1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_release_buffer); 64 EXPORT_SYMBOL(jbd2_journal_forget); 65 #if 0 66 EXPORT_SYMBOL(journal_sync_buffer); 67 #endif 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_log_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 86 EXPORT_SYMBOL(jbd2_journal_wipe); 87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 88 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 90 EXPORT_SYMBOL(jbd2_journal_force_commit); 91 EXPORT_SYMBOL(jbd2_journal_file_inode); 92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 95 EXPORT_SYMBOL(jbd2_inode_cache); 96 97 static void __journal_abort_soft (journal_t *journal, int errno); 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 /* 101 * Helper function used to manage commit timeouts 102 */ 103 104 static void commit_timeout(unsigned long __data) 105 { 106 struct task_struct * p = (struct task_struct *) __data; 107 108 wake_up_process(p); 109 } 110 111 /* 112 * kjournald2: The main thread function used to manage a logging device 113 * journal. 114 * 115 * This kernel thread is responsible for two things: 116 * 117 * 1) COMMIT: Every so often we need to commit the current state of the 118 * filesystem to disk. The journal thread is responsible for writing 119 * all of the metadata buffers to disk. 120 * 121 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 122 * of the data in that part of the log has been rewritten elsewhere on 123 * the disk. Flushing these old buffers to reclaim space in the log is 124 * known as checkpointing, and this thread is responsible for that job. 125 */ 126 127 static int kjournald2(void *arg) 128 { 129 journal_t *journal = arg; 130 transaction_t *transaction; 131 132 /* 133 * Set up an interval timer which can be used to trigger a commit wakeup 134 * after the commit interval expires 135 */ 136 setup_timer(&journal->j_commit_timer, commit_timeout, 137 (unsigned long)current); 138 139 set_freezable(); 140 141 /* Record that the journal thread is running */ 142 journal->j_task = current; 143 wake_up(&journal->j_wait_done_commit); 144 145 /* 146 * And now, wait forever for commit wakeup events. 147 */ 148 write_lock(&journal->j_state_lock); 149 150 loop: 151 if (journal->j_flags & JBD2_UNMOUNT) 152 goto end_loop; 153 154 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 155 journal->j_commit_sequence, journal->j_commit_request); 156 157 if (journal->j_commit_sequence != journal->j_commit_request) { 158 jbd_debug(1, "OK, requests differ\n"); 159 write_unlock(&journal->j_state_lock); 160 del_timer_sync(&journal->j_commit_timer); 161 jbd2_journal_commit_transaction(journal); 162 write_lock(&journal->j_state_lock); 163 goto loop; 164 } 165 166 wake_up(&journal->j_wait_done_commit); 167 if (freezing(current)) { 168 /* 169 * The simpler the better. Flushing journal isn't a 170 * good idea, because that depends on threads that may 171 * be already stopped. 172 */ 173 jbd_debug(1, "Now suspending kjournald2\n"); 174 write_unlock(&journal->j_state_lock); 175 try_to_freeze(); 176 write_lock(&journal->j_state_lock); 177 } else { 178 /* 179 * We assume on resume that commits are already there, 180 * so we don't sleep 181 */ 182 DEFINE_WAIT(wait); 183 int should_sleep = 1; 184 185 prepare_to_wait(&journal->j_wait_commit, &wait, 186 TASK_INTERRUPTIBLE); 187 if (journal->j_commit_sequence != journal->j_commit_request) 188 should_sleep = 0; 189 transaction = journal->j_running_transaction; 190 if (transaction && time_after_eq(jiffies, 191 transaction->t_expires)) 192 should_sleep = 0; 193 if (journal->j_flags & JBD2_UNMOUNT) 194 should_sleep = 0; 195 if (should_sleep) { 196 write_unlock(&journal->j_state_lock); 197 schedule(); 198 write_lock(&journal->j_state_lock); 199 } 200 finish_wait(&journal->j_wait_commit, &wait); 201 } 202 203 jbd_debug(1, "kjournald2 wakes\n"); 204 205 /* 206 * Were we woken up by a commit wakeup event? 207 */ 208 transaction = journal->j_running_transaction; 209 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 210 journal->j_commit_request = transaction->t_tid; 211 jbd_debug(1, "woke because of timeout\n"); 212 } 213 goto loop; 214 215 end_loop: 216 write_unlock(&journal->j_state_lock); 217 del_timer_sync(&journal->j_commit_timer); 218 journal->j_task = NULL; 219 wake_up(&journal->j_wait_done_commit); 220 jbd_debug(1, "Journal thread exiting.\n"); 221 return 0; 222 } 223 224 static int jbd2_journal_start_thread(journal_t *journal) 225 { 226 struct task_struct *t; 227 228 t = kthread_run(kjournald2, journal, "jbd2/%s", 229 journal->j_devname); 230 if (IS_ERR(t)) 231 return PTR_ERR(t); 232 233 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 234 return 0; 235 } 236 237 static void journal_kill_thread(journal_t *journal) 238 { 239 write_lock(&journal->j_state_lock); 240 journal->j_flags |= JBD2_UNMOUNT; 241 242 while (journal->j_task) { 243 wake_up(&journal->j_wait_commit); 244 write_unlock(&journal->j_state_lock); 245 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 246 write_lock(&journal->j_state_lock); 247 } 248 write_unlock(&journal->j_state_lock); 249 } 250 251 /* 252 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 253 * 254 * Writes a metadata buffer to a given disk block. The actual IO is not 255 * performed but a new buffer_head is constructed which labels the data 256 * to be written with the correct destination disk block. 257 * 258 * Any magic-number escaping which needs to be done will cause a 259 * copy-out here. If the buffer happens to start with the 260 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 261 * magic number is only written to the log for descripter blocks. In 262 * this case, we copy the data and replace the first word with 0, and we 263 * return a result code which indicates that this buffer needs to be 264 * marked as an escaped buffer in the corresponding log descriptor 265 * block. The missing word can then be restored when the block is read 266 * during recovery. 267 * 268 * If the source buffer has already been modified by a new transaction 269 * since we took the last commit snapshot, we use the frozen copy of 270 * that data for IO. If we end up using the existing buffer_head's data 271 * for the write, then we *have* to lock the buffer to prevent anyone 272 * else from using and possibly modifying it while the IO is in 273 * progress. 274 * 275 * The function returns a pointer to the buffer_heads to be used for IO. 276 * 277 * We assume that the journal has already been locked in this function. 278 * 279 * Return value: 280 * <0: Error 281 * >=0: Finished OK 282 * 283 * On success: 284 * Bit 0 set == escape performed on the data 285 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 286 */ 287 288 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 289 struct journal_head *jh_in, 290 struct journal_head **jh_out, 291 unsigned long long blocknr) 292 { 293 int need_copy_out = 0; 294 int done_copy_out = 0; 295 int do_escape = 0; 296 char *mapped_data; 297 struct buffer_head *new_bh; 298 struct journal_head *new_jh; 299 struct page *new_page; 300 unsigned int new_offset; 301 struct buffer_head *bh_in = jh2bh(jh_in); 302 journal_t *journal = transaction->t_journal; 303 304 /* 305 * The buffer really shouldn't be locked: only the current committing 306 * transaction is allowed to write it, so nobody else is allowed 307 * to do any IO. 308 * 309 * akpm: except if we're journalling data, and write() output is 310 * also part of a shared mapping, and another thread has 311 * decided to launch a writepage() against this buffer. 312 */ 313 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 314 315 retry_alloc: 316 new_bh = alloc_buffer_head(GFP_NOFS); 317 if (!new_bh) { 318 /* 319 * Failure is not an option, but __GFP_NOFAIL is going 320 * away; so we retry ourselves here. 321 */ 322 congestion_wait(BLK_RW_ASYNC, HZ/50); 323 goto retry_alloc; 324 } 325 326 /* keep subsequent assertions sane */ 327 new_bh->b_state = 0; 328 init_buffer(new_bh, NULL, NULL); 329 atomic_set(&new_bh->b_count, 1); 330 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 331 332 /* 333 * If a new transaction has already done a buffer copy-out, then 334 * we use that version of the data for the commit. 335 */ 336 jbd_lock_bh_state(bh_in); 337 repeat: 338 if (jh_in->b_frozen_data) { 339 done_copy_out = 1; 340 new_page = virt_to_page(jh_in->b_frozen_data); 341 new_offset = offset_in_page(jh_in->b_frozen_data); 342 } else { 343 new_page = jh2bh(jh_in)->b_page; 344 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 345 } 346 347 mapped_data = kmap_atomic(new_page); 348 /* 349 * Fire data frozen trigger if data already wasn't frozen. Do this 350 * before checking for escaping, as the trigger may modify the magic 351 * offset. If a copy-out happens afterwards, it will have the correct 352 * data in the buffer. 