xref: /openbmc/linux/fs/jbd2/journal.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74 
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101 
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104 
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 		  unsigned int line, const char *fmt, ...)
108 {
109 	struct va_format vaf;
110 	va_list args;
111 
112 	if (level > jbd2_journal_enable_debug)
113 		return;
114 	va_start(args, fmt);
115 	vaf.fmt = fmt;
116 	vaf.va = &args;
117 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118 	va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122 
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 	if (!jbd2_journal_has_csum_v2or3_feature(j))
127 		return 1;
128 
129 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131 
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 	__u32 csum;
135 	__be32 old_csum;
136 
137 	old_csum = sb->s_checksum;
138 	sb->s_checksum = 0;
139 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 	sb->s_checksum = old_csum;
141 
142 	return cpu_to_be32(csum);
143 }
144 
145 /*
146  * Helper function used to manage commit timeouts
147  */
148 
149 static void commit_timeout(struct timer_list *t)
150 {
151 	journal_t *journal = from_timer(journal, t, j_commit_timer);
152 
153 	wake_up_process(journal->j_task);
154 }
155 
156 /*
157  * kjournald2: The main thread function used to manage a logging device
158  * journal.
159  *
160  * This kernel thread is responsible for two things:
161  *
162  * 1) COMMIT:  Every so often we need to commit the current state of the
163  *    filesystem to disk.  The journal thread is responsible for writing
164  *    all of the metadata buffers to disk.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	jbd_lock_bh_state(bh_in);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		jbd_unlock_bh_state(bh_in);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		jbd_lock_bh_state(bh_in);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	jbd_unlock_bh_state(bh_in);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 	int ret;
579 
580 	ret = __jbd2_journal_force_commit(journal);
581 	return ret > 0;
582 }
583 
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593 	int ret;
594 
595 	J_ASSERT(!current->journal_info);
596 	ret = __jbd2_journal_force_commit(journal);
597 	if (ret > 0)
598 		ret = 0;
599 	return ret;
600 }
601 
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609 	int ret = 0;
610 
611 	write_lock(&journal->j_state_lock);
612 	if (journal->j_running_transaction) {
613 		tid_t tid = journal->j_running_transaction->t_tid;
614 
615 		__jbd2_log_start_commit(journal, tid);
616 		/* There's a running transaction and we've just made sure
617 		 * it's commit has been scheduled. */
618 		if (ptid)
619 			*ptid = tid;
620 		ret = 1;
621 	} else if (journal->j_committing_transaction) {
622 		/*
623 		 * If commit has been started, then we have to wait for
624 		 * completion of that transaction.
625 		 */
626 		if (ptid)
627 			*ptid = journal->j_committing_transaction->t_tid;
628 		ret = 1;
629 	}
630 	write_unlock(&journal->j_state_lock);
631 	return ret;
632 }
633 
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642 	int ret = 0;
643 	transaction_t *commit_trans;
644 
645 	if (!(journal->j_flags & JBD2_BARRIER))
646 		return 0;
647 	read_lock(&journal->j_state_lock);
648 	/* Transaction already committed? */
649 	if (tid_geq(journal->j_commit_sequence, tid))
650 		goto out;
651 	commit_trans = journal->j_committing_transaction;
652 	if (!commit_trans || commit_trans->t_tid != tid) {
653 		ret = 1;
654 		goto out;
655 	}
656 	/*
657 	 * Transaction is being committed and we already proceeded to
658 	 * submitting a flush to fs partition?
659 	 */
660 	if (journal->j_fs_dev != journal->j_dev) {
661 		if (!commit_trans->t_need_data_flush ||
662 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
663 			goto out;
664 	} else {
665 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666 			goto out;
667 	}
668 	ret = 1;
669 out:
670 	read_unlock(&journal->j_state_lock);
671 	return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674 
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681 	int err = 0;
682 
683 	read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685 	/*
686 	 * Some callers make sure transaction is already committing and in that
687 	 * case we cannot block on open handles anymore. So don't warn in that
688 	 * case.
689 	 */
690 	if (tid_gt(tid, journal->j_commit_sequence) &&
691 	    (!journal->j_committing_transaction ||
692 	     journal->j_committing_transaction->t_tid != tid)) {
693 		read_unlock(&journal->j_state_lock);
694 		jbd2_might_wait_for_commit(journal);
695 		read_lock(&journal->j_state_lock);
696 	}
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699 	if (!tid_geq(journal->j_commit_request, tid)) {
700 		printk(KERN_ERR
701 		       "%s: error: j_commit_request=%d, tid=%d\n",
702 		       __func__, journal->j_commit_request, tid);
703 	}
704 #endif
705 	while (tid_gt(tid, journal->j_commit_sequence)) {
706 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
707 				  tid, journal->j_commit_sequence);
708 		read_unlock(&journal->j_state_lock);
709 		wake_up(&journal->j_wait_commit);
710 		wait_event(journal->j_wait_done_commit,
711 				!tid_gt(tid, journal->j_commit_sequence));
712 		read_lock(&journal->j_state_lock);
713 	}
714 	read_unlock(&journal->j_state_lock);
715 
716 	if (unlikely(is_journal_aborted(journal)))
717 		err = -EIO;
718 	return err;
719 }
720 
721 /* Return 1 when transaction with given tid has already committed. */
722 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
723 {
724 	int ret = 1;
725 
726 	read_lock(&journal->j_state_lock);
727 	if (journal->j_running_transaction &&
728 	    journal->j_running_transaction->t_tid == tid)
729 		ret = 0;
730 	if (journal->j_committing_transaction &&
731 	    journal->j_committing_transaction->t_tid == tid)
732 		ret = 0;
733 	read_unlock(&journal->j_state_lock);
734 	return ret;
735 }
736 EXPORT_SYMBOL(jbd2_transaction_committed);
737 
738 /*
739  * When this function returns the transaction corresponding to tid
740  * will be completed.  If the transaction has currently running, start
741  * committing that transaction before waiting for it to complete.  If
742  * the transaction id is stale, it is by definition already completed,
743  * so just return SUCCESS.
744  */
745 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
746 {
747 	int	need_to_wait = 1;
748 
749 	read_lock(&journal->j_state_lock);
750 	if (journal->j_running_transaction &&
751 	    journal->j_running_transaction->t_tid == tid) {
752 		if (journal->j_commit_request != tid) {
753 			/* transaction not yet started, so request it */
754 			read_unlock(&journal->j_state_lock);
755 			jbd2_log_start_commit(journal, tid);
756 			goto wait_commit;
757 		}
758 	} else if (!(journal->j_committing_transaction &&
759 		     journal->j_committing_transaction->t_tid == tid))
760 		need_to_wait = 0;
761 	read_unlock(&journal->j_state_lock);
762 	if (!need_to_wait)
763 		return 0;
764 wait_commit:
765 	return jbd2_log_wait_commit(journal, tid);
766 }
767 EXPORT_SYMBOL(jbd2_complete_transaction);
768 
769 /*
770  * Log buffer allocation routines:
771  */
772 
773 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
774 {
775 	unsigned long blocknr;
776 
777 	write_lock(&journal->j_state_lock);
778 	J_ASSERT(journal->j_free > 1);
779 
780 	blocknr = journal->j_head;
781 	journal->j_head++;
782 	journal->j_free--;
783 	if (journal->j_head == journal->j_last)
784 		journal->j_head = journal->j_first;
785 	write_unlock(&journal->j_state_lock);
786 	return jbd2_journal_bmap(journal, blocknr, retp);
787 }
788 
789 /*
790  * Conversion of logical to physical block numbers for the journal
791  *
792  * On external journals the journal blocks are identity-mapped, so
793  * this is a no-op.  If needed, we can use j_blk_offset - everything is
794  * ready.
795  */
796 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
797 		 unsigned long long *retp)
798 {
799 	int err = 0;
800 	unsigned long long ret;
801 
802 	if (journal->j_inode) {
803 		ret = bmap(journal->j_inode, blocknr);
804 		if (ret)
805 			*retp = ret;
806 		else {
807 			printk(KERN_ALERT "%s: journal block not found "
808 					"at offset %lu on %s\n",
809 			       __func__, blocknr, journal->j_devname);
810 			err = -EIO;
811 			__journal_abort_soft(journal, err);
812 		}
813 	} else {
814 		*retp = blocknr; /* +journal->j_blk_offset */
815 	}
816 	return err;
817 }
818 
819 /*
820  * We play buffer_head aliasing tricks to write data/metadata blocks to
821  * the journal without copying their contents, but for journal
822  * descriptor blocks we do need to generate bona fide buffers.
823  *
824  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826  * But we don't bother doing that, so there will be coherency problems with
827  * mmaps of blockdevs which hold live JBD-controlled filesystems.
