1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 570 * calling process is not within transaction. 571 * 572 * @journal: journal to force 573 * Returns true if progress was made. 574 * 575 * This is used for forcing out undo-protected data which contains 576 * bitmaps, when the fs is running out of space. 577 */ 578 int jbd2_journal_force_commit_nested(journal_t *journal) 579 { 580 int ret; 581 582 ret = __jbd2_journal_force_commit(journal); 583 return ret > 0; 584 } 585 586 /** 587 * jbd2_journal_force_commit() - force any uncommitted transactions 588 * @journal: journal to force 589 * 590 * Caller want unconditional commit. We can only force the running transaction 591 * if we don't have an active handle, otherwise, we will deadlock. 592 */ 593 int jbd2_journal_force_commit(journal_t *journal) 594 { 595 int ret; 596 597 J_ASSERT(!current->journal_info); 598 ret = __jbd2_journal_force_commit(journal); 599 if (ret > 0) 600 ret = 0; 601 return ret; 602 } 603 604 /* 605 * Start a commit of the current running transaction (if any). Returns true 606 * if a transaction is going to be committed (or is currently already 607 * committing), and fills its tid in at *ptid 608 */ 609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 610 { 611 int ret = 0; 612 613 write_lock(&journal->j_state_lock); 614 if (journal->j_running_transaction) { 615 tid_t tid = journal->j_running_transaction->t_tid; 616 617 __jbd2_log_start_commit(journal, tid); 618 /* There's a running transaction and we've just made sure 619 * it's commit has been scheduled. */ 620 if (ptid) 621 *ptid = tid; 622 ret = 1; 623 } else if (journal->j_committing_transaction) { 624 /* 625 * If commit has been started, then we have to wait for 626 * completion of that transaction. 627 */ 628 if (ptid) 629 *ptid = journal->j_committing_transaction->t_tid; 630 ret = 1; 631 } 632 write_unlock(&journal->j_state_lock); 633 return ret; 634 } 635 636 /* 637 * Return 1 if a given transaction has not yet sent barrier request 638 * connected with a transaction commit. If 0 is returned, transaction 639 * may or may not have sent the barrier. Used to avoid sending barrier 640 * twice in common cases. 641 */ 642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 643 { 644 int ret = 0; 645 transaction_t *commit_trans; 646 647 if (!(journal->j_flags & JBD2_BARRIER)) 648 return 0; 649 read_lock(&journal->j_state_lock); 650 /* Transaction already committed? */ 651 if (tid_geq(journal->j_commit_sequence, tid)) 652 goto out; 653 commit_trans = journal->j_committing_transaction; 654 if (!commit_trans || commit_trans->t_tid != tid) { 655 ret = 1; 656 goto out; 657 } 658 /* 659 * Transaction is being committed and we already proceeded to 660 * submitting a flush to fs partition? 661 */ 662 if (journal->j_fs_dev != journal->j_dev) { 663 if (!commit_trans->t_need_data_flush || 664 commit_trans->t_state >= T_COMMIT_DFLUSH) 665 goto out; 666 } else { 667 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 668 goto out; 669 } 670 ret = 1; 671 out: 672 read_unlock(&journal->j_state_lock); 673 return ret; 674 } 675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 676 677 /* 678 * Wait for a specified commit to complete. 679 * The caller may not hold the journal lock. 680 */ 681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 682 { 683 int err = 0; 684 685 read_lock(&journal->j_state_lock); 686 #ifdef CONFIG_PROVE_LOCKING 687 /* 688 * Some callers make sure transaction is already committing and in that 689 * case we cannot block on open handles anymore. So don't warn in that 690 * case. 691 */ 692 if (tid_gt(tid, journal->j_commit_sequence) && 693 (!journal->j_committing_transaction || 694 journal->j_committing_transaction->t_tid != tid)) { 695 read_unlock(&journal->j_state_lock); 696 jbd2_might_wait_for_commit(journal); 697 read_lock(&journal->j_state_lock); 698 } 699 #endif 700 #ifdef CONFIG_JBD2_DEBUG 701 if (!tid_geq(journal->j_commit_request, tid)) { 702 printk(KERN_ERR 703 "%s: error: j_commit_request=%u, tid=%u\n", 704 __func__, journal->j_commit_request, tid); 705 } 706 #endif 707 while (tid_gt(tid, journal->j_commit_sequence)) { 708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 709 tid, journal->j_commit_sequence); 710 read_unlock(&journal->j_state_lock); 711 wake_up(&journal->j_wait_commit); 712 wait_event(journal->j_wait_done_commit, 713 !tid_gt(tid, journal->j_commit_sequence)); 714 read_lock(&journal->j_state_lock); 715 } 716 read_unlock(&journal->j_state_lock); 717 718 if (unlikely(is_journal_aborted(journal))) 719 err = -EIO; 720 return err; 721 } 722 723 /* 724 * Start a fast commit. If there's an ongoing fast or full commit wait for 725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 726 * if a fast commit is not needed, either because there's an already a commit 727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 728 * commit has yet been performed. 729 */ 730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 731 { 732 if (unlikely(is_journal_aborted(journal))) 733 return -EIO; 734 /* 735 * Fast commits only allowed if at least one full commit has 736 * been processed. 737 */ 738 if (!journal->j_stats.ts_tid) 739 return -EINVAL; 740 741 write_lock(&journal->j_state_lock); 742 if (tid <= journal->j_commit_sequence) { 743 write_unlock(&journal->j_state_lock); 744 return -EALREADY; 745 } 746 747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 749 DEFINE_WAIT(wait); 750 751 prepare_to_wait(&journal->j_fc_wait, &wait, 752 TASK_UNINTERRUPTIBLE); 753 write_unlock(&journal->j_state_lock); 754 schedule(); 755 finish_wait(&journal->j_fc_wait, &wait); 756 return -EALREADY; 757 } 758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 759 write_unlock(&journal->j_state_lock); 760 761 return 0; 762 } 763 EXPORT_SYMBOL(jbd2_fc_begin_commit); 764 765 /* 766 * Stop a fast commit. If fallback is set, this function starts commit of 767 * TID tid before any other fast commit can start. 768 */ 769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 770 { 771 if (journal->j_fc_cleanup_callback) 772 journal->j_fc_cleanup_callback(journal, 0); 773 write_lock(&journal->j_state_lock); 774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 775 if (fallback) 776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 777 write_unlock(&journal->j_state_lock); 778 wake_up(&journal->j_fc_wait); 779 if (fallback) 780 return jbd2_complete_transaction(journal, tid); 781 return 0; 782 } 783 784 int jbd2_fc_end_commit(journal_t *journal) 785 { 786 return __jbd2_fc_end_commit(journal, 0, false); 787 } 788 EXPORT_SYMBOL(jbd2_fc_end_commit); 789 790 int jbd2_fc_end_commit_fallback(journal_t *journal) 791 { 792 tid_t tid; 793 794 read_lock(&journal->j_state_lock); 795 tid = journal->j_running_transaction ? 796 journal->j_running_transaction->t_tid : 0; 797 read_unlock(&journal->j_state_lock); 798 return __jbd2_fc_end_commit(journal, tid, true); 799 } 800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 801 802 /* Return 1 when transaction with given tid has already committed. */ 803 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 804 { 805 int ret = 1; 806 807 read_lock(&journal->j_state_lock); 808 if (journal->j_running_transaction && 809 journal->j_running_transaction->t_tid == tid) 810 ret = 0; 811 if (journal->j_committing_transaction && 812 journal->j_committing_transaction->t_tid == tid) 813 ret = 0; 814 read_unlock(&journal->j_state_lock); 815 return ret; 816 } 817 EXPORT_SYMBOL(jbd2_transaction_committed); 818 819 /* 820 * When this function returns the transaction corresponding to tid 821 * will be completed. If the transaction has currently running, start 822 * committing that transaction before waiting for it to complete. If 823 * the transaction id is stale, it is by definition already completed, 824 * so just return SUCCESS. 825 */ 826 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 827 { 828 int need_to_wait = 1; 829 830 read_lock(&journal->j_state_lock); 831 if (journal->j_running_transaction && 832 journal->j_running_transaction->t_tid == tid) { 833 if (journal->j_commit_request != tid) { 834 /* transaction not yet started, so request it */ 835 read_unlock(&journal->j_state_lock); 836 jbd2_log_start_commit(journal, tid); 837 goto wait_commit; 838 } 839 } else if (!(journal->j_committing_transaction && 840 journal->j_committing_transaction->t_tid == tid)) 841 need_to_wait = 0; 842 read_unlock(&journal->j_state_lock); 843 if (!need_to_wait) 844 return 0; 845 wait_commit: 846 return jbd2_log_wait_commit(journal, tid); 847 } 848 EXPORT_SYMBOL(jbd2_complete_transaction); 849 850 /* 851 * Log buffer allocation routines: 852 */ 853 854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 855 { 856 unsigned long blocknr; 857 858 write_lock(&journal->j_state_lock); 859 J_ASSERT(journal->j_free > 1); 860 861 blocknr = journal->j_head; 862 journal->j_head++; 863 journal->j_free--; 864 if (journal->j_head == journal->j_last) 865 journal->j_head = journal->j_first; 866 write_unlock(&journal->j_state_lock); 867 return jbd2_journal_bmap(journal, blocknr, retp); 868 } 869 870 /* Map one fast commit buffer for use by the file system */ 871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 872 { 873 unsigned long long pblock; 874 unsigned long blocknr; 875 int ret = 0; 876 struct buffer_head *bh; 877 int fc_off; 878 879 *bh_out = NULL; 880 881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 882 fc_off = journal->j_fc_off; 883 blocknr = journal->j_fc_first + fc_off; 884 journal->j_fc_off++; 885 } else { 886 ret = -EINVAL; 887 } 888 889 if (ret) 890 return ret; 891 892 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 893 if (ret) 894 return ret; 895 896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 897 if (!bh) 898 return -ENOMEM; 899 900 901 journal->j_fc_wbuf[fc_off] = bh; 902 903 *bh_out = bh; 904 905 return 0; 906 } 907 EXPORT_SYMBOL(jbd2_fc_get_buf); 908 909 /* 910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 911 * for completion. 