xref: /openbmc/linux/fs/jbd2/journal.c (revision 73eb94a0)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96 
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 /*
101  * Helper function used to manage commit timeouts
102  */
103 
104 static void commit_timeout(unsigned long __data)
105 {
106 	struct task_struct * p = (struct task_struct *) __data;
107 
108 	wake_up_process(p);
109 }
110 
111 /*
112  * kjournald2: The main thread function used to manage a logging device
113  * journal.
114  *
115  * This kernel thread is responsible for two things:
116  *
117  * 1) COMMIT:  Every so often we need to commit the current state of the
118  *    filesystem to disk.  The journal thread is responsible for writing
119  *    all of the metadata buffers to disk.
120  *
121  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
122  *    of the data in that part of the log has been rewritten elsewhere on
123  *    the disk.  Flushing these old buffers to reclaim space in the log is
124  *    known as checkpointing, and this thread is responsible for that job.
125  */
126 
127 static int kjournald2(void *arg)
128 {
129 	journal_t *journal = arg;
130 	transaction_t *transaction;
131 
132 	/*
133 	 * Set up an interval timer which can be used to trigger a commit wakeup
134 	 * after the commit interval expires
135 	 */
136 	setup_timer(&journal->j_commit_timer, commit_timeout,
137 			(unsigned long)current);
138 
139 	set_freezable();
140 
141 	/* Record that the journal thread is running */
142 	journal->j_task = current;
143 	wake_up(&journal->j_wait_done_commit);
144 
145 	/*
146 	 * And now, wait forever for commit wakeup events.
147 	 */
148 	write_lock(&journal->j_state_lock);
149 
150 loop:
151 	if (journal->j_flags & JBD2_UNMOUNT)
152 		goto end_loop;
153 
154 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
155 		journal->j_commit_sequence, journal->j_commit_request);
156 
157 	if (journal->j_commit_sequence != journal->j_commit_request) {
158 		jbd_debug(1, "OK, requests differ\n");
159 		write_unlock(&journal->j_state_lock);
160 		del_timer_sync(&journal->j_commit_timer);
161 		jbd2_journal_commit_transaction(journal);
162 		write_lock(&journal->j_state_lock);
163 		goto loop;
164 	}
165 
166 	wake_up(&journal->j_wait_done_commit);
167 	if (freezing(current)) {
168 		/*
169 		 * The simpler the better. Flushing journal isn't a
170 		 * good idea, because that depends on threads that may
171 		 * be already stopped.
172 		 */
173 		jbd_debug(1, "Now suspending kjournald2\n");
174 		write_unlock(&journal->j_state_lock);
175 		try_to_freeze();
176 		write_lock(&journal->j_state_lock);
177 	} else {
178 		/*
179 		 * We assume on resume that commits are already there,
180 		 * so we don't sleep
181 		 */
182 		DEFINE_WAIT(wait);
183 		int should_sleep = 1;
184 
185 		prepare_to_wait(&journal->j_wait_commit, &wait,
186 				TASK_INTERRUPTIBLE);
187 		if (journal->j_commit_sequence != journal->j_commit_request)
188 			should_sleep = 0;
189 		transaction = journal->j_running_transaction;
190 		if (transaction && time_after_eq(jiffies,
191 						transaction->t_expires))
192 			should_sleep = 0;
193 		if (journal->j_flags & JBD2_UNMOUNT)
194 			should_sleep = 0;
195 		if (should_sleep) {
196 			write_unlock(&journal->j_state_lock);
197 			schedule();
198 			write_lock(&journal->j_state_lock);
199 		}
200 		finish_wait(&journal->j_wait_commit, &wait);
201 	}
202 
203 	jbd_debug(1, "kjournald2 wakes\n");
204 
205 	/*
206 	 * Were we woken up by a commit wakeup event?
207 	 */
208 	transaction = journal->j_running_transaction;
209 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
210 		journal->j_commit_request = transaction->t_tid;
211 		jbd_debug(1, "woke because of timeout\n");
212 	}
213 	goto loop;
214 
215 end_loop:
216 	write_unlock(&journal->j_state_lock);
217 	del_timer_sync(&journal->j_commit_timer);
218 	journal->j_task = NULL;
219 	wake_up(&journal->j_wait_done_commit);
220 	jbd_debug(1, "Journal thread exiting.\n");
221 	return 0;
222 }
223 
224 static int jbd2_journal_start_thread(journal_t *journal)
225 {
226 	struct task_struct *t;
227 
228 	t = kthread_run(kjournald2, journal, "jbd2/%s",
229 			journal->j_devname);
230 	if (IS_ERR(t))
231 		return PTR_ERR(t);
232 
233 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
234 	return 0;
235 }
236 
237 static void journal_kill_thread(journal_t *journal)
238 {
239 	write_lock(&journal->j_state_lock);
240 	journal->j_flags |= JBD2_UNMOUNT;
241 
242 	while (journal->j_task) {
243 		wake_up(&journal->j_wait_commit);
244 		write_unlock(&journal->j_state_lock);
245 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
246 		write_lock(&journal->j_state_lock);
247 	}
248 	write_unlock(&journal->j_state_lock);
249 }
250 
251 /*
252  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
253  *
254  * Writes a metadata buffer to a given disk block.  The actual IO is not
255  * performed but a new buffer_head is constructed which labels the data
256  * to be written with the correct destination disk block.
257  *
258  * Any magic-number escaping which needs to be done will cause a
259  * copy-out here.  If the buffer happens to start with the
260  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
261  * magic number is only written to the log for descripter blocks.  In
262  * this case, we copy the data and replace the first word with 0, and we
263  * return a result code which indicates that this buffer needs to be
264  * marked as an escaped buffer in the corresponding log descriptor
265  * block.  The missing word can then be restored when the block is read
266  * during recovery.
267  *
268  * If the source buffer has already been modified by a new transaction
269  * since we took the last commit snapshot, we use the frozen copy of
270  * that data for IO.  If we end up using the existing buffer_head's data
271  * for the write, then we *have* to lock the buffer to prevent anyone
272  * else from using and possibly modifying it while the IO is in
273  * progress.
274  *
275  * The function returns a pointer to the buffer_heads to be used for IO.
276  *
277  * We assume that the journal has already been locked in this function.
278  *
279  * Return value:
280  *  <0: Error
281  * >=0: Finished OK
282  *
283  * On success:
284  * Bit 0 set == escape performed on the data
285  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
286  */
287 
288 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
289 				  struct journal_head  *jh_in,
290 				  struct journal_head **jh_out,
291 				  unsigned long long blocknr)
292 {
293 	int need_copy_out = 0;
294 	int done_copy_out = 0;
295 	int do_escape = 0;
296 	char *mapped_data;
297 	struct buffer_head *new_bh;
298 	struct journal_head *new_jh;
299 	struct page *new_page;
300 	unsigned int new_offset;
301 	struct buffer_head *bh_in = jh2bh(jh_in);
302 	journal_t *journal = transaction->t_journal;
303 
304 	/*
305 	 * The buffer really shouldn't be locked: only the current committing
306 	 * transaction is allowed to write it, so nobody else is allowed
307 	 * to do any IO.
308 	 *
309 	 * akpm: except if we're journalling data, and write() output is
310 	 * also part of a shared mapping, and another thread has
311 	 * decided to launch a writepage() against this buffer.
312 	 */
313 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
314 
315 retry_alloc:
316 	new_bh = alloc_buffer_head(GFP_NOFS);
317 	if (!new_bh) {
318 		/*
319 		 * Failure is not an option, but __GFP_NOFAIL is going
320 		 * away; so we retry ourselves here.
321 		 */
322 		congestion_wait(BLK_RW_ASYNC, HZ/50);
323 		goto retry_alloc;
324 	}
325 
326 	/* keep subsequent assertions sane */
327 	new_bh->b_state = 0;
328 	init_buffer(new_bh, NULL, NULL);
329 	atomic_set(&new_bh->b_count, 1);
330 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
331 
332 	/*
333 	 * If a new transaction has already done a buffer copy-out, then
334 	 * we use that version of the data for the commit.
335 	 */
336 	jbd_lock_bh_state(bh_in);
337 repeat:
338 	if (jh_in->b_frozen_data) {
339 		done_copy_out = 1;
340 		new_page = virt_to_page(jh_in->b_frozen_data);
341 		new_offset = offset_in_page(jh_in->b_frozen_data);
342 	} else {
343 		new_page = jh2bh(jh_in)->b_page;
344 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
345 	}
346 
347 	mapped_data = kmap_atomic(new_page);
348 	/*
349 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
350 	 * before checking for escaping, as the trigger may modify the magic
351 	 * offset.  If a copy-out happens afterwards, it will have the correct
352 	 * data in the buffer.
353 	 */
354 	if (!done_copy_out)
355 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
356 					   jh_in->b_triggers);
357 
358 	/*
359 	 * Check for escaping
360 	 */
361 	if (*((__be32 *)(mapped_data + new_offset)) ==
362 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
363 		need_copy_out = 1;
364 		do_escape = 1;
365 	}
366 	kunmap_atomic(mapped_data);
367 
368 	/*
369 	 * Do we need to do a data copy?
370 	 */
371 	if (need_copy_out && !done_copy_out) {
372 		char *tmp;
373 
374 		jbd_unlock_bh_state(bh_in);
375 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
376 		if (!tmp) {
377 			jbd2_journal_put_journal_head(new_jh);
378 			return -ENOMEM;
379 		}
380 		jbd_lock_bh_state(bh_in);
381 		if (jh_in->b_frozen_data) {
382 			jbd2_free(tmp, bh_in->b_size);
383 			goto repeat;
384 		}
385 
386 		jh_in->b_frozen_data = tmp;
387 		mapped_data = kmap_atomic(new_page);
388 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
389 		kunmap_atomic(mapped_data);
390 
391 		new_page = virt_to_page(tmp);
392 		new_offset = offset_in_page(tmp);
393 		done_copy_out = 1;
394 
395 		/*
396 		 * This isn't strictly necessary, as we're using frozen
397 		 * data for the escaping, but it keeps consistency with
398 		 * b_frozen_data usage.
