	wake_up_process(p);
106 }
107 
108 /*
109  * kjournald2: The main thread function used to manage a logging device
110  * journal.
111  *
112  * This kernel thread is responsible for two things:
113  *
114  * 1) COMMIT:  Every so often we need to commit the current state of the
115  *    filesystem to disk.  The journal thread is responsible for writing
116  *    all of the metadata buffers to disk.
117  *
118  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
119  *    of the data in that part of the log has been rewritten elsewhere on
120  *    the disk.  Flushing these old buffers to reclaim space in the log is
121  *    known as checkpointing, and this thread is responsible for that job.
122  */
123 
124 static int kjournald2(void *arg)
125 {
126 	journal_t *journal = arg;
127 	transaction_t *transaction;
128 
129 	/*
130 	 * Set up an interval timer which can be used to trigger a commit wakeup
131 	 * after the commit interval expires
132 	 */
133 	setup_timer(&journal->j_commit_timer, commit_timeout,
134 			(unsigned long)current);
135 
136 	/* Record that the journal thread is running */
137 	journal->j_task = current;
138 	wake_up(&journal->j_wait_done_commit);
139 
140 	/*
141 	 * And now, wait forever for commit wakeup events.
142 	 */
143 	spin_lock(&journal->j_state_lock);
144 
145 loop:
146 	if (journal->j_flags & JBD2_UNMOUNT)
147 		goto end_loop;
148 
149 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
150 		journal->j_commit_sequence, journal->j_commit_request);
151 
152 	if (journal->j_commit_sequence != journal->j_commit_request) {
153 		jbd_debug(1, "OK, requests differ\n");
154 		spin_unlock(&journal->j_state_lock);
155 		del_timer_sync(&journal->j_commit_timer);
156 		jbd2_journal_commit_transaction(journal);
157 		spin_lock(&journal->j_state_lock);
158 		goto loop;
159 	}
160 
161 	wake_up(&journal->j_wait_done_commit);
162 	if (freezing(current)) {
163 		/*
164 		 * The simpler the better. Flushing journal isn't a
165 		 * good idea, because that depends on threads that may
166 		 * be already stopped.
167 		 */
168 		jbd_debug(1, "Now suspending kjournald2\n");
169 		spin_unlock(&journal->j_state_lock);
170 		refrigerator();
171 		spin_lock(&journal->j_state_lock);
172 	} else {
173 		/*
174 		 * We assume on resume that commits are already there,
175 		 * so we don't sleep
176 		 */
177 		DEFINE_WAIT(wait);
178 		int should_sleep = 1;
179 
180 		prepare_to_wait(&journal->j_wait_commit, &wait,
181 				TASK_INTERRUPTIBLE);
182 		if (journal->j_commit_sequence != journal->j_commit_request)
183 			should_sleep = 0;
184 		transaction = journal->j_running_transaction;
185 		if (transaction && time_after_eq(jiffies,
186 						transaction->t_expires))
187 			should_sleep = 0;
188 		if (journal->j_flags & JBD2_UNMOUNT)
189 			should_sleep = 0;
190 		if (should_sleep) {
191 			spin_unlock(&journal->j_state_lock);
192 			schedule();
193 			spin_lock(&journal->j_state_lock);
194 		}
195 		finish_wait(&journal->j_wait_commit, &wait);
196 	}
197 
198 	jbd_debug(1, "kjournald2 wakes\n");
199 
200 	/*
201 	 * Were we woken up by a commit wakeup event?
202 	 */
203 	transaction = journal->j_running_transaction;
204 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
205 		journal->j_commit_request = transaction->t_tid;
206 		jbd_debug(1, "woke because of timeout\n");
207 	}
208 	goto loop;
209 
210 end_loop:
211 	spin_unlock(&journal->j_state_lock);
212 	del_timer_sync(&journal->j_commit_timer);
213 	journal->j_task = NULL;
214 	wake_up(&journal->j_wait_done_commit);
215 	jbd_debug(1, "Journal thread exiting.\n");
216 	return 0;
217 }
218 
219 static int jbd2_journal_start_thread(journal_t *journal)
220 {
221 	struct task_struct *t;
222 
223 	t = kthread_run(kjournald2, journal, "jbd2/%s",
224 			journal->j_devname);
225 	if (IS_ERR(t))
226 		return PTR_ERR(t);
227 
228 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229 	return 0;
230 }
231 
232 static void journal_kill_thread(journal_t *journal)
233 {
234 	spin_lock(&journal->j_state_lock);
235 	journal->j_flags |= JBD2_UNMOUNT;
236 
237 	while (journal->j_task) {
238 		wake_up(&journal->j_wait_commit);
239 		spin_unlock(&journal->j_state_lock);
240 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
241 		spin_lock(&journal->j_state_lock);
242 	}
243 	spin_unlock(&journal->j_state_lock);
244 }
245 
246 /*
247  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
248  *
249  * Writes a metadata buffer to a given disk block.  The actual IO is not
250  * performed but a new buffer_head is constructed which labels the data
251  * to be written with the correct destination disk block.
252  *
253  * Any magic-number escaping which needs to be done will cause a
254  * copy-out here.  If the buffer happens to start with the
255  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
256  * magic number is only written to the log for descripter blocks.  In
257  * this case, we copy the data and replace the first word with 0, and we
258  * return a result code which indicates that this buffer needs to be
259  * marked as an escaped buffer in the corresponding log descriptor
260  * block.  The missing word can then be restored when the block is read
261  * during recovery.
262  *
263  * If the source buffer has already been modified by a new transaction
264  * since we took the last commit snapshot, we use the frozen copy of
265  * that data for IO.  If we end up using the existing buffer_head's data
266  * for the write, then we *have* to lock the buffer to prevent anyone
267  * else from using and possibly modifying it while the IO is in
268  * progress.
269  *
270  * The function returns a pointer to the buffer_heads to be used for IO.
271  *
272  * We assume that the journal has already been locked in this function.
273  *
274  * Return value:
275  *  <0: Error
276  * >=0: Finished OK
277  *
278  * On success:
279  * Bit 0 set == escape performed on the data
280  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
281  */
282 
283 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
284 				  struct journal_head  *jh_in,
285 				  struct journal_head **jh_out,
286 				  unsigned long long blocknr)
287 {
288 	int need_copy_out = 0;
289 	int done_copy_out = 0;
290 	int do_escape = 0;
291 	char *mapped_data;
292 	struct buffer_head *new_bh;
293 	struct journal_head *new_jh;
294 	struct page *new_page;
295 	unsigned int new_offset;
296 	struct buffer_head *bh_in = jh2bh(jh_in);
297 	struct jbd2_buffer_trigger_type *triggers;
298 	journal_t *journal = transaction->t_journal;
299 
300 	/*
301 	 * The buffer really shouldn't be locked: only the current committing
302 	 * transaction is allowed to write it, so nobody else is allowed
303 	 * to do any IO.
304 	 *
305 	 * akpm: except if we're journalling data, and write() output is
306 	 * also part of a shared mapping, and another thread has
307 	 * decided to launch a writepage() against this buffer.
308 	 */
309 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310 
311 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312 	/* keep subsequent assertions sane */
313 	new_bh->b_state = 0;
314 	init_buffer(new_bh, NULL, NULL);
315 	atomic_set(&new_bh->b_count, 1);
316 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
317 
318 	/*
319 	 * If a new transaction has already done a buffer copy-out, then
320 	 * we use that version of the data for the commit.
321 	 */
322 	jbd_lock_bh_state(bh_in);
323 repeat:
324 	if (jh_in->b_frozen_data) {
325 		done_copy_out = 1;
326 		new_page = virt_to_page(jh_in->b_frozen_data);
327 		new_offset = offset_in_page(jh_in->b_frozen_data);
328 		triggers = jh_in->b_frozen_triggers;
329 	} else {
330 		new_page = jh2bh(jh_in)->b_page;
331 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
332 		triggers = jh_in->b_triggers;
333 	}
334 
335 	mapped_data = kmap_atomic(new_page, KM_USER0);
336 	/*
337 	 * Fire any commit trigger.  Do this before checking for escaping,
338 	 * as the trigger may modify the magic offset.  If a copy-out
339 	 * happens afterwards, it will have the correct data in the buffer.
340 	 */
341 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
342 				   triggers);
343 
344 	/*
345 	 * Check for escaping
346 	 */
347 	if (*((__be32 *)(mapped_data + new_offset)) ==
348 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
349 		need_copy_out = 1;
350 		do_escape = 1;
351 	}
352 	kunmap_atomic(mapped_data, KM_USER0);
353 
354 	/*
355 	 * Do we need to do a data copy?