912 */ 913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 914 { 915 struct buffer_head *bh; 916 int i, j_fc_off; 917 918 j_fc_off = journal->j_fc_off; 919 920 /* 921 * Wait in reverse order to minimize chances of us being woken up before 922 * all IOs have completed 923 */ 924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 925 bh = journal->j_fc_wbuf[i]; 926 wait_on_buffer(bh); 927 put_bh(bh); 928 journal->j_fc_wbuf[i] = NULL; 929 if (unlikely(!buffer_uptodate(bh))) 930 return -EIO; 931 } 932 933 return 0; 934 } 935 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 936 937 /* 938 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 939 * for completion. 940 */ 941 int jbd2_fc_release_bufs(journal_t *journal) 942 { 943 struct buffer_head *bh; 944 int i, j_fc_off; 945 946 j_fc_off = journal->j_fc_off; 947 948 /* 949 * Wait in reverse order to minimize chances of us being woken up before 950 * all IOs have completed 951 */ 952 for (i = j_fc_off - 1; i >= 0; i--) { 953 bh = journal->j_fc_wbuf[i]; 954 if (!bh) 955 break; 956 put_bh(bh); 957 journal->j_fc_wbuf[i] = NULL; 958 } 959 960 return 0; 961 } 962 EXPORT_SYMBOL(jbd2_fc_release_bufs); 963 964 /* 965 * Conversion of logical to physical block numbers for the journal 966 * 967 * On external journals the journal blocks are identity-mapped, so 968 * this is a no-op. If needed, we can use j_blk_offset - everything is 969 * ready. 970 */ 971 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 972 unsigned long long *retp) 973 { 974 int err = 0; 975 unsigned long long ret; 976 sector_t block = 0; 977 978 if (journal->j_inode) { 979 block = blocknr; 980 ret = bmap(journal->j_inode, &block); 981 982 if (ret || !block) { 983 printk(KERN_ALERT "%s: journal block not found " 984 "at offset %lu on %s\n", 985 __func__, blocknr, journal->j_devname); 986 err = -EIO; 987 jbd2_journal_abort(journal, err); 988 } else { 989 *retp = block; 990 } 991 992 } else { 993 *retp = blocknr; /* +journal->j_blk_offset */ 994 } 995 return err; 996 } 997 998 /* 999 * We play buffer_head aliasing tricks to write data/metadata blocks to 1000 * the journal without copying their contents, but for journal 1001 * descriptor blocks we do need to generate bona fide buffers. 1002 * 1003 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 1004 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 1005 * But we don't bother doing that, so there will be coherency problems with 1006 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1007 */ 1008 struct buffer_head * 1009 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1010 { 1011 journal_t *journal = transaction->t_journal; 1012 struct buffer_head *bh; 1013 unsigned long long blocknr; 1014 journal_header_t *header; 1015 int err; 1016 1017 err = jbd2_journal_next_log_block(journal, &blocknr); 1018 1019 if (err) 1020 return NULL; 1021 1022 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1023 if (!bh) 1024 return NULL; 1025 atomic_dec(&transaction->t_outstanding_credits); 1026 lock_buffer(bh); 1027 memset(bh->b_data, 0, journal->j_blocksize); 1028 header = (journal_header_t *)bh->b_data; 1029 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1030 header->h_blocktype = cpu_to_be32(type); 1031 header->h_sequence = cpu_to_be32(transaction->t_tid); 1032 set_buffer_uptodate(bh); 1033 unlock_buffer(bh); 1034 BUFFER_TRACE(bh, "return this buffer"); 1035 return bh; 1036 } 1037 1038 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1039 { 1040 struct jbd2_journal_block_tail *tail; 1041 __u32 csum; 1042 1043 if (!jbd2_journal_has_csum_v2or3(j)) 1044 return; 1045 1046 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1047 sizeof(struct jbd2_journal_block_tail)); 1048 tail->t_checksum = 0; 1049 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1050 tail->t_checksum = cpu_to_be32(csum); 1051 } 1052 1053 /* 1054 * Return tid of the oldest transaction in the journal and block in the journal 1055 * where the transaction starts. 1056 * 1057 * If the journal is now empty, return which will be the next transaction ID 1058 * we will write and where will that transaction start. 1059 * 1060 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1061 * it can. 1062 */ 1063 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1064 unsigned long *block) 1065 { 1066 transaction_t *transaction; 1067 int ret; 1068 1069 read_lock(&journal->j_state_lock); 1070 spin_lock(&journal->j_list_lock); 1071 transaction = journal->j_checkpoint_transactions; 1072 if (transaction) { 1073 *tid = transaction->t_tid; 1074 *block = transaction->t_log_start; 1075 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1076 *tid = transaction->t_tid; 1077 *block = transaction->t_log_start; 1078 } else if ((transaction = journal->j_running_transaction) != NULL) { 1079 *tid = transaction->t_tid; 1080 *block = journal->j_head; 1081 } else { 1082 *tid = journal->j_transaction_sequence; 1083 *block = journal->j_head; 1084 } 1085 ret = tid_gt(*tid, journal->j_tail_sequence); 1086 spin_unlock(&journal->j_list_lock); 1087 read_unlock(&journal->j_state_lock); 1088 1089 return ret; 1090 } 1091 1092 /* 1093 * Update information in journal structure and in on disk journal superblock 1094 * about log tail. This function does not check whether information passed in 1095 * really pushes log tail further. It's responsibility of the caller to make 1096 * sure provided log tail information is valid (e.g. by holding 1097 * j_checkpoint_mutex all the time between computing log tail and calling this 1098 * function as is the case with jbd2_cleanup_journal_tail()). 1099 * 1100 * Requires j_checkpoint_mutex 1101 */ 1102 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1103 { 1104 unsigned long freed; 1105 int ret; 1106 1107 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1108 1109 /* 1110 * We cannot afford for write to remain in drive's caches since as 1111 * soon as we update j_tail, next transaction can start reusing journal 1112 * space and if we lose sb update during power failure we'd replay 1113 * old transaction with possibly newly overwritten data. 1114 */ 1115 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1116 REQ_SYNC | REQ_FUA); 1117 if (ret) 1118 goto out; 1119 1120 write_lock(&journal->j_state_lock); 1121 freed = block - journal->j_tail; 1122 if (block < journal->j_tail) 1123 freed += journal->j_last - journal->j_first; 1124 1125 trace_jbd2_update_log_tail(journal, tid, block, freed); 1126 jbd_debug(1, 1127 "Cleaning journal tail from %u to %u (offset %lu), " 1128 "freeing %lu\n", 1129 journal->j_tail_sequence, tid, block, freed); 1130 1131 journal->j_free += freed; 1132 journal->j_tail_sequence = tid; 1133 journal->j_tail = block; 1134 write_unlock(&journal->j_state_lock); 1135 1136 out: 1137 return ret; 1138 } 1139 1140 /* 1141 * This is a variation of __jbd2_update_log_tail which checks for validity of 1142 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1143 * with other threads updating log tail. 1144 */ 1145 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1146 { 1147 mutex_lock_io(&journal->j_checkpoint_mutex); 1148 if (tid_gt(tid, journal->j_tail_sequence)) 1149 __jbd2_update_log_tail(journal, tid, block); 1150 mutex_unlock(&journal->j_checkpoint_mutex); 1151 } 1152 1153 struct jbd2_stats_proc_session { 1154 journal_t *journal; 1155 struct transaction_stats_s *stats; 1156 int start; 1157 int max; 1158 }; 1159 1160 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1161 { 1162 return *pos ? NULL : SEQ_START_TOKEN; 1163 } 1164 1165 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1166 { 1167 (*pos)++; 1168 return NULL; 1169 } 1170 1171 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1172 { 1173 struct jbd2_stats_proc_session *s = seq->private; 1174 1175 if (v != SEQ_START_TOKEN) 1176 return 0; 1177 seq_printf(seq, "%lu transactions (%lu requested), " 1178 "each up to %u blocks\n", 1179 s->stats->ts_tid, s->stats->ts_requested, 1180 s->journal->j_max_transaction_buffers); 1181 if (s->stats->ts_tid == 0) 1182 return 0; 1183 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1184 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1185 seq_printf(seq, " %ums request delay\n", 1186 (s->stats->ts_requested == 0) ? 