xref: /openbmc/linux/fs/jbd2/journal.c (revision 752beb5e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74 
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101 
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104 
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 		  unsigned int line, const char *fmt, ...)
108 {
109 	struct va_format vaf;
110 	va_list args;
111 
112 	if (level > jbd2_journal_enable_debug)
113 		return;
114 	va_start(args, fmt);
115 	vaf.fmt = fmt;
116 	vaf.va = &args;
117 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118 	va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122 
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 	if (!jbd2_journal_has_csum_v2or3_feature(j))
127 		return 1;
128 
129 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131 
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 	__u32 csum;
135 	__be32 old_csum;
136 
137 	old_csum = sb->s_checksum;
138 	sb->s_checksum = 0;
139 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 	sb->s_checksum = old_csum;
141 
142 	return cpu_to_be32(csum);
143 }
144 
145 /*
146  * Helper function used to manage commit timeouts
147  */
148 
149 static void commit_timeout(struct timer_list *t)
150 {
151 	journal_t *journal = from_timer(journal, t, j_commit_timer);
152 
153 	wake_up_process(journal->j_task);
154 }
155 
156 /*
157  * kjournald2: The main thread function used to manage a logging device
158  * journal.
159  *
160  * This kernel thread is responsible for two things:
161  *
162  * 1) COMMIT:  Every so often we need to commit the current state of the
163  *    filesystem to disk.  The journal thread is responsible for writing
164  *    all of the metadata buffers to disk.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	jbd_lock_bh_state(bh_in);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		jbd_unlock_bh_state(bh_in);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		jbd_lock_bh_state(bh_in);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	jbd_unlock_bh_state(bh_in);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 	int ret;
579 
580 	ret = __jbd2_journal_force_commit(journal);
581 	return ret > 0;
582 }
583 
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593 	int ret;
594 
595 	J_ASSERT(!current->journal_info);
596 	ret = __jbd2_journal_force_commit(journal);
597 	if (ret > 0)
598 		ret = 0;
599 	return ret;
600 }
601 
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609 	int ret = 0;
610 
611 	write_lock(&journal->j_state_lock);
612 	if (journal->j_running_transaction) {
613 		tid_t tid = journal->j_running_transaction->t_tid;
614 
615 		__jbd2_log_start_commit(journal, tid);
616 		/* There's a running transaction and we've just made sure
617 		 * it's commit has been scheduled. */
618 		if (ptid)
619 			*ptid = tid;
620 		ret = 1;
621 	} else if (journal->j_committing_transaction) {
622 		/*
623 		 * If commit has been started, then we have to wait for
624 		 * completion of that transaction.
625 		 */
626 		if (ptid)
627 			*ptid = journal->j_committing_transaction->t_tid;
628 		ret = 1;
629 	}
630 	write_unlock(&journal->j_state_lock);
631 	return ret;
632 }
633 
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642 	int ret = 0;
643 	transaction_t *commit_trans;
644 
645 	if (!(journal->j_flags & JBD2_BARRIER))
646 		return 0;
647 	read_lock(&journal->j_state_lock);
648 	/* Transaction already committed? */
649 	if (tid_geq(journal->j_commit_sequence, tid))
650 		goto out;
651 	commit_trans = journal->j_committing_transaction;
652 	if (!commit_trans || commit_trans->t_tid != tid) {
653 		ret = 1;
654 		goto out;
655 	}
656 	/*
657 	 * Transaction is being committed and we already proceeded to
658 	 * submitting a flush to fs partition?
659 	 */
660 	if (journal->j_fs_dev != journal->j_dev) {
661 		if (!commit_trans->t_need_data_flush ||
662 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
663 			goto out;
664 	} else {
665 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666 			goto out;
667 	}
668 	ret = 1;
669 out:
670 	read_unlock(&journal->j_state_lock);
671 	return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674 
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681 	int err = 0;
682 
683 	read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685 	/*
686 	 * Some callers make sure transaction is already committing and in that
687 	 * case we cannot block on open handles anymore. So don't warn in that
688 	 * case.
689 	 */
690 	if (tid_gt(tid, journal->j_commit_sequence) &&
691 	    (!journal->j_committing_transaction ||
692 	     journal->j_committing_transaction->t_tid != tid)) {
693 		read_unlock(&journal->j_state_lock);
694 		jbd2_might_wait_for_commit(journal);
695 		read_lock(&journal->j_state_lock);
696 	}
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699 	if (!tid_geq(journal->j_commit_request, tid)) {
700 		printk(KERN_ERR
701 		       "%s: error: j_commit_request=%d, tid=%d\n",
702 		       __func__, journal->j_commit_request, tid);
703 	}
704 #endif
705 	while (tid_gt(tid, journal->j_commit_sequence)) {
706 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
707 				  tid, journal->j_commit_sequence);
708 		read_unlock(&journal->j_state_lock);
709 		wake_up(&journal->j_wait_commit);
710 		wait_event(journal->j_wait_done_commit,
711 				!tid_gt(tid, journal->j_commit_sequence));
712 		read_lock(&journal->j_state_lock);
713 	}
714 	read_unlock(&journal->j_state_lock);
715 
716 	if (unlikely(is_journal_aborted(journal)))
717 		err = -EIO;
718 	return err;
719 }
720 
721 /* Return 1 when transaction with given tid has already committed. */
722 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
723 {
724 	int ret = 1;
725 
726 	read_lock(&journal->j_state_lock);
727 	if (journal->j_running_transaction &&
728 	    journal->j_running_transaction->t_tid == tid)
729 		ret = 0;
730 	if (journal->j_committing_transaction &&
731 	    journal->j_committing_transaction->t_tid == tid)
732 		ret = 0;
733 	read_unlock(&journal->j_state_lock);
734 	return ret;
735 }
736 EXPORT_SYMBOL(jbd2_transaction_committed);
737 
738 /*
739  * When this function returns the transaction corresponding to tid
740  * will be completed.  If the transaction has currently running, start
741  * committing that transaction before waiting for it to complete.  If
742  * the transaction id is stale, it is by definition already completed,
743  * so just return SUCCESS.
744  */
745 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
746 {
747 	int	need_to_wait = 1;
748 
749 	read_lock(&journal->j_state_lock);
750 	if (journal->j_running_transaction &&
751 	    journal->j_running_transaction->t_tid == tid) {
752 		if (journal->j_commit_request != tid) {
753 			/* transaction not yet started, so request it */
754 			read_unlock(&journal->j_state_lock);
755 			jbd2_log_start_commit(journal, tid);
756 			goto wait_commit;
757 		}
758 	} else if (!(journal->j_committing_transaction &&
759 		     journal->j_committing_transaction->t_tid == tid))
760 		need_to_wait = 0;
761 	read_unlock(&journal->j_state_lock);
762 	if (!need_to_wait)
763 		return 0;
764 wait_commit:
765 	return jbd2_log_wait_commit(journal, tid);
766 }
767 EXPORT_SYMBOL(jbd2_complete_transaction);
768 
769 /*
770  * Log buffer allocation routines:
771  */
772 
773 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
774 {
775 	unsigned long blocknr;
776 
777 	write_lock(&journal->j_state_lock);
778 	J_ASSERT(journal->j_free > 1);
779 
780 	blocknr = journal->j_head;
781 	journal->j_head++;
782 	journal->j_free--;
783 	if (journal->j_head == journal->j_last)
784 		journal->j_head = journal->j_first;
785 	write_unlock(&journal->j_state_lock);
786 	return jbd2_journal_bmap(journal, blocknr, retp);
787 }
788 
789 /*
790  * Conversion of logical to physical block numbers for the journal
791  *
792  * On external journals the journal blocks are identity-mapped, so
793  * this is a no-op.  If needed, we can use j_blk_offset - everything is
794  * ready.
795  */
796 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
797 		 unsigned long long *retp)
798 {
799 	int err = 0;
800 	unsigned long long ret;
801 
802 	if (journal->j_inode) {
803 		ret = bmap(journal->j_inode, blocknr);
804 		if (ret)
805 			*retp = ret;
806 		else {
807 			printk(KERN_ALERT "%s: journal block not found "
808 					"at offset %lu on %s\n",
809 			       __func__, blocknr, journal->j_devname);
810 			err = -EIO;
811 			__journal_abort_soft(journal, err);
812 		}
813 	} else {
814 		*retp = blocknr; /* +journal->j_blk_offset */
815 	}
816 	return err;
817 }
818 
819 /*
820  * We play buffer_head aliasing tricks to write data/metadata blocks to
821  * the journal without copying their contents, but for journal
822  * descriptor blocks we do need to generate bona fide buffers.
823  *
824  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826  * But we don't bother doing that, so there will be coherency problems with
827  * mmaps of blockdevs which hold live JBD-controlled filesystems.
