xref: /openbmc/linux/fs/jbd2/journal.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int jbd2_journal_create_slab(size_t slab_size);
100 
101 #ifdef CONFIG_JBD2_DEBUG
102 void __jbd2_debug(int level, const char *file, const char *func,
103 		  unsigned int line, const char *fmt, ...)
104 {
105 	struct va_format vaf;
106 	va_list args;
107 
108 	if (level > jbd2_journal_enable_debug)
109 		return;
110 	va_start(args, fmt);
111 	vaf.fmt = fmt;
112 	vaf.va = &args;
113 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 	va_end(args);
115 }
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
118 
119 /* Checksumming functions */
120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121 {
122 	if (!jbd2_journal_has_csum_v2or3_feature(j))
123 		return 1;
124 
125 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126 }
127 
128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129 {
130 	__u32 csum;
131 	__be32 old_csum;
132 
133 	old_csum = sb->s_checksum;
134 	sb->s_checksum = 0;
135 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 	sb->s_checksum = old_csum;
137 
138 	return cpu_to_be32(csum);
139 }
140 
141 /*
142  * Helper function used to manage commit timeouts
143  */
144 
145 static void commit_timeout(struct timer_list *t)
146 {
147 	journal_t *journal = from_timer(journal, t, j_commit_timer);
148 
149 	wake_up_process(journal->j_task);
150 }
151 
152 /*
153  * kjournald2: The main thread function used to manage a logging device
154  * journal.
155  *
156  * This kernel thread is responsible for two things:
157  *
158  * 1) COMMIT:  Every so often we need to commit the current state of the
159  *    filesystem to disk.  The journal thread is responsible for writing
160  *    all of the metadata buffers to disk.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167 
168 static int kjournald2(void *arg)
169 {
170 	journal_t *journal = arg;
171 	transaction_t *transaction;
172 
173 	/*
174 	 * Set up an interval timer which can be used to trigger a commit wakeup
175 	 * after the commit interval expires
176 	 */
177 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178 
179 	set_freezable();
180 
181 	/* Record that the journal thread is running */
182 	journal->j_task = current;
183 	wake_up(&journal->j_wait_done_commit);
184 
185 	/*
186 	 * Make sure that no allocations from this kernel thread will ever
187 	 * recurse to the fs layer because we are responsible for the
188 	 * transaction commit and any fs involvement might get stuck waiting for
189 	 * the trasn. commit.
190 	 */
191 	memalloc_nofs_save();
192 
193 	/*
194 	 * And now, wait forever for commit wakeup events.
195 	 */
196 	write_lock(&journal->j_state_lock);
197 
198 loop:
199 	if (journal->j_flags & JBD2_UNMOUNT)
200 		goto end_loop;
201 
202 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 		journal->j_commit_sequence, journal->j_commit_request);
204 
205 	if (journal->j_commit_sequence != journal->j_commit_request) {
206 		jbd_debug(1, "OK, requests differ\n");
207 		write_unlock(&journal->j_state_lock);
208 		del_timer_sync(&journal->j_commit_timer);
209 		jbd2_journal_commit_transaction(journal);
210 		write_lock(&journal->j_state_lock);
211 		goto loop;
212 	}
213 
214 	wake_up(&journal->j_wait_done_commit);
215 	if (freezing(current)) {
216 		/*
217 		 * The simpler the better. Flushing journal isn't a
218 		 * good idea, because that depends on threads that may
219 		 * be already stopped.
220 		 */
221 		jbd_debug(1, "Now suspending kjournald2\n");
222 		write_unlock(&journal->j_state_lock);
223 		try_to_freeze();
224 		write_lock(&journal->j_state_lock);
225 	} else {
226 		/*
227 		 * We assume on resume that commits are already there,
228 		 * so we don't sleep
229 		 */
230 		DEFINE_WAIT(wait);
231 		int should_sleep = 1;
232 
233 		prepare_to_wait(&journal->j_wait_commit, &wait,
234 				TASK_INTERRUPTIBLE);
235 		if (journal->j_commit_sequence != journal->j_commit_request)
236 			should_sleep = 0;
237 		transaction = journal->j_running_transaction;
238 		if (transaction && time_after_eq(jiffies,
239 						transaction->t_expires))
240 			should_sleep = 0;
241 		if (journal->j_flags & JBD2_UNMOUNT)
242 			should_sleep = 0;
243 		if (should_sleep) {
244 			write_unlock(&journal->j_state_lock);
245 			schedule();
246 			write_lock(&journal->j_state_lock);
247 		}
248 		finish_wait(&journal->j_wait_commit, &wait);
249 	}
250 
251 	jbd_debug(1, "kjournald2 wakes\n");
252 
253 	/*
254 	 * Were we woken up by a commit wakeup event?
255 	 */
256 	transaction = journal->j_running_transaction;
257 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 		journal->j_commit_request = transaction->t_tid;
259 		jbd_debug(1, "woke because of timeout\n");
260 	}
261 	goto loop;
262 
263 end_loop:
264 	del_timer_sync(&journal->j_commit_timer);
265 	journal->j_task = NULL;
266 	wake_up(&journal->j_wait_done_commit);
267 	jbd_debug(1, "Journal thread exiting.\n");
268 	write_unlock(&journal->j_state_lock);
269 	return 0;
270 }
271 
272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 	struct task_struct *t;
275 
276 	t = kthread_run(kjournald2, journal, "jbd2/%s",
277 			journal->j_devname);
278 	if (IS_ERR(t))
279 		return PTR_ERR(t);
280 
281 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 	return 0;
283 }
284 
285 static void journal_kill_thread(journal_t *journal)
286 {
287 	write_lock(&journal->j_state_lock);
288 	journal->j_flags |= JBD2_UNMOUNT;
289 
290 	while (journal->j_task) {
291 		write_unlock(&journal->j_state_lock);
292 		wake_up(&journal->j_wait_commit);
293 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 		write_lock(&journal->j_state_lock);
295 	}
296 	write_unlock(&journal->j_state_lock);
297 }
298 
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333 
334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 				  struct journal_head  *jh_in,
336 				  struct buffer_head **bh_out,
337 				  sector_t blocknr)
338 {
339 	int need_copy_out = 0;
340 	int done_copy_out = 0;
341 	int do_escape = 0;
342 	char *mapped_data;
343 	struct buffer_head *new_bh;
344 	struct page *new_page;
345 	unsigned int new_offset;
346 	struct buffer_head *bh_in = jh2bh(jh_in);
347 	journal_t *journal = transaction->t_journal;
348 
349 	/*
350 	 * The buffer really shouldn't be locked: only the current committing
351 	 * transaction is allowed to write it, so nobody else is allowed
352 	 * to do any IO.
353 	 *
354 	 * akpm: except if we're journalling data, and write() output is
355 	 * also part of a shared mapping, and another thread has
356 	 * decided to launch a writepage() against this buffer.
357 	 */
358 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359 
360 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361 
362 	/* keep subsequent assertions sane */
363 	atomic_set(&new_bh->b_count, 1);
364 
365 	spin_lock(&jh_in->b_state_lock);
366 repeat:
367 	/*
368 	 * If a new transaction has already done a buffer copy-out, then
369 	 * we use that version of the data for the commit.
370 	 */
371 	if (jh_in->b_frozen_data) {
372 		done_copy_out = 1;
373 		new_page = virt_to_page(jh_in->b_frozen_data);
374 		new_offset = offset_in_page(jh_in->b_frozen_data);
375 	} else {
376 		new_page = jh2bh(jh_in)->b_page;
377 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 	}
379 
380 	mapped_data = kmap_atomic(new_page);
381 	/*
382 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
383 	 * before checking for escaping, as the trigger may modify the magic
384 	 * offset.  If a copy-out happens afterwards, it will have the correct
385 	 * data in the buffer.
386 	 */
387 	if (!done_copy_out)
388 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 					   jh_in->b_triggers);
390 
391 	/*
392 	 * Check for escaping
393 	 */
394 	if (*((__be32 *)(mapped_data + new_offset)) ==
395 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 		need_copy_out = 1;
397 		do_escape = 1;
398 	}
399 	kunmap_atomic(mapped_data);
400 
401 	/*
402 	 * Do we need to do a data copy?
403 	 */
404 	if (need_copy_out && !done_copy_out) {
405 		char *tmp;
406 
407 		spin_unlock(&jh_in->b_state_lock);
408 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 		if (!tmp) {
410 			brelse(new_bh);
411 			return -ENOMEM;
412 		}
413 		spin_lock(&jh_in->b_state_lock);
414 		if (jh_in->b_frozen_data) {
415 			jbd2_free(tmp, bh_in->b_size);
416 			goto repeat;
417 		}
418 
419 		jh_in->b_frozen_data = tmp;
420 		mapped_data = kmap_atomic(new_page);
421 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 		kunmap_atomic(mapped_data);
423 
424 		new_page = virt_to_page(tmp);
425 		new_offset = offset_in_page(tmp);
426 		done_copy_out = 1;
427 
428 		/*
429 		 * This isn't strictly necessary, as we're using frozen
430 		 * data for the escaping, but it keeps consistency with
431 		 * b_frozen_data usage.
432 		 */
433 		jh_in->b_frozen_triggers = jh_in->b_triggers;
434 	}
435 
436 	/*
437 	 * Did we need to do an escaping?  Now we've done all the
438 	 * copying, we can finally do so.
439 	 */
440 	if (do_escape) {
441 		mapped_data = kmap_atomic(new_page);
442 		*((unsigned int *)(mapped_data + new_offset)) = 0;
443 		kunmap_atomic(mapped_data);
444 	}
445 
446 	set_bh_page(new_bh, new_page, new_offset);
447 	new_bh->b_size = bh_in->b_size;
448 	new_bh->b_bdev = journal->j_dev;
449 	new_bh->b_blocknr = blocknr;
450 	new_bh->b_private = bh_in;
451 	set_buffer_mapped(new_bh);
452 	set_buffer_dirty(new_bh);
453 
454 	*bh_out = new_bh;
455 
456 	/*
457 	 * The to-be-written buffer needs to get moved to the io queue,
458 	 * and the original buffer whose contents we are shadowing or
459 	 * copying is moved to the transaction's shadow queue.
460 	 */
461 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 	spin_lock(&journal->j_list_lock);
463 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 	spin_unlock(&journal->j_list_lock);
465 	set_buffer_shadow(bh_in);
466 	spin_unlock(&jh_in->b_state_lock);
467 
468 	return do_escape | (done_copy_out << 1);
469 }
470 
471 /*
472  * Allocation code for the journal file.  Manage the space left in the
473  * journal, so that we can begin checkpointing when appropriate.