353 */ 354 if (!done_copy_out) 355 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 356 jh_in->b_triggers); 357 358 /* 359 * Check for escaping 360 */ 361 if (*((__be32 *)(mapped_data + new_offset)) == 362 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 363 need_copy_out = 1; 364 do_escape = 1; 365 } 366 kunmap_atomic(mapped_data); 367 368 /* 369 * Do we need to do a data copy? 370 */ 371 if (need_copy_out && !done_copy_out) { 372 char *tmp; 373 374 jbd_unlock_bh_state(bh_in); 375 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 376 if (!tmp) { 377 jbd2_journal_put_journal_head(new_jh); 378 return -ENOMEM; 379 } 380 jbd_lock_bh_state(bh_in); 381 if (jh_in->b_frozen_data) { 382 jbd2_free(tmp, bh_in->b_size); 383 goto repeat; 384 } 385 386 jh_in->b_frozen_data = tmp; 387 mapped_data = kmap_atomic(new_page); 388 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 389 kunmap_atomic(mapped_data); 390 391 new_page = virt_to_page(tmp); 392 new_offset = offset_in_page(tmp); 393 done_copy_out = 1; 394 395 /* 396 * This isn't strictly necessary, as we're using frozen 397 * data for the escaping, but it keeps consistency with 398 * b_frozen_data usage. 399 */ 400 jh_in->b_frozen_triggers = jh_in->b_triggers; 401 } 402 403 /* 404 * Did we need to do an escaping? Now we've done all the 405 * copying, we can finally do so. 406 */ 407 if (do_escape) { 408 mapped_data = kmap_atomic(new_page); 409 *((unsigned int *)(mapped_data + new_offset)) = 0; 410 kunmap_atomic(mapped_data); 411 } 412 413 set_bh_page(new_bh, new_page, new_offset); 414 new_jh->b_transaction = NULL; 415 new_bh->b_size = jh2bh(jh_in)->b_size; 416 new_bh->b_bdev = transaction->t_journal->j_dev; 417 new_bh->b_blocknr = blocknr; 418 set_buffer_mapped(new_bh); 419 set_buffer_dirty(new_bh); 420 421 *jh_out = new_jh; 422 423 /* 424 * The to-be-written buffer needs to get moved to the io queue, 425 * and the original buffer whose contents we are shadowing or 426 * copying is moved to the transaction's shadow queue. 427 */ 428 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 429 spin_lock(&journal->j_list_lock); 430 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 431 spin_unlock(&journal->j_list_lock); 432 jbd_unlock_bh_state(bh_in); 433 434 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 435 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 436 437 return do_escape | (done_copy_out << 1); 438 } 439 440 /* 441 * Allocation code for the journal file. Manage the space left in the 442 * journal, so that we can begin checkpointing when appropriate. 443 */ 444 445 /* 446 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 447 * 448 * Called with the journal already locked. 449 * 450 * Called under j_state_lock 451 */ 452 453 int __jbd2_log_space_left(journal_t *journal) 454 { 455 int left = journal->j_free; 456 457 /* assert_spin_locked(&journal->j_state_lock); */ 458 459 /* 460 * Be pessimistic here about the number of those free blocks which 461 * might be required for log descriptor control blocks. 462 */ 463 464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 465 466 left -= MIN_LOG_RESERVED_BLOCKS; 467 468 if (left <= 0) 469 return 0; 470 left -= (left >> 3); 471 return left; 472 } 473 474 /* 475 * Called with j_state_lock locked for writing. 476 * Returns true if a transaction commit was started. 477 */ 478 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 479 { 480 /* 481 * The only transaction we can possibly wait upon is the 482 * currently running transaction (if it exists). Otherwise, 483 * the target tid must be an old one. 484 */ 485 if (journal->j_running_transaction && 486 journal->j_running_transaction->t_tid == target) { 487 /* 488 * We want a new commit: OK, mark the request and wakeup the 489 * commit thread. We do _not_ do the commit ourselves. 490 */ 491 492 journal->j_commit_request = target; 493 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 494 journal->j_commit_request, 495 journal->j_commit_sequence); 496 wake_up(&journal->j_wait_commit); 497 return 1; 498 } else if (!tid_geq(journal->j_commit_request, target)) 499 /* This should never happen, but if it does, preserve 500 the evidence before kjournald goes into a loop and 501 increments j_commit_sequence beyond all recognition. */ 502 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 503 journal->j_commit_request, 504 journal->j_commit_sequence, 505 target, journal->j_running_transaction ? 506 journal->j_running_transaction->t_tid : 0); 507 return 0; 508 } 509 510 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 511 { 512 int ret; 513 514 write_lock(&journal->j_state_lock); 515 ret = __jbd2_log_start_commit(journal, tid); 516 write_unlock(&journal->j_state_lock); 517 return ret; 518 } 519 520 /* 521 * Force and wait upon a commit if the calling process is not within 522 * transaction. This is used for forcing out undo-protected data which contains 523 * bitmaps, when the fs is running out of space. 524 * 525 * We can only force the running transaction if we don't have an active handle; 526 * otherwise, we will deadlock. 527 * 528 * Returns true if a transaction was started. 529 */ 530 int jbd2_journal_force_commit_nested(journal_t *journal) 531 { 532 transaction_t *transaction = NULL; 533 tid_t tid; 534 int need_to_start = 0; 535 536 read_lock(&journal->j_state_lock); 537 if (journal->j_running_transaction && !current->journal_info) { 538 transaction = journal->j_running_transaction; 539 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 540 need_to_start = 1; 541 } else if (journal->j_committing_transaction) 542 transaction = journal->j_committing_transaction; 543 544 if (!transaction) { 545 read_unlock(&journal->j_state_lock); 546 return 0; /* Nothing to retry */ 547 } 548 549 tid = transaction->t_tid; 550 read_unlock(&journal->j_state_lock); 551 if (need_to_start) 552 jbd2_log_start_commit(journal, tid); 553 jbd2_log_wait_commit(journal, tid); 554 return 1; 555 } 556 557 /* 558 * Start a commit of the current running transaction (if any). Returns true 559 * if a transaction is going to be committed (or is currently already 560 * committing), and fills its tid in at *ptid 561 */ 562 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 563 { 564 int ret = 0; 565 566 write_lock(&journal->j_state_lock); 567 if (journal->j_running_transaction) { 568 tid_t tid = journal->j_running_transaction->t_tid; 569 570 __jbd2_log_start_commit(journal, tid); 571 /* There's a running transaction and we've just made sure 572 * it's commit has been scheduled. */ 573 if (ptid) 574 *ptid = tid; 575 ret = 1; 576 } else if (journal->j_committing_transaction) { 577 /* 578 * If ext3_write_super() recently started a commit, then we 579 * have to wait for completion of that transaction 580 */ 581 if (ptid) 582 *ptid = journal->j_committing_transaction->t_tid; 583 ret = 1; 584 } 585 write_unlock(&journal->j_state_lock); 586 return ret; 587 } 588 589 /* 590 * Return 1 if a given transaction has not yet sent barrier request 591 * connected with a transaction commit. If 0 is returned, transaction 592 * may or may not have sent the barrier. Used to avoid sending barrier 593 * twice in common cases. 594 */ 595 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 596 { 597 int ret = 0; 598 transaction_t *commit_trans; 599 600 if (!(journal->j_flags & JBD2_BARRIER)) 601 return 0; 602 read_lock(&journal->j_state_lock); 603 /* Transaction already committed? */ 604 if (tid_geq(journal->j_commit_sequence, tid)) 605 goto out; 606 commit_trans = journal->j_committing_transaction; 607 if (!commit_trans || commit_trans->t_tid != tid) { 608 ret = 1; 609 goto out; 610 } 611 /* 612 * Transaction is being committed and we already proceeded to 613 * submitting a flush to fs partition? 614 */ 615 if (journal->j_fs_dev != journal->j_dev) { 616 if (!commit_trans->t_need_data_flush || 617 commit_trans->t_state >= T_COMMIT_DFLUSH) 618 goto out; 619 } else { 620 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 621 goto out; 622 } 623 ret = 1; 624 out: 625 read_unlock(&journal->j_state_lock); 626 return ret; 627 } 628 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 629 630 /* 631 * Wait for a specified commit to complete. 632 * The caller may not hold the journal lock. 633 */ 634 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 635 { 636 int err = 0; 637 638 read_lock(&journal->j_state_lock); 639 #ifdef CONFIG_JBD2_DEBUG 640 if (!tid_geq(journal->j_commit_request, tid)) { 641 printk(KERN_EMERG 642 "%s: error: j_commit_request=%d, tid=%d\n", 643 __func__, journal->j_commit_request, tid); 644 } 645 #endif 646 while (tid_gt(tid, journal->j_commit_sequence)) { 647 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 648 tid, journal->j_commit_sequence); 649 wake_up(&journal->j_wait_commit); 650 read_unlock(&journal->j_state_lock); 651 wait_event(journal->j_wait_done_commit, 652 !tid_gt(tid, journal->j_commit_sequence)); 653 read_lock(&journal->j_state_lock); 654 } 655 read_unlock(&journal->j_state_lock); 656 657 if (unlikely(is_journal_aborted(journal))) { 658 printk(KERN_EMERG "journal commit I/O error\n"); 659 err = -EIO; 660 } 661 return err; 662 } 663 664 /* 665 * Log buffer allocation routines: 666 */ 667 668 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 669 { 670 unsigned long blocknr; 671 672 write_lock(&journal->j_state_lock); 673 J_ASSERT(journal->j_free > 1); 674 675 blocknr = journal->j_head; 676 journal->j_head++; 677 journal->j_free--; 678 if (journal->j_head == journal->j_last) 679 journal->j_head = journal->j_first; 680 write_unlock(&journal->j_state_lock); 681 return jbd2_journal_bmap(journal, blocknr, retp); 682 } 683 684 /* 685 * Conversion of logical to physical block numbers for the journal 686 * 687 * On external journals the journal blocks are identity-mapped, so 688 * this is a no-op. If needed, we can use j_blk_offset - everything is 689 * ready. 