1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static int jbd2_journal_create_slab(size_t slab_size); 100 101 #ifdef CONFIG_JBD2_DEBUG 102 void __jbd2_debug(int level, const char *file, const char *func, 103 unsigned int line, const char *fmt, ...) 104 { 105 struct va_format vaf; 106 va_list args; 107 108 if (level > jbd2_journal_enable_debug) 109 return; 110 va_start(args, fmt); 111 vaf.fmt = fmt; 112 vaf.va = &args; 113 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 114 va_end(args); 115 } 116 EXPORT_SYMBOL(__jbd2_debug); 117 #endif 118 119 /* Checksumming functions */ 120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 121 { 122 if (!jbd2_journal_has_csum_v2or3_feature(j)) 123 return 1; 124 125 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 126 } 127 128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 129 { 130 __u32 csum; 131 __be32 old_csum; 132 133 old_csum = sb->s_checksum; 134 sb->s_checksum = 0; 135 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 136 sb->s_checksum = old_csum; 137 138 return cpu_to_be32(csum); 139 } 140 141 /* 142 * Helper function used to manage commit timeouts 143 */ 144 145 static void commit_timeout(struct timer_list *t) 146 { 147 journal_t *journal = from_timer(journal, t, j_commit_timer); 148 149 wake_up_process(journal->j_task); 150 } 151 152 /* 153 * kjournald2: The main thread function used to manage a logging device 154 * journal. 155 * 156 * This kernel thread is responsible for two things: 157 * 158 * 1) COMMIT: Every so often we need to commit the current state of the 159 * filesystem to disk. The journal thread is responsible for writing 160 * all of the metadata buffers to disk. 161 * 162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 163 * of the data in that part of the log has been rewritten elsewhere on 164 * the disk. Flushing these old buffers to reclaim space in the log is 165 * known as checkpointing, and this thread is responsible for that job. 166 */ 167 168 static int kjournald2(void *arg) 169 { 170 journal_t *journal = arg; 171 transaction_t *transaction; 172 173 /* 174 * Set up an interval timer which can be used to trigger a commit wakeup 175 * after the commit interval expires 176 */ 177 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 178 179 set_freezable(); 180 181 /* Record that the journal thread is running */ 182 journal->j_task = current; 183 wake_up(&journal->j_wait_done_commit); 184 185 /* 186 * Make sure that no allocations from this kernel thread will ever 187 * recurse to the fs layer because we are responsible for the 188 * transaction commit and any fs involvement might get stuck waiting for 189 * the trasn. commit. 190 */ 191 memalloc_nofs_save(); 192 193 /* 194 * And now, wait forever for commit wakeup events. 195 */ 196 write_lock(&journal->j_state_lock); 197 198 loop: 199 if (journal->j_flags & JBD2_UNMOUNT) 200 goto end_loop; 201 202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 203 journal->j_commit_sequence, journal->j_commit_request); 204 205 if (journal->j_commit_sequence != journal->j_commit_request) { 206 jbd_debug(1, "OK, requests differ\n"); 207 write_unlock(&journal->j_state_lock); 208 del_timer_sync(&journal->j_commit_timer); 209 jbd2_journal_commit_transaction(journal); 210 write_lock(&journal->j_state_lock); 211 goto loop; 212 } 213 214 wake_up(&journal->j_wait_done_commit); 215 if (freezing(current)) { 216 /* 217 * The simpler the better. Flushing journal isn't a 218 * good idea, because that depends on threads that may 219 * be already stopped. 220 */ 221 jbd_debug(1, "Now suspending kjournald2\n"); 222 write_unlock(&journal->j_state_lock); 223 try_to_freeze(); 224 write_lock(&journal->j_state_lock); 225 } else { 226 /* 227 * We assume on resume that commits are already there, 228 * so we don't sleep 229 */ 230 DEFINE_WAIT(wait); 231 int should_sleep = 1; 232 233 prepare_to_wait(&journal->j_wait_commit, &wait, 234 TASK_INTERRUPTIBLE); 235 if (journal->j_commit_sequence != journal->j_commit_request) 236 should_sleep = 0; 237 transaction = journal->j_running_transaction; 238 if (transaction && time_after_eq(jiffies, 239 transaction->t_expires)) 240 should_sleep = 0; 241 if (journal->j_flags & JBD2_UNMOUNT) 242 should_sleep = 0; 243 if (should_sleep) { 244 write_unlock(&journal->j_state_lock); 245 schedule(); 246 write_lock(&journal->j_state_lock); 247 } 248 finish_wait(&journal->j_wait_commit, &wait); 249 } 250 251 jbd_debug(1, "kjournald2 wakes\n"); 252 253 /* 254 * Were we woken up by a commit wakeup event? 255 */ 256 transaction = journal->j_running_transaction; 257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 258 journal->j_commit_request = transaction->t_tid; 259 jbd_debug(1, "woke because of timeout\n"); 260 } 261 goto loop; 262 263 end_loop: 264 del_timer_sync(&journal->j_commit_timer); 265 journal->j_task = NULL; 266 wake_up(&journal->j_wait_done_commit); 267 jbd_debug(1, "Journal thread exiting.\n"); 268 write_unlock(&journal->j_state_lock); 269 return 0; 270 } 271 272 static int jbd2_journal_start_thread(journal_t *journal) 273 { 274 struct task_struct *t; 275 276 t = kthread_run(kjournald2, journal, "jbd2/%s", 277 journal->j_devname); 278 if (IS_ERR(t)) 279 return PTR_ERR(t); 280 281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 282 return 0; 283 } 284 285 static void journal_kill_thread(journal_t *journal) 286 { 287 write_lock(&journal->j_state_lock); 288 journal->j_flags |= JBD2_UNMOUNT; 289 290 while (journal->j_task) { 291 write_unlock(&journal->j_state_lock); 292 wake_up(&journal->j_wait_commit); 293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 294 write_lock(&journal->j_state_lock); 295 } 296 write_unlock(&journal->j_state_lock); 297 } 298 299 /* 300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 301 * 302 * Writes a metadata buffer to a given disk block. The actual IO is not 303 * performed but a new buffer_head is constructed which labels the data 304 * to be written with the correct destination disk block. 305 * 306 * Any magic-number escaping which needs to be done will cause a 307 * copy-out here. If the buffer happens to start with the 308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 309 * magic number is only written to the log for descripter blocks. In 310 * this case, we copy the data and replace the first word with 0, and we 311 * return a result code which indicates that this buffer needs to be 312 * marked as an escaped buffer in the corresponding log descriptor 313 * block. The missing word can then be restored when the block is read 314 * during recovery. 315 * 316 * If the source buffer has already been modified by a new transaction 317 * since we took the last commit snapshot, we use the frozen copy of 318 * that data for IO. If we end up using the existing buffer_head's data 319 * for the write, then we have to make sure nobody modifies it while the 320 * IO is in progress. do_get_write_access() handles this. 321 * 322 * The function returns a pointer to the buffer_head to be used for IO. 323 * 324 * 325 * Return value: 326 * <0: Error 327 * >=0: Finished OK 328 * 329 * On success: 330 * Bit 0 set == escape performed on the data 331 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 332 */ 333 334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 335 struct journal_head *jh_in, 336 struct buffer_head **bh_out, 337 sector_t blocknr) 338 { 339 int need_copy_out = 0; 340 int done_copy_out = 0; 341 int do_escape = 0; 342 char *mapped_data; 343 struct buffer_head *new_bh; 344 struct page *new_page; 345 unsigned int new_offset; 346 struct buffer_head *bh_in = jh2bh(jh_in); 347 journal_t *journal = transaction->t_journal; 348 349 /* 350 * The buffer really shouldn't be locked: only the current committing 351 * transaction is allowed to write it, so nobody else is allowed 352 * to do any IO. 353 * 354 * akpm: except if we're journalling data, and write() output is 355 * also part of a shared mapping, and another thread has 356 * decided to launch a writepage() against this buffer. 357 */ 358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 359 360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 361 362 /* keep subsequent assertions sane */ 363 atomic_set(&new_bh->b_count, 1); 364 365 spin_lock(&jh_in->b_state_lock); 366 repeat: 367 /* 368 * If a new transaction has already done a buffer copy-out, then 369 * we use that version of the data for the commit. 370 */ 371 if (jh_in->b_frozen_data) { 372 done_copy_out = 1; 373 new_page = virt_to_page(jh_in->b_frozen_data); 374 new_offset = offset_in_page(jh_in->b_frozen_data); 375 } else { 376 new_page = jh2bh(jh_in)->b_page; 377 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 378 } 379 380 mapped_data = kmap_atomic(new_page); 381 /* 382 * Fire data frozen trigger if data already wasn't frozen. Do this 383 * before checking for escaping, as the trigger may modify the magic 384 * offset. If a copy-out happens afterwards, it will have the correct 385 * data in the buffer. 386 */ 387 if (!done_copy_out) 388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 389 jh_in->b_triggers); 390 391 /* 392 * Check for escaping 393 */ 394 if (*((__be32 *)(mapped_data + new_offset)) == 395 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 396 need_copy_out = 1; 397 do_escape = 1; 398 } 399 kunmap_atomic(mapped_data); 400 401 /* 402 * Do we need to do a data copy? 403 */ 404 if (need_copy_out && !done_copy_out) { 405 char *tmp; 406 407 spin_unlock(&jh_in->b_state_lock); 408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 409 if (!tmp) { 410 brelse(new_bh); 411 return -ENOMEM; 412 } 413 spin_lock(&jh_in->b_state_lock); 414 if (jh_in->b_frozen_data) { 415 jbd2_free(tmp, bh_in->b_size); 416 goto repeat; 417 } 418 419 jh_in->b_frozen_data = tmp; 420 mapped_data = kmap_atomic(new_page); 421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 422 kunmap_atomic(mapped_data); 423 424 new_page = virt_to_page(tmp); 425 new_offset = offset_in_page(tmp); 426 done_copy_out = 1; 427 428 /* 429 * This isn't strictly necessary, as we're using frozen 430 * data for the escaping, but it keeps consistency with 431 * b_frozen_data usage. 