1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_file_inode); 98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 101 EXPORT_SYMBOL(jbd2_inode_cache); 102 103 static void __journal_abort_soft (journal_t *journal, int errno); 104 static int jbd2_journal_create_slab(size_t slab_size); 105 106 #ifdef CONFIG_JBD2_DEBUG 107 void __jbd2_debug(int level, const char *file, const char *func, 108 unsigned int line, const char *fmt, ...) 109 { 110 struct va_format vaf; 111 va_list args; 112 113 if (level > jbd2_journal_enable_debug) 114 return; 115 va_start(args, fmt); 116 vaf.fmt = fmt; 117 vaf.va = &args; 118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 119 va_end(args); 120 } 121 EXPORT_SYMBOL(__jbd2_debug); 122 #endif 123 124 /* Checksumming functions */ 125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 126 { 127 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 128 return 1; 129 130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 131 } 132 133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 134 { 135 __u32 csum; 136 __be32 old_csum; 137 138 old_csum = sb->s_checksum; 139 sb->s_checksum = 0; 140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 141 sb->s_checksum = old_csum; 142 143 return cpu_to_be32(csum); 144 } 145 146 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 147 { 148 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 149 return 1; 150 151 return sb->s_checksum == jbd2_superblock_csum(j, sb); 152 } 153 154 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 155 { 156 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 157 return; 158 159 sb->s_checksum = jbd2_superblock_csum(j, sb); 160 } 161 162 /* 163 * Helper function used to manage commit timeouts 164 */ 165 166 static void commit_timeout(unsigned long __data) 167 { 168 struct task_struct * p = (struct task_struct *) __data; 169 170 wake_up_process(p); 171 } 172 173 /* 174 * kjournald2: The main thread function used to manage a logging device 175 * journal. 176 * 177 * This kernel thread is responsible for two things: 178 * 179 * 1) COMMIT: Every so often we need to commit the current state of the 180 * filesystem to disk. The journal thread is responsible for writing 181 * all of the metadata buffers to disk. 182 * 183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 184 * of the data in that part of the log has been rewritten elsewhere on 185 * the disk. Flushing these old buffers to reclaim space in the log is 186 * known as checkpointing, and this thread is responsible for that job. 187 */ 188 189 static int kjournald2(void *arg) 190 { 191 journal_t *journal = arg; 192 transaction_t *transaction; 193 194 /* 195 * Set up an interval timer which can be used to trigger a commit wakeup 196 * after the commit interval expires 197 */ 198 setup_timer(&journal->j_commit_timer, commit_timeout, 199 (unsigned long)current); 200 201 set_freezable(); 202 203 /* Record that the journal thread is running */ 204 journal->j_task = current; 205 wake_up(&journal->j_wait_done_commit); 206 207 /* 208 * And now, wait forever for commit wakeup events. 209 */ 210 write_lock(&journal->j_state_lock); 211 212 loop: 213 if (journal->j_flags & JBD2_UNMOUNT) 214 goto end_loop; 215 216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 217 journal->j_commit_sequence, journal->j_commit_request); 218 219 if (journal->j_commit_sequence != journal->j_commit_request) { 220 jbd_debug(1, "OK, requests differ\n"); 221 write_unlock(&journal->j_state_lock); 222 del_timer_sync(&journal->j_commit_timer); 223 jbd2_journal_commit_transaction(journal); 224 write_lock(&journal->j_state_lock); 225 goto loop; 226 } 227 228 wake_up(&journal->j_wait_done_commit); 229 if (freezing(current)) { 230 /* 231 * The simpler the better. Flushing journal isn't a 232 * good idea, because that depends on threads that may 233 * be already stopped. 234 */ 235 jbd_debug(1, "Now suspending kjournald2\n"); 236 write_unlock(&journal->j_state_lock); 237 try_to_freeze(); 238 write_lock(&journal->j_state_lock); 239 } else { 240 /* 241 * We assume on resume that commits are already there, 242 * so we don't sleep 243 */ 244 DEFINE_WAIT(wait); 245 int should_sleep = 1; 246 247 prepare_to_wait(&journal->j_wait_commit, &wait, 248 TASK_INTERRUPTIBLE); 249 if (journal->j_commit_sequence != journal->j_commit_request) 250 should_sleep = 0; 251 transaction = journal->j_running_transaction; 252 if (transaction && time_after_eq(jiffies, 253 transaction->t_expires)) 254 should_sleep = 0; 255 if (journal->j_flags & JBD2_UNMOUNT) 256 should_sleep = 0; 257 if (should_sleep) { 258 write_unlock(&journal->j_state_lock); 259 schedule(); 260 write_lock(&journal->j_state_lock); 261 } 262 finish_wait(&journal->j_wait_commit, &wait); 263 } 264 265 jbd_debug(1, "kjournald2 wakes\n"); 266 267 /* 268 * Were we woken up by a commit wakeup event? 269 */ 270 transaction = journal->j_running_transaction; 271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 272 journal->j_commit_request = transaction->t_tid; 273 jbd_debug(1, "woke because of timeout\n"); 274 } 275 goto loop; 276 277 end_loop: 278 write_unlock(&journal->j_state_lock); 279 del_timer_sync(&journal->j_commit_timer); 280 journal->j_task = NULL; 281 wake_up(&journal->j_wait_done_commit); 282 jbd_debug(1, "Journal thread exiting.\n"); 283 return 0; 284 } 285 286 static int jbd2_journal_start_thread(journal_t *journal) 287 { 288 struct task_struct *t; 289 290 t = kthread_run(kjournald2, journal, "jbd2/%s", 291 journal->j_devname); 292 if (IS_ERR(t)) 293 return PTR_ERR(t); 294 295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 296 return 0; 297 } 298 299 static void journal_kill_thread(journal_t *journal) 300 { 301 write_lock(&journal->j_state_lock); 302 journal->j_flags |= JBD2_UNMOUNT; 303 304 while (journal->j_task) { 305 wake_up(&journal->j_wait_commit); 306 write_unlock(&journal->j_state_lock); 307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 308 write_lock(&journal->j_state_lock); 309 } 310 write_unlock(&journal->j_state_lock); 311 } 312 313 /* 314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 315 * 316 * Writes a metadata buffer to a given disk block. The actual IO is not 317 * performed but a new buffer_head is constructed which labels the data 318 * to be written with the correct destination disk block. 319 * 320 * Any magic-number escaping which needs to be done will cause a 321 * copy-out here. If the buffer happens to start with the 322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 323 * magic number is only written to the log for descripter blocks. In 324 * this case, we copy the data and replace the first word with 0, and we 325 * return a result code which indicates that this buffer needs to be 326 * marked as an escaped buffer in the corresponding log descriptor 327 * block. The missing word can then be restored when the block is read 328 * during recovery. 329 * 330 * If the source buffer has already been modified by a new transaction 331 * since we took the last commit snapshot, we use the frozen copy of 332 * that data for IO. If we end up using the existing buffer_head's data 333 * for the write, then we have to make sure nobody modifies it while the 334 * IO is in progress. do_get_write_access() handles this. 335 * 336 * The function returns a pointer to the buffer_head to be used for IO. 337 * 338 * 339 * Return value: 340 * <0: Error 341 * >=0: Finished OK 342 * 343 * On success: 344 * Bit 0 set == escape performed on the data 345 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 346 */ 347 348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 349 struct journal_head *jh_in, 350 struct buffer_head **bh_out, 351 sector_t blocknr) 352 { 353 int need_copy_out = 0; 354 int done_copy_out = 0; 355 int do_escape = 0; 356 char *mapped_data; 357 struct buffer_head *new_bh; 358 struct page *new_page; 359 unsigned int new_offset; 360 struct buffer_head *bh_in = jh2bh(jh_in); 361 journal_t *journal = transaction->t_journal; 362 363 /* 364 * The buffer really shouldn't be locked: only the current committing 365 * transaction is allowed to write it, so nobody else is allowed 366 * to do any IO. 367 * 368 * akpm: except if we're journalling data, and write() output is 369 * also part of a shared mapping, and another thread has 370 * decided to launch a writepage() against this buffer. 371 */ 372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 373 374 retry_alloc: 375 new_bh = alloc_buffer_head(GFP_NOFS); 376 if (!new_bh) { 377 /* 378 * Failure is not an option, but __GFP_NOFAIL is going 379 * away; so we retry ourselves here. 380 */ 381 congestion_wait(BLK_RW_ASYNC, HZ/50); 382 goto retry_alloc; 383 } 384 385 /* keep subsequent assertions sane */ 386 atomic_set(&new_bh->b_count, 1); 387 388 jbd_lock_bh_state(bh_in); 389 repeat: 390 /* 391 * If a new transaction has already done a buffer copy-out, then 392 * we use that version of the data for the commit. 393 */ 394 if (jh_in->b_frozen_data) { 395 done_copy_out = 1; 396 new_page = virt_to_page(jh_in->b_frozen_data); 397 new_offset = offset_in_page(jh_in->b_frozen_data); 398 } else { 399 new_page = jh2bh(jh_in)->b_page; 400 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 401 } 402 403 mapped_data = kmap_atomic(new_page); 404 /* 405 * Fire data frozen trigger if data already wasn't frozen. Do this 406 * before checking for escaping, as the trigger may modify the magic 407 * offset. If a copy-out happens afterwards, it will have the correct 408 * data in the buffer. 