356 	 */
357 	if (need_copy_out && !done_copy_out) {
358 		char *tmp;
359 
360 		jbd_unlock_bh_state(bh_in);
361 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
362 		if (!tmp) {
363 			jbd2_journal_put_journal_head(new_jh);
364 			return -ENOMEM;
365 		}
366 		jbd_lock_bh_state(bh_in);
367 		if (jh_in->b_frozen_data) {
368 			jbd2_free(tmp, bh_in->b_size);
369 			goto repeat;
370 		}
371 
372 		jh_in->b_frozen_data = tmp;
373 		mapped_data = kmap_atomic(new_page, KM_USER0);
374 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
375 		kunmap_atomic(mapped_data, KM_USER0);
376 
377 		new_page = virt_to_page(tmp);
378 		new_offset = offset_in_page(tmp);
379 		done_copy_out = 1;
380 
381 		/*
382 		 * This isn't strictly necessary, as we're using frozen
383 		 * data for the escaping, but it keeps consistency with
384 		 * b_frozen_data usage.
385 		 */
386 		jh_in->b_frozen_triggers = jh_in->b_triggers;
387 	}
388 
389 	/*
390 	 * Did we need to do an escaping?  Now we've done all the
391 	 * copying, we can finally do so.
392 	 */
393 	if (do_escape) {
394 		mapped_data = kmap_atomic(new_page, KM_USER0);
395 		*((unsigned int *)(mapped_data + new_offset)) = 0;
396 		kunmap_atomic(mapped_data, KM_USER0);
397 	}
398 
399 	set_bh_page(new_bh, new_page, new_offset);
400 	new_jh->b_transaction = NULL;
401 	new_bh->b_size = jh2bh(jh_in)->b_size;
402 	new_bh->b_bdev = transaction->t_journal->j_dev;
403 	new_bh->b_blocknr = blocknr;
404 	set_buffer_mapped(new_bh);
405 	set_buffer_dirty(new_bh);
406 
407 	*jh_out = new_jh;
408 
409 	/*
410 	 * The to-be-written buffer needs to get moved to the io queue,
411 	 * and the original buffer whose contents we are shadowing or
412 	 * copying is moved to the transaction's shadow queue.
413 	 */
414 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
415 	spin_lock(&journal->j_list_lock);
416 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
417 	spin_unlock(&journal->j_list_lock);
418 	jbd_unlock_bh_state(bh_in);
419 
420 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
421 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
422 
423 	return do_escape | (done_copy_out << 1);
424 }
425 
426 /*
427  * Allocation code for the journal file.  Manage the space left in the
428  * journal, so that we can begin checkpointing when appropriate.
429  */
430 
431 /*
432  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
433  *
434  * Called with the journal already locked.
435  *
436  * Called under j_state_lock
437  */
438 
439 int __jbd2_log_space_left(journal_t *journal)
440 {
441 	int left = journal->j_free;
442 
443 	assert_spin_locked(&journal->j_state_lock);
444 
445 	/*
446 	 * Be pessimistic here about the number of those free blocks which
447 	 * might be required for log descriptor control blocks.
448 	 */
449 
450 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
451 
452 	left -= MIN_LOG_RESERVED_BLOCKS;
453 
454 	if (left <= 0)
455 		return 0;
456 	left -= (left >> 3);
457 	return left;
458 }
459 
460 /*
461  * Called under j_state_lock.  Returns true if a transaction commit was started.
462  */
463 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
464 {
465 	/*
466 	 * Are we already doing a recent enough commit?
467 	 */
468 	if (!tid_geq(journal->j_commit_request, target)) {
469 		/*
470 		 * We want a new commit: OK, mark the request and wakup the
471 		 * commit thread.  We do _not_ do the commit ourselves.
472 		 */
473 
474 		journal->j_commit_request = target;
475 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
476 			  journal->j_commit_request,
477 			  journal->j_commit_sequence);
478 		wake_up(&journal->j_wait_commit);
479 		return 1;
480 	}
481 	return 0;
482 }
483 
484 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
485 {
486 	int ret;
487 
488 	spin_lock(&journal->j_state_lock);
489 	ret = __jbd2_log_start_commit(journal, tid);
490 	spin_unlock(&journal->j_state_lock);
491 	return ret;
492 }
493 
494 /*
495  * Force and wait upon a commit if the calling process is not within
496  * transaction.  This is used for forcing out undo-protected data which contains
497  * bitmaps, when the fs is running out of space.
498  *
499  * We can only force the running transaction if we don't have an active handle;
500  * otherwise, we will deadlock.
501  *
502  * Returns true if a transaction was started.
503  */
504 int jbd2_journal_force_commit_nested(journal_t *journal)
505 {
506 	transaction_t *transaction = NULL;
507 	tid_t tid;
508 
509 	spin_lock(&journal->j_state_lock);
510 	if (journal->j_running_transaction && !current->journal_info) {
511 		transaction = journal->j_running_transaction;
512 		__jbd2_log_start_commit(journal, transaction->t_tid);
513 	} else if (journal->j_committing_transaction)
514 		transaction = journal->j_committing_transaction;
515 
516 	if (!transaction) {
517 		spin_unlock(&journal->j_state_lock);
518 		return 0;	/* Nothing to retry */
519 	}
520 
521 	tid = transaction->t_tid;
522 	spin_unlock(&journal->j_state_lock);
523 	jbd2_log_wait_commit(journal, tid);
524 	return 1;
525 }
526 
527 /*
528  * Start a commit of the current running transaction (if any).  Returns true
529  * if a transaction is going to be committed (or is currently already
530  * committing), and fills its tid in at *ptid
531  */
532 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
533 {
534 	int ret = 0;
535 
536 	spin_lock(&journal->j_state_lock);
537 	if (journal->j_running_transaction) {
538 		tid_t tid = journal->j_running_transaction->t_tid;
539 
540 		__jbd2_log_start_commit(journal, tid);
541 		/* There's a running transaction and we've just made sure
542 		 * it's commit has been scheduled. */
543 		if (ptid)
544 			*ptid = tid;
545 		ret = 1;
546 	} else if (journal->j_committing_transaction) {
547 		/*
548 		 * If ext3_write_super() recently started a commit, then we
549 		 * have to wait for completion of that transaction
550 		 */
551 		if (ptid)
552 			*ptid = journal->j_committing_transaction->t_tid;
553 		ret = 1;
554 	}
555 	spin_unlock(&journal->j_state_lock);
556 	return ret;
557 }
558 
559 /*
560  * Wait for a specified commit to complete.
561  * The caller may not hold the journal lock.
562  */
563 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
564 {
565 	int err = 0;
566 
567 #ifdef CONFIG_JBD2_DEBUG
568 	spin_lock(&journal->j_state_lock);
569 	if (!tid_geq(journal->j_commit_request, tid)) {
570 		printk(KERN_EMERG
571 		       "%s: error: j_commit_request=%d, tid=%d\n",
572 		       __func__, journal->j_commit_request, tid);
573 	}
574 	spin_unlock(&journal->j_state_lock);
575 #endif
576 	spin_lock(&journal->j_state_lock);
577 	while (tid_gt(tid, journal->j_commit_sequence)) {
578 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579 				  tid, journal->j_commit_sequence);
580 		wake_up(&journal->j_wait_commit);
581 		spin_unlock(&journal->j_state_lock);
582 		wait_event(journal->j_wait_done_commit,
583 				!tid_gt(tid, journal->j_commit_sequence));
584 		spin_lock(&journal->j_state_lock);
585 	}
586 	spin_unlock(&journal->j_state_lock);
587 
588 	if (unlikely(is_journal_aborted(journal))) {
589 		printk(KERN_EMERG "journal commit I/O error\n");
590 		err = -EIO;
591 	}
592 	return err;
593 }
594 
595 /*
596  * Log buffer allocation routines:
597  */
598 
599 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
600 {
601 	unsigned long blocknr;
602 
603 	spin_lock(&journal->j_state_lock);
604 	J_ASSERT(journal->j_free > 1);
605 
606 	blocknr = journal->j_head;
607 	journal->j_head++;
608 	journal->j_free--;
609 	if (journal->j_head == journal->j_last)
610 		journal->j_head = journal->j_first;
611 	spin_unlock(&journal->j_state_lock);
612 	return jbd2_journal_bmap(journal, blocknr, retp);
613 }
614 
615 /*
616  * Conversion of logical to physical block numbers for the journal
617  *
618  * On external journals the journal blocks are identity-mapped, so
619  * this is a no-op.  If needed, we can use j_blk_offset - everything is
620  * ready.
621  */
622 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
623 		 unsigned long long *retp)
624 {
625 	int err = 0;
626 	unsigned long long ret;
627 
628 	if (journal->j_inode) {
629 		ret = bmap(journal->j_inode, blocknr);
630 		if (ret)
631 			*retp = ret;
632 		else {
633 			printk(KERN_ALERT "%s: journal block not found "
634 					"at offset %lu on %s\n",
635 			       __func__, blocknr, journal->j_devname);
636 			err = -EIO;
637 			__journal_abort_soft(journal, err);
638 		}
639 	} else {
640 		*retp = blocknr; /* +journal->j_blk_offset */
641 	}
642 	return err;
643 }
644 
645 /*
646  * We play buffer_head aliasing tricks to write data/metadata blocks to
647  * the journal without copying their contents, but for journal
648  * descriptor blocks we do need to generate bona fide buffers.