474  */
475 
476 /*
477  * Called with j_state_lock locked for writing.
478  * Returns true if a transaction commit was started.
479  */
480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482 	/* Return if the txn has already requested to be committed */
483 	if (journal->j_commit_request == target)
484 		return 0;
485 
486 	/*
487 	 * The only transaction we can possibly wait upon is the
488 	 * currently running transaction (if it exists).  Otherwise,
489 	 * the target tid must be an old one.
490 	 */
491 	if (journal->j_running_transaction &&
492 	    journal->j_running_transaction->t_tid == target) {
493 		/*
494 		 * We want a new commit: OK, mark the request and wakeup the
495 		 * commit thread.  We do _not_ do the commit ourselves.
496 		 */
497 
498 		journal->j_commit_request = target;
499 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 			  journal->j_commit_request,
501 			  journal->j_commit_sequence);
502 		journal->j_running_transaction->t_requested = jiffies;
503 		wake_up(&journal->j_wait_commit);
504 		return 1;
505 	} else if (!tid_geq(journal->j_commit_request, target))
506 		/* This should never happen, but if it does, preserve
507 		   the evidence before kjournald goes into a loop and
508 		   increments j_commit_sequence beyond all recognition. */
509 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 			  journal->j_commit_request,
511 			  journal->j_commit_sequence,
512 			  target, journal->j_running_transaction ?
513 			  journal->j_running_transaction->t_tid : 0);
514 	return 0;
515 }
516 
517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519 	int ret;
520 
521 	write_lock(&journal->j_state_lock);
522 	ret = __jbd2_log_start_commit(journal, tid);
523 	write_unlock(&journal->j_state_lock);
524 	return ret;
525 }
526 
527 /*
528  * Force and wait any uncommitted transactions.  We can only force the running
529  * transaction if we don't have an active handle, otherwise, we will deadlock.
530  * Returns: <0 in case of error,
531  *           0 if nothing to commit,
532  *           1 if transaction was successfully committed.
533  */
534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536 	transaction_t *transaction = NULL;
537 	tid_t tid;
538 	int need_to_start = 0, ret = 0;
539 
540 	read_lock(&journal->j_state_lock);
541 	if (journal->j_running_transaction && !current->journal_info) {
542 		transaction = journal->j_running_transaction;
543 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 			need_to_start = 1;
545 	} else if (journal->j_committing_transaction)
546 		transaction = journal->j_committing_transaction;
547 
548 	if (!transaction) {
549 		/* Nothing to commit */
550 		read_unlock(&journal->j_state_lock);
551 		return 0;
552 	}
553 	tid = transaction->t_tid;
554 	read_unlock(&journal->j_state_lock);
555 	if (need_to_start)
556 		jbd2_log_start_commit(journal, tid);
557 	ret = jbd2_log_wait_commit(journal, tid);
558 	if (!ret)
559 		ret = 1;
560 
561 	return ret;
562 }
563 
564 /**
565  * Force and wait upon a commit if the calling process is not within
566  * transaction.  This is used for forcing out undo-protected data which contains
567  * bitmaps, when the fs is running out of space.
568  *
569  * @journal: journal to force
570  * Returns true if progress was made.
571  */
572 int jbd2_journal_force_commit_nested(journal_t *journal)
573 {
574 	int ret;
575 
576 	ret = __jbd2_journal_force_commit(journal);
577 	return ret > 0;
578 }
579 
580 /**
581  * int journal_force_commit() - force any uncommitted transactions
582  * @journal: journal to force
583  *
584  * Caller want unconditional commit. We can only force the running transaction
585  * if we don't have an active handle, otherwise, we will deadlock.
586  */
587 int jbd2_journal_force_commit(journal_t *journal)
588 {
589 	int ret;
590 
591 	J_ASSERT(!current->journal_info);
592 	ret = __jbd2_journal_force_commit(journal);
593 	if (ret > 0)
594 		ret = 0;
595 	return ret;
596 }
597 
598 /*
599  * Start a commit of the current running transaction (if any).  Returns true
600  * if a transaction is going to be committed (or is currently already
601  * committing), and fills its tid in at *ptid
602  */
603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
604 {
605 	int ret = 0;
606 
607 	write_lock(&journal->j_state_lock);
608 	if (journal->j_running_transaction) {
609 		tid_t tid = journal->j_running_transaction->t_tid;
610 
611 		__jbd2_log_start_commit(journal, tid);
612 		/* There's a running transaction and we've just made sure
613 		 * it's commit has been scheduled. */
614 		if (ptid)
615 			*ptid = tid;
616 		ret = 1;
617 	} else if (journal->j_committing_transaction) {
618 		/*
619 		 * If commit has been started, then we have to wait for
620 		 * completion of that transaction.
621 		 */
622 		if (ptid)
623 			*ptid = journal->j_committing_transaction->t_tid;
624 		ret = 1;
625 	}
626 	write_unlock(&journal->j_state_lock);
627 	return ret;
628 }
629 
630 /*
631  * Return 1 if a given transaction has not yet sent barrier request
632  * connected with a transaction commit. If 0 is returned, transaction
633  * may or may not have sent the barrier. Used to avoid sending barrier
634  * twice in common cases.
635  */
636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
637 {
638 	int ret = 0;
639 	transaction_t *commit_trans;
640 
641 	if (!(journal->j_flags & JBD2_BARRIER))
642 		return 0;
643 	read_lock(&journal->j_state_lock);
644 	/* Transaction already committed? */
645 	if (tid_geq(journal->j_commit_sequence, tid))
646 		goto out;
647 	commit_trans = journal->j_committing_transaction;
648 	if (!commit_trans || commit_trans->t_tid != tid) {
649 		ret = 1;
650 		goto out;
651 	}
652 	/*
653 	 * Transaction is being committed and we already proceeded to
654 	 * submitting a flush to fs partition?
655 	 */
656 	if (journal->j_fs_dev != journal->j_dev) {
657 		if (!commit_trans->t_need_data_flush ||
658 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
659 			goto out;
660 	} else {
661 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
662 			goto out;
663 	}
664 	ret = 1;
665 out:
666 	read_unlock(&journal->j_state_lock);
667 	return ret;
668 }
669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
670 
671 /*
672  * Wait for a specified commit to complete.
673  * The caller may not hold the journal lock.
674  */
675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
676 {
677 	int err = 0;
678 
679 	read_lock(&journal->j_state_lock);
680 #ifdef CONFIG_PROVE_LOCKING
681 	/*
682 	 * Some callers make sure transaction is already committing and in that
683 	 * case we cannot block on open handles anymore. So don't warn in that
684 	 * case.
685 	 */
686 	if (tid_gt(tid, journal->j_commit_sequence) &&
687 	    (!journal->j_committing_transaction ||
688 	     journal->j_committing_transaction->t_tid != tid)) {
689 		read_unlock(&journal->j_state_lock);
690 		jbd2_might_wait_for_commit(journal);
691 		read_lock(&journal->j_state_lock);
692 	}
693 #endif
694 #ifdef CONFIG_JBD2_DEBUG
695 	if (!tid_geq(journal->j_commit_request, tid)) {
696 		printk(KERN_ERR
697 		       "%s: error: j_commit_request=%u, tid=%u\n",
698 		       __func__, journal->j_commit_request, tid);
699 	}
700 #endif
701 	while (tid_gt(tid, journal->j_commit_sequence)) {
702 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
703 				  tid, journal->j_commit_sequence);
704 		read_unlock(&journal->j_state_lock);
705 		wake_up(&journal->j_wait_commit);
706 		wait_event(journal->j_wait_done_commit,
707 				!tid_gt(tid, journal->j_commit_sequence));
708 		read_lock(&journal->j_state_lock);
709 	}
710 	read_unlock(&journal->j_state_lock);
711 
712 	if (unlikely(is_journal_aborted(journal)))
713 		err = -EIO;
714 	return err;
715 }
716 
717 /* Return 1 when transaction with given tid has already committed. */
718 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
719 {
720 	int ret = 1;
721 
722 	read_lock(&journal->j_state_lock);
723 	if (journal->j_running_transaction &&
724 	    journal->j_running_transaction->t_tid == tid)
725 		ret = 0;
726 	if (journal->j_committing_transaction &&
727 	    journal->j_committing_transaction->t_tid == tid)
728 		ret = 0;
729 	read_unlock(&journal->j_state_lock);
730 	return ret;
731 }
732 EXPORT_SYMBOL(jbd2_transaction_committed);
733 
734 /*
735  * When this function returns the transaction corresponding to tid
736  * will be completed.  If the transaction has currently running, start
737  * committing that transaction before waiting for it to complete.  If
738  * the transaction id is stale, it is by definition already completed,
739  * so just return SUCCESS.
740  */
741 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
742 {
743 	int	need_to_wait = 1;
744 
745 	read_lock(&journal->j_state_lock);
746 	if (journal->j_running_transaction &&
747 	    journal->j_running_transaction->t_tid == tid) {
748 		if (journal->j_commit_request != tid) {
749 			/* transaction not yet started, so request it */
750 			read_unlock(&journal->j_state_lock);
751 			jbd2_log_start_commit(journal, tid);
752 			goto wait_commit;
753 		}
754 	} else if (!(journal->j_committing_transaction &&
755 		     journal->j_committing_transaction->t_tid == tid))
756 		need_to_wait = 0;
757 	read_unlock(&journal->j_state_lock);
758 	if (!need_to_wait)
759 		return 0;
760 wait_commit:
761 	return jbd2_log_wait_commit(journal, tid);
762 }
763 EXPORT_SYMBOL(jbd2_complete_transaction);
764 
765 /*
766  * Log buffer allocation routines:
767  */
768 
769 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
770 {
771 	unsigned long blocknr;
772 
773 	write_lock(&journal->j_state_lock);
774 	J_ASSERT(journal->j_free > 1);
775 
776 	blocknr = journal->j_head;
777 	journal->j_head++;
778 	journal->j_free--;
779 	if (journal->j_head == journal->j_last)
780 		journal->j_head = journal->j_first;
781 	write_unlock(&journal->j_state_lock);
782 	return jbd2_journal_bmap(journal, blocknr, retp);
783 }
784 
785 /*
786  * Conversion of logical to physical block numbers for the journal
787  *
788  * On external journals the journal blocks are identity-mapped, so
789  * this is a no-op.  If needed, we can use j_blk_offset - everything is
790  * ready.