409 */ 410 if (!done_copy_out) 411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 412 jh_in->b_triggers); 413 414 /* 415 * Check for escaping 416 */ 417 if (*((__be32 *)(mapped_data + new_offset)) == 418 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 419 need_copy_out = 1; 420 do_escape = 1; 421 } 422 kunmap_atomic(mapped_data); 423 424 /* 425 * Do we need to do a data copy? 426 */ 427 if (need_copy_out && !done_copy_out) { 428 char *tmp; 429 430 jbd_unlock_bh_state(bh_in); 431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 432 if (!tmp) { 433 brelse(new_bh); 434 return -ENOMEM; 435 } 436 jbd_lock_bh_state(bh_in); 437 if (jh_in->b_frozen_data) { 438 jbd2_free(tmp, bh_in->b_size); 439 goto repeat; 440 } 441 442 jh_in->b_frozen_data = tmp; 443 mapped_data = kmap_atomic(new_page); 444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 445 kunmap_atomic(mapped_data); 446 447 new_page = virt_to_page(tmp); 448 new_offset = offset_in_page(tmp); 449 done_copy_out = 1; 450 451 /* 452 * This isn't strictly necessary, as we're using frozen 453 * data for the escaping, but it keeps consistency with 454 * b_frozen_data usage. 455 */ 456 jh_in->b_frozen_triggers = jh_in->b_triggers; 457 } 458 459 /* 460 * Did we need to do an escaping? Now we've done all the 461 * copying, we can finally do so. 462 */ 463 if (do_escape) { 464 mapped_data = kmap_atomic(new_page); 465 *((unsigned int *)(mapped_data + new_offset)) = 0; 466 kunmap_atomic(mapped_data); 467 } 468 469 set_bh_page(new_bh, new_page, new_offset); 470 new_bh->b_size = bh_in->b_size; 471 new_bh->b_bdev = journal->j_dev; 472 new_bh->b_blocknr = blocknr; 473 new_bh->b_private = bh_in; 474 set_buffer_mapped(new_bh); 475 set_buffer_dirty(new_bh); 476 477 *bh_out = new_bh; 478 479 /* 480 * The to-be-written buffer needs to get moved to the io queue, 481 * and the original buffer whose contents we are shadowing or 482 * copying is moved to the transaction's shadow queue. 483 */ 484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 485 spin_lock(&journal->j_list_lock); 486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 487 spin_unlock(&journal->j_list_lock); 488 set_buffer_shadow(bh_in); 489 jbd_unlock_bh_state(bh_in); 490 491 return do_escape | (done_copy_out << 1); 492 } 493 494 /* 495 * Allocation code for the journal file. Manage the space left in the 496 * journal, so that we can begin checkpointing when appropriate. 497 */ 498 499 /* 500 * Called with j_state_lock locked for writing. 501 * Returns true if a transaction commit was started. 502 */ 503 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 504 { 505 /* Return if the txn has already requested to be committed */ 506 if (journal->j_commit_request == target) 507 return 0; 508 509 /* 510 * The only transaction we can possibly wait upon is the 511 * currently running transaction (if it exists). Otherwise, 512 * the target tid must be an old one. 513 */ 514 if (journal->j_running_transaction && 515 journal->j_running_transaction->t_tid == target) { 516 /* 517 * We want a new commit: OK, mark the request and wakeup the 518 * commit thread. We do _not_ do the commit ourselves. 519 */ 520 521 journal->j_commit_request = target; 522 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 523 journal->j_commit_request, 524 journal->j_commit_sequence); 525 journal->j_running_transaction->t_requested = jiffies; 526 wake_up(&journal->j_wait_commit); 527 return 1; 528 } else if (!tid_geq(journal->j_commit_request, target)) 529 /* This should never happen, but if it does, preserve 530 the evidence before kjournald goes into a loop and 531 increments j_commit_sequence beyond all recognition. */ 532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 533 journal->j_commit_request, 534 journal->j_commit_sequence, 535 target, journal->j_running_transaction ? 536 journal->j_running_transaction->t_tid : 0); 537 return 0; 538 } 539 540 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 541 { 542 int ret; 543 544 write_lock(&journal->j_state_lock); 545 ret = __jbd2_log_start_commit(journal, tid); 546 write_unlock(&journal->j_state_lock); 547 return ret; 548 } 549 550 /* 551 * Force and wait any uncommitted transactions. We can only force the running 552 * transaction if we don't have an active handle, otherwise, we will deadlock. 553 * Returns: <0 in case of error, 554 * 0 if nothing to commit, 555 * 1 if transaction was successfully committed. 556 */ 557 static int __jbd2_journal_force_commit(journal_t *journal) 558 { 559 transaction_t *transaction = NULL; 560 tid_t tid; 561 int need_to_start = 0, ret = 0; 562 563 read_lock(&journal->j_state_lock); 564 if (journal->j_running_transaction && !current->journal_info) { 565 transaction = journal->j_running_transaction; 566 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 567 need_to_start = 1; 568 } else if (journal->j_committing_transaction) 569 transaction = journal->j_committing_transaction; 570 571 if (!transaction) { 572 /* Nothing to commit */ 573 read_unlock(&journal->j_state_lock); 574 return 0; 575 } 576 tid = transaction->t_tid; 577 read_unlock(&journal->j_state_lock); 578 if (need_to_start) 579 jbd2_log_start_commit(journal, tid); 580 ret = jbd2_log_wait_commit(journal, tid); 581 if (!ret) 582 ret = 1; 583 584 return ret; 585 } 586 587 /** 588 * Force and wait upon a commit if the calling process is not within 589 * transaction. This is used for forcing out undo-protected data which contains 590 * bitmaps, when the fs is running out of space. 591 * 592 * @journal: journal to force 593 * Returns true if progress was made. 594 */ 595 int jbd2_journal_force_commit_nested(journal_t *journal) 596 { 597 int ret; 598 599 ret = __jbd2_journal_force_commit(journal); 600 return ret > 0; 601 } 602 603 /** 604 * int journal_force_commit() - force any uncommitted transactions 605 * @journal: journal to force 606 * 607 * Caller want unconditional commit. We can only force the running transaction 608 * if we don't have an active handle, otherwise, we will deadlock. 609 */ 610 int jbd2_journal_force_commit(journal_t *journal) 611 { 612 int ret; 613 614 J_ASSERT(!current->journal_info); 615 ret = __jbd2_journal_force_commit(journal); 616 if (ret > 0) 617 ret = 0; 618 return ret; 619 } 620 621 /* 622 * Start a commit of the current running transaction (if any). Returns true 623 * if a transaction is going to be committed (or is currently already 624 * committing), and fills its tid in at *ptid 625 */ 626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 627 { 628 int ret = 0; 629 630 write_lock(&journal->j_state_lock); 631 if (journal->j_running_transaction) { 632 tid_t tid = journal->j_running_transaction->t_tid; 633 634 __jbd2_log_start_commit(journal, tid); 635 /* There's a running transaction and we've just made sure 636 * it's commit has been scheduled. */ 637 if (ptid) 638 *ptid = tid; 639 ret = 1; 640 } else if (journal->j_committing_transaction) { 641 /* 642 * If commit has been started, then we have to wait for 643 * completion of that transaction. 644 */ 645 if (ptid) 646 *ptid = journal->j_committing_transaction->t_tid; 647 ret = 1; 648 } 649 write_unlock(&journal->j_state_lock); 650 return ret; 651 } 652 653 /* 654 * Return 1 if a given transaction has not yet sent barrier request 655 * connected with a transaction commit. If 0 is returned, transaction 656 * may or may not have sent the barrier. Used to avoid sending barrier 657 * twice in common cases. 658 */ 659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 660 { 661 int ret = 0; 662 transaction_t *commit_trans; 663 664 if (!(journal->j_flags & JBD2_BARRIER)) 665 return 0; 666 read_lock(&journal->j_state_lock); 667 /* Transaction already committed? */ 668 if (tid_geq(journal->j_commit_sequence, tid)) 669 goto out; 670 commit_trans = journal->j_committing_transaction; 671 if (!commit_trans || commit_trans->t_tid != tid) { 672 ret = 1; 673 goto out; 674 } 675 /* 676 * Transaction is being committed and we already proceeded to 677 * submitting a flush to fs partition? 678 */ 679 if (journal->j_fs_dev != journal->j_dev) { 680 if (!commit_trans->t_need_data_flush || 681 commit_trans->t_state >= T_COMMIT_DFLUSH) 682 goto out; 683 } else { 684 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 685 goto out; 686 } 687 ret = 1; 688 out: 689 read_unlock(&journal->j_state_lock); 690 return ret; 691 } 692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 693 694 /* 695 * Wait for a specified commit to complete. 696 * The caller may not hold the journal lock. 697 */ 698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 699 { 700 int err = 0; 701 702 read_lock(&journal->j_state_lock); 703 #ifdef CONFIG_JBD2_DEBUG 704 if (!tid_geq(journal->j_commit_request, tid)) { 705 printk(KERN_ERR 706 "%s: error: j_commit_request=%d, tid=%d\n", 707 __func__, journal->j_commit_request, tid); 708 } 709 #endif 710 while (tid_gt(tid, journal->j_commit_sequence)) { 711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 712 tid, journal->j_commit_sequence); 713 wake_up(&journal->j_wait_commit); 714 read_unlock(&journal->j_state_lock); 715 wait_event(journal->j_wait_done_commit, 716 !tid_gt(tid, journal->j_commit_sequence)); 717 read_lock(&journal->j_state_lock); 718 } 719 read_unlock(&journal->j_state_lock); 720 721 if (unlikely(is_journal_aborted(journal))) 722 err = -EIO; 723 return err; 724 } 725 726 /* 727 * When this function returns the transaction corresponding to tid 728 * will be completed. If the transaction has currently running, start 729 * committing that transaction before waiting for it to complete. If 730 * the transaction id is stale, it is by definition already completed, 731 * so just return SUCCESS. 732 */ 733 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 734 { 735 int need_to_wait = 1; 736 737 read_lock(&journal->j_state_lock); 738 if (journal->j_running_transaction && 739 journal->j_running_transaction->t_tid == tid) { 740 if (journal->j_commit_request != tid) { 741 /* transaction not yet started, so request it */ 742 read_unlock(&journal->j_state_lock); 743 jbd2_log_start_commit(journal, tid); 744 goto wait_commit; 745 } 746 } else if (!