828  */
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831 {
832 	journal_t *journal = transaction->t_journal;
833 	struct buffer_head *bh;
834 	unsigned long long blocknr;
835 	journal_header_t *header;
836 	int err;
837 
838 	err = jbd2_journal_next_log_block(journal, &blocknr);
839 
840 	if (err)
841 		return NULL;
842 
843 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 	if (!bh)
845 		return NULL;
846 	lock_buffer(bh);
847 	memset(bh->b_data, 0, journal->j_blocksize);
848 	header = (journal_header_t *)bh->b_data;
849 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
850 	header->h_blocktype = cpu_to_be32(type);
851 	header->h_sequence = cpu_to_be32(transaction->t_tid);
852 	set_buffer_uptodate(bh);
853 	unlock_buffer(bh);
854 	BUFFER_TRACE(bh, "return this buffer");
855 	return bh;
856 }
857 
858 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
859 {
860 	struct jbd2_journal_block_tail *tail;
861 	__u32 csum;
862 
863 	if (!jbd2_journal_has_csum_v2or3(j))
864 		return;
865 
866 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
867 			sizeof(struct jbd2_journal_block_tail));
868 	tail->t_checksum = 0;
869 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
870 	tail->t_checksum = cpu_to_be32(csum);
871 }
872 
873 /*
874  * Return tid of the oldest transaction in the journal and block in the journal
875  * where the transaction starts.
876  *
877  * If the journal is now empty, return which will be the next transaction ID
878  * we will write and where will that transaction start.
879  *
880  * The return value is 0 if journal tail cannot be pushed any further, 1 if
881  * it can.
882  */
883 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
884 			      unsigned long *block)
885 {
886 	transaction_t *transaction;
887 	int ret;
888 
889 	read_lock(&journal->j_state_lock);
890 	spin_lock(&journal->j_list_lock);
891 	transaction = journal->j_checkpoint_transactions;
892 	if (transaction) {
893 		*tid = transaction->t_tid;
894 		*block = transaction->t_log_start;
895 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
896 		*tid = transaction->t_tid;
897 		*block = transaction->t_log_start;
898 	} else if ((transaction = journal->j_running_transaction) != NULL) {
899 		*tid = transaction->t_tid;
900 		*block = journal->j_head;
901 	} else {
902 		*tid = journal->j_transaction_sequence;
903 		*block = journal->j_head;
904 	}
905 	ret = tid_gt(*tid, journal->j_tail_sequence);
906 	spin_unlock(&journal->j_list_lock);
907 	read_unlock(&journal->j_state_lock);
908 
909 	return ret;
910 }
911 
912 /*
913  * Update information in journal structure and in on disk journal superblock
914  * about log tail. This function does not check whether information passed in
915  * really pushes log tail further. It's responsibility of the caller to make
916  * sure provided log tail information is valid (e.g. by holding
917  * j_checkpoint_mutex all the time between computing log tail and calling this
918  * function as is the case with jbd2_cleanup_journal_tail()).
919  *
920  * Requires j_checkpoint_mutex
921  */
922 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
923 {
924 	unsigned long freed;
925 	int ret;
926 
927 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
928 
929 	/*
930 	 * We cannot afford for write to remain in drive's caches since as
931 	 * soon as we update j_tail, next transaction can start reusing journal
932 	 * space and if we lose sb update during power failure we'd replay
933 	 * old transaction with possibly newly overwritten data.
934 	 */
935 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
936 					      REQ_SYNC | REQ_FUA);
937 	if (ret)
938 		goto out;
939 
940 	write_lock(&journal->j_state_lock);
941 	freed = block - journal->j_tail;
942 	if (block < journal->j_tail)
943 		freed += journal->j_last - journal->j_first;
944 
945 	trace_jbd2_update_log_tail(journal, tid, block, freed);
946 	jbd_debug(1,
947 		  "Cleaning journal tail from %d to %d (offset %lu), "
948 		  "freeing %lu\n",
949 		  journal->j_tail_sequence, tid, block, freed);
950 
951 	journal->j_free += freed;
952 	journal->j_tail_sequence = tid;
953 	journal->j_tail = block;
954 	write_unlock(&journal->j_state_lock);
955 
956 out:
957 	return ret;
958 }
959 
960 /*
961  * This is a variation of __jbd2_update_log_tail which checks for validity of
962  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
963  * with other threads updating log tail.
964  */
965 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
966 {
967 	mutex_lock_io(&journal->j_checkpoint_mutex);
968 	if (tid_gt(tid, journal->j_tail_sequence))
969 		__jbd2_update_log_tail(journal, tid, block);
970 	mutex_unlock(&journal->j_checkpoint_mutex);
971 }
972 
973 struct jbd2_stats_proc_session {
974 	journal_t *journal;
975 	struct transaction_stats_s *stats;
976 	int start;
977 	int max;
978 };
979 
980 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
981 {
982 	return *pos ? NULL : SEQ_START_TOKEN;
983 }
984 
985 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
986 {
987 	return NULL;
988 }
989 
990 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
991 {
992 	struct jbd2_stats_proc_session *s = seq->private;
993 
994 	if (v != SEQ_START_TOKEN)
995 		return 0;
996 	seq_printf(seq, "%lu transactions (%lu requested), "
997 		   "each up to %u blocks\n",
998 		   s->stats->ts_tid, s->stats->ts_requested,
999 		   s->journal->j_max_transaction_buffers);
1000 	if (s->stats->ts_tid == 0)
1001 		return 0;
1002 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1003 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1004 	seq_printf(seq, "  %ums request delay\n",
1005 	    (s->stats->ts_requested == 0) ? 0 :
1006 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1007 			     s->stats->ts_requested));
1008 	seq_printf(seq, "  %ums running transaction\n",
1009 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1010 	seq_printf(seq, "  %ums transaction was being locked\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1014 	seq_printf(seq, "  %ums logging transaction\n",
1015 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1016 	seq_printf(seq, "  %lluus average transaction commit time\n",
1017 		   div_u64(s->journal->j_average_commit_time, 1000));
1018 	seq_printf(seq, "  %lu handles per transaction\n",
1019 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1020 	seq_printf(seq, "  %lu blocks per transaction\n",
1021 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1022 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1023 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1024 	return 0;
1025 }
1026 
1027 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1028 {
1029 }
1030 
1031 static const struct seq_operations jbd2_seq_info_ops = {
1032 	.start  = jbd2_seq_info_start,
1033 	.next   = jbd2_seq_info_next,
1034 	.stop   = jbd2_seq_info_stop,
1035 	.show   = jbd2_seq_info_show,
1036 };
1037 
1038 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1039 {
1040 	journal_t *journal = PDE_DATA(inode);
1041 	struct jbd2_stats_proc_session *s;
1042 	int rc, size;
1043 
1044 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1045 	if (s == NULL)
1046 		return -ENOMEM;
1047 	size = sizeof(struct transaction_stats_s);
1048 	s->stats = kmalloc(size, GFP_KERNEL);
1049 	if (s->stats == NULL) {
1050 		kfree(s);
1051 		return -ENOMEM;
1052 	}
1053 	spin_lock(&journal->j_history_lock);
1054 	memcpy(s->stats, &journal->j_stats, size);
1055 	s->journal = journal;
1056 	spin_unlock(&journal->j_history_lock);
1057 
1058 	rc = seq_open(file, &jbd2_seq_info_ops);
1059 	if (rc == 0) {
1060 		struct seq_file *m = file->private_data;
1061 		m->private = s;
1062 	} else {
1063 		kfree(s->stats);
1064 		kfree(s);
1065 	}
1066 	return rc;
1067 
1068 }
1069 
1070 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1071 {
1072 	struct seq_file *seq = file->private_data;
1073 	struct jbd2_stats_proc_session *s = seq->private;
1074 	kfree(s->stats);
1075 	kfree(s);
1076 	return seq_release(inode, file);
1077 }
1078 
1079 static const struct file_operations jbd2_seq_info_fops = {
1080 	.owner		= THIS_MODULE,
1081 	.open           = jbd2_seq_info_open,
1082 	.read           = seq_read,
1083 	.llseek         = seq_lseek,
1084 	.release        = jbd2_seq_info_release,
1085 };
1086 
1087 static struct proc_dir_entry *proc_jbd2_stats;
1088 
1089 static void jbd2_stats_proc_init(journal_t *journal)
1090 {
1091 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1092 	if (journal->j_proc_entry) {
1093 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1094 				 &jbd2_seq_info_fops, journal);
1095 	}
1096 }
1097 
1098 static void jbd2_stats_proc_exit(journal_t *journal)
1099 {
1100 	remove_proc_entry("info", journal->j_proc_entry);
1101 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1102 }
1103 
1104 /*
1105  * Management for journal control blocks: functions to create and
1106  * destroy journal_t structures, and to initialise and read existing