690 */ 691 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 692 unsigned long long *retp) 693 { 694 int err = 0; 695 unsigned long long ret; 696 697 if (journal->j_inode) { 698 ret = bmap(journal->j_inode, blocknr); 699 if (ret) 700 *retp = ret; 701 else { 702 printk(KERN_ALERT "%s: journal block not found " 703 "at offset %lu on %s\n", 704 __func__, blocknr, journal->j_devname); 705 err = -EIO; 706 __journal_abort_soft(journal, err); 707 } 708 } else { 709 *retp = blocknr; /* +journal->j_blk_offset */ 710 } 711 return err; 712 } 713 714 /* 715 * We play buffer_head aliasing tricks to write data/metadata blocks to 716 * the journal without copying their contents, but for journal 717 * descriptor blocks we do need to generate bona fide buffers. 718 * 719 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 720 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 721 * But we don't bother doing that, so there will be coherency problems with 722 * mmaps of blockdevs which hold live JBD-controlled filesystems. 723 */ 724 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 725 { 726 struct buffer_head *bh; 727 unsigned long long blocknr; 728 int err; 729 730 err = jbd2_journal_next_log_block(journal, &blocknr); 731 732 if (err) 733 return NULL; 734 735 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 736 if (!bh) 737 return NULL; 738 lock_buffer(bh); 739 memset(bh->b_data, 0, journal->j_blocksize); 740 set_buffer_uptodate(bh); 741 unlock_buffer(bh); 742 BUFFER_TRACE(bh, "return this buffer"); 743 return jbd2_journal_add_journal_head(bh); 744 } 745 746 /* 747 * Return tid of the oldest transaction in the journal and block in the journal 748 * where the transaction starts. 749 * 750 * If the journal is now empty, return which will be the next transaction ID 751 * we will write and where will that transaction start. 752 * 753 * The return value is 0 if journal tail cannot be pushed any further, 1 if 754 * it can. 755 */ 756 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 757 unsigned long *block) 758 { 759 transaction_t *transaction; 760 int ret; 761 762 read_lock(&journal->j_state_lock); 763 spin_lock(&journal->j_list_lock); 764 transaction = journal->j_checkpoint_transactions; 765 if (transaction) { 766 *tid = transaction->t_tid; 767 *block = transaction->t_log_start; 768 } else if ((transaction = journal->j_committing_transaction) != NULL) { 769 *tid = transaction->t_tid; 770 *block = transaction->t_log_start; 771 } else if ((transaction = journal->j_running_transaction) != NULL) { 772 *tid = transaction->t_tid; 773 *block = journal->j_head; 774 } else { 775 *tid = journal->j_transaction_sequence; 776 *block = journal->j_head; 777 } 778 ret = tid_gt(*tid, journal->j_tail_sequence); 779 spin_unlock(&journal->j_list_lock); 780 read_unlock(&journal->j_state_lock); 781 782 return ret; 783 } 784 785 /* 786 * Update information in journal structure and in on disk journal superblock 787 * about log tail. This function does not check whether information passed in 788 * really pushes log tail further. It's responsibility of the caller to make 789 * sure provided log tail information is valid (e.g. by holding 790 * j_checkpoint_mutex all the time between computing log tail and calling this 791 * function as is the case with jbd2_cleanup_journal_tail()). 792 * 793 * Requires j_checkpoint_mutex 794 */ 795 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 796 { 797 unsigned long freed; 798 799 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 800 801 /* 802 * We cannot afford for write to remain in drive's caches since as 803 * soon as we update j_tail, next transaction can start reusing journal 804 * space and if we lose sb update during power failure we'd replay 805 * old transaction with possibly newly overwritten data. 806 */ 807 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 808 write_lock(&journal->j_state_lock); 809 freed = block - journal->j_tail; 810 if (block < journal->j_tail) 811 freed += journal->j_last - journal->j_first; 812 813 trace_jbd2_update_log_tail(journal, tid, block, freed); 814 jbd_debug(1, 815 "Cleaning journal tail from %d to %d (offset %lu), " 816 "freeing %lu\n", 817 journal->j_tail_sequence, tid, block, freed); 818 819 journal->j_free += freed; 820 journal->j_tail_sequence = tid; 821 journal->j_tail = block; 822 write_unlock(&journal->j_state_lock); 823 } 824 825 /* 826 * This is a variaon of __jbd2_update_log_tail which checks for validity of 827 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 828 * with other threads updating log tail. 829 */ 830 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 831 { 832 mutex_lock(&journal->j_checkpoint_mutex); 833 if (tid_gt(tid, journal->j_tail_sequence)) 834 __jbd2_update_log_tail(journal, tid, block); 835 mutex_unlock(&journal->j_checkpoint_mutex); 836 } 837 838 struct jbd2_stats_proc_session { 839 journal_t *journal; 840 struct transaction_stats_s *stats; 841 int start; 842 int max; 843 }; 844 845 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 846 { 847 return *pos ? NULL : SEQ_START_TOKEN; 848 } 849 850 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 851 { 852 return NULL; 853 } 854 855 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 856 { 857 struct jbd2_stats_proc_session *s = seq->private; 858 859 if (v != SEQ_START_TOKEN) 860 return 0; 861 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 862 s->stats->ts_tid, 863 s->journal->j_max_transaction_buffers); 864 if (s->stats->ts_tid == 0) 865 return 0; 866 seq_printf(seq, "average: \n %ums waiting for transaction\n", 867 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 868 seq_printf(seq, " %ums running transaction\n", 869 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 870 seq_printf(seq, " %ums transaction was being locked\n", 871 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 872 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 873 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 874 seq_printf(seq, " %ums logging transaction\n", 875 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 876 seq_printf(seq, " %lluus average transaction commit time\n", 877 div_u64(s->journal->j_average_commit_time, 1000)); 878 seq_printf(seq, " %lu handles per transaction\n", 879 s->stats->run.rs_handle_count / s->stats->ts_tid); 880 seq_printf(seq, " %lu blocks per transaction\n", 881 s->stats->run.rs_blocks / s->stats->ts_tid); 882 seq_printf(seq, " %lu logged blocks per transaction\n", 883 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 884 return 0; 885 } 886 887 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 888 { 889 } 890 891 static const struct seq_operations jbd2_seq_info_ops = { 892 .start = jbd2_seq_info_start, 893 .next = jbd2_seq_info_next, 894 .stop = jbd2_seq_info_stop, 895 .show = jbd2_seq_info_show, 896 }; 897 898 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 899 { 900 journal_t *journal = PDE(inode)->data; 901 struct jbd2_stats_proc_session *s; 902 int rc, size; 903 904 s = kmalloc(sizeof(*s), GFP_KERNEL); 905 if (s == NULL) 906 return -ENOMEM; 907 size = sizeof(struct transaction_stats_s); 908 s->stats = kmalloc(size, GFP_KERNEL); 909 if (s->stats == NULL) { 910 kfree(s); 911 return -ENOMEM; 912 } 913 spin_lock(&journal->j_history_lock); 914 memcpy(s->stats, &journal->j_stats, size); 915 s->journal = journal; 916 spin_unlock(&journal->j_history_lock); 917 918 rc = seq_open(file, &jbd2_seq_info_ops); 919 if (rc == 0) { 920 struct seq_file *m = file->private_data; 921 m->private = s; 922 } else { 923 kfree(s->stats); 924 kfree(s); 925 } 926 return rc; 927 928 } 929 930 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 931 { 932 struct seq_file *seq = file->private_data; 933 struct jbd2_stats_proc_session *s = seq->private; 934 kfree(s->stats); 935 kfree(s); 936 return seq_release(inode, file); 937 } 938 939 static const struct file_operations jbd2_seq_info_fops = { 940 .owner = THIS_MODULE, 941 .open = jbd2_seq_info_open, 942 .read = seq_read, 943 .llseek = seq_lseek, 944 .release = jbd2_seq_info_release, 945 }; 946 947 static struct proc_dir_entry *proc_jbd2_stats; 948 949 static void jbd2_stats_proc_init(journal_t *journal) 950 { 951 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 952 if (journal->j_proc_entry) { 953 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 954 &jbd2_seq_info_fops, journal); 955 } 956 } 957 958 static void jbd2_stats_proc_exit(journal_t *journal) 959 { 960 remove_proc_entry("info", journal->j_proc_entry); 961 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 962 } 963 964 /* 965 * Management for journal control blocks: functions to create and 966 * destroy journal_t structures, and to initialise and read existing 967 * journal blocks from disk. */ 968 969 /* First: create and setup a journal_t object in memory. We initialise 970 * very few fields yet: that has to wait until we have created the 971 * journal structures from from scratch, or loaded them from disk. */ 972 973 static journal_t * journal_init_common (void) 974 { 975 