(journal->j_committing_transaction && 747 journal->j_committing_transaction->t_tid == tid)) 748 need_to_wait = 0; 749 read_unlock(&journal->j_state_lock); 750 if (!need_to_wait) 751 return 0; 752 wait_commit: 753 return jbd2_log_wait_commit(journal, tid); 754 } 755 EXPORT_SYMBOL(jbd2_complete_transaction); 756 757 /* 758 * Log buffer allocation routines: 759 */ 760 761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 762 { 763 unsigned long blocknr; 764 765 write_lock(&journal->j_state_lock); 766 J_ASSERT(journal->j_free > 1); 767 768 blocknr = journal->j_head; 769 journal->j_head++; 770 journal->j_free--; 771 if (journal->j_head == journal->j_last) 772 journal->j_head = journal->j_first; 773 write_unlock(&journal->j_state_lock); 774 return jbd2_journal_bmap(journal, blocknr, retp); 775 } 776 777 /* 778 * Conversion of logical to physical block numbers for the journal 779 * 780 * On external journals the journal blocks are identity-mapped, so 781 * this is a no-op. If needed, we can use j_blk_offset - everything is 782 * ready. 783 */ 784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 785 unsigned long long *retp) 786 { 787 int err = 0; 788 unsigned long long ret; 789 790 if (journal->j_inode) { 791 ret = bmap(journal->j_inode, blocknr); 792 if (ret) 793 *retp = ret; 794 else { 795 printk(KERN_ALERT "%s: journal block not found " 796 "at offset %lu on %s\n", 797 __func__, blocknr, journal->j_devname); 798 err = -EIO; 799 __journal_abort_soft(journal, err); 800 } 801 } else { 802 *retp = blocknr; /* +journal->j_blk_offset */ 803 } 804 return err; 805 } 806 807 /* 808 * We play buffer_head aliasing tricks to write data/metadata blocks to 809 * the journal without copying their contents, but for journal 810 * descriptor blocks we do need to generate bona fide buffers. 811 * 812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 813 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 814 * But we don't bother doing that, so there will be coherency problems with 815 * mmaps of blockdevs which hold live JBD-controlled filesystems. 816 */ 817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 818 { 819 struct buffer_head *bh; 820 unsigned long long blocknr; 821 int err; 822 823 err = jbd2_journal_next_log_block(journal, &blocknr); 824 825 if (err) 826 return NULL; 827 828 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 829 if (!bh) 830 return NULL; 831 lock_buffer(bh); 832 memset(bh->b_data, 0, journal->j_blocksize); 833 set_buffer_uptodate(bh); 834 unlock_buffer(bh); 835 BUFFER_TRACE(bh, "return this buffer"); 836 return bh; 837 } 838 839 /* 840 * Return tid of the oldest transaction in the journal and block in the journal 841 * where the transaction starts. 842 * 843 * If the journal is now empty, return which will be the next transaction ID 844 * we will write and where will that transaction start. 845 * 846 * The return value is 0 if journal tail cannot be pushed any further, 1 if 847 * it can. 848 */ 849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 850 unsigned long *block) 851 { 852 transaction_t *transaction; 853 int ret; 854 855 read_lock(&journal->j_state_lock); 856 spin_lock(&journal->j_list_lock); 857 transaction = journal->j_checkpoint_transactions; 858 if (transaction) { 859 *tid = transaction->t_tid; 860 *block = transaction->t_log_start; 861 } else if ((transaction = journal->j_committing_transaction) != NULL) { 862 *tid = transaction->t_tid; 863 *block = transaction->t_log_start; 864 } else if ((transaction = journal->j_running_transaction) != NULL) { 865 *tid = transaction->t_tid; 866 *block = journal->j_head; 867 } else { 868 *tid = journal->j_transaction_sequence; 869 *block = journal->j_head; 870 } 871 ret = tid_gt(*tid, journal->j_tail_sequence); 872 spin_unlock(&journal->j_list_lock); 873 read_unlock(&journal->j_state_lock); 874 875 return ret; 876 } 877 878 /* 879 * Update information in journal structure and in on disk journal superblock 880 * about log tail. This function does not check whether information passed in 881 * really pushes log tail further. It's responsibility of the caller to make 882 * sure provided log tail information is valid (e.g. by holding 883 * j_checkpoint_mutex all the time between computing log tail and calling this 884 * function as is the case with jbd2_cleanup_journal_tail()). 885 * 886 * Requires j_checkpoint_mutex 887 */ 888 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 889 { 890 unsigned long freed; 891 892 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 893 894 /* 895 * We cannot afford for write to remain in drive's caches since as 896 * soon as we update j_tail, next transaction can start reusing journal 897 * space and if we lose sb update during power failure we'd replay 898 * old transaction with possibly newly overwritten data. 899 */ 900 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 901 write_lock(&journal->j_state_lock); 902 freed = block - journal->j_tail; 903 if (block < journal->j_tail) 904 freed += journal->j_last - journal->j_first; 905 906 trace_jbd2_update_log_tail(journal, tid, block, freed); 907 jbd_debug(1, 908 "Cleaning journal tail from %d to %d (offset %lu), " 909 "freeing %lu\n", 910 journal->j_tail_sequence, tid, block, freed); 911 912 journal->j_free += freed; 913 journal->j_tail_sequence = tid; 914 journal->j_tail = block; 915 write_unlock(&journal->j_state_lock); 916 } 917 918 /* 919 * This is a variaon of __jbd2_update_log_tail which checks for validity of 920 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 921 * with other threads updating log tail. 922 */ 923 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 924 { 925 mutex_lock(&journal->j_checkpoint_mutex); 926 if (tid_gt(tid, journal->j_tail_sequence)) 927 __jbd2_update_log_tail(journal, tid, block); 928 mutex_unlock(&journal->j_checkpoint_mutex); 929 } 930 931 struct jbd2_stats_proc_session { 932 journal_t *journal; 933 struct transaction_stats_s *stats; 934 int start; 935 int max; 936 }; 937 938 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 939 { 940 return *pos ? NULL : SEQ_START_TOKEN; 941 } 942 943 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 944 { 945 return NULL; 946 } 947 948 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 949 { 950 struct jbd2_stats_proc_session *s = seq->private; 951 952 if (v != SEQ_START_TOKEN) 953 return 0; 954 seq_printf(seq, "%lu transactions (%lu requested), " 955 "each up to %u blocks\n", 956 s->stats->ts_tid, s->stats->ts_requested, 957 s->journal->j_max_transaction_buffers); 958 if (s->stats->ts_tid == 0) 959 return 0; 960 seq_printf(seq, "average: \n %ums waiting for transaction\n", 961 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 962 seq_printf(seq, " %ums request delay\n", 963 (s->stats->ts_requested == 0) ? 0 : 964 jiffies_to_msecs(s->stats->run.rs_request_delay / 965 s->stats->ts_requested)); 966 seq_printf(seq, " %ums running transaction\n", 967 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 968 seq_printf(seq, " %ums transaction was being locked\n", 969 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 970 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 971 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 972 seq_printf(seq, " %ums logging transaction\n", 973 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 974 seq_printf(seq, " %lluus average transaction commit time\n", 975 div_u64(s->journal->j_average_commit_time, 1000)); 976 seq_printf(seq, " %lu handles per transaction\n", 977 s->stats->run.rs_handle_count / s->stats->ts_tid); 978 seq_printf(seq, " %lu blocks per transaction\n", 979 s->stats->run.rs_blocks / s->stats->ts_tid); 980 seq_printf(seq, " %lu logged blocks per transaction\n", 981 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 982 return 0; 983 } 984 985 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 986 { 987 } 988 989 static const struct seq_operations jbd2_seq_info_ops = { 990 .start = jbd2_seq_info_start, 991 .next = jbd2_seq_info_next, 992 .stop = jbd2_seq_info_stop, 993 .show = jbd2_seq_info_show, 994 }; 995 996 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 997 { 998 journal_t *journal = PDE_DATA(inode); 999 struct jbd2_stats_proc_session *s; 1000 int rc, size; 1001 1002 s = kmalloc(sizeof(*s), GFP_KERNEL); 1003 if (s == NULL) 1004 return -ENOMEM; 1005 size = sizeof(struct transaction_stats_s); 1006 s->stats = kmalloc(size, GFP_KERNEL); 1007 if (s->stats == NULL) { 1008 kfree(s); 1009 return -ENOMEM; 1010 } 1011 spin_lock(&journal->j_history_lock); 1012 memcpy(s->stats, &journal->j_stats, size); 1013 s->journal = journal; 1014 spin_unlock(&journal->j_history_lock); 1015 1016 rc = seq_open(file, &jbd2_seq_info_ops); 1017 if (rc == 0) { 1018 struct seq_file *m = file->private_data; 1019 m->private = s; 1020 } else { 1021 kfree(s->stats); 1022 kfree(s); 1023 } 1024 return rc; 1025 1026 } 1027 1028 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1029 { 1030 struct seq_file *seq = file->private_data; 1031 struct jbd2_stats_proc_session *s = seq->private; 1032 kfree(s->stats); 1033 kfree(s); 1034 return seq_release(inode, file); 1035 } 1036 1037 static const struct file_operations jbd2_seq_info_fops = { 1038 .owner = THIS_MODULE, 1039 .open = jbd2_seq_info_open, 1040 .read = seq_read, 1041 .llseek = seq_lseek, 1042 .release = jbd2_seq_info_release, 1043 }; 1044 1045 static struct proc_dir_entry *proc_jbd2_stats; 1046 1047 static void jbd2_stats_proc_init(journal_t *journal) 1048 { 1049 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1050 if (journal->j_proc_entry) { 1051 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1052 &jbd2_seq_info_fops, journal); 1053 } 1054 } 1055 1056 static void jbd2_stats_proc_exit(journal_t *journal) 1057 { 1058 remove_proc_entry("info", journal->j_proc_entry); 1059 