399 		 */
400 		jh_in->b_frozen_triggers = jh_in->b_triggers;
401 	}
402 
403 	/*
404 	 * Did we need to do an escaping?  Now we've done all the
405 	 * copying, we can finally do so.
406 	 */
407 	if (do_escape) {
408 		mapped_data = kmap_atomic(new_page);
409 		*((unsigned int *)(mapped_data + new_offset)) = 0;
410 		kunmap_atomic(mapped_data);
411 	}
412 
413 	set_bh_page(new_bh, new_page, new_offset);
414 	new_jh->b_transaction = NULL;
415 	new_bh->b_size = jh2bh(jh_in)->b_size;
416 	new_bh->b_bdev = transaction->t_journal->j_dev;
417 	new_bh->b_blocknr = blocknr;
418 	set_buffer_mapped(new_bh);
419 	set_buffer_dirty(new_bh);
420 
421 	*jh_out = new_jh;
422 
423 	/*
424 	 * The to-be-written buffer needs to get moved to the io queue,
425 	 * and the original buffer whose contents we are shadowing or
426 	 * copying is moved to the transaction's shadow queue.
427 	 */
428 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
429 	spin_lock(&journal->j_list_lock);
430 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
431 	spin_unlock(&journal->j_list_lock);
432 	jbd_unlock_bh_state(bh_in);
433 
434 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
435 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
436 
437 	return do_escape | (done_copy_out << 1);
438 }
439 
440 /*
441  * Allocation code for the journal file.  Manage the space left in the
442  * journal, so that we can begin checkpointing when appropriate.
443  */
444 
445 /*
446  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
447  *
448  * Called with the journal already locked.
449  *
450  * Called under j_state_lock
451  */
452 
453 int __jbd2_log_space_left(journal_t *journal)
454 {
455 	int left = journal->j_free;
456 
457 	/* assert_spin_locked(&journal->j_state_lock); */
458 
459 	/*
460 	 * Be pessimistic here about the number of those free blocks which
461 	 * might be required for log descriptor control blocks.
462 	 */
463 
464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
465 
466 	left -= MIN_LOG_RESERVED_BLOCKS;
467 
468 	if (left <= 0)
469 		return 0;
470 	left -= (left >> 3);
471 	return left;
472 }
473 
474 /*
475  * Called with j_state_lock locked for writing.
476  * Returns true if a transaction commit was started.
477  */
478 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
479 {
480 	/*
481 	 * The only transaction we can possibly wait upon is the
482 	 * currently running transaction (if it exists).  Otherwise,
483 	 * the target tid must be an old one.
484 	 */
485 	if (journal->j_running_transaction &&
486 	    journal->j_running_transaction->t_tid == target) {
487 		/*
488 		 * We want a new commit: OK, mark the request and wakeup the
489 		 * commit thread.  We do _not_ do the commit ourselves.
490 		 */
491 
492 		journal->j_commit_request = target;
493 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
494 			  journal->j_commit_request,
495 			  journal->j_commit_sequence);
496 		wake_up(&journal->j_wait_commit);
497 		return 1;
498 	} else if (!tid_geq(journal->j_commit_request, target))
499 		/* This should never happen, but if it does, preserve
500 		   the evidence before kjournald goes into a loop and
501 		   increments j_commit_sequence beyond all recognition. */
502 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
503 			  journal->j_commit_request,
504 			  journal->j_commit_sequence,
505 			  target, journal->j_running_transaction ?
506 			  journal->j_running_transaction->t_tid : 0);
507 	return 0;
508 }
509 
510 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
511 {
512 	int ret;
513 
514 	write_lock(&journal->j_state_lock);
515 	ret = __jbd2_log_start_commit(journal, tid);
516 	write_unlock(&journal->j_state_lock);
517 	return ret;
518 }
519 
520 /*
521  * Force and wait upon a commit if the calling process is not within
522  * transaction.  This is used for forcing out undo-protected data which contains
523  * bitmaps, when the fs is running out of space.
524  *
525  * We can only force the running transaction if we don't have an active handle;
526  * otherwise, we will deadlock.
527  *
528  * Returns true if a transaction was started.
529  */
530 int jbd2_journal_force_commit_nested(journal_t *journal)
531 {
532 	transaction_t *transaction = NULL;
533 	tid_t tid;
534 	int need_to_start = 0;
535 
536 	read_lock(&journal->j_state_lock);
537 	if (journal->j_running_transaction && !current->journal_info) {
538 		transaction = journal->j_running_transaction;
539 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
540 			need_to_start = 1;
541 	} else if (journal->j_committing_transaction)
542 		transaction = journal->j_committing_transaction;
543 
544 	if (!transaction) {
545 		read_unlock(&journal->j_state_lock);
546 		return 0;	/* Nothing to retry */
547 	}
548 
549 	tid = transaction->t_tid;
550 	read_unlock(&journal->j_state_lock);
551 	if (need_to_start)
552 		jbd2_log_start_commit(journal, tid);
553 	jbd2_log_wait_commit(journal, tid);
554 	return 1;
555 }
556 
557 /*
558  * Start a commit of the current running transaction (if any).  Returns true
559  * if a transaction is going to be committed (or is currently already
560  * committing), and fills its tid in at *ptid
561  */
562 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
563 {
564 	int ret = 0;
565 
566 	write_lock(&journal->j_state_lock);
567 	if (journal->j_running_transaction) {
568 		tid_t tid = journal->j_running_transaction->t_tid;
569 
570 		__jbd2_log_start_commit(journal, tid);
571 		/* There's a running transaction and we've just made sure
572 		 * it's commit has been scheduled. */
573 		if (ptid)
574 			*ptid = tid;
575 		ret = 1;
576 	} else if (journal->j_committing_transaction) {
577 		/*
578 		 * If ext3_write_super() recently started a commit, then we
579 		 * have to wait for completion of that transaction
580 		 */
581 		if (ptid)
582 			*ptid = journal->j_committing_transaction->t_tid;
583 		ret = 1;
584 	}
585 	write_unlock(&journal->j_state_lock);
586 	return ret;
587 }
588 
589 /*
590  * Return 1 if a given transaction has not yet sent barrier request
591  * connected with a transaction commit. If 0 is returned, transaction
592  * may or may not have sent the barrier. Used to avoid sending barrier
593  * twice in common cases.
594  */
595 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
596 {
597 	int ret = 0;
598 	transaction_t *commit_trans;
599 
600 	if (!(journal->j_flags & JBD2_BARRIER))
601 		return 0;
602 	read_lock(&journal->j_state_lock);
603 	/* Transaction already committed? */
604 	if (tid_geq(journal->j_commit_sequence, tid))
605 		goto out;
606 	commit_trans = journal->j_committing_transaction;
607 	if (!commit_trans || commit_trans->t_tid != tid) {
608 		ret = 1;
609 		goto out;
610 	}
611 	/*
612 	 * Transaction is being committed and we already proceeded to
613 	 * submitting a flush to fs partition?
614 	 */
615 	if (journal->j_fs_dev != journal->j_dev) {
616 		if (!commit_trans->t_need_data_flush ||
617 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
618 			goto out;
619 	} else {
620 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
621 			goto out;
622 	}
623 	ret = 1;
624 out:
625 	read_unlock(&journal->j_state_lock);
626 	return ret;
627 }
628 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
629 
630 /*
631  * Wait for a specified commit to complete.
632  * The caller may not hold the journal lock.
633  */
634 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
635 {
636 	int err = 0;
637 
638 	read_lock(&journal->j_state_lock);
639 #ifdef CONFIG_JBD2_DEBUG
640 	if (!tid_geq(journal->j_commit_request, tid)) {
641 		printk(KERN_EMERG
642 		       "%s: error: j_commit_request=%d, tid=%d\n",
643 		       __func__, journal->j_commit_request, tid);
644 	}
645 #endif
646 	while (tid_gt(tid, journal->j_commit_sequence)) {
647 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
648 				  tid, journal->j_commit_sequence);
649 		wake_up(&journal->j_wait_commit);
650 		read_unlock(&journal->j_state_lock);
651 		wait_event(journal->j_wait_done_commit,
652 				!tid_gt(tid, journal->j_commit_sequence));
653 		read_lock(&journal->j_state_lock);
654 	}
655 	read_unlock(&journal->j_state_lock);
656 
657 	if (unlikely(is_journal_aborted(journal))) {
658 		printk(KERN_EMERG "journal commit I/O error\n");
659 		err = -EIO;
660 	}
661 	return err;
662 }
663 
664 /*
665  * Log buffer allocation routines:
666  */
667 
668 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
669 {
670 	unsigned long blocknr;
671 
672 	write_lock(&journal->j_state_lock);
673 	J_ASSERT(journal->j_free > 1);
674 
675 	blocknr = journal->j_head;
676 	journal->j_head++;
677 	journal->j_free--;
678 	if (journal->j_head == journal->j_last)
679 		journal->j_head = journal->j_first;
680 	write_unlock(&journal->j_state_lock);
681 	return jbd2_journal_bmap(journal, blocknr, retp);
682 }
683 
684 /*
685  * Conversion of logical to physical block numbers for the journal
686  *
687  * On external journals the journal blocks are identity-mapped, so
688  * this is a no-op.  If needed, we can use j_blk_offset - everything is
689  * ready.