432 */ 433 jh_in->b_frozen_triggers = jh_in->b_triggers; 434 } 435 436 /* 437 * Did we need to do an escaping? Now we've done all the 438 * copying, we can finally do so. 439 */ 440 if (do_escape) { 441 mapped_data = kmap_atomic(new_page); 442 *((unsigned int *)(mapped_data + new_offset)) = 0; 443 kunmap_atomic(mapped_data); 444 } 445 446 set_bh_page(new_bh, new_page, new_offset); 447 new_bh->b_size = bh_in->b_size; 448 new_bh->b_bdev = journal->j_dev; 449 new_bh->b_blocknr = blocknr; 450 new_bh->b_private = bh_in; 451 set_buffer_mapped(new_bh); 452 set_buffer_dirty(new_bh); 453 454 *bh_out = new_bh; 455 456 /* 457 * The to-be-written buffer needs to get moved to the io queue, 458 * and the original buffer whose contents we are shadowing or 459 * copying is moved to the transaction's shadow queue. 460 */ 461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 462 spin_lock(&journal->j_list_lock); 463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 464 spin_unlock(&journal->j_list_lock); 465 set_buffer_shadow(bh_in); 466 spin_unlock(&jh_in->b_state_lock); 467 468 return do_escape | (done_copy_out << 1); 469 } 470 471 /* 472 * Allocation code for the journal file. Manage the space left in the 473 * journal, so that we can begin checkpointing when appropriate. 474 */ 475 476 /* 477 * Called with j_state_lock locked for writing. 478 * Returns true if a transaction commit was started. 479 */ 480 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 481 { 482 /* Return if the txn has already requested to be committed */ 483 if (journal->j_commit_request == target) 484 return 0; 485 486 /* 487 * The only transaction we can possibly wait upon is the 488 * currently running transaction (if it exists). Otherwise, 489 * the target tid must be an old one. 490 */ 491 if (journal->j_running_transaction && 492 journal->j_running_transaction->t_tid == target) { 493 /* 494 * We want a new commit: OK, mark the request and wakeup the 495 * commit thread. We do _not_ do the commit ourselves. 496 */ 497 498 journal->j_commit_request = target; 499 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 500 journal->j_commit_request, 501 journal->j_commit_sequence); 502 journal->j_running_transaction->t_requested = jiffies; 503 wake_up(&journal->j_wait_commit); 504 return 1; 505 } else if (!tid_geq(journal->j_commit_request, target)) 506 /* This should never happen, but if it does, preserve 507 the evidence before kjournald goes into a loop and 508 increments j_commit_sequence beyond all recognition. */ 509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 510 journal->j_commit_request, 511 journal->j_commit_sequence, 512 target, journal->j_running_transaction ? 513 journal->j_running_transaction->t_tid : 0); 514 return 0; 515 } 516 517 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 518 { 519 int ret; 520 521 write_lock(&journal->j_state_lock); 522 ret = __jbd2_log_start_commit(journal, tid); 523 write_unlock(&journal->j_state_lock); 524 return ret; 525 } 526 527 /* 528 * Force and wait any uncommitted transactions. We can only force the running 529 * transaction if we don't have an active handle, otherwise, we will deadlock. 530 * Returns: <0 in case of error, 531 * 0 if nothing to commit, 532 * 1 if transaction was successfully committed. 533 */ 534 static int __jbd2_journal_force_commit(journal_t *journal) 535 { 536 transaction_t *transaction = NULL; 537 tid_t tid; 538 int need_to_start = 0, ret = 0; 539 540 read_lock(&journal->j_state_lock); 541 if (journal->j_running_transaction && !current->journal_info) { 542 transaction = journal->j_running_transaction; 543 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 544 need_to_start = 1; 545 } else if (journal->j_committing_transaction) 546 transaction = journal->j_committing_transaction; 547 548 if (!transaction) { 549 /* Nothing to commit */ 550 read_unlock(&journal->j_state_lock); 551 return 0; 552 } 553 tid = transaction->t_tid; 554 read_unlock(&journal->j_state_lock); 555 if (need_to_start) 556 jbd2_log_start_commit(journal, tid); 557 ret = jbd2_log_wait_commit(journal, tid); 558 if (!ret) 559 ret = 1; 560 561 return ret; 562 } 563 564 /** 565 * Force and wait upon a commit if the calling process is not within 566 * transaction. This is used for forcing out undo-protected data which contains 567 * bitmaps, when the fs is running out of space. 568 * 569 * @journal: journal to force 570 * Returns true if progress was made. 571 */ 572 int jbd2_journal_force_commit_nested(journal_t *journal) 573 { 574 int ret; 575 576 ret = __jbd2_journal_force_commit(journal); 577 return ret > 0; 578 } 579 580 /** 581 * int journal_force_commit() - force any uncommitted transactions 582 * @journal: journal to force 583 * 584 * Caller want unconditional commit. We can only force the running transaction 585 * if we don't have an active handle, otherwise, we will deadlock. 586 */ 587 int jbd2_journal_force_commit(journal_t *journal) 588 { 589 int ret; 590 591 J_ASSERT(!current->journal_info); 592 ret = __jbd2_journal_force_commit(journal); 593 if (ret > 0) 594 ret = 0; 595 return ret; 596 } 597 598 /* 599 * Start a commit of the current running transaction (if any). Returns true 600 * if a transaction is going to be committed (or is currently already 601 * committing), and fills its tid in at *ptid 602 */ 603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 604 { 605 int ret = 0; 606 607 write_lock(&journal->j_state_lock); 608 if (journal->j_running_transaction) { 609 tid_t tid = journal->j_running_transaction->t_tid; 610 611 __jbd2_log_start_commit(journal, tid); 612 /* There's a running transaction and we've just made sure 613 * it's commit has been scheduled. */ 614 if (ptid) 615 *ptid = tid; 616 ret = 1; 617 } else if (journal->j_committing_transaction) { 618 /* 619 * If commit has been started, then we have to wait for 620 * completion of that transaction. 621 */ 622 if (ptid) 623 *ptid = journal->j_committing_transaction->t_tid; 624 ret = 1; 625 } 626 write_unlock(&journal->j_state_lock); 627 return ret; 628 } 629 630 /* 631 * Return 1 if a given transaction has not yet sent barrier request 632 * connected with a transaction commit. If 0 is returned, transaction 633 * may or may not have sent the barrier. Used to avoid sending barrier 634 * twice in common cases. 635 */ 636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 637 { 638 int ret = 0; 639 transaction_t *commit_trans; 640 641 if (!(journal->j_flags & JBD2_BARRIER)) 642 return 0; 643 read_lock(&journal->j_state_lock); 644 /* Transaction already committed? */ 645 if (tid_geq(journal->j_commit_sequence, tid)) 646 goto out; 647 commit_trans = journal->j_committing_transaction; 648 if (!commit_trans || commit_trans->t_tid != tid) { 649 ret = 1; 650 goto out; 651 } 652 /* 653 * Transaction is being committed and we already proceeded to 654 * submitting a flush to fs partition? 655 */ 656 if (journal->j_fs_dev != journal->j_dev) { 657 if (!commit_trans->t_need_data_flush || 658 commit_trans->t_state >= T_COMMIT_DFLUSH) 659 goto out; 660 } else { 661 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 662 goto out; 663 } 664 ret = 1; 665 out: 666 read_unlock(&journal->j_state_lock); 667 return ret; 668 } 669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 670 671 /* 672 * Wait for a specified commit to complete. 673 * The caller may not hold the journal lock. 674 */ 675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 676 { 677 int err = 0; 678 679 read_lock(&journal->j_state_lock); 680 #ifdef CONFIG_PROVE_LOCKING 681 /* 682 * Some callers make sure transaction is already committing and in that 683 * case we cannot block on open handles anymore. So don't warn in that 684 * case. 685 */ 686 if (tid_gt(tid, journal->j_commit_sequence) && 687 (!journal->j_committing_transaction || 688 journal->j_committing_transaction->t_tid != tid)) { 689 read_unlock(&journal->j_state_lock); 690 jbd2_might_wait_for_commit(journal); 691 read_lock(&journal->j_state_lock); 692 } 693 #endif 694 #ifdef CONFIG_JBD2_DEBUG 695 if (!tid_geq(journal->j_commit_request, tid)) { 696 printk(KERN_ERR 697 "%s: error: j_commit_request=%u, tid=%u\n", 698 __func__, journal->j_commit_request, tid); 699 } 700 #endif 701 while (tid_gt(tid, journal->j_commit_sequence)) { 702 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 703 tid, journal->j_commit_sequence); 704 read_unlock(&journal->j_state_lock); 705 wake_up(&journal->j_wait_commit); 706 wait_event(journal->j_wait_done_commit, 707 !tid_gt(tid, journal->j_commit_sequence)); 708 read_lock(&journal->j_state_lock); 709 } 710 read_unlock(&journal->j_state_lock); 711 712 if (unlikely(is_journal_aborted(journal))) 713 err = -EIO; 714 return err; 715 } 716 717 /* Return 1 when transaction with given tid has already committed. */ 718 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 719 { 720 int ret = 1; 721 722 read_lock(&journal->j_state_lock); 723 if (journal->j_running_transaction && 724 journal->j_running_transaction->t_tid == tid) 725 ret = 0; 726 if (journal->j_committing_transaction && 727 journal->j_committing_transaction->t_tid == tid) 728 ret = 0; 729 read_unlock(&journal->j_state_lock); 730 return ret; 731 } 732 EXPORT_SYMBOL(jbd2_transaction_committed); 733 734 /* 735 * When this function returns the transaction corresponding to tid 736 * will be completed. If the transaction has currently running, start 737 * committing that transaction before waiting for it to complete. If 738 * the transaction id is stale, it is by definition already completed, 739 * so just return SUCCESS. 740 */ 741 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 742 { 743 int need_to_wait = 1; 744 745 read_lock(&journal->j_state_lock); 746 if (journal->j_running_transaction && 747 journal->j_running_transaction->t_tid == tid) { 748 if (journal->j_commit_request != tid) { 749 /* transaction not yet started, so request it */ 750 read_unlock(&journal->j_state_lock); 751 jbd2_log_start_commit(journal, tid); 752 goto wait_commit; 753 } 754 } else if (!