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1060 } 1061 1062 /* 1063 * Management for journal control blocks: functions to create and 1064 * destroy journal_t structures, and to initialise and read existing 1065 * journal blocks from disk. */ 1066 1067 /* First: create and setup a journal_t object in memory. We initialise 1068 * very few fields yet: that has to wait until we have created the 1069 * journal structures from from scratch, or loaded them from disk. */ 1070 1071 static journal_t * journal_init_common (void) 1072 { 1073 journal_t *journal; 1074 int err; 1075 1076 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1077 if (!journal) 1078 return NULL; 1079 1080 init_waitqueue_head(&journal->j_wait_transaction_locked); 1081 init_waitqueue_head(&journal->j_wait_done_commit); 1082 init_waitqueue_head(&journal->j_wait_commit); 1083 init_waitqueue_head(&journal->j_wait_updates); 1084 init_waitqueue_head(&journal->j_wait_reserved); 1085 mutex_init(&journal->j_barrier); 1086 mutex_init(&journal->j_checkpoint_mutex); 1087 spin_lock_init(&journal->j_revoke_lock); 1088 spin_lock_init(&journal->j_list_lock); 1089 rwlock_init(&journal->j_state_lock); 1090 1091 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1092 journal->j_min_batch_time = 0; 1093 journal->j_max_batch_time = 15000; /* 15ms */ 1094 atomic_set(&journal->j_reserved_credits, 0); 1095 1096 /* The journal is marked for error until we succeed with recovery! */ 1097 journal->j_flags = JBD2_ABORT; 1098 1099 /* Set up a default-sized revoke table for the new mount. */ 1100 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1101 if (err) { 1102 kfree(journal); 1103 return NULL; 1104 } 1105 1106 spin_lock_init(&journal->j_history_lock); 1107 1108 return journal; 1109 } 1110 1111 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1112 * 1113 * Create a journal structure assigned some fixed set of disk blocks to 1114 * the journal. We don't actually touch those disk blocks yet, but we 1115 * need to set up all of the mapping information to tell the journaling 1116 * system where the journal blocks are. 1117 * 1118 */ 1119 1120 /** 1121 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1122 * @bdev: Block device on which to create the journal 1123 * @fs_dev: Device which hold journalled filesystem for this journal. 1124 * @start: Block nr Start of journal. 1125 * @len: Length of the journal in blocks. 1126 * @blocksize: blocksize of journalling device 1127 * 1128 * Returns: a newly created journal_t * 1129 * 1130 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1131 * range of blocks on an arbitrary block device. 1132 * 1133 */ 1134 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1135 struct block_device *fs_dev, 1136 unsigned long long start, int len, int blocksize) 1137 { 1138 journal_t *journal = journal_init_common(); 1139 struct buffer_head *bh; 1140 char *p; 1141 int n; 1142 1143 if (!journal) 1144 return NULL; 1145 1146 /* journal descriptor can store up to n blocks -bzzz */ 1147 journal->j_blocksize = blocksize; 1148 journal->j_dev = bdev; 1149 journal->j_fs_dev = fs_dev; 1150 journal->j_blk_offset = start; 1151 journal->j_maxlen = len; 1152 bdevname(journal->j_dev, journal->j_devname); 1153 p = journal->j_devname; 1154 while ((p = strchr(p, '/'))) 1155 *p = '!'; 1156 jbd2_stats_proc_init(journal); 1157 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1158 journal->j_wbufsize = n; 1159 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1160 if (!journal->j_wbuf) { 1161 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1162 __func__); 1163 goto out_err; 1164 } 1165 1166 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1167 if (!bh) { 1168 printk(KERN_ERR 1169 "%s: Cannot get buffer for journal superblock\n", 1170 __func__); 1171 goto out_err; 1172 } 1173 journal->j_sb_buffer = bh; 1174 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1175 1176 return journal; 1177 out_err: 1178 kfree(journal->j_wbuf); 1179 jbd2_stats_proc_exit(journal); 1180 kfree(journal); 1181 return NULL; 1182 } 1183 1184 /** 1185 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1186 * @inode: An inode to create the journal in 1187 * 1188 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1189 * the journal. The inode must exist already, must support bmap() and 1190 * must have all data blocks preallocated. 1191 */ 1192 journal_t * jbd2_journal_init_inode (struct inode *inode) 1193 { 1194 struct buffer_head *bh; 1195 journal_t *journal = journal_init_common(); 1196 char *p; 1197 int err; 1198 int n; 1199 unsigned long long blocknr; 1200 1201 if (!journal) 1202 return NULL; 1203 1204 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1205 journal->j_inode = inode; 1206 bdevname(journal->j_dev, journal->j_devname); 1207 p = journal->j_devname; 1208 while ((p = strchr(p, '/'))) 1209 *p = '!'; 1210 p = journal->j_devname + strlen(journal->j_devname); 1211 sprintf(p, "-%lu", journal->j_inode->i_ino); 1212 jbd_debug(1, 1213 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1214 journal, inode->i_sb->s_id, inode->i_ino, 1215 (long long) inode->i_size, 1216 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1217 1218 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1219 journal->j_blocksize = inode->i_sb->s_blocksize; 1220 jbd2_stats_proc_init(journal); 1221 1222 /* journal descriptor can store up to n blocks -bzzz */ 1223 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1224 journal->j_wbufsize = n; 1225 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1226 if (!journal->j_wbuf) { 1227 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1228 __func__); 1229 goto out_err; 1230 } 1231 1232 err = jbd2_journal_bmap(journal, 0, &blocknr); 1233 /* If that failed, give up */ 1234 if (err) { 1235 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1236 __func__); 1237 goto out_err; 1238 } 1239 1240 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1241 if (!bh) { 1242 printk(KERN_ERR 1243 "%s: Cannot get buffer for journal superblock\n", 1244 __func__); 1245 goto out_err; 1246 } 1247 journal->j_sb_buffer = bh; 1248 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1249 1250 return journal; 1251 out_err: 1252 kfree(journal->j_wbuf); 1253 jbd2_stats_proc_exit(journal); 1254 kfree(journal); 1255 return NULL; 1256 } 1257 1258 /* 1259 * If the journal init or create aborts, we need to mark the journal 1260 * superblock as being NULL to prevent the journal destroy from writing 1261 * back a bogus superblock. 1262 */ 1263 static void journal_fail_superblock (journal_t *journal) 1264 { 1265 struct buffer_head *bh = journal->j_sb_buffer; 1266 brelse(bh); 1267 journal->j_sb_buffer = NULL; 1268 } 1269 1270 /* 1271 * Given a journal_t structure, initialise the various fields for 1272 * startup of a new journaling session. We use this both when creating 1273 * a journal, and after recovering an old journal to reset it for 1274 * subsequent use. 1275 */ 1276 1277 static int journal_reset(journal_t *journal) 1278 { 1279 journal_superblock_t *sb = journal->j_superblock; 1280 unsigned long long first, last; 1281 1282 first = be32_to_cpu(sb->s_first); 1283 last = be32_to_cpu(sb->s_maxlen); 1284 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1285 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1286 first, last); 1287 journal_fail_superblock(journal); 1288 return -EINVAL; 1289 } 1290 1291 journal->j_first = first; 1292 journal->j_last = last; 1293 1294 journal->j_head = first; 1295 journal->j_tail = first; 1296 journal->j_free = last - first; 1297 1298 journal->j_tail_sequence = journal->j_transaction_sequence; 1299 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1300 journal->j_commit_request = journal->j_commit_sequence; 1301 1302 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1303 1304 /* 1305 * As a special case, if the on-disk copy is already marked as needing 1306 * no recovery (s_start == 0), then we can safely defer the superblock 1307 * update until the next commit by setting JBD2_FLUSHED. This avoids 1308 * attempting a write to a potential-readonly device. 1309 */ 1310 if (sb->s_start == 0) { 1311 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1312 "(start %ld, seq %d, errno %d)\n", 1313 journal->j_tail, journal->j_tail_sequence, 1314 journal->j_errno); 1315 journal->j_flags |= JBD2_FLUSHED; 1316 } else { 1317 /* Lock here to make assertions happy... */ 1318 mutex_lock(&journal->j_checkpoint_mutex); 1319 /* 1320 * Update log tail information. We use WRITE_FUA since new 1321 * transaction will start reusing journal space and so we 1322 * must make sure information about current log tail is on 1323 * disk before that. 1324 */ 1325 jbd2_journal_update_sb_log_tail(journal, 1326 journal->j_tail_sequence, 1327 journal->j_tail, 1328 WRITE_FUA); 1329 mutex_unlock(&journal->j_checkpoint_mutex); 1330 } 1331 return jbd2_journal_start_thread(journal); 1332 } 1333 1334 static void jbd2_write_superblock(journal_t *journal, int write_op) 1335 { 1336 struct buffer_head *bh = journal->j_sb_buffer; 1337 journal_superblock_t *sb = journal->j_superblock; 1338 int ret; 1339 1340 trace_jbd2_write_superblock(journal, write_op); 1341 if (!(journal->j_flags & JBD2_BARRIER)) 1342 write_op &= ~(REQ_FUA | REQ_FLUSH); 1343 lock_buffer(bh); 1344 if (buffer_write_io_error(bh)) { 1345 /* 1346 * Oh, dear. A previous attempt to write the journal 1347 * superblock failed. This could happen because the 1348 * USB device was yanked out. Or it could happen to 1349 * be a transient write error and maybe the block will 1350 * be remapped. Nothing we can do but to retry the 1351 * write and hope for the best. 1352 */ 1353 printk(KERN_ERR "JBD2: previous I/O error detected " 1354 "for journal superblock update for %s.