1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 570 * calling process is not within transaction. 571 * 572 * @journal: journal to force 573 * Returns true if progress was made. 574 * 575 * This is used for forcing out undo-protected data which contains 576 * bitmaps, when the fs is running out of space. 577 */ 578 int jbd2_journal_force_commit_nested(journal_t *journal) 579 { 580 int ret; 581 582 ret = __jbd2_journal_force_commit(journal); 583 return ret > 0; 584 } 585 586 /** 587 * jbd2_journal_force_commit() - force any uncommitted transactions 588 * @journal: journal to force 589 * 590 * Caller want unconditional commit. We can only force the running transaction 591 * if we don't have an active handle, otherwise, we will deadlock. 592 */ 593 int jbd2_journal_force_commit(journal_t *journal) 594 { 595 int ret; 596 597 J_ASSERT(!current->journal_info); 598 ret = __jbd2_journal_force_commit(journal); 599 if (ret > 0) 600 ret = 0; 601 return ret; 602 } 603 604 /* 605 * Start a commit of the current running transaction (if any). Returns true 606 * if a transaction is going to be committed (or is currently already 607 * committing), and fills its tid in at *ptid 608 */ 609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 610 { 611 int ret = 0; 612 613 write_lock(&journal->j_state_lock); 614 if (journal->j_running_transaction) { 615 tid_t tid = journal->j_running_transaction->t_tid; 616 617 __jbd2_log_start_commit(journal, tid); 618 /* There's a running transaction and we've just made sure 619 * it's commit has been scheduled. */ 620 if (ptid) 621 *ptid = tid; 622 ret = 1; 623 } else if (journal->j_committing_transaction) { 624 /* 625 * If commit has been started, then we have to wait for 626 * completion of that transaction. 627 */ 628 if (ptid) 629 *ptid = journal->j_committing_transaction->t_tid; 630 ret = 1; 631 } 632 write_unlock(&journal->j_state_lock); 633 return ret; 634 } 635 636 /* 637 * Return 1 if a given transaction has not yet sent barrier request 638 * connected with a transaction commit. If 0 is returned, transaction 639 * may or may not have sent the barrier. Used to avoid sending barrier 640 * twice in common cases. 641 */ 642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 643 { 644 int ret = 0; 645 transaction_t *commit_trans; 646 647 if (!(journal->j_flags & JBD2_BARRIER)) 648 return 0; 649 read_lock(&journal->j_state_lock); 650 /* Transaction already committed? */ 651 if (tid_geq(journal->j_commit_sequence, tid)) 652 goto out; 653 commit_trans = journal->j_committing_transaction; 654 if (!commit_trans || commit_trans->t_tid != tid) { 655 ret = 1; 656 goto out; 657 } 658 /* 659 * Transaction is being committed and we already proceeded to 660 * submitting a flush to fs partition? 661 */ 662 if (journal->j_fs_dev != journal->j_dev) { 663 if (!commit_trans->t_need_data_flush || 664 commit_trans->t_state >= T_COMMIT_DFLUSH) 665 goto out; 666 } else { 667 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 668 goto out; 669 } 670 ret = 1; 671 out: 672 read_unlock(&journal->j_state_lock); 673 return ret; 674 } 675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 676 677 /* 678 * Wait for a specified commit to complete. 679 * The caller may not hold the journal lock. 680 */ 681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 682 { 683 int err = 0; 684 685 read_lock(&journal->j_state_lock); 686 #ifdef CONFIG_PROVE_LOCKING 687 /* 688 * Some callers make sure transaction is already committing and in that 689 * case we cannot block on open handles anymore. So don't warn in that 690 * case. 691 */ 692 if (tid_gt(tid, journal->j_commit_sequence) && 693 (!journal->j_committing_transaction || 694 journal->j_committing_transaction->t_tid != tid)) { 695 read_unlock(&journal->j_state_lock); 696 jbd2_might_wait_for_commit(journal); 697 read_lock(&journal->j_state_lock); 698 } 699 #endif 700 #ifdef CONFIG_JBD2_DEBUG 701 if (!tid_geq(journal->j_commit_request, tid)) { 702 printk(KERN_ERR 703 "%s: error: j_commit_request=%u, tid=%u\n", 704 __func__, journal->j_commit_request, tid); 705 } 706 #endif 707 while (tid_gt(tid, journal->j_commit_sequence)) { 708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 709 tid, journal->j_commit_sequence); 710 read_unlock(&journal->j_state_lock); 711 wake_up(&journal->j_wait_commit); 712 wait_event(journal->j_wait_done_commit, 713 !tid_gt(tid, journal->j_commit_sequence)); 714 read_lock(&journal->j_state_lock); 715 } 716 read_unlock(&journal->j_state_lock); 717 718 if (unlikely(is_journal_aborted(journal))) 719 err = -EIO; 720 return err; 721 } 722 723 /* 724 * Start a fast commit. If there's an ongoing fast or full commit wait for 725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 726 * if a fast commit is not needed, either because there's an already a commit 727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 728 * commit has yet been performed. 729 */ 730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 731 { 732 if (unlikely(is_journal_aborted(journal))) 733 return -EIO; 734 /* 735 * Fast commits only allowed if at least one full commit has 736 * been processed. 737 */ 738 if (!journal->j_stats.ts_tid) 739 return -EINVAL; 740 741 write_lock(&journal->j_state_lock); 742 if (tid <= journal->j_commit_sequence) { 743 write_unlock(&journal->j_state_lock); 744 return -EALREADY; 745 } 746 747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 749 DEFINE_WAIT(wait); 750 751 prepare_to_wait(&journal->j_fc_wait, &wait, 752 TASK_UNINTERRUPTIBLE); 753 write_unlock(&journal->j_state_lock); 754 schedule(); 755 finish_wait(&journal->j_fc_wait, &wait); 756 return -EALREADY; 757 } 758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 759 write_unlock(&journal->j_state_lock); 760 761 return 0; 762 } 763 EXPORT_SYMBOL(jbd2_fc_begin_commit); 764 765 /* 766 * Stop a fast commit. If fallback is set, this function starts commit of 767 * TID tid before any other fast commit can start. 768 */ 769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 770 { 771 if (journal->j_fc_cleanup_callback) 772 journal->j_fc_cleanup_callback(journal, 0); 773 write_lock(&journal->j_state_lock); 774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 775 if (fallback) 776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 777 write_unlock(&journal->j_state_lock); 778 wake_up(&journal->j_fc_wait); 779 if (fallback) 780 return jbd2_complete_transaction(journal, tid); 781 return 0; 782 } 783 784 int jbd2_fc_end_commit(journal_t *journal) 785 { 786 return __jbd2_fc_end_commit(journal, 0, false); 787 } 788 EXPORT_SYMBOL(jbd2_fc_end_commit); 789 790 int jbd2_fc_end_commit_fallback(journal_t *journal) 791 { 792 tid_t tid; 793 794 read_lock(&journal->j_state_lock); 795 tid = journal->j_running_transaction ? 796 journal->j_running_transaction->t_tid : 0; 797 read_unlock(&journal->j_state_lock); 798 return __jbd2_fc_end_commit(journal, tid, true); 799 } 800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 801 802 /* Return 1 when transaction with given tid has already committed. */ 803 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 804 { 805 int ret = 1; 806 807 read_lock(&journal->j_state_lock); 808 if (journal->j_running_transaction && 809 journal->j_running_transaction->t_tid == tid) 810 ret = 0; 811 if (journal->j_committing_transaction && 812 journal->j_committing_transaction->t_tid == tid) 813 ret = 0; 814 read_unlock(&journal->j_state_lock); 815 return ret; 816 } 817 EXPORT_SYMBOL(jbd2_transaction_committed); 818 819 /* 820 * When this function returns the transaction corresponding to tid 821 * will be completed. If the transaction has currently running, start 822 * committing that transaction before waiting for it to complete. If 823 * the transaction id is stale, it is by definition already completed, 824 * so just return SUCCESS. 825 */ 826 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 827 { 828 int need_to_wait = 1; 829 830 read_lock(&journal->j_state_lock); 831 if (journal->j_running_transaction && 832 journal->j_running_transaction->t_tid == tid) { 833 if (journal->j_commit_request != tid) { 834 /* transaction not yet started, so request it */ 835 read_unlock(&journal->j_state_lock); 836 jbd2_log_start_commit(journal, tid); 837 goto wait_commit; 838 } 839 } else if (!(journal->j_committing_transaction && 840 journal->j_committing_transaction->t_tid == tid)) 841 need_to_wait = 0; 842 read_unlock(&journal->j_state_lock); 843 if (!need_to_wait) 844 return 0; 845 wait_commit: 846 return jbd2_log_wait_commit(journal, tid); 847 } 848 EXPORT_SYMBOL(jbd2_complete_transaction); 849 850 /* 851 * Log buffer allocation routines: 852 */ 853 854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 855 { 856 unsigned long blocknr; 857 858 write_lock(&journal->j_state_lock); 859 J_ASSERT(journal->j_free > 1); 860 861 blocknr = journal->j_head; 862 journal->j_head++; 863 journal->j_free--; 864 if (journal->j_head == journal->j_last) 865 journal->j_head = journal->j_first; 866 write_unlock(&journal->j_state_lock); 867 return jbd2_journal_bmap(journal, blocknr, retp); 868 } 869 870 /* Map one fast commit buffer for use by the file system */ 871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 872 { 873 unsigned long long pblock; 874 unsigned long blocknr; 875 int ret = 0; 876 struct buffer_head *bh; 877 int fc_off; 878 879 *bh_out = NULL; 880 881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 882 fc_off = journal->j_fc_off; 883 blocknr = journal->j_fc_first + fc_off; 884 journal->j_fc_off++; 885 } else { 886 ret = -EINVAL; 887 } 888 889 if (ret) 890 return ret; 891 892 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 893 if (ret) 894 return ret; 895 896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 897 if (!bh) 898 return -ENOMEM; 899 900 901 journal->j_fc_wbuf[fc_off] = bh; 902 903 *bh_out = bh; 904 905 return 0; 906 } 907 EXPORT_SYMBOL(jbd2_fc_get_buf); 908 909 /* 910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 911 * for completion. 