0 : 1187 jiffies_to_msecs(s->stats->run.rs_request_delay / 1188 s->stats->ts_requested)); 1189 seq_printf(seq, " %ums running transaction\n", 1190 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1191 seq_printf(seq, " %ums transaction was being locked\n", 1192 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1193 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1194 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1195 seq_printf(seq, " %ums logging transaction\n", 1196 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1197 seq_printf(seq, " %lluus average transaction commit time\n", 1198 div_u64(s->journal->j_average_commit_time, 1000)); 1199 seq_printf(seq, " %lu handles per transaction\n", 1200 s->stats->run.rs_handle_count / s->stats->ts_tid); 1201 seq_printf(seq, " %lu blocks per transaction\n", 1202 s->stats->run.rs_blocks / s->stats->ts_tid); 1203 seq_printf(seq, " %lu logged blocks per transaction\n", 1204 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1205 return 0; 1206 } 1207 1208 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1209 { 1210 } 1211 1212 static const struct seq_operations jbd2_seq_info_ops = { 1213 .start = jbd2_seq_info_start, 1214 .next = jbd2_seq_info_next, 1215 .stop = jbd2_seq_info_stop, 1216 .show = jbd2_seq_info_show, 1217 }; 1218 1219 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1220 { 1221 journal_t *journal = PDE_DATA(inode); 1222 struct jbd2_stats_proc_session *s; 1223 int rc, size; 1224 1225 s = kmalloc(sizeof(*s), GFP_KERNEL); 1226 if (s == NULL) 1227 return -ENOMEM; 1228 size = sizeof(struct transaction_stats_s); 1229 s->stats = kmalloc(size, GFP_KERNEL); 1230 if (s->stats == NULL) { 1231 kfree(s); 1232 return -ENOMEM; 1233 } 1234 spin_lock(&journal->j_history_lock); 1235 memcpy(s->stats, &journal->j_stats, size); 1236 s->journal = journal; 1237 spin_unlock(&journal->j_history_lock); 1238 1239 rc = seq_open(file, &jbd2_seq_info_ops); 1240 if (rc == 0) { 1241 struct seq_file *m = file->private_data; 1242 m->private = s; 1243 } else { 1244 kfree(s->stats); 1245 kfree(s); 1246 } 1247 return rc; 1248 1249 } 1250 1251 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1252 { 1253 struct seq_file *seq = file->private_data; 1254 struct jbd2_stats_proc_session *s = seq->private; 1255 kfree(s->stats); 1256 kfree(s); 1257 return seq_release(inode, file); 1258 } 1259 1260 static const struct proc_ops jbd2_info_proc_ops = { 1261 .proc_open = jbd2_seq_info_open, 1262 .proc_read = seq_read, 1263 .proc_lseek = seq_lseek, 1264 .proc_release = jbd2_seq_info_release, 1265 }; 1266 1267 static struct proc_dir_entry *proc_jbd2_stats; 1268 1269 static void jbd2_stats_proc_init(journal_t *journal) 1270 { 1271 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1272 if (journal->j_proc_entry) { 1273 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1274 &jbd2_info_proc_ops, journal); 1275 } 1276 } 1277 1278 static void jbd2_stats_proc_exit(journal_t *journal) 1279 { 1280 remove_proc_entry("info", journal->j_proc_entry); 1281 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1282 } 1283 1284 /* Minimum size of descriptor tag */ 1285 static int jbd2_min_tag_size(void) 1286 { 1287 /* 1288 * Tag with 32-bit block numbers does not use last four bytes of the 1289 * structure 1290 */ 1291 return sizeof(journal_block_tag_t) - 4; 1292 } 1293 1294 /* 1295 * Management for journal control blocks: functions to create and 1296 * destroy journal_t structures, and to initialise and read existing 1297 * journal blocks from disk. */ 1298 1299 /* First: create and setup a journal_t object in memory. We initialise 1300 * very few fields yet: that has to wait until we have created the 1301 * journal structures from from scratch, or loaded them from disk. */ 1302 1303 static journal_t *journal_init_common(struct block_device *bdev, 1304 struct block_device *fs_dev, 1305 unsigned long long start, int len, int blocksize) 1306 { 1307 static struct lock_class_key jbd2_trans_commit_key; 1308 journal_t *journal; 1309 int err; 1310 struct buffer_head *bh; 1311 int n; 1312 1313 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1314 if (!journal) 1315 return NULL; 1316 1317 init_waitqueue_head(&journal->j_wait_transaction_locked); 1318 init_waitqueue_head(&journal->j_wait_done_commit); 1319 init_waitqueue_head(&journal->j_wait_commit); 1320 init_waitqueue_head(&journal->j_wait_updates); 1321 init_waitqueue_head(&journal->j_wait_reserved); 1322 init_waitqueue_head(&journal->j_fc_wait); 1323 mutex_init(&journal->j_abort_mutex); 1324 mutex_init(&journal->j_barrier); 1325 mutex_init(&journal->j_checkpoint_mutex); 1326 spin_lock_init(&journal->j_revoke_lock); 1327 spin_lock_init(&journal->j_list_lock); 1328 rwlock_init(&journal->j_state_lock); 1329 1330 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1331 journal->j_min_batch_time = 0; 1332 journal->j_max_batch_time = 15000; /* 15ms */ 1333 atomic_set(&journal->j_reserved_credits, 0); 1334 1335 /* The journal is marked for error until we succeed with recovery! */ 1336 journal->j_flags = JBD2_ABORT; 1337 1338 /* Set up a default-sized revoke table for the new mount. */ 1339 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1340 if (err) 1341 goto err_cleanup; 1342 1343 spin_lock_init(&journal->j_history_lock); 1344 1345 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1346 &jbd2_trans_commit_key, 0); 1347 1348 /* journal descriptor can store up to n blocks -bzzz */ 1349 journal->j_blocksize = blocksize; 1350 journal->j_dev = bdev; 1351 journal->j_fs_dev = fs_dev; 1352 journal->j_blk_offset = start; 1353 journal->j_total_len = len; 1354 /* We need enough buffers to write out full descriptor block. */ 1355 n = journal->j_blocksize / jbd2_min_tag_size(); 1356 journal->j_wbufsize = n; 1357 journal->j_fc_wbuf = NULL; 1358 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1359 GFP_KERNEL); 1360 if (!journal->j_wbuf) 1361 goto err_cleanup; 1362 1363 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1364 if (!bh) { 1365 pr_err("%s: Cannot get buffer for journal superblock\n", 1366 __func__); 1367 goto err_cleanup; 1368 } 1369 journal->j_sb_buffer = bh; 1370 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1371 1372 return journal; 1373 1374 err_cleanup: 1375 kfree(journal->j_wbuf); 1376 jbd2_journal_destroy_revoke(journal); 1377 kfree(journal); 1378 return NULL; 1379 } 1380 1381 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1382 * 1383 * Create a journal structure assigned some fixed set of disk blocks to 1384 * the journal. We don't actually touch those disk blocks yet, but we 1385 * need to set up all of the mapping information to tell the journaling 1386 * system where the journal blocks are. 1387 * 1388 */ 1389 1390 /** 1391 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1392 * @bdev: Block device on which to create the journal 1393 * @fs_dev: Device which hold journalled filesystem for this journal. 1394 * @start: Block nr Start of journal. 1395 * @len: Length of the journal in blocks. 1396 * @blocksize: blocksize of journalling device 1397 * 1398 * Returns: a newly created journal_t * 1399 * 1400 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1401 * range of blocks on an arbitrary block device. 1402 * 1403 */ 1404 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1405 struct block_device *fs_dev, 1406 unsigned long long start, int len, int blocksize) 1407 { 1408 journal_t *journal; 1409 1410 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1411 if (!journal) 1412 return NULL; 1413 1414 bdevname(journal->j_dev, journal->j_devname); 1415 strreplace(journal->j_devname, '/', '!'); 1416 jbd2_stats_proc_init(journal); 1417 1418 return journal; 1419 } 1420 1421 /** 1422 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1423 * @inode: An inode to create the journal in 1424 * 1425 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1426 * the journal. The inode must exist already, must support bmap() and 1427 * must have all data blocks preallocated. 1428 */ 1429 journal_t *jbd2_journal_init_inode(struct inode *inode) 1430 { 1431 journal_t *journal; 1432 sector_t blocknr; 1433 char *p; 1434 int err = 0; 1435 1436 blocknr = 0; 1437 err = bmap(inode, &blocknr); 1438 1439 if (err || !blocknr) { 1440 pr_err("%s: Cannot locate journal superblock\n", 1441 __func__); 1442 return NULL; 1443 } 1444 1445 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1446 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1447 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1448 1449 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1450 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1451 inode->i_sb->s_blocksize); 1452 if (!journal) 1453 return NULL; 1454 1455 journal->j_inode = inode; 1456 bdevname(journal->j_dev, journal->j_devname); 1457 p = strreplace(journal->j_devname, '/', '!'); 1458 sprintf(p, "-%lu", journal->j_inode->i_ino); 1459 jbd2_stats_proc_init(journal); 1460 1461 return journal; 1462 } 1463 1464 /* 1465 * If the journal init or create aborts, we need to mark the journal 1466 * superblock as being NULL to prevent the journal destroy from writing 1467 * back a bogus superblock. 1468 */ 1469 static void journal_fail_superblock(journal_t *journal) 1470 { 1471 struct buffer_head *bh = journal->j_sb_buffer; 1472 brelse(bh); 1473 journal->j_sb_buffer = NULL; 1474 } 1475 1476 /* 1477 * Given a journal_t structure, initialise the various fields for 1478 * startup of a new journaling session. We use this both when creating 1479 * a journal, and after recovering an old journal to reset it for 1480 * subsequent use. 1481 */ 1482 1483 static int journal_reset(journal_t *journal) 1484 { 1485 journal_superblock_t *sb = journal->j_superblock; 1486 unsigned long long first, last; 1487 1488 first = be32_to_cpu(sb->s_first); 1489 last = be32_to_cpu(sb->s_maxlen); 1490 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1491 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1492 first, last); 1493 journal_fail_superblock(journal); 1494 return -EINVAL; 1495 } 1496 1497 journal->j_first = first; 1498 journal->j_last = last; 1499 1500 journal->j_head = journal->j_first; 1501 journal->j_tail = journal->j_first; 1502 journal->j_free = journal->j_last - journal->j_first; 1503 1504 journal->j_tail_sequence = journal->j_transaction_sequence; 1505 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1506 journal->j_commit_request = journal->j_commit_sequence; 1507 1508 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1509 1510 /* 1511 * Now that journal recovery is done, turn fast commits off here. This 1512 * way, if fast commit was enabled before the crash but if now FS has 1513 * disabled it, we don't enable fast commits. 