791  */
792 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
793 		 unsigned long long *retp)
794 {
795 	int err = 0;
796 	unsigned long long ret;
797 
798 	if (journal->j_inode) {
799 		ret = bmap(journal->j_inode, blocknr);
800 		if (ret)
801 			*retp = ret;
802 		else {
803 			printk(KERN_ALERT "%s: journal block not found "
804 					"at offset %lu on %s\n",
805 			       __func__, blocknr, journal->j_devname);
806 			err = -EIO;
807 			jbd2_journal_abort(journal, err);
808 		}
809 	} else {
810 		*retp = blocknr; /* +journal->j_blk_offset */
811 	}
812 	return err;
813 }
814 
815 /*
816  * We play buffer_head aliasing tricks to write data/metadata blocks to
817  * the journal without copying their contents, but for journal
818  * descriptor blocks we do need to generate bona fide buffers.
819  *
820  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
821  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
822  * But we don't bother doing that, so there will be coherency problems with
823  * mmaps of blockdevs which hold live JBD-controlled filesystems.
824  */
825 struct buffer_head *
826 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
827 {
828 	journal_t *journal = transaction->t_journal;
829 	struct buffer_head *bh;
830 	unsigned long long blocknr;
831 	journal_header_t *header;
832 	int err;
833 
834 	err = jbd2_journal_next_log_block(journal, &blocknr);
835 
836 	if (err)
837 		return NULL;
838 
839 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
840 	if (!bh)
841 		return NULL;
842 	atomic_dec(&transaction->t_outstanding_credits);
843 	lock_buffer(bh);
844 	memset(bh->b_data, 0, journal->j_blocksize);
845 	header = (journal_header_t *)bh->b_data;
846 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847 	header->h_blocktype = cpu_to_be32(type);
848 	header->h_sequence = cpu_to_be32(transaction->t_tid);
849 	set_buffer_uptodate(bh);
850 	unlock_buffer(bh);
851 	BUFFER_TRACE(bh, "return this buffer");
852 	return bh;
853 }
854 
855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
856 {
857 	struct jbd2_journal_block_tail *tail;
858 	__u32 csum;
859 
860 	if (!jbd2_journal_has_csum_v2or3(j))
861 		return;
862 
863 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864 			sizeof(struct jbd2_journal_block_tail));
865 	tail->t_checksum = 0;
866 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867 	tail->t_checksum = cpu_to_be32(csum);
868 }
869 
870 /*
871  * Return tid of the oldest transaction in the journal and block in the journal
872  * where the transaction starts.
873  *
874  * If the journal is now empty, return which will be the next transaction ID
875  * we will write and where will that transaction start.
876  *
877  * The return value is 0 if journal tail cannot be pushed any further, 1 if
878  * it can.
879  */
880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881 			      unsigned long *block)
882 {
883 	transaction_t *transaction;
884 	int ret;
885 
886 	read_lock(&journal->j_state_lock);
887 	spin_lock(&journal->j_list_lock);
888 	transaction = journal->j_checkpoint_transactions;
889 	if (transaction) {
890 		*tid = transaction->t_tid;
891 		*block = transaction->t_log_start;
892 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
893 		*tid = transaction->t_tid;
894 		*block = transaction->t_log_start;
895 	} else if ((transaction = journal->j_running_transaction) != NULL) {
896 		*tid = transaction->t_tid;
897 		*block = journal->j_head;
898 	} else {
899 		*tid = journal->j_transaction_sequence;
900 		*block = journal->j_head;
901 	}
902 	ret = tid_gt(*tid, journal->j_tail_sequence);
903 	spin_unlock(&journal->j_list_lock);
904 	read_unlock(&journal->j_state_lock);
905 
906 	return ret;
907 }
908 
909 /*
910  * Update information in journal structure and in on disk journal superblock
911  * about log tail. This function does not check whether information passed in
912  * really pushes log tail further. It's responsibility of the caller to make
913  * sure provided log tail information is valid (e.g. by holding
914  * j_checkpoint_mutex all the time between computing log tail and calling this
915  * function as is the case with jbd2_cleanup_journal_tail()).
916  *
917  * Requires j_checkpoint_mutex
918  */
919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
920 {
921 	unsigned long freed;
922 	int ret;
923 
924 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
925 
926 	/*
927 	 * We cannot afford for write to remain in drive's caches since as
928 	 * soon as we update j_tail, next transaction can start reusing journal
929 	 * space and if we lose sb update during power failure we'd replay
930 	 * old transaction with possibly newly overwritten data.
931 	 */
932 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933 					      REQ_SYNC | REQ_FUA);
934 	if (ret)
935 		goto out;
936 
937 	write_lock(&journal->j_state_lock);
938 	freed = block - journal->j_tail;
939 	if (block < journal->j_tail)
940 		freed += journal->j_last - journal->j_first;
941 
942 	trace_jbd2_update_log_tail(journal, tid, block, freed);
943 	jbd_debug(1,
944 		  "Cleaning journal tail from %u to %u (offset %lu), "
945 		  "freeing %lu\n",
946 		  journal->j_tail_sequence, tid, block, freed);
947 
948 	journal->j_free += freed;
949 	journal->j_tail_sequence = tid;
950 	journal->j_tail = block;
951 	write_unlock(&journal->j_state_lock);
952 
953 out:
954 	return ret;
955 }
956 
957 /*
958  * This is a variation of __jbd2_update_log_tail which checks for validity of
959  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960  * with other threads updating log tail.
961  */
962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
963 {
964 	mutex_lock_io(&journal->j_checkpoint_mutex);
965 	if (tid_gt(tid, journal->j_tail_sequence))
966 		__jbd2_update_log_tail(journal, tid, block);
967 	mutex_unlock(&journal->j_checkpoint_mutex);
968 }
969 
970 struct jbd2_stats_proc_session {
971 	journal_t *journal;
972 	struct transaction_stats_s *stats;
973 	int start;
974 	int max;
975 };
976 
977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
978 {
979 	return *pos ? NULL : SEQ_START_TOKEN;
980 }
981 
982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 {
984 	(*pos)++;
985 	return NULL;
986 }
987 
988 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
989 {
990 	struct jbd2_stats_proc_session *s = seq->private;
991 
992 	if (v != SEQ_START_TOKEN)
993 		return 0;
994 	seq_printf(seq, "%lu transactions (%lu requested), "
995 		   "each up to %u blocks\n",
996 		   s->stats->ts_tid, s->stats->ts_requested,
997 		   s->journal->j_max_transaction_buffers);
998 	if (s->stats->ts_tid == 0)
999 		return 0;
1000 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1001 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1002 	seq_printf(seq, "  %ums request delay\n",
1003 	    (s->stats->ts_requested == 0) ? 0 :
1004 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1005 			     s->stats->ts_requested));
1006 	seq_printf(seq, "  %ums running transaction\n",
1007 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1008 	seq_printf(seq, "  %ums transaction was being locked\n",
1009 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1010 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums logging transaction\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1014 	seq_printf(seq, "  %lluus average transaction commit time\n",
1015 		   div_u64(s->journal->j_average_commit_time, 1000));
1016 	seq_printf(seq, "  %lu handles per transaction\n",
1017 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1018 	seq_printf(seq, "  %lu blocks per transaction\n",
1019 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1020 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1021 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1022 	return 0;
1023 }
1024 
1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1026 {
1027 }
1028 
1029 static const struct seq_operations jbd2_seq_info_ops = {
1030 	.start  = jbd2_seq_info_start,
1031 	.next   = jbd2_seq_info_next,
1032 	.stop   = jbd2_seq_info_stop,
1033 	.show   = jbd2_seq_info_show,
1034 };
1035 
1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1037 {
1038 	journal_t *journal = PDE_DATA(inode);
1039 	struct jbd2_stats_proc_session *s;
1040 	int rc, size;
1041 
1042 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1043 	if (s == NULL)
1044 		return -ENOMEM;
1045 	size = sizeof(struct transaction_stats_s);
1046 	s->stats = kmalloc(size, GFP_KERNEL);
1047 	if (s->stats == NULL) {
1048 		kfree(s);
1049 		return -ENOMEM;
1050 	}
1051 	spin_lock(&journal->j_history_lock);
1052 	memcpy(s->stats, &journal->j_stats, size);
1053 	s->journal = journal;
1054 	spin_unlock(&journal->j_history_lock);
1055 
1056 	rc = seq_open(file, &jbd2_seq_info_ops);
1057 	if (rc == 0) {
1058 		struct seq_file *m = file->private_data;
1059 		m->private = s;
1060 	} else {
1061 		kfree(s->stats);
1062 		kfree(s);
1063 	}
1064 	return rc;
1065 
1066 }
1067 
1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1069 {
1070 	struct seq_file *seq = file->private_data;
1071 	struct jbd2_stats_proc_session *s = seq->private;
1072 	kfree(s->stats);
1073 	kfree(s);
1074 	return seq_release(inode, file);
1075 }
1076 
1077 static const struct file_operations jbd2_seq_info_fops = {
1078 	.owner		= THIS_MODULE,
1079 	.open           = jbd2_seq_info_open,
1080 	.read           = seq_read,
1081 	.llseek         = seq_lseek,
1082 	.release        = jbd2_seq_info_release,
1083 };
1084 
1085 static struct proc_dir_entry *proc_jbd2_stats;
1086 
1087 static void jbd2_stats_proc_init(journal_t *journal)
1088 {
1089 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1090 	if (journal->j_proc_entry) {
1091 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1092 				 &jbd2_seq_info_fops, journal);
1093 	}
1094 }
1095 
1096 static void jbd2_stats_proc_exit(journal_t *journal)
1097 {
1098 	remove_proc_entry("info", journal->j_proc_entry);
1099 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1100 }
1101 
1102 /* Minimum size of descriptor tag */
1103 static int jbd2_min_tag_size(void)
1104 {
1105 	/*
1106 	 * Tag with 32-bit block numbers does not use last four bytes of the
1107 	 * structure
1108 	 */
1109 	return sizeof(journal_block_tag_t) - 4;
1110 }
1111 
1112 /*
1113  * Management for journal control blocks: functions to create and
1114  * destroy journal_t structures, and to initialise and read existing
1115  * journal blocks from disk.  */
1116 
1117 /* First: create and setup a journal_t object in memory.  We initialise
1118  * very few fields yet: that has to wait until we have created the
1119  * journal structures from from scratch, or loaded them from disk. */
1120 
1121 static journal_t *journal_init_common(struct block_device *bdev,
1122 			struct block_device *fs_dev,
1123 			unsigned long long start, int len, int blocksize)
1124 {
1125 	static struct lock_class_key jbd2_trans_commit_key;
1126 	journal_t *journal;
1127 	int err;
1128 	struct buffer_head *bh;
1129 	int n;
1130 
1131 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1132 	if (!journal)
1133 		return NULL;
1134 
1135 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1136 	init_waitqueue_head(&journal->j_wait_done_commit);
1137 	init_waitqueue_head(&journal->j_wait_commit);
1138 	init_waitqueue_head(&journal->j_wait_updates);
1139 	init_waitqueue_head(&journal->j_wait_reserved);
1140 	mutex_init(&journal->j_barrier);
1141 	mutex_init(&journal->j_checkpoint_mutex);
1142 	spin_lock_init(&journal->j_revoke_lock);
1143 	spin_lock_init(&journal->j_list_lock);
1144 	rwlock_init(&journal->j_state_lock);
1145 
1146 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1147 	journal->j_min_batch_time = 0;
1148 	journal->j_max_batch_time = 15000; /* 15ms */
1149 	atomic_set(&journal->j_reserved_credits, 0);
1150 
1151 	/* The journal is marked for error until we succeed with recovery! */
1152 	journal->j_flags = JBD2_ABORT;
1153 
1154 	/* Set up a default-sized revoke table for the new mount. */
1155 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1156 	if (err)
1157 		goto err_cleanup;
1158 
1159 	spin_lock_init(&journal->j_history_lock);
1160 
1161 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1162 			 &jbd2_trans_commit_key, 0);
1163 
1164 	/* journal descriptor can store up to n blocks -bzzz */
1165 	journal->j_blocksize = blocksize;
1166 	journal->j_dev = bdev;
1167 	journal->j_fs_dev = fs_dev;
1168 	journal->j_blk_offset = start;
1169 	journal->j_maxlen = len;
1170 	/* We need enough buffers to write out full descriptor block. */
1171 	n = journal->j_blocksize / jbd2_min_tag_size();
1172 	journal->j_wbufsize = n;
1173 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1174 					GFP_KERNEL);
1175 	if (!journal->j_wbuf)
1176 		goto err_cleanup;
1177 
1178 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1179 	if (!bh) {
1180 		pr_err("%s: Cannot get buffer for journal superblock\n",
1181 			__func__);
1182 		goto err_cleanup;
1183 	}
1184 	journal->j_sb_buffer = bh;
1185 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1186 
1187 	return journal;
1188 
1189 err_cleanup:
1190 	kfree(journal->j_wbuf);
1191 	jbd2_journal_destroy_revoke(journal);
1192 	kfree(journal);
1193 	return NULL;
1194 }
1195 
1196 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1197  *
1198  * Create a journal structure assigned some fixed set of disk blocks to
1199  * the journal.  We don't actually touch those disk blocks yet, but we
1200  * need to set up all of the mapping information to tell the journaling
1201  * system where the journal blocks are.