912 */ 913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 914 { 915 struct buffer_head *bh; 916 int i, j_fc_off; 917 918 j_fc_off = journal->j_fc_off; 919 920 /* 921 * Wait in reverse order to minimize chances of us being woken up before 922 * all IOs have completed 923 */ 924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 925 bh = journal->j_fc_wbuf[i]; 926 wait_on_buffer(bh); 927 put_bh(bh); 928 journal->j_fc_wbuf[i] = NULL; 929 if (unlikely(!buffer_uptodate(bh))) 930 return -EIO; 931 } 932 933 return 0; 934 } 935 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 936 937 int jbd2_fc_release_bufs(journal_t *journal) 938 { 939 struct buffer_head *bh; 940 int i, j_fc_off; 941 942 j_fc_off = journal->j_fc_off; 943 944 for (i = j_fc_off - 1; i >= 0; i--) { 945 bh = journal->j_fc_wbuf[i]; 946 if (!bh) 947 break; 948 put_bh(bh); 949 journal->j_fc_wbuf[i] = NULL; 950 } 951 952 return 0; 953 } 954 EXPORT_SYMBOL(jbd2_fc_release_bufs); 955 956 /* 957 * Conversion of logical to physical block numbers for the journal 958 * 959 * On external journals the journal blocks are identity-mapped, so 960 * this is a no-op. If needed, we can use j_blk_offset - everything is 961 * ready. 962 */ 963 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 964 unsigned long long *retp) 965 { 966 int err = 0; 967 unsigned long long ret; 968 sector_t block = 0; 969 970 if (journal->j_inode) { 971 block = blocknr; 972 ret = bmap(journal->j_inode, &block); 973 974 if (ret || !block) { 975 printk(KERN_ALERT "%s: journal block not found " 976 "at offset %lu on %s\n", 977 __func__, blocknr, journal->j_devname); 978 err = -EIO; 979 jbd2_journal_abort(journal, err); 980 } else { 981 *retp = block; 982 } 983 984 } else { 985 *retp = blocknr; /* +journal->j_blk_offset */ 986 } 987 return err; 988 } 989 990 /* 991 * We play buffer_head aliasing tricks to write data/metadata blocks to 992 * the journal without copying their contents, but for journal 993 * descriptor blocks we do need to generate bona fide buffers. 994 * 995 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 996 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 997 * But we don't bother doing that, so there will be coherency problems with 998 * mmaps of blockdevs which hold live JBD-controlled filesystems. 999 */ 1000 struct buffer_head * 1001 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1002 { 1003 journal_t *journal = transaction->t_journal; 1004 struct buffer_head *bh; 1005 unsigned long long blocknr; 1006 journal_header_t *header; 1007 int err; 1008 1009 err = jbd2_journal_next_log_block(journal, &blocknr); 1010 1011 if (err) 1012 return NULL; 1013 1014 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1015 if (!bh) 1016 return NULL; 1017 atomic_dec(&transaction->t_outstanding_credits); 1018 lock_buffer(bh); 1019 memset(bh->b_data, 0, journal->j_blocksize); 1020 header = (journal_header_t *)bh->b_data; 1021 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1022 header->h_blocktype = cpu_to_be32(type); 1023 header->h_sequence = cpu_to_be32(transaction->t_tid); 1024 set_buffer_uptodate(bh); 1025 unlock_buffer(bh); 1026 BUFFER_TRACE(bh, "return this buffer"); 1027 return bh; 1028 } 1029 1030 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1031 { 1032 struct jbd2_journal_block_tail *tail; 1033 __u32 csum; 1034 1035 if (!jbd2_journal_has_csum_v2or3(j)) 1036 return; 1037 1038 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1039 sizeof(struct jbd2_journal_block_tail)); 1040 tail->t_checksum = 0; 1041 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1042 tail->t_checksum = cpu_to_be32(csum); 1043 } 1044 1045 /* 1046 * Return tid of the oldest transaction in the journal and block in the journal 1047 * where the transaction starts. 1048 * 1049 * If the journal is now empty, return which will be the next transaction ID 1050 * we will write and where will that transaction start. 1051 * 1052 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1053 * it can. 1054 */ 1055 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1056 unsigned long *block) 1057 { 1058 transaction_t *transaction; 1059 int ret; 1060 1061 read_lock(&journal->j_state_lock); 1062 spin_lock(&journal->j_list_lock); 1063 transaction = journal->j_checkpoint_transactions; 1064 if (transaction) { 1065 *tid = transaction->t_tid; 1066 *block = transaction->t_log_start; 1067 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1068 *tid = transaction->t_tid; 1069 *block = transaction->t_log_start; 1070 } else if ((transaction = journal->j_running_transaction) != NULL) { 1071 *tid = transaction->t_tid; 1072 *block = journal->j_head; 1073 } else { 1074 *tid = journal->j_transaction_sequence; 1075 *block = journal->j_head; 1076 } 1077 ret = tid_gt(*tid, journal->j_tail_sequence); 1078 spin_unlock(&journal->j_list_lock); 1079 read_unlock(&journal->j_state_lock); 1080 1081 return ret; 1082 } 1083 1084 /* 1085 * Update information in journal structure and in on disk journal superblock 1086 * about log tail. This function does not check whether information passed in 1087 * really pushes log tail further. It's responsibility of the caller to make 1088 * sure provided log tail information is valid (e.g. by holding 1089 * j_checkpoint_mutex all the time between computing log tail and calling this 1090 * function as is the case with jbd2_cleanup_journal_tail()). 1091 * 1092 * Requires j_checkpoint_mutex 1093 */ 1094 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1095 { 1096 unsigned long freed; 1097 int ret; 1098 1099 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1100 1101 /* 1102 * We cannot afford for write to remain in drive's caches since as 1103 * soon as we update j_tail, next transaction can start reusing journal 1104 * space and if we lose sb update during power failure we'd replay 1105 * old transaction with possibly newly overwritten data. 1106 */ 1107 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1108 REQ_SYNC | REQ_FUA); 1109 if (ret) 1110 goto out; 1111 1112 write_lock(&journal->j_state_lock); 1113 freed = block - journal->j_tail; 1114 if (block < journal->j_tail) 1115 freed += journal->j_last - journal->j_first; 1116 1117 trace_jbd2_update_log_tail(journal, tid, block, freed); 1118 jbd_debug(1, 1119 "Cleaning journal tail from %u to %u (offset %lu), " 1120 "freeing %lu\n", 1121 journal->j_tail_sequence, tid, block, freed); 1122 1123 journal->j_free += freed; 1124 journal->j_tail_sequence = tid; 1125 journal->j_tail = block; 1126 write_unlock(&journal->j_state_lock); 1127 1128 out: 1129 return ret; 1130 } 1131 1132 /* 1133 * This is a variation of __jbd2_update_log_tail which checks for validity of 1134 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1135 * with other threads updating log tail. 1136 */ 1137 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1138 { 1139 mutex_lock_io(&journal->j_checkpoint_mutex); 1140 if (tid_gt(tid, journal->j_tail_sequence)) 1141 __jbd2_update_log_tail(journal, tid, block); 1142 mutex_unlock(&journal->j_checkpoint_mutex); 1143 } 1144 1145 struct jbd2_stats_proc_session { 1146 journal_t *journal; 1147 struct transaction_stats_s *stats; 1148 int start; 1149 int max; 1150 }; 1151 1152 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1153 { 1154 return *pos ? NULL : SEQ_START_TOKEN; 1155 } 1156 1157 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1158 { 1159 (*pos)++; 1160 return NULL; 1161 } 1162 1163 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1164 { 1165 struct jbd2_stats_proc_session *s = seq->private; 1166 1167 if (v != SEQ_START_TOKEN) 1168 return 0; 1169 seq_printf(seq, "%lu transactions (%lu requested), " 1170 "each up to %u blocks\n", 1171 s->stats->ts_tid, s->stats->ts_requested, 1172 s->journal->j_max_transaction_buffers); 1173 if (s->stats->ts_tid == 0) 1174 return 0; 1175 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1176 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1177 seq_printf(seq, " %ums request delay\n", 1178 (s->stats->ts_requested == 0) ? 0 : 1179 jiffies_to_msecs(s->stats->run.rs_request_delay / 1180 s->stats->ts_requested)); 1181 seq_printf(seq, " %ums running transaction\n", 1182 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1183 seq_printf(seq, " %ums transaction was being locked\n", 1184 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1185 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1186 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1187 seq_printf(seq, " %ums logging transaction\n", 1188 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1189 seq_printf(seq, " %lluus average transaction commit time\n", 1190 div_u64(s->journal->j_average_commit_time, 1000)); 1191 seq_printf(seq, " %lu handles per transaction\n", 1192 s->stats->run.rs_handle_count / s->stats->ts_tid); 1193 seq_printf(seq, " %lu blocks per transaction\n", 1194 s->stats->run.rs_blocks / s->stats->ts_tid); 1195 seq_printf(seq, " %lu logged blocks per transaction\n", 1196 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1197 return 0; 1198 } 1199 1200 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1201 { 1202 } 1203 1204 static const struct seq_operations jbd2_seq_info_ops = { 1205 .start = jbd2_seq_info_start, 1206 .next = jbd2_seq_info_next, 1207 .stop = jbd2_seq_info_stop, 1208 .show = jbd2_seq_info_show, 1209 }; 1210 1211 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1212 { 1213 journal_t *journal = PDE_DATA(inode); 1214 struct jbd2_stats_proc_session *s; 1215 int rc, size; 1216 1217 s = kmalloc(sizeof(*s), GFP_KERNEL); 1218 if (s == NULL) 1219 return -ENOMEM; 1220 size = sizeof(struct transaction_stats_s); 1221 s->stats = kmalloc(size, GFP_KERNEL); 1222 if (s->stats == NULL) { 1223 kfree(s); 1224 return -ENOMEM; 1225 } 1226 spin_lock(&journal->j_history_lock); 1227 memcpy(s->stats, &journal->j_stats, size); 1228 s->journal = journal; 1229 spin_unlock(&journal->j_history_lock); 1230 1231 rc = seq_open(file, &jbd2_seq_info_ops); 1232 if (rc == 0) { 1233 struct seq_file *m = file->private_data; 1234 m->private = s; 1235 } else { 1236 kfree(s->stats); 1237 kfree(s); 1238 } 1239 return rc; 1240 1241 } 1242 1243 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1244 { 1245 struct seq_file *seq = file->private_data; 1246 struct jbd2_stats_proc_session *s = seq->private; 1247 kfree(s->stats); 1248 kfree(s); 1249 return seq_release(inode, file); 1250 } 1251 1252 static const struct proc_ops jbd2_info_proc_ops = { 1253 .proc_open = jbd2_seq_info_open, 1254 .proc_read = seq_read, 1255 .proc_lseek = seq_lseek, 1256 .proc_release = jbd2_seq_info_release, 1257 }; 1258 1259 static struct proc_dir_entry *proc_jbd2_stats; 1260 1261 static void jbd2_stats_proc_init(journal_t *journal) 1262 { 1263 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1264 if (journal->j_proc_entry) { 1265 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1266 &jbd2_info_proc_ops, journal); 1267 } 1268 } 1269 1270 static void jbd2_stats_proc_exit(journal_t *journal) 1271 { 1272 remove_proc_entry("info", journal->j_proc_entry); 1273 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1274 } 1275 1276 /* Minimum size of descriptor tag */ 1277 static int jbd2_min_tag_size(void) 1278 { 1279 /* 1280 * Tag with 32-bit block numbers does not use last four bytes of the 1281 * structure 1282 */ 1283 return sizeof(journal_block_tag_t) - 4; 1284 } 1285 1286 /** 1287 * jbd2_journal_shrink_scan() 1288 * 1289 * Scan the checkpointed buffer on the checkpoint list and release the 1290 * journal_head. 1291 */ 1292 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1293 struct shrink_control *sc) 1294 { 1295 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1296 unsigned long nr_to_scan = sc->nr_to_scan; 1297 unsigned long nr_shrunk; 1298 unsigned long count; 1299 1300 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1301 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1302 1303 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1304 1305 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1306 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1307 1308 return nr_shrunk; 1309 } 1310 1311 /** 1312 * jbd2_journal_shrink_count() 1313 * 1314 * Count the number of checkpoint buffers on the checkpoint list. 1315 */ 1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1317 struct shrink_control *sc) 1318 { 1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker); 1320 unsigned long count; 1321 1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1324 1325 return count; 1326 } 1327 1328 /* 1329 * Management for journal control blocks: functions to create and 1330 * destroy journal_t structures, and to initialise and read existing 1331 * journal blocks from disk. */ 1332 1333 /* First: create and setup a journal_t object in memory. We initialise 1334 * very few fields yet: that has to wait until we have created the 1335 * journal structures from from scratch, or loaded them from disk. */ 1336 1337 static journal_t *journal_init_common(struct block_device *bdev, 1338 struct block_device *fs_dev, 1339 unsigned long long start, int len, int blocksize) 1340 { 1341 static struct lock_class_key jbd2_trans_commit_key; 1342 journal_t *journal; 1343 int err; 1344 struct buffer_head *bh; 1345 int n; 1346 1347 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1348 if (!journal) 1349 return NULL; 1350 1351 init_waitqueue_head(&journal->j_wait_transaction_locked); 1352 init_waitqueue_head(&journal->j_wait_done_commit); 1353 init_waitqueue_head(&journal->j_wait_commit); 1354 init_waitqueue_head(&journal->j_wait_updates); 1355 init_waitqueue_head(&journal->j_wait_reserved); 1356 init_waitqueue_head(&journal->j_fc_wait); 1357 mutex_init(&journal->j_abort_mutex); 1358 mutex_init(&journal->j_barrier); 1359 mutex_init(&journal->j_checkpoint_mutex); 1360 spin_lock_init(&journal->j_revoke_lock); 1361 spin_lock_init(&journal->j_list_lock); 1362 rwlock_init(&journal->j_state_lock); 1363 1364 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1365 journal->j_min_batch_time = 0; 1366 journal->j_max_batch_time = 15000; /* 15ms */ 1367 atomic_set(&journal->j_reserved_credits, 0); 1368 1369 /* The journal is marked for error until we succeed with recovery! */ 1370 journal->j_flags = JBD2_ABORT; 1371 1372 /* Set up a default-sized revoke table for the new mount. */ 1373 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1374 if (err) 1375 goto err_cleanup; 1376 1377 spin_lock_init(&journal->j_history_lock); 1378 1379 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1380 &jbd2_trans_commit_key, 0); 1381 1382 /* journal descriptor can store up to n blocks -bzzz */ 1383 journal->j_blocksize = blocksize; 1384 journal->j_dev = bdev; 1385 journal->j_fs_dev = fs_dev; 1386 journal->j_blk_offset = start; 1387 journal->j_total_len = len; 1388 /* We need enough buffers to write out full descriptor block. */ 1389 n = journal->j_blocksize / jbd2_min_tag_size(); 1390 journal->j_wbufsize = n; 1391 journal->j_fc_wbuf = NULL; 1392 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1393 GFP_KERNEL); 1394 if (!journal->j_wbuf) 1395 goto err_cleanup; 1396 1397 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1398 if (!bh) { 1399 pr_err("%s: Cannot get buffer for journal superblock\n", 1400 __func__); 1401 goto err_cleanup; 1402 } 1403 journal->j_sb_buffer = bh; 1404 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1405 1406 journal->j_shrink_transaction = NULL; 1407 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan; 1408 journal->j_shrinker.count_objects = jbd2_journal_shrink_count; 1409 journal->j_shrinker.seeks = DEFAULT_SEEKS; 1410 journal->j_shrinker.batch = journal->j_max_transaction_buffers; 1411 1412 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL)) 1413 goto err_cleanup; 1414 1415 if (register_shrinker(&journal->j_shrinker)) { 1416 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1417 goto err_cleanup; 1418 } 1419 return journal; 1420 1421 err_cleanup: 1422 brelse(journal->j_sb_buffer); 1423 kfree(journal->j_wbuf); 1424 jbd2_journal_destroy_revoke(journal); 1425 kfree(journal); 1426 return NULL; 1427 } 1428 1429 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1430 * 1431 * Create a journal structure assigned some fixed set of disk blocks to 1432 * the journal. We don't actually touch those disk blocks yet, but we 1433 * need to set up all of the mapping information to tell the journaling 1434 * system where the journal blocks are. 1435 * 1436 */ 1437 1438 /** 1439 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1440 * @bdev: Block device on which to create the journal 1441 * @fs_dev: Device which hold journalled filesystem for this journal. 1442 * @start: Block nr Start of journal. 1443 * @len: Length of the journal in blocks. 1444 * @blocksize: blocksize of journalling device 1445 * 1446 * Returns: a newly created journal_t * 1447 * 1448 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1449 * range of blocks on an arbitrary block device. 1450 * 1451 */ 1452 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1453 struct block_device *fs_dev, 1454 unsigned long long start, int len, int blocksize) 1455 { 1456 journal_t *journal; 1457 1458 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1459 if (!journal) 1460 return NULL; 1461 1462 bdevname(journal->j_dev, journal->j_devname); 1463 strreplace(journal->j_devname, '/', '!'); 1464 jbd2_stats_proc_init(journal); 1465 1466 return journal; 1467 } 1468 1469 /** 1470 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1471 * @inode: An inode to create the journal in 1472 * 1473 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1474 * the journal. The inode must exist already, must support bmap() and 1475 * must have all data blocks preallocated. 1476 */ 1477 journal_t *jbd2_journal_init_inode(struct inode *inode) 1478 { 1479 journal_t *journal; 1480 sector_t blocknr; 1481 char *p; 1482 int err = 0; 1483 1484 blocknr = 0; 1485 err = bmap(inode, &blocknr); 1486 1487 if (err || !blocknr) { 1488 pr_err("%s: Cannot locate journal superblock\n", 1489 __func__); 1490 return NULL; 1491 } 1492 1493 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1494 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1495 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1496 1497 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1498 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1499 inode->i_sb->s_blocksize); 1500 if (!journal) 1501 return NULL; 1502 1503 journal->j_inode = inode; 1504 bdevname(journal->j_dev, journal->j_devname); 1505 p = strreplace(journal->j_devname, '/', '!'); 1506 sprintf(p, "-%lu", journal->j_inode->i_ino); 1507 jbd2_stats_proc_init(journal); 1508 1509 return journal; 1510 } 1511 1512 /* 1513 * If the journal init or create aborts, we need to mark the journal 1514 * superblock as being NULL to prevent the journal destroy from writing 1515 * back a bogus superblock. 1516 */ 1517 static void journal_fail_superblock(journal_t *journal) 1518 { 1519 struct buffer_head *bh = journal->j_sb_buffer; 1520 brelse(bh); 1521 journal->j_sb_buffer = NULL; 1522 } 1523 1524 /* 1525 * Given a journal_t structure, initialise the various fields for 1526 * startup of a new journaling session. We use this both when creating 1527 * a journal, and after recovering an old journal to reset it for 1528 * subsequent use. 1529 */ 1530 1531 static int journal_reset(journal_t *journal) 1532 { 1533 journal_superblock_t *sb = journal->j_superblock; 1534 unsigned long long first, last; 1535 1536 first = be32_to_cpu(sb->s_first); 1537 last = be32_to_cpu(sb->s_maxlen); 1538 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1539 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1540 first, last); 1541 journal_fail_superblock(journal); 1542 return -EINVAL; 1543 } 1544 1545 journal->j_first = first; 1546 journal->j_last = last; 1547 1548 journal->j_head = journal->j_first; 1549 journal->j_tail = journal->j_first; 1550 journal->j_free = journal->j_last - journal->j_first; 1551 1552 journal->j_tail_sequence = journal->j_transaction_sequence; 1553 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1554 journal->j_commit_request = journal->j_commit_sequence; 1555 1556 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1557 1558 /* 1559 * Now that journal recovery is done, turn fast commits off here. This 1560 * way, if fast commit was enabled before the crash but if now FS has 1561 * disabled it, we don't enable fast commits. 