1107  * journal blocks from disk.  */
1108 
1109 /* First: create and setup a journal_t object in memory.  We initialise
1110  * very few fields yet: that has to wait until we have created the
1111  * journal structures from from scratch, or loaded them from disk. */
1112 
1113 static journal_t *journal_init_common(struct block_device *bdev,
1114 			struct block_device *fs_dev,
1115 			unsigned long long start, int len, int blocksize)
1116 {
1117 	static struct lock_class_key jbd2_trans_commit_key;
1118 	journal_t *journal;
1119 	int err;
1120 	struct buffer_head *bh;
1121 	int n;
1122 
1123 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1124 	if (!journal)
1125 		return NULL;
1126 
1127 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1128 	init_waitqueue_head(&journal->j_wait_done_commit);
1129 	init_waitqueue_head(&journal->j_wait_commit);
1130 	init_waitqueue_head(&journal->j_wait_updates);
1131 	init_waitqueue_head(&journal->j_wait_reserved);
1132 	mutex_init(&journal->j_barrier);
1133 	mutex_init(&journal->j_checkpoint_mutex);
1134 	spin_lock_init(&journal->j_revoke_lock);
1135 	spin_lock_init(&journal->j_list_lock);
1136 	rwlock_init(&journal->j_state_lock);
1137 
1138 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1139 	journal->j_min_batch_time = 0;
1140 	journal->j_max_batch_time = 15000; /* 15ms */
1141 	atomic_set(&journal->j_reserved_credits, 0);
1142 
1143 	/* The journal is marked for error until we succeed with recovery! */
1144 	journal->j_flags = JBD2_ABORT;
1145 
1146 	/* Set up a default-sized revoke table for the new mount. */
1147 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1148 	if (err)
1149 		goto err_cleanup;
1150 
1151 	spin_lock_init(&journal->j_history_lock);
1152 
1153 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1154 			 &jbd2_trans_commit_key, 0);
1155 
1156 	/* journal descriptor can store up to n blocks -bzzz */
1157 	journal->j_blocksize = blocksize;
1158 	journal->j_dev = bdev;
1159 	journal->j_fs_dev = fs_dev;
1160 	journal->j_blk_offset = start;
1161 	journal->j_maxlen = len;
1162 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 	journal->j_wbufsize = n;
1164 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1165 					GFP_KERNEL);
1166 	if (!journal->j_wbuf)
1167 		goto err_cleanup;
1168 
1169 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1170 	if (!bh) {
1171 		pr_err("%s: Cannot get buffer for journal superblock\n",
1172 			__func__);
1173 		goto err_cleanup;
1174 	}
1175 	journal->j_sb_buffer = bh;
1176 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177 
1178 	return journal;
1179 
1180 err_cleanup:
1181 	kfree(journal->j_wbuf);
1182 	jbd2_journal_destroy_revoke(journal);
1183 	kfree(journal);
1184 	return NULL;
1185 }
1186 
1187 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1188  *
1189  * Create a journal structure assigned some fixed set of disk blocks to
1190  * the journal.  We don't actually touch those disk blocks yet, but we
1191  * need to set up all of the mapping information to tell the journaling
1192  * system where the journal blocks are.
1193  *
1194  */
1195 
1196 /**
1197  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1198  *  @bdev: Block device on which to create the journal
1199  *  @fs_dev: Device which hold journalled filesystem for this journal.
1200  *  @start: Block nr Start of journal.
1201  *  @len:  Length of the journal in blocks.
1202  *  @blocksize: blocksize of journalling device
1203  *
1204  *  Returns: a newly created journal_t *
1205  *
1206  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1207  *  range of blocks on an arbitrary block device.
1208  *
1209  */
1210 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1211 			struct block_device *fs_dev,
1212 			unsigned long long start, int len, int blocksize)
1213 {
1214 	journal_t *journal;
1215 
1216 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1217 	if (!journal)
1218 		return NULL;
1219 
1220 	bdevname(journal->j_dev, journal->j_devname);
1221 	strreplace(journal->j_devname, '/', '!');
1222 	jbd2_stats_proc_init(journal);
1223 
1224 	return journal;
1225 }
1226 
1227 /**
1228  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1229  *  @inode: An inode to create the journal in
1230  *
1231  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1232  * the journal.  The inode must exist already, must support bmap() and
1233  * must have all data blocks preallocated.
1234  */
1235 journal_t *jbd2_journal_init_inode(struct inode *inode)
1236 {
1237 	journal_t *journal;
1238 	char *p;
1239 	unsigned long long blocknr;
1240 
1241 	blocknr = bmap(inode, 0);
1242 	if (!blocknr) {
1243 		pr_err("%s: Cannot locate journal superblock\n",
1244 			__func__);
1245 		return NULL;
1246 	}
1247 
1248 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1249 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1250 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1251 
1252 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1253 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1254 			inode->i_sb->s_blocksize);
1255 	if (!journal)
1256 		return NULL;
1257 
1258 	journal->j_inode = inode;
1259 	bdevname(journal->j_dev, journal->j_devname);
1260 	p = strreplace(journal->j_devname, '/', '!');
1261 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1262 	jbd2_stats_proc_init(journal);
1263 
1264 	return journal;
1265 }
1266 
1267 /*
1268  * If the journal init or create aborts, we need to mark the journal
1269  * superblock as being NULL to prevent the journal destroy from writing
1270  * back a bogus superblock.
1271  */
1272 static void journal_fail_superblock (journal_t *journal)
1273 {
1274 	struct buffer_head *bh = journal->j_sb_buffer;
1275 	brelse(bh);
1276 	journal->j_sb_buffer = NULL;
1277 }
1278 
1279 /*
1280  * Given a journal_t structure, initialise the various fields for
1281  * startup of a new journaling session.  We use this both when creating
1282  * a journal, and after recovering an old journal to reset it for
1283  * subsequent use.
1284  */
1285 
1286 static int journal_reset(journal_t *journal)
1287 {
1288 	journal_superblock_t *sb = journal->j_superblock;
1289 	unsigned long long first, last;
1290 
1291 	first = be32_to_cpu(sb->s_first);
1292 	last = be32_to_cpu(sb->s_maxlen);
1293 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1294 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1295 		       first, last);
1296 		journal_fail_superblock(journal);
1297 		return -EINVAL;
1298 	}
1299 
1300 	journal->j_first = first;
1301 	journal->j_last = last;
1302 
1303 	journal->j_head = first;
1304 	journal->j_tail = first;
1305 	journal->j_free = last - first;
1306 
1307 	journal->j_tail_sequence = journal->j_transaction_sequence;
1308 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1309 	journal->j_commit_request = journal->j_commit_sequence;
1310 
1311 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1312 
1313 	/*
1314 	 * As a special case, if the on-disk copy is already marked as needing
1315 	 * no recovery (s_start == 0), then we can safely defer the superblock
1316 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1317 	 * attempting a write to a potential-readonly device.
1318 	 */
1319 	if (sb->s_start == 0) {
1320 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1321 			"(start %ld, seq %d, errno %d)\n",
1322 			journal->j_tail, journal->j_tail_sequence,
1323 			journal->j_errno);
1324 		journal->j_flags |= JBD2_FLUSHED;
1325 	} else {
1326 		/* Lock here to make assertions happy... */
1327 		mutex_lock_io(&journal->j_checkpoint_mutex);
1328 		/*
1329 		 * Update log tail information. We use REQ_FUA since new
1330 		 * transaction will start reusing journal space and so we
1331 		 * must make sure information about current log tail is on
1332 		 * disk before that.
1333 		 */
1334 		jbd2_journal_update_sb_log_tail(journal,
1335 						journal->j_tail_sequence,
1336 						journal->j_tail,
1337 						REQ_SYNC | REQ_FUA);
1338 		mutex_unlock(&journal->j_checkpoint_mutex);
1339 	}
1340 	return jbd2_journal_start_thread(journal);
1341 }
1342 
1343 /*
1344  * This function expects that the caller will have locked the journal
1345  * buffer head, and will return with it unlocked
1346  */
1347 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1348 {
1349 	struct buffer_head *bh = journal->j_sb_buffer;
1350 	journal_superblock_t *sb = journal->j_superblock;
1351 	int ret;
1352 
1353 	trace_jbd2_write_superblock(journal, write_flags);
1354 	if (!(journal->j_flags & JBD2_BARRIER))
1355 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1356 	if (buffer_write_io_error(bh)) {
1357 		/*
1358 		 * Oh, dear.  A previous attempt to write the journal
1359 		 * superblock failed.  This could happen because the
1360 		 * USB device was yanked out.  Or it could happen to
1361 		 * be a transient write error and maybe the block will
1362 		 * be remapped.  Nothing we can do but to retry the
1363 		 * write and hope for the best.