1202  *
1203  */
1204 
1205 /**
1206  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1207  *  @bdev: Block device on which to create the journal
1208  *  @fs_dev: Device which hold journalled filesystem for this journal.
1209  *  @start: Block nr Start of journal.
1210  *  @len:  Length of the journal in blocks.
1211  *  @blocksize: blocksize of journalling device
1212  *
1213  *  Returns: a newly created journal_t *
1214  *
1215  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1216  *  range of blocks on an arbitrary block device.
1217  *
1218  */
1219 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1220 			struct block_device *fs_dev,
1221 			unsigned long long start, int len, int blocksize)
1222 {
1223 	journal_t *journal;
1224 
1225 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1226 	if (!journal)
1227 		return NULL;
1228 
1229 	bdevname(journal->j_dev, journal->j_devname);
1230 	strreplace(journal->j_devname, '/', '!');
1231 	jbd2_stats_proc_init(journal);
1232 
1233 	return journal;
1234 }
1235 
1236 /**
1237  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1238  *  @inode: An inode to create the journal in
1239  *
1240  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1241  * the journal.  The inode must exist already, must support bmap() and
1242  * must have all data blocks preallocated.
1243  */
1244 journal_t *jbd2_journal_init_inode(struct inode *inode)
1245 {
1246 	journal_t *journal;
1247 	char *p;
1248 	unsigned long long blocknr;
1249 
1250 	blocknr = bmap(inode, 0);
1251 	if (!blocknr) {
1252 		pr_err("%s: Cannot locate journal superblock\n",
1253 			__func__);
1254 		return NULL;
1255 	}
1256 
1257 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1258 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1259 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1260 
1261 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1262 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1263 			inode->i_sb->s_blocksize);
1264 	if (!journal)
1265 		return NULL;
1266 
1267 	journal->j_inode = inode;
1268 	bdevname(journal->j_dev, journal->j_devname);
1269 	p = strreplace(journal->j_devname, '/', '!');
1270 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1271 	jbd2_stats_proc_init(journal);
1272 
1273 	return journal;
1274 }
1275 
1276 /*
1277  * If the journal init or create aborts, we need to mark the journal
1278  * superblock as being NULL to prevent the journal destroy from writing
1279  * back a bogus superblock.
1280  */
1281 static void journal_fail_superblock (journal_t *journal)
1282 {
1283 	struct buffer_head *bh = journal->j_sb_buffer;
1284 	brelse(bh);
1285 	journal->j_sb_buffer = NULL;
1286 }
1287 
1288 /*
1289  * Given a journal_t structure, initialise the various fields for
1290  * startup of a new journaling session.  We use this both when creating
1291  * a journal, and after recovering an old journal to reset it for
1292  * subsequent use.
1293  */
1294 
1295 static int journal_reset(journal_t *journal)
1296 {
1297 	journal_superblock_t *sb = journal->j_superblock;
1298 	unsigned long long first, last;
1299 
1300 	first = be32_to_cpu(sb->s_first);
1301 	last = be32_to_cpu(sb->s_maxlen);
1302 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1303 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1304 		       first, last);
1305 		journal_fail_superblock(journal);
1306 		return -EINVAL;
1307 	}
1308 
1309 	journal->j_first = first;
1310 	journal->j_last = last;
1311 
1312 	journal->j_head = first;
1313 	journal->j_tail = first;
1314 	journal->j_free = last - first;
1315 
1316 	journal->j_tail_sequence = journal->j_transaction_sequence;
1317 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1318 	journal->j_commit_request = journal->j_commit_sequence;
1319 
1320 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1321 
1322 	/*
1323 	 * As a special case, if the on-disk copy is already marked as needing
1324 	 * no recovery (s_start == 0), then we can safely defer the superblock
1325 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1326 	 * attempting a write to a potential-readonly device.
1327 	 */
1328 	if (sb->s_start == 0) {
1329 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1330 			"(start %ld, seq %u, errno %d)\n",
1331 			journal->j_tail, journal->j_tail_sequence,
1332 			journal->j_errno);
1333 		journal->j_flags |= JBD2_FLUSHED;
1334 	} else {
1335 		/* Lock here to make assertions happy... */
1336 		mutex_lock_io(&journal->j_checkpoint_mutex);
1337 		/*
1338 		 * Update log tail information. We use REQ_FUA since new
1339 		 * transaction will start reusing journal space and so we
1340 		 * must make sure information about current log tail is on
1341 		 * disk before that.
1342 		 */
1343 		jbd2_journal_update_sb_log_tail(journal,
1344 						journal->j_tail_sequence,
1345 						journal->j_tail,
1346 						REQ_SYNC | REQ_FUA);
1347 		mutex_unlock(&journal->j_checkpoint_mutex);
1348 	}
1349 	return jbd2_journal_start_thread(journal);
1350 }
1351 
1352 /*
1353  * This function expects that the caller will have locked the journal
1354  * buffer head, and will return with it unlocked
1355  */
1356 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1357 {
1358 	struct buffer_head *bh = journal->j_sb_buffer;
1359 	journal_superblock_t *sb = journal->j_superblock;
1360 	int ret;
1361 
1362 	/* Buffer got discarded which means block device got invalidated */
1363 	if (!buffer_mapped(bh))
1364 		return -EIO;
1365 
1366 	trace_jbd2_write_superblock(journal, write_flags);
1367 	if (!(journal->j_flags & JBD2_BARRIER))
1368 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1369 	if (buffer_write_io_error(bh)) {
1370 		/*
1371 		 * Oh, dear.  A previous attempt to write the journal
1372 		 * superblock failed.  This could happen because the
1373 		 * USB device was yanked out.  Or it could happen to
1374 		 * be a transient write error and maybe the block will
1375 		 * be remapped.  Nothing we can do but to retry the
1376 		 * write and hope for the best.
1377 		 */
1378 		printk(KERN_ERR "JBD2: previous I/O error detected "
1379 		       "for journal superblock update for %s.\n",
1380 		       journal->j_devname);
1381 		clear_buffer_write_io_error(bh);
1382 		set_buffer_uptodate(bh);
1383 	}
1384 	if (jbd2_journal_has_csum_v2or3(journal))
1385 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1386 	get_bh(bh);
1387 	bh->b_end_io = end_buffer_write_sync;
1388 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1389 	wait_on_buffer(bh);
1390 	if (buffer_write_io_error(bh)) {
1391 		clear_buffer_write_io_error(bh);
1392 		set_buffer_uptodate(bh);
1393 		ret = -EIO;
1394 	}
1395 	if (ret) {
1396 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1397 		       "journal superblock for %s.\n", ret,
1398 		       journal->j_devname);
1399 		jbd2_journal_abort(journal, ret);
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /**
1406  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1407  * @journal: The journal to update.
1408  * @tail_tid: TID of the new transaction at the tail of the log
1409  * @tail_block: The first block of the transaction at the tail of the log
1410  * @write_op: With which operation should we write the journal sb
1411  *
1412  * Update a journal's superblock information about log tail and write it to
1413  * disk, waiting for the IO to complete.
1414  */
1415 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1416 				     unsigned long tail_block, int write_op)
1417 {
1418 	journal_superblock_t *sb = journal->j_superblock;
1419 	int ret;
1420 
1421 	if (is_journal_aborted(journal))
1422 		return -EIO;
1423 
1424 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1425 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1426 		  tail_block, tail_tid);
1427 
1428 	lock_buffer(journal->j_sb_buffer);
1429 	sb->s_sequence = cpu_to_be32(tail_tid);
1430 	sb->s_start    = cpu_to_be32(tail_block);
1431 
1432 	ret = jbd2_write_superblock(journal, write_op);
1433 	if (ret)
1434 		goto out;
1435 
1436 	/* Log is no longer empty */
1437 	write_lock(&journal->j_state_lock);
1438 	WARN_ON(!sb->s_sequence);
1439 	journal->j_flags &= ~JBD2_FLUSHED;
1440 	write_unlock(&journal->j_state_lock);
1441 
1442 out:
1443 	return ret;
1444 }
1445 
1446 /**
1447  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1448  * @journal: The journal to update.