1514 */ 1515 jbd2_clear_feature_fast_commit(journal); 1516 1517 /* 1518 * As a special case, if the on-disk copy is already marked as needing 1519 * no recovery (s_start == 0), then we can safely defer the superblock 1520 * update until the next commit by setting JBD2_FLUSHED. This avoids 1521 * attempting a write to a potential-readonly device. 1522 */ 1523 if (sb->s_start == 0) { 1524 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1525 "(start %ld, seq %u, errno %d)\n", 1526 journal->j_tail, journal->j_tail_sequence, 1527 journal->j_errno); 1528 journal->j_flags |= JBD2_FLUSHED; 1529 } else { 1530 /* Lock here to make assertions happy... */ 1531 mutex_lock_io(&journal->j_checkpoint_mutex); 1532 /* 1533 * Update log tail information. We use REQ_FUA since new 1534 * transaction will start reusing journal space and so we 1535 * must make sure information about current log tail is on 1536 * disk before that. 1537 */ 1538 jbd2_journal_update_sb_log_tail(journal, 1539 journal->j_tail_sequence, 1540 journal->j_tail, 1541 REQ_SYNC | REQ_FUA); 1542 mutex_unlock(&journal->j_checkpoint_mutex); 1543 } 1544 return jbd2_journal_start_thread(journal); 1545 } 1546 1547 /* 1548 * This function expects that the caller will have locked the journal 1549 * buffer head, and will return with it unlocked 1550 */ 1551 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1552 { 1553 struct buffer_head *bh = journal->j_sb_buffer; 1554 journal_superblock_t *sb = journal->j_superblock; 1555 int ret; 1556 1557 /* Buffer got discarded which means block device got invalidated */ 1558 if (!buffer_mapped(bh)) { 1559 unlock_buffer(bh); 1560 return -EIO; 1561 } 1562 1563 trace_jbd2_write_superblock(journal, write_flags); 1564 if (!(journal->j_flags & JBD2_BARRIER)) 1565 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1566 if (buffer_write_io_error(bh)) { 1567 /* 1568 * Oh, dear. A previous attempt to write the journal 1569 * superblock failed. This could happen because the 1570 * USB device was yanked out. Or it could happen to 1571 * be a transient write error and maybe the block will 1572 * be remapped. Nothing we can do but to retry the 1573 * write and hope for the best. 1574 */ 1575 printk(KERN_ERR "JBD2: previous I/O error detected " 1576 "for journal superblock update for %s.\n", 1577 journal->j_devname); 1578 clear_buffer_write_io_error(bh); 1579 set_buffer_uptodate(bh); 1580 } 1581 if (jbd2_journal_has_csum_v2or3(journal)) 1582 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1583 get_bh(bh); 1584 bh->b_end_io = end_buffer_write_sync; 1585 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1586 wait_on_buffer(bh); 1587 if (buffer_write_io_error(bh)) { 1588 clear_buffer_write_io_error(bh); 1589 set_buffer_uptodate(bh); 1590 ret = -EIO; 1591 } 1592 if (ret) { 1593 printk(KERN_ERR "JBD2: Error %d detected when updating " 1594 "journal superblock for %s.\n", ret, 1595 journal->j_devname); 1596 if (!is_journal_aborted(journal)) 1597 jbd2_journal_abort(journal, ret); 1598 } 1599 1600 return ret; 1601 } 1602 1603 /** 1604 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1605 * @journal: The journal to update. 1606 * @tail_tid: TID of the new transaction at the tail of the log 1607 * @tail_block: The first block of the transaction at the tail of the log 1608 * @write_op: With which operation should we write the journal sb 1609 * 1610 * Update a journal's superblock information about log tail and write it to 1611 * disk, waiting for the IO to complete. 1612 */ 1613 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1614 unsigned long tail_block, int write_op) 1615 { 1616 journal_superblock_t *sb = journal->j_superblock; 1617 int ret; 1618 1619 if (is_journal_aborted(journal)) 1620 return -EIO; 1621 1622 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1623 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1624 tail_block, tail_tid); 1625 1626 lock_buffer(journal->j_sb_buffer); 1627 sb->s_sequence = cpu_to_be32(tail_tid); 1628 sb->s_start = cpu_to_be32(tail_block); 1629 1630 ret = jbd2_write_superblock(journal, write_op); 1631 if (ret) 1632 goto out; 1633 1634 /* Log is no longer empty */ 1635 write_lock(&journal->j_state_lock); 1636 WARN_ON(!sb->s_sequence); 1637 journal->j_flags &= ~JBD2_FLUSHED; 1638 write_unlock(&journal->j_state_lock); 1639 1640 out: 1641 return ret; 1642 } 1643 1644 /** 1645 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1646 * @journal: The journal to update. 1647 * @write_op: With which operation should we write the journal sb 1648 * 1649 * Update a journal's dynamic superblock fields to show that journal is empty. 1650 * Write updated superblock to disk waiting for IO to complete. 1651 */ 1652 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1653 { 1654 journal_superblock_t *sb = journal->j_superblock; 1655 bool had_fast_commit = false; 1656 1657 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1658 lock_buffer(journal->j_sb_buffer); 1659 if (sb->s_start == 0) { /* Is it already empty? */ 1660 unlock_buffer(journal->j_sb_buffer); 1661 return; 1662 } 1663 1664 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1665 journal->j_tail_sequence); 1666 1667 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1668 sb->s_start = cpu_to_be32(0); 1669 if (jbd2_has_feature_fast_commit(journal)) { 1670 /* 1671 * When journal is clean, no need to commit fast commit flag and 1672 * make file system incompatible with older kernels. 1673 */ 1674 jbd2_clear_feature_fast_commit(journal); 1675 had_fast_commit = true; 1676 } 1677 1678 jbd2_write_superblock(journal, write_op); 1679 1680 if (had_fast_commit) 1681 jbd2_set_feature_fast_commit(journal); 1682 1683 /* Log is no longer empty */ 1684 write_lock(&journal->j_state_lock); 1685 journal->j_flags |= JBD2_FLUSHED; 1686 write_unlock(&journal->j_state_lock); 1687 } 1688 1689 1690 /** 1691 * jbd2_journal_update_sb_errno() - Update error in the journal. 1692 * @journal: The journal to update. 1693 * 1694 * Update a journal's errno. Write updated superblock to disk waiting for IO 1695 * to complete. 1696 */ 1697 void jbd2_journal_update_sb_errno(journal_t *journal) 1698 { 1699 journal_superblock_t *sb = journal->j_superblock; 1700 int errcode; 1701 1702 lock_buffer(journal->j_sb_buffer); 1703 errcode = journal->j_errno; 1704 if (errcode == -ESHUTDOWN) 1705 errcode = 0; 1706 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1707 sb->s_errno = cpu_to_be32(errcode); 1708 1709 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1710 } 1711 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1712 1713 static int journal_revoke_records_per_block(journal_t *journal) 1714 { 1715 int record_size; 1716 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1717 1718 if (jbd2_has_feature_64bit(journal)) 1719 record_size = 8; 1720 else 1721 record_size = 4; 1722 1723 if (jbd2_journal_has_csum_v2or3(journal)) 1724 space -= sizeof(struct jbd2_journal_block_tail); 1725 return space / record_size; 1726 } 1727 1728 /* 1729 * Read the superblock for a given journal, performing initial 1730 * validation of the format. 1731 */ 1732 static int journal_get_superblock(journal_t *journal) 1733 { 1734 struct buffer_head *bh; 1735 journal_superblock_t *sb; 1736 int err = -EIO; 1737 1738 bh = journal->j_sb_buffer; 1739 1740 J_ASSERT(bh != NULL); 1741 if (!buffer_uptodate(bh)) { 1742 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1743 wait_on_buffer(bh); 1744 if (!buffer_uptodate(bh)) { 1745 printk(KERN_ERR 1746 "JBD2: IO error reading journal superblock\n"); 1747 goto out; 1748 } 1749 } 1750 1751 if (buffer_verified(bh)) 1752 return 0; 1753 1754 sb = journal->j_superblock; 1755 1756 err = -EINVAL; 1757 1758 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1759 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1760 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1761 goto out; 1762 } 1763 1764 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1765 case JBD2_SUPERBLOCK_V1: 1766 journal->j_format_version = 1; 1767 break; 1768 case JBD2_SUPERBLOCK_V2: 1769 journal->j_format_version = 2; 1770 break; 1771 default: 1772 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1773 goto out; 1774 } 1775 1776 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1777 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1778 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1779 printk(KERN_WARNING "JBD2: journal file too short\n"); 1780 goto out; 1781 } 1782 1783 if (be32_to_cpu(sb->s_first) == 0 || 1784 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1785 printk(KERN_WARNING 1786 "JBD2: Invalid start block of journal: %u\n", 1787 be32_to_cpu(sb->s_first)); 1788 goto out; 1789 } 1790 1791 if (jbd2_has_feature_csum2(journal) && 1792 jbd2_has_feature_csum3(journal)) { 1793 /* Can't have checksum v2 and v3 at the same time! */ 1794 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1795 "at the same time!