828  */
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831 {
832 	journal_t *journal = transaction->t_journal;
833 	struct buffer_head *bh;
834 	unsigned long long blocknr;
835 	journal_header_t *header;
836 	int err;
837 
838 	err = jbd2_journal_next_log_block(journal, &blocknr);
839 
840 	if (err)
841 		return NULL;
842 
843 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 	if (!bh)
845 		return NULL;
846 	lock_buffer(bh);
847 	memset(bh->b_data, 0, journal->j_blocksize);
848 	header = (journal_header_t *)bh->b_data;
849 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
850 	header->h_blocktype = cpu_to_be32(type);
851 	header->h_sequence = cpu_to_be32(transaction->t_tid);
852 	set_buffer_uptodate(bh);
853 	unlock_buffer(bh);
854 	BUFFER_TRACE(bh, "return this buffer");
855 	return bh;
856 }
857 
858 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
859 {
860 	struct jbd2_journal_block_tail *tail;
861 	__u32 csum;
862 
863 	if (!jbd2_journal_has_csum_v2or3(j))
864 		return;
865 
866 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
867 			sizeof(struct jbd2_journal_block_tail));
868 	tail->t_checksum = 0;
869 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
870 	tail->t_checksum = cpu_to_be32(csum);
871 }
872 
873 /*
874  * Return tid of the oldest transaction in the journal and block in the journal
875  * where the transaction starts.
876  *
877  * If the journal is now empty, return which will be the next transaction ID
878  * we will write and where will that transaction start.
879  *
880  * The return value is 0 if journal tail cannot be pushed any further, 1 if
881  * it can.
882  */
883 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
884 			      unsigned long *block)
885 {
886 	transaction_t *transaction;
887 	int ret;
888 
889 	read_lock(&journal->j_state_lock);
890 	spin_lock(&journal->j_list_lock);
891 	transaction = journal->j_checkpoint_transactions;
892 	if (transaction) {
893 		*tid = transaction->t_tid;
894 		*block = transaction->t_log_start;
895 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
896 		*tid = transaction->t_tid;
897 		*block = transaction->t_log_start;
898 	} else if ((transaction = journal->j_running_transaction) != NULL) {
899 		*tid = transaction->t_tid;
900 		*block = journal->j_head;
901 	} else {
902 		*tid = journal->j_transaction_sequence;
903 		*block = journal->j_head;
904 	}
905 	ret = tid_gt(*tid, journal->j_tail_sequence);
906 	spin_unlock(&journal->j_list_lock);
907 	read_unlock(&journal->j_state_lock);
908 
909 	return ret;
910 }
911 
912 /*
913  * Update information in journal structure and in on disk journal superblock
914  * about log tail. This function does not check whether information passed in
915  * really pushes log tail further. It's responsibility of the caller to make
916  * sure provided log tail information is valid (e.g. by holding
917  * j_checkpoint_mutex all the time between computing log tail and calling this
918  * function as is the case with jbd2_cleanup_journal_tail()).
919  *
920  * Requires j_checkpoint_mutex
921  */
922 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
923 {
924 	unsigned long freed;
925 	int ret;
926 
927 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
928 
929 	/*
930 	 * We cannot afford for write to remain in drive's caches since as
931 	 * soon as we update j_tail, next transaction can start reusing journal
932 	 * space and if we lose sb update during power failure we'd replay
933 	 * old transaction with possibly newly overwritten data.
934 	 */
935 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
936 					      REQ_SYNC | REQ_FUA);
937 	if (ret)
938 		goto out;
939 
940 	write_lock(&journal->j_state_lock);
941 	freed = block - journal->j_tail;
942 	if (block < journal->j_tail)
943 		freed += journal->j_last - journal->j_first;
944 
945 	trace_jbd2_update_log_tail(journal, tid, block, freed);
946 	jbd_debug(1,
947 		  "Cleaning journal tail from %d to %d (offset %lu), "
948 		  "freeing %lu\n",
949 		  journal->j_tail_sequence, tid, block, freed);
950 
951 	journal->j_free += freed;
952 	journal->j_tail_sequence = tid;
953 	journal->j_tail = block;
954 	write_unlock(&journal->j_state_lock);
955 
956 out:
957 	return ret;
958 }
959 
960 /*
961  * This is a variation of __jbd2_update_log_tail which checks for validity of
962  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
963  * with other threads updating log tail.
964  */
965 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
966 {
967 	mutex_lock_io(&journal->j_checkpoint_mutex);
968 	if (tid_gt(tid, journal->j_tail_sequence))
969 		__jbd2_update_log_tail(journal, tid, block);
970 	mutex_unlock(&journal->j_checkpoint_mutex);
971 }
972 
973 struct jbd2_stats_proc_session {
974 	journal_t *journal;
975 	struct transaction_stats_s *stats;
976 	int start;
977 	int max;
978 };
979 
980 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
981 {
982 	return *pos ? NULL : SEQ_START_TOKEN;
983 }
984 
985 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
986 {
987 	return NULL;
988 }
989 
990 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
991 {
992 	struct jbd2_stats_proc_session *s = seq->private;
993 
994 	if (v != SEQ_START_TOKEN)
995 		return 0;
996 	seq_printf(seq, "%lu transactions (%lu requested), "
997 		   "each up to %u blocks\n",
998 		   s->stats->ts_tid, s->stats->ts_requested,
999 		   s->journal->j_max_transaction_buffers);
1000 	if (s->stats->ts_tid == 0)
1001 		return 0;
1002 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1003 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1004 	seq_printf(seq, "  %ums request delay\n",
1005 	    (s->stats->ts_requested == 0) ? 0 :
1006 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1007 			     s->stats->ts_requested));
1008 	seq_printf(seq, "  %ums running transaction\n",
1009 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1010 	seq_printf(seq, "  %ums transaction was being locked\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1014 	seq_printf(seq, "  %ums logging transaction\n",
1015 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1016 	seq_printf(seq, "  %lluus average transaction commit time\n",
1017 		   div_u64(s->journal->j_average_commit_time, 1000));
1018 	seq_printf(seq, "  %lu handles per transaction\n",
1019 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1020 	seq_printf(seq, "  %lu blocks per transaction\n",
1021 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1022 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1023 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1024 	return 0;
1025 }
1026 
1027 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1028 {
1029 }
1030 
1031 static const struct seq_operations jbd2_seq_info_ops = {
1032 	.start  = jbd2_seq_info_start,
1033 	.next   = jbd2_seq_info_next,
1034 	.stop   = jbd2_seq_info_stop,
1035 	.show   = jbd2_seq_info_show,
1036 };
1037 
1038 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1039 {
1040 	journal_t *journal = PDE_DATA(inode);
1041 	struct jbd2_stats_proc_session *s;
1042 	int rc, size;
1043 
1044 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1045 	if (s == NULL)
1046 		return -ENOMEM;
1047 	size = sizeof(struct transaction_stats_s);
1048 	s->stats = kmalloc(size, GFP_KERNEL);
1049 	if (s->stats == NULL) {
1050 		kfree(s);
1051 		return -ENOMEM;
1052 	}
1053 	spin_lock(&journal->j_history_lock);
1054 	memcpy(s->stats, &journal->j_stats, size);
1055 	s->journal = journal;
1056 	spin_unlock(&journal->j_history_lock);
1057 
1058 	rc = seq_open(file, &jbd2_seq_info_ops);
1059 	if (rc == 0) {
1060 		struct seq_file *m = file->private_data;
1061 		m->private = s;
1062 	} else {
1063 		kfree(s->stats);
1064 		kfree(s);
1065 	}
1066 	return rc;
1067 
1068 }
1069 
1070 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1071 {
1072 	struct seq_file *seq = file->private_data;
1073 	struct jbd2_stats_proc_session *s = seq->private;
1074 	kfree(s->stats);
1075 	kfree(s);
1076 	return seq_release(inode, file);
1077 }
1078 
1079 static const struct file_operations jbd2_seq_info_fops = {
1080 	.owner		= THIS_MODULE,
1081 	.open           = jbd2_seq_info_open,
1082 	.read           = seq_read,
1083 	.llseek         = seq_lseek,
1084 	.release        = jbd2_seq_info_release,
1085 };
1086 
1087 static struct proc_dir_entry *proc_jbd2_stats;
1088 
1089 static void jbd2_stats_proc_init(journal_t *journal)
1090 {
1091 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1092 	if (journal->j_proc_entry) {
1093 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1094 				 &jbd2_seq_info_fops, journal);
1095 	}
1096 }
1097 
1098 static void jbd2_stats_proc_exit(journal_t *journal)
1099 {
1100 	remove_proc_entry("info", journal->j_proc_entry);
1101 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1102 }
1103 
1104 /*
1105  * Management for journal control blocks: functions to create and
1106  * destroy journal_t structures, and to initialise and read existing
1107  * journal blocks from disk.  */
1108 