1562 */ 1563 jbd2_clear_feature_fast_commit(journal); 1564 1565 /* 1566 * As a special case, if the on-disk copy is already marked as needing 1567 * no recovery (s_start == 0), then we can safely defer the superblock 1568 * update until the next commit by setting JBD2_FLUSHED. This avoids 1569 * attempting a write to a potential-readonly device. 1570 */ 1571 if (sb->s_start == 0) { 1572 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1573 "(start %ld, seq %u, errno %d)\n", 1574 journal->j_tail, journal->j_tail_sequence, 1575 journal->j_errno); 1576 journal->j_flags |= JBD2_FLUSHED; 1577 } else { 1578 /* Lock here to make assertions happy... */ 1579 mutex_lock_io(&journal->j_checkpoint_mutex); 1580 /* 1581 * Update log tail information. We use REQ_FUA since new 1582 * transaction will start reusing journal space and so we 1583 * must make sure information about current log tail is on 1584 * disk before that. 1585 */ 1586 jbd2_journal_update_sb_log_tail(journal, 1587 journal->j_tail_sequence, 1588 journal->j_tail, 1589 REQ_SYNC | REQ_FUA); 1590 mutex_unlock(&journal->j_checkpoint_mutex); 1591 } 1592 return jbd2_journal_start_thread(journal); 1593 } 1594 1595 /* 1596 * This function expects that the caller will have locked the journal 1597 * buffer head, and will return with it unlocked 1598 */ 1599 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1600 { 1601 struct buffer_head *bh = journal->j_sb_buffer; 1602 journal_superblock_t *sb = journal->j_superblock; 1603 int ret; 1604 1605 /* Buffer got discarded which means block device got invalidated */ 1606 if (!buffer_mapped(bh)) { 1607 unlock_buffer(bh); 1608 return -EIO; 1609 } 1610 1611 trace_jbd2_write_superblock(journal, write_flags); 1612 if (!(journal->j_flags & JBD2_BARRIER)) 1613 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1614 if (buffer_write_io_error(bh)) { 1615 /* 1616 * Oh, dear. A previous attempt to write the journal 1617 * superblock failed. This could happen because the 1618 * USB device was yanked out. Or it could happen to 1619 * be a transient write error and maybe the block will 1620 * be remapped. Nothing we can do but to retry the 1621 * write and hope for the best. 1622 */ 1623 printk(KERN_ERR "JBD2: previous I/O error detected " 1624 "for journal superblock update for %s.\n", 1625 journal->j_devname); 1626 clear_buffer_write_io_error(bh); 1627 set_buffer_uptodate(bh); 1628 } 1629 if (jbd2_journal_has_csum_v2or3(journal)) 1630 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1631 get_bh(bh); 1632 bh->b_end_io = end_buffer_write_sync; 1633 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1634 wait_on_buffer(bh); 1635 if (buffer_write_io_error(bh)) { 1636 clear_buffer_write_io_error(bh); 1637 set_buffer_uptodate(bh); 1638 ret = -EIO; 1639 } 1640 if (ret) { 1641 printk(KERN_ERR "JBD2: Error %d detected when updating " 1642 "journal superblock for %s.\n", ret, 1643 journal->j_devname); 1644 if (!is_journal_aborted(journal)) 1645 jbd2_journal_abort(journal, ret); 1646 } 1647 1648 return ret; 1649 } 1650 1651 /** 1652 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1653 * @journal: The journal to update. 1654 * @tail_tid: TID of the new transaction at the tail of the log 1655 * @tail_block: The first block of the transaction at the tail of the log 1656 * @write_op: With which operation should we write the journal sb 1657 * 1658 * Update a journal's superblock information about log tail and write it to 1659 * disk, waiting for the IO to complete. 1660 */ 1661 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1662 unsigned long tail_block, int write_op) 1663 { 1664 journal_superblock_t *sb = journal->j_superblock; 1665 int ret; 1666 1667 if (is_journal_aborted(journal)) 1668 return -EIO; 1669 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) { 1670 jbd2_journal_abort(journal, -EIO); 1671 return -EIO; 1672 } 1673 1674 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1675 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1676 tail_block, tail_tid); 1677 1678 lock_buffer(journal->j_sb_buffer); 1679 sb->s_sequence = cpu_to_be32(tail_tid); 1680 sb->s_start = cpu_to_be32(tail_block); 1681 1682 ret = jbd2_write_superblock(journal, write_op); 1683 if (ret) 1684 goto out; 1685 1686 /* Log is no longer empty */ 1687 write_lock(&journal->j_state_lock); 1688 WARN_ON(!sb->s_sequence); 1689 journal->j_flags &= ~JBD2_FLUSHED; 1690 write_unlock(&journal->j_state_lock); 1691 1692 out: 1693 return ret; 1694 } 1695 1696 /** 1697 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1698 * @journal: The journal to update. 1699 * @write_op: With which operation should we write the journal sb 1700 * 1701 * Update a journal's dynamic superblock fields to show that journal is empty. 1702 * Write updated superblock to disk waiting for IO to complete. 1703 */ 1704 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1705 { 1706 journal_superblock_t *sb = journal->j_superblock; 1707 bool had_fast_commit = false; 1708 1709 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1710 lock_buffer(journal->j_sb_buffer); 1711 if (sb->s_start == 0) { /* Is it already empty? */ 1712 unlock_buffer(journal->j_sb_buffer); 1713 return; 1714 } 1715 1716 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1717 journal->j_tail_sequence); 1718 1719 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1720 sb->s_start = cpu_to_be32(0); 1721 if (jbd2_has_feature_fast_commit(journal)) { 1722 /* 1723 * When journal is clean, no need to commit fast commit flag and 1724 * make file system incompatible with older kernels. 1725 */ 1726 jbd2_clear_feature_fast_commit(journal); 1727 had_fast_commit = true; 1728 } 1729 1730 jbd2_write_superblock(journal, write_op); 1731 1732 if (had_fast_commit) 1733 jbd2_set_feature_fast_commit(journal); 1734 1735 /* Log is no longer empty */ 1736 write_lock(&journal->j_state_lock); 1737 journal->j_flags |= JBD2_FLUSHED; 1738 write_unlock(&journal->j_state_lock); 1739 } 1740 1741 /** 1742 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1743 * @journal: The journal to erase. 1744 * @flags: A discard/zeroout request is sent for each physically contigous 1745 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1746 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1747 * to perform. 1748 * 1749 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1750 * will be explicitly written if no hardware offload is available, see 1751 * blkdev_issue_zeroout for more details. 1752 */ 1753 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1754 { 1755 int err = 0; 1756 unsigned long block, log_offset; /* logical */ 1757 unsigned long long phys_block, block_start, block_stop; /* physical */ 1758 loff_t byte_start, byte_stop, byte_count; 1759 struct request_queue *q = bdev_get_queue(journal->j_dev); 1760 1761 /* flags must be set to either discard or zeroout */ 1762 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1763 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1764 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1765 return -EINVAL; 1766 1767 if (!q) 1768 return -ENXIO; 1769 1770 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q)) 1771 return -EOPNOTSUPP; 1772 1773 /* 1774 * lookup block mapping and issue discard/zeroout for each 1775 * contiguous region 1776 */ 1777 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1778 block_start = ~0ULL; 1779 for (block = log_offset; block < journal->j_total_len; block++) { 1780 err = jbd2_journal_bmap(journal, block, &phys_block); 1781 if (err) { 1782 pr_err("JBD2: bad block at offset %lu", block); 1783 return err; 1784 } 1785 1786 if (block_start == ~0ULL) { 1787 block_start = phys_block; 1788 block_stop = block_start - 1; 1789 } 1790 1791 /* 1792 * last block not contiguous with current block, 1793 * process last contiguous region and return to this block on 1794 * next loop 1795 */ 1796 if (phys_block != block_stop + 1) { 1797 block--; 1798 } else { 1799 block_stop++; 1800 /* 1801 * if this isn't the last block of journal, 1802 * no need to process now because next block may also 1803 * be part of this contiguous region 1804 */ 1805 if (block != journal->j_total_len - 1) 1806 continue; 1807 } 1808 1809 /* 1810 * end of contiguous region or this is last block of journal, 1811 * take care of the region 1812 */ 1813 byte_start = block_start * journal->j_blocksize; 1814 byte_stop = block_stop * journal->j_blocksize; 1815 byte_count = (block_stop - block_start + 1) * 1816 journal->j_blocksize; 1817 1818 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping, 1819 byte_start, byte_stop); 1820 1821 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 1822 err = blkdev_issue_discard(journal->j_dev, 1823 byte_start >> SECTOR_SHIFT, 1824 byte_count >> SECTOR_SHIFT, 1825 GFP_NOFS, 0); 1826 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 1827 err = blkdev_issue_zeroout(journal->j_dev, 1828 byte_start >> SECTOR_SHIFT, 1829 byte_count >> SECTOR_SHIFT, 1830 GFP_NOFS, 0); 1831 } 1832 1833 if (unlikely(err != 0)) { 1834 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 1835 err, block_start, block_stop); 1836 return err; 1837 } 1838 1839 /* reset start and stop after processing a region */ 1840 block_start = ~0ULL; 1841 } 1842 1843 return blkdev_issue_flush(journal->j_dev); 1844 } 1845 1846 /** 1847 * jbd2_journal_update_sb_errno() - Update error in the journal. 1848 * @journal: The journal to update. 1849 * 1850 * Update a journal's errno. Write updated superblock to disk waiting for IO 1851 * to complete. 1852 */ 1853 void jbd2_journal_update_sb_errno(journal_t *journal) 1854 { 1855 journal_superblock_t *sb = journal->j_superblock; 1856 int errcode; 1857 1858 lock_buffer(journal->j_sb_buffer); 1859 errcode = journal->j_errno; 1860 if (errcode == -ESHUTDOWN) 1861 errcode = 0; 1862 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1863 sb->s_errno = cpu_to_be32(errcode); 1864 1865 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1866 } 1867 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1868 1869 static int journal_revoke_records_per_block(journal_t *journal) 1870 { 1871 int record_size; 1872 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1873 1874 if (jbd2_has_feature_64bit(journal)) 1875 record_size = 8; 1876 else 1877 record_size = 4; 1878 1879 if (jbd2_journal_has_csum_v2or3(journal)) 1880 space -= sizeof(struct jbd2_journal_block_tail); 1881 return space / record_size; 1882 } 1883 1884 /* 1885 * Read the superblock for a given journal, performing initial 1886 * validation of the format. 