690  */
691 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
692 		 unsigned long long *retp)
693 {
694 	int err = 0;
695 	unsigned long long ret;
696 
697 	if (journal->j_inode) {
698 		ret = bmap(journal->j_inode, blocknr);
699 		if (ret)
700 			*retp = ret;
701 		else {
702 			printk(KERN_ALERT "%s: journal block not found "
703 					"at offset %lu on %s\n",
704 			       __func__, blocknr, journal->j_devname);
705 			err = -EIO;
706 			__journal_abort_soft(journal, err);
707 		}
708 	} else {
709 		*retp = blocknr; /* +journal->j_blk_offset */
710 	}
711 	return err;
712 }
713 
714 /*
715  * We play buffer_head aliasing tricks to write data/metadata blocks to
716  * the journal without copying their contents, but for journal
717  * descriptor blocks we do need to generate bona fide buffers.
718  *
719  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
720  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
721  * But we don't bother doing that, so there will be coherency problems with
722  * mmaps of blockdevs which hold live JBD-controlled filesystems.
723  */
724 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
725 {
726 	struct buffer_head *bh;
727 	unsigned long long blocknr;
728 	int err;
729 
730 	err = jbd2_journal_next_log_block(journal, &blocknr);
731 
732 	if (err)
733 		return NULL;
734 
735 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
736 	if (!bh)
737 		return NULL;
738 	lock_buffer(bh);
739 	memset(bh->b_data, 0, journal->j_blocksize);
740 	set_buffer_uptodate(bh);
741 	unlock_buffer(bh);
742 	BUFFER_TRACE(bh, "return this buffer");
743 	return jbd2_journal_add_journal_head(bh);
744 }
745 
746 /*
747  * Return tid of the oldest transaction in the journal and block in the journal
748  * where the transaction starts.
749  *
750  * If the journal is now empty, return which will be the next transaction ID
751  * we will write and where will that transaction start.
752  *
753  * The return value is 0 if journal tail cannot be pushed any further, 1 if
754  * it can.
755  */
756 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
757 			      unsigned long *block)
758 {
759 	transaction_t *transaction;
760 	int ret;
761 
762 	read_lock(&journal->j_state_lock);
763 	spin_lock(&journal->j_list_lock);
764 	transaction = journal->j_checkpoint_transactions;
765 	if (transaction) {
766 		*tid = transaction->t_tid;
767 		*block = transaction->t_log_start;
768 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
769 		*tid = transaction->t_tid;
770 		*block = transaction->t_log_start;
771 	} else if ((transaction = journal->j_running_transaction) != NULL) {
772 		*tid = transaction->t_tid;
773 		*block = journal->j_head;
774 	} else {
775 		*tid = journal->j_transaction_sequence;
776 		*block = journal->j_head;
777 	}
778 	ret = tid_gt(*tid, journal->j_tail_sequence);
779 	spin_unlock(&journal->j_list_lock);
780 	read_unlock(&journal->j_state_lock);
781 
782 	return ret;
783 }
784 
785 /*
786  * Update information in journal structure and in on disk journal superblock
787  * about log tail. This function does not check whether information passed in
788  * really pushes log tail further. It's responsibility of the caller to make
789  * sure provided log tail information is valid (e.g. by holding
790  * j_checkpoint_mutex all the time between computing log tail and calling this
791  * function as is the case with jbd2_cleanup_journal_tail()).
792  *
793  * Requires j_checkpoint_mutex
794  */
795 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
796 {
797 	unsigned long freed;
798 
799 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
800 
801 	/*
802 	 * We cannot afford for write to remain in drive's caches since as
803 	 * soon as we update j_tail, next transaction can start reusing journal
804 	 * space and if we lose sb update during power failure we'd replay
805 	 * old transaction with possibly newly overwritten data.
806 	 */
807 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
808 	write_lock(&journal->j_state_lock);
809 	freed = block - journal->j_tail;
810 	if (block < journal->j_tail)
811 		freed += journal->j_last - journal->j_first;
812 
813 	trace_jbd2_update_log_tail(journal, tid, block, freed);
814 	jbd_debug(1,
815 		  "Cleaning journal tail from %d to %d (offset %lu), "
816 		  "freeing %lu\n",
817 		  journal->j_tail_sequence, tid, block, freed);
818 
819 	journal->j_free += freed;
820 	journal->j_tail_sequence = tid;
821 	journal->j_tail = block;
822 	write_unlock(&journal->j_state_lock);
823 }
824 
825 /*
826  * This is a variaon of __jbd2_update_log_tail which checks for validity of
827  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
828  * with other threads updating log tail.
829  */
830 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
831 {
832 	mutex_lock(&journal->j_checkpoint_mutex);
833 	if (tid_gt(tid, journal->j_tail_sequence))
834 		__jbd2_update_log_tail(journal, tid, block);
835 	mutex_unlock(&journal->j_checkpoint_mutex);
836 }
837 
838 struct jbd2_stats_proc_session {
839 	journal_t *journal;
840 	struct transaction_stats_s *stats;
841 	int start;
842 	int max;
843 };
844 
845 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
846 {
847 	return *pos ? NULL : SEQ_START_TOKEN;
848 }
849 
850 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
851 {
852 	return NULL;
853 }
854 
855 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
856 {
857 	struct jbd2_stats_proc_session *s = seq->private;
858 
859 	if (v != SEQ_START_TOKEN)
860 		return 0;
861 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
862 			s->stats->ts_tid,
863 			s->journal->j_max_transaction_buffers);
864 	if (s->stats->ts_tid == 0)
865 		return 0;
866 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
867 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
868 	seq_printf(seq, "  %ums running transaction\n",
869 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
870 	seq_printf(seq, "  %ums transaction was being locked\n",
871 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
872 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
873 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
874 	seq_printf(seq, "  %ums logging transaction\n",
875 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
876 	seq_printf(seq, "  %lluus average transaction commit time\n",
877 		   div_u64(s->journal->j_average_commit_time, 1000));
878 	seq_printf(seq, "  %lu handles per transaction\n",
879 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
880 	seq_printf(seq, "  %lu blocks per transaction\n",
881 	    s->stats->run.rs_blocks / s->stats->ts_tid);
882 	seq_printf(seq, "  %lu logged blocks per transaction\n",
883 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
884 	return 0;
885 }
886 
887 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
888 {
889 }
890 
891 static const struct seq_operations jbd2_seq_info_ops = {
892 	.start  = jbd2_seq_info_start,
893 	.next   = jbd2_seq_info_next,
894 	.stop   = jbd2_seq_info_stop,
895 	.show   = jbd2_seq_info_show,
896 };
897 
898 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
899 {
900 	journal_t *journal = PDE(inode)->data;
901 	struct jbd2_stats_proc_session *s;
902 	int rc, size;
903 
904 	s = kmalloc(sizeof(*s), GFP_KERNEL);
905 	if (s == NULL)
906 		return -ENOMEM;
907 	size = sizeof(struct transaction_stats_s);
908 	s->stats = kmalloc(size, GFP_KERNEL);
909 	if (s->stats == NULL) {
910 		kfree(s);
911 		return -ENOMEM;
912 	}
913 	spin_lock(&journal->j_history_lock);
914 	memcpy(s->stats, &journal->j_stats, size);
915 	s->journal = journal;
916 	spin_unlock(&journal->j_history_lock);
917 
918 	rc = seq_open(file, &jbd2_seq_info_ops);
919 	if (rc == 0) {
920 		struct seq_file *m = file->private_data;
921 		m->private = s;
922 	} else {
923 		kfree(s->stats);
924 		kfree(s);
925 	}
926 	return rc;
927 
928 }
929 
930 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
931 {
932 	struct seq_file *seq = file->private_data;
933 	struct jbd2_stats_proc_session *s = seq->private;
934 	kfree(s->stats);
935 	kfree(s);
936 	return seq_release(inode, file);
937 }
938 
939 static const struct file_operations jbd2_seq_info_fops = {
940 	.owner		= THIS_MODULE,
941 	.open           = jbd2_seq_info_open,
942 	.read           = seq_read,
943 	.llseek         = seq_lseek,
944 	.release        = jbd2_seq_info_release,
945 };
946 
947 static struct proc_dir_entry *proc_jbd2_stats;
948 
949 static void jbd2_stats_proc_init(journal_t *journal)
950 {
951 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
952 	if (journal->j_proc_entry) {
953 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
954 				 &jbd2_seq_info_fops, journal);
955 	}
956 }
957 
958 static void jbd2_stats_proc_exit(journal_t *journal)
959 {
960 	remove_proc_entry("info", journal->j_proc_entry);
961 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
962 }
963 
964 /*
965  * Management for journal control blocks: functions to create and
966  * destroy journal_t structures, and to initialise and read existing
967  * journal blocks from disk.  */
968 
969 /* First: create and setup a journal_t object in memory.  We initialise
970  * very few fields yet: that has to wait until we have created the
971  * journal structures from from scratch, or loaded them from disk. */
972 
973 static journal_t * journal_init_common (void)
974 {
975 	journal_t *journal;
976 	int err;
977 
978 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
979 	if (!journal)
980 		return NULL;
981 
982 	init_waitqueue_head(&journal->j_wait_transaction_locked);
983 	init_waitqueue_head(&journal->j_wait_logspace);
984 	init_waitqueue_head(&journal->j_wait_done_commit);
985 	init_waitqueue_head(&journal->j_wait_checkpoint);
986 	init_waitqueue_head(&journal->j_wait_commit);
987 	init_waitqueue_head(&journal->j_wait_updates);
988 	mutex_init(&journal->j_barrier);
989 	mutex_init(&journal->j_checkpoint_mutex);
990 	spin_lock_init(&journal->j_revoke_lock);
991 	spin_lock_init(&journal->j_list_lock);
992 	rwlock_init(&journal->j_state_lock);
993 
994 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
995 	journal->j_min_batch_time = 0;
996 	journal->j_max_batch_time = 15000; /* 15ms */
997 
998 	/* The journal is marked for error until we succeed with recovery! */
999 	journal->j_flags = JBD2_ABORT;
1000 
1001 	/* Set up a default-sized revoke table for the new mount. */
1002 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1003 	if (err) {
1004 		kfree(journal);
1005 		return NULL;
1006 	}
1007 
1008 	spin_lock_init(&journal->j_history_lock);
1009 
1010 	return journal;
1011 }
1012 
1013 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1014  *
1015  * Create a journal structure assigned some fixed set of disk blocks to
1016  * the journal.  We don't actually touch those disk blocks yet, but we
1017  * need to set up all of the mapping information to tell the journaling
1018  * system where the journal blocks are.