1109 /* First: create and setup a journal_t object in memory.  We initialise
1110  * very few fields yet: that has to wait until we have created the
1111  * journal structures from from scratch, or loaded them from disk. */
1112 
1113 static journal_t *journal_init_common(struct block_device *bdev,
1114 			struct block_device *fs_dev,
1115 			unsigned long long start, int len, int blocksize)
1116 {
1117 	static struct lock_class_key jbd2_trans_commit_key;
1118 	journal_t *journal;
1119 	int err;
1120 	struct buffer_head *bh;
1121 	int n;
1122 
1123 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1124 	if (!journal)
1125 		return NULL;
1126 
1127 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1128 	init_waitqueue_head(&journal->j_wait_done_commit);
1129 	init_waitqueue_head(&journal->j_wait_commit);
1130 	init_waitqueue_head(&journal->j_wait_updates);
1131 	init_waitqueue_head(&journal->j_wait_reserved);
1132 	mutex_init(&journal->j_barrier);
1133 	mutex_init(&journal->j_checkpoint_mutex);
1134 	spin_lock_init(&journal->j_revoke_lock);
1135 	spin_lock_init(&journal->j_list_lock);
1136 	rwlock_init(&journal->j_state_lock);
1137 
1138 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1139 	journal->j_min_batch_time = 0;
1140 	journal->j_max_batch_time = 15000; /* 15ms */
1141 	atomic_set(&journal->j_reserved_credits, 0);
1142 
1143 	/* The journal is marked for error until we succeed with recovery! */
1144 	journal->j_flags = JBD2_ABORT;
1145 
1146 	/* Set up a default-sized revoke table for the new mount. */
1147 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1148 	if (err)
1149 		goto err_cleanup;
1150 
1151 	spin_lock_init(&journal->j_history_lock);
1152 
1153 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1154 			 &jbd2_trans_commit_key, 0);
1155 
1156 	/* journal descriptor can store up to n blocks -bzzz */
1157 	journal->j_blocksize = blocksize;
1158 	journal->j_dev = bdev;
1159 	journal->j_fs_dev = fs_dev;
1160 	journal->j_blk_offset = start;
1161 	journal->j_maxlen = len;
1162 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 	journal->j_wbufsize = n;
1164 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1165 					GFP_KERNEL);
1166 	if (!journal->j_wbuf)
1167 		goto err_cleanup;
1168 
1169 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1170 	if (!bh) {
1171 		pr_err("%s: Cannot get buffer for journal superblock\n",
1172 			__func__);
1173 		goto err_cleanup;
1174 	}
1175 	journal->j_sb_buffer = bh;
1176 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177 
1178 	return journal;
1179 
1180 err_cleanup:
1181 	kfree(journal->j_wbuf);
1182 	jbd2_journal_destroy_revoke(journal);
1183 	kfree(journal);
1184 	return NULL;
1185 }
1186 
1187 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1188  *
1189  * Create a journal structure assigned some fixed set of disk blocks to
1190  * the journal.  We don't actually touch those disk blocks yet, but we
1191  * need to set up all of the mapping information to tell the journaling
1192  * system where the journal blocks are.
1193  *
1194  */
1195 
1196 /**
1197  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1198  *  @bdev: Block device on which to create the journal
1199  *  @fs_dev: Device which hold journalled filesystem for this journal.
1200  *  @start: Block nr Start of journal.
1201  *  @len:  Length of the journal in blocks.
1202  *  @blocksize: blocksize of journalling device
1203  *
1204  *  Returns: a newly created journal_t *
1205  *
1206  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1207  *  range of blocks on an arbitrary block device.
1208  *
1209  */
1210 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1211 			struct block_device *fs_dev,
1212 			unsigned long long start, int len, int blocksize)
1213 {
1214 	journal_t *journal;
1215 
1216 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1217 	if (!journal)
1218 		return NULL;
1219 
1220 	bdevname(journal->j_dev, journal->j_devname);
1221 	strreplace(journal->j_devname, '/', '!');
1222 	jbd2_stats_proc_init(journal);
1223 
1224 	return journal;
1225 }
1226 
1227 /**
1228  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1229  *  @inode: An inode to create the journal in
1230  *
1231  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1232  * the journal.  The inode must exist already, must support bmap() and
1233  * must have all data blocks preallocated.
1234  */
1235 journal_t *jbd2_journal_init_inode(struct inode *inode)
1236 {
1237 	journal_t *journal;
1238 	char *p;
1239 	unsigned long long blocknr;
1240 
1241 	blocknr = bmap(inode, 0);
1242 	if (!blocknr) {
1243 		pr_err("%s: Cannot locate journal superblock\n",
1244 			__func__);
1245 		return NULL;
1246 	}
1247 
1248 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1249 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1250 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1251 
1252 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1253 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1254 			inode->i_sb->s_blocksize);
1255 	if (!journal)
1256 		return NULL;
1257 
1258 	journal->j_inode = inode;
1259 	bdevname(journal->j_dev, journal->j_devname);
1260 	p = strreplace(journal->j_devname, '/', '!');
1261 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1262 	jbd2_stats_proc_init(journal);
1263 
1264 	return journal;
1265 }
1266 
1267 /*
1268  * If the journal init or create aborts, we need to mark the journal
1269  * superblock as being NULL to prevent the journal destroy from writing
1270  * back a bogus superblock.
1271  */
1272 static void journal_fail_superblock (journal_t *journal)
1273 {
1274 	struct buffer_head *bh = journal->j_sb_buffer;
1275 	brelse(bh);
1276 	journal->j_sb_buffer = NULL;
1277 }
1278 
1279 /*
1280  * Given a journal_t structure, initialise the various fields for
1281  * startup of a new journaling session.  We use this both when creating
1282  * a journal, and after recovering an old journal to reset it for
1283  * subsequent use.
1284  */
1285 
1286 static int journal_reset(journal_t *journal)
1287 {
1288 	journal_superblock_t *sb = journal->j_superblock;
1289 	unsigned long long first, last;
1290 
1291 	first = be32_to_cpu(sb->s_first);
1292 	last = be32_to_cpu(sb->s_maxlen);
1293 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1294 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1295 		       first, last);
1296 		journal_fail_superblock(journal);
1297 		return -EINVAL;
1298 	}
1299 
1300 	journal->j_first = first;
1301 	journal->j_last = last;
1302 
1303 	journal->j_head = first;
1304 	journal->j_tail = first;
1305 	journal->j_free = last - first;
1306 
1307 	journal->j_tail_sequence = journal->j_transaction_sequence;
1308 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1309 	journal->j_commit_request = journal->j_commit_sequence;
1310 
1311 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1312 
1313 	/*
1314 	 * As a special case, if the on-disk copy is already marked as needing
1315 	 * no recovery (s_start == 0), then we can safely defer the superblock
1316 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1317 	 * attempting a write to a potential-readonly device.
1318 	 */
1319 	if (sb->s_start == 0) {
1320 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1321 			"(start %ld, seq %d, errno %d)\n",
1322 			journal->j_tail, journal->j_tail_sequence,
1323 			journal->j_errno);
1324 		journal->j_flags |= JBD2_FLUSHED;
1325 	} else {
1326 		/* Lock here to make assertions happy... */
1327 		mutex_lock_io(&journal->j_checkpoint_mutex);
1328 		/*
1329 		 * Update log tail information. We use REQ_FUA since new
1330 		 * transaction will start reusing journal space and so we
1331 		 * must make sure information about current log tail is on
1332 		 * disk before that.
1333 		 */
1334 		jbd2_journal_update_sb_log_tail(journal,
1335 						journal->j_tail_sequence,
1336 						journal->j_tail,
1337 						REQ_SYNC | REQ_FUA);
1338 		mutex_unlock(&journal->j_checkpoint_mutex);
1339 	}
1340 	return jbd2_journal_start_thread(journal);
1341 }
1342 
1343 /*
1344  * This function expects that the caller will have locked the journal
1345  * buffer head, and will return with it unlocked
1346  */
1347 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1348 {
1349 	struct buffer_head *bh = journal->j_sb_buffer;
1350 	journal_superblock_t *sb = journal->j_superblock;
1351 	int ret;
1352 
1353 	/* Buffer got discarded which means block device got invalidated */
1354 	if (!buffer_mapped(bh))
1355 		return -EIO;
1356 
1357 	trace_jbd2_write_superblock(journal, write_flags);
1358 	if (!(journal->j_flags & JBD2_BARRIER))
1359 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1360 	if (buffer_write_io_error(bh)) {
1361 		/*
1362 		 * Oh, dear.  A previous attempt to write the journal
1363 		 * superblock failed.  This could happen because the
1364 		 * USB device was yanked out.  Or it could happen to
1365 		 * be a transient write error and maybe the block will
1366 		 * be remapped.  Nothing we can do but to retry the
1367 		 * write and hope for the best.