(journal->j_committing_transaction && 755 journal->j_committing_transaction->t_tid == tid)) 756 need_to_wait = 0; 757 read_unlock(&journal->j_state_lock); 758 if (!need_to_wait) 759 return 0; 760 wait_commit: 761 return jbd2_log_wait_commit(journal, tid); 762 } 763 EXPORT_SYMBOL(jbd2_complete_transaction); 764 765 /* 766 * Log buffer allocation routines: 767 */ 768 769 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 770 { 771 unsigned long blocknr; 772 773 write_lock(&journal->j_state_lock); 774 J_ASSERT(journal->j_free > 1); 775 776 blocknr = journal->j_head; 777 journal->j_head++; 778 journal->j_free--; 779 if (journal->j_head == journal->j_last) 780 journal->j_head = journal->j_first; 781 write_unlock(&journal->j_state_lock); 782 return jbd2_journal_bmap(journal, blocknr, retp); 783 } 784 785 /* 786 * Conversion of logical to physical block numbers for the journal 787 * 788 * On external journals the journal blocks are identity-mapped, so 789 * this is a no-op. If needed, we can use j_blk_offset - everything is 790 * ready. 791 */ 792 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 793 unsigned long long *retp) 794 { 795 int err = 0; 796 unsigned long long ret; 797 798 if (journal->j_inode) { 799 ret = bmap(journal->j_inode, blocknr); 800 if (ret) 801 *retp = ret; 802 else { 803 printk(KERN_ALERT "%s: journal block not found " 804 "at offset %lu on %s\n", 805 __func__, blocknr, journal->j_devname); 806 err = -EIO; 807 jbd2_journal_abort(journal, err); 808 } 809 } else { 810 *retp = blocknr; /* +journal->j_blk_offset */ 811 } 812 return err; 813 } 814 815 /* 816 * We play buffer_head aliasing tricks to write data/metadata blocks to 817 * the journal without copying their contents, but for journal 818 * descriptor blocks we do need to generate bona fide buffers. 819 * 820 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 821 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 822 * But we don't bother doing that, so there will be coherency problems with 823 * mmaps of blockdevs which hold live JBD-controlled filesystems. 824 */ 825 struct buffer_head * 826 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 827 { 828 journal_t *journal = transaction->t_journal; 829 struct buffer_head *bh; 830 unsigned long long blocknr; 831 journal_header_t *header; 832 int err; 833 834 err = jbd2_journal_next_log_block(journal, &blocknr); 835 836 if (err) 837 return NULL; 838 839 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 840 if (!bh) 841 return NULL; 842 atomic_dec(&transaction->t_outstanding_credits); 843 lock_buffer(bh); 844 memset(bh->b_data, 0, journal->j_blocksize); 845 header = (journal_header_t *)bh->b_data; 846 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 847 header->h_blocktype = cpu_to_be32(type); 848 header->h_sequence = cpu_to_be32(transaction->t_tid); 849 set_buffer_uptodate(bh); 850 unlock_buffer(bh); 851 BUFFER_TRACE(bh, "return this buffer"); 852 return bh; 853 } 854 855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 856 { 857 struct jbd2_journal_block_tail *tail; 858 __u32 csum; 859 860 if (!jbd2_journal_has_csum_v2or3(j)) 861 return; 862 863 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 864 sizeof(struct jbd2_journal_block_tail)); 865 tail->t_checksum = 0; 866 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 867 tail->t_checksum = cpu_to_be32(csum); 868 } 869 870 /* 871 * Return tid of the oldest transaction in the journal and block in the journal 872 * where the transaction starts. 873 * 874 * If the journal is now empty, return which will be the next transaction ID 875 * we will write and where will that transaction start. 876 * 877 * The return value is 0 if journal tail cannot be pushed any further, 1 if 878 * it can. 879 */ 880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 881 unsigned long *block) 882 { 883 transaction_t *transaction; 884 int ret; 885 886 read_lock(&journal->j_state_lock); 887 spin_lock(&journal->j_list_lock); 888 transaction = journal->j_checkpoint_transactions; 889 if (transaction) { 890 *tid = transaction->t_tid; 891 *block = transaction->t_log_start; 892 } else if ((transaction = journal->j_committing_transaction) != NULL) { 893 *tid = transaction->t_tid; 894 *block = transaction->t_log_start; 895 } else if ((transaction = journal->j_running_transaction) != NULL) { 896 *tid = transaction->t_tid; 897 *block = journal->j_head; 898 } else { 899 *tid = journal->j_transaction_sequence; 900 *block = journal->j_head; 901 } 902 ret = tid_gt(*tid, journal->j_tail_sequence); 903 spin_unlock(&journal->j_list_lock); 904 read_unlock(&journal->j_state_lock); 905 906 return ret; 907 } 908 909 /* 910 * Update information in journal structure and in on disk journal superblock 911 * about log tail. This function does not check whether information passed in 912 * really pushes log tail further. It's responsibility of the caller to make 913 * sure provided log tail information is valid (e.g. by holding 914 * j_checkpoint_mutex all the time between computing log tail and calling this 915 * function as is the case with jbd2_cleanup_journal_tail()). 916 * 917 * Requires j_checkpoint_mutex 918 */ 919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 920 { 921 unsigned long freed; 922 int ret; 923 924 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 925 926 /* 927 * We cannot afford for write to remain in drive's caches since as 928 * soon as we update j_tail, next transaction can start reusing journal 929 * space and if we lose sb update during power failure we'd replay 930 * old transaction with possibly newly overwritten data. 931 */ 932 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 933 REQ_SYNC | REQ_FUA); 934 if (ret) 935 goto out; 936 937 write_lock(&journal->j_state_lock); 938 freed = block - journal->j_tail; 939 if (block < journal->j_tail) 940 freed += journal->j_last - journal->j_first; 941 942 trace_jbd2_update_log_tail(journal, tid, block, freed); 943 jbd_debug(1, 944 "Cleaning journal tail from %u to %u (offset %lu), " 945 "freeing %lu\n", 946 journal->j_tail_sequence, tid, block, freed); 947 948 journal->j_free += freed; 949 journal->j_tail_sequence = tid; 950 journal->j_tail = block; 951 write_unlock(&journal->j_state_lock); 952 953 out: 954 return ret; 955 } 956 957 /* 958 * This is a variation of __jbd2_update_log_tail which checks for validity of 959 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 960 * with other threads updating log tail. 961 */ 962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 963 { 964 mutex_lock_io(&journal->j_checkpoint_mutex); 965 if (tid_gt(tid, journal->j_tail_sequence)) 966 __jbd2_update_log_tail(journal, tid, block); 967 mutex_unlock(&journal->j_checkpoint_mutex); 968 } 969 970 struct jbd2_stats_proc_session { 971 journal_t *journal; 972 struct transaction_stats_s *stats; 973 int start; 974 int max; 975 }; 976 977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 978 { 979 return *pos ? NULL : SEQ_START_TOKEN; 980 } 981 982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 983 { 984 (*pos)++; 985 return NULL; 986 } 987 988 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 989 { 990 struct jbd2_stats_proc_session *s = seq->private; 991 992 if (v != SEQ_START_TOKEN) 993 return 0; 994 seq_printf(seq, "%lu transactions (%lu requested), " 995 "each up to %u blocks\n", 996 s->stats->ts_tid, s->stats->ts_requested, 997 s->journal->j_max_transaction_buffers); 998 if (s->stats->ts_tid == 0) 999 return 0; 1000 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1001 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1002 seq_printf(seq, " %ums request delay\n", 1003 (s->stats->ts_requested == 0) ? 0 : 1004 jiffies_to_msecs(s->stats->run.rs_request_delay / 1005 s->stats->ts_requested)); 1006 seq_printf(seq, " %ums running transaction\n", 1007 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1008 seq_printf(seq, " %ums transaction was being locked\n", 1009 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1010 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1011 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1012 seq_printf(seq, " %ums logging transaction\n", 1013 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1014 seq_printf(seq, " %lluus average transaction commit time\n", 1015 div_u64(s->journal->j_average_commit_time, 1000)); 1016 seq_printf(seq, " %lu handles per transaction\n", 1017 s->stats->run.rs_handle_count / s->stats->ts_tid); 1018 seq_printf(seq, " %lu blocks per transaction\n", 1019 s->stats->run.rs_blocks / s->stats->ts_tid); 1020 seq_printf(seq, " %lu logged blocks per transaction\n", 1021 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1022 return 0; 1023 } 1024 1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1026 { 1027 } 1028 1029 static const struct seq_operations jbd2_seq_info_ops = { 1030 .start = jbd2_seq_info_start, 1031 .next = jbd2_seq_info_next, 1032 .stop = jbd2_seq_info_stop, 1033 .show = jbd2_seq_info_show, 1034 }; 1035 1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1037 { 1038 journal_t *journal = PDE_DATA(inode); 1039 struct jbd2_stats_proc_session *s; 1040 int rc, size; 1041 1042 s = kmalloc(sizeof(*s), GFP_KERNEL); 1043 if (s == NULL) 1044 return -ENOMEM; 1045 size = sizeof(struct transaction_stats_s); 1046 s->stats = kmalloc(size, GFP_KERNEL); 1047 if (s->stats == NULL) { 1048 kfree(s); 1049 return -ENOMEM; 1050 } 1051 spin_lock(&journal->j_history_lock); 1052 memcpy(s->stats, &journal->j_stats, size); 1053 s->journal = journal; 1054 spin_unlock(&journal->j_history_lock); 1055 1056 rc = seq_open(file, &jbd2_seq_info_ops); 1057 if (rc == 0) { 1058 struct seq_file *m = file->private_data; 1059 m->private = s; 1060 } else { 1061 kfree(s->stats); 1062 kfree(s); 1063 } 1064 return rc; 1065 1066 } 1067 1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1069 { 1070 struct seq_file *seq = file->private_data; 1071 struct jbd2_stats_proc_session *s = seq->private; 1072 kfree(s->stats); 1073 kfree(s); 1074 return seq_release(inode, file); 1075 } 1076 1077 static const struct file_operations jbd2_seq_info_fops = { 1078 .owner = THIS_MODULE, 1079 .open = jbd2_seq_info_open, 1080 .read = seq_read, 1081 .llseek = seq_lseek, 1082 .release = jbd2_seq_info_release, 1083 }; 1084 1085 static struct proc_dir_entry *proc_jbd2_stats; 1086 1087 static void jbd2_stats_proc_init(journal_t *journal) 1088 { 1089 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1090 if (journal->j_proc_entry) { 1091 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1092 &jbd2_seq_info_fops, journal); 1093 } 1094 } 1095 