1887 */ 1888 static int journal_get_superblock(journal_t *journal) 1889 { 1890 struct buffer_head *bh; 1891 journal_superblock_t *sb; 1892 int err = -EIO; 1893 1894 bh = journal->j_sb_buffer; 1895 1896 J_ASSERT(bh != NULL); 1897 if (!buffer_uptodate(bh)) { 1898 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1899 wait_on_buffer(bh); 1900 if (!buffer_uptodate(bh)) { 1901 printk(KERN_ERR 1902 "JBD2: IO error reading journal superblock\n"); 1903 goto out; 1904 } 1905 } 1906 1907 if (buffer_verified(bh)) 1908 return 0; 1909 1910 sb = journal->j_superblock; 1911 1912 err = -EINVAL; 1913 1914 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1915 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1916 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1917 goto out; 1918 } 1919 1920 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1921 case JBD2_SUPERBLOCK_V1: 1922 journal->j_format_version = 1; 1923 break; 1924 case JBD2_SUPERBLOCK_V2: 1925 journal->j_format_version = 2; 1926 break; 1927 default: 1928 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1929 goto out; 1930 } 1931 1932 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1933 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1934 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1935 printk(KERN_WARNING "JBD2: journal file too short\n"); 1936 goto out; 1937 } 1938 1939 if (be32_to_cpu(sb->s_first) == 0 || 1940 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1941 printk(KERN_WARNING 1942 "JBD2: Invalid start block of journal: %u\n", 1943 be32_to_cpu(sb->s_first)); 1944 goto out; 1945 } 1946 1947 if (jbd2_has_feature_csum2(journal) && 1948 jbd2_has_feature_csum3(journal)) { 1949 /* Can't have checksum v2 and v3 at the same time! */ 1950 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1951 "at the same time!\n"); 1952 goto out; 1953 } 1954 1955 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1956 jbd2_has_feature_checksum(journal)) { 1957 /* Can't have checksum v1 and v2 on at the same time! */ 1958 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1959 "at the same time!\n"); 1960 goto out; 1961 } 1962 1963 if (!jbd2_verify_csum_type(journal, sb)) { 1964 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1965 goto out; 1966 } 1967 1968 /* Load the checksum driver */ 1969 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1970 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1971 if (IS_ERR(journal->j_chksum_driver)) { 1972 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1973 err = PTR_ERR(journal->j_chksum_driver); 1974 journal->j_chksum_driver = NULL; 1975 goto out; 1976 } 1977 } 1978 1979 if (jbd2_journal_has_csum_v2or3(journal)) { 1980 /* Check superblock checksum */ 1981 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1982 printk(KERN_ERR "JBD2: journal checksum error\n"); 1983 err = -EFSBADCRC; 1984 goto out; 1985 } 1986 1987 /* Precompute checksum seed for all metadata */ 1988 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1989 sizeof(sb->s_uuid)); 1990 } 1991 1992 journal->j_revoke_records_per_block = 1993 journal_revoke_records_per_block(journal); 1994 set_buffer_verified(bh); 1995 1996 return 0; 1997 1998 out: 1999 journal_fail_superblock(journal); 2000 return err; 2001 } 2002 2003 /* 2004 * Load the on-disk journal superblock and read the key fields into the 2005 * journal_t. 2006 */ 2007 2008 static int load_superblock(journal_t *journal) 2009 { 2010 int err; 2011 journal_superblock_t *sb; 2012 int num_fc_blocks; 2013 2014 err = journal_get_superblock(journal); 2015 if (err) 2016 return err; 2017 2018 sb = journal->j_superblock; 2019 2020 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 2021 journal->j_tail = be32_to_cpu(sb->s_start); 2022 journal->j_first = be32_to_cpu(sb->s_first); 2023 journal->j_errno = be32_to_cpu(sb->s_errno); 2024 journal->j_last = be32_to_cpu(sb->s_maxlen); 2025 2026 if (jbd2_has_feature_fast_commit(journal)) { 2027 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 2028 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb); 2029 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 2030 journal->j_last = journal->j_fc_last - num_fc_blocks; 2031 journal->j_fc_first = journal->j_last + 1; 2032 journal->j_fc_off = 0; 2033 } 2034 2035 return 0; 2036 } 2037 2038 2039 /** 2040 * jbd2_journal_load() - Read journal from disk. 2041 * @journal: Journal to act on. 2042 * 2043 * Given a journal_t structure which tells us which disk blocks contain 2044 * a journal, read the journal from disk to initialise the in-memory 2045 * structures. 2046 */ 2047 int jbd2_journal_load(journal_t *journal) 2048 { 2049 int err; 2050 journal_superblock_t *sb; 2051 2052 err = load_superblock(journal); 2053 if (err) 2054 return err; 2055 2056 sb = journal->j_superblock; 2057 /* If this is a V2 superblock, then we have to check the 2058 * features flags on it. */ 2059 2060 if (journal->j_format_version >= 2) { 2061 if ((sb->s_feature_ro_compat & 2062 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 2063 (sb->s_feature_incompat & 2064 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 2065 printk(KERN_WARNING 2066 "JBD2: Unrecognised features on journal\n"); 2067 return -EINVAL; 2068 } 2069 } 2070 2071 /* 2072 * Create a slab for this blocksize 2073 */ 2074 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2075 if (err) 2076 return err; 2077 2078 /* Let the recovery code check whether it needs to recover any 2079 * data from the journal. */ 2080 if (jbd2_journal_recover(journal)) 2081 goto recovery_error; 2082 2083 if (journal->j_failed_commit) { 2084 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2085 "is corrupt.\n", journal->j_failed_commit, 2086 journal->j_devname); 2087 return -EFSCORRUPTED; 2088 } 2089 /* 2090 * clear JBD2_ABORT flag initialized in journal_init_common 2091 * here to update log tail information with the newest seq. 2092 */ 2093 journal->j_flags &= ~JBD2_ABORT; 2094 2095 /* OK, we've finished with the dynamic journal bits: 2096 * reinitialise the dynamic contents of the superblock in memory 2097 * and reset them on disk. */ 2098 if (journal_reset(journal)) 2099 goto recovery_error; 2100 2101 journal->j_flags |= JBD2_LOADED; 2102 return 0; 2103 2104 recovery_error: 2105 printk(KERN_WARNING "JBD2: recovery failed\n"); 2106 return -EIO; 2107 } 2108 2109 /** 2110 * jbd2_journal_destroy() - Release a journal_t structure. 2111 * @journal: Journal to act on. 2112 * 2113 * Release a journal_t structure once it is no longer in use by the 2114 * journaled object. 2115 * Return <0 if we couldn't clean up the journal. 2116 */ 2117 int jbd2_journal_destroy(journal_t *journal) 2118 { 2119 int err = 0; 2120 2121 /* Wait for the commit thread to wake up and die. */ 2122 journal_kill_thread(journal); 2123 2124 /* Force a final log commit */ 2125 if (journal->j_running_transaction) 2126 jbd2_journal_commit_transaction(journal); 2127 2128 /* Force any old transactions to disk */ 2129 2130 /* Totally anal locking here... */ 2131 spin_lock(&journal->j_list_lock); 2132 while (journal->j_checkpoint_transactions != NULL) { 2133 spin_unlock(&journal->j_list_lock); 2134 mutex_lock_io(&journal->j_checkpoint_mutex); 2135 err = jbd2_log_do_checkpoint(journal); 2136 mutex_unlock(&journal->j_checkpoint_mutex); 2137 /* 2138 * If checkpointing failed, just free the buffers to avoid 2139 * looping forever 2140 */ 2141 if (err) { 2142 jbd2_journal_destroy_checkpoint(journal); 2143 spin_lock(&journal->j_list_lock); 2144 break; 2145 } 2146 spin_lock(&journal->j_list_lock); 2147 } 2148 2149 J_ASSERT(journal->j_running_transaction == NULL); 2150 J_ASSERT(journal->j_committing_transaction == NULL); 2151 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2152 spin_unlock(&journal->j_list_lock); 2153 2154 /* 2155 * OK, all checkpoint transactions have been checked, now check the 2156 * write out io error flag and abort the journal if some buffer failed 2157 * to write back to the original location, otherwise the filesystem 2158 * may become inconsistent. 2159 */ 2160 if (!is_journal_aborted(journal) && 2161 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) 2162 jbd2_journal_abort(journal, -EIO); 2163 2164 if (journal->j_sb_buffer) { 2165 if (!is_journal_aborted(journal)) { 2166 mutex_lock_io(&journal->j_checkpoint_mutex); 2167 2168 write_lock(&journal->j_state_lock); 2169 journal->j_tail_sequence = 2170 ++journal->j_transaction_sequence; 2171 write_unlock(&journal->j_state_lock); 2172 2173 jbd2_mark_journal_empty(journal, 2174 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2175 mutex_unlock(&journal->j_checkpoint_mutex); 2176 } else 2177 err = -EIO; 2178 brelse(journal->j_sb_buffer); 2179 } 2180 2181 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) { 2182 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2183 unregister_shrinker(&journal->j_shrinker); 2184 } 2185 if (journal->j_proc_entry) 2186 jbd2_stats_proc_exit(journal); 2187 iput(journal->j_inode); 2188 if (journal->j_revoke) 2189 jbd2_journal_destroy_revoke(journal); 2190 if (journal->j_chksum_driver) 2191 crypto_free_shash(journal->j_chksum_driver); 2192 kfree(journal->j_fc_wbuf); 2193 kfree(journal->j_wbuf); 2194 kfree(journal); 2195 2196 return err; 2197 } 2198 2199 2200 /** 2201 * jbd2_journal_check_used_features() - Check if features specified are used. 2202 * @journal: Journal to check. 