1368 		 */
1369 		printk(KERN_ERR "JBD2: previous I/O error detected "
1370 		       "for journal superblock update for %s.\n",
1371 		       journal->j_devname);
1372 		clear_buffer_write_io_error(bh);
1373 		set_buffer_uptodate(bh);
1374 	}
1375 	if (jbd2_journal_has_csum_v2or3(journal))
1376 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1377 	get_bh(bh);
1378 	bh->b_end_io = end_buffer_write_sync;
1379 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1380 	wait_on_buffer(bh);
1381 	if (buffer_write_io_error(bh)) {
1382 		clear_buffer_write_io_error(bh);
1383 		set_buffer_uptodate(bh);
1384 		ret = -EIO;
1385 	}
1386 	if (ret) {
1387 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1388 		       "journal superblock for %s.\n", ret,
1389 		       journal->j_devname);
1390 		jbd2_journal_abort(journal, ret);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 /**
1397  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1398  * @journal: The journal to update.
1399  * @tail_tid: TID of the new transaction at the tail of the log
1400  * @tail_block: The first block of the transaction at the tail of the log
1401  * @write_op: With which operation should we write the journal sb
1402  *
1403  * Update a journal's superblock information about log tail and write it to
1404  * disk, waiting for the IO to complete.
1405  */
1406 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1407 				     unsigned long tail_block, int write_op)
1408 {
1409 	journal_superblock_t *sb = journal->j_superblock;
1410 	int ret;
1411 
1412 	if (is_journal_aborted(journal))
1413 		return -EIO;
1414 
1415 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417 		  tail_block, tail_tid);
1418 
1419 	lock_buffer(journal->j_sb_buffer);
1420 	sb->s_sequence = cpu_to_be32(tail_tid);
1421 	sb->s_start    = cpu_to_be32(tail_block);
1422 
1423 	ret = jbd2_write_superblock(journal, write_op);
1424 	if (ret)
1425 		goto out;
1426 
1427 	/* Log is no longer empty */
1428 	write_lock(&journal->j_state_lock);
1429 	WARN_ON(!sb->s_sequence);
1430 	journal->j_flags &= ~JBD2_FLUSHED;
1431 	write_unlock(&journal->j_state_lock);
1432 
1433 out:
1434 	return ret;
1435 }
1436 
1437 /**
1438  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1439  * @journal: The journal to update.
1440  * @write_op: With which operation should we write the journal sb
1441  *
1442  * Update a journal's dynamic superblock fields to show that journal is empty.
1443  * Write updated superblock to disk waiting for IO to complete.
1444  */
1445 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1446 {
1447 	journal_superblock_t *sb = journal->j_superblock;
1448 
1449 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1450 	lock_buffer(journal->j_sb_buffer);
1451 	if (sb->s_start == 0) {		/* Is it already empty? */
1452 		unlock_buffer(journal->j_sb_buffer);
1453 		return;
1454 	}
1455 
1456 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1457 		  journal->j_tail_sequence);
1458 
1459 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1460 	sb->s_start    = cpu_to_be32(0);
1461 
1462 	jbd2_write_superblock(journal, write_op);
1463 
1464 	/* Log is no longer empty */
1465 	write_lock(&journal->j_state_lock);
1466 	journal->j_flags |= JBD2_FLUSHED;
1467 	write_unlock(&journal->j_state_lock);
1468 }
1469 
1470 
1471 /**
1472  * jbd2_journal_update_sb_errno() - Update error in the journal.
1473  * @journal: The journal to update.
1474  *
1475  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1476  * to complete.
1477  */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480 	journal_superblock_t *sb = journal->j_superblock;
1481 	int errcode;
1482 
1483 	lock_buffer(journal->j_sb_buffer);
1484 	errcode = journal->j_errno;
1485 	if (errcode == -ESHUTDOWN)
1486 		errcode = 0;
1487 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1488 	sb->s_errno    = cpu_to_be32(errcode);
1489 
1490 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1491 }
1492 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1493 
1494 /*
1495  * Read the superblock for a given journal, performing initial
1496  * validation of the format.
1497  */
1498 static int journal_get_superblock(journal_t *journal)
1499 {
1500 	struct buffer_head *bh;
1501 	journal_superblock_t *sb;
1502 	int err = -EIO;
1503 
1504 	bh = journal->j_sb_buffer;
1505 
1506 	J_ASSERT(bh != NULL);
1507 	if (!buffer_uptodate(bh)) {
1508 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1509 		wait_on_buffer(bh);
1510 		if (!buffer_uptodate(bh)) {
1511 			printk(KERN_ERR
1512 				"JBD2: IO error reading journal superblock\n");
1513 			goto out;
1514 		}
1515 	}
1516 
1517 	if (buffer_verified(bh))
1518 		return 0;
1519 
1520 	sb = journal->j_superblock;
1521 
1522 	err = -EINVAL;
1523 
1524 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1525 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1526 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1527 		goto out;
1528 	}
1529 
1530 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1531 	case JBD2_SUPERBLOCK_V1:
1532 		journal->j_format_version = 1;
1533 		break;
1534 	case JBD2_SUPERBLOCK_V2:
1535 		journal->j_format_version = 2;
1536 		break;
1537 	default:
1538 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1539 		goto out;
1540 	}
1541 
1542 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1543 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1544 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1545 		printk(KERN_WARNING "JBD2: journal file too short\n");
1546 		goto out;
1547 	}
1548 
1549 	if (be32_to_cpu(sb->s_first) == 0 ||
1550 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1551 		printk(KERN_WARNING
1552 			"JBD2: Invalid start block of journal: %u\n",
1553 			be32_to_cpu(sb->s_first));
1554 		goto out;
1555 	}
1556 
1557 	if (jbd2_has_feature_csum2(journal) &&
1558 	    jbd2_has_feature_csum3(journal)) {
1559 		/* Can't have checksum v2 and v3 at the same time! */
1560 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1561 		       "at the same time!\n");
1562 		goto out;
1563 	}
1564 
1565 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1566 	    jbd2_has_feature_checksum(journal)) {
1567 		/* Can't have checksum v1 and v2 on at the same time! */
1568 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1569 		       "at the same time!\n");
1570 		goto out;
1571 	}
1572 
1573 	if (!jbd2_verify_csum_type(journal, sb)) {
1574 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1575 		goto out;
1576 	}
1577 
1578 	/* Load the checksum driver */
1579 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1580 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1581 		if (IS_ERR(journal->j_chksum_driver)) {
1582 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1583 			err = PTR_ERR(journal->j_chksum_driver);
1584 			journal->j_chksum_driver = NULL;
1585 			goto out;
1586 		}
1587 	}
1588 
1589 	if (jbd2_journal_has_csum_v2or3(journal)) {
1590 		/* Check superblock checksum */
1591 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1592 			printk(KERN_ERR "JBD2: journal checksum error\n");
1593 			err = -EFSBADCRC;
1594 			goto out;
1595 		}
1596 
1597 		/* Precompute checksum seed for all metadata */
1598 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1599 						   sizeof(sb->s_uuid));
1600 	}
1601 
1602 	set_buffer_verified(bh);
1603 
1604 	return 0;
1605 
1606 out:
1607 	journal_fail_superblock(journal);
1608 	return err;
1609 }
1610 
1611 /*
1612  * Load the on-disk journal superblock and read the key fields into the
1613  * journal_t.
1614  */
1615 
1616 static int load_superblock(journal_t *journal)
1617 {
1618 	int err;
1619 	journal_superblock_t *sb;
1620 
1621 	err = journal_get_superblock(journal);
1622 	if (err)
1623 		return err;
1624 
1625 	sb = journal->j_superblock;
1626 
1627 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1628 	journal->j_tail = be32_to_cpu(sb->s_start);
1629 	journal->j_first = be32_to_cpu(sb->s_first);
1630 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1631 	journal->j_errno = be32_to_cpu(sb->s_errno);
1632 
1633 	return 0;
1634 }
1635 
1636 
1637 /**
1638  * int jbd2_journal_load() - Read journal from disk.
1639  * @journal: Journal to act on.
1640  *
1641  * Given a journal_t structure which tells us which disk blocks contain
1642  * a journal, read the journal from disk to initialise the in-memory
1643  * structures.