1364 		 */
1365 		printk(KERN_ERR "JBD2: previous I/O error detected "
1366 		       "for journal superblock update for %s.\n",
1367 		       journal->j_devname);
1368 		clear_buffer_write_io_error(bh);
1369 		set_buffer_uptodate(bh);
1370 	}
1371 	if (jbd2_journal_has_csum_v2or3(journal))
1372 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1373 	get_bh(bh);
1374 	bh->b_end_io = end_buffer_write_sync;
1375 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1376 	wait_on_buffer(bh);
1377 	if (buffer_write_io_error(bh)) {
1378 		clear_buffer_write_io_error(bh);
1379 		set_buffer_uptodate(bh);
1380 		ret = -EIO;
1381 	}
1382 	if (ret) {
1383 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1384 		       "journal superblock for %s.\n", ret,
1385 		       journal->j_devname);
1386 		jbd2_journal_abort(journal, ret);
1387 	}
1388 
1389 	return ret;
1390 }
1391 
1392 /**
1393  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1394  * @journal: The journal to update.
1395  * @tail_tid: TID of the new transaction at the tail of the log
1396  * @tail_block: The first block of the transaction at the tail of the log
1397  * @write_op: With which operation should we write the journal sb
1398  *
1399  * Update a journal's superblock information about log tail and write it to
1400  * disk, waiting for the IO to complete.
1401  */
1402 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1403 				     unsigned long tail_block, int write_op)
1404 {
1405 	journal_superblock_t *sb = journal->j_superblock;
1406 	int ret;
1407 
1408 	if (is_journal_aborted(journal))
1409 		return -EIO;
1410 
1411 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1412 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1413 		  tail_block, tail_tid);
1414 
1415 	lock_buffer(journal->j_sb_buffer);
1416 	sb->s_sequence = cpu_to_be32(tail_tid);
1417 	sb->s_start    = cpu_to_be32(tail_block);
1418 
1419 	ret = jbd2_write_superblock(journal, write_op);
1420 	if (ret)
1421 		goto out;
1422 
1423 	/* Log is no longer empty */
1424 	write_lock(&journal->j_state_lock);
1425 	WARN_ON(!sb->s_sequence);
1426 	journal->j_flags &= ~JBD2_FLUSHED;
1427 	write_unlock(&journal->j_state_lock);
1428 
1429 out:
1430 	return ret;
1431 }
1432 
1433 /**
1434  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1435  * @journal: The journal to update.
1436  * @write_op: With which operation should we write the journal sb
1437  *
1438  * Update a journal's dynamic superblock fields to show that journal is empty.
1439  * Write updated superblock to disk waiting for IO to complete.
1440  */
1441 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1442 {
1443 	journal_superblock_t *sb = journal->j_superblock;
1444 
1445 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1446 	lock_buffer(journal->j_sb_buffer);
1447 	if (sb->s_start == 0) {		/* Is it already empty? */
1448 		unlock_buffer(journal->j_sb_buffer);
1449 		return;
1450 	}
1451 
1452 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1453 		  journal->j_tail_sequence);
1454 
1455 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1456 	sb->s_start    = cpu_to_be32(0);
1457 
1458 	jbd2_write_superblock(journal, write_op);
1459 
1460 	/* Log is no longer empty */
1461 	write_lock(&journal->j_state_lock);
1462 	journal->j_flags |= JBD2_FLUSHED;
1463 	write_unlock(&journal->j_state_lock);
1464 }
1465 
1466 
1467 /**
1468  * jbd2_journal_update_sb_errno() - Update error in the journal.
1469  * @journal: The journal to update.
1470  *
1471  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1472  * to complete.
1473  */
1474 void jbd2_journal_update_sb_errno(journal_t *journal)
1475 {
1476 	journal_superblock_t *sb = journal->j_superblock;
1477 	int errcode;
1478 
1479 	lock_buffer(journal->j_sb_buffer);
1480 	errcode = journal->j_errno;
1481 	if (errcode == -ESHUTDOWN)
1482 		errcode = 0;
1483 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1484 	sb->s_errno    = cpu_to_be32(errcode);
1485 
1486 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1487 }
1488 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1489 
1490 /*
1491  * Read the superblock for a given journal, performing initial
1492  * validation of the format.
1493  */
1494 static int journal_get_superblock(journal_t *journal)
1495 {
1496 	struct buffer_head *bh;
1497 	journal_superblock_t *sb;
1498 	int err = -EIO;
1499 
1500 	bh = journal->j_sb_buffer;
1501 
1502 	J_ASSERT(bh != NULL);
1503 	if (!buffer_uptodate(bh)) {
1504 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1505 		wait_on_buffer(bh);
1506 		if (!buffer_uptodate(bh)) {
1507 			printk(KERN_ERR
1508 				"JBD2: IO error reading journal superblock\n");
1509 			goto out;
1510 		}
1511 	}
1512 
1513 	if (buffer_verified(bh))
1514 		return 0;
1515 
1516 	sb = journal->j_superblock;
1517 
1518 	err = -EINVAL;
1519 
1520 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1521 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1522 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1523 		goto out;
1524 	}
1525 
1526 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1527 	case JBD2_SUPERBLOCK_V1:
1528 		journal->j_format_version = 1;
1529 		break;
1530 	case JBD2_SUPERBLOCK_V2:
1531 		journal->j_format_version = 2;
1532 		break;
1533 	default:
1534 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1535 		goto out;
1536 	}
1537 
1538 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1539 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1540 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1541 		printk(KERN_WARNING "JBD2: journal file too short\n");
1542 		goto out;
1543 	}
1544 
1545 	if (be32_to_cpu(sb->s_first) == 0 ||
1546 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1547 		printk(KERN_WARNING
1548 			"JBD2: Invalid start block of journal: %u\n",
1549 			be32_to_cpu(sb->s_first));
1550 		goto out;
1551 	}
1552 
1553 	if (jbd2_has_feature_csum2(journal) &&
1554 	    jbd2_has_feature_csum3(journal)) {
1555 		/* Can't have checksum v2 and v3 at the same time! */
1556 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1557 		       "at the same time!\n");
1558 		goto out;
1559 	}
1560 
1561 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1562 	    jbd2_has_feature_checksum(journal)) {
1563 		/* Can't have checksum v1 and v2 on at the same time! */
1564 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1565 		       "at the same time!\n");
1566 		goto out;
1567 	}
1568 
1569 	if (!jbd2_verify_csum_type(journal, sb)) {
1570 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1571 		goto out;
1572 	}
1573 
1574 	/* Load the checksum driver */
1575 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1576 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1577 		if (IS_ERR(journal->j_chksum_driver)) {
1578 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1579 			err = PTR_ERR(journal->j_chksum_driver);
1580 			journal->j_chksum_driver = NULL;
1581 			goto out;
1582 		}
1583 	}
1584 
1585 	if (jbd2_journal_has_csum_v2or3(journal)) {
1586 		/* Check superblock checksum */
1587 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1588 			printk(KERN_ERR "JBD2: journal checksum error\n");
1589 			err = -EFSBADCRC;
1590 			goto out;
1591 		}
1592 
1593 		/* Precompute checksum seed for all metadata */
1594 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1595 						   sizeof(sb->s_uuid));
1596 	}
1597 
1598 	set_buffer_verified(bh);
1599 
1600 	return 0;
1601 
1602 out:
1603 	journal_fail_superblock(journal);
1604 	return err;
1605 }
1606 
1607 /*
1608  * Load the on-disk journal superblock and read the key fields into the
1609  * journal_t.
1610  */
1611 
1612 static int load_superblock(journal_t *journal)
1613 {
1614 	int err;
1615 	journal_superblock_t *sb;
1616 
1617 	err = journal_get_superblock(journal);
1618 	if (err)
1619 		return err;
1620 
1621 	sb = journal->j_superblock;
1622 
1623 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1624 	journal->j_tail = be32_to_cpu(sb->s_start);
1625 	journal->j_first = be32_to_cpu(sb->s_first);
1626 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1627 	journal->j_errno = be32_to_cpu(sb->s_errno);
1628 
1629 	return 0;
1630 }
1631 
1632 
1633 /**
1634  * int jbd2_journal_load() - Read journal from disk.
1635  * @journal: Journal to act on.
1636  *
1637  * Given a journal_t structure which tells us which disk blocks contain
1638  * a journal, read the journal from disk to initialise the in-memory
1639  * structures.