2203 * @compat: bitmask of compatible features 2204 * @ro: bitmask of features that force read-only mount 2205 * @incompat: bitmask of incompatible features 2206 * 2207 * Check whether the journal uses all of a given set of 2208 * features. Return true (non-zero) if it does. 2209 **/ 2210 2211 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2212 unsigned long ro, unsigned long incompat) 2213 { 2214 journal_superblock_t *sb; 2215 2216 if (!compat && !ro && !incompat) 2217 return 1; 2218 /* Load journal superblock if it is not loaded yet. */ 2219 if (journal->j_format_version == 0 && 2220 journal_get_superblock(journal) != 0) 2221 return 0; 2222 if (journal->j_format_version == 1) 2223 return 0; 2224 2225 sb = journal->j_superblock; 2226 2227 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2228 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2229 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2230 return 1; 2231 2232 return 0; 2233 } 2234 2235 /** 2236 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2237 * @journal: Journal to check. 2238 * @compat: bitmask of compatible features 2239 * @ro: bitmask of features that force read-only mount 2240 * @incompat: bitmask of incompatible features 2241 * 2242 * Check whether the journaling code supports the use of 2243 * all of a given set of features on this journal. Return true 2244 * (non-zero) if it can. */ 2245 2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2247 unsigned long ro, unsigned long incompat) 2248 { 2249 if (!compat && !ro && !incompat) 2250 return 1; 2251 2252 /* We can support any known requested features iff the 2253 * superblock is in version 2. Otherwise we fail to support any 2254 * extended sb features. */ 2255 2256 if (journal->j_format_version != 2) 2257 return 0; 2258 2259 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2260 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2261 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2262 return 1; 2263 2264 return 0; 2265 } 2266 2267 static int 2268 jbd2_journal_initialize_fast_commit(journal_t *journal) 2269 { 2270 journal_superblock_t *sb = journal->j_superblock; 2271 unsigned long long num_fc_blks; 2272 2273 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2274 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2275 return -ENOSPC; 2276 2277 /* Are we called twice? */ 2278 WARN_ON(journal->j_fc_wbuf != NULL); 2279 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2280 sizeof(struct buffer_head *), GFP_KERNEL); 2281 if (!journal->j_fc_wbuf) 2282 return -ENOMEM; 2283 2284 journal->j_fc_wbufsize = num_fc_blks; 2285 journal->j_fc_last = journal->j_last; 2286 journal->j_last = journal->j_fc_last - num_fc_blks; 2287 journal->j_fc_first = journal->j_last + 1; 2288 journal->j_fc_off = 0; 2289 journal->j_free = journal->j_last - journal->j_first; 2290 journal->j_max_transaction_buffers = 2291 jbd2_journal_get_max_txn_bufs(journal); 2292 2293 return 0; 2294 } 2295 2296 /** 2297 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2298 * @journal: Journal to act on. 2299 * @compat: bitmask of compatible features 2300 * @ro: bitmask of features that force read-only mount 2301 * @incompat: bitmask of incompatible features 2302 * 2303 * Mark a given journal feature as present on the 2304 * superblock. Returns true if the requested features could be set. 2305 * 2306 */ 2307 2308 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2309 unsigned long ro, unsigned long incompat) 2310 { 2311 #define INCOMPAT_FEATURE_ON(f) \ 2312 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2313 #define COMPAT_FEATURE_ON(f) \ 2314 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2315 journal_superblock_t *sb; 2316 2317 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2318 return 1; 2319 2320 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2321 return 0; 2322 2323 /* If enabling v2 checksums, turn on v3 instead */ 2324 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2325 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2326 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2327 } 2328 2329 /* Asking for checksumming v3 and v1? Only give them v3. */ 2330 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2331 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2332 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2333 2334 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2335 compat, ro, incompat); 2336 2337 sb = journal->j_superblock; 2338 2339 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2340 if (jbd2_journal_initialize_fast_commit(journal)) { 2341 pr_err("JBD2: Cannot enable fast commits.\n"); 2342 return 0; 2343 } 2344 } 2345 2346 /* Load the checksum driver if necessary */ 2347 if ((journal->j_chksum_driver == NULL) && 2348 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2349 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2350 if (IS_ERR(journal->j_chksum_driver)) { 2351 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2352 journal->j_chksum_driver = NULL; 2353 return 0; 2354 } 2355 /* Precompute checksum seed for all metadata */ 2356 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2357 sizeof(sb->s_uuid)); 2358 } 2359 2360 lock_buffer(journal->j_sb_buffer); 2361 2362 /* If enabling v3 checksums, update superblock */ 2363 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2364 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2365 sb->s_feature_compat &= 2366 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2367 } 2368 2369 /* If enabling v1 checksums, downgrade superblock */ 2370 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2371 sb->s_feature_incompat &= 2372 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2373 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2374 2375 sb->s_feature_compat |= cpu_to_be32(compat); 2376 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2377 sb->s_feature_incompat |= cpu_to_be32(incompat); 2378 unlock_buffer(journal->j_sb_buffer); 2379 journal->j_revoke_records_per_block = 2380 journal_revoke_records_per_block(journal); 2381 2382 return 1; 2383 #undef COMPAT_FEATURE_ON 2384 #undef INCOMPAT_FEATURE_ON 2385 } 2386 2387 /* 2388 * jbd2_journal_clear_features() - Clear a given journal feature in the 2389 * superblock 2390 * @journal: Journal to act on. 2391 * @compat: bitmask of compatible features 2392 * @ro: bitmask of features that force read-only mount 2393 * @incompat: bitmask of incompatible features 2394 * 2395 * Clear a given journal feature as present on the 2396 * superblock. 2397 */ 2398 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2399 unsigned long ro, unsigned long incompat) 2400 { 2401 journal_superblock_t *sb; 2402 2403 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2404 compat, ro, incompat); 2405 2406 sb = journal->j_superblock; 2407 2408 sb->s_feature_compat &= ~cpu_to_be32(compat); 2409 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2410 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2411 journal->j_revoke_records_per_block = 2412 journal_revoke_records_per_block(journal); 2413 } 2414 EXPORT_SYMBOL(jbd2_journal_clear_features); 2415 2416 /** 2417 * jbd2_journal_flush() - Flush journal 2418 * @journal: Journal to act on. 2419 * @flags: optional operation on the journal blocks after the flush (see below) 2420 * 2421 * Flush all data for a given journal to disk and empty the journal. 2422 * Filesystems can use this when remounting readonly to ensure that 2423 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2424 * can be issued on the journal blocks after flushing. 2425 * 2426 * flags: 2427 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2428 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2429 */ 2430 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2431 { 2432 int err = 0; 2433 transaction_t *transaction = NULL; 2434 2435 write_lock(&journal->j_state_lock); 2436 2437 /* Force everything buffered to the log... */ 2438 if (journal->j_running_transaction) { 2439 transaction = journal->j_running_transaction; 2440 __jbd2_log_start_commit(journal, transaction->t_tid); 2441 } else if (journal->j_committing_transaction) 2442 transaction = journal->j_committing_transaction; 2443 2444 /* Wait for the log commit to complete... */ 2445 if (transaction) { 2446 tid_t tid = transaction->t_tid; 2447 2448 write_unlock(&journal->j_state_lock); 2449 jbd2_log_wait_commit(journal, tid); 2450 } else { 2451 write_unlock(&journal->j_state_lock); 2452 } 2453 2454 /* ...and flush everything in the log out to disk. */ 2455 spin_lock(&journal->j_list_lock); 2456 while (!err && journal->j_checkpoint_transactions != NULL) { 2457 spin_unlock(&journal->j_list_lock); 2458 mutex_lock_io(&journal->j_checkpoint_mutex); 2459 err = jbd2_log_do_checkpoint(journal); 2460 mutex_unlock(&journal->j_checkpoint_mutex); 2461 spin_lock(&journal->j_list_lock); 2462 } 2463 spin_unlock(&journal->j_list_lock); 2464 2465 if (is_journal_aborted(journal)) 2466 return -EIO; 2467 2468 mutex_lock_io(&journal->j_checkpoint_mutex); 2469 if (!err) { 2470 err = jbd2_cleanup_journal_tail(journal); 2471 if (err < 0) { 2472 mutex_unlock(&journal->j_checkpoint_mutex); 2473 goto out; 2474 } 2475 err = 0; 2476 } 2477 2478 /* Finally, mark the journal as really needing no recovery. 2479 * This sets s_start==0 in the underlying superblock, which is 2480 * the magic code for a fully-recovered superblock. Any future 2481 * commits of data to the journal will restore the current 2482 * s_start value. */ 2483 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2484 2485 if (flags) 2486 err = __jbd2_journal_erase(journal, flags); 2487 2488 mutex_unlock(&journal->j_checkpoint_mutex); 2489 write_lock(&journal->j_state_lock); 2490 J_ASSERT(!journal->j_running_transaction); 2491 J_ASSERT(!journal->j_committing_transaction); 2492 J_ASSERT(!journal->j_checkpoint_transactions); 2493 J_ASSERT(journal->j_head == journal->j_tail); 2494 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2495 write_unlock(&journal->j_state_lock); 2496 out: 2497 return err; 2498 } 2499 2500 /** 2501 * jbd2_journal_wipe() - Wipe journal contents 2502 * @journal: Journal to act on. 2503 * @write: flag (see below) 2504 * 2505 * Wipe out all of the contents of a journal, safely. This will produce 2506 * a warning if the journal contains any valid recovery information. 2507 * Must be called between journal_init_*() and jbd2_journal_load(). 