1449  * @write_op: With which operation should we write the journal sb
1450  *
1451  * Update a journal's dynamic superblock fields to show that journal is empty.
1452  * Write updated superblock to disk waiting for IO to complete.
1453  */
1454 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1455 {
1456 	journal_superblock_t *sb = journal->j_superblock;
1457 
1458 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1459 	lock_buffer(journal->j_sb_buffer);
1460 	if (sb->s_start == 0) {		/* Is it already empty? */
1461 		unlock_buffer(journal->j_sb_buffer);
1462 		return;
1463 	}
1464 
1465 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1466 		  journal->j_tail_sequence);
1467 
1468 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1469 	sb->s_start    = cpu_to_be32(0);
1470 
1471 	jbd2_write_superblock(journal, write_op);
1472 
1473 	/* Log is no longer empty */
1474 	write_lock(&journal->j_state_lock);
1475 	journal->j_flags |= JBD2_FLUSHED;
1476 	write_unlock(&journal->j_state_lock);
1477 }
1478 
1479 
1480 /**
1481  * jbd2_journal_update_sb_errno() - Update error in the journal.
1482  * @journal: The journal to update.
1483  *
1484  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1485  * to complete.
1486  */
1487 void jbd2_journal_update_sb_errno(journal_t *journal)
1488 {
1489 	journal_superblock_t *sb = journal->j_superblock;
1490 	int errcode;
1491 
1492 	lock_buffer(journal->j_sb_buffer);
1493 	errcode = journal->j_errno;
1494 	if (errcode == -ESHUTDOWN)
1495 		errcode = 0;
1496 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497 	sb->s_errno    = cpu_to_be32(errcode);
1498 
1499 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502 
1503 static int journal_revoke_records_per_block(journal_t *journal)
1504 {
1505 	int record_size;
1506 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1507 
1508 	if (jbd2_has_feature_64bit(journal))
1509 		record_size = 8;
1510 	else
1511 		record_size = 4;
1512 
1513 	if (jbd2_journal_has_csum_v2or3(journal))
1514 		space -= sizeof(struct jbd2_journal_block_tail);
1515 	return space / record_size;
1516 }
1517 
1518 /*
1519  * Read the superblock for a given journal, performing initial
1520  * validation of the format.
1521  */
1522 static int journal_get_superblock(journal_t *journal)
1523 {
1524 	struct buffer_head *bh;
1525 	journal_superblock_t *sb;
1526 	int err = -EIO;
1527 
1528 	bh = journal->j_sb_buffer;
1529 
1530 	J_ASSERT(bh != NULL);
1531 	if (!buffer_uptodate(bh)) {
1532 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1533 		wait_on_buffer(bh);
1534 		if (!buffer_uptodate(bh)) {
1535 			printk(KERN_ERR
1536 				"JBD2: IO error reading journal superblock\n");
1537 			goto out;
1538 		}
1539 	}
1540 
1541 	if (buffer_verified(bh))
1542 		return 0;
1543 
1544 	sb = journal->j_superblock;
1545 
1546 	err = -EINVAL;
1547 
1548 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1549 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1550 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1551 		goto out;
1552 	}
1553 
1554 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1555 	case JBD2_SUPERBLOCK_V1:
1556 		journal->j_format_version = 1;
1557 		break;
1558 	case JBD2_SUPERBLOCK_V2:
1559 		journal->j_format_version = 2;
1560 		break;
1561 	default:
1562 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1563 		goto out;
1564 	}
1565 
1566 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1567 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1568 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1569 		printk(KERN_WARNING "JBD2: journal file too short\n");
1570 		goto out;
1571 	}
1572 
1573 	if (be32_to_cpu(sb->s_first) == 0 ||
1574 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1575 		printk(KERN_WARNING
1576 			"JBD2: Invalid start block of journal: %u\n",
1577 			be32_to_cpu(sb->s_first));
1578 		goto out;
1579 	}
1580 
1581 	if (jbd2_has_feature_csum2(journal) &&
1582 	    jbd2_has_feature_csum3(journal)) {
1583 		/* Can't have checksum v2 and v3 at the same time! */
1584 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1585 		       "at the same time!\n");
1586 		goto out;
1587 	}
1588 
1589 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1590 	    jbd2_has_feature_checksum(journal)) {
1591 		/* Can't have checksum v1 and v2 on at the same time! */
1592 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1593 		       "at the same time!\n");
1594 		goto out;
1595 	}
1596 
1597 	if (!jbd2_verify_csum_type(journal, sb)) {
1598 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1599 		goto out;
1600 	}
1601 
1602 	/* Load the checksum driver */
1603 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1604 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1605 		if (IS_ERR(journal->j_chksum_driver)) {
1606 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1607 			err = PTR_ERR(journal->j_chksum_driver);
1608 			journal->j_chksum_driver = NULL;
1609 			goto out;
1610 		}
1611 	}
1612 
1613 	if (jbd2_journal_has_csum_v2or3(journal)) {
1614 		/* Check superblock checksum */
1615 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1616 			printk(KERN_ERR "JBD2: journal checksum error\n");
1617 			err = -EFSBADCRC;
1618 			goto out;
1619 		}
1620 
1621 		/* Precompute checksum seed for all metadata */
1622 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1623 						   sizeof(sb->s_uuid));
1624 	}
1625 
1626 	journal->j_revoke_records_per_block =
1627 				journal_revoke_records_per_block(journal);
1628 	set_buffer_verified(bh);
1629 
1630 	return 0;
1631 
1632 out:
1633 	journal_fail_superblock(journal);
1634 	return err;
1635 }
1636 
1637 /*
1638  * Load the on-disk journal superblock and read the key fields into the
1639  * journal_t.
1640  */
1641 
1642 static int load_superblock(journal_t *journal)
1643 {
1644 	int err;
1645 	journal_superblock_t *sb;
1646 
1647 	err = journal_get_superblock(journal);
1648 	if (err)
1649 		return err;
1650 
1651 	sb = journal->j_superblock;
1652 
1653 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1654 	journal->j_tail = be32_to_cpu(sb->s_start);
1655 	journal->j_first = be32_to_cpu(sb->s_first);
1656 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1657 	journal->j_errno = be32_to_cpu(sb->s_errno);
1658 
1659 	return 0;
1660 }
1661 
1662 
1663 /**
1664  * int jbd2_journal_load() - Read journal from disk.
1665  * @journal: Journal to act on.
1666  *
1667  * Given a journal_t structure which tells us which disk blocks contain
1668  * a journal, read the journal from disk to initialise the in-memory
1669  * structures.
1670  */
1671 int jbd2_journal_load(journal_t *journal)
1672 {
1673 	int err;
1674 	journal_superblock_t *sb;
1675 
1676 	err = load_superblock(journal);
1677 	if (err)
1678 		return err;
1679 
1680 	sb = journal->j_superblock;
1681 	/* If this is a V2 superblock, then we have to check the
1682 	 * features flags on it. */
1683 
1684 	if (journal->j_format_version >= 2) {
1685 		if ((sb->s_feature_ro_compat &
1686 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1687 		    (sb->s_feature_incompat &
1688 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1689 			printk(KERN_WARNING
1690 				"JBD2: Unrecognised features on journal\n");
1691 			return -EINVAL;
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Create a slab for this blocksize
1697 	 */
1698 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1699 	if (err)
1700 		return err;
1701 
1702 	/* Let the recovery code check whether it needs to recover any
1703 	 * data from the journal. */
1704 	if (jbd2_journal_recover(journal))
1705 		goto recovery_error;
1706 
1707 	if (journal->j_failed_commit) {
1708 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1709 		       "is corrupt.\n", journal->j_failed_commit,
1710 		       journal->j_devname);
1711 		return -EFSCORRUPTED;
1712 	}
1713 	/*
1714 	 * clear JBD2_ABORT flag initialized in journal_init_common
1715 	 * here to update log tail information with the newest seq.
1716 	 */
1717 	journal->j_flags &= ~JBD2_ABORT;
1718 
1719 	/* OK, we've finished with the dynamic journal bits:
1720 	 * reinitialise the dynamic contents of the superblock in memory
1721 	 * and reset them on disk. */
1722 	if (journal_reset(journal))
1723 		goto recovery_error;
1724 
1725 	journal->j_flags |= JBD2_LOADED;
1726 	return 0;
1727 
1728 recovery_error:
1729 	printk(KERN_WARNING "JBD2: recovery failed\n");
1730 	return -EIO;
1731 }
1732 
1733 /**
1734  * void jbd2_journal_destroy() - Release a journal_t structure.
1735  * @journal: Journal to act on.
1736  *
1737  * Release a journal_t structure once it is no longer in use by the
1738  * journaled object.
1739  * Return <0 if we couldn't clean up the journal.