journal_t *journal; 976 int err; 977 978 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 979 if (!journal) 980 return NULL; 981 982 init_waitqueue_head(&journal->j_wait_transaction_locked); 983 init_waitqueue_head(&journal->j_wait_logspace); 984 init_waitqueue_head(&journal->j_wait_done_commit); 985 init_waitqueue_head(&journal->j_wait_checkpoint); 986 init_waitqueue_head(&journal->j_wait_commit); 987 init_waitqueue_head(&journal->j_wait_updates); 988 mutex_init(&journal->j_barrier); 989 mutex_init(&journal->j_checkpoint_mutex); 990 spin_lock_init(&journal->j_revoke_lock); 991 spin_lock_init(&journal->j_list_lock); 992 rwlock_init(&journal->j_state_lock); 993 994 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 995 journal->j_min_batch_time = 0; 996 journal->j_max_batch_time = 15000; /* 15ms */ 997 998 /* The journal is marked for error until we succeed with recovery! */ 999 journal->j_flags = JBD2_ABORT; 1000 1001 /* Set up a default-sized revoke table for the new mount. */ 1002 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1003 if (err) { 1004 kfree(journal); 1005 return NULL; 1006 } 1007 1008 spin_lock_init(&journal->j_history_lock); 1009 1010 return journal; 1011 } 1012 1013 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1014 * 1015 * Create a journal structure assigned some fixed set of disk blocks to 1016 * the journal. We don't actually touch those disk blocks yet, but we 1017 * need to set up all of the mapping information to tell the journaling 1018 * system where the journal blocks are. 1019 * 1020 */ 1021 1022 /** 1023 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1024 * @bdev: Block device on which to create the journal 1025 * @fs_dev: Device which hold journalled filesystem for this journal. 1026 * @start: Block nr Start of journal. 1027 * @len: Length of the journal in blocks. 1028 * @blocksize: blocksize of journalling device 1029 * 1030 * Returns: a newly created journal_t * 1031 * 1032 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1033 * range of blocks on an arbitrary block device. 1034 * 1035 */ 1036 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1037 struct block_device *fs_dev, 1038 unsigned long long start, int len, int blocksize) 1039 { 1040 journal_t *journal = journal_init_common(); 1041 struct buffer_head *bh; 1042 char *p; 1043 int n; 1044 1045 if (!journal) 1046 return NULL; 1047 1048 /* journal descriptor can store up to n blocks -bzzz */ 1049 journal->j_blocksize = blocksize; 1050 journal->j_dev = bdev; 1051 journal->j_fs_dev = fs_dev; 1052 journal->j_blk_offset = start; 1053 journal->j_maxlen = len; 1054 bdevname(journal->j_dev, journal->j_devname); 1055 p = journal->j_devname; 1056 while ((p = strchr(p, '/'))) 1057 *p = '!'; 1058 jbd2_stats_proc_init(journal); 1059 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1060 journal->j_wbufsize = n; 1061 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1062 if (!journal->j_wbuf) { 1063 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1064 __func__); 1065 goto out_err; 1066 } 1067 1068 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1069 if (!bh) { 1070 printk(KERN_ERR 1071 "%s: Cannot get buffer for journal superblock\n", 1072 __func__); 1073 goto out_err; 1074 } 1075 journal->j_sb_buffer = bh; 1076 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1077 1078 return journal; 1079 out_err: 1080 kfree(journal->j_wbuf); 1081 jbd2_stats_proc_exit(journal); 1082 kfree(journal); 1083 return NULL; 1084 } 1085 1086 /** 1087 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1088 * @inode: An inode to create the journal in 1089 * 1090 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1091 * the journal. The inode must exist already, must support bmap() and 1092 * must have all data blocks preallocated. 1093 */ 1094 journal_t * jbd2_journal_init_inode (struct inode *inode) 1095 { 1096 struct buffer_head *bh; 1097 journal_t *journal = journal_init_common(); 1098 char *p; 1099 int err; 1100 int n; 1101 unsigned long long blocknr; 1102 1103 if (!journal) 1104 return NULL; 1105 1106 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1107 journal->j_inode = inode; 1108 bdevname(journal->j_dev, journal->j_devname); 1109 p = journal->j_devname; 1110 while ((p = strchr(p, '/'))) 1111 *p = '!'; 1112 p = journal->j_devname + strlen(journal->j_devname); 1113 sprintf(p, "-%lu", journal->j_inode->i_ino); 1114 jbd_debug(1, 1115 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1116 journal, inode->i_sb->s_id, inode->i_ino, 1117 (long long) inode->i_size, 1118 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1119 1120 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1121 journal->j_blocksize = inode->i_sb->s_blocksize; 1122 jbd2_stats_proc_init(journal); 1123 1124 /* journal descriptor can store up to n blocks -bzzz */ 1125 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1126 journal->j_wbufsize = n; 1127 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1128 if (!journal->j_wbuf) { 1129 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1130 __func__); 1131 goto out_err; 1132 } 1133 1134 err = jbd2_journal_bmap(journal, 0, &blocknr); 1135 /* If that failed, give up */ 1136 if (err) { 1137 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1138 __func__); 1139 goto out_err; 1140 } 1141 1142 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1143 if (!bh) { 1144 printk(KERN_ERR 1145 "%s: Cannot get buffer for journal superblock\n", 1146 __func__); 1147 goto out_err; 1148 } 1149 journal->j_sb_buffer = bh; 1150 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1151 1152 return journal; 1153 out_err: 1154 kfree(journal->j_wbuf); 1155 jbd2_stats_proc_exit(journal); 1156 kfree(journal); 1157 return NULL; 1158 } 1159 1160 /* 1161 * If the journal init or create aborts, we need to mark the journal 1162 * superblock as being NULL to prevent the journal destroy from writing 1163 * back a bogus superblock. 1164 */ 1165 static void journal_fail_superblock (journal_t *journal) 1166 { 1167 struct buffer_head *bh = journal->j_sb_buffer; 1168 brelse(bh); 1169 journal->j_sb_buffer = NULL; 1170 } 1171 1172 /* 1173 * Given a journal_t structure, initialise the various fields for 1174 * startup of a new journaling session. We use this both when creating 1175 * a journal, and after recovering an old journal to reset it for 1176 * subsequent use. 1177 */ 1178 1179 static int journal_reset(journal_t *journal) 1180 { 1181 journal_superblock_t *sb = journal->j_superblock; 1182 unsigned long long first, last; 1183 1184 first = be32_to_cpu(sb->s_first); 1185 last = be32_to_cpu(sb->s_maxlen); 1186 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1187 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1188 first, last); 1189 journal_fail_superblock(journal); 1190 return -EINVAL; 1191 } 1192 1193 journal->j_first = first; 1194 journal->j_last = last; 1195 1196 journal->j_head = first; 1197 journal->j_tail = first; 1198 journal->j_free = last - first; 1199 1200 journal->j_tail_sequence = journal->j_transaction_sequence; 1201 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1202 journal->j_commit_request = journal->j_commit_sequence; 1203 1204 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1205 1206 /* 1207 * As a special case, if the on-disk copy is already marked as needing 1208 * no recovery (s_start == 0), then we can safely defer the superblock 1209 * update until the next commit by setting JBD2_FLUSHED. This avoids 1210 * attempting a write to a potential-readonly device. 1211 */ 1212 if (sb->s_start == 0) { 1213 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1214 "(start %ld, seq %d, errno %d)\n", 1215 journal->j_tail, journal->j_tail_sequence, 1216 journal->j_errno); 1217 journal->j_flags |= JBD2_FLUSHED; 1218 } else { 1219 /* Lock here to make assertions happy... */ 1220 mutex_lock(&journal->j_checkpoint_mutex); 1221 /* 1222 * Update log tail information. We use WRITE_FUA since new 1223 * transaction will start reusing journal space and so we 1224 * must make sure information about current log tail is on 1225 * disk before that. 1226 */ 1227 jbd2_journal_update_sb_log_tail(journal, 1228 journal->j_tail_sequence, 1229 journal->j_tail, 1230 WRITE_FUA); 1231 mutex_unlock(&journal->j_checkpoint_mutex); 1232 } 1233 return jbd2_journal_start_thread(journal); 1234 } 1235 1236 static void jbd2_write_superblock(journal_t *journal, int write_op) 1237 { 1238 struct buffer_head *bh = journal->j_sb_buffer; 1239 int ret; 1240 1241 trace_jbd2_write_superblock(journal, write_op); 1242 if (!(journal->j_flags & JBD2_BARRIER)) 1243 write_op &= ~(REQ_FUA | REQ_FLUSH); 1244 lock_buffer(bh); 1245 if (buffer_write_io_error(bh)) { 1246 /* 1247 * Oh, dear. A previous attempt to write the journal 1248 * superblock failed. This could happen because the 1249 * USB device was yanked out. Or it could happen to 1250 * be a transient write error and maybe the block will 1251 * be remapped. Nothing we can do but to retry the 1252 * write and hope for the best. 1253 */ 1254 printk(KERN_ERR "JBD2: previous I/O error detected " 1255 "for journal superblock update for %s.