2508 * 2509 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2510 * we merely suppress recovery. 2511 */ 2512 2513 int jbd2_journal_wipe(journal_t *journal, int write) 2514 { 2515 int err = 0; 2516 2517 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2518 2519 err = load_superblock(journal); 2520 if (err) 2521 return err; 2522 2523 if (!journal->j_tail) 2524 goto no_recovery; 2525 2526 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2527 write ? "Clearing" : "Ignoring"); 2528 2529 err = jbd2_journal_skip_recovery(journal); 2530 if (write) { 2531 /* Lock to make assertions happy... */ 2532 mutex_lock_io(&journal->j_checkpoint_mutex); 2533 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2534 mutex_unlock(&journal->j_checkpoint_mutex); 2535 } 2536 2537 no_recovery: 2538 return err; 2539 } 2540 2541 /** 2542 * jbd2_journal_abort () - Shutdown the journal immediately. 2543 * @journal: the journal to shutdown. 2544 * @errno: an error number to record in the journal indicating 2545 * the reason for the shutdown. 2546 * 2547 * Perform a complete, immediate shutdown of the ENTIRE 2548 * journal (not of a single transaction). This operation cannot be 2549 * undone without closing and reopening the journal. 2550 * 2551 * The jbd2_journal_abort function is intended to support higher level error 2552 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2553 * mode. 2554 * 2555 * Journal abort has very specific semantics. Any existing dirty, 2556 * unjournaled buffers in the main filesystem will still be written to 2557 * disk by bdflush, but the journaling mechanism will be suspended 2558 * immediately and no further transaction commits will be honoured. 2559 * 2560 * Any dirty, journaled buffers will be written back to disk without 2561 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2562 * filesystem, but we _do_ attempt to leave as much data as possible 2563 * behind for fsck to use for cleanup. 2564 * 2565 * Any attempt to get a new transaction handle on a journal which is in 2566 * ABORT state will just result in an -EROFS error return. A 2567 * jbd2_journal_stop on an existing handle will return -EIO if we have 2568 * entered abort state during the update. 2569 * 2570 * Recursive transactions are not disturbed by journal abort until the 2571 * final jbd2_journal_stop, which will receive the -EIO error. 2572 * 2573 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2574 * which will be recorded (if possible) in the journal superblock. This 2575 * allows a client to record failure conditions in the middle of a 2576 * transaction without having to complete the transaction to record the 2577 * failure to disk. ext3_error, for example, now uses this 2578 * functionality. 2579 * 2580 */ 2581 2582 void jbd2_journal_abort(journal_t *journal, int errno) 2583 { 2584 transaction_t *transaction; 2585 2586 /* 2587 * Lock the aborting procedure until everything is done, this avoid 2588 * races between filesystem's error handling flow (e.g. ext4_abort()), 2589 * ensure panic after the error info is written into journal's 2590 * superblock. 2591 */ 2592 mutex_lock(&journal->j_abort_mutex); 2593 /* 2594 * ESHUTDOWN always takes precedence because a file system check 2595 * caused by any other journal abort error is not required after 2596 * a shutdown triggered. 2597 */ 2598 write_lock(&journal->j_state_lock); 2599 if (journal->j_flags & JBD2_ABORT) { 2600 int old_errno = journal->j_errno; 2601 2602 write_unlock(&journal->j_state_lock); 2603 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2604 journal->j_errno = errno; 2605 jbd2_journal_update_sb_errno(journal); 2606 } 2607 mutex_unlock(&journal->j_abort_mutex); 2608 return; 2609 } 2610 2611 /* 2612 * Mark the abort as occurred and start current running transaction 2613 * to release all journaled buffer. 2614 */ 2615 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2616 2617 journal->j_flags |= JBD2_ABORT; 2618 journal->j_errno = errno; 2619 transaction = journal->j_running_transaction; 2620 if (transaction) 2621 __jbd2_log_start_commit(journal, transaction->t_tid); 2622 write_unlock(&journal->j_state_lock); 2623 2624 /* 2625 * Record errno to the journal super block, so that fsck and jbd2 2626 * layer could realise that a filesystem check is needed. 2627 */ 2628 jbd2_journal_update_sb_errno(journal); 2629 mutex_unlock(&journal->j_abort_mutex); 2630 } 2631 2632 /** 2633 * jbd2_journal_errno() - returns the journal's error state. 2634 * @journal: journal to examine. 2635 * 2636 * This is the errno number set with jbd2_journal_abort(), the last 2637 * time the journal was mounted - if the journal was stopped 2638 * without calling abort this will be 0. 2639 * 2640 * If the journal has been aborted on this mount time -EROFS will 2641 * be returned. 2642 */ 2643 int jbd2_journal_errno(journal_t *journal) 2644 { 2645 int err; 2646 2647 read_lock(&journal->j_state_lock); 2648 if (journal->j_flags & JBD2_ABORT) 2649 err = -EROFS; 2650 else 2651 err = journal->j_errno; 2652 read_unlock(&journal->j_state_lock); 2653 return err; 2654 } 2655 2656 /** 2657 * jbd2_journal_clear_err() - clears the journal's error state 2658 * @journal: journal to act on. 2659 * 2660 * An error must be cleared or acked to take a FS out of readonly 2661 * mode. 2662 */ 2663 int jbd2_journal_clear_err(journal_t *journal) 2664 { 2665 int err = 0; 2666 2667 write_lock(&journal->j_state_lock); 2668 if (journal->j_flags & JBD2_ABORT) 2669 err = -EROFS; 2670 else 2671 journal->j_errno = 0; 2672 write_unlock(&journal->j_state_lock); 2673 return err; 2674 } 2675 2676 /** 2677 * jbd2_journal_ack_err() - Ack journal err. 2678 * @journal: journal to act on. 2679 * 2680 * An error must be cleared or acked to take a FS out of readonly 2681 * mode. 2682 */ 2683 void jbd2_journal_ack_err(journal_t *journal) 2684 { 2685 write_lock(&journal->j_state_lock); 2686 if (journal->j_errno) 2687 journal->j_flags |= JBD2_ACK_ERR; 2688 write_unlock(&journal->j_state_lock); 2689 } 2690 2691 int jbd2_journal_blocks_per_page(struct inode *inode) 2692 { 2693 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2694 } 2695 2696 /* 2697 * helper functions to deal with 32 or 64bit block numbers. 2698 */ 2699 size_t journal_tag_bytes(journal_t *journal) 2700 { 2701 size_t sz; 2702 2703 if (jbd2_has_feature_csum3(journal)) 2704 return sizeof(journal_block_tag3_t); 2705 2706 sz = sizeof(journal_block_tag_t); 2707 2708 if (jbd2_has_feature_csum2(journal)) 2709 sz += sizeof(__u16); 2710 2711 if (jbd2_has_feature_64bit(journal)) 2712 return sz; 2713 else 2714 return sz - sizeof(__u32); 2715 } 2716 2717 /* 2718 * JBD memory management 2719 * 2720 * These functions are used to allocate block-sized chunks of memory 2721 * used for making copies of buffer_head data. Very often it will be 2722 * page-sized chunks of data, but sometimes it will be in 2723 * sub-page-size chunks. (For example, 16k pages on Power systems 2724 * with a 4k block file system.) For blocks smaller than a page, we 2725 * use a SLAB allocator. There are slab caches for each block size, 2726 * which are allocated at mount time, if necessary, and we only free 2727 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2728 * this reason we don't need to a mutex to protect access to 2729 * jbd2_slab[] allocating or releasing memory; only in 2730 * jbd2_journal_create_slab(). 2731 */ 2732 #define JBD2_MAX_SLABS 8 2733 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2734 2735 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2736 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2737 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2738 }; 2739 2740 2741 static void jbd2_journal_destroy_slabs(void) 2742 { 2743 int i; 2744 2745 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2746 kmem_cache_destroy(jbd2_slab[i]); 2747 jbd2_slab[i] = NULL; 2748 } 2749 } 2750 2751 static int jbd2_journal_create_slab(size_t size) 2752 { 2753 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2754 int i = order_base_2(size) - 10; 2755 size_t slab_size; 2756 2757 if (size == PAGE_SIZE) 2758 return 0; 2759 2760 if (i >= JBD2_MAX_SLABS) 2761 return -EINVAL; 2762 2763 if (unlikely(i < 0)) 2764 i = 0; 2765 mutex_lock(&jbd2_slab_create_mutex); 2766 if (jbd2_slab[i]) { 2767 mutex_unlock(&jbd2_slab_create_mutex); 2768 return 0; /* Already created */ 2769 } 2770 2771 slab_size = 1 << (i+10); 2772 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2773 slab_size, 0, NULL); 2774 mutex_unlock(&jbd2_slab_create_mutex); 2775 if (!jbd2_slab[i]) { 2776 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2777 return -ENOMEM; 2778 } 2779 return 0; 2780 } 2781 2782 static struct kmem_cache *get_slab(size_t size) 2783 { 2784 int i = order_base_2(size) - 10; 2785 2786 BUG_ON(i >= JBD2_MAX_SLABS); 2787 if (unlikely(i < 0)) 2788 i = 0; 2789 BUG_ON(jbd2_slab[i] == NULL); 2790 return jbd2_slab[i]; 2791 } 2792 2793 void *jbd2_alloc(size_t size, gfp_t flags) 2794 { 2795 void *ptr; 2796 2797 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2798 2799 if (size < PAGE_SIZE) 2800 ptr = kmem_cache_alloc(get_slab(size), flags); 2801 else 2802 ptr = (void *)__get_free_pages(flags, get_order(size)); 2803 2804 /* Check alignment; SLUB has gotten this wrong in the past, 2805 * and this can lead to user data corruption! */ 2806 BUG_ON(((unsigned long) ptr) & (size-1)); 2807 2808 return ptr; 2809 } 2810 2811 void jbd2_free(void *ptr, size_t size) 2812 { 2813 if (size < PAGE_SIZE) 2814 kmem_cache_free(get_slab(size), ptr); 2815 else 2816 free_pages((unsigned long)ptr, get_order(size)); 2817 }; 2818 2819 /* 2820 * Journal_head storage management 2821 */ 2822 static struct kmem_cache *jbd2_journal_head_cache; 2823 #ifdef CONFIG_JBD2_DEBUG 2824 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2825 #endif 2826 2827 static int __init jbd2_journal_init_journal_head_cache(void) 2828 { 2829 J_ASSERT(!jbd2_journal_head_cache); 2830 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2831 sizeof(struct journal_head), 2832 0, /* offset */ 2833 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2834 NULL); /* ctor */ 2835 if (!jbd2_journal_head_cache) { 2836 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2837 return -ENOMEM; 2838 } 2839 return 0; 2840 } 2841 2842 static void jbd2_journal_destroy_journal_head_cache(void) 2843 { 2844 kmem_cache_destroy(jbd2_journal_head_cache); 2845 jbd2_journal_head_cache = NULL; 2846 } 2847 2848 /* 2849 * journal_head splicing and dicing 2850 */ 2851 static struct journal_head *journal_alloc_journal_head(void) 2852 { 2853 struct journal_head *ret; 2854 2855 #ifdef CONFIG_JBD2_DEBUG 2856 atomic_inc(&nr_journal_heads); 2857 #endif 2858 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2859 if (!ret) { 2860 jbd_debug(1, "out of memory for journal_head\n"); 2861 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2862 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2863 GFP_NOFS | __GFP_NOFAIL); 2864 } 2865 if (ret) 2866 spin_lock_init(&ret->b_state_lock); 2867 return ret; 2868 } 2869 2870 static void journal_free_journal_head(struct journal_head *jh) 2871 { 2872 #ifdef CONFIG_JBD2_DEBUG 2873 atomic_dec(&nr_journal_heads); 2874 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2875 #endif 2876 kmem_cache_free(jbd2_journal_head_cache, jh); 2877 } 2878 2879 /* 2880 * A journal_head is attached to a buffer_head whenever JBD has an 2881 * interest in the buffer. 