\n", 1355 journal->j_devname); 1356 clear_buffer_write_io_error(bh); 1357 set_buffer_uptodate(bh); 1358 } 1359 jbd2_superblock_csum_set(journal, sb); 1360 get_bh(bh); 1361 bh->b_end_io = end_buffer_write_sync; 1362 ret = submit_bh(write_op, bh); 1363 wait_on_buffer(bh); 1364 if (buffer_write_io_error(bh)) { 1365 clear_buffer_write_io_error(bh); 1366 set_buffer_uptodate(bh); 1367 ret = -EIO; 1368 } 1369 if (ret) { 1370 printk(KERN_ERR "JBD2: Error %d detected when updating " 1371 "journal superblock for %s.\n", ret, 1372 journal->j_devname); 1373 } 1374 } 1375 1376 /** 1377 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1378 * @journal: The journal to update. 1379 * @tail_tid: TID of the new transaction at the tail of the log 1380 * @tail_block: The first block of the transaction at the tail of the log 1381 * @write_op: With which operation should we write the journal sb 1382 * 1383 * Update a journal's superblock information about log tail and write it to 1384 * disk, waiting for the IO to complete. 1385 */ 1386 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1387 unsigned long tail_block, int write_op) 1388 { 1389 journal_superblock_t *sb = journal->j_superblock; 1390 1391 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1392 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1393 tail_block, tail_tid); 1394 1395 sb->s_sequence = cpu_to_be32(tail_tid); 1396 sb->s_start = cpu_to_be32(tail_block); 1397 1398 jbd2_write_superblock(journal, write_op); 1399 1400 /* Log is no longer empty */ 1401 write_lock(&journal->j_state_lock); 1402 WARN_ON(!sb->s_sequence); 1403 journal->j_flags &= ~JBD2_FLUSHED; 1404 write_unlock(&journal->j_state_lock); 1405 } 1406 1407 /** 1408 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1409 * @journal: The journal to update. 1410 * 1411 * Update a journal's dynamic superblock fields to show that journal is empty. 1412 * Write updated superblock to disk waiting for IO to complete. 1413 */ 1414 static void jbd2_mark_journal_empty(journal_t *journal) 1415 { 1416 journal_superblock_t *sb = journal->j_superblock; 1417 1418 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1419 read_lock(&journal->j_state_lock); 1420 /* Is it already empty? */ 1421 if (sb->s_start == 0) { 1422 read_unlock(&journal->j_state_lock); 1423 return; 1424 } 1425 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1426 journal->j_tail_sequence); 1427 1428 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1429 sb->s_start = cpu_to_be32(0); 1430 read_unlock(&journal->j_state_lock); 1431 1432 jbd2_write_superblock(journal, WRITE_FUA); 1433 1434 /* Log is no longer empty */ 1435 write_lock(&journal->j_state_lock); 1436 journal->j_flags |= JBD2_FLUSHED; 1437 write_unlock(&journal->j_state_lock); 1438 } 1439 1440 1441 /** 1442 * jbd2_journal_update_sb_errno() - Update error in the journal. 1443 * @journal: The journal to update. 1444 * 1445 * Update a journal's errno. Write updated superblock to disk waiting for IO 1446 * to complete. 1447 */ 1448 void jbd2_journal_update_sb_errno(journal_t *journal) 1449 { 1450 journal_superblock_t *sb = journal->j_superblock; 1451 1452 read_lock(&journal->j_state_lock); 1453 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1454 journal->j_errno); 1455 sb->s_errno = cpu_to_be32(journal->j_errno); 1456 read_unlock(&journal->j_state_lock); 1457 1458 jbd2_write_superblock(journal, WRITE_SYNC); 1459 } 1460 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1461 1462 /* 1463 * Read the superblock for a given journal, performing initial 1464 * validation of the format. 1465 */ 1466 static int journal_get_superblock(journal_t *journal) 1467 { 1468 struct buffer_head *bh; 1469 journal_superblock_t *sb; 1470 int err = -EIO; 1471 1472 bh = journal->j_sb_buffer; 1473 1474 J_ASSERT(bh != NULL); 1475 if (!buffer_uptodate(bh)) { 1476 ll_rw_block(READ, 1, &bh); 1477 wait_on_buffer(bh); 1478 if (!buffer_uptodate(bh)) { 1479 printk(KERN_ERR 1480 "JBD2: IO error reading journal superblock\n"); 1481 goto out; 1482 } 1483 } 1484 1485 if (buffer_verified(bh)) 1486 return 0; 1487 1488 sb = journal->j_superblock; 1489 1490 err = -EINVAL; 1491 1492 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1493 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1494 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1495 goto out; 1496 } 1497 1498 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1499 case JBD2_SUPERBLOCK_V1: 1500 journal->j_format_version = 1; 1501 break; 1502 case JBD2_SUPERBLOCK_V2: 1503 journal->j_format_version = 2; 1504 break; 1505 default: 1506 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1507 goto out; 1508 } 1509 1510 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1511 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1512 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1513 printk(KERN_WARNING "JBD2: journal file too short\n"); 1514 goto out; 1515 } 1516 1517 if (be32_to_cpu(sb->s_first) == 0 || 1518 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1519 printk(KERN_WARNING 1520 "JBD2: Invalid start block of journal: %u\n", 1521 be32_to_cpu(sb->s_first)); 1522 goto out; 1523 } 1524 1525 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1526 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1527 /* Can't have checksum v1 and v2 on at the same time! */ 1528 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2 " 1529 "at the same time!\n"); 1530 goto out; 1531 } 1532 1533 if (!jbd2_verify_csum_type(journal, sb)) { 1534 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1535 goto out; 1536 } 1537 1538 /* Load the checksum driver */ 1539 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1540 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1541 if (IS_ERR(journal->j_chksum_driver)) { 1542 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1543 err = PTR_ERR(journal->j_chksum_driver); 1544 journal->j_chksum_driver = NULL; 1545 goto out; 1546 } 1547 } 1548 1549 /* Check superblock checksum */ 1550 if (!jbd2_superblock_csum_verify(journal, sb)) { 1551 printk(KERN_ERR "JBD2: journal checksum error\n"); 1552 goto out; 1553 } 1554 1555 /* Precompute checksum seed for all metadata */ 1556 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1557 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1558 sizeof(sb->s_uuid)); 1559 1560 set_buffer_verified(bh); 1561 1562 return 0; 1563 1564 out: 1565 journal_fail_superblock(journal); 1566 return err; 1567 } 1568 1569 /* 1570 * Load the on-disk journal superblock and read the key fields into the 1571 * journal_t. 1572 */ 1573 1574 static int load_superblock(journal_t *journal) 1575 { 1576 int err; 1577 journal_superblock_t *sb; 1578 1579 err = journal_get_superblock(journal); 1580 if (err) 1581 return err; 1582 1583 sb = journal->j_superblock; 1584 1585 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1586 journal->j_tail = be32_to_cpu(sb->s_start); 1587 journal->j_first = be32_to_cpu(sb->s_first); 1588 journal->j_last = be32_to_cpu(sb->s_maxlen); 1589 journal->j_errno = be32_to_cpu(sb->s_errno); 1590 1591 return 0; 1592 } 1593 1594 1595 /** 1596 * int jbd2_journal_load() - Read journal from disk. 1597 * @journal: Journal to act on. 1598 * 1599 * Given a journal_t structure which tells us which disk blocks contain 1600 * a journal, read the journal from disk to initialise the in-memory 1601 * structures. 1602 */ 1603 int jbd2_journal_load(journal_t *journal) 1604 { 1605 int err; 1606 journal_superblock_t *sb; 1607 1608 err = load_superblock(journal); 1609 if (err) 1610 return err; 1611 1612 sb = journal->j_superblock; 1613 /* If this is a V2 superblock, then we have to check the 1614 * features flags on it. */ 1615 1616 if (journal->j_format_version >= 2) { 1617 if ((sb->s_feature_ro_compat & 1618 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1619 (sb->s_feature_incompat & 1620 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1621 printk(KERN_WARNING 1622 "JBD2: Unrecognised features on journal\n"); 1623 return -EINVAL; 1624 } 1625 } 1626 1627 /* 1628 * Create a slab for this blocksize 1629 */ 1630 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1631 if (err) 1632 return err; 1633 1634 /* Let the recovery code check whether it needs to recover any 1635 * data from the journal. */ 1636 if (jbd2_journal_recover(journal)) 1637 goto recovery_error; 1638 1639 if (journal->j_failed_commit) { 1640 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1641 "is corrupt.\n", journal->j_failed_commit, 1642 journal->j_devname); 1643 return -EIO; 1644 } 1645 1646 /* OK, we've finished with the dynamic journal bits: 1647 * reinitialise the dynamic contents of the superblock in memory 1648 * and reset them on disk. */ 1649 if (journal_reset(journal)) 1650 goto recovery_error; 1651 1652 journal->j_flags &= ~JBD2_ABORT; 1653 journal->j_flags |= JBD2_LOADED; 1654 return 0; 1655 1656 recovery_error: 1657 printk(KERN_WARNING "JBD2: recovery failed\n"); 1658 return -EIO; 1659 } 1660 1661 /** 1662 * void jbd2_journal_destroy() - Release a journal_t structure. 1663 * @journal: Journal to act on. 1664 * 1665 * Release a journal_t structure once it is no longer in use by the 1666 * journaled object. 1667 * Return <0 if we couldn't clean up the journal. 