\n", 1256 journal->j_devname); 1257 clear_buffer_write_io_error(bh); 1258 set_buffer_uptodate(bh); 1259 } 1260 get_bh(bh); 1261 bh->b_end_io = end_buffer_write_sync; 1262 ret = submit_bh(write_op, bh); 1263 wait_on_buffer(bh); 1264 if (buffer_write_io_error(bh)) { 1265 clear_buffer_write_io_error(bh); 1266 set_buffer_uptodate(bh); 1267 ret = -EIO; 1268 } 1269 if (ret) { 1270 printk(KERN_ERR "JBD2: Error %d detected when updating " 1271 "journal superblock for %s.\n", ret, 1272 journal->j_devname); 1273 } 1274 } 1275 1276 /** 1277 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1278 * @journal: The journal to update. 1279 * @tail_tid: TID of the new transaction at the tail of the log 1280 * @tail_block: The first block of the transaction at the tail of the log 1281 * @write_op: With which operation should we write the journal sb 1282 * 1283 * Update a journal's superblock information about log tail and write it to 1284 * disk, waiting for the IO to complete. 1285 */ 1286 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1287 unsigned long tail_block, int write_op) 1288 { 1289 journal_superblock_t *sb = journal->j_superblock; 1290 1291 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1292 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1293 tail_block, tail_tid); 1294 1295 sb->s_sequence = cpu_to_be32(tail_tid); 1296 sb->s_start = cpu_to_be32(tail_block); 1297 1298 jbd2_write_superblock(journal, write_op); 1299 1300 /* Log is no longer empty */ 1301 write_lock(&journal->j_state_lock); 1302 WARN_ON(!sb->s_sequence); 1303 journal->j_flags &= ~JBD2_FLUSHED; 1304 write_unlock(&journal->j_state_lock); 1305 } 1306 1307 /** 1308 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1309 * @journal: The journal to update. 1310 * 1311 * Update a journal's dynamic superblock fields to show that journal is empty. 1312 * Write updated superblock to disk waiting for IO to complete. 1313 */ 1314 static void jbd2_mark_journal_empty(journal_t *journal) 1315 { 1316 journal_superblock_t *sb = journal->j_superblock; 1317 1318 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1319 read_lock(&journal->j_state_lock); 1320 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1321 journal->j_tail_sequence); 1322 1323 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1324 sb->s_start = cpu_to_be32(0); 1325 read_unlock(&journal->j_state_lock); 1326 1327 jbd2_write_superblock(journal, WRITE_FUA); 1328 1329 /* Log is no longer empty */ 1330 write_lock(&journal->j_state_lock); 1331 journal->j_flags |= JBD2_FLUSHED; 1332 write_unlock(&journal->j_state_lock); 1333 } 1334 1335 1336 /** 1337 * jbd2_journal_update_sb_errno() - Update error in the journal. 1338 * @journal: The journal to update. 1339 * 1340 * Update a journal's errno. Write updated superblock to disk waiting for IO 1341 * to complete. 1342 */ 1343 static void jbd2_journal_update_sb_errno(journal_t *journal) 1344 { 1345 journal_superblock_t *sb = journal->j_superblock; 1346 1347 read_lock(&journal->j_state_lock); 1348 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1349 journal->j_errno); 1350 sb->s_errno = cpu_to_be32(journal->j_errno); 1351 read_unlock(&journal->j_state_lock); 1352 1353 jbd2_write_superblock(journal, WRITE_SYNC); 1354 } 1355 1356 /* 1357 * Read the superblock for a given journal, performing initial 1358 * validation of the format. 1359 */ 1360 static int journal_get_superblock(journal_t *journal) 1361 { 1362 struct buffer_head *bh; 1363 journal_superblock_t *sb; 1364 int err = -EIO; 1365 1366 bh = journal->j_sb_buffer; 1367 1368 J_ASSERT(bh != NULL); 1369 if (!buffer_uptodate(bh)) { 1370 ll_rw_block(READ, 1, &bh); 1371 wait_on_buffer(bh); 1372 if (!buffer_uptodate(bh)) { 1373 printk(KERN_ERR 1374 "JBD2: IO error reading journal superblock\n"); 1375 goto out; 1376 } 1377 } 1378 1379 sb = journal->j_superblock; 1380 1381 err = -EINVAL; 1382 1383 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1384 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1385 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1386 goto out; 1387 } 1388 1389 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1390 case JBD2_SUPERBLOCK_V1: 1391 journal->j_format_version = 1; 1392 break; 1393 case JBD2_SUPERBLOCK_V2: 1394 journal->j_format_version = 2; 1395 break; 1396 default: 1397 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1398 goto out; 1399 } 1400 1401 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1402 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1403 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1404 printk(KERN_WARNING "JBD2: journal file too short\n"); 1405 goto out; 1406 } 1407 1408 if (be32_to_cpu(sb->s_first) == 0 || 1409 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1410 printk(KERN_WARNING 1411 "JBD2: Invalid start block of journal: %u\n", 1412 be32_to_cpu(sb->s_first)); 1413 goto out; 1414 } 1415 1416 return 0; 1417 1418 out: 1419 journal_fail_superblock(journal); 1420 return err; 1421 } 1422 1423 /* 1424 * Load the on-disk journal superblock and read the key fields into the 1425 * journal_t. 1426 */ 1427 1428 static int load_superblock(journal_t *journal) 1429 { 1430 int err; 1431 journal_superblock_t *sb; 1432 1433 err = journal_get_superblock(journal); 1434 if (err) 1435 return err; 1436 1437 sb = journal->j_superblock; 1438 1439 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1440 journal->j_tail = be32_to_cpu(sb->s_start); 1441 journal->j_first = be32_to_cpu(sb->s_first); 1442 journal->j_last = be32_to_cpu(sb->s_maxlen); 1443 journal->j_errno = be32_to_cpu(sb->s_errno); 1444 1445 return 0; 1446 } 1447 1448 1449 /** 1450 * int jbd2_journal_load() - Read journal from disk. 1451 * @journal: Journal to act on. 1452 * 1453 * Given a journal_t structure which tells us which disk blocks contain 1454 * a journal, read the journal from disk to initialise the in-memory 1455 * structures. 1456 */ 1457 int jbd2_journal_load(journal_t *journal) 1458 { 1459 int err; 1460 journal_superblock_t *sb; 1461 1462 err = load_superblock(journal); 1463 if (err) 1464 return err; 1465 1466 sb = journal->j_superblock; 1467 /* If this is a V2 superblock, then we have to check the 1468 * features flags on it. */ 1469 1470 if (journal->j_format_version >= 2) { 1471 if ((sb->s_feature_ro_compat & 1472 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1473 (sb->s_feature_incompat & 1474 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1475 printk(KERN_WARNING 1476 "JBD2: Unrecognised features on journal\n"); 1477 return -EINVAL; 1478 } 1479 } 1480 1481 /* 1482 * Create a slab for this blocksize 1483 */ 1484 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1485 if (err) 1486 return err; 1487 1488 /* Let the recovery code check whether it needs to recover any 1489 * data from the journal. */ 1490 if (jbd2_journal_recover(journal)) 1491 goto recovery_error; 1492 1493 if (journal->j_failed_commit) { 1494 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1495 "is corrupt.\n", journal->j_failed_commit, 1496 journal->j_devname); 1497 return -EIO; 1498 } 1499 1500 /* OK, we've finished with the dynamic journal bits: 1501 * reinitialise the dynamic contents of the superblock in memory 1502 * and reset them on disk. */ 1503 if (journal_reset(journal)) 1504 goto recovery_error; 1505 1506 journal->j_flags &= ~JBD2_ABORT; 1507 journal->j_flags |= JBD2_LOADED; 1508 return 0; 1509 1510 recovery_error: 1511 printk(KERN_WARNING "JBD2: recovery failed\n"); 1512 return -EIO; 1513 } 1514 1515 /** 1516 * void jbd2_journal_destroy() - Release a journal_t structure. 1517 * @journal: Journal to act on. 1518 * 1519 * Release a journal_t structure once it is no longer in use by the 1520 * journaled object. 1521 * Return <0 if we couldn't clean up the journal. 1522 */ 1523 int jbd2_journal_destroy(journal_t *journal) 1524 { 1525 int err = 0; 1526 1527 /* Wait for the commit thread to wake up and die. */ 1528 journal_kill_thread(journal); 1529 1530 /* Force a final log commit */ 1531 if (journal->j_running_transaction) 1532 jbd2_journal_commit_transaction(journal); 1533 1534 /* Force any old transactions to disk */ 1535 1536 /* Totally anal locking here... */ 1537 spin_lock(&journal->j_list_lock); 1538 while (journal->j_checkpoint_transactions != NULL) { 1539 spin_unlock(&journal->j_list_lock); 1540 mutex_lock(&journal->j_checkpoint_mutex); 1541 jbd2_log_do_checkpoint(journal); 1542 mutex_unlock(&journal->j_checkpoint_mutex); 1543 spin_lock(&journal->j_list_lock); 1544 } 1545 1546 J_ASSERT(journal->j_running_transaction == NULL); 1547 J_ASSERT(journal->j_committing_transaction == NULL); 1548 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1549 spin_unlock(&journal->j_list_lock); 1550 1551 if (journal->j_sb_buffer) { 1552 if (!is_journal_aborted(journal)) { 1553 mutex_lock(&journal->j_checkpoint_mutex); 1554 jbd2_mark_journal_empty(journal); 1555 mutex_unlock(&journal->j_checkpoint_mutex); 1556 } else 1557 err = -EIO; 1558 brelse(journal->j_sb_buffer); 1559 } 1560 1561 if (journal->j_proc_entry) 1562 jbd2_stats_proc_exit(journal); 1563 if (journal->j_inode) 1564 iput(journal->j_inode); 1565 if (journal->j_revoke) 1566 jbd2_journal_destroy_revoke(journal); 1567 kfree(journal->j_wbuf); 1568 kfree(journal); 1569 1570 return err; 1571 } 1572 1573 1574 /** 1575 *int jbd2_journal_check_used_features () - Check if features specified are used. 1576 * @journal: Journal to check. 