1640  */
1641 int jbd2_journal_load(journal_t *journal)
1642 {
1643 	int err;
1644 	journal_superblock_t *sb;
1645 
1646 	err = load_superblock(journal);
1647 	if (err)
1648 		return err;
1649 
1650 	sb = journal->j_superblock;
1651 	/* If this is a V2 superblock, then we have to check the
1652 	 * features flags on it. */
1653 
1654 	if (journal->j_format_version >= 2) {
1655 		if ((sb->s_feature_ro_compat &
1656 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1657 		    (sb->s_feature_incompat &
1658 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1659 			printk(KERN_WARNING
1660 				"JBD2: Unrecognised features on journal\n");
1661 			return -EINVAL;
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * Create a slab for this blocksize
1667 	 */
1668 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1669 	if (err)
1670 		return err;
1671 
1672 	/* Let the recovery code check whether it needs to recover any
1673 	 * data from the journal. */
1674 	if (jbd2_journal_recover(journal))
1675 		goto recovery_error;
1676 
1677 	if (journal->j_failed_commit) {
1678 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1679 		       "is corrupt.\n", journal->j_failed_commit,
1680 		       journal->j_devname);
1681 		return -EFSCORRUPTED;
1682 	}
1683 
1684 	/* OK, we've finished with the dynamic journal bits:
1685 	 * reinitialise the dynamic contents of the superblock in memory
1686 	 * and reset them on disk. */
1687 	if (journal_reset(journal))
1688 		goto recovery_error;
1689 
1690 	journal->j_flags &= ~JBD2_ABORT;
1691 	journal->j_flags |= JBD2_LOADED;
1692 	return 0;
1693 
1694 recovery_error:
1695 	printk(KERN_WARNING "JBD2: recovery failed\n");
1696 	return -EIO;
1697 }
1698 
1699 /**
1700  * void jbd2_journal_destroy() - Release a journal_t structure.
1701  * @journal: Journal to act on.
1702  *
1703  * Release a journal_t structure once it is no longer in use by the
1704  * journaled object.
1705  * Return <0 if we couldn't clean up the journal.
1706  */
1707 int jbd2_journal_destroy(journal_t *journal)
1708 {
1709 	int err = 0;
1710 
1711 	/* Wait for the commit thread to wake up and die. */
1712 	journal_kill_thread(journal);
1713 
1714 	/* Force a final log commit */
1715 	if (journal->j_running_transaction)
1716 		jbd2_journal_commit_transaction(journal);
1717 
1718 	/* Force any old transactions to disk */
1719 
1720 	/* Totally anal locking here... */
1721 	spin_lock(&journal->j_list_lock);
1722 	while (journal->j_checkpoint_transactions != NULL) {
1723 		spin_unlock(&journal->j_list_lock);
1724 		mutex_lock_io(&journal->j_checkpoint_mutex);
1725 		err = jbd2_log_do_checkpoint(journal);
1726 		mutex_unlock(&journal->j_checkpoint_mutex);
1727 		/*
1728 		 * If checkpointing failed, just free the buffers to avoid
1729 		 * looping forever
1730 		 */
1731 		if (err) {
1732 			jbd2_journal_destroy_checkpoint(journal);
1733 			spin_lock(&journal->j_list_lock);
1734 			break;
1735 		}
1736 		spin_lock(&journal->j_list_lock);
1737 	}
1738 
1739 	J_ASSERT(journal->j_running_transaction == NULL);
1740 	J_ASSERT(journal->j_committing_transaction == NULL);
1741 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1742 	spin_unlock(&journal->j_list_lock);
1743 
1744 	if (journal->j_sb_buffer) {
1745 		if (!is_journal_aborted(journal)) {
1746 			mutex_lock_io(&journal->j_checkpoint_mutex);
1747 
1748 			write_lock(&journal->j_state_lock);
1749 			journal->j_tail_sequence =
1750 				++journal->j_transaction_sequence;
1751 			write_unlock(&journal->j_state_lock);
1752 
1753 			jbd2_mark_journal_empty(journal,
1754 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1755 			mutex_unlock(&journal->j_checkpoint_mutex);
1756 		} else
1757 			err = -EIO;
1758 		brelse(journal->j_sb_buffer);
1759 	}
1760 
1761 	if (journal->j_proc_entry)
1762 		jbd2_stats_proc_exit(journal);
1763 	iput(journal->j_inode);
1764 	if (journal->j_revoke)
1765 		jbd2_journal_destroy_revoke(journal);
1766 	if (journal->j_chksum_driver)
1767 		crypto_free_shash(journal->j_chksum_driver);
1768 	kfree(journal->j_wbuf);
1769 	kfree(journal);
1770 
1771 	return err;
1772 }
1773 
1774 
1775 /**
1776  *int jbd2_journal_check_used_features () - Check if features specified are used.
1777  * @journal: Journal to check.
1778  * @compat: bitmask of compatible features
1779  * @ro: bitmask of features that force read-only mount
1780  * @incompat: bitmask of incompatible features
1781  *
1782  * Check whether the journal uses all of a given set of
1783  * features.  Return true (non-zero) if it does.
1784  **/
1785 
1786 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1787 				 unsigned long ro, unsigned long incompat)
1788 {
1789 	journal_superblock_t *sb;
1790 
1791 	if (!compat && !ro && !incompat)
1792 		return 1;
1793 	/* Load journal superblock if it is not loaded yet. */
1794 	if (journal->j_format_version == 0 &&
1795 	    journal_get_superblock(journal) != 0)
1796 		return 0;
1797 	if (journal->j_format_version == 1)
1798 		return 0;
1799 
1800 	sb = journal->j_superblock;
1801 
1802 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1803 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1804 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1805 		return 1;
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1812  * @journal: Journal to check.
1813  * @compat: bitmask of compatible features
1814  * @ro: bitmask of features that force read-only mount
1815  * @incompat: bitmask of incompatible features
1816  *
1817  * Check whether the journaling code supports the use of
1818  * all of a given set of features on this journal.  Return true
1819  * (non-zero) if it can. */
1820 
1821 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1822 				      unsigned long ro, unsigned long incompat)
1823 {
1824 	if (!compat && !ro && !incompat)
1825 		return 1;
1826 
1827 	/* We can support any known requested features iff the
1828 	 * superblock is in version 2.  Otherwise we fail to support any
1829 	 * extended sb features. */
1830 
1831 	if (journal->j_format_version != 2)
1832 		return 0;
1833 
1834 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1835 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1836 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1837 		return 1;
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1844  * @journal: Journal to act on.
1845  * @compat: bitmask of compatible features
1846  * @ro: bitmask of features that force read-only mount
1847  * @incompat: bitmask of incompatible features
1848  *
1849  * Mark a given journal feature as present on the
1850  * superblock.  Returns true if the requested features could be set.
1851  *
1852  */
1853 
1854 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1855 			  unsigned long ro, unsigned long incompat)
1856 {
1857 #define INCOMPAT_FEATURE_ON(f) \
1858 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1859 #define COMPAT_FEATURE_ON(f) \
1860 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1861 	journal_superblock_t *sb;
1862 
1863 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1864 		return 1;
1865 
1866 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1867 		return 0;
1868 
1869 	/* If enabling v2 checksums, turn on v3 instead */
1870 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1871 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1872 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1873 	}
1874 
1875 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1876 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1877 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1878 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1879 
1880 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1881 		  compat, ro, incompat);
1882 
1883 	sb = journal->j_superblock;
1884 
1885 	/* Load the checksum driver if necessary */
1886 	if ((journal->j_chksum_driver == NULL) &&
1887 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1888 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1889 		if (IS_ERR(journal->j_chksum_driver)) {
1890 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1891 			journal->j_chksum_driver = NULL;
1892 			return 0;
1893 		}
1894 		/* Precompute checksum seed for all metadata */
1895 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1896 						   sizeof(sb->s_uuid));
1897 	}
1898 
1899 	lock_buffer(journal->j_sb_buffer);
1900 
1901 	/* If enabling v3 checksums, update superblock */
1902 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1903 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1904 		sb->s_feature_compat &=
1905 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1906 	}
1907 
1908 	/* If enabling v1 checksums, downgrade superblock */
1909 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1910 		sb->s_feature_incompat &=
1911 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1912 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1913 
1914 	sb->s_feature_compat    |= cpu_to_be32(compat);
1915 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1916 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1917 	unlock_buffer(journal->j_sb_buffer);
1918 
1919 	return 1;
1920 #undef COMPAT_FEATURE_ON
1921 #undef INCOMPAT_FEATURE_ON
1922 }
1923 
1924 /*
1925  * jbd2_journal_clear_features () - Clear a given journal feature in the
1926  * 				    superblock
1927  * @journal: Journal to act on.