1096 static void jbd2_stats_proc_exit(journal_t *journal) 1097 { 1098 remove_proc_entry("info", journal->j_proc_entry); 1099 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1100 } 1101 1102 /* Minimum size of descriptor tag */ 1103 static int jbd2_min_tag_size(void) 1104 { 1105 /* 1106 * Tag with 32-bit block numbers does not use last four bytes of the 1107 * structure 1108 */ 1109 return sizeof(journal_block_tag_t) - 4; 1110 } 1111 1112 /* 1113 * Management for journal control blocks: functions to create and 1114 * destroy journal_t structures, and to initialise and read existing 1115 * journal blocks from disk. */ 1116 1117 /* First: create and setup a journal_t object in memory. We initialise 1118 * very few fields yet: that has to wait until we have created the 1119 * journal structures from from scratch, or loaded them from disk. */ 1120 1121 static journal_t *journal_init_common(struct block_device *bdev, 1122 struct block_device *fs_dev, 1123 unsigned long long start, int len, int blocksize) 1124 { 1125 static struct lock_class_key jbd2_trans_commit_key; 1126 journal_t *journal; 1127 int err; 1128 struct buffer_head *bh; 1129 int n; 1130 1131 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1132 if (!journal) 1133 return NULL; 1134 1135 init_waitqueue_head(&journal->j_wait_transaction_locked); 1136 init_waitqueue_head(&journal->j_wait_done_commit); 1137 init_waitqueue_head(&journal->j_wait_commit); 1138 init_waitqueue_head(&journal->j_wait_updates); 1139 init_waitqueue_head(&journal->j_wait_reserved); 1140 mutex_init(&journal->j_barrier); 1141 mutex_init(&journal->j_checkpoint_mutex); 1142 spin_lock_init(&journal->j_revoke_lock); 1143 spin_lock_init(&journal->j_list_lock); 1144 rwlock_init(&journal->j_state_lock); 1145 1146 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1147 journal->j_min_batch_time = 0; 1148 journal->j_max_batch_time = 15000; /* 15ms */ 1149 atomic_set(&journal->j_reserved_credits, 0); 1150 1151 /* The journal is marked for error until we succeed with recovery! */ 1152 journal->j_flags = JBD2_ABORT; 1153 1154 /* Set up a default-sized revoke table for the new mount. */ 1155 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1156 if (err) 1157 goto err_cleanup; 1158 1159 spin_lock_init(&journal->j_history_lock); 1160 1161 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1162 &jbd2_trans_commit_key, 0); 1163 1164 /* journal descriptor can store up to n blocks -bzzz */ 1165 journal->j_blocksize = blocksize; 1166 journal->j_dev = bdev; 1167 journal->j_fs_dev = fs_dev; 1168 journal->j_blk_offset = start; 1169 journal->j_maxlen = len; 1170 /* We need enough buffers to write out full descriptor block. */ 1171 n = journal->j_blocksize / jbd2_min_tag_size(); 1172 journal->j_wbufsize = n; 1173 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1174 GFP_KERNEL); 1175 if (!journal->j_wbuf) 1176 goto err_cleanup; 1177 1178 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1179 if (!bh) { 1180 pr_err("%s: Cannot get buffer for journal superblock\n", 1181 __func__); 1182 goto err_cleanup; 1183 } 1184 journal->j_sb_buffer = bh; 1185 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1186 1187 return journal; 1188 1189 err_cleanup: 1190 kfree(journal->j_wbuf); 1191 jbd2_journal_destroy_revoke(journal); 1192 kfree(journal); 1193 return NULL; 1194 } 1195 1196 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1197 * 1198 * Create a journal structure assigned some fixed set of disk blocks to 1199 * the journal. We don't actually touch those disk blocks yet, but we 1200 * need to set up all of the mapping information to tell the journaling 1201 * system where the journal blocks are. 1202 * 1203 */ 1204 1205 /** 1206 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1207 * @bdev: Block device on which to create the journal 1208 * @fs_dev: Device which hold journalled filesystem for this journal. 1209 * @start: Block nr Start of journal. 1210 * @len: Length of the journal in blocks. 1211 * @blocksize: blocksize of journalling device 1212 * 1213 * Returns: a newly created journal_t * 1214 * 1215 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1216 * range of blocks on an arbitrary block device. 1217 * 1218 */ 1219 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1220 struct block_device *fs_dev, 1221 unsigned long long start, int len, int blocksize) 1222 { 1223 journal_t *journal; 1224 1225 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1226 if (!journal) 1227 return NULL; 1228 1229 bdevname(journal->j_dev, journal->j_devname); 1230 strreplace(journal->j_devname, '/', '!'); 1231 jbd2_stats_proc_init(journal); 1232 1233 return journal; 1234 } 1235 1236 /** 1237 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1238 * @inode: An inode to create the journal in 1239 * 1240 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1241 * the journal. The inode must exist already, must support bmap() and 1242 * must have all data blocks preallocated. 1243 */ 1244 journal_t *jbd2_journal_init_inode(struct inode *inode) 1245 { 1246 journal_t *journal; 1247 char *p; 1248 unsigned long long blocknr; 1249 1250 blocknr = bmap(inode, 0); 1251 if (!blocknr) { 1252 pr_err("%s: Cannot locate journal superblock\n", 1253 __func__); 1254 return NULL; 1255 } 1256 1257 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1258 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1259 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1260 1261 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1262 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1263 inode->i_sb->s_blocksize); 1264 if (!journal) 1265 return NULL; 1266 1267 journal->j_inode = inode; 1268 bdevname(journal->j_dev, journal->j_devname); 1269 p = strreplace(journal->j_devname, '/', '!'); 1270 sprintf(p, "-%lu", journal->j_inode->i_ino); 1271 jbd2_stats_proc_init(journal); 1272 1273 return journal; 1274 } 1275 1276 /* 1277 * If the journal init or create aborts, we need to mark the journal 1278 * superblock as being NULL to prevent the journal destroy from writing 1279 * back a bogus superblock. 1280 */ 1281 static void journal_fail_superblock (journal_t *journal) 1282 { 1283 struct buffer_head *bh = journal->j_sb_buffer; 1284 brelse(bh); 1285 journal->j_sb_buffer = NULL; 1286 } 1287 1288 /* 1289 * Given a journal_t structure, initialise the various fields for 1290 * startup of a new journaling session. We use this both when creating 1291 * a journal, and after recovering an old journal to reset it for 1292 * subsequent use. 1293 */ 1294 1295 static int journal_reset(journal_t *journal) 1296 { 1297 journal_superblock_t *sb = journal->j_superblock; 1298 unsigned long long first, last; 1299 1300 first = be32_to_cpu(sb->s_first); 1301 last = be32_to_cpu(sb->s_maxlen); 1302 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1303 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1304 first, last); 1305 journal_fail_superblock(journal); 1306 return -EINVAL; 1307 } 1308 1309 journal->j_first = first; 1310 journal->j_last = last; 1311 1312 journal->j_head = first; 1313 journal->j_tail = first; 1314 journal->j_free = last - first; 1315 1316 journal->j_tail_sequence = journal->j_transaction_sequence; 1317 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1318 journal->j_commit_request = journal->j_commit_sequence; 1319 1320 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1321 1322 /* 1323 * As a special case, if the on-disk copy is already marked as needing 1324 * no recovery (s_start == 0), then we can safely defer the superblock 1325 * update until the next commit by setting JBD2_FLUSHED. This avoids 1326 * attempting a write to a potential-readonly device. 1327 */ 1328 if (sb->s_start == 0) { 1329 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1330 "(start %ld, seq %u, errno %d)\n", 1331 journal->j_tail, journal->j_tail_sequence, 1332 journal->j_errno); 1333 journal->j_flags |= JBD2_FLUSHED; 1334 } else { 1335 /* Lock here to make assertions happy... */ 1336 mutex_lock_io(&journal->j_checkpoint_mutex); 1337 /* 1338 * Update log tail information. We use REQ_FUA since new 1339 * transaction will start reusing journal space and so we 1340 * must make sure information about current log tail is on 1341 * disk before that. 1342 */ 1343 jbd2_journal_update_sb_log_tail(journal, 1344 journal->j_tail_sequence, 1345 journal->j_tail, 1346 REQ_SYNC | REQ_FUA); 1347 mutex_unlock(&journal->j_checkpoint_mutex); 1348 } 1349 return jbd2_journal_start_thread(journal); 1350 } 1351 1352 /* 1353 * This function expects that the caller will have locked the journal 1354 * buffer head, and will return with it unlocked 1355 */ 1356 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1357 { 1358 struct buffer_head *bh = journal->j_sb_buffer; 1359 journal_superblock_t *sb = journal->j_superblock; 1360 int ret; 1361 1362 /* Buffer got discarded which means block device got invalidated */ 1363 if (!buffer_mapped(bh)) 1364 return -EIO; 1365 1366 trace_jbd2_write_superblock(journal, write_flags); 1367 if (!(journal->j_flags & JBD2_BARRIER)) 1368 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1369 if (buffer_write_io_error(bh)) { 1370 /* 1371 * Oh, dear. A previous attempt to write the journal 1372 * superblock failed. This could happen because the 1373 * USB device was yanked out. Or it could happen to 1374 * be a transient write error and maybe the block will 1375 * be remapped. Nothing we can do but to retry the 1376 * write and hope for the best. 1377 */ 1378 printk(KERN_ERR "JBD2: previous I/O error detected " 1379 "for journal superblock update for %s.\n", 1380 journal->j_devname); 1381 clear_buffer_write_io_error(bh); 1382 set_buffer_uptodate(bh); 1383 } 1384 if (jbd2_journal_has_csum_v2or3(journal)) 1385 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1386 get_bh(bh); 1387 bh->b_end_io = end_buffer_write_sync; 1388 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1389 wait_on_buffer(bh); 1390 if (buffer_write_io_error(bh)) { 1391 clear_buffer_write_io_error(bh); 1392 set_buffer_uptodate(bh); 1393 ret = -EIO; 1394 } 1395 if (ret) { 1396 printk(KERN_ERR "JBD2: Error %d detected when updating " 1397 "journal superblock for %s.