1577 * @compat: bitmask of compatible features 1578 * @ro: bitmask of features that force read-only mount 1579 * @incompat: bitmask of incompatible features 1580 * 1581 * Check whether the journal uses all of a given set of 1582 * features. Return true (non-zero) if it does. 1583 **/ 1584 1585 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1586 unsigned long ro, unsigned long incompat) 1587 { 1588 journal_superblock_t *sb; 1589 1590 if (!compat && !ro && !incompat) 1591 return 1; 1592 /* Load journal superblock if it is not loaded yet. */ 1593 if (journal->j_format_version == 0 && 1594 journal_get_superblock(journal) != 0) 1595 return 0; 1596 if (journal->j_format_version == 1) 1597 return 0; 1598 1599 sb = journal->j_superblock; 1600 1601 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1602 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1603 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1604 return 1; 1605 1606 return 0; 1607 } 1608 1609 /** 1610 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1611 * @journal: Journal to check. 1612 * @compat: bitmask of compatible features 1613 * @ro: bitmask of features that force read-only mount 1614 * @incompat: bitmask of incompatible features 1615 * 1616 * Check whether the journaling code supports the use of 1617 * all of a given set of features on this journal. Return true 1618 * (non-zero) if it can. */ 1619 1620 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1621 unsigned long ro, unsigned long incompat) 1622 { 1623 if (!compat && !ro && !incompat) 1624 return 1; 1625 1626 /* We can support any known requested features iff the 1627 * superblock is in version 2. Otherwise we fail to support any 1628 * extended sb features. */ 1629 1630 if (journal->j_format_version != 2) 1631 return 0; 1632 1633 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1634 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1635 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1636 return 1; 1637 1638 return 0; 1639 } 1640 1641 /** 1642 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1643 * @journal: Journal to act on. 1644 * @compat: bitmask of compatible features 1645 * @ro: bitmask of features that force read-only mount 1646 * @incompat: bitmask of incompatible features 1647 * 1648 * Mark a given journal feature as present on the 1649 * superblock. Returns true if the requested features could be set. 1650 * 1651 */ 1652 1653 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1654 unsigned long ro, unsigned long incompat) 1655 { 1656 journal_superblock_t *sb; 1657 1658 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1659 return 1; 1660 1661 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1662 return 0; 1663 1664 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1665 compat, ro, incompat); 1666 1667 sb = journal->j_superblock; 1668 1669 sb->s_feature_compat |= cpu_to_be32(compat); 1670 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1671 sb->s_feature_incompat |= cpu_to_be32(incompat); 1672 1673 return 1; 1674 } 1675 1676 /* 1677 * jbd2_journal_clear_features () - Clear a given journal feature in the 1678 * superblock 1679 * @journal: Journal to act on. 1680 * @compat: bitmask of compatible features 1681 * @ro: bitmask of features that force read-only mount 1682 * @incompat: bitmask of incompatible features 1683 * 1684 * Clear a given journal feature as present on the 1685 * superblock. 1686 */ 1687 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1688 unsigned long ro, unsigned long incompat) 1689 { 1690 journal_superblock_t *sb; 1691 1692 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1693 compat, ro, incompat); 1694 1695 sb = journal->j_superblock; 1696 1697 sb->s_feature_compat &= ~cpu_to_be32(compat); 1698 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1699 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1700 } 1701 EXPORT_SYMBOL(jbd2_journal_clear_features); 1702 1703 /** 1704 * int jbd2_journal_flush () - Flush journal 1705 * @journal: Journal to act on. 1706 * 1707 * Flush all data for a given journal to disk and empty the journal. 1708 * Filesystems can use this when remounting readonly to ensure that 1709 * recovery does not need to happen on remount. 1710 */ 1711 1712 int jbd2_journal_flush(journal_t *journal) 1713 { 1714 int err = 0; 1715 transaction_t *transaction = NULL; 1716 1717 write_lock(&journal->j_state_lock); 1718 1719 /* Force everything buffered to the log... */ 1720 if (journal->j_running_transaction) { 1721 transaction = journal->j_running_transaction; 1722 __jbd2_log_start_commit(journal, transaction->t_tid); 1723 } else if (journal->j_committing_transaction) 1724 transaction = journal->j_committing_transaction; 1725 1726 /* Wait for the log commit to complete... */ 1727 if (transaction) { 1728 tid_t tid = transaction->t_tid; 1729 1730 write_unlock(&journal->j_state_lock); 1731 jbd2_log_wait_commit(journal, tid); 1732 } else { 1733 write_unlock(&journal->j_state_lock); 1734 } 1735 1736 /* ...and flush everything in the log out to disk. */ 1737 spin_lock(&journal->j_list_lock); 1738 while (!err && journal->j_checkpoint_transactions != NULL) { 1739 spin_unlock(&journal->j_list_lock); 1740 mutex_lock(&journal->j_checkpoint_mutex); 1741 err = jbd2_log_do_checkpoint(journal); 1742 mutex_unlock(&journal->j_checkpoint_mutex); 1743 spin_lock(&journal->j_list_lock); 1744 } 1745 spin_unlock(&journal->j_list_lock); 1746 1747 if (is_journal_aborted(journal)) 1748 return -EIO; 1749 1750 mutex_lock(&journal->j_checkpoint_mutex); 1751 jbd2_cleanup_journal_tail(journal); 1752 1753 /* Finally, mark the journal as really needing no recovery. 1754 * This sets s_start==0 in the underlying superblock, which is 1755 * the magic code for a fully-recovered superblock. Any future 1756 * commits of data to the journal will restore the current 1757 * s_start value. */ 1758 jbd2_mark_journal_empty(journal); 1759 mutex_unlock(&journal->j_checkpoint_mutex); 1760 write_lock(&journal->j_state_lock); 1761 J_ASSERT(!journal->j_running_transaction); 1762 J_ASSERT(!journal->j_committing_transaction); 1763 J_ASSERT(!journal->j_checkpoint_transactions); 1764 J_ASSERT(journal->j_head == journal->j_tail); 1765 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1766 write_unlock(&journal->j_state_lock); 1767 return 0; 1768 } 1769 1770 /** 1771 * int jbd2_journal_wipe() - Wipe journal contents 1772 * @journal: Journal to act on. 1773 * @write: flag (see below) 1774 * 1775 * Wipe out all of the contents of a journal, safely. This will produce 1776 * a warning if the journal contains any valid recovery information. 1777 * Must be called between journal_init_*() and jbd2_journal_load(). 1778 * 1779 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1780 * we merely suppress recovery. 1781 */ 1782 1783 int jbd2_journal_wipe(journal_t *journal, int write) 1784 { 1785 int err = 0; 1786 1787 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1788 1789 err = load_superblock(journal); 1790 if (err) 1791 return err; 1792 1793 if (!journal->j_tail) 1794 goto no_recovery; 1795 1796 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1797 write ? "Clearing" : "Ignoring"); 1798 1799 err = jbd2_journal_skip_recovery(journal); 1800 if (write) { 1801 /* Lock to make assertions happy... */ 1802 mutex_lock(&journal->j_checkpoint_mutex); 1803 jbd2_mark_journal_empty(journal); 1804 mutex_unlock(&journal->j_checkpoint_mutex); 1805 } 1806 1807 no_recovery: 1808 return err; 1809 } 1810 1811 /* 1812 * Journal abort has very specific semantics, which we describe 1813 * for journal abort. 1814 * 1815 * Two internal functions, which provide abort to the jbd layer 1816 * itself are here. 1817 */ 1818 1819 /* 1820 * Quick version for internal journal use (doesn't lock the journal). 1821 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1822 * and don't attempt to make any other journal updates. 1823 */ 1824 void __jbd2_journal_abort_hard(journal_t *journal) 1825 { 1826 transaction_t *transaction; 1827 1828 if (journal->j_flags & JBD2_ABORT) 1829 return; 1830 1831 printk(KERN_ERR "Aborting journal on device %s.\n", 1832 journal->j_devname); 1833 1834 write_lock(&journal->j_state_lock); 1835 journal->j_flags |= JBD2_ABORT; 1836 transaction = journal->j_running_transaction; 1837 if (transaction) 1838 __jbd2_log_start_commit(journal, transaction->t_tid); 1839 write_unlock(&journal->j_state_lock); 1840 } 1841 1842 /* Soft abort: record the abort error status in the journal superblock, 1843 * but don't do any other IO. */ 1844 static void __journal_abort_soft (journal_t *journal, int errno) 1845 { 1846 if (journal->j_flags & JBD2_ABORT) 1847 return; 1848 1849 if (!journal->j_errno) 1850 journal->j_errno = errno; 1851 1852 __jbd2_journal_abort_hard(journal); 1853 1854 if (errno) 1855 jbd2_journal_update_sb_errno(journal); 1856 } 1857 1858 /** 1859 * void jbd2_journal_abort () - Shutdown the journal immediately. 1860 * @journal: the journal to shutdown. 1861 * @errno: an error number to record in the journal indicating 1862 * the reason for the shutdown. 1863 * 1864 * Perform a complete, immediate shutdown of the ENTIRE 1865 * journal (not of a single transaction). This operation cannot be 1866 * undone without closing and reopening the journal. 