1668 */ 1669 int jbd2_journal_destroy(journal_t *journal) 1670 { 1671 int err = 0; 1672 1673 /* Wait for the commit thread to wake up and die. */ 1674 journal_kill_thread(journal); 1675 1676 /* Force a final log commit */ 1677 if (journal->j_running_transaction) 1678 jbd2_journal_commit_transaction(journal); 1679 1680 /* Force any old transactions to disk */ 1681 1682 /* Totally anal locking here... */ 1683 spin_lock(&journal->j_list_lock); 1684 while (journal->j_checkpoint_transactions != NULL) { 1685 spin_unlock(&journal->j_list_lock); 1686 mutex_lock(&journal->j_checkpoint_mutex); 1687 jbd2_log_do_checkpoint(journal); 1688 mutex_unlock(&journal->j_checkpoint_mutex); 1689 spin_lock(&journal->j_list_lock); 1690 } 1691 1692 J_ASSERT(journal->j_running_transaction == NULL); 1693 J_ASSERT(journal->j_committing_transaction == NULL); 1694 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1695 spin_unlock(&journal->j_list_lock); 1696 1697 if (journal->j_sb_buffer) { 1698 if (!is_journal_aborted(journal)) { 1699 mutex_lock(&journal->j_checkpoint_mutex); 1700 jbd2_mark_journal_empty(journal); 1701 mutex_unlock(&journal->j_checkpoint_mutex); 1702 } else 1703 err = -EIO; 1704 brelse(journal->j_sb_buffer); 1705 } 1706 1707 if (journal->j_proc_entry) 1708 jbd2_stats_proc_exit(journal); 1709 if (journal->j_inode) 1710 iput(journal->j_inode); 1711 if (journal->j_revoke) 1712 jbd2_journal_destroy_revoke(journal); 1713 if (journal->j_chksum_driver) 1714 crypto_free_shash(journal->j_chksum_driver); 1715 kfree(journal->j_wbuf); 1716 kfree(journal); 1717 1718 return err; 1719 } 1720 1721 1722 /** 1723 *int jbd2_journal_check_used_features () - Check if features specified are used. 1724 * @journal: Journal to check. 1725 * @compat: bitmask of compatible features 1726 * @ro: bitmask of features that force read-only mount 1727 * @incompat: bitmask of incompatible features 1728 * 1729 * Check whether the journal uses all of a given set of 1730 * features. Return true (non-zero) if it does. 1731 **/ 1732 1733 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1734 unsigned long ro, unsigned long incompat) 1735 { 1736 journal_superblock_t *sb; 1737 1738 if (!compat && !ro && !incompat) 1739 return 1; 1740 /* Load journal superblock if it is not loaded yet. */ 1741 if (journal->j_format_version == 0 && 1742 journal_get_superblock(journal) != 0) 1743 return 0; 1744 if (journal->j_format_version == 1) 1745 return 0; 1746 1747 sb = journal->j_superblock; 1748 1749 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1750 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1751 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1752 return 1; 1753 1754 return 0; 1755 } 1756 1757 /** 1758 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1759 * @journal: Journal to check. 1760 * @compat: bitmask of compatible features 1761 * @ro: bitmask of features that force read-only mount 1762 * @incompat: bitmask of incompatible features 1763 * 1764 * Check whether the journaling code supports the use of 1765 * all of a given set of features on this journal. Return true 1766 * (non-zero) if it can. */ 1767 1768 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1769 unsigned long ro, unsigned long incompat) 1770 { 1771 if (!compat && !ro && !incompat) 1772 return 1; 1773 1774 /* We can support any known requested features iff the 1775 * superblock is in version 2. Otherwise we fail to support any 1776 * extended sb features. */ 1777 1778 if (journal->j_format_version != 2) 1779 return 0; 1780 1781 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1782 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1783 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1784 return 1; 1785 1786 return 0; 1787 } 1788 1789 /** 1790 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1791 * @journal: Journal to act on. 1792 * @compat: bitmask of compatible features 1793 * @ro: bitmask of features that force read-only mount 1794 * @incompat: bitmask of incompatible features 1795 * 1796 * Mark a given journal feature as present on the 1797 * superblock. Returns true if the requested features could be set. 1798 * 1799 */ 1800 1801 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1802 unsigned long ro, unsigned long incompat) 1803 { 1804 #define INCOMPAT_FEATURE_ON(f) \ 1805 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1806 #define COMPAT_FEATURE_ON(f) \ 1807 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1808 journal_superblock_t *sb; 1809 1810 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1811 return 1; 1812 1813 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1814 return 0; 1815 1816 /* Asking for checksumming v2 and v1? Only give them v2. */ 1817 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1818 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1819 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1820 1821 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1822 compat, ro, incompat); 1823 1824 sb = journal->j_superblock; 1825 1826 /* If enabling v2 checksums, update superblock */ 1827 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1828 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1829 sb->s_feature_compat &= 1830 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1831 1832 /* Load the checksum driver */ 1833 if (journal->j_chksum_driver == NULL) { 1834 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1835 0, 0); 1836 if (IS_ERR(journal->j_chksum_driver)) { 1837 printk(KERN_ERR "JBD2: Cannot load crc32c " 1838 "driver.\n"); 1839 journal->j_chksum_driver = NULL; 1840 return 0; 1841 } 1842 } 1843 1844 /* Precompute checksum seed for all metadata */ 1845 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1846 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1847 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1848 sb->s_uuid, 1849 sizeof(sb->s_uuid)); 1850 } 1851 1852 /* If enabling v1 checksums, downgrade superblock */ 1853 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1854 sb->s_feature_incompat &= 1855 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1856 1857 sb->s_feature_compat |= cpu_to_be32(compat); 1858 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1859 sb->s_feature_incompat |= cpu_to_be32(incompat); 1860 1861 return 1; 1862 #undef COMPAT_FEATURE_ON 1863 #undef INCOMPAT_FEATURE_ON 1864 } 1865 1866 /* 1867 * jbd2_journal_clear_features () - Clear a given journal feature in the 1868 * superblock 1869 * @journal: Journal to act on. 1870 * @compat: bitmask of compatible features 1871 * @ro: bitmask of features that force read-only mount 1872 * @incompat: bitmask of incompatible features 1873 * 1874 * Clear a given journal feature as present on the 1875 * superblock. 1876 */ 1877 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1878 unsigned long ro, unsigned long incompat) 1879 { 1880 journal_superblock_t *sb; 1881 1882 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1883 compat, ro, incompat); 1884 1885 sb = journal->j_superblock; 1886 1887 sb->s_feature_compat &= ~cpu_to_be32(compat); 1888 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1889 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1890 } 1891 EXPORT_SYMBOL(jbd2_journal_clear_features); 1892 1893 /** 1894 * int jbd2_journal_flush () - Flush journal 1895 * @journal: Journal to act on. 1896 * 1897 * Flush all data for a given journal to disk and empty the journal. 1898 * Filesystems can use this when remounting readonly to ensure that 1899 * recovery does not need to happen on remount. 1900 */ 1901 1902 int jbd2_journal_flush(journal_t *journal) 1903 { 1904 int err = 0; 1905 transaction_t *transaction = NULL; 1906 1907 write_lock(&journal->j_state_lock); 1908 1909 /* Force everything buffered to the log... */ 1910 if (journal->j_running_transaction) { 1911 transaction = journal->j_running_transaction; 1912 __jbd2_log_start_commit(journal, transaction->t_tid); 1913 } else if (journal->j_committing_transaction) 1914 transaction = journal->j_committing_transaction; 1915 1916 /* Wait for the log commit to complete... */ 1917 if (transaction) { 1918 tid_t tid = transaction->t_tid; 1919 1920 write_unlock(&journal->j_state_lock); 1921 jbd2_log_wait_commit(journal, tid); 1922 } else { 1923 write_unlock(&journal->j_state_lock); 1924 } 1925 1926 /* ...and flush everything in the log out to disk. */ 1927 spin_lock(&journal->j_list_lock); 1928 while (!err && journal->j_checkpoint_transactions != NULL) { 1929 spin_unlock(&journal->j_list_lock); 1930 mutex_lock(&journal->j_checkpoint_mutex); 1931 err = jbd2_log_do_checkpoint(journal); 1932 mutex_unlock(&journal->j_checkpoint_mutex); 1933 spin_lock(&journal->j_list_lock); 1934 } 1935 spin_unlock(&journal->j_list_lock); 1936 1937 if (is_journal_aborted(journal)) 1938 return -EIO; 1939 1940 mutex_lock(&journal->j_checkpoint_mutex); 1941 jbd2_cleanup_journal_tail(journal); 1942 1943 /* Finally, mark the journal as really needing no recovery. 1944 * This sets s_start==0 in the underlying superblock, which is 1945 * the magic code for a fully-recovered superblock. Any future 1946 * commits of data to the journal will restore the current 1947 * s_start value. */ 1948 jbd2_mark_journal_empty(journal); 1949 mutex_unlock(&journal->j_checkpoint_mutex); 1950 write_lock(&journal->j_state_lock); 1951 J_ASSERT(!journal->j_running_transaction); 1952 J_ASSERT(!journal->j_committing_transaction); 1953 J_ASSERT(!journal->j_checkpoint_transactions); 1954 J_ASSERT(journal->j_head == journal->j_tail); 1955 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1956 write_unlock(&journal->j_state_lock); 1957 return 0; 1958 } 1959 1960 /** 1961 * int jbd2_journal_wipe() - Wipe journal contents 1962 * @journal: Journal to act on. 1963 * @write: flag (see below) 1964 * 1965 * Wipe out all of the contents of a journal, safely. This will produce 1966 * a warning if the journal contains any valid recovery information. 1967 * Must be called between journal_init_*() and jbd2_journal_load(). 1968 * 1969 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1970 * we merely suppress recovery. 1971 */ 1972 1973 int jbd2_journal_wipe(journal_t *journal, int write) 1974 { 1975 int err = 0; 1976 1977 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1978 1979 err = load_superblock(journal); 1980 if (err) 1981 return err; 1982 1983 if (!journal->j_tail) 1984 goto no_recovery; 1985 1986 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1987 write ? "Clearing" : "Ignoring"); 1988 1989 err = jbd2_journal_skip_recovery(journal); 1990 if (write) { 1991 /* Lock to make assertions happy... */ 1992 mutex_lock(&journal->j_checkpoint_mutex); 1993 jbd2_mark_journal_empty(journal); 1994 mutex_unlock(&journal->j_checkpoint_mutex); 1995 } 1996 1997 no_recovery: 1998 return err; 1999 } 2000 2001 /* 2002 * Journal abort has very specific semantics, which we describe 2003 * for journal abort. 