1019  *
1020  */
1021 
1022 /**
1023  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1024  *  @bdev: Block device on which to create the journal
1025  *  @fs_dev: Device which hold journalled filesystem for this journal.
1026  *  @start: Block nr Start of journal.
1027  *  @len:  Length of the journal in blocks.
1028  *  @blocksize: blocksize of journalling device
1029  *
1030  *  Returns: a newly created journal_t *
1031  *
1032  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1033  *  range of blocks on an arbitrary block device.
1034  *
1035  */
1036 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1037 			struct block_device *fs_dev,
1038 			unsigned long long start, int len, int blocksize)
1039 {
1040 	journal_t *journal = journal_init_common();
1041 	struct buffer_head *bh;
1042 	char *p;
1043 	int n;
1044 
1045 	if (!journal)
1046 		return NULL;
1047 
1048 	/* journal descriptor can store up to n blocks -bzzz */
1049 	journal->j_blocksize = blocksize;
1050 	journal->j_dev = bdev;
1051 	journal->j_fs_dev = fs_dev;
1052 	journal->j_blk_offset = start;
1053 	journal->j_maxlen = len;
1054 	bdevname(journal->j_dev, journal->j_devname);
1055 	p = journal->j_devname;
1056 	while ((p = strchr(p, '/')))
1057 		*p = '!';
1058 	jbd2_stats_proc_init(journal);
1059 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1060 	journal->j_wbufsize = n;
1061 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1062 	if (!journal->j_wbuf) {
1063 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1064 			__func__);
1065 		goto out_err;
1066 	}
1067 
1068 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1069 	if (!bh) {
1070 		printk(KERN_ERR
1071 		       "%s: Cannot get buffer for journal superblock\n",
1072 		       __func__);
1073 		goto out_err;
1074 	}
1075 	journal->j_sb_buffer = bh;
1076 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1077 
1078 	return journal;
1079 out_err:
1080 	kfree(journal->j_wbuf);
1081 	jbd2_stats_proc_exit(journal);
1082 	kfree(journal);
1083 	return NULL;
1084 }
1085 
1086 /**
1087  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1088  *  @inode: An inode to create the journal in
1089  *
1090  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1091  * the journal.  The inode must exist already, must support bmap() and
1092  * must have all data blocks preallocated.
1093  */
1094 journal_t * jbd2_journal_init_inode (struct inode *inode)
1095 {
1096 	struct buffer_head *bh;
1097 	journal_t *journal = journal_init_common();
1098 	char *p;
1099 	int err;
1100 	int n;
1101 	unsigned long long blocknr;
1102 
1103 	if (!journal)
1104 		return NULL;
1105 
1106 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1107 	journal->j_inode = inode;
1108 	bdevname(journal->j_dev, journal->j_devname);
1109 	p = journal->j_devname;
1110 	while ((p = strchr(p, '/')))
1111 		*p = '!';
1112 	p = journal->j_devname + strlen(journal->j_devname);
1113 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1114 	jbd_debug(1,
1115 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1116 		  journal, inode->i_sb->s_id, inode->i_ino,
1117 		  (long long) inode->i_size,
1118 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1119 
1120 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1121 	journal->j_blocksize = inode->i_sb->s_blocksize;
1122 	jbd2_stats_proc_init(journal);
1123 
1124 	/* journal descriptor can store up to n blocks -bzzz */
1125 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1126 	journal->j_wbufsize = n;
1127 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1128 	if (!journal->j_wbuf) {
1129 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1130 			__func__);
1131 		goto out_err;
1132 	}
1133 
1134 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1135 	/* If that failed, give up */
1136 	if (err) {
1137 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1138 		       __func__);
1139 		goto out_err;
1140 	}
1141 
1142 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1143 	if (!bh) {
1144 		printk(KERN_ERR
1145 		       "%s: Cannot get buffer for journal superblock\n",
1146 		       __func__);
1147 		goto out_err;
1148 	}
1149 	journal->j_sb_buffer = bh;
1150 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1151 
1152 	return journal;
1153 out_err:
1154 	kfree(journal->j_wbuf);
1155 	jbd2_stats_proc_exit(journal);
1156 	kfree(journal);
1157 	return NULL;
1158 }
1159 
1160 /*
1161  * If the journal init or create aborts, we need to mark the journal
1162  * superblock as being NULL to prevent the journal destroy from writing
1163  * back a bogus superblock.
1164  */
1165 static void journal_fail_superblock (journal_t *journal)
1166 {
1167 	struct buffer_head *bh = journal->j_sb_buffer;
1168 	brelse(bh);
1169 	journal->j_sb_buffer = NULL;
1170 }
1171 
1172 /*
1173  * Given a journal_t structure, initialise the various fields for
1174  * startup of a new journaling session.  We use this both when creating
1175  * a journal, and after recovering an old journal to reset it for
1176  * subsequent use.
1177  */
1178 
1179 static int journal_reset(journal_t *journal)
1180 {
1181 	journal_superblock_t *sb = journal->j_superblock;
1182 	unsigned long long first, last;
1183 
1184 	first = be32_to_cpu(sb->s_first);
1185 	last = be32_to_cpu(sb->s_maxlen);
1186 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1187 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1188 		       first, last);
1189 		journal_fail_superblock(journal);
1190 		return -EINVAL;
1191 	}
1192 
1193 	journal->j_first = first;
1194 	journal->j_last = last;
1195 
1196 	journal->j_head = first;
1197 	journal->j_tail = first;
1198 	journal->j_free = last - first;
1199 
1200 	journal->j_tail_sequence = journal->j_transaction_sequence;
1201 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1202 	journal->j_commit_request = journal->j_commit_sequence;
1203 
1204 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1205 
1206 	/*
1207 	 * As a special case, if the on-disk copy is already marked as needing
1208 	 * no recovery (s_start == 0), then we can safely defer the superblock
1209 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1210 	 * attempting a write to a potential-readonly device.
1211 	 */
1212 	if (sb->s_start == 0) {
1213 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1214 			"(start %ld, seq %d, errno %d)\n",
1215 			journal->j_tail, journal->j_tail_sequence,
1216 			journal->j_errno);
1217 		journal->j_flags |= JBD2_FLUSHED;
1218 	} else {
1219 		/* Lock here to make assertions happy... */
1220 		mutex_lock(&journal->j_checkpoint_mutex);
1221 		/*
1222 		 * Update log tail information. We use WRITE_FUA since new
1223 		 * transaction will start reusing journal space and so we
1224 		 * must make sure information about current log tail is on
1225 		 * disk before that.
1226 		 */
1227 		jbd2_journal_update_sb_log_tail(journal,
1228 						journal->j_tail_sequence,
1229 						journal->j_tail,
1230 						WRITE_FUA);
1231 		mutex_unlock(&journal->j_checkpoint_mutex);
1232 	}
1233 	return jbd2_journal_start_thread(journal);
1234 }
1235 
1236 static void jbd2_write_superblock(journal_t *journal, int write_op)
1237 {
1238 	struct buffer_head *bh = journal->j_sb_buffer;
1239 	int ret;
1240 
1241 	trace_jbd2_write_superblock(journal, write_op);
1242 	if (!(journal->j_flags & JBD2_BARRIER))
1243 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1244 	lock_buffer(bh);
1245 	if (buffer_write_io_error(bh)) {
1246 		/*
1247 		 * Oh, dear.  A previous attempt to write the journal
1248 		 * superblock failed.  This could happen because the
1249 		 * USB device was yanked out.  Or it could happen to
1250 		 * be a transient write error and maybe the block will
1251 		 * be remapped.  Nothing we can do but to retry the
1252 		 * write and hope for the best.
1253 		 */
1254 		printk(KERN_ERR "JBD2: previous I/O error detected "
1255 		       "for journal superblock update for %s.\n",
1256 		       journal->j_devname);
1257 		clear_buffer_write_io_error(bh);
1258 		set_buffer_uptodate(bh);
1259 	}
1260 	get_bh(bh);
1261 	bh->b_end_io = end_buffer_write_sync;
1262 	ret = submit_bh(write_op, bh);
1263 	wait_on_buffer(bh);
1264 	if (buffer_write_io_error(bh)) {
1265 		clear_buffer_write_io_error(bh);
1266 		set_buffer_uptodate(bh);
1267 		ret = -EIO;
1268 	}
1269 	if (ret) {
1270 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1271 		       "journal superblock for %s.\n", ret,
1272 		       journal->j_devname);
1273 	}
1274 }
1275 
1276 /**
1277  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1278  * @journal: The journal to update.
1279  * @tail_tid: TID of the new transaction at the tail of the log
1280  * @tail_block: The first block of the transaction at the tail of the log
1281  * @write_op: With which operation should we write the journal sb
1282  *
1283  * Update a journal's superblock information about log tail and write it to
1284  * disk, waiting for the IO to complete.