\n"); 1796 goto out; 1797 } 1798 1799 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1800 jbd2_has_feature_checksum(journal)) { 1801 /* Can't have checksum v1 and v2 on at the same time! */ 1802 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1803 "at the same time!\n"); 1804 goto out; 1805 } 1806 1807 if (!jbd2_verify_csum_type(journal, sb)) { 1808 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1809 goto out; 1810 } 1811 1812 /* Load the checksum driver */ 1813 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1814 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1815 if (IS_ERR(journal->j_chksum_driver)) { 1816 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1817 err = PTR_ERR(journal->j_chksum_driver); 1818 journal->j_chksum_driver = NULL; 1819 goto out; 1820 } 1821 } 1822 1823 if (jbd2_journal_has_csum_v2or3(journal)) { 1824 /* Check superblock checksum */ 1825 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1826 printk(KERN_ERR "JBD2: journal checksum error\n"); 1827 err = -EFSBADCRC; 1828 goto out; 1829 } 1830 1831 /* Precompute checksum seed for all metadata */ 1832 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1833 sizeof(sb->s_uuid)); 1834 } 1835 1836 journal->j_revoke_records_per_block = 1837 journal_revoke_records_per_block(journal); 1838 set_buffer_verified(bh); 1839 1840 return 0; 1841 1842 out: 1843 journal_fail_superblock(journal); 1844 return err; 1845 } 1846 1847 /* 1848 * Load the on-disk journal superblock and read the key fields into the 1849 * journal_t. 1850 */ 1851 1852 static int load_superblock(journal_t *journal) 1853 { 1854 int err; 1855 journal_superblock_t *sb; 1856 int num_fc_blocks; 1857 1858 err = journal_get_superblock(journal); 1859 if (err) 1860 return err; 1861 1862 sb = journal->j_superblock; 1863 1864 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1865 journal->j_tail = be32_to_cpu(sb->s_start); 1866 journal->j_first = be32_to_cpu(sb->s_first); 1867 journal->j_errno = be32_to_cpu(sb->s_errno); 1868 journal->j_last = be32_to_cpu(sb->s_maxlen); 1869 1870 if (jbd2_has_feature_fast_commit(journal)) { 1871 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1872 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb); 1873 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 1874 journal->j_last = journal->j_fc_last - num_fc_blocks; 1875 journal->j_fc_first = journal->j_last + 1; 1876 journal->j_fc_off = 0; 1877 } 1878 1879 return 0; 1880 } 1881 1882 1883 /** 1884 * jbd2_journal_load() - Read journal from disk. 1885 * @journal: Journal to act on. 1886 * 1887 * Given a journal_t structure which tells us which disk blocks contain 1888 * a journal, read the journal from disk to initialise the in-memory 1889 * structures. 1890 */ 1891 int jbd2_journal_load(journal_t *journal) 1892 { 1893 int err; 1894 journal_superblock_t *sb; 1895 1896 err = load_superblock(journal); 1897 if (err) 1898 return err; 1899 1900 sb = journal->j_superblock; 1901 /* If this is a V2 superblock, then we have to check the 1902 * features flags on it. */ 1903 1904 if (journal->j_format_version >= 2) { 1905 if ((sb->s_feature_ro_compat & 1906 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1907 (sb->s_feature_incompat & 1908 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1909 printk(KERN_WARNING 1910 "JBD2: Unrecognised features on journal\n"); 1911 return -EINVAL; 1912 } 1913 } 1914 1915 /* 1916 * Create a slab for this blocksize 1917 */ 1918 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1919 if (err) 1920 return err; 1921 1922 /* Let the recovery code check whether it needs to recover any 1923 * data from the journal. */ 1924 if (jbd2_journal_recover(journal)) 1925 goto recovery_error; 1926 1927 if (journal->j_failed_commit) { 1928 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1929 "is corrupt.\n", journal->j_failed_commit, 1930 journal->j_devname); 1931 return -EFSCORRUPTED; 1932 } 1933 /* 1934 * clear JBD2_ABORT flag initialized in journal_init_common 1935 * here to update log tail information with the newest seq. 1936 */ 1937 journal->j_flags &= ~JBD2_ABORT; 1938 1939 /* OK, we've finished with the dynamic journal bits: 1940 * reinitialise the dynamic contents of the superblock in memory 1941 * and reset them on disk. */ 1942 if (journal_reset(journal)) 1943 goto recovery_error; 1944 1945 journal->j_flags |= JBD2_LOADED; 1946 return 0; 1947 1948 recovery_error: 1949 printk(KERN_WARNING "JBD2: recovery failed\n"); 1950 return -EIO; 1951 } 1952 1953 /** 1954 * jbd2_journal_destroy() - Release a journal_t structure. 1955 * @journal: Journal to act on. 1956 * 1957 * Release a journal_t structure once it is no longer in use by the 1958 * journaled object. 1959 * Return <0 if we couldn't clean up the journal. 1960 */ 1961 int jbd2_journal_destroy(journal_t *journal) 1962 { 1963 int err = 0; 1964 1965 /* Wait for the commit thread to wake up and die. */ 1966 journal_kill_thread(journal); 1967 1968 /* Force a final log commit */ 1969 if (journal->j_running_transaction) 1970 jbd2_journal_commit_transaction(journal); 1971 1972 /* Force any old transactions to disk */ 1973 1974 /* Totally anal locking here... */ 1975 spin_lock(&journal->j_list_lock); 1976 while (journal->j_checkpoint_transactions != NULL) { 1977 spin_unlock(&journal->j_list_lock); 1978 mutex_lock_io(&journal->j_checkpoint_mutex); 1979 err = jbd2_log_do_checkpoint(journal); 1980 mutex_unlock(&journal->j_checkpoint_mutex); 1981 /* 1982 * If checkpointing failed, just free the buffers to avoid 1983 * looping forever 1984 */ 1985 if (err) { 1986 jbd2_journal_destroy_checkpoint(journal); 1987 spin_lock(&journal->j_list_lock); 1988 break; 1989 } 1990 spin_lock(&journal->j_list_lock); 1991 } 1992 1993 J_ASSERT(journal->j_running_transaction == NULL); 1994 J_ASSERT(journal->j_committing_transaction == NULL); 1995 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1996 spin_unlock(&journal->j_list_lock); 1997 1998 if (journal->j_sb_buffer) { 1999 if (!is_journal_aborted(journal)) { 2000 mutex_lock_io(&journal->j_checkpoint_mutex); 2001 2002 write_lock(&journal->j_state_lock); 2003 journal->j_tail_sequence = 2004 ++journal->j_transaction_sequence; 2005 write_unlock(&journal->j_state_lock); 2006 2007 jbd2_mark_journal_empty(journal, 2008 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2009 mutex_unlock(&journal->j_checkpoint_mutex); 2010 } else 2011 err = -EIO; 2012 brelse(journal->j_sb_buffer); 2013 } 2014 2015 if (journal->j_proc_entry) 2016 jbd2_stats_proc_exit(journal); 2017 iput(journal->j_inode); 2018 if (journal->j_revoke) 2019 jbd2_journal_destroy_revoke(journal); 2020 if (journal->j_chksum_driver) 2021 crypto_free_shash(journal->j_chksum_driver); 2022 kfree(journal->j_fc_wbuf); 2023 kfree(journal->j_wbuf); 2024 kfree(journal); 2025 2026 return err; 2027 } 2028 2029 2030 /** 2031 * jbd2_journal_check_used_features() - Check if features specified are used. 2032 * @journal: Journal to check. 2033 * @compat: bitmask of compatible features 2034 * @ro: bitmask of features that force read-only mount 2035 * @incompat: bitmask of incompatible features 2036 * 2037 * Check whether the journal uses all of a given set of 2038 * features. Return true (non-zero) if it does. 2039 **/ 2040 2041 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2042 unsigned long ro, unsigned long incompat) 2043 { 2044 journal_superblock_t *sb; 2045 2046 if (!compat && !ro && !incompat) 2047 return 1; 2048 /* Load journal superblock if it is not loaded yet. */ 2049 if (journal->j_format_version == 0 && 2050 journal_get_superblock(journal) != 0) 2051 return 0; 2052 if (journal->j_format_version == 1) 2053 return 0; 2054 2055 sb = journal->j_superblock; 2056 2057 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2058 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2059 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2060 return 1; 2061 2062 return 0; 2063 } 2064 2065 /** 2066 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2067 * @journal: Journal to check. 