649  *
650  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
651  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
652  * But we don't bother doing that, so there will be coherency problems with
653  * mmaps of blockdevs which hold live JBD-controlled filesystems.
654  */
655 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
656 {
657 	struct buffer_head *bh;
658 	unsigned long long blocknr;
659 	int err;
660 
661 	err = jbd2_journal_next_log_block(journal, &blocknr);
662 
663 	if (err)
664 		return NULL;
665 
666 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
667 	if (!bh)
668 		return NULL;
669 	lock_buffer(bh);
670 	memset(bh->b_data, 0, journal->j_blocksize);
671 	set_buffer_uptodate(bh);
672 	unlock_buffer(bh);
673 	BUFFER_TRACE(bh, "return this buffer");
674 	return jbd2_journal_add_journal_head(bh);
675 }
676 
677 struct jbd2_stats_proc_session {
678 	journal_t *journal;
679 	struct transaction_stats_s *stats;
680 	int start;
681 	int max;
682 };
683 
684 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
685 {
686 	return *pos ? NULL : SEQ_START_TOKEN;
687 }
688 
689 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
690 {
691 	return NULL;
692 }
693 
694 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
695 {
696 	struct jbd2_stats_proc_session *s = seq->private;
697 
698 	if (v != SEQ_START_TOKEN)
699 		return 0;
700 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
701 			s->stats->ts_tid,
702 			s->journal->j_max_transaction_buffers);
703 	if (s->stats->ts_tid == 0)
704 		return 0;
705 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
706 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
707 	seq_printf(seq, "  %ums running transaction\n",
708 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
709 	seq_printf(seq, "  %ums transaction was being locked\n",
710 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
711 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
712 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
713 	seq_printf(seq, "  %ums logging transaction\n",
714 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
715 	seq_printf(seq, "  %lluus average transaction commit time\n",
716 		   div_u64(s->journal->j_average_commit_time, 1000));
717 	seq_printf(seq, "  %lu handles per transaction\n",
718 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
719 	seq_printf(seq, "  %lu blocks per transaction\n",
720 	    s->stats->run.rs_blocks / s->stats->ts_tid);
721 	seq_printf(seq, "  %lu logged blocks per transaction\n",
722 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
723 	return 0;
724 }
725 
726 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
727 {
728 }
729 
730 static const struct seq_operations jbd2_seq_info_ops = {
731 	.start  = jbd2_seq_info_start,
732 	.next   = jbd2_seq_info_next,
733 	.stop   = jbd2_seq_info_stop,
734 	.show   = jbd2_seq_info_show,
735 };
736 
737 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
738 {
739 	journal_t *journal = PDE(inode)->data;
740 	struct jbd2_stats_proc_session *s;
741 	int rc, size;
742 
743 	s = kmalloc(sizeof(*s), GFP_KERNEL);
744 	if (s == NULL)
745 		return -ENOMEM;
746 	size = sizeof(struct transaction_stats_s);
747 	s->stats = kmalloc(size, GFP_KERNEL);
748 	if (s->stats == NULL) {
749 		kfree(s);
750 		return -ENOMEM;
751 	}
752 	spin_lock(&journal->j_history_lock);
753 	memcpy(s->stats, &journal->j_stats, size);
754 	s->journal = journal;
755 	spin_unlock(&journal->j_history_lock);
756 
757 	rc = seq_open(file, &jbd2_seq_info_ops);
758 	if (rc == 0) {
759 		struct seq_file *m = file->private_data;
760 		m->private = s;
761 	} else {
762 		kfree(s->stats);
763 		kfree(s);
764 	}
765 	return rc;
766 
767 }
768 
769 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
770 {
771 	struct seq_file *seq = file->private_data;
772 	struct jbd2_stats_proc_session *s = seq->private;
773 	kfree(s->stats);
774 	kfree(s);
775 	return seq_release(inode, file);
776 }
777 
778 static const struct file_operations jbd2_seq_info_fops = {
779 	.owner		= THIS_MODULE,
780 	.open           = jbd2_seq_info_open,
781 	.read           = seq_read,
782 	.llseek         = seq_lseek,
783 	.release        = jbd2_seq_info_release,
784 };
785 
786 static struct proc_dir_entry *proc_jbd2_stats;
787 
788 static void jbd2_stats_proc_init(journal_t *journal)
789 {
790 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
791 	if (journal->j_proc_entry) {
792 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
793 				 &jbd2_seq_info_fops, journal);
794 	}
795 }
796 
797 static void jbd2_stats_proc_exit(journal_t *journal)
798 {
799 	remove_proc_entry("info", journal->j_proc_entry);
800 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
801 }
802 
803 /*
804  * Management for journal control blocks: functions to create and
805  * destroy journal_t structures, and to initialise and read existing
806  * journal blocks from disk.  */
807 
808 /* First: create and setup a journal_t object in memory.  We initialise
809  * very few fields yet: that has to wait until we have created the
810  * journal structures from from scratch, or loaded them from disk. */
811 
812 static journal_t * journal_init_common (void)
813 {
814 	journal_t *journal;
815 	int err;
816 
817 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
818 	if (!journal)
819 		goto fail;
820 
821 	init_waitqueue_head(&journal->j_wait_transaction_locked);
822 	init_waitqueue_head(&journal->j_wait_logspace);
823 	init_waitqueue_head(&journal->j_wait_done_commit);
824 	init_waitqueue_head(&journal->j_wait_checkpoint);
825 	init_waitqueue_head(&journal->j_wait_commit);
826 	init_waitqueue_head(&journal->j_wait_updates);
827 	mutex_init(&journal->j_barrier);
828 	mutex_init(&journal->j_checkpoint_mutex);
829 	spin_lock_init(&journal->j_revoke_lock);
830 	spin_lock_init(&journal->j_list_lock);
831 	spin_lock_init(&journal->j_state_lock);
832 
833 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
834 	journal->j_min_batch_time = 0;
835 	journal->j_max_batch_time = 15000; /* 15ms */
836 
837 	/* The journal is marked for error until we succeed with recovery! */
838 	journal->j_flags = JBD2_ABORT;
839 
840 	/* Set up a default-sized revoke table for the new mount. */
841 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
842 	if (err) {
843 		kfree(journal);
844 		goto fail;
845 	}
846 
847 	spin_lock_init(&journal->j_history_lock);
848 
849 	return journal;
850 fail:
851 	return NULL;
852 }
853 
854 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
855  *
856  * Create a journal structure assigned some fixed set of disk blocks to
857  * the journal.  We don't actually touch those disk blocks yet, but we
858  * need to set up all of the mapping information to tell the journaling
859  * system where the journal blocks are.
860  *
861  */
862 
863 /**
864  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
865  *  @bdev: Block device on which to create the journal
866  *  @fs_dev: Device which hold journalled filesystem for this journal.
867  *  @start: Block nr Start of journal.
868  *  @len:  Length of the journal in blocks.
869  *  @blocksize: blocksize of journalling device
870  *
871  *  Returns: a newly created journal_t *
872  *
873  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
874  *  range of blocks on an arbitrary block device.
875  *
876  */
877 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
878 			struct block_device *fs_dev,
879 			unsigned long long start, int len, int blocksize)
880 {
881 	journal_t *journal = journal_init_common();
882 	struct buffer_head *bh;
883 	char *p;
884 	int n;
885 
886 	if (!journal)
887 		return NULL;
888 
889 	/* journal descriptor can store up to n blocks -bzzz */
890 	journal->j_blocksize = blocksize;
891 	jbd2_stats_proc_init(journal);
892 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
893 	journal->j_wbufsize = n;
894 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
895 	if (!journal->j_wbuf) {
896 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
897 			__func__);
898 		goto out_err;
899 	}
900 	journal->j_dev = bdev;
901 	journal->j_fs_dev = fs_dev;
902 	journal->j_blk_offset = start;
903 	journal->j_maxlen = len;
904 	bdevname(journal->j_dev, journal->j_devname);
905 	p = journal->j_devname;
906 	while ((p = strchr(p, '/')))
907 		*p = '!';
908 
909 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
910 	if (!bh) {
911 		printk(KERN_ERR
912 		       "%s: Cannot get buffer for journal superblock\n",
913 		       __func__);
914 		goto out_err;
915 	}
916 	journal->j_sb_buffer = bh;
917 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
918 
919 	return journal;
920 out_err:
921 	kfree(journal->j_wbuf);
922 	jbd2_stats_proc_exit(journal);
923 	kfree(journal);
924 	return NULL;
925 }
926 
927 /**
928  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
929  *  @inode: An inode to create the journal in
930  *
931  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
932  * the journal.  The inode must exist already, must support bmap() and
933  * must have all data blocks preallocated.