1740  */
1741 int jbd2_journal_destroy(journal_t *journal)
1742 {
1743 	int err = 0;
1744 
1745 	/* Wait for the commit thread to wake up and die. */
1746 	journal_kill_thread(journal);
1747 
1748 	/* Force a final log commit */
1749 	if (journal->j_running_transaction)
1750 		jbd2_journal_commit_transaction(journal);
1751 
1752 	/* Force any old transactions to disk */
1753 
1754 	/* Totally anal locking here... */
1755 	spin_lock(&journal->j_list_lock);
1756 	while (journal->j_checkpoint_transactions != NULL) {
1757 		spin_unlock(&journal->j_list_lock);
1758 		mutex_lock_io(&journal->j_checkpoint_mutex);
1759 		err = jbd2_log_do_checkpoint(journal);
1760 		mutex_unlock(&journal->j_checkpoint_mutex);
1761 		/*
1762 		 * If checkpointing failed, just free the buffers to avoid
1763 		 * looping forever
1764 		 */
1765 		if (err) {
1766 			jbd2_journal_destroy_checkpoint(journal);
1767 			spin_lock(&journal->j_list_lock);
1768 			break;
1769 		}
1770 		spin_lock(&journal->j_list_lock);
1771 	}
1772 
1773 	J_ASSERT(journal->j_running_transaction == NULL);
1774 	J_ASSERT(journal->j_committing_transaction == NULL);
1775 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1776 	spin_unlock(&journal->j_list_lock);
1777 
1778 	if (journal->j_sb_buffer) {
1779 		if (!is_journal_aborted(journal)) {
1780 			mutex_lock_io(&journal->j_checkpoint_mutex);
1781 
1782 			write_lock(&journal->j_state_lock);
1783 			journal->j_tail_sequence =
1784 				++journal->j_transaction_sequence;
1785 			write_unlock(&journal->j_state_lock);
1786 
1787 			jbd2_mark_journal_empty(journal,
1788 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1789 			mutex_unlock(&journal->j_checkpoint_mutex);
1790 		} else
1791 			err = -EIO;
1792 		brelse(journal->j_sb_buffer);
1793 	}
1794 
1795 	if (journal->j_proc_entry)
1796 		jbd2_stats_proc_exit(journal);
1797 	iput(journal->j_inode);
1798 	if (journal->j_revoke)
1799 		jbd2_journal_destroy_revoke(journal);
1800 	if (journal->j_chksum_driver)
1801 		crypto_free_shash(journal->j_chksum_driver);
1802 	kfree(journal->j_wbuf);
1803 	kfree(journal);
1804 
1805 	return err;
1806 }
1807 
1808 
1809 /**
1810  *int jbd2_journal_check_used_features () - Check if features specified are used.
1811  * @journal: Journal to check.
1812  * @compat: bitmask of compatible features
1813  * @ro: bitmask of features that force read-only mount
1814  * @incompat: bitmask of incompatible features
1815  *
1816  * Check whether the journal uses all of a given set of
1817  * features.  Return true (non-zero) if it does.
1818  **/
1819 
1820 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1821 				 unsigned long ro, unsigned long incompat)
1822 {
1823 	journal_superblock_t *sb;
1824 
1825 	if (!compat && !ro && !incompat)
1826 		return 1;
1827 	/* Load journal superblock if it is not loaded yet. */
1828 	if (journal->j_format_version == 0 &&
1829 	    journal_get_superblock(journal) != 0)
1830 		return 0;
1831 	if (journal->j_format_version == 1)
1832 		return 0;
1833 
1834 	sb = journal->j_superblock;
1835 
1836 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1837 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1838 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1839 		return 1;
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1846  * @journal: Journal to check.
1847  * @compat: bitmask of compatible features
1848  * @ro: bitmask of features that force read-only mount
1849  * @incompat: bitmask of incompatible features
1850  *
1851  * Check whether the journaling code supports the use of
1852  * all of a given set of features on this journal.  Return true
1853  * (non-zero) if it can. */
1854 
1855 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1856 				      unsigned long ro, unsigned long incompat)
1857 {
1858 	if (!compat && !ro && !incompat)
1859 		return 1;
1860 
1861 	/* We can support any known requested features iff the
1862 	 * superblock is in version 2.  Otherwise we fail to support any
1863 	 * extended sb features. */
1864 
1865 	if (journal->j_format_version != 2)
1866 		return 0;
1867 
1868 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1869 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1870 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1871 		return 1;
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1878  * @journal: Journal to act on.
1879  * @compat: bitmask of compatible features
1880  * @ro: bitmask of features that force read-only mount
1881  * @incompat: bitmask of incompatible features
1882  *
1883  * Mark a given journal feature as present on the
1884  * superblock.  Returns true if the requested features could be set.
1885  *
1886  */
1887 
1888 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1889 			  unsigned long ro, unsigned long incompat)
1890 {
1891 #define INCOMPAT_FEATURE_ON(f) \
1892 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1893 #define COMPAT_FEATURE_ON(f) \
1894 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1895 	journal_superblock_t *sb;
1896 
1897 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1898 		return 1;
1899 
1900 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1901 		return 0;
1902 
1903 	/* If enabling v2 checksums, turn on v3 instead */
1904 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1905 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1906 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1907 	}
1908 
1909 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1910 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1911 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1912 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1913 
1914 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1915 		  compat, ro, incompat);
1916 
1917 	sb = journal->j_superblock;
1918 
1919 	/* Load the checksum driver if necessary */
1920 	if ((journal->j_chksum_driver == NULL) &&
1921 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1922 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1923 		if (IS_ERR(journal->j_chksum_driver)) {
1924 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1925 			journal->j_chksum_driver = NULL;
1926 			return 0;
1927 		}
1928 		/* Precompute checksum seed for all metadata */
1929 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1930 						   sizeof(sb->s_uuid));
1931 	}
1932 
1933 	lock_buffer(journal->j_sb_buffer);
1934 
1935 	/* If enabling v3 checksums, update superblock */
1936 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1937 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1938 		sb->s_feature_compat &=
1939 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1940 	}
1941 
1942 	/* If enabling v1 checksums, downgrade superblock */
1943 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1944 		sb->s_feature_incompat &=
1945 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1946 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1947 
1948 	sb->s_feature_compat    |= cpu_to_be32(compat);
1949 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1950 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1951 	unlock_buffer(journal->j_sb_buffer);
1952 	journal->j_revoke_records_per_block =
1953 				journal_revoke_records_per_block(journal);
1954 
1955 	return 1;
1956 #undef COMPAT_FEATURE_ON
1957 #undef INCOMPAT_FEATURE_ON
1958 }
1959 
1960 /*
1961  * jbd2_journal_clear_features () - Clear a given journal feature in the
1962  * 				    superblock
1963  * @journal: Journal to act on.
1964  * @compat: bitmask of compatible features
1965  * @ro: bitmask of features that force read-only mount
1966  * @incompat: bitmask of incompatible features
1967  *
1968  * Clear a given journal feature as present on the
1969  * superblock.
1970  */
1971 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1972 				unsigned long ro, unsigned long incompat)
1973 {
1974 	journal_superblock_t *sb;
1975 
1976 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1977 		  compat, ro, incompat);
1978 
1979 	sb = journal->j_superblock;
1980 
1981 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1982 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1983 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1984 	journal->j_revoke_records_per_block =
1985 				journal_revoke_records_per_block(journal);
1986 }
1987 EXPORT_SYMBOL(jbd2_journal_clear_features);
1988 
1989 /**
1990  * int jbd2_journal_flush () - Flush journal
1991  * @journal: Journal to act on.
1992  *
1993  * Flush all data for a given journal to disk and empty the journal.
1994  * Filesystems can use this when remounting readonly to ensure that
1995  * recovery does not need to happen on remount.
1996  */
1997 
1998 int jbd2_journal_flush(journal_t *journal)
1999 {
2000 	int err = 0;
2001 	transaction_t *transaction = NULL;
2002 
2003 	write_lock(&journal->j_state_lock);
2004 
2005 	/* Force everything buffered to the log... */
2006 	if (journal->j_running_transaction) {
2007 		transaction = journal->j_running_transaction;
2008 		__jbd2_log_start_commit(journal, transaction->t_tid);
2009 	} else if (journal->j_committing_transaction)
2010 		transaction = journal->j_committing_transaction;
2011 
2012 	/* Wait for the log commit to complete... */
2013 	if (transaction) {
2014 		tid_t tid = transaction->t_tid;
2015 
2016 		write_unlock(&journal->j_state_lock);
2017 		jbd2_log_wait_commit(journal, tid);
2018 	} else {
2019 		write_unlock(&journal->j_state_lock);
2020 	}
2021 
2022 	/* ...and flush everything in the log out to disk. */
2023 	spin_lock(&journal->j_list_lock);
2024 	while (!err && journal->j_checkpoint_transactions != NULL) {
2025 		spin_unlock(&journal->j_list_lock);
2026 		mutex_lock_io(&journal->j_checkpoint_mutex);
2027 		err = jbd2_log_do_checkpoint(journal);
2028 		mutex_unlock(&journal->j_checkpoint_mutex);
2029 		spin_lock(&journal->j_list_lock);
2030 	}
2031 	spin_unlock(&journal->j_list_lock);
2032 
2033 	if (is_journal_aborted(journal))
2034 		return -EIO;
2035 
2036 	mutex_lock_io(&journal->j_checkpoint_mutex);
2037 	if (!err) {
2038 		err = jbd2_cleanup_journal_tail(journal);
2039 		if (err < 0) {
2040 			mutex_unlock(&journal->j_checkpoint_mutex);
2041 			goto out;
2042 		}
2043 		err = 0;
2044 	}
2045 
2046 	/* Finally, mark the journal as really needing no recovery.
2047 	 * This sets s_start==0 in the underlying superblock, which is
2048 	 * the magic code for a fully-recovered superblock.  Any future
2049 	 * commits of data to the journal will restore the current
2050 	 * s_start value. */
2051 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2052 	mutex_unlock(&journal->j_checkpoint_mutex);
2053 	write_lock(&journal->j_state_lock);
2054 	J_ASSERT(!journal->j_running_transaction);
2055 	J_ASSERT(!journal->j_committing_transaction);
2056 	J_ASSERT(!journal->j_checkpoint_transactions);
2057 	J_ASSERT(journal->j_head == journal->j_tail);
2058 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2059 	write_unlock(&journal->j_state_lock);
2060 out:
2061 	return err;
2062 }
2063 
2064 /**
2065  * int jbd2_journal_wipe() - Wipe journal contents
2066  * @journal: Journal to act on.
2067  * @write: flag (see below)
2068  *
2069  * Wipe out all of the contents of a journal, safely.  This will produce
2070  * a warning if the journal contains any valid recovery information.
2071  * Must be called between journal_init_*() and jbd2_journal_load().
2072  *
2073  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2074  * we merely suppress recovery.
2075  */
2076 
2077 int jbd2_journal_wipe(journal_t *journal, int write)
2078 {
2079 	int err = 0;
2080 
2081 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2082 
2083 	err = load_superblock(journal);
2084 	if (err)
2085 		return err;
2086 
2087 	if (!journal->j_tail)
2088 		goto no_recovery;
2089 
2090 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2091 		write ? "Clearing" : "Ignoring");
2092 
2093 	err = jbd2_journal_skip_recovery(journal);
2094 	if (write) {
2095 		/* Lock to make assertions happy... */
2096 		mutex_lock_io(&journal->j_checkpoint_mutex);
2097 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2098 		mutex_unlock(&journal->j_checkpoint_mutex);
2099 	}
2100 
2101  no_recovery:
2102 	return err;
2103 }
2104 
2105 /**
2106  * void jbd2_journal_abort () - Shutdown the journal immediately.
2107  * @journal: the journal to shutdown.