1928  * @compat: bitmask of compatible features
1929  * @ro: bitmask of features that force read-only mount
1930  * @incompat: bitmask of incompatible features
1931  *
1932  * Clear a given journal feature as present on the
1933  * superblock.
1934  */
1935 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1936 				unsigned long ro, unsigned long incompat)
1937 {
1938 	journal_superblock_t *sb;
1939 
1940 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1941 		  compat, ro, incompat);
1942 
1943 	sb = journal->j_superblock;
1944 
1945 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1946 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1947 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1948 }
1949 EXPORT_SYMBOL(jbd2_journal_clear_features);
1950 
1951 /**
1952  * int jbd2_journal_flush () - Flush journal
1953  * @journal: Journal to act on.
1954  *
1955  * Flush all data for a given journal to disk and empty the journal.
1956  * Filesystems can use this when remounting readonly to ensure that
1957  * recovery does not need to happen on remount.
1958  */
1959 
1960 int jbd2_journal_flush(journal_t *journal)
1961 {
1962 	int err = 0;
1963 	transaction_t *transaction = NULL;
1964 
1965 	write_lock(&journal->j_state_lock);
1966 
1967 	/* Force everything buffered to the log... */
1968 	if (journal->j_running_transaction) {
1969 		transaction = journal->j_running_transaction;
1970 		__jbd2_log_start_commit(journal, transaction->t_tid);
1971 	} else if (journal->j_committing_transaction)
1972 		transaction = journal->j_committing_transaction;
1973 
1974 	/* Wait for the log commit to complete... */
1975 	if (transaction) {
1976 		tid_t tid = transaction->t_tid;
1977 
1978 		write_unlock(&journal->j_state_lock);
1979 		jbd2_log_wait_commit(journal, tid);
1980 	} else {
1981 		write_unlock(&journal->j_state_lock);
1982 	}
1983 
1984 	/* ...and flush everything in the log out to disk. */
1985 	spin_lock(&journal->j_list_lock);
1986 	while (!err && journal->j_checkpoint_transactions != NULL) {
1987 		spin_unlock(&journal->j_list_lock);
1988 		mutex_lock_io(&journal->j_checkpoint_mutex);
1989 		err = jbd2_log_do_checkpoint(journal);
1990 		mutex_unlock(&journal->j_checkpoint_mutex);
1991 		spin_lock(&journal->j_list_lock);
1992 	}
1993 	spin_unlock(&journal->j_list_lock);
1994 
1995 	if (is_journal_aborted(journal))
1996 		return -EIO;
1997 
1998 	mutex_lock_io(&journal->j_checkpoint_mutex);
1999 	if (!err) {
2000 		err = jbd2_cleanup_journal_tail(journal);
2001 		if (err < 0) {
2002 			mutex_unlock(&journal->j_checkpoint_mutex);
2003 			goto out;
2004 		}
2005 		err = 0;
2006 	}
2007 
2008 	/* Finally, mark the journal as really needing no recovery.
2009 	 * This sets s_start==0 in the underlying superblock, which is
2010 	 * the magic code for a fully-recovered superblock.  Any future
2011 	 * commits of data to the journal will restore the current
2012 	 * s_start value. */
2013 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2014 	mutex_unlock(&journal->j_checkpoint_mutex);
2015 	write_lock(&journal->j_state_lock);
2016 	J_ASSERT(!journal->j_running_transaction);
2017 	J_ASSERT(!journal->j_committing_transaction);
2018 	J_ASSERT(!journal->j_checkpoint_transactions);
2019 	J_ASSERT(journal->j_head == journal->j_tail);
2020 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2021 	write_unlock(&journal->j_state_lock);
2022 out:
2023 	return err;
2024 }
2025 
2026 /**
2027  * int jbd2_journal_wipe() - Wipe journal contents
2028  * @journal: Journal to act on.
2029  * @write: flag (see below)
2030  *
2031  * Wipe out all of the contents of a journal, safely.  This will produce
2032  * a warning if the journal contains any valid recovery information.
2033  * Must be called between journal_init_*() and jbd2_journal_load().
2034  *
2035  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2036  * we merely suppress recovery.
2037  */
2038 
2039 int jbd2_journal_wipe(journal_t *journal, int write)
2040 {
2041 	int err = 0;
2042 
2043 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2044 
2045 	err = load_superblock(journal);
2046 	if (err)
2047 		return err;
2048 
2049 	if (!journal->j_tail)
2050 		goto no_recovery;
2051 
2052 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2053 		write ? "Clearing" : "Ignoring");
2054 
2055 	err = jbd2_journal_skip_recovery(journal);
2056 	if (write) {
2057 		/* Lock to make assertions happy... */
2058 		mutex_lock_io(&journal->j_checkpoint_mutex);
2059 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2060 		mutex_unlock(&journal->j_checkpoint_mutex);
2061 	}
2062 
2063  no_recovery:
2064 	return err;
2065 }
2066 
2067 /*
2068  * Journal abort has very specific semantics, which we describe
2069  * for journal abort.
2070  *
2071  * Two internal functions, which provide abort to the jbd layer
2072  * itself are here.
2073  */
2074 
2075 /*
2076  * Quick version for internal journal use (doesn't lock the journal).
2077  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2078  * and don't attempt to make any other journal updates.
2079  */
2080 void __jbd2_journal_abort_hard(journal_t *journal)
2081 {
2082 	transaction_t *transaction;
2083 
2084 	if (journal->j_flags & JBD2_ABORT)
2085 		return;
2086 
2087 	printk(KERN_ERR "Aborting journal on device %s.\n",
2088 	       journal->j_devname);
2089 
2090 	write_lock(&journal->j_state_lock);
2091 	journal->j_flags |= JBD2_ABORT;
2092 	transaction = journal->j_running_transaction;
2093 	if (transaction)
2094 		__jbd2_log_start_commit(journal, transaction->t_tid);
2095 	write_unlock(&journal->j_state_lock);
2096 }
2097 
2098 /* Soft abort: record the abort error status in the journal superblock,
2099  * but don't do any other IO. */
2100 static void __journal_abort_soft (journal_t *journal, int errno)
2101 {
2102 	int old_errno;
2103 
2104 	write_lock(&journal->j_state_lock);
2105 	old_errno = journal->j_errno;
2106 	if (!journal->j_errno || errno == -ESHUTDOWN)
2107 		journal->j_errno = errno;
2108 
2109 	if (journal->j_flags & JBD2_ABORT) {
2110 		write_unlock(&journal->j_state_lock);
2111 		if (!old_errno && old_errno != -ESHUTDOWN &&
2112 		    errno == -ESHUTDOWN)
2113 			jbd2_journal_update_sb_errno(journal);
2114 		return;
2115 	}
2116 	write_unlock(&journal->j_state_lock);
2117 
2118 	__jbd2_journal_abort_hard(journal);
2119 
2120 	if (errno) {
2121 		jbd2_journal_update_sb_errno(journal);
2122 		write_lock(&journal->j_state_lock);
2123 		journal->j_flags |= JBD2_REC_ERR;
2124 		write_unlock(&journal->j_state_lock);
2125 	}
2126 }
2127 
2128 /**
2129  * void jbd2_journal_abort () - Shutdown the journal immediately.
2130  * @journal: the journal to shutdown.
2131  * @errno:   an error number to record in the journal indicating
2132  *           the reason for the shutdown.
2133  *
2134  * Perform a complete, immediate shutdown of the ENTIRE
2135  * journal (not of a single transaction).  This operation cannot be
2136  * undone without closing and reopening the journal.
2137  *
2138  * The jbd2_journal_abort function is intended to support higher level error
2139  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2140  * mode.
2141  *
2142  * Journal abort has very specific semantics.  Any existing dirty,
2143  * unjournaled buffers in the main filesystem will still be written to
2144  * disk by bdflush, but the journaling mechanism will be suspended
2145  * immediately and no further transaction commits will be honoured.
2146  *
2147  * Any dirty, journaled buffers will be written back to disk without
2148  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2149  * filesystem, but we _do_ attempt to leave as much data as possible
2150  * behind for fsck to use for cleanup.
2151  *
2152  * Any attempt to get a new transaction handle on a journal which is in
2153  * ABORT state will just result in an -EROFS error return.  A
2154  * jbd2_journal_stop on an existing handle will return -EIO if we have
2155  * entered abort state during the update.
2156  *
2157  * Recursive transactions are not disturbed by journal abort until the
2158  * final jbd2_journal_stop, which will receive the -EIO error.