1285  */
1286 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1287 				     unsigned long tail_block, int write_op)
1288 {
1289 	journal_superblock_t *sb = journal->j_superblock;
1290 
1291 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1292 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1293 		  tail_block, tail_tid);
1294 
1295 	sb->s_sequence = cpu_to_be32(tail_tid);
1296 	sb->s_start    = cpu_to_be32(tail_block);
1297 
1298 	jbd2_write_superblock(journal, write_op);
1299 
1300 	/* Log is no longer empty */
1301 	write_lock(&journal->j_state_lock);
1302 	WARN_ON(!sb->s_sequence);
1303 	journal->j_flags &= ~JBD2_FLUSHED;
1304 	write_unlock(&journal->j_state_lock);
1305 }
1306 
1307 /**
1308  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1309  * @journal: The journal to update.
1310  *
1311  * Update a journal's dynamic superblock fields to show that journal is empty.
1312  * Write updated superblock to disk waiting for IO to complete.
1313  */
1314 static void jbd2_mark_journal_empty(journal_t *journal)
1315 {
1316 	journal_superblock_t *sb = journal->j_superblock;
1317 
1318 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1319 	read_lock(&journal->j_state_lock);
1320 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1321 		  journal->j_tail_sequence);
1322 
1323 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1324 	sb->s_start    = cpu_to_be32(0);
1325 	read_unlock(&journal->j_state_lock);
1326 
1327 	jbd2_write_superblock(journal, WRITE_FUA);
1328 
1329 	/* Log is no longer empty */
1330 	write_lock(&journal->j_state_lock);
1331 	journal->j_flags |= JBD2_FLUSHED;
1332 	write_unlock(&journal->j_state_lock);
1333 }
1334 
1335 
1336 /**
1337  * jbd2_journal_update_sb_errno() - Update error in the journal.
1338  * @journal: The journal to update.
1339  *
1340  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1341  * to complete.
1342  */
1343 static void jbd2_journal_update_sb_errno(journal_t *journal)
1344 {
1345 	journal_superblock_t *sb = journal->j_superblock;
1346 
1347 	read_lock(&journal->j_state_lock);
1348 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1349 		  journal->j_errno);
1350 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1351 	read_unlock(&journal->j_state_lock);
1352 
1353 	jbd2_write_superblock(journal, WRITE_SYNC);
1354 }
1355 
1356 /*
1357  * Read the superblock for a given journal, performing initial
1358  * validation of the format.
1359  */
1360 static int journal_get_superblock(journal_t *journal)
1361 {
1362 	struct buffer_head *bh;
1363 	journal_superblock_t *sb;
1364 	int err = -EIO;
1365 
1366 	bh = journal->j_sb_buffer;
1367 
1368 	J_ASSERT(bh != NULL);
1369 	if (!buffer_uptodate(bh)) {
1370 		ll_rw_block(READ, 1, &bh);
1371 		wait_on_buffer(bh);
1372 		if (!buffer_uptodate(bh)) {
1373 			printk(KERN_ERR
1374 				"JBD2: IO error reading journal superblock\n");
1375 			goto out;
1376 		}
1377 	}
1378 
1379 	sb = journal->j_superblock;
1380 
1381 	err = -EINVAL;
1382 
1383 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1384 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1385 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1386 		goto out;
1387 	}
1388 
1389 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1390 	case JBD2_SUPERBLOCK_V1:
1391 		journal->j_format_version = 1;
1392 		break;
1393 	case JBD2_SUPERBLOCK_V2:
1394 		journal->j_format_version = 2;
1395 		break;
1396 	default:
1397 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1398 		goto out;
1399 	}
1400 
1401 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1402 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1403 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1404 		printk(KERN_WARNING "JBD2: journal file too short\n");
1405 		goto out;
1406 	}
1407 
1408 	if (be32_to_cpu(sb->s_first) == 0 ||
1409 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1410 		printk(KERN_WARNING
1411 			"JBD2: Invalid start block of journal: %u\n",
1412 			be32_to_cpu(sb->s_first));
1413 		goto out;
1414 	}
1415 
1416 	return 0;
1417 
1418 out:
1419 	journal_fail_superblock(journal);
1420 	return err;
1421 }
1422 
1423 /*
1424  * Load the on-disk journal superblock and read the key fields into the
1425  * journal_t.
1426  */
1427 
1428 static int load_superblock(journal_t *journal)
1429 {
1430 	int err;
1431 	journal_superblock_t *sb;
1432 
1433 	err = journal_get_superblock(journal);
1434 	if (err)
1435 		return err;
1436 
1437 	sb = journal->j_superblock;
1438 
1439 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1440 	journal->j_tail = be32_to_cpu(sb->s_start);
1441 	journal->j_first = be32_to_cpu(sb->s_first);
1442 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1443 	journal->j_errno = be32_to_cpu(sb->s_errno);
1444 
1445 	return 0;
1446 }
1447 
1448 
1449 /**
1450  * int jbd2_journal_load() - Read journal from disk.
1451  * @journal: Journal to act on.
1452  *
1453  * Given a journal_t structure which tells us which disk blocks contain
1454  * a journal, read the journal from disk to initialise the in-memory
1455  * structures.
1456  */
1457 int jbd2_journal_load(journal_t *journal)
1458 {
1459 	int err;
1460 	journal_superblock_t *sb;
1461 
1462 	err = load_superblock(journal);
1463 	if (err)
1464 		return err;
1465 
1466 	sb = journal->j_superblock;
1467 	/* If this is a V2 superblock, then we have to check the
1468 	 * features flags on it. */
1469 
1470 	if (journal->j_format_version >= 2) {
1471 		if ((sb->s_feature_ro_compat &
1472 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1473 		    (sb->s_feature_incompat &
1474 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1475 			printk(KERN_WARNING
1476 				"JBD2: Unrecognised features on journal\n");
1477 			return -EINVAL;
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * Create a slab for this blocksize
1483 	 */
1484 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1485 	if (err)
1486 		return err;
1487 
1488 	/* Let the recovery code check whether it needs to recover any
1489 	 * data from the journal. */
1490 	if (jbd2_journal_recover(journal))
1491 		goto recovery_error;
1492 
1493 	if (journal->j_failed_commit) {
1494 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1495 		       "is corrupt.\n", journal->j_failed_commit,
1496 		       journal->j_devname);
1497 		return -EIO;
1498 	}
1499 
1500 	/* OK, we've finished with the dynamic journal bits:
1501 	 * reinitialise the dynamic contents of the superblock in memory
1502 	 * and reset them on disk. */
1503 	if (journal_reset(journal))
1504 		goto recovery_error;
1505 
1506 	journal->j_flags &= ~JBD2_ABORT;
1507 	journal->j_flags |= JBD2_LOADED;
1508 	return 0;
1509 
1510 recovery_error:
1511 	printk(KERN_WARNING "JBD2: recovery failed\n");
1512 	return -EIO;
1513 }
1514 
1515 /**
1516  * void jbd2_journal_destroy() - Release a journal_t structure.
1517  * @journal: Journal to act on.
1518  *
1519  * Release a journal_t structure once it is no longer in use by the
1520  * journaled object.
1521  * Return <0 if we couldn't clean up the journal.
1522  */
1523 int jbd2_journal_destroy(journal_t *journal)
1524 {
1525 	int err = 0;
1526 
1527 	/* Wait for the commit thread to wake up and die. */
1528 	journal_kill_thread(journal);
1529 
1530 	/* Force a final log commit */
1531 	if (journal->j_running_transaction)
1532 		jbd2_journal_commit_transaction(journal);
1533 
1534 	/* Force any old transactions to disk */
1535 
1536 	/* Totally anal locking here... */
1537 	spin_lock(&journal->j_list_lock);
1538 	while (journal->j_checkpoint_transactions != NULL) {
1539 		spin_unlock(&journal->j_list_lock);
1540 		mutex_lock(&journal->j_checkpoint_mutex);
1541 		jbd2_log_do_checkpoint(journal);
1542 		mutex_unlock(&journal->j_checkpoint_mutex);
1543 		spin_lock(&journal->j_list_lock);
1544 	}
1545 
1546 	J_ASSERT(journal->j_running_transaction == NULL);
1547 	J_ASSERT(journal->j_committing_transaction == NULL);
1548 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1549 	spin_unlock(&journal->j_list_lock);
1550 
1551 	if (journal->j_sb_buffer) {
1552 		if (!is_journal_aborted(journal)) {
1553 			mutex_lock(&journal->j_checkpoint_mutex);
1554 			jbd2_mark_journal_empty(journal);
1555 			mutex_unlock(&journal->j_checkpoint_mutex);
1556 		} else
1557 			err = -EIO;
1558 		brelse(journal->j_sb_buffer);
1559 	}
1560 
1561 	if (journal->j_proc_entry)
1562 		jbd2_stats_proc_exit(journal);
1563 	if (journal->j_inode)
1564 		iput(journal->j_inode);
1565 	if (journal->j_revoke)
1566 		jbd2_journal_destroy_revoke(journal);
1567 	kfree(journal->j_wbuf);
1568 	kfree(journal);
1569 
1570 	return err;
1571 }
1572 
1573 
1574 /**
1575  *int jbd2_journal_check_used_features () - Check if features specified are used.
1576  * @journal: Journal to check.
1577  * @compat: bitmask of compatible features
1578  * @ro: bitmask of features that force read-only mount
1579  * @incompat: bitmask of incompatible features
1580  *
1581  * Check whether the journal uses all of a given set of
1582  * features.  Return true (non-zero) if it does.