934  */
935 journal_t * jbd2_journal_init_inode (struct inode *inode)
936 {
937 	struct buffer_head *bh;
938 	journal_t *journal = journal_init_common();
939 	char *p;
940 	int err;
941 	int n;
942 	unsigned long long blocknr;
943 
944 	if (!journal)
945 		return NULL;
946 
947 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
948 	journal->j_inode = inode;
949 	bdevname(journal->j_dev, journal->j_devname);
950 	p = journal->j_devname;
951 	while ((p = strchr(p, '/')))
952 		*p = '!';
953 	p = journal->j_devname + strlen(journal->j_devname);
954 	sprintf(p, "-%lu", journal->j_inode->i_ino);
955 	jbd_debug(1,
956 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
957 		  journal, inode->i_sb->s_id, inode->i_ino,
958 		  (long long) inode->i_size,
959 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
960 
961 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
962 	journal->j_blocksize = inode->i_sb->s_blocksize;
963 	jbd2_stats_proc_init(journal);
964 
965 	/* journal descriptor can store up to n blocks -bzzz */
966 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
967 	journal->j_wbufsize = n;
968 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
969 	if (!journal->j_wbuf) {
970 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
971 			__func__);
972 		goto out_err;
973 	}
974 
975 	err = jbd2_journal_bmap(journal, 0, &blocknr);
976 	/* If that failed, give up */
977 	if (err) {
978 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
979 		       __func__);
980 		goto out_err;
981 	}
982 
983 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
984 	if (!bh) {
985 		printk(KERN_ERR
986 		       "%s: Cannot get buffer for journal superblock\n",
987 		       __func__);
988 		goto out_err;
989 	}
990 	journal->j_sb_buffer = bh;
991 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
992 
993 	return journal;
994 out_err:
995 	kfree(journal->j_wbuf);
996 	jbd2_stats_proc_exit(journal);
997 	kfree(journal);
998 	return NULL;
999 }
1000 
1001 /*
1002  * If the journal init or create aborts, we need to mark the journal
1003  * superblock as being NULL to prevent the journal destroy from writing
1004  * back a bogus superblock.
1005  */
1006 static void journal_fail_superblock (journal_t *journal)
1007 {
1008 	struct buffer_head *bh = journal->j_sb_buffer;
1009 	brelse(bh);
1010 	journal->j_sb_buffer = NULL;
1011 }
1012 
1013 /*
1014  * Given a journal_t structure, initialise the various fields for
1015  * startup of a new journaling session.  We use this both when creating
1016  * a journal, and after recovering an old journal to reset it for
1017  * subsequent use.
1018  */
1019 
1020 static int journal_reset(journal_t *journal)
1021 {
1022 	journal_superblock_t *sb = journal->j_superblock;
1023 	unsigned long long first, last;
1024 
1025 	first = be32_to_cpu(sb->s_first);
1026 	last = be32_to_cpu(sb->s_maxlen);
1027 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1028 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1029 		       first, last);
1030 		journal_fail_superblock(journal);
1031 		return -EINVAL;
1032 	}
1033 
1034 	journal->j_first = first;
1035 	journal->j_last = last;
1036 
1037 	journal->j_head = first;
1038 	journal->j_tail = first;
1039 	journal->j_free = last - first;
1040 
1041 	journal->j_tail_sequence = journal->j_transaction_sequence;
1042 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1043 	journal->j_commit_request = journal->j_commit_sequence;
1044 
1045 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1046 
1047 	/* Add the dynamic fields and write it to disk. */
1048 	jbd2_journal_update_superblock(journal, 1);
1049 	return jbd2_journal_start_thread(journal);
1050 }
1051 
1052 /**
1053  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1054  * @journal: The journal to update.
1055  * @wait: Set to '0' if you don't want to wait for IO completion.
1056  *
1057  * Update a journal's dynamic superblock fields and write it to disk,
1058  * optionally waiting for the IO to complete.
1059  */
1060 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1061 {
1062 	journal_superblock_t *sb = journal->j_superblock;
1063 	struct buffer_head *bh = journal->j_sb_buffer;
1064 
1065 	/*
1066 	 * As a special case, if the on-disk copy is already marked as needing
1067 	 * no recovery (s_start == 0) and there are no outstanding transactions
1068 	 * in the filesystem, then we can safely defer the superblock update
1069 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1070 	 * attempting a write to a potential-readonly device.
1071 	 */
1072 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1073 				journal->j_transaction_sequence) {
1074 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1075 			"(start %ld, seq %d, errno %d)\n",
1076 			journal->j_tail, journal->j_tail_sequence,
1077 			journal->j_errno);
1078 		goto out;
1079 	}
1080 
1081 	if (buffer_write_io_error(bh)) {
1082 		/*
1083 		 * Oh, dear.  A previous attempt to write the journal
1084 		 * superblock failed.  This could happen because the
1085 		 * USB device was yanked out.  Or it could happen to
1086 		 * be a transient write error and maybe the block will
1087 		 * be remapped.  Nothing we can do but to retry the
1088 		 * write and hope for the best.
1089 		 */
1090 		printk(KERN_ERR "JBD2: previous I/O error detected "
1091 		       "for journal superblock update for %s.\n",
1092 		       journal->j_devname);
1093 		clear_buffer_write_io_error(bh);
1094 		set_buffer_uptodate(bh);
1095 	}
1096 
1097 	spin_lock(&journal->j_state_lock);
1098 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1099 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1100 
1101 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1102 	sb->s_start    = cpu_to_be32(journal->j_tail);
1103 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1104 	spin_unlock(&journal->j_state_lock);
1105 
1106 	BUFFER_TRACE(bh, "marking dirty");
1107 	mark_buffer_dirty(bh);
1108 	if (wait) {
1109 		sync_dirty_buffer(bh);
1110 		if (buffer_write_io_error(bh)) {
1111 			printk(KERN_ERR "JBD2: I/O error detected "
1112 			       "when updating journal superblock for %s.\n",
1113 			       journal->j_devname);
1114 			clear_buffer_write_io_error(bh);
1115 			set_buffer_uptodate(bh);
1116 		}
1117 	} else
1118 		ll_rw_block(SWRITE, 1, &bh);
1119 
1120 out:
1121 	/* If we have just flushed the log (by marking s_start==0), then
1122 	 * any future commit will have to be careful to update the
1123 	 * superblock again to re-record the true start of the log. */
1124 
1125 	spin_lock(&journal->j_state_lock);
1126 	if (sb->s_start)
1127 		journal->j_flags &= ~JBD2_FLUSHED;
1128 	else
1129 		journal->j_flags |= JBD2_FLUSHED;
1130 	spin_unlock(&journal->j_state_lock);
1131 }
1132 
1133 /*
1134  * Read the superblock for a given journal, performing initial
1135  * validation of the format.
1136  */
1137 
1138 static int journal_get_superblock(journal_t *journal)
1139 {
1140 	struct buffer_head *bh;
1141 	journal_superblock_t *sb;
1142 	int err = -EIO;
1143 
1144 	bh = journal->j_sb_buffer;
1145 
1146 	J_ASSERT(bh != NULL);
1147 	if (!buffer_uptodate(bh)) {
1148 		ll_rw_block(READ, 1, &bh);
1149 		wait_on_buffer(bh);
1150 		if (!buffer_uptodate(bh)) {
1151 			printk (KERN_ERR
1152 				"JBD: IO error reading journal superblock\n");
1153 			goto out;
1154 		}
1155 	}
1156 
1157 	sb = journal->j_superblock;
1158 
1159 	err = -EINVAL;
1160 
1161 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1162 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1163 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1164 		goto out;
1165 	}
1166 
1167 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1168 	case JBD2_SUPERBLOCK_V1:
1169 		journal->j_format_version = 1;
1170 		break;
1171 	case JBD2_SUPERBLOCK_V2:
1172 		journal->j_format_version = 2;
1173 		break;
1174 	default:
1175 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1176 		goto out;
1177 	}
1178 
1179 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1180 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1181 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1182 		printk (KERN_WARNING "JBD: journal file too short\n");
1183 		goto out;
1184 	}
1185 
1186 	return 0;
1187 
1188 out:
1189 	journal_fail_superblock(journal);
1190 	return err;
1191 }
1192 
1193 /*
1194  * Load the on-disk journal superblock and read the key fields into the
1195  * journal_t.
1196  */
1197 
1198 static int load_superblock(journal_t *journal)
1199 {
1200 	int err;
1201 	journal_superblock_t *sb;
1202 
1203 	err = journal_get_superblock(journal);
1204 	if (err)
1205 		return err;
1206 
1207 	sb = journal->j_superblock;
1208 
1209 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1210 	journal->j_tail = be32_to_cpu(sb->s_start);
1211 	journal->j_first = be32_to_cpu(sb->s_first);
1212 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1213 	journal->j_errno = be32_to_cpu(sb->s_errno);
1214 
1215 	return 0;
1216 }
1217 
1218 
1219 /**
1220  * int jbd2_journal_load() - Read journal from disk.