2108  * @errno:   an error number to record in the journal indicating
2109  *           the reason for the shutdown.
2110  *
2111  * Perform a complete, immediate shutdown of the ENTIRE
2112  * journal (not of a single transaction).  This operation cannot be
2113  * undone without closing and reopening the journal.
2114  *
2115  * The jbd2_journal_abort function is intended to support higher level error
2116  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2117  * mode.
2118  *
2119  * Journal abort has very specific semantics.  Any existing dirty,
2120  * unjournaled buffers in the main filesystem will still be written to
2121  * disk by bdflush, but the journaling mechanism will be suspended
2122  * immediately and no further transaction commits will be honoured.
2123  *
2124  * Any dirty, journaled buffers will be written back to disk without
2125  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2126  * filesystem, but we _do_ attempt to leave as much data as possible
2127  * behind for fsck to use for cleanup.
2128  *
2129  * Any attempt to get a new transaction handle on a journal which is in
2130  * ABORT state will just result in an -EROFS error return.  A
2131  * jbd2_journal_stop on an existing handle will return -EIO if we have
2132  * entered abort state during the update.
2133  *
2134  * Recursive transactions are not disturbed by journal abort until the
2135  * final jbd2_journal_stop, which will receive the -EIO error.
2136  *
2137  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2138  * which will be recorded (if possible) in the journal superblock.  This
2139  * allows a client to record failure conditions in the middle of a
2140  * transaction without having to complete the transaction to record the
2141  * failure to disk.  ext3_error, for example, now uses this
2142  * functionality.
2143  *
2144  */
2145 
2146 void jbd2_journal_abort(journal_t *journal, int errno)
2147 {
2148 	transaction_t *transaction;
2149 
2150 	/*
2151 	 * ESHUTDOWN always takes precedence because a file system check
2152 	 * caused by any other journal abort error is not required after
2153 	 * a shutdown triggered.
2154 	 */
2155 	write_lock(&journal->j_state_lock);
2156 	if (journal->j_flags & JBD2_ABORT) {
2157 		int old_errno = journal->j_errno;
2158 
2159 		write_unlock(&journal->j_state_lock);
2160 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2161 			journal->j_errno = errno;
2162 			jbd2_journal_update_sb_errno(journal);
2163 		}
2164 		return;
2165 	}
2166 
2167 	/*
2168 	 * Mark the abort as occurred and start current running transaction
2169 	 * to release all journaled buffer.
2170 	 */
2171 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2172 
2173 	journal->j_flags |= JBD2_ABORT;
2174 	journal->j_errno = errno;
2175 	transaction = journal->j_running_transaction;
2176 	if (transaction)
2177 		__jbd2_log_start_commit(journal, transaction->t_tid);
2178 	write_unlock(&journal->j_state_lock);
2179 
2180 	/*
2181 	 * Record errno to the journal super block, so that fsck and jbd2
2182 	 * layer could realise that a filesystem check is needed.
2183 	 */
2184 	jbd2_journal_update_sb_errno(journal);
2185 
2186 	write_lock(&journal->j_state_lock);
2187 	journal->j_flags |= JBD2_REC_ERR;
2188 	write_unlock(&journal->j_state_lock);
2189 }
2190 
2191 /**
2192  * int jbd2_journal_errno () - returns the journal's error state.
2193  * @journal: journal to examine.
2194  *
2195  * This is the errno number set with jbd2_journal_abort(), the last
2196  * time the journal was mounted - if the journal was stopped
2197  * without calling abort this will be 0.
2198  *
2199  * If the journal has been aborted on this mount time -EROFS will
2200  * be returned.
2201  */
2202 int jbd2_journal_errno(journal_t *journal)
2203 {
2204 	int err;
2205 
2206 	read_lock(&journal->j_state_lock);
2207 	if (journal->j_flags & JBD2_ABORT)
2208 		err = -EROFS;
2209 	else
2210 		err = journal->j_errno;
2211 	read_unlock(&journal->j_state_lock);
2212 	return err;
2213 }
2214 
2215 /**
2216  * int jbd2_journal_clear_err () - clears the journal's error state
2217  * @journal: journal to act on.
2218  *
2219  * An error must be cleared or acked to take a FS out of readonly
2220  * mode.
2221  */
2222 int jbd2_journal_clear_err(journal_t *journal)
2223 {
2224 	int err = 0;
2225 
2226 	write_lock(&journal->j_state_lock);
2227 	if (journal->j_flags & JBD2_ABORT)
2228 		err = -EROFS;
2229 	else
2230 		journal->j_errno = 0;
2231 	write_unlock(&journal->j_state_lock);
2232 	return err;
2233 }
2234 
2235 /**
2236  * void jbd2_journal_ack_err() - Ack journal err.
2237  * @journal: journal to act on.
2238  *
2239  * An error must be cleared or acked to take a FS out of readonly
2240  * mode.
2241  */
2242 void jbd2_journal_ack_err(journal_t *journal)
2243 {
2244 	write_lock(&journal->j_state_lock);
2245 	if (journal->j_errno)
2246 		journal->j_flags |= JBD2_ACK_ERR;
2247 	write_unlock(&journal->j_state_lock);
2248 }
2249 
2250 int jbd2_journal_blocks_per_page(struct inode *inode)
2251 {
2252 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2253 }
2254 
2255 /*
2256  * helper functions to deal with 32 or 64bit block numbers.
2257  */
2258 size_t journal_tag_bytes(journal_t *journal)
2259 {
2260 	size_t sz;
2261 
2262 	if (jbd2_has_feature_csum3(journal))
2263 		return sizeof(journal_block_tag3_t);
2264 
2265 	sz = sizeof(journal_block_tag_t);
2266 
2267 	if (jbd2_has_feature_csum2(journal))
2268 		sz += sizeof(__u16);
2269 
2270 	if (jbd2_has_feature_64bit(journal))
2271 		return sz;
2272 	else
2273 		return sz - sizeof(__u32);
2274 }
2275 
2276 /*
2277  * JBD memory management
2278  *
2279  * These functions are used to allocate block-sized chunks of memory
2280  * used for making copies of buffer_head data.  Very often it will be
2281  * page-sized chunks of data, but sometimes it will be in
2282  * sub-page-size chunks.  (For example, 16k pages on Power systems
2283  * with a 4k block file system.)  For blocks smaller than a page, we
2284  * use a SLAB allocator.  There are slab caches for each block size,
2285  * which are allocated at mount time, if necessary, and we only free
2286  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2287  * this reason we don't need to a mutex to protect access to
2288  * jbd2_slab[] allocating or releasing memory; only in
2289  * jbd2_journal_create_slab().
2290  */
2291 #define JBD2_MAX_SLABS 8
2292 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2293 
2294 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2295 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2296 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2297 };
2298 
2299 
2300 static void jbd2_journal_destroy_slabs(void)
2301 {
2302 	int i;
2303 
2304 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2305 		kmem_cache_destroy(jbd2_slab[i]);
2306 		jbd2_slab[i] = NULL;
2307 	}
2308 }
2309 
2310 static int jbd2_journal_create_slab(size_t size)
2311 {
2312 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2313 	int i = order_base_2(size) - 10;
2314 	size_t slab_size;
2315 
2316 	if (size == PAGE_SIZE)
2317 		return 0;
2318 
2319 	if (i >= JBD2_MAX_SLABS)
2320 		return -EINVAL;
2321 
2322 	if (unlikely(i < 0))
2323 		i = 0;
2324 	mutex_lock(&jbd2_slab_create_mutex);
2325 	if (jbd2_slab[i]) {
2326 		mutex_unlock(&jbd2_slab_create_mutex);
2327 		return 0;	/* Already created */
2328 	}
2329 
2330 	slab_size = 1 << (i+10);
2331 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2332 					 slab_size, 0, NULL);
2333 	mutex_unlock(&jbd2_slab_create_mutex);
2334 	if (!jbd2_slab[i]) {
2335 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2336 		return -ENOMEM;
2337 	}
2338 	return 0;
2339 }
2340 
2341 static struct kmem_cache *get_slab(size_t size)
2342 {
2343 	int i = order_base_2(size) - 10;
2344 
2345 	BUG_ON(i >= JBD2_MAX_SLABS);
2346 	if (unlikely(i < 0))
2347 		i = 0;
2348 	BUG_ON(jbd2_slab[i] == NULL);
2349 	return jbd2_slab[i];
2350 }
2351 
2352 void *jbd2_alloc(size_t size, gfp_t flags)
2353 {
2354 	void *ptr;
2355 
2356 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2357 
2358 	if (size < PAGE_SIZE)
2359 		ptr = kmem_cache_alloc(get_slab(size), flags);
2360 	else
2361 		ptr = (void *)__get_free_pages(flags, get_order(size));
2362 
2363 	/* Check alignment; SLUB has gotten this wrong in the past,
2364 	 * and this can lead to user data corruption! */
2365 	BUG_ON(((unsigned long) ptr) & (size-1));
2366 
2367 	return ptr;
2368 }
2369 
2370 void jbd2_free(void *ptr, size_t size)
2371 {
2372 	if (size < PAGE_SIZE)
2373 		kmem_cache_free(get_slab(size), ptr);
2374 	else
2375 		free_pages((unsigned long)ptr, get_order(size));
2376 };
2377 
2378 /*
2379  * Journal_head storage management
2380  */
2381 static struct kmem_cache *jbd2_journal_head_cache;
2382 #ifdef CONFIG_JBD2_DEBUG
2383 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2384 #endif
2385 
2386 static int __init jbd2_journal_init_journal_head_cache(void)
2387 {
2388 	J_ASSERT(!jbd2_journal_head_cache);
2389 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2390 				sizeof(struct journal_head),
2391 				0,		/* offset */
2392 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2393 				NULL);		/* ctor */
2394 	if (!jbd2_journal_head_cache) {
2395 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2396 		return -ENOMEM;
2397 	}
2398 	return 0;
2399 }
2400 
2401 static void jbd2_journal_destroy_journal_head_cache(void)
2402 {
2403 	kmem_cache_destroy(jbd2_journal_head_cache);
2404 	jbd2_journal_head_cache = NULL;
2405 }
2406 
2407 /*
2408  * journal_head splicing and dicing
2409  */
2410 static struct journal_head *journal_alloc_journal_head(void)
2411 {
2412 	struct journal_head *ret;
2413 
2414 #ifdef CONFIG_JBD2_DEBUG
2415 	atomic_inc(&nr_journal_heads);
2416 #endif
2417 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2418 	if (!ret) {
2419 		jbd_debug(1, "out of memory for journal_head\n");
2420 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2421 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2422 				GFP_NOFS | __GFP_NOFAIL);
2423 	}
2424 	if (ret)
2425 		spin_lock_init(&ret->b_state_lock);
2426 	return ret;
2427 }
2428 
2429 static void journal_free_journal_head(struct journal_head *jh)
2430 {
2431 #ifdef CONFIG_JBD2_DEBUG
2432 	atomic_dec(&nr_journal_heads);
2433 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2434 #endif
2435 	kmem_cache_free(jbd2_journal_head_cache, jh);
2436 }
2437 
2438 /*
2439  * A journal_head is attached to a buffer_head whenever JBD has an
2440  * interest in the buffer.