2004 * 2005 * Two internal functions, which provide abort to the jbd layer 2006 * itself are here. 2007 */ 2008 2009 /* 2010 * Quick version for internal journal use (doesn't lock the journal). 2011 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2012 * and don't attempt to make any other journal updates. 2013 */ 2014 void __jbd2_journal_abort_hard(journal_t *journal) 2015 { 2016 transaction_t *transaction; 2017 2018 if (journal->j_flags & JBD2_ABORT) 2019 return; 2020 2021 printk(KERN_ERR "Aborting journal on device %s.\n", 2022 journal->j_devname); 2023 2024 write_lock(&journal->j_state_lock); 2025 journal->j_flags |= JBD2_ABORT; 2026 transaction = journal->j_running_transaction; 2027 if (transaction) 2028 __jbd2_log_start_commit(journal, transaction->t_tid); 2029 write_unlock(&journal->j_state_lock); 2030 } 2031 2032 /* Soft abort: record the abort error status in the journal superblock, 2033 * but don't do any other IO. */ 2034 static void __journal_abort_soft (journal_t *journal, int errno) 2035 { 2036 if (journal->j_flags & JBD2_ABORT) 2037 return; 2038 2039 if (!journal->j_errno) 2040 journal->j_errno = errno; 2041 2042 __jbd2_journal_abort_hard(journal); 2043 2044 if (errno) 2045 jbd2_journal_update_sb_errno(journal); 2046 } 2047 2048 /** 2049 * void jbd2_journal_abort () - Shutdown the journal immediately. 2050 * @journal: the journal to shutdown. 2051 * @errno: an error number to record in the journal indicating 2052 * the reason for the shutdown. 2053 * 2054 * Perform a complete, immediate shutdown of the ENTIRE 2055 * journal (not of a single transaction). This operation cannot be 2056 * undone without closing and reopening the journal. 2057 * 2058 * The jbd2_journal_abort function is intended to support higher level error 2059 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2060 * mode. 2061 * 2062 * Journal abort has very specific semantics. Any existing dirty, 2063 * unjournaled buffers in the main filesystem will still be written to 2064 * disk by bdflush, but the journaling mechanism will be suspended 2065 * immediately and no further transaction commits will be honoured. 2066 * 2067 * Any dirty, journaled buffers will be written back to disk without 2068 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2069 * filesystem, but we _do_ attempt to leave as much data as possible 2070 * behind for fsck to use for cleanup. 2071 * 2072 * Any attempt to get a new transaction handle on a journal which is in 2073 * ABORT state will just result in an -EROFS error return. A 2074 * jbd2_journal_stop on an existing handle will return -EIO if we have 2075 * entered abort state during the update. 2076 * 2077 * Recursive transactions are not disturbed by journal abort until the 2078 * final jbd2_journal_stop, which will receive the -EIO error. 2079 * 2080 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2081 * which will be recorded (if possible) in the journal superblock. This 2082 * allows a client to record failure conditions in the middle of a 2083 * transaction without having to complete the transaction to record the 2084 * failure to disk. ext3_error, for example, now uses this 2085 * functionality. 2086 * 2087 * Errors which originate from within the journaling layer will NOT 2088 * supply an errno; a null errno implies that absolutely no further 2089 * writes are done to the journal (unless there are any already in 2090 * progress). 2091 * 2092 */ 2093 2094 void jbd2_journal_abort(journal_t *journal, int errno) 2095 { 2096 __journal_abort_soft(journal, errno); 2097 } 2098 2099 /** 2100 * int jbd2_journal_errno () - returns the journal's error state. 2101 * @journal: journal to examine. 2102 * 2103 * This is the errno number set with jbd2_journal_abort(), the last 2104 * time the journal was mounted - if the journal was stopped 2105 * without calling abort this will be 0. 2106 * 2107 * If the journal has been aborted on this mount time -EROFS will 2108 * be returned. 2109 */ 2110 int jbd2_journal_errno(journal_t *journal) 2111 { 2112 int err; 2113 2114 read_lock(&journal->j_state_lock); 2115 if (journal->j_flags & JBD2_ABORT) 2116 err = -EROFS; 2117 else 2118 err = journal->j_errno; 2119 read_unlock(&journal->j_state_lock); 2120 return err; 2121 } 2122 2123 /** 2124 * int jbd2_journal_clear_err () - clears the journal's error state 2125 * @journal: journal to act on. 2126 * 2127 * An error must be cleared or acked to take a FS out of readonly 2128 * mode. 2129 */ 2130 int jbd2_journal_clear_err(journal_t *journal) 2131 { 2132 int err = 0; 2133 2134 write_lock(&journal->j_state_lock); 2135 if (journal->j_flags & JBD2_ABORT) 2136 err = -EROFS; 2137 else 2138 journal->j_errno = 0; 2139 write_unlock(&journal->j_state_lock); 2140 return err; 2141 } 2142 2143 /** 2144 * void jbd2_journal_ack_err() - Ack journal err. 2145 * @journal: journal to act on. 2146 * 2147 * An error must be cleared or acked to take a FS out of readonly 2148 * mode. 2149 */ 2150 void jbd2_journal_ack_err(journal_t *journal) 2151 { 2152 write_lock(&journal->j_state_lock); 2153 if (journal->j_errno) 2154 journal->j_flags |= JBD2_ACK_ERR; 2155 write_unlock(&journal->j_state_lock); 2156 } 2157 2158 int jbd2_journal_blocks_per_page(struct inode *inode) 2159 { 2160 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2161 } 2162 2163 /* 2164 * helper functions to deal with 32 or 64bit block numbers. 2165 */ 2166 size_t journal_tag_bytes(journal_t *journal) 2167 { 2168 journal_block_tag_t tag; 2169 size_t x = 0; 2170 2171 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2172 x += sizeof(tag.t_checksum); 2173 2174 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2175 return x + JBD2_TAG_SIZE64; 2176 else 2177 return x + JBD2_TAG_SIZE32; 2178 } 2179 2180 /* 2181 * JBD memory management 2182 * 2183 * These functions are used to allocate block-sized chunks of memory 2184 * used for making copies of buffer_head data. Very often it will be 2185 * page-sized chunks of data, but sometimes it will be in 2186 * sub-page-size chunks. (For example, 16k pages on Power systems 2187 * with a 4k block file system.) For blocks smaller than a page, we 2188 * use a SLAB allocator. There are slab caches for each block size, 2189 * which are allocated at mount time, if necessary, and we only free 2190 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2191 * this reason we don't need to a mutex to protect access to 2192 * jbd2_slab[] allocating or releasing memory; only in 2193 * jbd2_journal_create_slab(). 2194 */ 2195 #define JBD2_MAX_SLABS 8 2196 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2197 2198 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2199 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2200 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2201 }; 2202 2203 2204 static void jbd2_journal_destroy_slabs(void) 2205 { 2206 int i; 2207 2208 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2209 if (jbd2_slab[i]) 2210 kmem_cache_destroy(jbd2_slab[i]); 2211 jbd2_slab[i] = NULL; 2212 } 2213 } 2214 2215 static int jbd2_journal_create_slab(size_t size) 2216 { 2217 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2218 int i = order_base_2(size) - 10; 2219 size_t slab_size; 2220 2221 if (size == PAGE_SIZE) 2222 return 0; 2223 2224 if (i >= JBD2_MAX_SLABS) 2225 return -EINVAL; 2226 2227 if (unlikely(i < 0)) 2228 i = 0; 2229 mutex_lock(&jbd2_slab_create_mutex); 2230 if (jbd2_slab[i]) { 2231 mutex_unlock(&jbd2_slab_create_mutex); 2232 return 0; /* Already created */ 2233 } 2234 2235 slab_size = 1 << (i+10); 2236 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2237 slab_size, 0, NULL); 2238 mutex_unlock(&jbd2_slab_create_mutex); 2239 if (!jbd2_slab[i]) { 2240 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2241 return -ENOMEM; 2242 } 2243 return 0; 2244 } 2245 2246 static struct kmem_cache *get_slab(size_t size) 2247 { 2248 int i = order_base_2(size) - 10; 2249 2250 BUG_ON(i >= JBD2_MAX_SLABS); 2251 if (unlikely(i < 0)) 2252 i = 0; 2253 BUG_ON(jbd2_slab[i] == NULL); 2254 return jbd2_slab[i]; 2255 } 2256 2257 void *jbd2_alloc(size_t size, gfp_t flags) 2258 { 2259 void *ptr; 2260 2261 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2262 2263 flags |= __GFP_REPEAT; 2264 if (size == PAGE_SIZE) 2265 ptr = (void *)__get_free_pages(flags, 0); 2266 else if (size > PAGE_SIZE) { 2267 int order = get_order(size); 2268 2269 if (order < 3) 2270 ptr = (void *)__get_free_pages(flags, order); 2271 else 2272 ptr = vmalloc(size); 2273 } else 2274 ptr = kmem_cache_alloc(get_slab(size), flags); 2275 2276 /* Check alignment; SLUB has gotten this wrong in the past, 2277 * and this can lead to user data corruption! */ 2278 BUG_ON(((unsigned long) ptr) & (size-1)); 2279 2280 return ptr; 2281 } 2282 2283 void jbd2_free(void *ptr, size_t size) 2284 { 2285 if (size == PAGE_SIZE) { 2286 free_pages((unsigned long)ptr, 0); 2287 return; 2288 } 2289 if (size > PAGE_SIZE) { 2290 int order = get_order(size); 2291 2292 if (order < 3) 2293 free_pages((unsigned long)ptr, order); 2294 else 2295 vfree(ptr); 2296 return; 2297 } 2298 kmem_cache_free(get_slab(size), ptr); 2299 }; 2300 2301 /* 2302 * Journal_head storage management 2303 */ 2304 static struct kmem_cache *jbd2_journal_head_cache; 2305 #ifdef CONFIG_JBD2_DEBUG 2306 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2307 #endif 2308 2309 static int jbd2_journal_init_journal_head_cache(void) 2310 { 2311 int retval; 2312 2313 