2068 * @compat: bitmask of compatible features 2069 * @ro: bitmask of features that force read-only mount 2070 * @incompat: bitmask of incompatible features 2071 * 2072 * Check whether the journaling code supports the use of 2073 * all of a given set of features on this journal. Return true 2074 * (non-zero) if it can. */ 2075 2076 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2077 unsigned long ro, unsigned long incompat) 2078 { 2079 if (!compat && !ro && !incompat) 2080 return 1; 2081 2082 /* We can support any known requested features iff the 2083 * superblock is in version 2. Otherwise we fail to support any 2084 * extended sb features. */ 2085 2086 if (journal->j_format_version != 2) 2087 return 0; 2088 2089 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2090 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2091 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2092 return 1; 2093 2094 return 0; 2095 } 2096 2097 static int 2098 jbd2_journal_initialize_fast_commit(journal_t *journal) 2099 { 2100 journal_superblock_t *sb = journal->j_superblock; 2101 unsigned long long num_fc_blks; 2102 2103 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2104 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2105 return -ENOSPC; 2106 2107 /* Are we called twice? */ 2108 WARN_ON(journal->j_fc_wbuf != NULL); 2109 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2110 sizeof(struct buffer_head *), GFP_KERNEL); 2111 if (!journal->j_fc_wbuf) 2112 return -ENOMEM; 2113 2114 journal->j_fc_wbufsize = num_fc_blks; 2115 journal->j_fc_last = journal->j_last; 2116 journal->j_last = journal->j_fc_last - num_fc_blks; 2117 journal->j_fc_first = journal->j_last + 1; 2118 journal->j_fc_off = 0; 2119 journal->j_free = journal->j_last - journal->j_first; 2120 journal->j_max_transaction_buffers = 2121 jbd2_journal_get_max_txn_bufs(journal); 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2128 * @journal: Journal to act on. 2129 * @compat: bitmask of compatible features 2130 * @ro: bitmask of features that force read-only mount 2131 * @incompat: bitmask of incompatible features 2132 * 2133 * Mark a given journal feature as present on the 2134 * superblock. Returns true if the requested features could be set. 2135 * 2136 */ 2137 2138 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2139 unsigned long ro, unsigned long incompat) 2140 { 2141 #define INCOMPAT_FEATURE_ON(f) \ 2142 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2143 #define COMPAT_FEATURE_ON(f) \ 2144 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2145 journal_superblock_t *sb; 2146 2147 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2148 return 1; 2149 2150 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2151 return 0; 2152 2153 /* If enabling v2 checksums, turn on v3 instead */ 2154 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2155 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2156 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2157 } 2158 2159 /* Asking for checksumming v3 and v1? Only give them v3. */ 2160 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2161 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2162 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2163 2164 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2165 compat, ro, incompat); 2166 2167 sb = journal->j_superblock; 2168 2169 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2170 if (jbd2_journal_initialize_fast_commit(journal)) { 2171 pr_err("JBD2: Cannot enable fast commits.\n"); 2172 return 0; 2173 } 2174 } 2175 2176 /* Load the checksum driver if necessary */ 2177 if ((journal->j_chksum_driver == NULL) && 2178 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2179 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2180 if (IS_ERR(journal->j_chksum_driver)) { 2181 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2182 journal->j_chksum_driver = NULL; 2183 return 0; 2184 } 2185 /* Precompute checksum seed for all metadata */ 2186 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2187 sizeof(sb->s_uuid)); 2188 } 2189 2190 lock_buffer(journal->j_sb_buffer); 2191 2192 /* If enabling v3 checksums, update superblock */ 2193 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2194 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2195 sb->s_feature_compat &= 2196 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2197 } 2198 2199 /* If enabling v1 checksums, downgrade superblock */ 2200 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2201 sb->s_feature_incompat &= 2202 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2203 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2204 2205 sb->s_feature_compat |= cpu_to_be32(compat); 2206 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2207 sb->s_feature_incompat |= cpu_to_be32(incompat); 2208 unlock_buffer(journal->j_sb_buffer); 2209 journal->j_revoke_records_per_block = 2210 journal_revoke_records_per_block(journal); 2211 2212 return 1; 2213 #undef COMPAT_FEATURE_ON 2214 #undef INCOMPAT_FEATURE_ON 2215 } 2216 2217 /* 2218 * jbd2_journal_clear_features() - Clear a given journal feature in the 2219 * superblock 2220 * @journal: Journal to act on. 2221 * @compat: bitmask of compatible features 2222 * @ro: bitmask of features that force read-only mount 2223 * @incompat: bitmask of incompatible features 2224 * 2225 * Clear a given journal feature as present on the 2226 * superblock. 2227 */ 2228 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2229 unsigned long ro, unsigned long incompat) 2230 { 2231 journal_superblock_t *sb; 2232 2233 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2234 compat, ro, incompat); 2235 2236 sb = journal->j_superblock; 2237 2238 sb->s_feature_compat &= ~cpu_to_be32(compat); 2239 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2240 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2241 journal->j_revoke_records_per_block = 2242 journal_revoke_records_per_block(journal); 2243 } 2244 EXPORT_SYMBOL(jbd2_journal_clear_features); 2245 2246 /** 2247 * jbd2_journal_flush() - Flush journal 2248 * @journal: Journal to act on. 2249 * 2250 * Flush all data for a given journal to disk and empty the journal. 2251 * Filesystems can use this when remounting readonly to ensure that 2252 * recovery does not need to happen on remount. 2253 */ 2254 2255 int jbd2_journal_flush(journal_t *journal) 2256 { 2257 int err = 0; 2258 transaction_t *transaction = NULL; 2259 2260 write_lock(&journal->j_state_lock); 2261 2262 /* Force everything buffered to the log... */ 2263 if (journal->j_running_transaction) { 2264 transaction = journal->j_running_transaction; 2265 __jbd2_log_start_commit(journal, transaction->t_tid); 2266 } else if (journal->j_committing_transaction) 2267 transaction = journal->j_committing_transaction; 2268 2269 /* Wait for the log commit to complete... */ 2270 if (transaction) { 2271 tid_t tid = transaction->t_tid; 2272 2273 write_unlock(&journal->j_state_lock); 2274 jbd2_log_wait_commit(journal, tid); 2275 } else { 2276 write_unlock(&journal->j_state_lock); 2277 } 2278 2279 /* ...and flush everything in the log out to disk. */ 2280 spin_lock(&journal->j_list_lock); 2281 while (!err && journal->j_checkpoint_transactions != NULL) { 2282 spin_unlock(&journal->j_list_lock); 2283 mutex_lock_io(&journal->j_checkpoint_mutex); 2284 err = jbd2_log_do_checkpoint(journal); 2285 mutex_unlock(&journal->j_checkpoint_mutex); 2286 spin_lock(&journal->j_list_lock); 2287 } 2288 spin_unlock(&journal->j_list_lock); 2289 2290 if (is_journal_aborted(journal)) 2291 return -EIO; 2292 2293 mutex_lock_io(&journal->j_checkpoint_mutex); 2294 if (!err) { 2295 err = jbd2_cleanup_journal_tail(journal); 2296 if (err < 0) { 2297 mutex_unlock(&journal->j_checkpoint_mutex); 2298 goto out; 2299 } 2300 err = 0; 2301 } 2302 2303 /* Finally, mark the journal as really needing no recovery. 2304 * This sets s_start==0 in the underlying superblock, which is 2305 * the magic code for a fully-recovered superblock. Any future 2306 * commits of data to the journal will restore the current 2307 * s_start value. */ 2308 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2309 mutex_unlock(&journal->j_checkpoint_mutex); 2310 write_lock(&journal->j_state_lock); 2311 J_ASSERT(!journal->j_running_transaction); 2312 J_ASSERT(!journal->j_committing_transaction); 2313 J_ASSERT(!journal->j_checkpoint_transactions); 2314 J_ASSERT(journal->j_head == journal->j_tail); 2315 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2316 write_unlock(&journal->j_state_lock); 2317 out: 2318 return err; 2319 } 2320 2321 /** 2322 * jbd2_journal_wipe() - Wipe journal contents 2323 * @journal: Journal to act on. 2324 * @write: flag (see below) 2325 * 2326 * Wipe out all of the contents of a journal, safely. This will produce 2327 * a warning if the journal contains any valid recovery information. 2328 * Must be called between journal_init_*() and jbd2_journal_load(). 2329 * 2330 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2331 * we merely suppress recovery. 2332 */ 2333 2334 int jbd2_journal_wipe(journal_t *journal, int write) 2335 { 2336 int err = 0; 2337 2338 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2339 2340 err = load_superblock(journal); 2341 if (err) 2342 return err; 2343 2344 if (!journal->j_tail) 2345 goto no_recovery; 2346 2347 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2348 write ? "Clearing" : "Ignoring"); 2349 2350 err = jbd2_journal_skip_recovery(journal); 2351 if (write) { 2352 /* Lock to make assertions happy... */ 2353 mutex_lock_io(&journal->j_checkpoint_mutex); 2354 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2355 mutex_unlock(&journal->j_checkpoint_mutex); 2356 } 2357 2358 no_recovery: 2359 return err; 2360 } 2361 2362 /** 2363 * jbd2_journal_abort () - Shutdown the journal immediately. 2364 * @journal: the journal to shutdown. 2365 * @errno: an error number to record in the journal indicating 2366 * the reason for the shutdown. 2367 * 2368 * Perform a complete, immediate shutdown of the ENTIRE 2369 * journal (not of a single transaction). This operation cannot be 2370 * undone without closing and reopening the journal. 2371 * 2372 * The jbd2_journal_abort function is intended to support higher level error 2373 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2374 * mode. 2375 * 2376 * Journal abort has very specific semantics. Any existing dirty, 2377 * unjournaled buffers in the main filesystem will still be written to 2378 * disk by bdflush, but the journaling mechanism will be suspended 2379 * immediately and no further transaction commits will be honoured. 