1583  **/
1584 
1585 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1586 				 unsigned long ro, unsigned long incompat)
1587 {
1588 	journal_superblock_t *sb;
1589 
1590 	if (!compat && !ro && !incompat)
1591 		return 1;
1592 	/* Load journal superblock if it is not loaded yet. */
1593 	if (journal->j_format_version == 0 &&
1594 	    journal_get_superblock(journal) != 0)
1595 		return 0;
1596 	if (journal->j_format_version == 1)
1597 		return 0;
1598 
1599 	sb = journal->j_superblock;
1600 
1601 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1602 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1603 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1604 		return 1;
1605 
1606 	return 0;
1607 }
1608 
1609 /**
1610  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1611  * @journal: Journal to check.
1612  * @compat: bitmask of compatible features
1613  * @ro: bitmask of features that force read-only mount
1614  * @incompat: bitmask of incompatible features
1615  *
1616  * Check whether the journaling code supports the use of
1617  * all of a given set of features on this journal.  Return true
1618  * (non-zero) if it can. */
1619 
1620 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1621 				      unsigned long ro, unsigned long incompat)
1622 {
1623 	if (!compat && !ro && !incompat)
1624 		return 1;
1625 
1626 	/* We can support any known requested features iff the
1627 	 * superblock is in version 2.  Otherwise we fail to support any
1628 	 * extended sb features. */
1629 
1630 	if (journal->j_format_version != 2)
1631 		return 0;
1632 
1633 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1634 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1635 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1636 		return 1;
1637 
1638 	return 0;
1639 }
1640 
1641 /**
1642  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1643  * @journal: Journal to act on.
1644  * @compat: bitmask of compatible features
1645  * @ro: bitmask of features that force read-only mount
1646  * @incompat: bitmask of incompatible features
1647  *
1648  * Mark a given journal feature as present on the
1649  * superblock.  Returns true if the requested features could be set.
1650  *
1651  */
1652 
1653 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1654 			  unsigned long ro, unsigned long incompat)
1655 {
1656 	journal_superblock_t *sb;
1657 
1658 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1659 		return 1;
1660 
1661 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1662 		return 0;
1663 
1664 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1665 		  compat, ro, incompat);
1666 
1667 	sb = journal->j_superblock;
1668 
1669 	sb->s_feature_compat    |= cpu_to_be32(compat);
1670 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1671 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1672 
1673 	return 1;
1674 }
1675 
1676 /*
1677  * jbd2_journal_clear_features () - Clear a given journal feature in the
1678  * 				    superblock
1679  * @journal: Journal to act on.
1680  * @compat: bitmask of compatible features
1681  * @ro: bitmask of features that force read-only mount
1682  * @incompat: bitmask of incompatible features
1683  *
1684  * Clear a given journal feature as present on the
1685  * superblock.
1686  */
1687 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1688 				unsigned long ro, unsigned long incompat)
1689 {
1690 	journal_superblock_t *sb;
1691 
1692 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1693 		  compat, ro, incompat);
1694 
1695 	sb = journal->j_superblock;
1696 
1697 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1698 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1699 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1700 }
1701 EXPORT_SYMBOL(jbd2_journal_clear_features);
1702 
1703 /**
1704  * int jbd2_journal_flush () - Flush journal
1705  * @journal: Journal to act on.
1706  *
1707  * Flush all data for a given journal to disk and empty the journal.
1708  * Filesystems can use this when remounting readonly to ensure that
1709  * recovery does not need to happen on remount.
1710  */
1711 
1712 int jbd2_journal_flush(journal_t *journal)
1713 {
1714 	int err = 0;
1715 	transaction_t *transaction = NULL;
1716 
1717 	write_lock(&journal->j_state_lock);
1718 
1719 	/* Force everything buffered to the log... */
1720 	if (journal->j_running_transaction) {
1721 		transaction = journal->j_running_transaction;
1722 		__jbd2_log_start_commit(journal, transaction->t_tid);
1723 	} else if (journal->j_committing_transaction)
1724 		transaction = journal->j_committing_transaction;
1725 
1726 	/* Wait for the log commit to complete... */
1727 	if (transaction) {
1728 		tid_t tid = transaction->t_tid;
1729 
1730 		write_unlock(&journal->j_state_lock);
1731 		jbd2_log_wait_commit(journal, tid);
1732 	} else {
1733 		write_unlock(&journal->j_state_lock);
1734 	}
1735 
1736 	/* ...and flush everything in the log out to disk. */
1737 	spin_lock(&journal->j_list_lock);
1738 	while (!err && journal->j_checkpoint_transactions != NULL) {
1739 		spin_unlock(&journal->j_list_lock);
1740 		mutex_lock(&journal->j_checkpoint_mutex);
1741 		err = jbd2_log_do_checkpoint(journal);
1742 		mutex_unlock(&journal->j_checkpoint_mutex);
1743 		spin_lock(&journal->j_list_lock);
1744 	}
1745 	spin_unlock(&journal->j_list_lock);
1746 
1747 	if (is_journal_aborted(journal))
1748 		return -EIO;
1749 
1750 	mutex_lock(&journal->j_checkpoint_mutex);
1751 	jbd2_cleanup_journal_tail(journal);
1752 
1753 	/* Finally, mark the journal as really needing no recovery.
1754 	 * This sets s_start==0 in the underlying superblock, which is
1755 	 * the magic code for a fully-recovered superblock.  Any future
1756 	 * commits of data to the journal will restore the current
1757 	 * s_start value. */
1758 	jbd2_mark_journal_empty(journal);
1759 	mutex_unlock(&journal->j_checkpoint_mutex);
1760 	write_lock(&journal->j_state_lock);
1761 	J_ASSERT(!journal->j_running_transaction);
1762 	J_ASSERT(!journal->j_committing_transaction);
1763 	J_ASSERT(!journal->j_checkpoint_transactions);
1764 	J_ASSERT(journal->j_head == journal->j_tail);
1765 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1766 	write_unlock(&journal->j_state_lock);
1767 	return 0;
1768 }
1769 
1770 /**
1771  * int jbd2_journal_wipe() - Wipe journal contents
1772  * @journal: Journal to act on.
1773  * @write: flag (see below)
1774  *
1775  * Wipe out all of the contents of a journal, safely.  This will produce
1776  * a warning if the journal contains any valid recovery information.
1777  * Must be called between journal_init_*() and jbd2_journal_load().
1778  *
1779  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1780  * we merely suppress recovery.
1781  */
1782 
1783 int jbd2_journal_wipe(journal_t *journal, int write)
1784 {
1785 	int err = 0;
1786 
1787 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1788 
1789 	err = load_superblock(journal);
1790 	if (err)
1791 		return err;
1792 
1793 	if (!journal->j_tail)
1794 		goto no_recovery;
1795 
1796 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1797 		write ? "Clearing" : "Ignoring");
1798 
1799 	err = jbd2_journal_skip_recovery(journal);
1800 	if (write) {
1801 		/* Lock to make assertions happy... */
1802 		mutex_lock(&journal->j_checkpoint_mutex);
1803 		jbd2_mark_journal_empty(journal);
1804 		mutex_unlock(&journal->j_checkpoint_mutex);
1805 	}
1806 
1807  no_recovery:
1808 	return err;
1809 }
1810 
1811 /*
1812  * Journal abort has very specific semantics, which we describe
1813  * for journal abort.
1814  *
1815  * Two internal functions, which provide abort to the jbd layer
1816  * itself are here.
1817  */
1818 
1819 /*
1820  * Quick version for internal journal use (doesn't lock the journal).
1821  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1822  * and don't attempt to make any other journal updates.
1823  */
1824 void __jbd2_journal_abort_hard(journal_t *journal)
1825 {
1826 	transaction_t *transaction;
1827 
1828 	if (journal->j_flags & JBD2_ABORT)
1829 		return;
1830 
1831 	printk(KERN_ERR "Aborting journal on device %s.\n",
1832 	       journal->j_devname);
1833 
1834 	write_lock(&journal->j_state_lock);
1835 	journal->j_flags |= JBD2_ABORT;
1836 	transaction = journal->j_running_transaction;
1837 	if (transaction)
1838 		__jbd2_log_start_commit(journal, transaction->t_tid);
1839 	write_unlock(&journal->j_state_lock);
1840 }
1841 
1842 /* Soft abort: record the abort error status in the journal superblock,
1843  * but don't do any other IO. */
1844 static void __journal_abort_soft (journal_t *journal, int errno)
1845 {
1846 	if (journal->j_flags & JBD2_ABORT)
1847 		return;
1848 
1849 	if (!journal->j_errno)
1850 		journal->j_errno = errno;
1851 
1852 	__jbd2_journal_abort_hard(journal);
1853 
1854 	if (errno)
1855 		jbd2_journal_update_sb_errno(journal);
1856 }
1857 
1858 /**
1859  * void jbd2_journal_abort () - Shutdown the journal immediately.
1860  * @journal: the journal to shutdown.
1861  * @errno:   an error number to record in the journal indicating
1862  *           the reason for the shutdown.
1863  *
1864  * Perform a complete, immediate shutdown of the ENTIRE
1865  * journal (not of a single transaction).  This operation cannot be
1866  * undone without closing and reopening the journal.
1867  *
1868  * The jbd2_journal_abort function is intended to support higher level error
1869  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1870  * mode.
1871  *
1872  * Journal abort has very specific semantics.  Any existing dirty,
1873  * unjournaled buffers in the main filesystem will still be written to
1874  * disk by bdflush, but the journaling mechanism will be suspended
1875  * immediately and no further transaction commits will be honoured.
1876  *
1877  * Any dirty, journaled buffers will be written back to disk without
1878  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1879  * filesystem, but we _do_ attempt to leave as much data as possible
1880  * behind for fsck to use for cleanup.
1881  *
1882  * Any attempt to get a new transaction handle on a journal which is in
1883  * ABORT state will just result in an -EROFS error return.  A
1884  * jbd2_journal_stop on an existing handle will return -EIO if we have
1885  * entered abort state during the update.