J_ASSERT(jbd2_journal_head_cache == NULL); 2314 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2315 sizeof(struct journal_head), 2316 0, /* offset */ 2317 SLAB_TEMPORARY, /* flags */ 2318 NULL); /* ctor */ 2319 retval = 0; 2320 if (!jbd2_journal_head_cache) { 2321 retval = -ENOMEM; 2322 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2323 } 2324 return retval; 2325 } 2326 2327 static void jbd2_journal_destroy_journal_head_cache(void) 2328 { 2329 if (jbd2_journal_head_cache) { 2330 kmem_cache_destroy(jbd2_journal_head_cache); 2331 jbd2_journal_head_cache = NULL; 2332 } 2333 } 2334 2335 /* 2336 * journal_head splicing and dicing 2337 */ 2338 static struct journal_head *journal_alloc_journal_head(void) 2339 { 2340 struct journal_head *ret; 2341 2342 #ifdef CONFIG_JBD2_DEBUG 2343 atomic_inc(&nr_journal_heads); 2344 #endif 2345 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2346 if (!ret) { 2347 jbd_debug(1, "out of memory for journal_head\n"); 2348 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2349 while (!ret) { 2350 yield(); 2351 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2352 } 2353 } 2354 return ret; 2355 } 2356 2357 static void journal_free_journal_head(struct journal_head *jh) 2358 { 2359 #ifdef CONFIG_JBD2_DEBUG 2360 atomic_dec(&nr_journal_heads); 2361 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2362 #endif 2363 kmem_cache_free(jbd2_journal_head_cache, jh); 2364 } 2365 2366 /* 2367 * A journal_head is attached to a buffer_head whenever JBD has an 2368 * interest in the buffer. 2369 * 2370 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2371 * is set. This bit is tested in core kernel code where we need to take 2372 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2373 * there. 2374 * 2375 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2376 * 2377 * When a buffer has its BH_JBD bit set it is immune from being released by 2378 * core kernel code, mainly via ->b_count. 2379 * 2380 * A journal_head is detached from its buffer_head when the journal_head's 2381 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2382 * transaction (b_cp_transaction) hold their references to b_jcount. 2383 * 2384 * Various places in the kernel want to attach a journal_head to a buffer_head 2385 * _before_ attaching the journal_head to a transaction. To protect the 2386 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2387 * journal_head's b_jcount refcount by one. The caller must call 2388 * jbd2_journal_put_journal_head() to undo this. 2389 * 2390 * So the typical usage would be: 2391 * 2392 * (Attach a journal_head if needed. Increments b_jcount) 2393 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2394 * ... 2395 * (Get another reference for transaction) 2396 * jbd2_journal_grab_journal_head(bh); 2397 * jh->b_transaction = xxx; 2398 * (Put original reference) 2399 * jbd2_journal_put_journal_head(jh); 2400 */ 2401 2402 /* 2403 * Give a buffer_head a journal_head. 2404 * 2405 * May sleep. 2406 */ 2407 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2408 { 2409 struct journal_head *jh; 2410 struct journal_head *new_jh = NULL; 2411 2412 repeat: 2413 if (!buffer_jbd(bh)) 2414 new_jh = journal_alloc_journal_head(); 2415 2416 jbd_lock_bh_journal_head(bh); 2417 if (buffer_jbd(bh)) { 2418 jh = bh2jh(bh); 2419 } else { 2420 J_ASSERT_BH(bh, 2421 (atomic_read(&bh->b_count) > 0) || 2422 (bh->b_page && bh->b_page->mapping)); 2423 2424 if (!new_jh) { 2425 jbd_unlock_bh_journal_head(bh); 2426 goto repeat; 2427 } 2428 2429 jh = new_jh; 2430 new_jh = NULL; /* We consumed it */ 2431 set_buffer_jbd(bh); 2432 bh->b_private = jh; 2433 jh->b_bh = bh; 2434 get_bh(bh); 2435 BUFFER_TRACE(bh, "added journal_head"); 2436 } 2437 jh->b_jcount++; 2438 jbd_unlock_bh_journal_head(bh); 2439 if (new_jh) 2440 journal_free_journal_head(new_jh); 2441 return bh->b_private; 2442 } 2443 2444 /* 2445 * Grab a ref against this buffer_head's journal_head. If it ended up not 2446 * having a journal_head, return NULL 2447 */ 2448 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2449 { 2450 struct journal_head *jh = NULL; 2451 2452 jbd_lock_bh_journal_head(bh); 2453 if (buffer_jbd(bh)) { 2454 jh = bh2jh(bh); 2455 jh->b_jcount++; 2456 } 2457 jbd_unlock_bh_journal_head(bh); 2458 return jh; 2459 } 2460 2461 static void __journal_remove_journal_head(struct buffer_head *bh) 2462 { 2463 struct journal_head *jh = bh2jh(bh); 2464 2465 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2466 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2467 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2468 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2469 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2470 J_ASSERT_BH(bh, buffer_jbd(bh)); 2471 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2472 BUFFER_TRACE(bh, "remove journal_head"); 2473 if (jh->b_frozen_data) { 2474 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2475 jbd2_free(jh->b_frozen_data, bh->b_size); 2476 } 2477 if (jh->b_committed_data) { 2478 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2479 jbd2_free(jh->b_committed_data, bh->b_size); 2480 } 2481 bh->b_private = NULL; 2482 jh->b_bh = NULL; /* debug, really */ 2483 clear_buffer_jbd(bh); 2484 journal_free_journal_head(jh); 2485 } 2486 2487 /* 2488 * Drop a reference on the passed journal_head. If it fell to zero then 2489 * release the journal_head from the buffer_head. 2490 */ 2491 void jbd2_journal_put_journal_head(struct journal_head *jh) 2492 { 2493 struct buffer_head *bh = jh2bh(jh); 2494 2495 jbd_lock_bh_journal_head(bh); 2496 J_ASSERT_JH(jh, jh->b_jcount > 0); 2497 --jh->b_jcount; 2498 if (!jh->b_jcount) { 2499 __journal_remove_journal_head(bh); 2500 jbd_unlock_bh_journal_head(bh); 2501 __brelse(bh); 2502 } else 2503 jbd_unlock_bh_journal_head(bh); 2504 } 2505 2506 /* 2507 * Initialize jbd inode head 2508 */ 2509 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2510 { 2511 jinode->i_transaction = NULL; 2512 jinode->i_next_transaction = NULL; 2513 jinode->i_vfs_inode = inode; 2514 jinode->i_flags = 0; 2515 INIT_LIST_HEAD(&jinode->i_list); 2516 } 2517 2518 /* 2519 * Function to be called before we start removing inode from memory (i.e., 2520 * clear_inode() is a fine place to be called from). It removes inode from 2521 * transaction's lists. 2522 */ 2523 void jbd2_journal_release_jbd_inode(journal_t *journal, 2524 struct jbd2_inode *jinode) 2525 { 2526 if (!journal) 2527 return; 2528 restart: 2529 spin_lock(&journal->j_list_lock); 2530 /* Is commit writing out inode - we have to wait */ 2531 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2532 wait_queue_head_t *wq; 2533 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2534 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2535 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2536 spin_unlock(&journal->j_list_lock); 2537 schedule(); 2538 finish_wait(wq, &wait.wait); 2539 goto restart; 2540 } 2541 2542 if (jinode->i_transaction) { 2543 list_del(&jinode->i_list); 2544 jinode->i_transaction = NULL; 2545 } 2546 spin_unlock(&journal->j_list_lock); 2547 } 2548 2549 2550 #ifdef CONFIG_PROC_FS 2551 2552 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2553 2554 static void __init jbd2_create_jbd_stats_proc_entry(void) 2555 { 2556 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2557 } 2558 2559 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2560 { 2561 if (proc_jbd2_stats) 2562 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2563 } 2564 2565 #else 2566 2567 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2568 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2569 2570 #endif 2571 2572 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2573 2574 static int __init jbd2_journal_init_handle_cache(void) 2575 { 2576 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2577 if (jbd2_handle_cache == NULL) { 2578 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2579 return -ENOMEM; 2580 } 2581 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2582 if (jbd2_inode_cache == NULL) { 2583 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2584 kmem_cache_destroy(jbd2_handle_cache); 2585 return -ENOMEM; 2586 } 2587 return 0; 2588 } 2589 2590 static void jbd2_journal_destroy_handle_cache(void) 2591 { 2592 if (jbd2_handle_cache) 2593 kmem_cache_destroy(jbd2_handle_cache); 2594 if (jbd2_inode_cache) 2595 kmem_cache_destroy(jbd2_inode_cache); 2596 2597 } 2598 2599 /* 2600 * Module startup and shutdown 2601 */ 2602 2603 static int __init journal_init_caches(void) 2604 { 2605 int ret; 2606 2607 ret = jbd2_journal_init_revoke_caches(); 2608 if (ret == 0) 2609 ret = jbd2_journal_init_journal_head_cache(); 2610 if (ret == 0) 2611 ret = jbd2_journal_init_handle_cache(); 2612 if (ret == 0) 2613 ret = jbd2_journal_init_transaction_cache(); 2614 return ret; 2615 } 2616 2617 static void jbd2_journal_destroy_caches(void) 2618 { 2619 jbd2_journal_destroy_revoke_caches(); 2620 jbd2_journal_destroy_journal_head_cache(); 2621 jbd2_journal_destroy_handle_cache(); 2622 jbd2_journal_destroy_transaction_cache(); 2623 jbd2_journal_destroy_slabs(); 2624 } 2625 2626 static int __init journal_init(void) 2627 { 2628 int ret; 2629 2630 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2631 2632 ret = journal_init_caches(); 2633 if (ret == 0) { 2634 jbd2_create_jbd_stats_proc_entry(); 2635 } else { 2636 jbd2_journal_destroy_caches(); 2637 } 2638 return ret; 2639 } 2640 2641 static void __exit journal_exit(void) 2642 { 2643 #ifdef CONFIG_JBD2_DEBUG 2644 int n = atomic_read(&nr_journal_heads); 2645 if (n) 2646 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2647 #endif 2648 jbd2_remove_jbd_stats_proc_entry(); 2649 jbd2_journal_destroy_caches(); 2650 } 2651 2652 MODULE_LICENSE("GPL"); 2653 module_init(journal_init); 2654 module_exit(journal_exit); 2655 2656