1867 * 1868 * The jbd2_journal_abort function is intended to support higher level error 1869 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1870 * mode. 1871 * 1872 * Journal abort has very specific semantics. Any existing dirty, 1873 * unjournaled buffers in the main filesystem will still be written to 1874 * disk by bdflush, but the journaling mechanism will be suspended 1875 * immediately and no further transaction commits will be honoured. 1876 * 1877 * Any dirty, journaled buffers will be written back to disk without 1878 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1879 * filesystem, but we _do_ attempt to leave as much data as possible 1880 * behind for fsck to use for cleanup. 1881 * 1882 * Any attempt to get a new transaction handle on a journal which is in 1883 * ABORT state will just result in an -EROFS error return. A 1884 * jbd2_journal_stop on an existing handle will return -EIO if we have 1885 * entered abort state during the update. 1886 * 1887 * Recursive transactions are not disturbed by journal abort until the 1888 * final jbd2_journal_stop, which will receive the -EIO error. 1889 * 1890 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1891 * which will be recorded (if possible) in the journal superblock. This 1892 * allows a client to record failure conditions in the middle of a 1893 * transaction without having to complete the transaction to record the 1894 * failure to disk. ext3_error, for example, now uses this 1895 * functionality. 1896 * 1897 * Errors which originate from within the journaling layer will NOT 1898 * supply an errno; a null errno implies that absolutely no further 1899 * writes are done to the journal (unless there are any already in 1900 * progress). 1901 * 1902 */ 1903 1904 void jbd2_journal_abort(journal_t *journal, int errno) 1905 { 1906 __journal_abort_soft(journal, errno); 1907 } 1908 1909 /** 1910 * int jbd2_journal_errno () - returns the journal's error state. 1911 * @journal: journal to examine. 1912 * 1913 * This is the errno number set with jbd2_journal_abort(), the last 1914 * time the journal was mounted - if the journal was stopped 1915 * without calling abort this will be 0. 1916 * 1917 * If the journal has been aborted on this mount time -EROFS will 1918 * be returned. 1919 */ 1920 int jbd2_journal_errno(journal_t *journal) 1921 { 1922 int err; 1923 1924 read_lock(&journal->j_state_lock); 1925 if (journal->j_flags & JBD2_ABORT) 1926 err = -EROFS; 1927 else 1928 err = journal->j_errno; 1929 read_unlock(&journal->j_state_lock); 1930 return err; 1931 } 1932 1933 /** 1934 * int jbd2_journal_clear_err () - clears the journal's error state 1935 * @journal: journal to act on. 1936 * 1937 * An error must be cleared or acked to take a FS out of readonly 1938 * mode. 1939 */ 1940 int jbd2_journal_clear_err(journal_t *journal) 1941 { 1942 int err = 0; 1943 1944 write_lock(&journal->j_state_lock); 1945 if (journal->j_flags & JBD2_ABORT) 1946 err = -EROFS; 1947 else 1948 journal->j_errno = 0; 1949 write_unlock(&journal->j_state_lock); 1950 return err; 1951 } 1952 1953 /** 1954 * void jbd2_journal_ack_err() - Ack journal err. 1955 * @journal: journal to act on. 1956 * 1957 * An error must be cleared or acked to take a FS out of readonly 1958 * mode. 1959 */ 1960 void jbd2_journal_ack_err(journal_t *journal) 1961 { 1962 write_lock(&journal->j_state_lock); 1963 if (journal->j_errno) 1964 journal->j_flags |= JBD2_ACK_ERR; 1965 write_unlock(&journal->j_state_lock); 1966 } 1967 1968 int jbd2_journal_blocks_per_page(struct inode *inode) 1969 { 1970 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1971 } 1972 1973 /* 1974 * helper functions to deal with 32 or 64bit block numbers. 1975 */ 1976 size_t journal_tag_bytes(journal_t *journal) 1977 { 1978 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1979 return JBD2_TAG_SIZE64; 1980 else 1981 return JBD2_TAG_SIZE32; 1982 } 1983 1984 /* 1985 * JBD memory management 1986 * 1987 * These functions are used to allocate block-sized chunks of memory 1988 * used for making copies of buffer_head data. Very often it will be 1989 * page-sized chunks of data, but sometimes it will be in 1990 * sub-page-size chunks. (For example, 16k pages on Power systems 1991 * with a 4k block file system.) For blocks smaller than a page, we 1992 * use a SLAB allocator. There are slab caches for each block size, 1993 * which are allocated at mount time, if necessary, and we only free 1994 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1995 * this reason we don't need to a mutex to protect access to 1996 * jbd2_slab[] allocating or releasing memory; only in 1997 * jbd2_journal_create_slab(). 1998 */ 1999 #define JBD2_MAX_SLABS 8 2000 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2001 2002 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2003 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2004 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2005 }; 2006 2007 2008 static void jbd2_journal_destroy_slabs(void) 2009 { 2010 int i; 2011 2012 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2013 if (jbd2_slab[i]) 2014 kmem_cache_destroy(jbd2_slab[i]); 2015 jbd2_slab[i] = NULL; 2016 } 2017 } 2018 2019 static int jbd2_journal_create_slab(size_t size) 2020 { 2021 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2022 int i = order_base_2(size) - 10; 2023 size_t slab_size; 2024 2025 if (size == PAGE_SIZE) 2026 return 0; 2027 2028 if (i >= JBD2_MAX_SLABS) 2029 return -EINVAL; 2030 2031 if (unlikely(i < 0)) 2032 i = 0; 2033 mutex_lock(&jbd2_slab_create_mutex); 2034 if (jbd2_slab[i]) { 2035 mutex_unlock(&jbd2_slab_create_mutex); 2036 return 0; /* Already created */ 2037 } 2038 2039 slab_size = 1 << (i+10); 2040 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2041 slab_size, 0, NULL); 2042 mutex_unlock(&jbd2_slab_create_mutex); 2043 if (!jbd2_slab[i]) { 2044 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2045 return -ENOMEM; 2046 } 2047 return 0; 2048 } 2049 2050 static struct kmem_cache *get_slab(size_t size) 2051 { 2052 int i = order_base_2(size) - 10; 2053 2054 BUG_ON(i >= JBD2_MAX_SLABS); 2055 if (unlikely(i < 0)) 2056 i = 0; 2057 BUG_ON(jbd2_slab[i] == NULL); 2058 return jbd2_slab[i]; 2059 } 2060 2061 void *jbd2_alloc(size_t size, gfp_t flags) 2062 { 2063 void *ptr; 2064 2065 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2066 2067 flags |= __GFP_REPEAT; 2068 if (size == PAGE_SIZE) 2069 ptr = (void *)__get_free_pages(flags, 0); 2070 else if (size > PAGE_SIZE) { 2071 int order = get_order(size); 2072 2073 if (order < 3) 2074 ptr = (void *)__get_free_pages(flags, order); 2075 else 2076 ptr = vmalloc(size); 2077 } else 2078 ptr = kmem_cache_alloc(get_slab(size), flags); 2079 2080 /* Check alignment; SLUB has gotten this wrong in the past, 2081 * and this can lead to user data corruption! */ 2082 BUG_ON(((unsigned long) ptr) & (size-1)); 2083 2084 return ptr; 2085 } 2086 2087 void jbd2_free(void *ptr, size_t size) 2088 { 2089 if (size == PAGE_SIZE) { 2090 free_pages((unsigned long)ptr, 0); 2091 return; 2092 } 2093 if (size > PAGE_SIZE) { 2094 int order = get_order(size); 2095 2096 if (order < 3) 2097 free_pages((unsigned long)ptr, order); 2098 else 2099 vfree(ptr); 2100 return; 2101 } 2102 kmem_cache_free(get_slab(size), ptr); 2103 }; 2104 2105 /* 2106 * Journal_head storage management 2107 */ 2108 static struct kmem_cache *jbd2_journal_head_cache; 2109 #ifdef CONFIG_JBD2_DEBUG 2110 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2111 #endif 2112 2113 static int jbd2_journal_init_journal_head_cache(void) 2114 { 2115 int retval; 2116 2117 J_ASSERT(jbd2_journal_head_cache == NULL); 2118 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2119 sizeof(struct journal_head), 2120 0, /* offset */ 2121 SLAB_TEMPORARY, /* flags */ 2122 NULL); /* ctor */ 2123 retval = 0; 2124 if (!jbd2_journal_head_cache) { 2125 retval = -ENOMEM; 2126 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2127 } 2128 return retval; 2129 } 2130 2131 static void jbd2_journal_destroy_journal_head_cache(void) 2132 { 2133 if (jbd2_journal_head_cache) { 2134 kmem_cache_destroy(jbd2_journal_head_cache); 2135 jbd2_journal_head_cache = NULL; 2136 } 2137 } 2138 2139 /* 2140 * journal_head splicing and dicing 2141 */ 2142 static struct journal_head *journal_alloc_journal_head(void) 2143 { 2144 struct journal_head *ret; 2145 2146 #ifdef CONFIG_JBD2_DEBUG 2147 atomic_inc(&nr_journal_heads); 2148 #endif 2149 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2150 if (!ret) { 2151 jbd_debug(1, "out of memory for journal_head\n"); 2152 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2153 while (!ret) { 2154 yield(); 2155 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2156 } 2157 } 2158 return ret; 2159 } 2160 2161 static void journal_free_journal_head(struct journal_head *jh) 2162 { 2163 #ifdef CONFIG_JBD2_DEBUG 2164 atomic_dec(&nr_journal_heads); 2165 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2166 #endif 2167 kmem_cache_free(jbd2_journal_head_cache, jh); 2168 } 2169 2170 /* 2171 * A journal_head is attached to a buffer_head whenever JBD has an 2172 * interest in the buffer. 