1221  * @journal: Journal to act on.
1222  *
1223  * Given a journal_t structure which tells us which disk blocks contain
1224  * a journal, read the journal from disk to initialise the in-memory
1225  * structures.
1226  */
1227 int jbd2_journal_load(journal_t *journal)
1228 {
1229 	int err;
1230 	journal_superblock_t *sb;
1231 
1232 	err = load_superblock(journal);
1233 	if (err)
1234 		return err;
1235 
1236 	sb = journal->j_superblock;
1237 	/* If this is a V2 superblock, then we have to check the
1238 	 * features flags on it. */
1239 
1240 	if (journal->j_format_version >= 2) {
1241 		if ((sb->s_feature_ro_compat &
1242 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1243 		    (sb->s_feature_incompat &
1244 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1245 			printk (KERN_WARNING
1246 				"JBD: Unrecognised features on journal\n");
1247 			return -EINVAL;
1248 		}
1249 	}
1250 
1251 	/* Let the recovery code check whether it needs to recover any
1252 	 * data from the journal. */
1253 	if (jbd2_journal_recover(journal))
1254 		goto recovery_error;
1255 
1256 	if (journal->j_failed_commit) {
1257 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1258 		       "is corrupt.\n", journal->j_failed_commit,
1259 		       journal->j_devname);
1260 		return -EIO;
1261 	}
1262 
1263 	/* OK, we've finished with the dynamic journal bits:
1264 	 * reinitialise the dynamic contents of the superblock in memory
1265 	 * and reset them on disk. */
1266 	if (journal_reset(journal))
1267 		goto recovery_error;
1268 
1269 	journal->j_flags &= ~JBD2_ABORT;
1270 	journal->j_flags |= JBD2_LOADED;
1271 	return 0;
1272 
1273 recovery_error:
1274 	printk (KERN_WARNING "JBD: recovery failed\n");
1275 	return -EIO;
1276 }
1277 
1278 /**
1279  * void jbd2_journal_destroy() - Release a journal_t structure.
1280  * @journal: Journal to act on.
1281  *
1282  * Release a journal_t structure once it is no longer in use by the
1283  * journaled object.
1284  * Return <0 if we couldn't clean up the journal.
1285  */
1286 int jbd2_journal_destroy(journal_t *journal)
1287 {
1288 	int err = 0;
1289 
1290 	/* Wait for the commit thread to wake up and die. */
1291 	journal_kill_thread(journal);
1292 
1293 	/* Force a final log commit */
1294 	if (journal->j_running_transaction)
1295 		jbd2_journal_commit_transaction(journal);
1296 
1297 	/* Force any old transactions to disk */
1298 
1299 	/* Totally anal locking here... */
1300 	spin_lock(&journal->j_list_lock);
1301 	while (journal->j_checkpoint_transactions != NULL) {
1302 		spin_unlock(&journal->j_list_lock);
1303 		mutex_lock(&journal->j_checkpoint_mutex);
1304 		jbd2_log_do_checkpoint(journal);
1305 		mutex_unlock(&journal->j_checkpoint_mutex);
1306 		spin_lock(&journal->j_list_lock);
1307 	}
1308 
1309 	J_ASSERT(journal->j_running_transaction == NULL);
1310 	J_ASSERT(journal->j_committing_transaction == NULL);
1311 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1312 	spin_unlock(&journal->j_list_lock);
1313 
1314 	if (journal->j_sb_buffer) {
1315 		if (!is_journal_aborted(journal)) {
1316 			/* We can now mark the journal as empty. */
1317 			journal->j_tail = 0;
1318 			journal->j_tail_sequence =
1319 				++journal->j_transaction_sequence;
1320 			jbd2_journal_update_superblock(journal, 1);
1321 		} else {
1322 			err = -EIO;
1323 		}
1324 		brelse(journal->j_sb_buffer);
1325 	}
1326 
1327 	if (journal->j_proc_entry)
1328 		jbd2_stats_proc_exit(journal);
1329 	if (journal->j_inode)
1330 		iput(journal->j_inode);
1331 	if (journal->j_revoke)
1332 		jbd2_journal_destroy_revoke(journal);
1333 	kfree(journal->j_wbuf);
1334 	kfree(journal);
1335 
1336 	return err;
1337 }
1338 
1339 
1340 /**
1341  *int jbd2_journal_check_used_features () - Check if features specified are used.
1342  * @journal: Journal to check.
1343  * @compat: bitmask of compatible features
1344  * @ro: bitmask of features that force read-only mount
1345  * @incompat: bitmask of incompatible features
1346  *
1347  * Check whether the journal uses all of a given set of
1348  * features.  Return true (non-zero) if it does.
1349  **/
1350 
1351 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1352 				 unsigned long ro, unsigned long incompat)
1353 {
1354 	journal_superblock_t *sb;
1355 
1356 	if (!compat && !ro && !incompat)
1357 		return 1;
1358 	if (journal->j_format_version == 1)
1359 		return 0;
1360 
1361 	sb = journal->j_superblock;
1362 
1363 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1364 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1365 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1366 		return 1;
1367 
1368 	return 0;
1369 }
1370 
1371 /**
1372  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1373  * @journal: Journal to check.
1374  * @compat: bitmask of compatible features
1375  * @ro: bitmask of features that force read-only mount
1376  * @incompat: bitmask of incompatible features
1377  *
1378  * Check whether the journaling code supports the use of
1379  * all of a given set of features on this journal.  Return true
1380  * (non-zero) if it can. */
1381 
1382 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1383 				      unsigned long ro, unsigned long incompat)
1384 {
1385 	journal_superblock_t *sb;
1386 
1387 	if (!compat && !ro && !incompat)
1388 		return 1;
1389 
1390 	sb = journal->j_superblock;
1391 
1392 	/* We can support any known requested features iff the
1393 	 * superblock is in version 2.  Otherwise we fail to support any
1394 	 * extended sb features. */
1395 
1396 	if (journal->j_format_version != 2)
1397 		return 0;
1398 
1399 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1400 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1401 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1409  * @journal: Journal to act on.
1410  * @compat: bitmask of compatible features
1411  * @ro: bitmask of features that force read-only mount
1412  * @incompat: bitmask of incompatible features
1413  *
1414  * Mark a given journal feature as present on the
1415  * superblock.  Returns true if the requested features could be set.
1416  *
1417  */
1418 
1419 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1420 			  unsigned long ro, unsigned long incompat)
1421 {
1422 	journal_superblock_t *sb;
1423 
1424 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1425 		return 1;
1426 
1427 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1428 		return 0;
1429 
1430 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1431 		  compat, ro, incompat);
1432 
1433 	sb = journal->j_superblock;
1434 
1435 	sb->s_feature_compat    |= cpu_to_be32(compat);
1436 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1437 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1438 
1439 	return 1;
1440 }
1441 
1442 /*
1443  * jbd2_journal_clear_features () - Clear a given journal feature in the
1444  * 				    superblock
1445  * @journal: Journal to act on.
1446  * @compat: bitmask of compatible features
1447  * @ro: bitmask of features that force read-only mount
1448  * @incompat: bitmask of incompatible features
1449  *
1450  * Clear a given journal feature as present on the
1451  * superblock.
1452  */
1453 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1454 				unsigned long ro, unsigned long incompat)
1455 {
1456 	journal_superblock_t *sb;
1457 
1458 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1459 		  compat, ro, incompat);
1460 
1461 	sb = journal->j_superblock;
1462 
1463 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1464 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1465 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1466 }
1467 EXPORT_SYMBOL(jbd2_journal_clear_features);
1468 
1469 /**
1470  * int jbd2_journal_update_format () - Update on-disk journal structure.
1471  * @journal: Journal to act on.
1472  *
1473  * Given an initialised but unloaded journal struct, poke about in the
1474  * on-disk structure to update it to the most recent supported version.
1475  */
1476 int jbd2_journal_update_format (journal_t *journal)
1477 {
1478 	journal_superblock_t *sb;
1479 	int err;
1480 
1481 	err = journal_get_superblock(journal);
1482 	if (err)
1483 		return err;
1484 
1485 	sb = journal->j_superblock;
1486 
1487 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1488 	case JBD2_SUPERBLOCK_V2:
1489 		return 0;
1490 	case JBD2_SUPERBLOCK_V1:
1491 		return journal_convert_superblock_v1(journal, sb);
1492 	default:
1493 		break;
1494 	}
1495 	return -EINVAL;
1496 }
1497 
1498 static int journal_convert_superblock_v1(journal_t *journal,
1499 					 journal_superblock_t *sb)
1500 {
1501 	int offset, blocksize;
1502 	struct buffer_head *bh;
1503 
1504 	printk(KERN_WARNING
1505 		"JBD: Converting superblock from version 1 to 2.\n");
1506 
1507 	/* Pre-initialise new fields to zero */
1508 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1509 	blocksize = be32_to_cpu(sb->s_blocksize);
1510 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1511 
1512 	sb->s_nr_users = cpu_to_be32(1);
1513 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1514 	journal->j_format_version = 2;
1515 
1516 	bh = journal->j_sb_buffer;
1517 	BUFFER_TRACE(bh, "marking dirty");
1518 	mark_buffer_dirty(bh);
1519 	sync_dirty_buffer(bh);
1520 	return 0;
1521 }
1522 
1523 
1524 /**
1525  * int jbd2_journal_flush () - Flush journal
1526  * @journal: Journal to act on.