2159  *
2160  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2161  * which will be recorded (if possible) in the journal superblock.  This
2162  * allows a client to record failure conditions in the middle of a
2163  * transaction without having to complete the transaction to record the
2164  * failure to disk.  ext3_error, for example, now uses this
2165  * functionality.
2166  *
2167  * Errors which originate from within the journaling layer will NOT
2168  * supply an errno; a null errno implies that absolutely no further
2169  * writes are done to the journal (unless there are any already in
2170  * progress).
2171  *
2172  */
2173 
2174 void jbd2_journal_abort(journal_t *journal, int errno)
2175 {
2176 	__journal_abort_soft(journal, errno);
2177 }
2178 
2179 /**
2180  * int jbd2_journal_errno () - returns the journal's error state.
2181  * @journal: journal to examine.
2182  *
2183  * This is the errno number set with jbd2_journal_abort(), the last
2184  * time the journal was mounted - if the journal was stopped
2185  * without calling abort this will be 0.
2186  *
2187  * If the journal has been aborted on this mount time -EROFS will
2188  * be returned.
2189  */
2190 int jbd2_journal_errno(journal_t *journal)
2191 {
2192 	int err;
2193 
2194 	read_lock(&journal->j_state_lock);
2195 	if (journal->j_flags & JBD2_ABORT)
2196 		err = -EROFS;
2197 	else
2198 		err = journal->j_errno;
2199 	read_unlock(&journal->j_state_lock);
2200 	return err;
2201 }
2202 
2203 /**
2204  * int jbd2_journal_clear_err () - clears the journal's error state
2205  * @journal: journal to act on.
2206  *
2207  * An error must be cleared or acked to take a FS out of readonly
2208  * mode.
2209  */
2210 int jbd2_journal_clear_err(journal_t *journal)
2211 {
2212 	int err = 0;
2213 
2214 	write_lock(&journal->j_state_lock);
2215 	if (journal->j_flags & JBD2_ABORT)
2216 		err = -EROFS;
2217 	else
2218 		journal->j_errno = 0;
2219 	write_unlock(&journal->j_state_lock);
2220 	return err;
2221 }
2222 
2223 /**
2224  * void jbd2_journal_ack_err() - Ack journal err.
2225  * @journal: journal to act on.
2226  *
2227  * An error must be cleared or acked to take a FS out of readonly
2228  * mode.
2229  */
2230 void jbd2_journal_ack_err(journal_t *journal)
2231 {
2232 	write_lock(&journal->j_state_lock);
2233 	if (journal->j_errno)
2234 		journal->j_flags |= JBD2_ACK_ERR;
2235 	write_unlock(&journal->j_state_lock);
2236 }
2237 
2238 int jbd2_journal_blocks_per_page(struct inode *inode)
2239 {
2240 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2241 }
2242 
2243 /*
2244  * helper functions to deal with 32 or 64bit block numbers.
2245  */
2246 size_t journal_tag_bytes(journal_t *journal)
2247 {
2248 	size_t sz;
2249 
2250 	if (jbd2_has_feature_csum3(journal))
2251 		return sizeof(journal_block_tag3_t);
2252 
2253 	sz = sizeof(journal_block_tag_t);
2254 
2255 	if (jbd2_has_feature_csum2(journal))
2256 		sz += sizeof(__u16);
2257 
2258 	if (jbd2_has_feature_64bit(journal))
2259 		return sz;
2260 	else
2261 		return sz - sizeof(__u32);
2262 }
2263 
2264 /*
2265  * JBD memory management
2266  *
2267  * These functions are used to allocate block-sized chunks of memory
2268  * used for making copies of buffer_head data.  Very often it will be
2269  * page-sized chunks of data, but sometimes it will be in
2270  * sub-page-size chunks.  (For example, 16k pages on Power systems
2271  * with a 4k block file system.)  For blocks smaller than a page, we
2272  * use a SLAB allocator.  There are slab caches for each block size,
2273  * which are allocated at mount time, if necessary, and we only free
2274  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2275  * this reason we don't need to a mutex to protect access to
2276  * jbd2_slab[] allocating or releasing memory; only in
2277  * jbd2_journal_create_slab().
2278  */
2279 #define JBD2_MAX_SLABS 8
2280 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2281 
2282 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2283 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2284 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2285 };
2286 
2287 
2288 static void jbd2_journal_destroy_slabs(void)
2289 {
2290 	int i;
2291 
2292 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2293 		kmem_cache_destroy(jbd2_slab[i]);
2294 		jbd2_slab[i] = NULL;
2295 	}
2296 }
2297 
2298 static int jbd2_journal_create_slab(size_t size)
2299 {
2300 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2301 	int i = order_base_2(size) - 10;
2302 	size_t slab_size;
2303 
2304 	if (size == PAGE_SIZE)
2305 		return 0;
2306 
2307 	if (i >= JBD2_MAX_SLABS)
2308 		return -EINVAL;
2309 
2310 	if (unlikely(i < 0))
2311 		i = 0;
2312 	mutex_lock(&jbd2_slab_create_mutex);
2313 	if (jbd2_slab[i]) {
2314 		mutex_unlock(&jbd2_slab_create_mutex);
2315 		return 0;	/* Already created */
2316 	}
2317 
2318 	slab_size = 1 << (i+10);
2319 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2320 					 slab_size, 0, NULL);
2321 	mutex_unlock(&jbd2_slab_create_mutex);
2322 	if (!jbd2_slab[i]) {
2323 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2324 		return -ENOMEM;
2325 	}
2326 	return 0;
2327 }
2328 
2329 static struct kmem_cache *get_slab(size_t size)
2330 {
2331 	int i = order_base_2(size) - 10;
2332 
2333 	BUG_ON(i >= JBD2_MAX_SLABS);
2334 	if (unlikely(i < 0))
2335 		i = 0;
2336 	BUG_ON(jbd2_slab[i] == NULL);
2337 	return jbd2_slab[i];
2338 }
2339 
2340 void *jbd2_alloc(size_t size, gfp_t flags)
2341 {
2342 	void *ptr;
2343 
2344 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2345 
2346 	if (size < PAGE_SIZE)
2347 		ptr = kmem_cache_alloc(get_slab(size), flags);
2348 	else
2349 		ptr = (void *)__get_free_pages(flags, get_order(size));
2350 
2351 	/* Check alignment; SLUB has gotten this wrong in the past,
2352 	 * and this can lead to user data corruption! */
2353 	BUG_ON(((unsigned long) ptr) & (size-1));
2354 
2355 	return ptr;
2356 }
2357 
2358 void jbd2_free(void *ptr, size_t size)
2359 {
2360 	if (size < PAGE_SIZE)
2361 		kmem_cache_free(get_slab(size), ptr);
2362 	else
2363 		free_pages((unsigned long)ptr, get_order(size));
2364 };
2365 
2366 /*
2367  * Journal_head storage management
2368  */
2369 static struct kmem_cache *jbd2_journal_head_cache;
2370 #ifdef CONFIG_JBD2_DEBUG
2371 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2372 #endif
2373 
2374 static int jbd2_journal_init_journal_head_cache(void)
2375 {
2376 	int retval;
2377 
2378 	J_ASSERT(jbd2_journal_head_cache == NULL);
2379 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2380 				sizeof(struct journal_head),
2381 				0,		/* offset */
2382 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2383 				NULL);		/* ctor */
2384 	retval = 0;
2385 	if (!jbd2_journal_head_cache) {
2386 		retval = -ENOMEM;
2387 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2388 	}
2389 	return retval;
2390 }
2391 
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394 	kmem_cache_destroy(jbd2_journal_head_cache);
2395 	jbd2_journal_head_cache = NULL;
2396 }
2397 
2398 /*
2399  * journal_head splicing and dicing
2400  */
2401 static struct journal_head *journal_alloc_journal_head(void)
2402 {
2403 	struct journal_head *ret;
2404 
2405 #ifdef CONFIG_JBD2_DEBUG
2406 	atomic_inc(&nr_journal_heads);
2407 #endif
2408 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2409 	if (!ret) {
2410 		jbd_debug(1, "out of memory for journal_head\n");
2411 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2412 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2413 				GFP_NOFS | __GFP_NOFAIL);
2414 	}
2415 	return ret;
2416 }
2417 
2418 static void journal_free_journal_head(struct journal_head *jh)
2419 {
2420 #ifdef CONFIG_JBD2_DEBUG
2421 	atomic_dec(&nr_journal_heads);
2422 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423 #endif
2424 	kmem_cache_free(jbd2_journal_head_cache, jh);
2425 }
2426 
2427 /*
2428  * A journal_head is attached to a buffer_head whenever JBD has an
2429  * interest in the buffer.
2430  *
2431  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432  * is set.  This bit is tested in core kernel code where we need to take
2433  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2434  * there.