2882 * 2883 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2884 * is set. This bit is tested in core kernel code where we need to take 2885 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2886 * there. 2887 * 2888 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2889 * 2890 * When a buffer has its BH_JBD bit set it is immune from being released by 2891 * core kernel code, mainly via ->b_count. 2892 * 2893 * A journal_head is detached from its buffer_head when the journal_head's 2894 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2895 * transaction (b_cp_transaction) hold their references to b_jcount. 2896 * 2897 * Various places in the kernel want to attach a journal_head to a buffer_head 2898 * _before_ attaching the journal_head to a transaction. To protect the 2899 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2900 * journal_head's b_jcount refcount by one. The caller must call 2901 * jbd2_journal_put_journal_head() to undo this. 2902 * 2903 * So the typical usage would be: 2904 * 2905 * (Attach a journal_head if needed. Increments b_jcount) 2906 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2907 * ... 2908 * (Get another reference for transaction) 2909 * jbd2_journal_grab_journal_head(bh); 2910 * jh->b_transaction = xxx; 2911 * (Put original reference) 2912 * jbd2_journal_put_journal_head(jh); 2913 */ 2914 2915 /* 2916 * Give a buffer_head a journal_head. 2917 * 2918 * May sleep. 2919 */ 2920 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2921 { 2922 struct journal_head *jh; 2923 struct journal_head *new_jh = NULL; 2924 2925 repeat: 2926 if (!buffer_jbd(bh)) 2927 new_jh = journal_alloc_journal_head(); 2928 2929 jbd_lock_bh_journal_head(bh); 2930 if (buffer_jbd(bh)) { 2931 jh = bh2jh(bh); 2932 } else { 2933 J_ASSERT_BH(bh, 2934 (atomic_read(&bh->b_count) > 0) || 2935 (bh->b_page && bh->b_page->mapping)); 2936 2937 if (!new_jh) { 2938 jbd_unlock_bh_journal_head(bh); 2939 goto repeat; 2940 } 2941 2942 jh = new_jh; 2943 new_jh = NULL; /* We consumed it */ 2944 set_buffer_jbd(bh); 2945 bh->b_private = jh; 2946 jh->b_bh = bh; 2947 get_bh(bh); 2948 BUFFER_TRACE(bh, "added journal_head"); 2949 } 2950 jh->b_jcount++; 2951 jbd_unlock_bh_journal_head(bh); 2952 if (new_jh) 2953 journal_free_journal_head(new_jh); 2954 return bh->b_private; 2955 } 2956 2957 /* 2958 * Grab a ref against this buffer_head's journal_head. If it ended up not 2959 * having a journal_head, return NULL 2960 */ 2961 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2962 { 2963 struct journal_head *jh = NULL; 2964 2965 jbd_lock_bh_journal_head(bh); 2966 if (buffer_jbd(bh)) { 2967 jh = bh2jh(bh); 2968 jh->b_jcount++; 2969 } 2970 jbd_unlock_bh_journal_head(bh); 2971 return jh; 2972 } 2973 2974 static void __journal_remove_journal_head(struct buffer_head *bh) 2975 { 2976 struct journal_head *jh = bh2jh(bh); 2977 2978 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2979 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2980 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2981 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2982 J_ASSERT_BH(bh, buffer_jbd(bh)); 2983 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2984 BUFFER_TRACE(bh, "remove journal_head"); 2985 2986 /* Unlink before dropping the lock */ 2987 bh->b_private = NULL; 2988 jh->b_bh = NULL; /* debug, really */ 2989 clear_buffer_jbd(bh); 2990 } 2991 2992 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2993 { 2994 if (jh->b_frozen_data) { 2995 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2996 jbd2_free(jh->b_frozen_data, b_size); 2997 } 2998 if (jh->b_committed_data) { 2999 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3000 jbd2_free(jh->b_committed_data, b_size); 3001 } 3002 journal_free_journal_head(jh); 3003 } 3004 3005 /* 3006 * Drop a reference on the passed journal_head. If it fell to zero then 3007 * release the journal_head from the buffer_head. 3008 */ 3009 void jbd2_journal_put_journal_head(struct journal_head *jh) 3010 { 3011 struct buffer_head *bh = jh2bh(jh); 3012 3013 jbd_lock_bh_journal_head(bh); 3014 J_ASSERT_JH(jh, jh->b_jcount > 0); 3015 --jh->b_jcount; 3016 if (!jh->b_jcount) { 3017 __journal_remove_journal_head(bh); 3018 jbd_unlock_bh_journal_head(bh); 3019 journal_release_journal_head(jh, bh->b_size); 3020 __brelse(bh); 3021 } else { 3022 jbd_unlock_bh_journal_head(bh); 3023 } 3024 } 3025 3026 /* 3027 * Initialize jbd inode head 3028 */ 3029 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3030 { 3031 jinode->i_transaction = NULL; 3032 jinode->i_next_transaction = NULL; 3033 jinode->i_vfs_inode = inode; 3034 jinode->i_flags = 0; 3035 jinode->i_dirty_start = 0; 3036 jinode->i_dirty_end = 0; 3037 INIT_LIST_HEAD(&jinode->i_list); 3038 } 3039 3040 /* 3041 * Function to be called before we start removing inode from memory (i.e., 3042 * clear_inode() is a fine place to be called from). It removes inode from 3043 * transaction's lists. 3044 */ 3045 void jbd2_journal_release_jbd_inode(journal_t *journal, 3046 struct jbd2_inode *jinode) 3047 { 3048 if (!journal) 3049 return; 3050 restart: 3051 spin_lock(&journal->j_list_lock); 3052 /* Is commit writing out inode - we have to wait */ 3053 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3054 wait_queue_head_t *wq; 3055 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3056 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3057 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3058 spin_unlock(&journal->j_list_lock); 3059 schedule(); 3060 finish_wait(wq, &wait.wq_entry); 3061 goto restart; 3062 } 3063 3064 if (jinode->i_transaction) { 3065 list_del(&jinode->i_list); 3066 jinode->i_transaction = NULL; 3067 } 3068 spin_unlock(&journal->j_list_lock); 3069 } 3070 3071 3072 #ifdef CONFIG_PROC_FS 3073 3074 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3075 3076 static void __init jbd2_create_jbd_stats_proc_entry(void) 3077 { 3078 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3079 } 3080 3081 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3082 { 3083 if (proc_jbd2_stats) 3084 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3085 } 3086 3087 #else 3088 3089 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3090 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3091 3092 #endif 3093 3094 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3095 3096 static int __init jbd2_journal_init_inode_cache(void) 3097 { 3098 J_ASSERT(!jbd2_inode_cache); 3099 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3100 if (!jbd2_inode_cache) { 3101 pr_emerg("JBD2: failed to create inode cache\n"); 3102 return -ENOMEM; 3103 } 3104 return 0; 3105 } 3106 3107 static int __init jbd2_journal_init_handle_cache(void) 3108 { 3109 J_ASSERT(!jbd2_handle_cache); 3110 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3111 if (!jbd2_handle_cache) { 3112 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3113 return -ENOMEM; 3114 } 3115 return 0; 3116 } 3117 3118 static void jbd2_journal_destroy_inode_cache(void) 3119 { 3120 kmem_cache_destroy(jbd2_inode_cache); 3121 jbd2_inode_cache = NULL; 3122 } 3123 3124 static void jbd2_journal_destroy_handle_cache(void) 3125 { 3126 kmem_cache_destroy(jbd2_handle_cache); 3127 jbd2_handle_cache = NULL; 3128 } 3129 3130 /* 3131 * Module startup and shutdown 3132 */ 3133 3134 static int __init journal_init_caches(void) 3135 { 3136 int ret; 3137 3138 ret = jbd2_journal_init_revoke_record_cache(); 3139 if (ret == 0) 3140 ret = jbd2_journal_init_revoke_table_cache(); 3141 if (ret == 0) 3142 ret = jbd2_journal_init_journal_head_cache(); 3143 if (ret == 0) 3144 ret = jbd2_journal_init_handle_cache(); 3145 if (ret == 0) 3146 ret = jbd2_journal_init_inode_cache(); 3147 if (ret == 0) 3148 ret = jbd2_journal_init_transaction_cache(); 3149 return ret; 3150 } 3151 3152 static void jbd2_journal_destroy_caches(void) 3153 { 3154 jbd2_journal_destroy_revoke_record_cache(); 3155 jbd2_journal_destroy_revoke_table_cache(); 3156 jbd2_journal_destroy_journal_head_cache(); 3157 jbd2_journal_destroy_handle_cache(); 3158 jbd2_journal_destroy_inode_cache(); 3159 jbd2_journal_destroy_transaction_cache(); 3160 jbd2_journal_destroy_slabs(); 3161 } 3162 3163 static int __init journal_init(void) 3164 { 3165 int ret; 3166 3167 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3168 3169 ret = journal_init_caches(); 3170 if (ret == 0) { 3171 jbd2_create_jbd_stats_proc_entry(); 3172 } else { 3173 jbd2_journal_destroy_caches(); 3174 } 3175 return ret; 3176 } 3177 3178 static void __exit journal_exit(void) 3179 { 3180 #ifdef CONFIG_JBD2_DEBUG 3181 int n = atomic_read(&nr_journal_heads); 3182 if (n) 3183 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3184 #endif 3185 jbd2_remove_jbd_stats_proc_entry(); 3186 jbd2_journal_destroy_caches(); 3187 } 3188 3189 MODULE_LICENSE("GPL"); 3190 module_init(journal_init); 3191 module_exit(journal_exit); 3192 3193