2441  *
2442  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2443  * is set.  This bit is tested in core kernel code where we need to take
2444  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2445  * there.
2446  *
2447  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2448  *
2449  * When a buffer has its BH_JBD bit set it is immune from being released by
2450  * core kernel code, mainly via ->b_count.
2451  *
2452  * A journal_head is detached from its buffer_head when the journal_head's
2453  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2454  * transaction (b_cp_transaction) hold their references to b_jcount.
2455  *
2456  * Various places in the kernel want to attach a journal_head to a buffer_head
2457  * _before_ attaching the journal_head to a transaction.  To protect the
2458  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2459  * journal_head's b_jcount refcount by one.  The caller must call
2460  * jbd2_journal_put_journal_head() to undo this.
2461  *
2462  * So the typical usage would be:
2463  *
2464  *	(Attach a journal_head if needed.  Increments b_jcount)
2465  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2466  *	...
2467  *      (Get another reference for transaction)
2468  *	jbd2_journal_grab_journal_head(bh);
2469  *	jh->b_transaction = xxx;
2470  *	(Put original reference)
2471  *	jbd2_journal_put_journal_head(jh);
2472  */
2473 
2474 /*
2475  * Give a buffer_head a journal_head.
2476  *
2477  * May sleep.
2478  */
2479 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2480 {
2481 	struct journal_head *jh;
2482 	struct journal_head *new_jh = NULL;
2483 
2484 repeat:
2485 	if (!buffer_jbd(bh))
2486 		new_jh = journal_alloc_journal_head();
2487 
2488 	jbd_lock_bh_journal_head(bh);
2489 	if (buffer_jbd(bh)) {
2490 		jh = bh2jh(bh);
2491 	} else {
2492 		J_ASSERT_BH(bh,
2493 			(atomic_read(&bh->b_count) > 0) ||
2494 			(bh->b_page && bh->b_page->mapping));
2495 
2496 		if (!new_jh) {
2497 			jbd_unlock_bh_journal_head(bh);
2498 			goto repeat;
2499 		}
2500 
2501 		jh = new_jh;
2502 		new_jh = NULL;		/* We consumed it */
2503 		set_buffer_jbd(bh);
2504 		bh->b_private = jh;
2505 		jh->b_bh = bh;
2506 		get_bh(bh);
2507 		BUFFER_TRACE(bh, "added journal_head");
2508 	}
2509 	jh->b_jcount++;
2510 	jbd_unlock_bh_journal_head(bh);
2511 	if (new_jh)
2512 		journal_free_journal_head(new_jh);
2513 	return bh->b_private;
2514 }
2515 
2516 /*
2517  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2518  * having a journal_head, return NULL
2519  */
2520 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2521 {
2522 	struct journal_head *jh = NULL;
2523 
2524 	jbd_lock_bh_journal_head(bh);
2525 	if (buffer_jbd(bh)) {
2526 		jh = bh2jh(bh);
2527 		jh->b_jcount++;
2528 	}
2529 	jbd_unlock_bh_journal_head(bh);
2530 	return jh;
2531 }
2532 
2533 static void __journal_remove_journal_head(struct buffer_head *bh)
2534 {
2535 	struct journal_head *jh = bh2jh(bh);
2536 
2537 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2538 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2539 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2540 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2541 	J_ASSERT_BH(bh, buffer_jbd(bh));
2542 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2543 	BUFFER_TRACE(bh, "remove journal_head");
2544 
2545 	/* Unlink before dropping the lock */
2546 	bh->b_private = NULL;
2547 	jh->b_bh = NULL;	/* debug, really */
2548 	clear_buffer_jbd(bh);
2549 }
2550 
2551 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2552 {
2553 	if (jh->b_frozen_data) {
2554 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2555 		jbd2_free(jh->b_frozen_data, b_size);
2556 	}
2557 	if (jh->b_committed_data) {
2558 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2559 		jbd2_free(jh->b_committed_data, b_size);
2560 	}
2561 	journal_free_journal_head(jh);
2562 }
2563 
2564 /*
2565  * Drop a reference on the passed journal_head.  If it fell to zero then
2566  * release the journal_head from the buffer_head.
2567  */
2568 void jbd2_journal_put_journal_head(struct journal_head *jh)
2569 {
2570 	struct buffer_head *bh = jh2bh(jh);
2571 
2572 	jbd_lock_bh_journal_head(bh);
2573 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2574 	--jh->b_jcount;
2575 	if (!jh->b_jcount) {
2576 		__journal_remove_journal_head(bh);
2577 		jbd_unlock_bh_journal_head(bh);
2578 		journal_release_journal_head(jh, bh->b_size);
2579 		__brelse(bh);
2580 	} else {
2581 		jbd_unlock_bh_journal_head(bh);
2582 	}
2583 }
2584 
2585 /*
2586  * Initialize jbd inode head
2587  */
2588 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2589 {
2590 	jinode->i_transaction = NULL;
2591 	jinode->i_next_transaction = NULL;
2592 	jinode->i_vfs_inode = inode;
2593 	jinode->i_flags = 0;
2594 	jinode->i_dirty_start = 0;
2595 	jinode->i_dirty_end = 0;
2596 	INIT_LIST_HEAD(&jinode->i_list);
2597 }
2598 
2599 /*
2600  * Function to be called before we start removing inode from memory (i.e.,
2601  * clear_inode() is a fine place to be called from). It removes inode from
2602  * transaction's lists.
2603  */
2604 void jbd2_journal_release_jbd_inode(journal_t *journal,
2605 				    struct jbd2_inode *jinode)
2606 {
2607 	if (!journal)
2608 		return;
2609 restart:
2610 	spin_lock(&journal->j_list_lock);
2611 	/* Is commit writing out inode - we have to wait */
2612 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2613 		wait_queue_head_t *wq;
2614 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2615 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2616 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2617 		spin_unlock(&journal->j_list_lock);
2618 		schedule();
2619 		finish_wait(wq, &wait.wq_entry);
2620 		goto restart;
2621 	}
2622 
2623 	if (jinode->i_transaction) {
2624 		list_del(&jinode->i_list);
2625 		jinode->i_transaction = NULL;
2626 	}
2627 	spin_unlock(&journal->j_list_lock);
2628 }
2629 
2630 
2631 #ifdef CONFIG_PROC_FS
2632 
2633 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2634 
2635 static void __init jbd2_create_jbd_stats_proc_entry(void)
2636 {
2637 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2638 }
2639 
2640 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2641 {
2642 	if (proc_jbd2_stats)
2643 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2644 }
2645 
2646 #else
2647 
2648 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2649 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2650 
2651 #endif
2652 
2653 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2654 
2655 static int __init jbd2_journal_init_inode_cache(void)
2656 {
2657 	J_ASSERT(!jbd2_inode_cache);
2658 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2659 	if (!jbd2_inode_cache) {
2660 		pr_emerg("JBD2: failed to create inode cache\n");
2661 		return -ENOMEM;
2662 	}
2663 	return 0;
2664 }
2665 
2666 static int __init jbd2_journal_init_handle_cache(void)
2667 {
2668 	J_ASSERT(!jbd2_handle_cache);
2669 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2670 	if (!jbd2_handle_cache) {
2671 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2672 		return -ENOMEM;
2673 	}
2674 	return 0;
2675 }
2676 
2677 static void jbd2_journal_destroy_inode_cache(void)
2678 {
2679 	kmem_cache_destroy(jbd2_inode_cache);
2680 	jbd2_inode_cache = NULL;
2681 }
2682 
2683 static void jbd2_journal_destroy_handle_cache(void)
2684 {
2685 	kmem_cache_destroy(jbd2_handle_cache);
2686 	jbd2_handle_cache = NULL;
2687 }
2688 
2689 /*
2690  * Module startup and shutdown
2691  */
2692 
2693 static int __init journal_init_caches(void)
2694 {
2695 	int ret;
2696 
2697 	ret = jbd2_journal_init_revoke_record_cache();
2698 	if (ret == 0)
2699 		ret = jbd2_journal_init_revoke_table_cache();
2700 	if (ret == 0)
2701 		ret = jbd2_journal_init_journal_head_cache();
2702 	if (ret == 0)
2703 		ret = jbd2_journal_init_handle_cache();
2704 	if (ret == 0)
2705 		ret = jbd2_journal_init_inode_cache();
2706 	if (ret == 0)
2707 		ret = jbd2_journal_init_transaction_cache();
2708 	return ret;
2709 }
2710 
2711 static void jbd2_journal_destroy_caches(void)
2712 {
2713 	jbd2_journal_destroy_revoke_record_cache();
2714 	jbd2_journal_destroy_revoke_table_cache();
2715 	jbd2_journal_destroy_journal_head_cache();
2716 	jbd2_journal_destroy_handle_cache();
2717 	jbd2_journal_destroy_inode_cache();
2718 	jbd2_journal_destroy_transaction_cache();
2719 	jbd2_journal_destroy_slabs();
2720 }
2721 
2722 static int __init journal_init(void)
2723 {
2724 	int ret;
2725 
2726 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2727 
2728 	ret = journal_init_caches();
2729 	if (ret == 0) {
2730 		jbd2_create_jbd_stats_proc_entry();
2731 	} else {
2732 		jbd2_journal_destroy_caches();
2733 	}
2734 	return ret;
2735 }
2736 
2737 static void __exit journal_exit(void)
2738 {
2739 #ifdef CONFIG_JBD2_DEBUG
2740 	int n = atomic_read(&nr_journal_heads);
2741 	if (n)
2742 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2743 #endif
2744 	jbd2_remove_jbd_stats_proc_entry();
2745 	jbd2_journal_destroy_caches();
2746 }
2747 
2748 MODULE_LICENSE("GPL");
2749 module_init(journal_init);
2750 module_exit(journal_exit);
2751 
2752