1527  *
1528  * Flush all data for a given journal to disk and empty the journal.
1529  * Filesystems can use this when remounting readonly to ensure that
1530  * recovery does not need to happen on remount.
1531  */
1532 
1533 int jbd2_journal_flush(journal_t *journal)
1534 {
1535 	int err = 0;
1536 	transaction_t *transaction = NULL;
1537 	unsigned long old_tail;
1538 
1539 	spin_lock(&journal->j_state_lock);
1540 
1541 	/* Force everything buffered to the log... */
1542 	if (journal->j_running_transaction) {
1543 		transaction = journal->j_running_transaction;
1544 		__jbd2_log_start_commit(journal, transaction->t_tid);
1545 	} else if (journal->j_committing_transaction)
1546 		transaction = journal->j_committing_transaction;
1547 
1548 	/* Wait for the log commit to complete... */
1549 	if (transaction) {
1550 		tid_t tid = transaction->t_tid;
1551 
1552 		spin_unlock(&journal->j_state_lock);
1553 		jbd2_log_wait_commit(journal, tid);
1554 	} else {
1555 		spin_unlock(&journal->j_state_lock);
1556 	}
1557 
1558 	/* ...and flush everything in the log out to disk. */
1559 	spin_lock(&journal->j_list_lock);
1560 	while (!err && journal->j_checkpoint_transactions != NULL) {
1561 		spin_unlock(&journal->j_list_lock);
1562 		mutex_lock(&journal->j_checkpoint_mutex);
1563 		err = jbd2_log_do_checkpoint(journal);
1564 		mutex_unlock(&journal->j_checkpoint_mutex);
1565 		spin_lock(&journal->j_list_lock);
1566 	}
1567 	spin_unlock(&journal->j_list_lock);
1568 
1569 	if (is_journal_aborted(journal))
1570 		return -EIO;
1571 
1572 	jbd2_cleanup_journal_tail(journal);
1573 
1574 	/* Finally, mark the journal as really needing no recovery.
1575 	 * This sets s_start==0 in the underlying superblock, which is
1576 	 * the magic code for a fully-recovered superblock.  Any future
1577 	 * commits of data to the journal will restore the current
1578 	 * s_start value. */
1579 	spin_lock(&journal->j_state_lock);
1580 	old_tail = journal->j_tail;
1581 	journal->j_tail = 0;
1582 	spin_unlock(&journal->j_state_lock);
1583 	jbd2_journal_update_superblock(journal, 1);
1584 	spin_lock(&journal->j_state_lock);
1585 	journal->j_tail = old_tail;
1586 
1587 	J_ASSERT(!journal->j_running_transaction);
1588 	J_ASSERT(!journal->j_committing_transaction);
1589 	J_ASSERT(!journal->j_checkpoint_transactions);
1590 	J_ASSERT(journal->j_head == journal->j_tail);
1591 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1592 	spin_unlock(&journal->j_state_lock);
1593 	return 0;
1594 }
1595 
1596 /**
1597  * int jbd2_journal_wipe() - Wipe journal contents
1598  * @journal: Journal to act on.
1599  * @write: flag (see below)
1600  *
1601  * Wipe out all of the contents of a journal, safely.  This will produce
1602  * a warning if the journal contains any valid recovery information.
1603  * Must be called between journal_init_*() and jbd2_journal_load().
1604  *
1605  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1606  * we merely suppress recovery.
1607  */
1608 
1609 int jbd2_journal_wipe(journal_t *journal, int write)
1610 {
1611 	journal_superblock_t *sb;
1612 	int err = 0;
1613 
1614 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1615 
1616 	err = load_superblock(journal);
1617 	if (err)
1618 		return err;
1619 
1620 	sb = journal->j_superblock;
1621 
1622 	if (!journal->j_tail)
1623 		goto no_recovery;
1624 
1625 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1626 		write ? "Clearing" : "Ignoring");
1627 
1628 	err = jbd2_journal_skip_recovery(journal);
1629 	if (write)
1630 		jbd2_journal_update_superblock(journal, 1);
1631 
1632  no_recovery:
1633 	return err;
1634 }
1635 
1636 /*
1637  * Journal abort has very specific semantics, which we describe
1638  * for journal abort.
1639  *
1640  * Two internal functions, which provide abort to the jbd layer
1641  * itself are here.
1642  */
1643 
1644 /*
1645  * Quick version for internal journal use (doesn't lock the journal).
1646  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1647  * and don't attempt to make any other journal updates.
1648  */
1649 void __jbd2_journal_abort_hard(journal_t *journal)
1650 {
1651 	transaction_t *transaction;
1652 
1653 	if (journal->j_flags & JBD2_ABORT)
1654 		return;
1655 
1656 	printk(KERN_ERR "Aborting journal on device %s.\n",
1657 	       journal->j_devname);
1658 
1659 	spin_lock(&journal->j_state_lock);
1660 	journal->j_flags |= JBD2_ABORT;
1661 	transaction = journal->j_running_transaction;
1662 	if (transaction)
1663 		__jbd2_log_start_commit(journal, transaction->t_tid);
1664 	spin_unlock(&journal->j_state_lock);
1665 }
1666 
1667 /* Soft abort: record the abort error status in the journal superblock,
1668  * but don't do any other IO. */
1669 static void __journal_abort_soft (journal_t *journal, int errno)
1670 {
1671 	if (journal->j_flags & JBD2_ABORT)
1672 		return;
1673 
1674 	if (!journal->j_errno)
1675 		journal->j_errno = errno;
1676 
1677 	__jbd2_journal_abort_hard(journal);
1678 
1679 	if (errno)
1680 		jbd2_journal_update_superblock(journal, 1);
1681 }
1682 
1683 /**
1684  * void jbd2_journal_abort () - Shutdown the journal immediately.
1685  * @journal: the journal to shutdown.
1686  * @errno:   an error number to record in the journal indicating
1687  *           the reason for the shutdown.
1688  *
1689  * Perform a complete, immediate shutdown of the ENTIRE
1690  * journal (not of a single transaction).  This operation cannot be
1691  * undone without closing and reopening the journal.
1692  *
1693  * The jbd2_journal_abort function is intended to support higher level error
1694  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1695  * mode.
1696  *
1697  * Journal abort has very specific semantics.  Any existing dirty,
1698  * unjournaled buffers in the main filesystem will still be written to
1699  * disk by bdflush, but the journaling mechanism will be suspended
1700  * immediately and no further transaction commits will be honoured.
1701  *
1702  * Any dirty, journaled buffers will be written back to disk without
1703  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1704  * filesystem, but we _do_ attempt to leave as much data as possible
1705  * behind for fsck to use for cleanup.
1706  *
1707  * Any attempt to get a new transaction handle on a journal which is in
1708  * ABORT state will just result in an -EROFS error return.  A
1709  * jbd2_journal_stop on an existing handle will return -EIO if we have
1710  * entered abort state during the update.
1711  *
1712  * Recursive transactions are not disturbed by journal abort until the
1713  * final jbd2_journal_stop, which will receive the -EIO error.
1714  *
1715  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1716  * which will be recorded (if possible) in the journal superblock.  This
1717  * allows a client to record failure conditions in the middle of a
1718  * transaction without having to complete the transaction to record the
1719  * failure to disk.  ext3_error, for example, now uses this
1720  * functionality.
1721  *
1722  * Errors which originate from within the journaling layer will NOT
1723  * supply an errno; a null errno implies that absolutely no further
1724  * writes are done to the journal (unless there are any already in
1725  * progress).
1726  *
1727  */
1728 
1729 void jbd2_journal_abort(journal_t *journal, int errno)
1730 {
1731 	__journal_abort_soft(journal, errno);
1732 }
1733 
1734 /**
1735  * int jbd2_journal_errno () - returns the journal's error state.
1736  * @journal: journal to examine.
1737  *
1738  * This is the errno number set with jbd2_journal_abort(), the last
1739  * time the journal was mounted - if the journal was stopped
1740  * without calling abort this will be 0.
1741  *
1742  * If the journal has been aborted on this mount time -EROFS will
1743  * be returned.