1886  *
1887  * Recursive transactions are not disturbed by journal abort until the
1888  * final jbd2_journal_stop, which will receive the -EIO error.
1889  *
1890  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1891  * which will be recorded (if possible) in the journal superblock.  This
1892  * allows a client to record failure conditions in the middle of a
1893  * transaction without having to complete the transaction to record the
1894  * failure to disk.  ext3_error, for example, now uses this
1895  * functionality.
1896  *
1897  * Errors which originate from within the journaling layer will NOT
1898  * supply an errno; a null errno implies that absolutely no further
1899  * writes are done to the journal (unless there are any already in
1900  * progress).
1901  *
1902  */
1903 
1904 void jbd2_journal_abort(journal_t *journal, int errno)
1905 {
1906 	__journal_abort_soft(journal, errno);
1907 }
1908 
1909 /**
1910  * int jbd2_journal_errno () - returns the journal's error state.
1911  * @journal: journal to examine.
1912  *
1913  * This is the errno number set with jbd2_journal_abort(), the last
1914  * time the journal was mounted - if the journal was stopped
1915  * without calling abort this will be 0.
1916  *
1917  * If the journal has been aborted on this mount time -EROFS will
1918  * be returned.
1919  */
1920 int jbd2_journal_errno(journal_t *journal)
1921 {
1922 	int err;
1923 
1924 	read_lock(&journal->j_state_lock);
1925 	if (journal->j_flags & JBD2_ABORT)
1926 		err = -EROFS;
1927 	else
1928 		err = journal->j_errno;
1929 	read_unlock(&journal->j_state_lock);
1930 	return err;
1931 }
1932 
1933 /**
1934  * int jbd2_journal_clear_err () - clears the journal's error state
1935  * @journal: journal to act on.
1936  *
1937  * An error must be cleared or acked to take a FS out of readonly
1938  * mode.
1939  */
1940 int jbd2_journal_clear_err(journal_t *journal)
1941 {
1942 	int err = 0;
1943 
1944 	write_lock(&journal->j_state_lock);
1945 	if (journal->j_flags & JBD2_ABORT)
1946 		err = -EROFS;
1947 	else
1948 		journal->j_errno = 0;
1949 	write_unlock(&journal->j_state_lock);
1950 	return err;
1951 }
1952 
1953 /**
1954  * void jbd2_journal_ack_err() - Ack journal err.
1955  * @journal: journal to act on.
1956  *
1957  * An error must be cleared or acked to take a FS out of readonly
1958  * mode.
1959  */
1960 void jbd2_journal_ack_err(journal_t *journal)
1961 {
1962 	write_lock(&journal->j_state_lock);
1963 	if (journal->j_errno)
1964 		journal->j_flags |= JBD2_ACK_ERR;
1965 	write_unlock(&journal->j_state_lock);
1966 }
1967 
1968 int jbd2_journal_blocks_per_page(struct inode *inode)
1969 {
1970 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1971 }
1972 
1973 /*
1974  * helper functions to deal with 32 or 64bit block numbers.
1975  */
1976 size_t journal_tag_bytes(journal_t *journal)
1977 {
1978 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1979 		return JBD2_TAG_SIZE64;
1980 	else
1981 		return JBD2_TAG_SIZE32;
1982 }
1983 
1984 /*
1985  * JBD memory management
1986  *
1987  * These functions are used to allocate block-sized chunks of memory
1988  * used for making copies of buffer_head data.  Very often it will be
1989  * page-sized chunks of data, but sometimes it will be in
1990  * sub-page-size chunks.  (For example, 16k pages on Power systems
1991  * with a 4k block file system.)  For blocks smaller than a page, we
1992  * use a SLAB allocator.  There are slab caches for each block size,
1993  * which are allocated at mount time, if necessary, and we only free
1994  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1995  * this reason we don't need to a mutex to protect access to
1996  * jbd2_slab[] allocating or releasing memory; only in
1997  * jbd2_journal_create_slab().
1998  */
1999 #define JBD2_MAX_SLABS 8
2000 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2001 
2002 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2003 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2004 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2005 };
2006 
2007 
2008 static void jbd2_journal_destroy_slabs(void)
2009 {
2010 	int i;
2011 
2012 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2013 		if (jbd2_slab[i])
2014 			kmem_cache_destroy(jbd2_slab[i]);
2015 		jbd2_slab[i] = NULL;
2016 	}
2017 }
2018 
2019 static int jbd2_journal_create_slab(size_t size)
2020 {
2021 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2022 	int i = order_base_2(size) - 10;
2023 	size_t slab_size;
2024 
2025 	if (size == PAGE_SIZE)
2026 		return 0;
2027 
2028 	if (i >= JBD2_MAX_SLABS)
2029 		return -EINVAL;
2030 
2031 	if (unlikely(i < 0))
2032 		i = 0;
2033 	mutex_lock(&jbd2_slab_create_mutex);
2034 	if (jbd2_slab[i]) {
2035 		mutex_unlock(&jbd2_slab_create_mutex);
2036 		return 0;	/* Already created */
2037 	}
2038 
2039 	slab_size = 1 << (i+10);
2040 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2041 					 slab_size, 0, NULL);
2042 	mutex_unlock(&jbd2_slab_create_mutex);
2043 	if (!jbd2_slab[i]) {
2044 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2045 		return -ENOMEM;
2046 	}
2047 	return 0;
2048 }
2049 
2050 static struct kmem_cache *get_slab(size_t size)
2051 {
2052 	int i = order_base_2(size) - 10;
2053 
2054 	BUG_ON(i >= JBD2_MAX_SLABS);
2055 	if (unlikely(i < 0))
2056 		i = 0;
2057 	BUG_ON(jbd2_slab[i] == NULL);
2058 	return jbd2_slab[i];
2059 }
2060 
2061 void *jbd2_alloc(size_t size, gfp_t flags)
2062 {
2063 	void *ptr;
2064 
2065 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2066 
2067 	flags |= __GFP_REPEAT;
2068 	if (size == PAGE_SIZE)
2069 		ptr = (void *)__get_free_pages(flags, 0);
2070 	else if (size > PAGE_SIZE) {
2071 		int order = get_order(size);
2072 
2073 		if (order < 3)
2074 			ptr = (void *)__get_free_pages(flags, order);
2075 		else
2076 			ptr = vmalloc(size);
2077 	} else
2078 		ptr = kmem_cache_alloc(get_slab(size), flags);
2079 
2080 	/* Check alignment; SLUB has gotten this wrong in the past,
2081 	 * and this can lead to user data corruption! */
2082 	BUG_ON(((unsigned long) ptr) & (size-1));
2083 
2084 	return ptr;
2085 }
2086 
2087 void jbd2_free(void *ptr, size_t size)
2088 {
2089 	if (size == PAGE_SIZE) {
2090 		free_pages((unsigned long)ptr, 0);
2091 		return;
2092 	}
2093 	if (size > PAGE_SIZE) {
2094 		int order = get_order(size);
2095 
2096 		if (order < 3)
2097 			free_pages((unsigned long)ptr, order);
2098 		else
2099 			vfree(ptr);
2100 		return;
2101 	}
2102 	kmem_cache_free(get_slab(size), ptr);
2103 };
2104 
2105 /*
2106  * Journal_head storage management
2107  */
2108 static struct kmem_cache *jbd2_journal_head_cache;
2109 #ifdef CONFIG_JBD2_DEBUG
2110 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2111 #endif
2112 
2113 static int jbd2_journal_init_journal_head_cache(void)
2114 {
2115 	int retval;
2116 
2117 	J_ASSERT(jbd2_journal_head_cache == NULL);
2118 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2119 				sizeof(struct journal_head),
2120 				0,		/* offset */
2121 				SLAB_TEMPORARY,	/* flags */
2122 				NULL);		/* ctor */
2123 	retval = 0;
2124 	if (!jbd2_journal_head_cache) {
2125 		retval = -ENOMEM;
2126 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2127 	}
2128 	return retval;
2129 }
2130 
2131 static void jbd2_journal_destroy_journal_head_cache(void)
2132 {
2133 	if (jbd2_journal_head_cache) {
2134 		kmem_cache_destroy(jbd2_journal_head_cache);
2135 		jbd2_journal_head_cache = NULL;
2136 	}
2137 }
2138 
2139 /*
2140  * journal_head splicing and dicing
2141  */
2142 static struct journal_head *journal_alloc_journal_head(void)
2143 {
2144 	struct journal_head *ret;
2145 
2146 #ifdef CONFIG_JBD2_DEBUG
2147 	atomic_inc(&nr_journal_heads);
2148 #endif
2149 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2150 	if (!ret) {
2151 		jbd_debug(1, "out of memory for journal_head\n");
2152 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2153 		while (!ret) {
2154 			yield();
2155 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2156 		}
2157 	}
2158 	return ret;
2159 }
2160 
2161 static void journal_free_journal_head(struct journal_head *jh)
2162 {
2163 #ifdef CONFIG_JBD2_DEBUG
2164 	atomic_dec(&nr_journal_heads);
2165 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2166 #endif
2167 	kmem_cache_free(jbd2_journal_head_cache, jh);
2168 }
2169 
2170 /*
2171  * A journal_head is attached to a buffer_head whenever JBD has an
2172  * interest in the buffer.
2173  *
2174  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2175  * is set.  This bit is tested in core kernel code where we need to take
2176  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2177  * there.
2178  *
2179  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2180  *
2181  * When a buffer has its BH_JBD bit set it is immune from being released by
2182  * core kernel code, mainly via ->b_count.
2183  *
2184  * A journal_head is detached from its buffer_head when the journal_head's
2185  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2186  * transaction (b_cp_transaction) hold their references to b_jcount.