2173 * 2174 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2175 * is set. This bit is tested in core kernel code where we need to take 2176 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2177 * there. 2178 * 2179 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2180 * 2181 * When a buffer has its BH_JBD bit set it is immune from being released by 2182 * core kernel code, mainly via ->b_count. 2183 * 2184 * A journal_head is detached from its buffer_head when the journal_head's 2185 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2186 * transaction (b_cp_transaction) hold their references to b_jcount. 2187 * 2188 * Various places in the kernel want to attach a journal_head to a buffer_head 2189 * _before_ attaching the journal_head to a transaction. To protect the 2190 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2191 * journal_head's b_jcount refcount by one. The caller must call 2192 * jbd2_journal_put_journal_head() to undo this. 2193 * 2194 * So the typical usage would be: 2195 * 2196 * (Attach a journal_head if needed. Increments b_jcount) 2197 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2198 * ... 2199 * (Get another reference for transaction) 2200 * jbd2_journal_grab_journal_head(bh); 2201 * jh->b_transaction = xxx; 2202 * (Put original reference) 2203 * jbd2_journal_put_journal_head(jh); 2204 */ 2205 2206 /* 2207 * Give a buffer_head a journal_head. 2208 * 2209 * May sleep. 2210 */ 2211 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2212 { 2213 struct journal_head *jh; 2214 struct journal_head *new_jh = NULL; 2215 2216 repeat: 2217 if (!buffer_jbd(bh)) { 2218 new_jh = journal_alloc_journal_head(); 2219 memset(new_jh, 0, sizeof(*new_jh)); 2220 } 2221 2222 jbd_lock_bh_journal_head(bh); 2223 if (buffer_jbd(bh)) { 2224 jh = bh2jh(bh); 2225 } else { 2226 J_ASSERT_BH(bh, 2227 (atomic_read(&bh->b_count) > 0) || 2228 (bh->b_page && bh->b_page->mapping)); 2229 2230 if (!new_jh) { 2231 jbd_unlock_bh_journal_head(bh); 2232 goto repeat; 2233 } 2234 2235 jh = new_jh; 2236 new_jh = NULL; /* We consumed it */ 2237 set_buffer_jbd(bh); 2238 bh->b_private = jh; 2239 jh->b_bh = bh; 2240 get_bh(bh); 2241 BUFFER_TRACE(bh, "added journal_head"); 2242 } 2243 jh->b_jcount++; 2244 jbd_unlock_bh_journal_head(bh); 2245 if (new_jh) 2246 journal_free_journal_head(new_jh); 2247 return bh->b_private; 2248 } 2249 2250 /* 2251 * Grab a ref against this buffer_head's journal_head. If it ended up not 2252 * having a journal_head, return NULL 2253 */ 2254 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2255 { 2256 struct journal_head *jh = NULL; 2257 2258 jbd_lock_bh_journal_head(bh); 2259 if (buffer_jbd(bh)) { 2260 jh = bh2jh(bh); 2261 jh->b_jcount++; 2262 } 2263 jbd_unlock_bh_journal_head(bh); 2264 return jh; 2265 } 2266 2267 static void __journal_remove_journal_head(struct buffer_head *bh) 2268 { 2269 struct journal_head *jh = bh2jh(bh); 2270 2271 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2272 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2273 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2274 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2275 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2276 J_ASSERT_BH(bh, buffer_jbd(bh)); 2277 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2278 BUFFER_TRACE(bh, "remove journal_head"); 2279 if (jh->b_frozen_data) { 2280 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2281 jbd2_free(jh->b_frozen_data, bh->b_size); 2282 } 2283 if (jh->b_committed_data) { 2284 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2285 jbd2_free(jh->b_committed_data, bh->b_size); 2286 } 2287 bh->b_private = NULL; 2288 jh->b_bh = NULL; /* debug, really */ 2289 clear_buffer_jbd(bh); 2290 journal_free_journal_head(jh); 2291 } 2292 2293 /* 2294 * Drop a reference on the passed journal_head. If it fell to zero then 2295 * release the journal_head from the buffer_head. 2296 */ 2297 void jbd2_journal_put_journal_head(struct journal_head *jh) 2298 { 2299 struct buffer_head *bh = jh2bh(jh); 2300 2301 jbd_lock_bh_journal_head(bh); 2302 J_ASSERT_JH(jh, jh->b_jcount > 0); 2303 --jh->b_jcount; 2304 if (!jh->b_jcount) { 2305 __journal_remove_journal_head(bh); 2306 jbd_unlock_bh_journal_head(bh); 2307 __brelse(bh); 2308 } else 2309 jbd_unlock_bh_journal_head(bh); 2310 } 2311 2312 /* 2313 * Initialize jbd inode head 2314 */ 2315 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2316 { 2317 jinode->i_transaction = NULL; 2318 jinode->i_next_transaction = NULL; 2319 jinode->i_vfs_inode = inode; 2320 jinode->i_flags = 0; 2321 INIT_LIST_HEAD(&jinode->i_list); 2322 } 2323 2324 /* 2325 * Function to be called before we start removing inode from memory (i.e., 2326 * clear_inode() is a fine place to be called from). It removes inode from 2327 * transaction's lists. 2328 */ 2329 void jbd2_journal_release_jbd_inode(journal_t *journal, 2330 struct jbd2_inode *jinode) 2331 { 2332 if (!journal) 2333 return; 2334 restart: 2335 spin_lock(&journal->j_list_lock); 2336 /* Is commit writing out inode - we have to wait */ 2337 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2338 wait_queue_head_t *wq; 2339 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2340 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2341 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2342 spin_unlock(&journal->j_list_lock); 2343 schedule(); 2344 finish_wait(wq, &wait.wait); 2345 goto restart; 2346 } 2347 2348 if (jinode->i_transaction) { 2349 list_del(&jinode->i_list); 2350 jinode->i_transaction = NULL; 2351 } 2352 spin_unlock(&journal->j_list_lock); 2353 } 2354 2355 /* 2356 * debugfs tunables 2357 */ 2358 #ifdef CONFIG_JBD2_DEBUG 2359 u8 jbd2_journal_enable_debug __read_mostly; 2360 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2361 2362 #define JBD2_DEBUG_NAME "jbd2-debug" 2363 2364 static struct dentry *jbd2_debugfs_dir; 2365 static struct dentry *jbd2_debug; 2366 2367 static void __init jbd2_create_debugfs_entry(void) 2368 { 2369 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2370 if (jbd2_debugfs_dir) 2371 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2372 S_IRUGO | S_IWUSR, 2373 jbd2_debugfs_dir, 2374 &jbd2_journal_enable_debug); 2375 } 2376 2377 static void __exit jbd2_remove_debugfs_entry(void) 2378 { 2379 debugfs_remove(jbd2_debug); 2380 debugfs_remove(jbd2_debugfs_dir); 2381 } 2382 2383 #else 2384 2385 static void __init jbd2_create_debugfs_entry(void) 2386 { 2387 } 2388 2389 static void __exit jbd2_remove_debugfs_entry(void) 2390 { 2391 } 2392 2393 #endif 2394 2395 #ifdef CONFIG_PROC_FS 2396 2397 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2398 2399 static void __init jbd2_create_jbd_stats_proc_entry(void) 2400 { 2401 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2402 } 2403 2404 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2405 { 2406 if (proc_jbd2_stats) 2407 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2408 } 2409 2410 #else 2411 2412 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2413 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2414 2415 #endif 2416 2417 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2418 2419 static int __init jbd2_journal_init_handle_cache(void) 2420 { 2421 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2422 if (jbd2_handle_cache == NULL) { 2423 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2424 return -ENOMEM; 2425 } 2426 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2427 if (jbd2_inode_cache == NULL) { 2428 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2429 kmem_cache_destroy(jbd2_handle_cache); 2430 return -ENOMEM; 2431 } 2432 return 0; 2433 } 2434 2435 static void jbd2_journal_destroy_handle_cache(void) 2436 { 2437 if (jbd2_handle_cache) 2438 kmem_cache_destroy(jbd2_handle_cache); 2439 if (jbd2_inode_cache) 2440 kmem_cache_destroy(jbd2_inode_cache); 2441 2442 } 2443 2444 /* 2445 * Module startup and shutdown 2446 */ 2447 2448 static int __init journal_init_caches(void) 2449 { 2450 int ret; 2451 2452 ret = jbd2_journal_init_revoke_caches(); 2453 if (ret == 0) 2454 ret = jbd2_journal_init_journal_head_cache(); 2455 if (ret == 0) 2456 ret = jbd2_journal_init_handle_cache(); 2457 if (ret == 0) 2458 ret = jbd2_journal_init_transaction_cache(); 2459 return ret; 2460 } 2461 2462 static void jbd2_journal_destroy_caches(void) 2463 { 2464 jbd2_journal_destroy_revoke_caches(); 2465 jbd2_journal_destroy_journal_head_cache(); 2466 jbd2_journal_destroy_handle_cache(); 2467 jbd2_journal_destroy_transaction_cache(); 2468 jbd2_journal_destroy_slabs(); 2469 } 2470 2471 static int __init journal_init(void) 2472 { 2473 int ret; 2474 2475 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2476 2477 ret = journal_init_caches(); 2478 if (ret == 0) { 2479 jbd2_create_debugfs_entry(); 2480 jbd2_create_jbd_stats_proc_entry(); 2481 } else { 2482 jbd2_journal_destroy_caches(); 2483 } 2484 return ret; 2485 } 2486 2487 static void __exit journal_exit(void) 2488 { 2489 #ifdef CONFIG_JBD2_DEBUG 2490 int n = atomic_read(&nr_journal_heads); 2491 if (n) 2492 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2493 #endif 2494 jbd2_remove_debugfs_entry(); 2495 jbd2_remove_jbd_stats_proc_entry(); 2496 jbd2_journal_destroy_caches(); 2497 } 2498 2499 MODULE_LICENSE("GPL"); 2500 module_init(journal_init); 2501 module_exit(journal_exit); 2502 2503