2435  *
2436  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437  *
2438  * When a buffer has its BH_JBD bit set it is immune from being released by
2439  * core kernel code, mainly via ->b_count.
2440  *
2441  * A journal_head is detached from its buffer_head when the journal_head's
2442  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443  * transaction (b_cp_transaction) hold their references to b_jcount.
2444  *
2445  * Various places in the kernel want to attach a journal_head to a buffer_head
2446  * _before_ attaching the journal_head to a transaction.  To protect the
2447  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448  * journal_head's b_jcount refcount by one.  The caller must call
2449  * jbd2_journal_put_journal_head() to undo this.
2450  *
2451  * So the typical usage would be:
2452  *
2453  *	(Attach a journal_head if needed.  Increments b_jcount)
2454  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455  *	...
2456  *      (Get another reference for transaction)
2457  *	jbd2_journal_grab_journal_head(bh);
2458  *	jh->b_transaction = xxx;
2459  *	(Put original reference)
2460  *	jbd2_journal_put_journal_head(jh);
2461  */
2462 
2463 /*
2464  * Give a buffer_head a journal_head.
2465  *
2466  * May sleep.
2467  */
2468 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469 {
2470 	struct journal_head *jh;
2471 	struct journal_head *new_jh = NULL;
2472 
2473 repeat:
2474 	if (!buffer_jbd(bh))
2475 		new_jh = journal_alloc_journal_head();
2476 
2477 	jbd_lock_bh_journal_head(bh);
2478 	if (buffer_jbd(bh)) {
2479 		jh = bh2jh(bh);
2480 	} else {
2481 		J_ASSERT_BH(bh,
2482 			(atomic_read(&bh->b_count) > 0) ||
2483 			(bh->b_page && bh->b_page->mapping));
2484 
2485 		if (!new_jh) {
2486 			jbd_unlock_bh_journal_head(bh);
2487 			goto repeat;
2488 		}
2489 
2490 		jh = new_jh;
2491 		new_jh = NULL;		/* We consumed it */
2492 		set_buffer_jbd(bh);
2493 		bh->b_private = jh;
2494 		jh->b_bh = bh;
2495 		get_bh(bh);
2496 		BUFFER_TRACE(bh, "added journal_head");
2497 	}
2498 	jh->b_jcount++;
2499 	jbd_unlock_bh_journal_head(bh);
2500 	if (new_jh)
2501 		journal_free_journal_head(new_jh);
2502 	return bh->b_private;
2503 }
2504 
2505 /*
2506  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2507  * having a journal_head, return NULL
2508  */
2509 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510 {
2511 	struct journal_head *jh = NULL;
2512 
2513 	jbd_lock_bh_journal_head(bh);
2514 	if (buffer_jbd(bh)) {
2515 		jh = bh2jh(bh);
2516 		jh->b_jcount++;
2517 	}
2518 	jbd_unlock_bh_journal_head(bh);
2519 	return jh;
2520 }
2521 
2522 static void __journal_remove_journal_head(struct buffer_head *bh)
2523 {
2524 	struct journal_head *jh = bh2jh(bh);
2525 
2526 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531 	J_ASSERT_BH(bh, buffer_jbd(bh));
2532 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533 	BUFFER_TRACE(bh, "remove journal_head");
2534 	if (jh->b_frozen_data) {
2535 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536 		jbd2_free(jh->b_frozen_data, bh->b_size);
2537 	}
2538 	if (jh->b_committed_data) {
2539 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540 		jbd2_free(jh->b_committed_data, bh->b_size);
2541 	}
2542 	bh->b_private = NULL;
2543 	jh->b_bh = NULL;	/* debug, really */
2544 	clear_buffer_jbd(bh);
2545 	journal_free_journal_head(jh);
2546 }
2547 
2548 /*
2549  * Drop a reference on the passed journal_head.  If it fell to zero then
2550  * release the journal_head from the buffer_head.
2551  */
2552 void jbd2_journal_put_journal_head(struct journal_head *jh)
2553 {
2554 	struct buffer_head *bh = jh2bh(jh);
2555 
2556 	jbd_lock_bh_journal_head(bh);
2557 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2558 	--jh->b_jcount;
2559 	if (!jh->b_jcount) {
2560 		__journal_remove_journal_head(bh);
2561 		jbd_unlock_bh_journal_head(bh);
2562 		__brelse(bh);
2563 	} else
2564 		jbd_unlock_bh_journal_head(bh);
2565 }
2566 
2567 /*
2568  * Initialize jbd inode head
2569  */
2570 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571 {
2572 	jinode->i_transaction = NULL;
2573 	jinode->i_next_transaction = NULL;
2574 	jinode->i_vfs_inode = inode;
2575 	jinode->i_flags = 0;
2576 	INIT_LIST_HEAD(&jinode->i_list);
2577 }
2578 
2579 /*
2580  * Function to be called before we start removing inode from memory (i.e.,
2581  * clear_inode() is a fine place to be called from). It removes inode from
2582  * transaction's lists.
2583  */
2584 void jbd2_journal_release_jbd_inode(journal_t *journal,
2585 				    struct jbd2_inode *jinode)
2586 {
2587 	if (!journal)
2588 		return;
2589 restart:
2590 	spin_lock(&journal->j_list_lock);
2591 	/* Is commit writing out inode - we have to wait */
2592 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2593 		wait_queue_head_t *wq;
2594 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2595 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2596 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2597 		spin_unlock(&journal->j_list_lock);
2598 		schedule();
2599 		finish_wait(wq, &wait.wq_entry);
2600 		goto restart;
2601 	}
2602 
2603 	if (jinode->i_transaction) {
2604 		list_del(&jinode->i_list);
2605 		jinode->i_transaction = NULL;
2606 	}
2607 	spin_unlock(&journal->j_list_lock);
2608 }
2609 
2610 
2611 #ifdef CONFIG_PROC_FS
2612 
2613 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2614 
2615 static void __init jbd2_create_jbd_stats_proc_entry(void)
2616 {
2617 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2618 }
2619 
2620 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2621 {
2622 	if (proc_jbd2_stats)
2623 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2624 }
2625 
2626 #else
2627 
2628 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2629 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2630 
2631 #endif
2632 
2633 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2634 
2635 static int __init jbd2_journal_init_handle_cache(void)
2636 {
2637 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2638 	if (jbd2_handle_cache == NULL) {
2639 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2640 		return -ENOMEM;
2641 	}
2642 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2643 	if (jbd2_inode_cache == NULL) {
2644 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2645 		kmem_cache_destroy(jbd2_handle_cache);
2646 		return -ENOMEM;
2647 	}
2648 	return 0;
2649 }
2650 
2651 static void jbd2_journal_destroy_handle_cache(void)
2652 {
2653 	kmem_cache_destroy(jbd2_handle_cache);
2654 	jbd2_handle_cache = NULL;
2655 	kmem_cache_destroy(jbd2_inode_cache);
2656 	jbd2_inode_cache = NULL;
2657 }
2658 
2659 /*
2660  * Module startup and shutdown
2661  */
2662 
2663 static int __init journal_init_caches(void)
2664 {
2665 	int ret;
2666 
2667 	ret = jbd2_journal_init_revoke_caches();
2668 	if (ret == 0)
2669 		ret = jbd2_journal_init_journal_head_cache();
2670 	if (ret == 0)
2671 		ret = jbd2_journal_init_handle_cache();
2672 	if (ret == 0)
2673 		ret = jbd2_journal_init_transaction_cache();
2674 	return ret;
2675 }
2676 
2677 static void jbd2_journal_destroy_caches(void)
2678 {
2679 	jbd2_journal_destroy_revoke_caches();
2680 	jbd2_journal_destroy_journal_head_cache();
2681 	jbd2_journal_destroy_handle_cache();
2682 	jbd2_journal_destroy_transaction_cache();
2683 	jbd2_journal_destroy_slabs();
2684 }
2685 
2686 static int __init journal_init(void)
2687 {
2688 	int ret;
2689 
2690 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2691 
2692 	ret = journal_init_caches();
2693 	if (ret == 0) {
2694 		jbd2_create_jbd_stats_proc_entry();
2695 	} else {
2696 		jbd2_journal_destroy_caches();
2697 	}
2698 	return ret;
2699 }
2700 
2701 static void __exit journal_exit(void)
2702 {
2703 #ifdef CONFIG_JBD2_DEBUG
2704 	int n = atomic_read(&nr_journal_heads);
2705 	if (n)
2706 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707 #endif
2708 	jbd2_remove_jbd_stats_proc_entry();
2709 	jbd2_journal_destroy_caches();
2710 }
2711 
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init);
2714 module_exit(journal_exit);
2715 
2716