1644  */
1645 int jbd2_journal_load(journal_t *journal)
1646 {
1647 	int err;
1648 	journal_superblock_t *sb;
1649 
1650 	err = load_superblock(journal);
1651 	if (err)
1652 		return err;
1653 
1654 	sb = journal->j_superblock;
1655 	/* If this is a V2 superblock, then we have to check the
1656 	 * features flags on it. */
1657 
1658 	if (journal->j_format_version >= 2) {
1659 		if ((sb->s_feature_ro_compat &
1660 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1661 		    (sb->s_feature_incompat &
1662 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1663 			printk(KERN_WARNING
1664 				"JBD2: Unrecognised features on journal\n");
1665 			return -EINVAL;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * Create a slab for this blocksize
1671 	 */
1672 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1673 	if (err)
1674 		return err;
1675 
1676 	/* Let the recovery code check whether it needs to recover any
1677 	 * data from the journal. */
1678 	if (jbd2_journal_recover(journal))
1679 		goto recovery_error;
1680 
1681 	if (journal->j_failed_commit) {
1682 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1683 		       "is corrupt.\n", journal->j_failed_commit,
1684 		       journal->j_devname);
1685 		return -EFSCORRUPTED;
1686 	}
1687 
1688 	/* OK, we've finished with the dynamic journal bits:
1689 	 * reinitialise the dynamic contents of the superblock in memory
1690 	 * and reset them on disk. */
1691 	if (journal_reset(journal))
1692 		goto recovery_error;
1693 
1694 	journal->j_flags &= ~JBD2_ABORT;
1695 	journal->j_flags |= JBD2_LOADED;
1696 	return 0;
1697 
1698 recovery_error:
1699 	printk(KERN_WARNING "JBD2: recovery failed\n");
1700 	return -EIO;
1701 }
1702 
1703 /**
1704  * void jbd2_journal_destroy() - Release a journal_t structure.
1705  * @journal: Journal to act on.
1706  *
1707  * Release a journal_t structure once it is no longer in use by the
1708  * journaled object.
1709  * Return <0 if we couldn't clean up the journal.
1710  */
1711 int jbd2_journal_destroy(journal_t *journal)
1712 {
1713 	int err = 0;
1714 
1715 	/* Wait for the commit thread to wake up and die. */
1716 	journal_kill_thread(journal);
1717 
1718 	/* Force a final log commit */
1719 	if (journal->j_running_transaction)
1720 		jbd2_journal_commit_transaction(journal);
1721 
1722 	/* Force any old transactions to disk */
1723 
1724 	/* Totally anal locking here... */
1725 	spin_lock(&journal->j_list_lock);
1726 	while (journal->j_checkpoint_transactions != NULL) {
1727 		spin_unlock(&journal->j_list_lock);
1728 		mutex_lock_io(&journal->j_checkpoint_mutex);
1729 		err = jbd2_log_do_checkpoint(journal);
1730 		mutex_unlock(&journal->j_checkpoint_mutex);
1731 		/*
1732 		 * If checkpointing failed, just free the buffers to avoid
1733 		 * looping forever
1734 		 */
1735 		if (err) {
1736 			jbd2_journal_destroy_checkpoint(journal);
1737 			spin_lock(&journal->j_list_lock);
1738 			break;
1739 		}
1740 		spin_lock(&journal->j_list_lock);
1741 	}
1742 
1743 	J_ASSERT(journal->j_running_transaction == NULL);
1744 	J_ASSERT(journal->j_committing_transaction == NULL);
1745 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1746 	spin_unlock(&journal->j_list_lock);
1747 
1748 	if (journal->j_sb_buffer) {
1749 		if (!is_journal_aborted(journal)) {
1750 			mutex_lock_io(&journal->j_checkpoint_mutex);
1751 
1752 			write_lock(&journal->j_state_lock);
1753 			journal->j_tail_sequence =
1754 				++journal->j_transaction_sequence;
1755 			write_unlock(&journal->j_state_lock);
1756 
1757 			jbd2_mark_journal_empty(journal,
1758 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1759 			mutex_unlock(&journal->j_checkpoint_mutex);
1760 		} else
1761 			err = -EIO;
1762 		brelse(journal->j_sb_buffer);
1763 	}
1764 
1765 	if (journal->j_proc_entry)
1766 		jbd2_stats_proc_exit(journal);
1767 	iput(journal->j_inode);
1768 	if (journal->j_revoke)
1769 		jbd2_journal_destroy_revoke(journal);
1770 	if (journal->j_chksum_driver)
1771 		crypto_free_shash(journal->j_chksum_driver);
1772 	kfree(journal->j_wbuf);
1773 	kfree(journal);
1774 
1775 	return err;
1776 }
1777 
1778 
1779 /**
1780  *int jbd2_journal_check_used_features () - Check if features specified are used.
1781  * @journal: Journal to check.
1782  * @compat: bitmask of compatible features
1783  * @ro: bitmask of features that force read-only mount
1784  * @incompat: bitmask of incompatible features
1785  *
1786  * Check whether the journal uses all of a given set of
1787  * features.  Return true (non-zero) if it does.
1788  **/
1789 
1790 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1791 				 unsigned long ro, unsigned long incompat)
1792 {
1793 	journal_superblock_t *sb;
1794 
1795 	if (!compat && !ro && !incompat)
1796 		return 1;
1797 	/* Load journal superblock if it is not loaded yet. */
1798 	if (journal->j_format_version == 0 &&
1799 	    journal_get_superblock(journal) != 0)
1800 		return 0;
1801 	if (journal->j_format_version == 1)
1802 		return 0;
1803 
1804 	sb = journal->j_superblock;
1805 
1806 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1807 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1808 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1809 		return 1;
1810 
1811 	return 0;
1812 }
1813 
1814 /**
1815  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1816  * @journal: Journal to check.
1817  * @compat: bitmask of compatible features
1818  * @ro: bitmask of features that force read-only mount
1819  * @incompat: bitmask of incompatible features
1820  *
1821  * Check whether the journaling code supports the use of
1822  * all of a given set of features on this journal.  Return true
1823  * (non-zero) if it can. */
1824 
1825 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1826 				      unsigned long ro, unsigned long incompat)
1827 {
1828 	if (!compat && !ro && !incompat)
1829 		return 1;
1830 
1831 	/* We can support any known requested features iff the
1832 	 * superblock is in version 2.  Otherwise we fail to support any
1833 	 * extended sb features. */
1834 
1835 	if (journal->j_format_version != 2)
1836 		return 0;
1837 
1838 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1839 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1840 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1841 		return 1;
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1848  * @journal: Journal to act on.
1849  * @compat: bitmask of compatible features
1850  * @ro: bitmask of features that force read-only mount
1851  * @incompat: bitmask of incompatible features
1852  *
1853  * Mark a given journal feature as present on the
1854  * superblock.  Returns true if the requested features could be set.
1855  *
1856  */
1857 
1858 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1859 			  unsigned long ro, unsigned long incompat)
1860 {
1861 #define INCOMPAT_FEATURE_ON(f) \
1862 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1863 #define COMPAT_FEATURE_ON(f) \
1864 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1865 	journal_superblock_t *sb;
1866 
1867 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1868 		return 1;
1869 
1870 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1871 		return 0;
1872 
1873 	/* If enabling v2 checksums, turn on v3 instead */
1874 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1875 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1876 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1877 	}
1878 
1879 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1880 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1881 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1882 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1883 
1884 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1885 		  compat, ro, incompat);
1886 
1887 	sb = journal->j_superblock;
1888 
1889 	/* Load the checksum driver if necessary */
1890 	if ((journal->j_chksum_driver == NULL) &&
1891 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1892 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1893 		if (IS_ERR(journal->j_chksum_driver)) {
1894 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1895 			journal->j_chksum_driver = NULL;
1896 			return 0;
1897 		}
1898 		/* Precompute checksum seed for all metadata */
1899 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1900 						   sizeof(sb->s_uuid));
1901 	}
1902 
1903 	lock_buffer(journal->j_sb_buffer);
1904 
1905 	/* If enabling v3 checksums, update superblock */
1906 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1907 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1908 		sb->s_feature_compat &=
1909 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1910 	}
1911 
1912 	/* If enabling v1 checksums, downgrade superblock */
1913 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1914 		sb->s_feature_incompat &=
1915 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1916 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1917 
1918 	sb->s_feature_compat    |= cpu_to_be32(compat);
1919 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1920 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1921 	unlock_buffer(journal->j_sb_buffer);
1922 
1923 	return 1;
1924 #undef COMPAT_FEATURE_ON
1925 #undef INCOMPAT_FEATURE_ON
1926 }
1927 
1928 /*
1929  * jbd2_journal_clear_features () - Clear a given journal feature in the
1930  * 				    superblock
1931  * @journal: Journal to act on.