\n", ret, 1398 journal->j_devname); 1399 jbd2_journal_abort(journal, ret); 1400 } 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1407 * @journal: The journal to update. 1408 * @tail_tid: TID of the new transaction at the tail of the log 1409 * @tail_block: The first block of the transaction at the tail of the log 1410 * @write_op: With which operation should we write the journal sb 1411 * 1412 * Update a journal's superblock information about log tail and write it to 1413 * disk, waiting for the IO to complete. 1414 */ 1415 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1416 unsigned long tail_block, int write_op) 1417 { 1418 journal_superblock_t *sb = journal->j_superblock; 1419 int ret; 1420 1421 if (is_journal_aborted(journal)) 1422 return -EIO; 1423 1424 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1425 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1426 tail_block, tail_tid); 1427 1428 lock_buffer(journal->j_sb_buffer); 1429 sb->s_sequence = cpu_to_be32(tail_tid); 1430 sb->s_start = cpu_to_be32(tail_block); 1431 1432 ret = jbd2_write_superblock(journal, write_op); 1433 if (ret) 1434 goto out; 1435 1436 /* Log is no longer empty */ 1437 write_lock(&journal->j_state_lock); 1438 WARN_ON(!sb->s_sequence); 1439 journal->j_flags &= ~JBD2_FLUSHED; 1440 write_unlock(&journal->j_state_lock); 1441 1442 out: 1443 return ret; 1444 } 1445 1446 /** 1447 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1448 * @journal: The journal to update. 1449 * @write_op: With which operation should we write the journal sb 1450 * 1451 * Update a journal's dynamic superblock fields to show that journal is empty. 1452 * Write updated superblock to disk waiting for IO to complete. 1453 */ 1454 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1455 { 1456 journal_superblock_t *sb = journal->j_superblock; 1457 1458 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1459 lock_buffer(journal->j_sb_buffer); 1460 if (sb->s_start == 0) { /* Is it already empty? */ 1461 unlock_buffer(journal->j_sb_buffer); 1462 return; 1463 } 1464 1465 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1466 journal->j_tail_sequence); 1467 1468 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1469 sb->s_start = cpu_to_be32(0); 1470 1471 jbd2_write_superblock(journal, write_op); 1472 1473 /* Log is no longer empty */ 1474 write_lock(&journal->j_state_lock); 1475 journal->j_flags |= JBD2_FLUSHED; 1476 write_unlock(&journal->j_state_lock); 1477 } 1478 1479 1480 /** 1481 * jbd2_journal_update_sb_errno() - Update error in the journal. 1482 * @journal: The journal to update. 1483 * 1484 * Update a journal's errno. Write updated superblock to disk waiting for IO 1485 * to complete. 1486 */ 1487 void jbd2_journal_update_sb_errno(journal_t *journal) 1488 { 1489 journal_superblock_t *sb = journal->j_superblock; 1490 int errcode; 1491 1492 lock_buffer(journal->j_sb_buffer); 1493 errcode = journal->j_errno; 1494 if (errcode == -ESHUTDOWN) 1495 errcode = 0; 1496 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1497 sb->s_errno = cpu_to_be32(errcode); 1498 1499 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1500 } 1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1502 1503 static int journal_revoke_records_per_block(journal_t *journal) 1504 { 1505 int record_size; 1506 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1507 1508 if (jbd2_has_feature_64bit(journal)) 1509 record_size = 8; 1510 else 1511 record_size = 4; 1512 1513 if (jbd2_journal_has_csum_v2or3(journal)) 1514 space -= sizeof(struct jbd2_journal_block_tail); 1515 return space / record_size; 1516 } 1517 1518 /* 1519 * Read the superblock for a given journal, performing initial 1520 * validation of the format. 1521 */ 1522 static int journal_get_superblock(journal_t *journal) 1523 { 1524 struct buffer_head *bh; 1525 journal_superblock_t *sb; 1526 int err = -EIO; 1527 1528 bh = journal->j_sb_buffer; 1529 1530 J_ASSERT(bh != NULL); 1531 if (!buffer_uptodate(bh)) { 1532 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1533 wait_on_buffer(bh); 1534 if (!buffer_uptodate(bh)) { 1535 printk(KERN_ERR 1536 "JBD2: IO error reading journal superblock\n"); 1537 goto out; 1538 } 1539 } 1540 1541 if (buffer_verified(bh)) 1542 return 0; 1543 1544 sb = journal->j_superblock; 1545 1546 err = -EINVAL; 1547 1548 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1549 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1550 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1551 goto out; 1552 } 1553 1554 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1555 case JBD2_SUPERBLOCK_V1: 1556 journal->j_format_version = 1; 1557 break; 1558 case JBD2_SUPERBLOCK_V2: 1559 journal->j_format_version = 2; 1560 break; 1561 default: 1562 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1563 goto out; 1564 } 1565 1566 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1567 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1568 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1569 printk(KERN_WARNING "JBD2: journal file too short\n"); 1570 goto out; 1571 } 1572 1573 if (be32_to_cpu(sb->s_first) == 0 || 1574 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1575 printk(KERN_WARNING 1576 "JBD2: Invalid start block of journal: %u\n", 1577 be32_to_cpu(sb->s_first)); 1578 goto out; 1579 } 1580 1581 if (jbd2_has_feature_csum2(journal) && 1582 jbd2_has_feature_csum3(journal)) { 1583 /* Can't have checksum v2 and v3 at the same time! */ 1584 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1585 "at the same time!\n"); 1586 goto out; 1587 } 1588 1589 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1590 jbd2_has_feature_checksum(journal)) { 1591 /* Can't have checksum v1 and v2 on at the same time! */ 1592 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1593 "at the same time!\n"); 1594 goto out; 1595 } 1596 1597 if (!jbd2_verify_csum_type(journal, sb)) { 1598 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1599 goto out; 1600 } 1601 1602 /* Load the checksum driver */ 1603 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1604 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1605 if (IS_ERR(journal->j_chksum_driver)) { 1606 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1607 err = PTR_ERR(journal->j_chksum_driver); 1608 journal->j_chksum_driver = NULL; 1609 goto out; 1610 } 1611 } 1612 1613 if (jbd2_journal_has_csum_v2or3(journal)) { 1614 /* Check superblock checksum */ 1615 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1616 printk(KERN_ERR "JBD2: journal checksum error\n"); 1617 err = -EFSBADCRC; 1618 goto out; 1619 } 1620 1621 /* Precompute checksum seed for all metadata */ 1622 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1623 sizeof(sb->s_uuid)); 1624 } 1625 1626 journal->j_revoke_records_per_block = 1627 journal_revoke_records_per_block(journal); 1628 set_buffer_verified(bh); 1629 1630 return 0; 1631 1632 out: 1633 journal_fail_superblock(journal); 1634 return err; 1635 } 1636 1637 /* 1638 * Load the on-disk journal superblock and read the key fields into the 1639 * journal_t. 1640 */ 1641 1642 static int load_superblock(journal_t *journal) 1643 { 1644 int err; 1645 journal_superblock_t *sb; 1646 1647 err = journal_get_superblock(journal); 1648 if (err) 1649 return err; 1650 1651 sb = journal->j_superblock; 1652 1653 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1654 journal->j_tail = be32_to_cpu(sb->s_start); 1655 journal->j_first = be32_to_cpu(sb->s_first); 1656 journal->j_last = be32_to_cpu(sb->s_maxlen); 1657 journal->j_errno = be32_to_cpu(sb->s_errno); 1658 1659 return 0; 1660 } 1661 1662 1663 /** 1664 * int jbd2_journal_load() - Read journal from disk. 1665 * @journal: Journal to act on. 1666 * 1667 * Given a journal_t structure which tells us which disk blocks contain 1668 * a journal, read the journal from disk to initialise the in-memory 1669 * structures. 1670 */ 1671 int jbd2_journal_load(journal_t *journal) 1672 { 1673 int err; 1674 journal_superblock_t *sb; 1675 1676 err = load_superblock(journal); 1677 if (err) 1678 return err; 1679 1680 sb = journal->j_superblock; 1681 /* If this is a V2 superblock, then we have to check the 1682 * features flags on it. */ 1683 1684 if (journal->j_format_version >= 2) { 1685 if ((sb->s_feature_ro_compat & 1686 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1687 (sb->s_feature_incompat & 1688 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1689 printk(KERN_WARNING 1690 "JBD2: Unrecognised features on journal\n"); 1691 return -EINVAL; 1692 } 1693 } 1694 1695 /* 1696 * Create a slab for this blocksize 1697 */ 1698 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1699 if (err) 1700 return err; 1701 1702 /* Let the recovery code check whether it needs to recover any 1703 * data from the journal. */ 1704 if (jbd2_journal_recover(journal)) 1705 goto recovery_error; 1706 1707 if (journal->j_failed_commit) { 1708 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1709 "is corrupt.\n", journal->j_failed_commit, 1710 journal->j_devname); 1711 return -EFSCORRUPTED; 1712 } 1713 /* 1714 * clear JBD2_ABORT flag initialized in journal_init_common 1715 * here to update log tail information with the newest seq. 1716 */ 1717 journal->j_flags &= ~JBD2_ABORT; 1718 1719 /* OK, we've finished with the dynamic journal bits: 1720 * reinitialise the dynamic contents of the superblock in memory 1721 * and reset them on disk. */ 1722 if (journal_reset(journal)) 1723 goto recovery_error; 1724 1725 journal->j_flags |= JBD2_LOADED; 1726 return 0; 1727 1728 recovery_error: 1729 printk(KERN_WARNING "JBD2: recovery failed\n"); 1730 return -EIO; 1731 } 1732 1733 /** 1734 * void jbd2_journal_destroy() - Release a journal_t structure. 1735 * @journal: Journal to act on. 1736 * 1737 * Release a journal_t structure once it is no longer in use by the 1738 * journaled object. 1739 * Return <0 if we couldn't clean up the journal. 