1744  */
1745 int jbd2_journal_errno(journal_t *journal)
1746 {
1747 	int err;
1748 
1749 	spin_lock(&journal->j_state_lock);
1750 	if (journal->j_flags & JBD2_ABORT)
1751 		err = -EROFS;
1752 	else
1753 		err = journal->j_errno;
1754 	spin_unlock(&journal->j_state_lock);
1755 	return err;
1756 }
1757 
1758 /**
1759  * int jbd2_journal_clear_err () - clears the journal's error state
1760  * @journal: journal to act on.
1761  *
1762  * An error must be cleared or acked to take a FS out of readonly
1763  * mode.
1764  */
1765 int jbd2_journal_clear_err(journal_t *journal)
1766 {
1767 	int err = 0;
1768 
1769 	spin_lock(&journal->j_state_lock);
1770 	if (journal->j_flags & JBD2_ABORT)
1771 		err = -EROFS;
1772 	else
1773 		journal->j_errno = 0;
1774 	spin_unlock(&journal->j_state_lock);
1775 	return err;
1776 }
1777 
1778 /**
1779  * void jbd2_journal_ack_err() - Ack journal err.
1780  * @journal: journal to act on.
1781  *
1782  * An error must be cleared or acked to take a FS out of readonly
1783  * mode.
1784  */
1785 void jbd2_journal_ack_err(journal_t *journal)
1786 {
1787 	spin_lock(&journal->j_state_lock);
1788 	if (journal->j_errno)
1789 		journal->j_flags |= JBD2_ACK_ERR;
1790 	spin_unlock(&journal->j_state_lock);
1791 }
1792 
1793 int jbd2_journal_blocks_per_page(struct inode *inode)
1794 {
1795 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1796 }
1797 
1798 /*
1799  * helper functions to deal with 32 or 64bit block numbers.
1800  */
1801 size_t journal_tag_bytes(journal_t *journal)
1802 {
1803 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1804 		return JBD2_TAG_SIZE64;
1805 	else
1806 		return JBD2_TAG_SIZE32;
1807 }
1808 
1809 /*
1810  * Journal_head storage management
1811  */
1812 static struct kmem_cache *jbd2_journal_head_cache;
1813 #ifdef CONFIG_JBD2_DEBUG
1814 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1815 #endif
1816 
1817 static int journal_init_jbd2_journal_head_cache(void)
1818 {
1819 	int retval;
1820 
1821 	J_ASSERT(jbd2_journal_head_cache == NULL);
1822 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1823 				sizeof(struct journal_head),
1824 				0,		/* offset */
1825 				SLAB_TEMPORARY,	/* flags */
1826 				NULL);		/* ctor */
1827 	retval = 0;
1828 	if (!jbd2_journal_head_cache) {
1829 		retval = -ENOMEM;
1830 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1831 	}
1832 	return retval;
1833 }
1834 
1835 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1836 {
1837 	if (jbd2_journal_head_cache) {
1838 		kmem_cache_destroy(jbd2_journal_head_cache);
1839 		jbd2_journal_head_cache = NULL;
1840 	}
1841 }
1842 
1843 /*
1844  * journal_head splicing and dicing
1845  */
1846 static struct journal_head *journal_alloc_journal_head(void)
1847 {
1848 	struct journal_head *ret;
1849 	static unsigned long last_warning;
1850 
1851 #ifdef CONFIG_JBD2_DEBUG
1852 	atomic_inc(&nr_journal_heads);
1853 #endif
1854 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1855 	if (!ret) {
1856 		jbd_debug(1, "out of memory for journal_head\n");
1857 		if (time_after(jiffies, last_warning + 5*HZ)) {
1858 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1859 			       __func__);
1860 			last_warning = jiffies;
1861 		}
1862 		while (!ret) {
1863 			yield();
1864 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1865 		}
1866 	}
1867 	return ret;
1868 }
1869 
1870 static void journal_free_journal_head(struct journal_head *jh)
1871 {
1872 #ifdef CONFIG_JBD2_DEBUG
1873 	atomic_dec(&nr_journal_heads);
1874 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
1875 #endif
1876 	kmem_cache_free(jbd2_journal_head_cache, jh);
1877 }
1878 
1879 /*
1880  * A journal_head is attached to a buffer_head whenever JBD has an
1881  * interest in the buffer.
1882  *
1883  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1884  * is set.  This bit is tested in core kernel code where we need to take
1885  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1886  * there.
1887  *
1888  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1889  *
1890  * When a buffer has its BH_JBD bit set it is immune from being released by
1891  * core kernel code, mainly via ->b_count.
1892  *
1893  * A journal_head may be detached from its buffer_head when the journal_head's
1894  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1895  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1896  * journal_head can be dropped if needed.
1897  *
1898  * Various places in the kernel want to attach a journal_head to a buffer_head
1899  * _before_ attaching the journal_head to a transaction.  To protect the
1900  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1901  * journal_head's b_jcount refcount by one.  The caller must call
1902  * jbd2_journal_put_journal_head() to undo this.
1903  *
1904  * So the typical usage would be:
1905  *
1906  *	(Attach a journal_head if needed.  Increments b_jcount)
1907  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1908  *	...
1909  *	jh->b_transaction = xxx;
1910  *	jbd2_journal_put_journal_head(jh);
1911  *
1912  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1913  * because it has a non-zero b_transaction.
1914  */
1915 
1916 /*
1917  * Give a buffer_head a journal_head.
1918  *
1919  * Doesn't need the journal lock.
1920  * May sleep.
1921  */
1922 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1923 {
1924 	struct journal_head *jh;
1925 	struct journal_head *new_jh = NULL;
1926 
1927 repeat:
1928 	if (!buffer_jbd(bh)) {
1929 		new_jh = journal_alloc_journal_head();
1930 		memset(new_jh, 0, sizeof(*new_jh));
1931 	}
1932 
1933 	jbd_lock_bh_journal_head(bh);
1934 	if (buffer_jbd(bh)) {
1935 		jh = bh2jh(bh);
1936 	} else {
1937 		J_ASSERT_BH(bh,
1938 			(atomic_read(&bh->b_count) > 0) ||
1939 			(bh->b_page && bh->b_page->mapping));
1940 
1941 		if (!new_jh) {
1942 			jbd_unlock_bh_journal_head(bh);
1943 			goto repeat;
1944 		}
1945 
1946 		jh = new_jh;
1947 		new_jh = NULL;		/* We consumed it */
1948 		set_buffer_jbd(bh);
1949 		bh->b_private = jh;
1950 		jh->b_bh = bh;
1951 		get_bh(bh);
1952 		BUFFER_TRACE(bh, "added journal_head");
1953 	}
1954 	jh->b_jcount++;
1955 	jbd_unlock_bh_journal_head(bh);
1956 	if (new_jh)
1957 		journal_free_journal_head(new_jh);
1958 	return bh->b_private;
1959 }
1960 
1961 /*
1962  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1963  * having a journal_head, return NULL
1964  */
1965 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1966 {
1967 	struct journal_head *jh = NULL;
1968 
1969 	jbd_lock_bh_journal_head(bh);
1970 	if (buffer_jbd(bh)) {
1971 		jh = bh2jh(bh);
1972 		jh->b_jcount++;
1973 	}
1974 	jbd_unlock_bh_journal_head(bh);
1975 	return jh;
1976 }
1977 
1978 static void __journal_remove_journal_head(struct buffer_head *bh)
1979 {
1980 	struct journal_head *jh = bh2jh(bh);
1981 
1982 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1983 
1984 	get_bh(bh);
1985 	if (jh->b_jcount == 0) {
1986 		if (jh->b_transaction == NULL &&
1987 				jh->b_next_transaction == NULL &&
1988 				jh->b_cp_transaction == NULL) {
1989 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1990 			J_ASSERT_BH(bh, buffer_jbd(bh));
1991 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1992 			BUFFER_TRACE(bh, "remove journal_head");
1993 			if (jh->b_frozen_data) {
1994 				printk(KERN_WARNING "%s: freeing "
1995 						"b_frozen_data\n",
1996 						__func__);
1997 				jbd2_free(jh->b_frozen_data, bh->b_size);
1998 			}
1999 			if (jh->b_committed_data) {
2000 				printk(KERN_WARNING "%s: freeing "
2001 						"b_committed_data\n",
2002 						__func__);
2003 				jbd2_free(jh->b_committed_data, bh->b_size);
2004 			}
2005 			bh->b_private = NULL;
2006 			jh->b_bh = NULL;	/* debug, really */
2007 			clear_buffer_jbd(bh);
2008 			__brelse(bh);
2009 			journal_free_journal_head(jh);
2010 		} else {
2011 			BUFFER_TRACE(bh, "journal_head was locked");
2012 		}
2013 	}
2014 }
2015 
2016 /*
2017  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2018  * and has a zero b_jcount then remove and release its journal_head.   If we did
2019  * see that the buffer is not used by any transaction we also "logically"
2020  * decrement ->b_count.