1932  * @compat: bitmask of compatible features
1933  * @ro: bitmask of features that force read-only mount
1934  * @incompat: bitmask of incompatible features
1935  *
1936  * Clear a given journal feature as present on the
1937  * superblock.
1938  */
1939 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1940 				unsigned long ro, unsigned long incompat)
1941 {
1942 	journal_superblock_t *sb;
1943 
1944 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1945 		  compat, ro, incompat);
1946 
1947 	sb = journal->j_superblock;
1948 
1949 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1950 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1951 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1952 }
1953 EXPORT_SYMBOL(jbd2_journal_clear_features);
1954 
1955 /**
1956  * int jbd2_journal_flush () - Flush journal
1957  * @journal: Journal to act on.
1958  *
1959  * Flush all data for a given journal to disk and empty the journal.
1960  * Filesystems can use this when remounting readonly to ensure that
1961  * recovery does not need to happen on remount.
1962  */
1963 
1964 int jbd2_journal_flush(journal_t *journal)
1965 {
1966 	int err = 0;
1967 	transaction_t *transaction = NULL;
1968 
1969 	write_lock(&journal->j_state_lock);
1970 
1971 	/* Force everything buffered to the log... */
1972 	if (journal->j_running_transaction) {
1973 		transaction = journal->j_running_transaction;
1974 		__jbd2_log_start_commit(journal, transaction->t_tid);
1975 	} else if (journal->j_committing_transaction)
1976 		transaction = journal->j_committing_transaction;
1977 
1978 	/* Wait for the log commit to complete... */
1979 	if (transaction) {
1980 		tid_t tid = transaction->t_tid;
1981 
1982 		write_unlock(&journal->j_state_lock);
1983 		jbd2_log_wait_commit(journal, tid);
1984 	} else {
1985 		write_unlock(&journal->j_state_lock);
1986 	}
1987 
1988 	/* ...and flush everything in the log out to disk. */
1989 	spin_lock(&journal->j_list_lock);
1990 	while (!err && journal->j_checkpoint_transactions != NULL) {
1991 		spin_unlock(&journal->j_list_lock);
1992 		mutex_lock_io(&journal->j_checkpoint_mutex);
1993 		err = jbd2_log_do_checkpoint(journal);
1994 		mutex_unlock(&journal->j_checkpoint_mutex);
1995 		spin_lock(&journal->j_list_lock);
1996 	}
1997 	spin_unlock(&journal->j_list_lock);
1998 
1999 	if (is_journal_aborted(journal))
2000 		return -EIO;
2001 
2002 	mutex_lock_io(&journal->j_checkpoint_mutex);
2003 	if (!err) {
2004 		err = jbd2_cleanup_journal_tail(journal);
2005 		if (err < 0) {
2006 			mutex_unlock(&journal->j_checkpoint_mutex);
2007 			goto out;
2008 		}
2009 		err = 0;
2010 	}
2011 
2012 	/* Finally, mark the journal as really needing no recovery.
2013 	 * This sets s_start==0 in the underlying superblock, which is
2014 	 * the magic code for a fully-recovered superblock.  Any future
2015 	 * commits of data to the journal will restore the current
2016 	 * s_start value. */
2017 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2018 	mutex_unlock(&journal->j_checkpoint_mutex);
2019 	write_lock(&journal->j_state_lock);
2020 	J_ASSERT(!journal->j_running_transaction);
2021 	J_ASSERT(!journal->j_committing_transaction);
2022 	J_ASSERT(!journal->j_checkpoint_transactions);
2023 	J_ASSERT(journal->j_head == journal->j_tail);
2024 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2025 	write_unlock(&journal->j_state_lock);
2026 out:
2027 	return err;
2028 }
2029 
2030 /**
2031  * int jbd2_journal_wipe() - Wipe journal contents
2032  * @journal: Journal to act on.
2033  * @write: flag (see below)
2034  *
2035  * Wipe out all of the contents of a journal, safely.  This will produce
2036  * a warning if the journal contains any valid recovery information.
2037  * Must be called between journal_init_*() and jbd2_journal_load().
2038  *
2039  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2040  * we merely suppress recovery.
2041  */
2042 
2043 int jbd2_journal_wipe(journal_t *journal, int write)
2044 {
2045 	int err = 0;
2046 
2047 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2048 
2049 	err = load_superblock(journal);
2050 	if (err)
2051 		return err;
2052 
2053 	if (!journal->j_tail)
2054 		goto no_recovery;
2055 
2056 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2057 		write ? "Clearing" : "Ignoring");
2058 
2059 	err = jbd2_journal_skip_recovery(journal);
2060 	if (write) {
2061 		/* Lock to make assertions happy... */
2062 		mutex_lock_io(&journal->j_checkpoint_mutex);
2063 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2064 		mutex_unlock(&journal->j_checkpoint_mutex);
2065 	}
2066 
2067  no_recovery:
2068 	return err;
2069 }
2070 
2071 /*
2072  * Journal abort has very specific semantics, which we describe
2073  * for journal abort.
2074  *
2075  * Two internal functions, which provide abort to the jbd layer
2076  * itself are here.
2077  */
2078 
2079 /*
2080  * Quick version for internal journal use (doesn't lock the journal).
2081  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2082  * and don't attempt to make any other journal updates.
2083  */
2084 void __jbd2_journal_abort_hard(journal_t *journal)
2085 {
2086 	transaction_t *transaction;
2087 
2088 	if (journal->j_flags & JBD2_ABORT)
2089 		return;
2090 
2091 	printk(KERN_ERR "Aborting journal on device %s.\n",
2092 	       journal->j_devname);
2093 
2094 	write_lock(&journal->j_state_lock);
2095 	journal->j_flags |= JBD2_ABORT;
2096 	transaction = journal->j_running_transaction;
2097 	if (transaction)
2098 		__jbd2_log_start_commit(journal, transaction->t_tid);
2099 	write_unlock(&journal->j_state_lock);
2100 }
2101 
2102 /* Soft abort: record the abort error status in the journal superblock,
2103  * but don't do any other IO. */
2104 static void __journal_abort_soft (journal_t *journal, int errno)
2105 {
2106 	int old_errno;
2107 
2108 	write_lock(&journal->j_state_lock);
2109 	old_errno = journal->j_errno;
2110 	if (!journal->j_errno || errno == -ESHUTDOWN)
2111 		journal->j_errno = errno;
2112 
2113 	if (journal->j_flags & JBD2_ABORT) {
2114 		write_unlock(&journal->j_state_lock);
2115 		if (!old_errno && old_errno != -ESHUTDOWN &&
2116 		    errno == -ESHUTDOWN)
2117 			jbd2_journal_update_sb_errno(journal);
2118 		return;
2119 	}
2120 	write_unlock(&journal->j_state_lock);
2121 
2122 	__jbd2_journal_abort_hard(journal);
2123 
2124 	if (errno) {
2125 		jbd2_journal_update_sb_errno(journal);
2126 		write_lock(&journal->j_state_lock);
2127 		journal->j_flags |= JBD2_REC_ERR;
2128 		write_unlock(&journal->j_state_lock);
2129 	}
2130 }
2131 
2132 /**
2133  * void jbd2_journal_abort () - Shutdown the journal immediately.
2134  * @journal: the journal to shutdown.
2135  * @errno:   an error number to record in the journal indicating
2136  *           the reason for the shutdown.
2137  *
2138  * Perform a complete, immediate shutdown of the ENTIRE
2139  * journal (not of a single transaction).  This operation cannot be
2140  * undone without closing and reopening the journal.
2141  *
2142  * The jbd2_journal_abort function is intended to support higher level error
2143  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2144  * mode.
2145  *
2146  * Journal abort has very specific semantics.  Any existing dirty,
2147  * unjournaled buffers in the main filesystem will still be written to
2148  * disk by bdflush, but the journaling mechanism will be suspended
2149  * immediately and no further transaction commits will be honoured.
2150  *
2151  * Any dirty, journaled buffers will be written back to disk without
2152  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2153  * filesystem, but we _do_ attempt to leave as much data as possible
2154  * behind for fsck to use for cleanup.
2155  *
2156  * Any attempt to get a new transaction handle on a journal which is in
2157  * ABORT state will just result in an -EROFS error return.  A
2158  * jbd2_journal_stop on an existing handle will return -EIO if we have
2159  * entered abort state during the update.
2160  *
2161  * Recursive transactions are not disturbed by journal abort until the
2162  * final jbd2_journal_stop, which will receive the -EIO error.
2163  *
2164  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2165  * which will be recorded (if possible) in the journal superblock.  This
2166  * allows a client to record failure conditions in the middle of a
2167  * transaction without having to complete the transaction to record the
2168  * failure to disk.  ext3_error, for example, now uses this
2169  * functionality.