2380 * 2381 * Any dirty, journaled buffers will be written back to disk without 2382 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2383 * filesystem, but we _do_ attempt to leave as much data as possible 2384 * behind for fsck to use for cleanup. 2385 * 2386 * Any attempt to get a new transaction handle on a journal which is in 2387 * ABORT state will just result in an -EROFS error return. A 2388 * jbd2_journal_stop on an existing handle will return -EIO if we have 2389 * entered abort state during the update. 2390 * 2391 * Recursive transactions are not disturbed by journal abort until the 2392 * final jbd2_journal_stop, which will receive the -EIO error. 2393 * 2394 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2395 * which will be recorded (if possible) in the journal superblock. This 2396 * allows a client to record failure conditions in the middle of a 2397 * transaction without having to complete the transaction to record the 2398 * failure to disk. ext3_error, for example, now uses this 2399 * functionality. 2400 * 2401 */ 2402 2403 void jbd2_journal_abort(journal_t *journal, int errno) 2404 { 2405 transaction_t *transaction; 2406 2407 /* 2408 * Lock the aborting procedure until everything is done, this avoid 2409 * races between filesystem's error handling flow (e.g. ext4_abort()), 2410 * ensure panic after the error info is written into journal's 2411 * superblock. 2412 */ 2413 mutex_lock(&journal->j_abort_mutex); 2414 /* 2415 * ESHUTDOWN always takes precedence because a file system check 2416 * caused by any other journal abort error is not required after 2417 * a shutdown triggered. 2418 */ 2419 write_lock(&journal->j_state_lock); 2420 if (journal->j_flags & JBD2_ABORT) { 2421 int old_errno = journal->j_errno; 2422 2423 write_unlock(&journal->j_state_lock); 2424 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2425 journal->j_errno = errno; 2426 jbd2_journal_update_sb_errno(journal); 2427 } 2428 mutex_unlock(&journal->j_abort_mutex); 2429 return; 2430 } 2431 2432 /* 2433 * Mark the abort as occurred and start current running transaction 2434 * to release all journaled buffer. 2435 */ 2436 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2437 2438 journal->j_flags |= JBD2_ABORT; 2439 journal->j_errno = errno; 2440 transaction = journal->j_running_transaction; 2441 if (transaction) 2442 __jbd2_log_start_commit(journal, transaction->t_tid); 2443 write_unlock(&journal->j_state_lock); 2444 2445 /* 2446 * Record errno to the journal super block, so that fsck and jbd2 2447 * layer could realise that a filesystem check is needed. 2448 */ 2449 jbd2_journal_update_sb_errno(journal); 2450 mutex_unlock(&journal->j_abort_mutex); 2451 } 2452 2453 /** 2454 * jbd2_journal_errno() - returns the journal's error state. 2455 * @journal: journal to examine. 2456 * 2457 * This is the errno number set with jbd2_journal_abort(), the last 2458 * time the journal was mounted - if the journal was stopped 2459 * without calling abort this will be 0. 2460 * 2461 * If the journal has been aborted on this mount time -EROFS will 2462 * be returned. 2463 */ 2464 int jbd2_journal_errno(journal_t *journal) 2465 { 2466 int err; 2467 2468 read_lock(&journal->j_state_lock); 2469 if (journal->j_flags & JBD2_ABORT) 2470 err = -EROFS; 2471 else 2472 err = journal->j_errno; 2473 read_unlock(&journal->j_state_lock); 2474 return err; 2475 } 2476 2477 /** 2478 * jbd2_journal_clear_err() - clears the journal's error state 2479 * @journal: journal to act on. 2480 * 2481 * An error must be cleared or acked to take a FS out of readonly 2482 * mode. 2483 */ 2484 int jbd2_journal_clear_err(journal_t *journal) 2485 { 2486 int err = 0; 2487 2488 write_lock(&journal->j_state_lock); 2489 if (journal->j_flags & JBD2_ABORT) 2490 err = -EROFS; 2491 else 2492 journal->j_errno = 0; 2493 write_unlock(&journal->j_state_lock); 2494 return err; 2495 } 2496 2497 /** 2498 * jbd2_journal_ack_err() - Ack journal err. 2499 * @journal: journal to act on. 2500 * 2501 * An error must be cleared or acked to take a FS out of readonly 2502 * mode. 2503 */ 2504 void jbd2_journal_ack_err(journal_t *journal) 2505 { 2506 write_lock(&journal->j_state_lock); 2507 if (journal->j_errno) 2508 journal->j_flags |= JBD2_ACK_ERR; 2509 write_unlock(&journal->j_state_lock); 2510 } 2511 2512 int jbd2_journal_blocks_per_page(struct inode *inode) 2513 { 2514 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2515 } 2516 2517 /* 2518 * helper functions to deal with 32 or 64bit block numbers. 2519 */ 2520 size_t journal_tag_bytes(journal_t *journal) 2521 { 2522 size_t sz; 2523 2524 if (jbd2_has_feature_csum3(journal)) 2525 return sizeof(journal_block_tag3_t); 2526 2527 sz = sizeof(journal_block_tag_t); 2528 2529 if (jbd2_has_feature_csum2(journal)) 2530 sz += sizeof(__u16); 2531 2532 if (jbd2_has_feature_64bit(journal)) 2533 return sz; 2534 else 2535 return sz - sizeof(__u32); 2536 } 2537 2538 /* 2539 * JBD memory management 2540 * 2541 * These functions are used to allocate block-sized chunks of memory 2542 * used for making copies of buffer_head data. Very often it will be 2543 * page-sized chunks of data, but sometimes it will be in 2544 * sub-page-size chunks. (For example, 16k pages on Power systems 2545 * with a 4k block file system.) For blocks smaller than a page, we 2546 * use a SLAB allocator. There are slab caches for each block size, 2547 * which are allocated at mount time, if necessary, and we only free 2548 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2549 * this reason we don't need to a mutex to protect access to 2550 * jbd2_slab[] allocating or releasing memory; only in 2551 * jbd2_journal_create_slab(). 2552 */ 2553 #define JBD2_MAX_SLABS 8 2554 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2555 2556 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2557 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2558 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2559 }; 2560 2561 2562 static void jbd2_journal_destroy_slabs(void) 2563 { 2564 int i; 2565 2566 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2567 kmem_cache_destroy(jbd2_slab[i]); 2568 jbd2_slab[i] = NULL; 2569 } 2570 } 2571 2572 static int jbd2_journal_create_slab(size_t size) 2573 { 2574 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2575 int i = order_base_2(size) - 10; 2576 size_t slab_size; 2577 2578 if (size == PAGE_SIZE) 2579 return 0; 2580 2581 if (i >= JBD2_MAX_SLABS) 2582 return -EINVAL; 2583 2584 if (unlikely(i < 0)) 2585 i = 0; 2586 mutex_lock(&jbd2_slab_create_mutex); 2587 if (jbd2_slab[i]) { 2588 mutex_unlock(&jbd2_slab_create_mutex); 2589 return 0; /* Already created */ 2590 } 2591 2592 slab_size = 1 << (i+10); 2593 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2594 slab_size, 0, NULL); 2595 mutex_unlock(&jbd2_slab_create_mutex); 2596 if (!jbd2_slab[i]) { 2597 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2598 return -ENOMEM; 2599 } 2600 return 0; 2601 } 2602 2603 static struct kmem_cache *get_slab(size_t size) 2604 { 2605 int i = order_base_2(size) - 10; 2606 2607 BUG_ON(i >= JBD2_MAX_SLABS); 2608 if (unlikely(i < 0)) 2609 i = 0; 2610 BUG_ON(jbd2_slab[i] == NULL); 2611 return jbd2_slab[i]; 2612 } 2613 2614 void *jbd2_alloc(size_t size, gfp_t flags) 2615 { 2616 void *ptr; 2617 2618 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2619 2620 if (size < PAGE_SIZE) 2621 ptr = kmem_cache_alloc(get_slab(size), flags); 2622 else 2623 ptr = (void *)__get_free_pages(flags, get_order(size)); 2624 2625 /* Check alignment; SLUB has gotten this wrong in the past, 2626 * and this can lead to user data corruption! */ 2627 BUG_ON(((unsigned long) ptr) & (size-1)); 2628 2629 return ptr; 2630 } 2631 2632 void jbd2_free(void *ptr, size_t size) 2633 { 2634 if (size < PAGE_SIZE) 2635 kmem_cache_free(get_slab(size), ptr); 2636 else 2637 free_pages((unsigned long)ptr, get_order(size)); 2638 }; 2639 2640 /* 2641 * Journal_head storage management 2642 */ 2643 static struct kmem_cache *jbd2_journal_head_cache; 2644 #ifdef CONFIG_JBD2_DEBUG 2645 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2646 #endif 2647 2648 static int __init jbd2_journal_init_journal_head_cache(void) 2649 { 2650 J_ASSERT(!jbd2_journal_head_cache); 2651 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2652 sizeof(struct journal_head), 2653 0, /* offset */ 2654 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2655 NULL); /* ctor */ 2656 if (!jbd2_journal_head_cache) { 2657 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2658 return -ENOMEM; 2659 } 2660 return 0; 2661 } 2662 2663 static void jbd2_journal_destroy_journal_head_cache(void) 2664 { 2665 kmem_cache_destroy(jbd2_journal_head_cache); 2666 jbd2_journal_head_cache = NULL; 2667 } 2668 2669 /* 2670 * journal_head splicing and dicing 2671 */ 2672 static struct journal_head *journal_alloc_journal_head(void) 2673 { 2674 struct journal_head *ret; 2675 2676 #ifdef CONFIG_JBD2_DEBUG 2677 atomic_inc(&nr_journal_heads); 2678 #endif 2679 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2680 if (!ret) { 2681 jbd_debug(1, "out of memory for journal_head\n"); 2682 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2683 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2684 GFP_NOFS | __GFP_NOFAIL); 2685 } 2686 if (ret) 2687 spin_lock_init(&ret->b_state_lock); 2688 return ret; 2689 } 2690 2691 static void journal_free_journal_head(struct journal_head *jh) 2692 { 2693 #ifdef CONFIG_JBD2_DEBUG 2694 atomic_dec(&nr_journal_heads); 2695 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2696 #endif 2697 kmem_cache_free(jbd2_journal_head_cache, jh); 2698 } 2699 2700 /* 2701 * A journal_head is attached to a buffer_head whenever JBD has an 2702 * interest in the buffer. 