2021  *
2022  * We in fact take an additional increment on ->b_count as a convenience,
2023  * because the caller usually wants to do additional things with the bh
2024  * after calling here.
2025  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2026  * time.  Once the caller has run __brelse(), the buffer is eligible for
2027  * reaping by try_to_free_buffers().
2028  */
2029 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2030 {
2031 	jbd_lock_bh_journal_head(bh);
2032 	__journal_remove_journal_head(bh);
2033 	jbd_unlock_bh_journal_head(bh);
2034 }
2035 
2036 /*
2037  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2038  * release the journal_head from the buffer_head.
2039  */
2040 void jbd2_journal_put_journal_head(struct journal_head *jh)
2041 {
2042 	struct buffer_head *bh = jh2bh(jh);
2043 
2044 	jbd_lock_bh_journal_head(bh);
2045 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2046 	--jh->b_jcount;
2047 	if (!jh->b_jcount && !jh->b_transaction) {
2048 		__journal_remove_journal_head(bh);
2049 		__brelse(bh);
2050 	}
2051 	jbd_unlock_bh_journal_head(bh);
2052 }
2053 
2054 /*
2055  * Initialize jbd inode head
2056  */
2057 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2058 {
2059 	jinode->i_transaction = NULL;
2060 	jinode->i_next_transaction = NULL;
2061 	jinode->i_vfs_inode = inode;
2062 	jinode->i_flags = 0;
2063 	INIT_LIST_HEAD(&jinode->i_list);
2064 }
2065 
2066 /*
2067  * Function to be called before we start removing inode from memory (i.e.,
2068  * clear_inode() is a fine place to be called from). It removes inode from
2069  * transaction's lists.
2070  */
2071 void jbd2_journal_release_jbd_inode(journal_t *journal,
2072 				    struct jbd2_inode *jinode)
2073 {
2074 	int writeout = 0;
2075 
2076 	if (!journal)
2077 		return;
2078 restart:
2079 	spin_lock(&journal->j_list_lock);
2080 	/* Is commit writing out inode - we have to wait */
2081 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2082 		wait_queue_head_t *wq;
2083 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2084 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2085 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2086 		spin_unlock(&journal->j_list_lock);
2087 		schedule();
2088 		finish_wait(wq, &wait.wait);
2089 		goto restart;
2090 	}
2091 
2092 	/* Do we need to wait for data writeback? */
2093 	if (journal->j_committing_transaction == jinode->i_transaction)
2094 		writeout = 1;
2095 	if (jinode->i_transaction) {
2096 		list_del(&jinode->i_list);
2097 		jinode->i_transaction = NULL;
2098 	}
2099 	spin_unlock(&journal->j_list_lock);
2100 }
2101 
2102 /*
2103  * debugfs tunables
2104  */
2105 #ifdef CONFIG_JBD2_DEBUG
2106 u8 jbd2_journal_enable_debug __read_mostly;
2107 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2108 
2109 #define JBD2_DEBUG_NAME "jbd2-debug"
2110 
2111 static struct dentry *jbd2_debugfs_dir;
2112 static struct dentry *jbd2_debug;
2113 
2114 static void __init jbd2_create_debugfs_entry(void)
2115 {
2116 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2117 	if (jbd2_debugfs_dir)
2118 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2119 					       S_IRUGO | S_IWUSR,
2120 					       jbd2_debugfs_dir,
2121 					       &jbd2_journal_enable_debug);
2122 }
2123 
2124 static void __exit jbd2_remove_debugfs_entry(void)
2125 {
2126 	debugfs_remove(jbd2_debug);
2127 	debugfs_remove(jbd2_debugfs_dir);
2128 }
2129 
2130 #else
2131 
2132 static void __init jbd2_create_debugfs_entry(void)
2133 {
2134 }
2135 
2136 static void __exit jbd2_remove_debugfs_entry(void)
2137 {
2138 }
2139 
2140 #endif
2141 
2142 #ifdef CONFIG_PROC_FS
2143 
2144 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2145 
2146 static void __init jbd2_create_jbd_stats_proc_entry(void)
2147 {
2148 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2149 }
2150 
2151 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2152 {
2153 	if (proc_jbd2_stats)
2154 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2155 }
2156 
2157 #else
2158 
2159 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2160 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2161 
2162 #endif
2163 
2164 struct kmem_cache *jbd2_handle_cache;
2165 
2166 static int __init journal_init_handle_cache(void)
2167 {
2168 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2169 				sizeof(handle_t),
2170 				0,		/* offset */
2171 				SLAB_TEMPORARY,	/* flags */
2172 				NULL);		/* ctor */
2173 	if (jbd2_handle_cache == NULL) {
2174 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2175 		return -ENOMEM;
2176 	}
2177 	return 0;
2178 }
2179 
2180 static void jbd2_journal_destroy_handle_cache(void)
2181 {
2182 	if (jbd2_handle_cache)
2183 		kmem_cache_destroy(jbd2_handle_cache);
2184 }
2185 
2186 /*
2187  * Module startup and shutdown
2188  */
2189 
2190 static int __init journal_init_caches(void)
2191 {
2192 	int ret;
2193 
2194 	ret = jbd2_journal_init_revoke_caches();
2195 	if (ret == 0)
2196 		ret = journal_init_jbd2_journal_head_cache();
2197 	if (ret == 0)
2198 		ret = journal_init_handle_cache();
2199 	return ret;
2200 }
2201 
2202 static void jbd2_journal_destroy_caches(void)
2203 {
2204 	jbd2_journal_destroy_revoke_caches();
2205 	jbd2_journal_destroy_jbd2_journal_head_cache();
2206 	jbd2_journal_destroy_handle_cache();
2207 }
2208 
2209 static int __init journal_init(void)
2210 {
2211 	int ret;
2212 
2213 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2214 
2215 	ret = journal_init_caches();
2216 	if (ret == 0) {
2217 		jbd2_create_debugfs_entry();
2218 		jbd2_create_jbd_stats_proc_entry();
2219 	} else {
2220 		jbd2_journal_destroy_caches();
2221 	}
2222 	return ret;
2223 }
2224 
2225 static void __exit journal_exit(void)
2226 {
2227 #ifdef CONFIG_JBD2_DEBUG
2228 	int n = atomic_read(&nr_journal_heads);
2229 	if (n)
2230 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2231 #endif
2232 	jbd2_remove_debugfs_entry();
2233 	jbd2_remove_jbd_stats_proc_entry();
2234 	jbd2_journal_destroy_caches();
2235 }
2236 
2237 /*
2238  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2239  * tracing infrastructure to map a dev_t to a device name.
2240  *
2241  * The caller should use rcu_read_lock() in order to make sure the
2242  * device name stays valid until its done with it.  We use
2243  * rcu_read_lock() as well to make sure we're safe in case the caller
2244  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2245  * nested.
2246  */
2247 struct devname_cache {
2248 	struct rcu_head	rcu;
2249 	dev_t		device;
2250 	char		devname[BDEVNAME_SIZE];
2251 };
2252 #define CACHE_SIZE_BITS 6
2253 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2254 static DEFINE_SPINLOCK(devname_cache_lock);
2255 
2256 static void free_devcache(struct rcu_head *rcu)
2257 {
2258 	kfree(rcu);
2259 }
2260 
2261 const char *jbd2_dev_to_name(dev_t device)
2262 {
2263 	int	i = hash_32(device, CACHE_SIZE_BITS);
2264 	char	*ret;
2265 	struct block_device *bd;
2266 	static struct devname_cache *new_dev;
2267 
2268 	rcu_read_lock();
2269 	if (devcache[i] && devcache[i]->device == device) {
2270 		ret = devcache[i]->devname;
2271 		rcu_read_unlock();
2272 		return ret;
2273 	}
2274 	rcu_read_unlock();
2275 
2276 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2277 	if (!new_dev)
2278 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2279 	spin_lock(&devname_cache_lock);
2280 	if (devcache[i]) {
2281 		if (devcache[i]->device == device) {
2282 			kfree(new_dev);
2283 			ret = devcache[i]->devname;
2284 			spin_unlock(&devname_cache_lock);
2285 			return ret;
2286 		}
2287 		call_rcu(&devcache[i]->rcu, free_devcache);
2288 	}
2289 	devcache[i] = new_dev;
2290 	devcache[i]->device = device;
2291 	bd = bdget(device);
2292 	if (bd) {
2293 		bdevname(bd, devcache[i]->devname);
2294 		bdput(bd);
2295 	} else
2296 		__bdevname(device, devcache[i]->devname);
2297 	ret = devcache[i]->devname;
2298 	spin_unlock(&devname_cache_lock);
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL(jbd2_dev_to_name);
2302 
2303 MODULE_LICENSE("GPL");
2304 module_init(journal_init);
2305 module_exit(journal_exit);
2306 
2307