2170  *
2171  * Errors which originate from within the journaling layer will NOT
2172  * supply an errno; a null errno implies that absolutely no further
2173  * writes are done to the journal (unless there are any already in
2174  * progress).
2175  *
2176  */
2177 
2178 void jbd2_journal_abort(journal_t *journal, int errno)
2179 {
2180 	__journal_abort_soft(journal, errno);
2181 }
2182 
2183 /**
2184  * int jbd2_journal_errno () - returns the journal's error state.
2185  * @journal: journal to examine.
2186  *
2187  * This is the errno number set with jbd2_journal_abort(), the last
2188  * time the journal was mounted - if the journal was stopped
2189  * without calling abort this will be 0.
2190  *
2191  * If the journal has been aborted on this mount time -EROFS will
2192  * be returned.
2193  */
2194 int jbd2_journal_errno(journal_t *journal)
2195 {
2196 	int err;
2197 
2198 	read_lock(&journal->j_state_lock);
2199 	if (journal->j_flags & JBD2_ABORT)
2200 		err = -EROFS;
2201 	else
2202 		err = journal->j_errno;
2203 	read_unlock(&journal->j_state_lock);
2204 	return err;
2205 }
2206 
2207 /**
2208  * int jbd2_journal_clear_err () - clears the journal's error state
2209  * @journal: journal to act on.
2210  *
2211  * An error must be cleared or acked to take a FS out of readonly
2212  * mode.
2213  */
2214 int jbd2_journal_clear_err(journal_t *journal)
2215 {
2216 	int err = 0;
2217 
2218 	write_lock(&journal->j_state_lock);
2219 	if (journal->j_flags & JBD2_ABORT)
2220 		err = -EROFS;
2221 	else
2222 		journal->j_errno = 0;
2223 	write_unlock(&journal->j_state_lock);
2224 	return err;
2225 }
2226 
2227 /**
2228  * void jbd2_journal_ack_err() - Ack journal err.
2229  * @journal: journal to act on.
2230  *
2231  * An error must be cleared or acked to take a FS out of readonly
2232  * mode.
2233  */
2234 void jbd2_journal_ack_err(journal_t *journal)
2235 {
2236 	write_lock(&journal->j_state_lock);
2237 	if (journal->j_errno)
2238 		journal->j_flags |= JBD2_ACK_ERR;
2239 	write_unlock(&journal->j_state_lock);
2240 }
2241 
2242 int jbd2_journal_blocks_per_page(struct inode *inode)
2243 {
2244 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2245 }
2246 
2247 /*
2248  * helper functions to deal with 32 or 64bit block numbers.
2249  */
2250 size_t journal_tag_bytes(journal_t *journal)
2251 {
2252 	size_t sz;
2253 
2254 	if (jbd2_has_feature_csum3(journal))
2255 		return sizeof(journal_block_tag3_t);
2256 
2257 	sz = sizeof(journal_block_tag_t);
2258 
2259 	if (jbd2_has_feature_csum2(journal))
2260 		sz += sizeof(__u16);
2261 
2262 	if (jbd2_has_feature_64bit(journal))
2263 		return sz;
2264 	else
2265 		return sz - sizeof(__u32);
2266 }
2267 
2268 /*
2269  * JBD memory management
2270  *
2271  * These functions are used to allocate block-sized chunks of memory
2272  * used for making copies of buffer_head data.  Very often it will be
2273  * page-sized chunks of data, but sometimes it will be in
2274  * sub-page-size chunks.  (For example, 16k pages on Power systems
2275  * with a 4k block file system.)  For blocks smaller than a page, we
2276  * use a SLAB allocator.  There are slab caches for each block size,
2277  * which are allocated at mount time, if necessary, and we only free
2278  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2279  * this reason we don't need to a mutex to protect access to
2280  * jbd2_slab[] allocating or releasing memory; only in
2281  * jbd2_journal_create_slab().
2282  */
2283 #define JBD2_MAX_SLABS 8
2284 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2285 
2286 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2287 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2288 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2289 };
2290 
2291 
2292 static void jbd2_journal_destroy_slabs(void)
2293 {
2294 	int i;
2295 
2296 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2297 		kmem_cache_destroy(jbd2_slab[i]);
2298 		jbd2_slab[i] = NULL;
2299 	}
2300 }
2301 
2302 static int jbd2_journal_create_slab(size_t size)
2303 {
2304 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2305 	int i = order_base_2(size) - 10;
2306 	size_t slab_size;
2307 
2308 	if (size == PAGE_SIZE)
2309 		return 0;
2310 
2311 	if (i >= JBD2_MAX_SLABS)
2312 		return -EINVAL;
2313 
2314 	if (unlikely(i < 0))
2315 		i = 0;
2316 	mutex_lock(&jbd2_slab_create_mutex);
2317 	if (jbd2_slab[i]) {
2318 		mutex_unlock(&jbd2_slab_create_mutex);
2319 		return 0;	/* Already created */
2320 	}
2321 
2322 	slab_size = 1 << (i+10);
2323 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2324 					 slab_size, 0, NULL);
2325 	mutex_unlock(&jbd2_slab_create_mutex);
2326 	if (!jbd2_slab[i]) {
2327 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2328 		return -ENOMEM;
2329 	}
2330 	return 0;
2331 }
2332 
2333 static struct kmem_cache *get_slab(size_t size)
2334 {
2335 	int i = order_base_2(size) - 10;
2336 
2337 	BUG_ON(i >= JBD2_MAX_SLABS);
2338 	if (unlikely(i < 0))
2339 		i = 0;
2340 	BUG_ON(jbd2_slab[i] == NULL);
2341 	return jbd2_slab[i];
2342 }
2343 
2344 void *jbd2_alloc(size_t size, gfp_t flags)
2345 {
2346 	void *ptr;
2347 
2348 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2349 
2350 	if (size < PAGE_SIZE)
2351 		ptr = kmem_cache_alloc(get_slab(size), flags);
2352 	else
2353 		ptr = (void *)__get_free_pages(flags, get_order(size));
2354 
2355 	/* Check alignment; SLUB has gotten this wrong in the past,
2356 	 * and this can lead to user data corruption! */
2357 	BUG_ON(((unsigned long) ptr) & (size-1));
2358 
2359 	return ptr;
2360 }
2361 
2362 void jbd2_free(void *ptr, size_t size)
2363 {
2364 	if (size < PAGE_SIZE)
2365 		kmem_cache_free(get_slab(size), ptr);
2366 	else
2367 		free_pages((unsigned long)ptr, get_order(size));
2368 };
2369 
2370 /*
2371  * Journal_head storage management
2372  */
2373 static struct kmem_cache *jbd2_journal_head_cache;
2374 #ifdef CONFIG_JBD2_DEBUG
2375 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2376 #endif
2377 
2378 static int jbd2_journal_init_journal_head_cache(void)
2379 {
2380 	int retval;
2381 
2382 	J_ASSERT(jbd2_journal_head_cache == NULL);
2383 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2384 				sizeof(struct journal_head),
2385 				0,		/* offset */
2386 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2387 				NULL);		/* ctor */
2388 	retval = 0;
2389 	if (!jbd2_journal_head_cache) {
2390 		retval = -ENOMEM;
2391 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2392 	}
2393 	return retval;
2394 }
2395 
2396 static void jbd2_journal_destroy_journal_head_cache(void)
2397 {
2398 	kmem_cache_destroy(jbd2_journal_head_cache);
2399 	jbd2_journal_head_cache = NULL;
2400 }
2401 
2402 /*
2403  * journal_head splicing and dicing
2404  */
2405 static struct journal_head *journal_alloc_journal_head(void)
2406 {
2407 	struct journal_head *ret;
2408 
2409 #ifdef CONFIG_JBD2_DEBUG
2410 	atomic_inc(&nr_journal_heads);
2411 #endif
2412 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2413 	if (!ret) {
2414 		jbd_debug(1, "out of memory for journal_head\n");
2415 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2416 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2417 				GFP_NOFS | __GFP_NOFAIL);
2418 	}
2419 	return ret;
2420 }
2421 
2422 static void journal_free_journal_head(struct journal_head *jh)
2423 {
2424 #ifdef CONFIG_JBD2_DEBUG
2425 	atomic_dec(&nr_journal_heads);
2426 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2427 #endif
2428 	kmem_cache_free(jbd2_journal_head_cache, jh);
2429 }
2430 
2431 /*
2432  * A journal_head is attached to a buffer_head whenever JBD has an
2433  * interest in the buffer.
2434  *
2435  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2436  * is set.  This bit is tested in core kernel code where we need to take
2437  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2438  * there.
2439  *
2440  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2441  *
2442  * When a buffer has its BH_JBD bit set it is immune from being released by
2443  * core kernel code, mainly via ->b_count.