2703 * 2704 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2705 * is set. This bit is tested in core kernel code where we need to take 2706 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2707 * there. 2708 * 2709 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2710 * 2711 * When a buffer has its BH_JBD bit set it is immune from being released by 2712 * core kernel code, mainly via ->b_count. 2713 * 2714 * A journal_head is detached from its buffer_head when the journal_head's 2715 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2716 * transaction (b_cp_transaction) hold their references to b_jcount. 2717 * 2718 * Various places in the kernel want to attach a journal_head to a buffer_head 2719 * _before_ attaching the journal_head to a transaction. To protect the 2720 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2721 * journal_head's b_jcount refcount by one. The caller must call 2722 * jbd2_journal_put_journal_head() to undo this. 2723 * 2724 * So the typical usage would be: 2725 * 2726 * (Attach a journal_head if needed. Increments b_jcount) 2727 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2728 * ... 2729 * (Get another reference for transaction) 2730 * jbd2_journal_grab_journal_head(bh); 2731 * jh->b_transaction = xxx; 2732 * (Put original reference) 2733 * jbd2_journal_put_journal_head(jh); 2734 */ 2735 2736 /* 2737 * Give a buffer_head a journal_head. 2738 * 2739 * May sleep. 2740 */ 2741 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2742 { 2743 struct journal_head *jh; 2744 struct journal_head *new_jh = NULL; 2745 2746 repeat: 2747 if (!buffer_jbd(bh)) 2748 new_jh = journal_alloc_journal_head(); 2749 2750 jbd_lock_bh_journal_head(bh); 2751 if (buffer_jbd(bh)) { 2752 jh = bh2jh(bh); 2753 } else { 2754 J_ASSERT_BH(bh, 2755 (atomic_read(&bh->b_count) > 0) || 2756 (bh->b_page && bh->b_page->mapping)); 2757 2758 if (!new_jh) { 2759 jbd_unlock_bh_journal_head(bh); 2760 goto repeat; 2761 } 2762 2763 jh = new_jh; 2764 new_jh = NULL; /* We consumed it */ 2765 set_buffer_jbd(bh); 2766 bh->b_private = jh; 2767 jh->b_bh = bh; 2768 get_bh(bh); 2769 BUFFER_TRACE(bh, "added journal_head"); 2770 } 2771 jh->b_jcount++; 2772 jbd_unlock_bh_journal_head(bh); 2773 if (new_jh) 2774 journal_free_journal_head(new_jh); 2775 return bh->b_private; 2776 } 2777 2778 /* 2779 * Grab a ref against this buffer_head's journal_head. If it ended up not 2780 * having a journal_head, return NULL 2781 */ 2782 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2783 { 2784 struct journal_head *jh = NULL; 2785 2786 jbd_lock_bh_journal_head(bh); 2787 if (buffer_jbd(bh)) { 2788 jh = bh2jh(bh); 2789 jh->b_jcount++; 2790 } 2791 jbd_unlock_bh_journal_head(bh); 2792 return jh; 2793 } 2794 2795 static void __journal_remove_journal_head(struct buffer_head *bh) 2796 { 2797 struct journal_head *jh = bh2jh(bh); 2798 2799 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2800 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2801 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2802 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2803 J_ASSERT_BH(bh, buffer_jbd(bh)); 2804 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2805 BUFFER_TRACE(bh, "remove journal_head"); 2806 2807 /* Unlink before dropping the lock */ 2808 bh->b_private = NULL; 2809 jh->b_bh = NULL; /* debug, really */ 2810 clear_buffer_jbd(bh); 2811 } 2812 2813 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2814 { 2815 if (jh->b_frozen_data) { 2816 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2817 jbd2_free(jh->b_frozen_data, b_size); 2818 } 2819 if (jh->b_committed_data) { 2820 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2821 jbd2_free(jh->b_committed_data, b_size); 2822 } 2823 journal_free_journal_head(jh); 2824 } 2825 2826 /* 2827 * Drop a reference on the passed journal_head. If it fell to zero then 2828 * release the journal_head from the buffer_head. 2829 */ 2830 void jbd2_journal_put_journal_head(struct journal_head *jh) 2831 { 2832 struct buffer_head *bh = jh2bh(jh); 2833 2834 jbd_lock_bh_journal_head(bh); 2835 J_ASSERT_JH(jh, jh->b_jcount > 0); 2836 --jh->b_jcount; 2837 if (!jh->b_jcount) { 2838 __journal_remove_journal_head(bh); 2839 jbd_unlock_bh_journal_head(bh); 2840 journal_release_journal_head(jh, bh->b_size); 2841 __brelse(bh); 2842 } else { 2843 jbd_unlock_bh_journal_head(bh); 2844 } 2845 } 2846 2847 /* 2848 * Initialize jbd inode head 2849 */ 2850 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2851 { 2852 jinode->i_transaction = NULL; 2853 jinode->i_next_transaction = NULL; 2854 jinode->i_vfs_inode = inode; 2855 jinode->i_flags = 0; 2856 jinode->i_dirty_start = 0; 2857 jinode->i_dirty_end = 0; 2858 INIT_LIST_HEAD(&jinode->i_list); 2859 } 2860 2861 /* 2862 * Function to be called before we start removing inode from memory (i.e., 2863 * clear_inode() is a fine place to be called from). It removes inode from 2864 * transaction's lists. 2865 */ 2866 void jbd2_journal_release_jbd_inode(journal_t *journal, 2867 struct jbd2_inode *jinode) 2868 { 2869 if (!journal) 2870 return; 2871 restart: 2872 spin_lock(&journal->j_list_lock); 2873 /* Is commit writing out inode - we have to wait */ 2874 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2875 wait_queue_head_t *wq; 2876 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2877 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2878 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2879 spin_unlock(&journal->j_list_lock); 2880 schedule(); 2881 finish_wait(wq, &wait.wq_entry); 2882 goto restart; 2883 } 2884 2885 if (jinode->i_transaction) { 2886 list_del(&jinode->i_list); 2887 jinode->i_transaction = NULL; 2888 } 2889 spin_unlock(&journal->j_list_lock); 2890 } 2891 2892 2893 #ifdef CONFIG_PROC_FS 2894 2895 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2896 2897 static void __init jbd2_create_jbd_stats_proc_entry(void) 2898 { 2899 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2900 } 2901 2902 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2903 { 2904 if (proc_jbd2_stats) 2905 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2906 } 2907 2908 #else 2909 2910 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2911 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2912 2913 #endif 2914 2915 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2916 2917 static int __init jbd2_journal_init_inode_cache(void) 2918 { 2919 J_ASSERT(!jbd2_inode_cache); 2920 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2921 if (!jbd2_inode_cache) { 2922 pr_emerg("JBD2: failed to create inode cache\n"); 2923 return -ENOMEM; 2924 } 2925 return 0; 2926 } 2927 2928 static int __init jbd2_journal_init_handle_cache(void) 2929 { 2930 J_ASSERT(!jbd2_handle_cache); 2931 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2932 if (!jbd2_handle_cache) { 2933 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2934 return -ENOMEM; 2935 } 2936 return 0; 2937 } 2938 2939 static void jbd2_journal_destroy_inode_cache(void) 2940 { 2941 kmem_cache_destroy(jbd2_inode_cache); 2942 jbd2_inode_cache = NULL; 2943 } 2944 2945 static void jbd2_journal_destroy_handle_cache(void) 2946 { 2947 kmem_cache_destroy(jbd2_handle_cache); 2948 jbd2_handle_cache = NULL; 2949 } 2950 2951 /* 2952 * Module startup and shutdown 2953 */ 2954 2955 static int __init journal_init_caches(void) 2956 { 2957 int ret; 2958 2959 ret = jbd2_journal_init_revoke_record_cache(); 2960 if (ret == 0) 2961 ret = jbd2_journal_init_revoke_table_cache(); 2962 if (ret == 0) 2963 ret = jbd2_journal_init_journal_head_cache(); 2964 if (ret == 0) 2965 ret = jbd2_journal_init_handle_cache(); 2966 if (ret == 0) 2967 ret = jbd2_journal_init_inode_cache(); 2968 if (ret == 0) 2969 ret = jbd2_journal_init_transaction_cache(); 2970 return ret; 2971 } 2972 2973 static void jbd2_journal_destroy_caches(void) 2974 { 2975 jbd2_journal_destroy_revoke_record_cache(); 2976 jbd2_journal_destroy_revoke_table_cache(); 2977 jbd2_journal_destroy_journal_head_cache(); 2978 jbd2_journal_destroy_handle_cache(); 2979 jbd2_journal_destroy_inode_cache(); 2980 jbd2_journal_destroy_transaction_cache(); 2981 jbd2_journal_destroy_slabs(); 2982 } 2983 2984 static int __init journal_init(void) 2985 { 2986 int ret; 2987 2988 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2989 2990 ret = journal_init_caches(); 2991 if (ret == 0) { 2992 jbd2_create_jbd_stats_proc_entry(); 2993 } else { 2994 jbd2_journal_destroy_caches(); 2995 } 2996 return ret; 2997 } 2998 2999 static void __exit journal_exit(void) 3000 { 3001 #ifdef CONFIG_JBD2_DEBUG 3002 int n = atomic_read(&nr_journal_heads); 3003 if (n) 3004 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3005 #endif 3006 jbd2_remove_jbd_stats_proc_entry(); 3007 jbd2_journal_destroy_caches(); 3008 } 3009 3010 MODULE_LICENSE("GPL"); 3011 module_init(journal_init); 3012 module_exit(journal_exit); 3013 3014