2187  *
2188  * Various places in the kernel want to attach a journal_head to a buffer_head
2189  * _before_ attaching the journal_head to a transaction.  To protect the
2190  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2191  * journal_head's b_jcount refcount by one.  The caller must call
2192  * jbd2_journal_put_journal_head() to undo this.
2193  *
2194  * So the typical usage would be:
2195  *
2196  *	(Attach a journal_head if needed.  Increments b_jcount)
2197  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2198  *	...
2199  *      (Get another reference for transaction)
2200  *	jbd2_journal_grab_journal_head(bh);
2201  *	jh->b_transaction = xxx;
2202  *	(Put original reference)
2203  *	jbd2_journal_put_journal_head(jh);
2204  */
2205 
2206 /*
2207  * Give a buffer_head a journal_head.
2208  *
2209  * May sleep.
2210  */
2211 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2212 {
2213 	struct journal_head *jh;
2214 	struct journal_head *new_jh = NULL;
2215 
2216 repeat:
2217 	if (!buffer_jbd(bh)) {
2218 		new_jh = journal_alloc_journal_head();
2219 		memset(new_jh, 0, sizeof(*new_jh));
2220 	}
2221 
2222 	jbd_lock_bh_journal_head(bh);
2223 	if (buffer_jbd(bh)) {
2224 		jh = bh2jh(bh);
2225 	} else {
2226 		J_ASSERT_BH(bh,
2227 			(atomic_read(&bh->b_count) > 0) ||
2228 			(bh->b_page && bh->b_page->mapping));
2229 
2230 		if (!new_jh) {
2231 			jbd_unlock_bh_journal_head(bh);
2232 			goto repeat;
2233 		}
2234 
2235 		jh = new_jh;
2236 		new_jh = NULL;		/* We consumed it */
2237 		set_buffer_jbd(bh);
2238 		bh->b_private = jh;
2239 		jh->b_bh = bh;
2240 		get_bh(bh);
2241 		BUFFER_TRACE(bh, "added journal_head");
2242 	}
2243 	jh->b_jcount++;
2244 	jbd_unlock_bh_journal_head(bh);
2245 	if (new_jh)
2246 		journal_free_journal_head(new_jh);
2247 	return bh->b_private;
2248 }
2249 
2250 /*
2251  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2252  * having a journal_head, return NULL
2253  */
2254 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2255 {
2256 	struct journal_head *jh = NULL;
2257 
2258 	jbd_lock_bh_journal_head(bh);
2259 	if (buffer_jbd(bh)) {
2260 		jh = bh2jh(bh);
2261 		jh->b_jcount++;
2262 	}
2263 	jbd_unlock_bh_journal_head(bh);
2264 	return jh;
2265 }
2266 
2267 static void __journal_remove_journal_head(struct buffer_head *bh)
2268 {
2269 	struct journal_head *jh = bh2jh(bh);
2270 
2271 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2272 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2273 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2274 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2275 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2276 	J_ASSERT_BH(bh, buffer_jbd(bh));
2277 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2278 	BUFFER_TRACE(bh, "remove journal_head");
2279 	if (jh->b_frozen_data) {
2280 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2281 		jbd2_free(jh->b_frozen_data, bh->b_size);
2282 	}
2283 	if (jh->b_committed_data) {
2284 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2285 		jbd2_free(jh->b_committed_data, bh->b_size);
2286 	}
2287 	bh->b_private = NULL;
2288 	jh->b_bh = NULL;	/* debug, really */
2289 	clear_buffer_jbd(bh);
2290 	journal_free_journal_head(jh);
2291 }
2292 
2293 /*
2294  * Drop a reference on the passed journal_head.  If it fell to zero then
2295  * release the journal_head from the buffer_head.
2296  */
2297 void jbd2_journal_put_journal_head(struct journal_head *jh)
2298 {
2299 	struct buffer_head *bh = jh2bh(jh);
2300 
2301 	jbd_lock_bh_journal_head(bh);
2302 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2303 	--jh->b_jcount;
2304 	if (!jh->b_jcount) {
2305 		__journal_remove_journal_head(bh);
2306 		jbd_unlock_bh_journal_head(bh);
2307 		__brelse(bh);
2308 	} else
2309 		jbd_unlock_bh_journal_head(bh);
2310 }
2311 
2312 /*
2313  * Initialize jbd inode head
2314  */
2315 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2316 {
2317 	jinode->i_transaction = NULL;
2318 	jinode->i_next_transaction = NULL;
2319 	jinode->i_vfs_inode = inode;
2320 	jinode->i_flags = 0;
2321 	INIT_LIST_HEAD(&jinode->i_list);
2322 }
2323 
2324 /*
2325  * Function to be called before we start removing inode from memory (i.e.,
2326  * clear_inode() is a fine place to be called from). It removes inode from
2327  * transaction's lists.
2328  */
2329 void jbd2_journal_release_jbd_inode(journal_t *journal,
2330 				    struct jbd2_inode *jinode)
2331 {
2332 	if (!journal)
2333 		return;
2334 restart:
2335 	spin_lock(&journal->j_list_lock);
2336 	/* Is commit writing out inode - we have to wait */
2337 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2338 		wait_queue_head_t *wq;
2339 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2340 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2341 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2342 		spin_unlock(&journal->j_list_lock);
2343 		schedule();
2344 		finish_wait(wq, &wait.wait);
2345 		goto restart;
2346 	}
2347 
2348 	if (jinode->i_transaction) {
2349 		list_del(&jinode->i_list);
2350 		jinode->i_transaction = NULL;
2351 	}
2352 	spin_unlock(&journal->j_list_lock);
2353 }
2354 
2355 /*
2356  * debugfs tunables
2357  */
2358 #ifdef CONFIG_JBD2_DEBUG
2359 u8 jbd2_journal_enable_debug __read_mostly;
2360 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2361 
2362 #define JBD2_DEBUG_NAME "jbd2-debug"
2363 
2364 static struct dentry *jbd2_debugfs_dir;
2365 static struct dentry *jbd2_debug;
2366 
2367 static void __init jbd2_create_debugfs_entry(void)
2368 {
2369 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2370 	if (jbd2_debugfs_dir)
2371 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2372 					       S_IRUGO | S_IWUSR,
2373 					       jbd2_debugfs_dir,
2374 					       &jbd2_journal_enable_debug);
2375 }
2376 
2377 static void __exit jbd2_remove_debugfs_entry(void)
2378 {
2379 	debugfs_remove(jbd2_debug);
2380 	debugfs_remove(jbd2_debugfs_dir);
2381 }
2382 
2383 #else
2384 
2385 static void __init jbd2_create_debugfs_entry(void)
2386 {
2387 }
2388 
2389 static void __exit jbd2_remove_debugfs_entry(void)
2390 {
2391 }
2392 
2393 #endif
2394 
2395 #ifdef CONFIG_PROC_FS
2396 
2397 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2398 
2399 static void __init jbd2_create_jbd_stats_proc_entry(void)
2400 {
2401 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2402 }
2403 
2404 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2405 {
2406 	if (proc_jbd2_stats)
2407 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2408 }
2409 
2410 #else
2411 
2412 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2413 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2414 
2415 #endif
2416 
2417 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2418 
2419 static int __init jbd2_journal_init_handle_cache(void)
2420 {
2421 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2422 	if (jbd2_handle_cache == NULL) {
2423 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2424 		return -ENOMEM;
2425 	}
2426 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2427 	if (jbd2_inode_cache == NULL) {
2428 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2429 		kmem_cache_destroy(jbd2_handle_cache);
2430 		return -ENOMEM;
2431 	}
2432 	return 0;
2433 }
2434 
2435 static void jbd2_journal_destroy_handle_cache(void)
2436 {
2437 	if (jbd2_handle_cache)
2438 		kmem_cache_destroy(jbd2_handle_cache);
2439 	if (jbd2_inode_cache)
2440 		kmem_cache_destroy(jbd2_inode_cache);
2441 
2442 }
2443 
2444 /*
2445  * Module startup and shutdown
2446  */
2447 
2448 static int __init journal_init_caches(void)
2449 {
2450 	int ret;
2451 
2452 	ret = jbd2_journal_init_revoke_caches();
2453 	if (ret == 0)
2454 		ret = jbd2_journal_init_journal_head_cache();
2455 	if (ret == 0)
2456 		ret = jbd2_journal_init_handle_cache();
2457 	if (ret == 0)
2458 		ret = jbd2_journal_init_transaction_cache();
2459 	return ret;
2460 }
2461 
2462 static void jbd2_journal_destroy_caches(void)
2463 {
2464 	jbd2_journal_destroy_revoke_caches();
2465 	jbd2_journal_destroy_journal_head_cache();
2466 	jbd2_journal_destroy_handle_cache();
2467 	jbd2_journal_destroy_transaction_cache();
2468 	jbd2_journal_destroy_slabs();
2469 }
2470 
2471 static int __init journal_init(void)
2472 {
2473 	int ret;
2474 
2475 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2476 
2477 	ret = journal_init_caches();
2478 	if (ret == 0) {
2479 		jbd2_create_debugfs_entry();
2480 		jbd2_create_jbd_stats_proc_entry();
2481 	} else {
2482 		jbd2_journal_destroy_caches();
2483 	}
2484 	return ret;
2485 }
2486 
2487 static void __exit journal_exit(void)
2488 {
2489 #ifdef CONFIG_JBD2_DEBUG
2490 	int n = atomic_read(&nr_journal_heads);
2491 	if (n)
2492 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2493 #endif
2494 	jbd2_remove_debugfs_entry();
2495 	jbd2_remove_jbd_stats_proc_entry();
2496 	jbd2_journal_destroy_caches();
2497 }
2498 
2499 MODULE_LICENSE("GPL");
2500 module_init(journal_init);
2501 module_exit(journal_exit);
2502 
2503