1740 */ 1741 int jbd2_journal_destroy(journal_t *journal) 1742 { 1743 int err = 0; 1744 1745 /* Wait for the commit thread to wake up and die. */ 1746 journal_kill_thread(journal); 1747 1748 /* Force a final log commit */ 1749 if (journal->j_running_transaction) 1750 jbd2_journal_commit_transaction(journal); 1751 1752 /* Force any old transactions to disk */ 1753 1754 /* Totally anal locking here... */ 1755 spin_lock(&journal->j_list_lock); 1756 while (journal->j_checkpoint_transactions != NULL) { 1757 spin_unlock(&journal->j_list_lock); 1758 mutex_lock_io(&journal->j_checkpoint_mutex); 1759 err = jbd2_log_do_checkpoint(journal); 1760 mutex_unlock(&journal->j_checkpoint_mutex); 1761 /* 1762 * If checkpointing failed, just free the buffers to avoid 1763 * looping forever 1764 */ 1765 if (err) { 1766 jbd2_journal_destroy_checkpoint(journal); 1767 spin_lock(&journal->j_list_lock); 1768 break; 1769 } 1770 spin_lock(&journal->j_list_lock); 1771 } 1772 1773 J_ASSERT(journal->j_running_transaction == NULL); 1774 J_ASSERT(journal->j_committing_transaction == NULL); 1775 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1776 spin_unlock(&journal->j_list_lock); 1777 1778 if (journal->j_sb_buffer) { 1779 if (!is_journal_aborted(journal)) { 1780 mutex_lock_io(&journal->j_checkpoint_mutex); 1781 1782 write_lock(&journal->j_state_lock); 1783 journal->j_tail_sequence = 1784 ++journal->j_transaction_sequence; 1785 write_unlock(&journal->j_state_lock); 1786 1787 jbd2_mark_journal_empty(journal, 1788 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1789 mutex_unlock(&journal->j_checkpoint_mutex); 1790 } else 1791 err = -EIO; 1792 brelse(journal->j_sb_buffer); 1793 } 1794 1795 if (journal->j_proc_entry) 1796 jbd2_stats_proc_exit(journal); 1797 iput(journal->j_inode); 1798 if (journal->j_revoke) 1799 jbd2_journal_destroy_revoke(journal); 1800 if (journal->j_chksum_driver) 1801 crypto_free_shash(journal->j_chksum_driver); 1802 kfree(journal->j_wbuf); 1803 kfree(journal); 1804 1805 return err; 1806 } 1807 1808 1809 /** 1810 *int jbd2_journal_check_used_features () - Check if features specified are used. 1811 * @journal: Journal to check. 1812 * @compat: bitmask of compatible features 1813 * @ro: bitmask of features that force read-only mount 1814 * @incompat: bitmask of incompatible features 1815 * 1816 * Check whether the journal uses all of a given set of 1817 * features. Return true (non-zero) if it does. 1818 **/ 1819 1820 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1821 unsigned long ro, unsigned long incompat) 1822 { 1823 journal_superblock_t *sb; 1824 1825 if (!compat && !ro && !incompat) 1826 return 1; 1827 /* Load journal superblock if it is not loaded yet. */ 1828 if (journal->j_format_version == 0 && 1829 journal_get_superblock(journal) != 0) 1830 return 0; 1831 if (journal->j_format_version == 1) 1832 return 0; 1833 1834 sb = journal->j_superblock; 1835 1836 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1837 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1838 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1839 return 1; 1840 1841 return 0; 1842 } 1843 1844 /** 1845 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1846 * @journal: Journal to check. 1847 * @compat: bitmask of compatible features 1848 * @ro: bitmask of features that force read-only mount 1849 * @incompat: bitmask of incompatible features 1850 * 1851 * Check whether the journaling code supports the use of 1852 * all of a given set of features on this journal. Return true 1853 * (non-zero) if it can. */ 1854 1855 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1856 unsigned long ro, unsigned long incompat) 1857 { 1858 if (!compat && !ro && !incompat) 1859 return 1; 1860 1861 /* We can support any known requested features iff the 1862 * superblock is in version 2. Otherwise we fail to support any 1863 * extended sb features. */ 1864 1865 if (journal->j_format_version != 2) 1866 return 0; 1867 1868 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1869 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1870 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1871 return 1; 1872 1873 return 0; 1874 } 1875 1876 /** 1877 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1878 * @journal: Journal to act on. 1879 * @compat: bitmask of compatible features 1880 * @ro: bitmask of features that force read-only mount 1881 * @incompat: bitmask of incompatible features 1882 * 1883 * Mark a given journal feature as present on the 1884 * superblock. Returns true if the requested features could be set. 1885 * 1886 */ 1887 1888 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1889 unsigned long ro, unsigned long incompat) 1890 { 1891 #define INCOMPAT_FEATURE_ON(f) \ 1892 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1893 #define COMPAT_FEATURE_ON(f) \ 1894 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1895 journal_superblock_t *sb; 1896 1897 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1898 return 1; 1899 1900 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1901 return 0; 1902 1903 /* If enabling v2 checksums, turn on v3 instead */ 1904 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1905 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1906 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1907 } 1908 1909 /* Asking for checksumming v3 and v1? Only give them v3. */ 1910 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1911 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1912 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1913 1914 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1915 compat, ro, incompat); 1916 1917 sb = journal->j_superblock; 1918 1919 /* Load the checksum driver if necessary */ 1920 if ((journal->j_chksum_driver == NULL) && 1921 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1922 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1923 if (IS_ERR(journal->j_chksum_driver)) { 1924 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1925 journal->j_chksum_driver = NULL; 1926 return 0; 1927 } 1928 /* Precompute checksum seed for all metadata */ 1929 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1930 sizeof(sb->s_uuid)); 1931 } 1932 1933 lock_buffer(journal->j_sb_buffer); 1934 1935 /* If enabling v3 checksums, update superblock */ 1936 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1937 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1938 sb->s_feature_compat &= 1939 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1940 } 1941 1942 /* If enabling v1 checksums, downgrade superblock */ 1943 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1944 sb->s_feature_incompat &= 1945 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1946 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1947 1948 sb->s_feature_compat |= cpu_to_be32(compat); 1949 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1950 sb->s_feature_incompat |= cpu_to_be32(incompat); 1951 unlock_buffer(journal->j_sb_buffer); 1952 journal->j_revoke_records_per_block = 1953 journal_revoke_records_per_block(journal); 1954 1955 return 1; 1956 #undef COMPAT_FEATURE_ON 1957 #undef INCOMPAT_FEATURE_ON 1958 } 1959 1960 /* 1961 * jbd2_journal_clear_features () - Clear a given journal feature in the 1962 * superblock 1963 * @journal: Journal to act on. 1964 * @compat: bitmask of compatible features 1965 * @ro: bitmask of features that force read-only mount 1966 * @incompat: bitmask of incompatible features 1967 * 1968 * Clear a given journal feature as present on the 1969 * superblock. 1970 */ 1971 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1972 unsigned long ro, unsigned long incompat) 1973 { 1974 journal_superblock_t *sb; 1975 1976 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1977 compat, ro, incompat); 1978 1979 sb = journal->j_superblock; 1980 1981 sb->s_feature_compat &= ~cpu_to_be32(compat); 1982 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1983 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1984 journal->j_revoke_records_per_block = 1985 journal_revoke_records_per_block(journal); 1986 } 1987 EXPORT_SYMBOL(jbd2_journal_clear_features); 1988 1989 /** 1990 * int jbd2_journal_flush () - Flush journal 1991 * @journal: Journal to act on. 1992 * 1993 * Flush all data for a given journal to disk and empty the journal. 1994 * Filesystems can use this when remounting readonly to ensure that 1995 * recovery does not need to happen on remount. 1996 */ 1997 1998 int jbd2_journal_flush(journal_t *journal) 1999 { 2000 int err = 0; 2001 transaction_t *transaction = NULL; 2002 2003 write_lock(&journal->j_state_lock); 2004 2005 /* Force everything buffered to the log... */ 2006 if (journal->j_running_transaction) { 2007 transaction = journal->j_running_transaction; 2008 __jbd2_log_start_commit(journal, transaction->t_tid); 2009 } else if (journal->j_committing_transaction) 2010 transaction = journal->j_committing_transaction; 2011 2012 /* Wait for the log commit to complete... */ 2013 if (transaction) { 2014 tid_t tid = transaction->t_tid; 2015 2016 write_unlock(&journal->j_state_lock); 2017 jbd2_log_wait_commit(journal, tid); 2018 } else { 2019 write_unlock(&journal->j_state_lock); 2020 } 2021 2022 /* ...and flush everything in the log out to disk. */ 2023 spin_lock(&journal->j_list_lock); 2024 while (!err && journal->j_checkpoint_transactions != NULL) { 2025 spin_unlock(&journal->j_list_lock); 2026 mutex_lock_io(&journal->j_checkpoint_mutex); 2027 err = jbd2_log_do_checkpoint(journal); 2028 mutex_unlock(&journal->j_checkpoint_mutex); 2029 spin_lock(&journal->j_list_lock); 2030 } 2031 spin_unlock(&journal->j_list_lock); 2032 2033 if (is_journal_aborted(journal)) 2034 return -EIO; 2035 2036 mutex_lock_io(&journal->j_checkpoint_mutex); 2037 if (!err) { 2038 err = jbd2_cleanup_journal_tail(journal); 2039 if (err < 0) { 2040 mutex_unlock(&journal->j_checkpoint_mutex); 2041 goto out; 2042 } 2043 err = 0; 2044 } 2045 2046 /* Finally, mark the journal as really needing no recovery. 2047 * This sets s_start==0 in the underlying superblock, which is 2048 * the magic code for a fully-recovered superblock. Any future 2049 * commits of data to the journal will restore the current 2050 * s_start value. */ 2051 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2052 mutex_unlock(&journal->j_checkpoint_mutex); 2053 write_lock(&journal->j_state_lock); 2054 J_ASSERT(!journal->j_running_transaction); 2055 J_ASSERT(!journal->j_committing_transaction); 2056 J_ASSERT(!journal->j_checkpoint_transactions); 2057 J_ASSERT(journal->j_head == journal->j_tail); 2058 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2059 write_unlock(&journal->j_state_lock); 2060 out: 2061 return err; 2062 } 2063 2064 /** 2065 * int jbd2_journal_wipe() - Wipe journal contents 2066 * @journal: Journal to act on. 2067 * @write: flag (see below) 2068 * 2069 * Wipe out all of the contents of a journal, safely. This will produce 2070 * a warning if the journal contains any valid recovery information. 