2444  *
2445  * A journal_head is detached from its buffer_head when the journal_head's
2446  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2447  * transaction (b_cp_transaction) hold their references to b_jcount.
2448  *
2449  * Various places in the kernel want to attach a journal_head to a buffer_head
2450  * _before_ attaching the journal_head to a transaction.  To protect the
2451  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2452  * journal_head's b_jcount refcount by one.  The caller must call
2453  * jbd2_journal_put_journal_head() to undo this.
2454  *
2455  * So the typical usage would be:
2456  *
2457  *	(Attach a journal_head if needed.  Increments b_jcount)
2458  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2459  *	...
2460  *      (Get another reference for transaction)
2461  *	jbd2_journal_grab_journal_head(bh);
2462  *	jh->b_transaction = xxx;
2463  *	(Put original reference)
2464  *	jbd2_journal_put_journal_head(jh);
2465  */
2466 
2467 /*
2468  * Give a buffer_head a journal_head.
2469  *
2470  * May sleep.
2471  */
2472 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2473 {
2474 	struct journal_head *jh;
2475 	struct journal_head *new_jh = NULL;
2476 
2477 repeat:
2478 	if (!buffer_jbd(bh))
2479 		new_jh = journal_alloc_journal_head();
2480 
2481 	jbd_lock_bh_journal_head(bh);
2482 	if (buffer_jbd(bh)) {
2483 		jh = bh2jh(bh);
2484 	} else {
2485 		J_ASSERT_BH(bh,
2486 			(atomic_read(&bh->b_count) > 0) ||
2487 			(bh->b_page && bh->b_page->mapping));
2488 
2489 		if (!new_jh) {
2490 			jbd_unlock_bh_journal_head(bh);
2491 			goto repeat;
2492 		}
2493 
2494 		jh = new_jh;
2495 		new_jh = NULL;		/* We consumed it */
2496 		set_buffer_jbd(bh);
2497 		bh->b_private = jh;
2498 		jh->b_bh = bh;
2499 		get_bh(bh);
2500 		BUFFER_TRACE(bh, "added journal_head");
2501 	}
2502 	jh->b_jcount++;
2503 	jbd_unlock_bh_journal_head(bh);
2504 	if (new_jh)
2505 		journal_free_journal_head(new_jh);
2506 	return bh->b_private;
2507 }
2508 
2509 /*
2510  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2511  * having a journal_head, return NULL
2512  */
2513 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2514 {
2515 	struct journal_head *jh = NULL;
2516 
2517 	jbd_lock_bh_journal_head(bh);
2518 	if (buffer_jbd(bh)) {
2519 		jh = bh2jh(bh);
2520 		jh->b_jcount++;
2521 	}
2522 	jbd_unlock_bh_journal_head(bh);
2523 	return jh;
2524 }
2525 
2526 static void __journal_remove_journal_head(struct buffer_head *bh)
2527 {
2528 	struct journal_head *jh = bh2jh(bh);
2529 
2530 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2531 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2532 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2533 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2534 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2535 	J_ASSERT_BH(bh, buffer_jbd(bh));
2536 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2537 	BUFFER_TRACE(bh, "remove journal_head");
2538 	if (jh->b_frozen_data) {
2539 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2540 		jbd2_free(jh->b_frozen_data, bh->b_size);
2541 	}
2542 	if (jh->b_committed_data) {
2543 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2544 		jbd2_free(jh->b_committed_data, bh->b_size);
2545 	}
2546 	bh->b_private = NULL;
2547 	jh->b_bh = NULL;	/* debug, really */
2548 	clear_buffer_jbd(bh);
2549 	journal_free_journal_head(jh);
2550 }
2551 
2552 /*
2553  * Drop a reference on the passed journal_head.  If it fell to zero then
2554  * release the journal_head from the buffer_head.
2555  */
2556 void jbd2_journal_put_journal_head(struct journal_head *jh)
2557 {
2558 	struct buffer_head *bh = jh2bh(jh);
2559 
2560 	jbd_lock_bh_journal_head(bh);
2561 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2562 	--jh->b_jcount;
2563 	if (!jh->b_jcount) {
2564 		__journal_remove_journal_head(bh);
2565 		jbd_unlock_bh_journal_head(bh);
2566 		__brelse(bh);
2567 	} else
2568 		jbd_unlock_bh_journal_head(bh);
2569 }
2570 
2571 /*
2572  * Initialize jbd inode head
2573  */
2574 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2575 {
2576 	jinode->i_transaction = NULL;
2577 	jinode->i_next_transaction = NULL;
2578 	jinode->i_vfs_inode = inode;
2579 	jinode->i_flags = 0;
2580 	INIT_LIST_HEAD(&jinode->i_list);
2581 }
2582 
2583 /*
2584  * Function to be called before we start removing inode from memory (i.e.,
2585  * clear_inode() is a fine place to be called from). It removes inode from
2586  * transaction's lists.
2587  */
2588 void jbd2_journal_release_jbd_inode(journal_t *journal,
2589 				    struct jbd2_inode *jinode)
2590 {
2591 	if (!journal)
2592 		return;
2593 restart:
2594 	spin_lock(&journal->j_list_lock);
2595 	/* Is commit writing out inode - we have to wait */
2596 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2597 		wait_queue_head_t *wq;
2598 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2599 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2600 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2601 		spin_unlock(&journal->j_list_lock);
2602 		schedule();
2603 		finish_wait(wq, &wait.wq_entry);
2604 		goto restart;
2605 	}
2606 
2607 	if (jinode->i_transaction) {
2608 		list_del(&jinode->i_list);
2609 		jinode->i_transaction = NULL;
2610 	}
2611 	spin_unlock(&journal->j_list_lock);
2612 }
2613 
2614 
2615 #ifdef CONFIG_PROC_FS
2616 
2617 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2618 
2619 static void __init jbd2_create_jbd_stats_proc_entry(void)
2620 {
2621 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2622 }
2623 
2624 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2625 {
2626 	if (proc_jbd2_stats)
2627 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2628 }
2629 
2630 #else
2631 
2632 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2633 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2634 
2635 #endif
2636 
2637 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2638 
2639 static int __init jbd2_journal_init_handle_cache(void)
2640 {
2641 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2642 	if (jbd2_handle_cache == NULL) {
2643 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2644 		return -ENOMEM;
2645 	}
2646 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2647 	if (jbd2_inode_cache == NULL) {
2648 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2649 		kmem_cache_destroy(jbd2_handle_cache);
2650 		return -ENOMEM;
2651 	}
2652 	return 0;
2653 }
2654 
2655 static void jbd2_journal_destroy_handle_cache(void)
2656 {
2657 	kmem_cache_destroy(jbd2_handle_cache);
2658 	jbd2_handle_cache = NULL;
2659 	kmem_cache_destroy(jbd2_inode_cache);
2660 	jbd2_inode_cache = NULL;
2661 }
2662 
2663 /*
2664  * Module startup and shutdown
2665  */
2666 
2667 static int __init journal_init_caches(void)
2668 {
2669 	int ret;
2670 
2671 	ret = jbd2_journal_init_revoke_caches();
2672 	if (ret == 0)
2673 		ret = jbd2_journal_init_journal_head_cache();
2674 	if (ret == 0)
2675 		ret = jbd2_journal_init_handle_cache();
2676 	if (ret == 0)
2677 		ret = jbd2_journal_init_transaction_cache();
2678 	return ret;
2679 }
2680 
2681 static void jbd2_journal_destroy_caches(void)
2682 {
2683 	jbd2_journal_destroy_revoke_caches();
2684 	jbd2_journal_destroy_journal_head_cache();
2685 	jbd2_journal_destroy_handle_cache();
2686 	jbd2_journal_destroy_transaction_cache();
2687 	jbd2_journal_destroy_slabs();
2688 }
2689 
2690 static int __init journal_init(void)
2691 {
2692 	int ret;
2693 
2694 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2695 
2696 	ret = journal_init_caches();
2697 	if (ret == 0) {
2698 		jbd2_create_jbd_stats_proc_entry();
2699 	} else {
2700 		jbd2_journal_destroy_caches();
2701 	}
2702 	return ret;
2703 }
2704 
2705 static void __exit journal_exit(void)
2706 {
2707 #ifdef CONFIG_JBD2_DEBUG
2708 	int n = atomic_read(&nr_journal_heads);
2709 	if (n)
2710 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2711 #endif
2712 	jbd2_remove_jbd_stats_proc_entry();
2713 	jbd2_journal_destroy_caches();
2714 }
2715 
2716 MODULE_LICENSE("GPL");
2717 module_init(journal_init);
2718 module_exit(journal_exit);
2719 
2720