2071 * Must be called between journal_init_*() and jbd2_journal_load(). 2072 * 2073 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2074 * we merely suppress recovery. 2075 */ 2076 2077 int jbd2_journal_wipe(journal_t *journal, int write) 2078 { 2079 int err = 0; 2080 2081 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2082 2083 err = load_superblock(journal); 2084 if (err) 2085 return err; 2086 2087 if (!journal->j_tail) 2088 goto no_recovery; 2089 2090 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2091 write ? "Clearing" : "Ignoring"); 2092 2093 err = jbd2_journal_skip_recovery(journal); 2094 if (write) { 2095 /* Lock to make assertions happy... */ 2096 mutex_lock_io(&journal->j_checkpoint_mutex); 2097 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2098 mutex_unlock(&journal->j_checkpoint_mutex); 2099 } 2100 2101 no_recovery: 2102 return err; 2103 } 2104 2105 /** 2106 * void jbd2_journal_abort () - Shutdown the journal immediately. 2107 * @journal: the journal to shutdown. 2108 * @errno: an error number to record in the journal indicating 2109 * the reason for the shutdown. 2110 * 2111 * Perform a complete, immediate shutdown of the ENTIRE 2112 * journal (not of a single transaction). This operation cannot be 2113 * undone without closing and reopening the journal. 2114 * 2115 * The jbd2_journal_abort function is intended to support higher level error 2116 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2117 * mode. 2118 * 2119 * Journal abort has very specific semantics. Any existing dirty, 2120 * unjournaled buffers in the main filesystem will still be written to 2121 * disk by bdflush, but the journaling mechanism will be suspended 2122 * immediately and no further transaction commits will be honoured. 2123 * 2124 * Any dirty, journaled buffers will be written back to disk without 2125 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2126 * filesystem, but we _do_ attempt to leave as much data as possible 2127 * behind for fsck to use for cleanup. 2128 * 2129 * Any attempt to get a new transaction handle on a journal which is in 2130 * ABORT state will just result in an -EROFS error return. A 2131 * jbd2_journal_stop on an existing handle will return -EIO if we have 2132 * entered abort state during the update. 2133 * 2134 * Recursive transactions are not disturbed by journal abort until the 2135 * final jbd2_journal_stop, which will receive the -EIO error. 2136 * 2137 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2138 * which will be recorded (if possible) in the journal superblock. This 2139 * allows a client to record failure conditions in the middle of a 2140 * transaction without having to complete the transaction to record the 2141 * failure to disk. ext3_error, for example, now uses this 2142 * functionality. 2143 * 2144 */ 2145 2146 void jbd2_journal_abort(journal_t *journal, int errno) 2147 { 2148 transaction_t *transaction; 2149 2150 /* 2151 * ESHUTDOWN always takes precedence because a file system check 2152 * caused by any other journal abort error is not required after 2153 * a shutdown triggered. 2154 */ 2155 write_lock(&journal->j_state_lock); 2156 if (journal->j_flags & JBD2_ABORT) { 2157 int old_errno = journal->j_errno; 2158 2159 write_unlock(&journal->j_state_lock); 2160 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2161 journal->j_errno = errno; 2162 jbd2_journal_update_sb_errno(journal); 2163 } 2164 return; 2165 } 2166 2167 /* 2168 * Mark the abort as occurred and start current running transaction 2169 * to release all journaled buffer. 2170 */ 2171 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2172 2173 journal->j_flags |= JBD2_ABORT; 2174 journal->j_errno = errno; 2175 transaction = journal->j_running_transaction; 2176 if (transaction) 2177 __jbd2_log_start_commit(journal, transaction->t_tid); 2178 write_unlock(&journal->j_state_lock); 2179 2180 /* 2181 * Record errno to the journal super block, so that fsck and jbd2 2182 * layer could realise that a filesystem check is needed. 2183 */ 2184 jbd2_journal_update_sb_errno(journal); 2185 2186 write_lock(&journal->j_state_lock); 2187 journal->j_flags |= JBD2_REC_ERR; 2188 write_unlock(&journal->j_state_lock); 2189 } 2190 2191 /** 2192 * int jbd2_journal_errno () - returns the journal's error state. 2193 * @journal: journal to examine. 2194 * 2195 * This is the errno number set with jbd2_journal_abort(), the last 2196 * time the journal was mounted - if the journal was stopped 2197 * without calling abort this will be 0. 2198 * 2199 * If the journal has been aborted on this mount time -EROFS will 2200 * be returned. 2201 */ 2202 int jbd2_journal_errno(journal_t *journal) 2203 { 2204 int err; 2205 2206 read_lock(&journal->j_state_lock); 2207 if (journal->j_flags & JBD2_ABORT) 2208 err = -EROFS; 2209 else 2210 err = journal->j_errno; 2211 read_unlock(&journal->j_state_lock); 2212 return err; 2213 } 2214 2215 /** 2216 * int jbd2_journal_clear_err () - clears the journal's error state 2217 * @journal: journal to act on. 2218 * 2219 * An error must be cleared or acked to take a FS out of readonly 2220 * mode. 2221 */ 2222 int jbd2_journal_clear_err(journal_t *journal) 2223 { 2224 int err = 0; 2225 2226 write_lock(&journal->j_state_lock); 2227 if (journal->j_flags & JBD2_ABORT) 2228 err = -EROFS; 2229 else 2230 journal->j_errno = 0; 2231 write_unlock(&journal->j_state_lock); 2232 return err; 2233 } 2234 2235 /** 2236 * void jbd2_journal_ack_err() - Ack journal err. 2237 * @journal: journal to act on. 2238 * 2239 * An error must be cleared or acked to take a FS out of readonly 2240 * mode. 2241 */ 2242 void jbd2_journal_ack_err(journal_t *journal) 2243 { 2244 write_lock(&journal->j_state_lock); 2245 if (journal->j_errno) 2246 journal->j_flags |= JBD2_ACK_ERR; 2247 write_unlock(&journal->j_state_lock); 2248 } 2249 2250 int jbd2_journal_blocks_per_page(struct inode *inode) 2251 { 2252 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2253 } 2254 2255 /* 2256 * helper functions to deal with 32 or 64bit block numbers. 2257 */ 2258 size_t journal_tag_bytes(journal_t *journal) 2259 { 2260 size_t sz; 2261 2262 if (jbd2_has_feature_csum3(journal)) 2263 return sizeof(journal_block_tag3_t); 2264 2265 sz = sizeof(journal_block_tag_t); 2266 2267 if (jbd2_has_feature_csum2(journal)) 2268 sz += sizeof(__u16); 2269 2270 if (jbd2_has_feature_64bit(journal)) 2271 return sz; 2272 else 2273 return sz - sizeof(__u32); 2274 } 2275 2276 /* 2277 * JBD memory management 2278 * 2279 * These functions are used to allocate block-sized chunks of memory 2280 * used for making copies of buffer_head data. Very often it will be 2281 * page-sized chunks of data, but sometimes it will be in 2282 * sub-page-size chunks. (For example, 16k pages on Power systems 2283 * with a 4k block file system.) For blocks smaller than a page, we 2284 * use a SLAB allocator. There are slab caches for each block size, 2285 * which are allocated at mount time, if necessary, and we only free 2286 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2287 * this reason we don't need to a mutex to protect access to 2288 * jbd2_slab[] allocating or releasing memory; only in 2289 * jbd2_journal_create_slab(). 2290 */ 2291 #define JBD2_MAX_SLABS 8 2292 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2293 2294 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2295 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2296 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2297 }; 2298 2299 2300 static void jbd2_journal_destroy_slabs(void) 2301 { 2302 int i; 2303 2304 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2305 kmem_cache_destroy(jbd2_slab[i]); 2306 jbd2_slab[i] = NULL; 2307 } 2308 } 2309 2310 static int jbd2_journal_create_slab(size_t size) 2311 { 2312 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2313 int i = order_base_2(size) - 10; 2314 size_t slab_size; 2315 2316 if (size == PAGE_SIZE) 2317 return 0; 2318 2319 if (i >= JBD2_MAX_SLABS) 2320 return -EINVAL; 2321 2322 if (unlikely(i < 0)) 2323 i = 0; 2324 mutex_lock(&jbd2_slab_create_mutex); 2325 if (jbd2_slab[i]) { 2326 mutex_unlock(&jbd2_slab_create_mutex); 2327 return 0; /* Already created */ 2328 } 2329 2330 slab_size = 1 << (i+10); 2331 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2332 slab_size, 0, NULL); 2333 mutex_unlock(&jbd2_slab_create_mutex); 2334 if (!jbd2_slab[i]) { 2335 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2336 return -ENOMEM; 2337 } 2338 return 0; 2339 } 2340 2341 static struct kmem_cache *get_slab(size_t size) 2342 { 2343 int i = order_base_2(size) - 10; 2344 2345 BUG_ON(i >= JBD2_MAX_SLABS); 2346 if (unlikely(i < 0)) 2347 i = 0; 2348 BUG_ON(jbd2_slab[i] == NULL); 2349 return jbd2_slab[i]; 2350 } 2351 2352 void *jbd2_alloc(size_t size, gfp_t flags) 2353 { 2354 void *ptr; 2355 2356 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2357 2358 if (size < PAGE_SIZE) 2359 ptr = kmem_cache_alloc(get_slab(size), flags); 2360 else 2361 ptr = (void *)__get_free_pages(flags, get_order(size)); 2362 2363 /* Check alignment; SLUB has gotten this wrong in the past, 2364 * and this can lead to user data corruption! */ 2365 BUG_ON(((unsigned long) ptr) & (size-1)); 2366 2367 return ptr; 2368 } 2369 2370 void jbd2_free(void *ptr, size_t size) 2371 { 2372 if (size < PAGE_SIZE) 2373 kmem_cache_free(get_slab(size), ptr); 2374 else 2375 free_pages((unsigned long)ptr, get_order(size)); 2376 }; 2377 2378 /* 2379 * Journal_head storage management 2380 */ 2381 static struct kmem_cache *jbd2_journal_head_cache; 2382 #ifdef CONFIG_JBD2_DEBUG 2383 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2384 #endif 2385 2386 static int __init jbd2_journal_init_journal_head_cache(void) 2387 { 2388 J_ASSERT(!jbd2_journal_head_cache); 2389 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2390 sizeof(struct journal_head), 2391 0, /* offset */ 2392 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2393 NULL); /* ctor */ 2394 if (!jbd2_journal_head_cache) { 2395 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2396 return -ENOMEM; 2397 } 2398 return 0; 2399 } 2400 2401 static void jbd2_journal_destroy_journal_head_cache(void) 2402 { 2403 kmem_cache_destroy(jbd2_journal_head_cache); 2404 jbd2_journal_head_cache = NULL; 2405 } 2406 2407 /* 2408 * journal_head splicing and dicing 2409 */ 2410 static struct journal_head *journal_alloc_journal_head(void) 2411 { 2412 struct journal_head *ret; 2413 2414 #ifdef CONFIG_JBD2_DEBUG 2415 atomic_inc(&nr_journal_heads); 2416 #endif 2417 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2418 if (!ret) { 2419 jbd_debug(1, "out of memory for journal_head\n"); 2420 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2421 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2422 GFP_NOFS | __GFP_NOFAIL); 2423 } 2424 if (ret) 2425 spin_lock_init(&ret->b_state_lock); 2426 return ret; 2427 } 2428 2429 static void journal_free_journal_head(struct journal_head *jh) 2430 { 2431 #ifdef CONFIG_JBD2_DEBUG 2432 atomic_dec(&nr_journal_heads); 2433 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2434 #endif 2435 kmem_cache_free(jbd2_journal_head_cache, jh); 2436 } 2437 2438 /* 2439 * A journal_head is attached to a buffer_head whenever JBD has an 2440 * interest in the buffer. 2441 * 2442 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2443 * is set. This bit is tested in core kernel code where we need to take 2444 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2445 * there. 2446 * 2447 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2448 * 2449 * When a buffer has its BH_JBD bit set it is immune from being released by 2450 * core kernel code, mainly via ->b_count. 2451 * 2452 * A journal_head is detached from its buffer_head when the journal_head's 2453 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2454 * transaction (b_cp_transaction) hold their references to b_jcount. 2455 * 2456 * Various places in the kernel want to attach a journal_head to a buffer_head 2457 * _before_ attaching the journal_head to a transaction. To protect the 2458 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2459 * journal_head's b_jcount refcount by one. The caller must call 2460 * jbd2_journal_put_journal_head() to undo this. 2461 * 2462 * So the typical usage would be: 2463 * 2464 * (Attach a journal_head if needed. Increments b_jcount) 2465 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2466 * ... 2467 * (Get another reference for transaction) 2468 * jbd2_journal_grab_journal_head(bh); 2469 * jh->b_transaction = xxx; 2470 * (Put original reference) 2471 * jbd2_journal_put_journal_head(jh); 2472 */ 2473 2474 /* 2475 * Give a buffer_head a journal_head. 2476 * 2477 * May sleep. 2478 */ 2479 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2480 { 2481 struct journal_head *jh; 2482 struct journal_head *new_jh = NULL; 2483 2484 repeat: 2485 if (!buffer_jbd(bh)) 2486 new_jh = journal_alloc_journal_head(); 2487 2488 jbd_lock_bh_journal_head(bh); 2489 if (buffer_jbd(bh)) { 2490 jh = bh2jh(bh); 2491 } else { 2492 J_ASSERT_BH(bh, 2493 (atomic_read(&bh->b_count) > 0) || 2494 (bh->b_page && bh->b_page->mapping)); 2495 2496 if (!new_jh) { 2497 jbd_unlock_bh_journal_head(bh); 2498 goto repeat; 2499 } 2500 2501 jh = new_jh; 2502 new_jh = NULL; /* We consumed it */ 2503 set_buffer_jbd(bh); 2504 bh->b_private = jh; 2505 jh->b_bh = bh; 2506 get_bh(bh); 2507 BUFFER_TRACE(bh, "added journal_head"); 2508 } 2509 jh->b_jcount++; 2510 jbd_unlock_bh_journal_head(bh); 2511 if (new_jh) 2512 journal_free_journal_head(new_jh); 2513 return bh->b_private; 2514 } 2515 2516 /* 2517 * Grab a ref against this buffer_head's journal_head. If it ended up not 2518 * having a journal_head, return NULL 2519 */ 2520 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2521 { 2522 struct journal_head *jh = NULL; 2523 2524 jbd_lock_bh_journal_head(bh); 2525 if (buffer_jbd(bh)) { 2526 jh = bh2jh(bh); 2527 jh->b_jcount++; 2528 } 2529 jbd_unlock_bh_journal_head(bh); 2530 return jh; 2531 } 2532 2533 static void __journal_remove_journal_head(struct buffer_head *bh) 2534 { 2535 struct journal_head *jh = bh2jh(bh); 2536 2537 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2538 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2539 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2540 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2541 J_ASSERT_BH(bh, buffer_jbd(bh)); 2542 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2543 BUFFER_TRACE(bh, "remove journal_head"); 2544 2545 /* Unlink before dropping the lock */ 2546 bh->b_private = NULL; 2547 jh->b_bh = NULL; /* debug, really */ 2548 clear_buffer_jbd(bh); 2549 } 2550 2551 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2552 { 2553 if (jh->b_frozen_data) { 2554 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2555 jbd2_free(jh->b_frozen_data, b_size); 2556 } 2557 if (jh->b_committed_data) { 2558 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2559 jbd2_free(jh->b_committed_data, b_size); 2560 } 2561 journal_free_journal_head(jh); 2562 } 2563 2564 /* 2565 * Drop a reference on the passed journal_head. If it fell to zero then 2566 * release the journal_head from the buffer_head. 2567 */ 2568 void jbd2_journal_put_journal_head(struct journal_head *jh) 2569 { 2570 struct buffer_head *bh = jh2bh(jh); 2571 2572 jbd_lock_bh_journal_head(bh); 2573 J_ASSERT_JH(jh, jh->b_jcount > 0); 2574 --jh->b_jcount; 2575 if (!jh->b_jcount) { 2576 __journal_remove_journal_head(bh); 2577 jbd_unlock_bh_journal_head(bh); 2578 journal_release_journal_head(jh, bh->b_size); 2579 __brelse(bh); 2580 } else { 2581 jbd_unlock_bh_journal_head(bh); 2582 } 2583 } 2584 2585 /* 2586 * Initialize jbd inode head 2587 */ 2588 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2589 { 2590 jinode->i_transaction = NULL; 2591 jinode->i_next_transaction = NULL; 2592 jinode->i_vfs_inode = inode; 2593 jinode->i_flags = 0; 2594 jinode->i_dirty_start = 0; 2595 jinode->i_dirty_end = 0; 2596 INIT_LIST_HEAD(&jinode->i_list); 2597 } 2598 2599 /* 2600 * Function to be called before we start removing inode from memory (i.e., 2601 * clear_inode() is a fine place to be called from). It removes inode from 2602 * transaction's lists. 2603 */ 2604 void jbd2_journal_release_jbd_inode(journal_t *journal, 2605 struct jbd2_inode *jinode) 2606 { 2607 if (!journal) 2608 return; 2609 restart: 2610 spin_lock(&journal->j_list_lock); 2611 /* Is commit writing out inode - we have to wait */ 2612 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2613 wait_queue_head_t *wq; 2614 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2615 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2616 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2617 spin_unlock(&journal->j_list_lock); 2618 schedule(); 2619 finish_wait(wq, &wait.wq_entry); 2620 goto restart; 2621 } 2622 2623 if (jinode->i_transaction) { 2624 list_del(&jinode->i_list); 2625 jinode->i_transaction = NULL; 2626 } 2627 spin_unlock(&journal->j_list_lock); 2628 } 2629 2630 2631 #ifdef CONFIG_PROC_FS 2632 2633 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2634 2635 static void __init jbd2_create_jbd_stats_proc_entry(void) 2636 { 2637 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2638 } 2639 2640 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2641 { 2642 if (proc_jbd2_stats) 2643 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2644 } 2645 2646 #else 2647 2648 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2649 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2650 2651 #endif 2652 2653 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2654 2655 static int __init jbd2_journal_init_inode_cache(void) 2656 { 2657 J_ASSERT(!jbd2_inode_cache); 2658 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2659 if (!jbd2_inode_cache) { 2660 pr_emerg("JBD2: failed to create inode cache\n"); 2661 return -ENOMEM; 2662 } 2663 return 0; 2664 } 2665 2666 static int __init jbd2_journal_init_handle_cache(void) 2667 { 2668 J_ASSERT(!jbd2_handle_cache); 2669 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2670 if (!jbd2_handle_cache) { 2671 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2672 return -ENOMEM; 2673 } 2674 return 0; 2675 } 2676 2677 static void jbd2_journal_destroy_inode_cache(void) 2678 { 2679 kmem_cache_destroy(jbd2_inode_cache); 2680 jbd2_inode_cache = NULL; 2681 } 2682 2683 static void jbd2_journal_destroy_handle_cache(void) 2684 { 2685 kmem_cache_destroy(jbd2_handle_cache); 2686 jbd2_handle_cache = NULL; 2687 } 2688 2689 /* 2690 * Module startup and shutdown 2691 */ 2692 2693 static int __init journal_init_caches(void) 2694 { 2695 int ret; 2696 2697 ret = jbd2_journal_init_revoke_record_cache(); 2698 if (ret == 0) 2699 ret = jbd2_journal_init_revoke_table_cache(); 2700 if (ret == 0) 2701 ret = jbd2_journal_init_journal_head_cache(); 2702 if (ret == 0) 2703 ret = jbd2_journal_init_handle_cache(); 2704 if (ret == 0) 2705 ret = jbd2_journal_init_inode_cache(); 2706 if (ret == 0) 2707 ret = jbd2_journal_init_transaction_cache(); 2708 return ret; 2709 } 2710 2711 static void jbd2_journal_destroy_caches(void) 2712 { 2713 jbd2_journal_destroy_revoke_record_cache(); 2714 jbd2_journal_destroy_revoke_table_cache(); 2715 jbd2_journal_destroy_journal_head_cache(); 2716 jbd2_journal_destroy_handle_cache(); 2717 jbd2_journal_destroy_inode_cache(); 2718 jbd2_journal_destroy_transaction_cache(); 2719 jbd2_journal_destroy_slabs(); 2720 } 2721 2722 static int __init journal_init(void) 2723 { 2724 int ret; 2725 2726 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2727 2728 ret = journal_init_caches(); 2729 if (ret == 0) { 2730 jbd2_create_jbd_stats_proc_entry(); 2731 } else { 2732 jbd2_journal_destroy_caches(); 2733 } 2734 return ret; 2735 } 2736 2737 static void __exit journal_exit(void) 2738 { 2739 #ifdef CONFIG_JBD2_DEBUG 2740 int n = atomic_read(&nr_journal_heads); 2741 if (n) 2742 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2743 #endif 2744 jbd2_remove_jbd_stats_proc_entry(); 2745 jbd2_journal_destroy_caches(); 2746 } 2747 2748 MODULE_LICENSE("GPL"); 2749 module_init(journal_init); 2750 module_exit(journal_exit); 2751 2752