xref: /openbmc/linux/fs/jbd2/journal.c (revision 52b89439)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101 
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104 		  unsigned int line, const char *fmt, ...)
105 {
106 	struct va_format vaf;
107 	va_list args;
108 
109 	if (level > jbd2_journal_enable_debug)
110 		return;
111 	va_start(args, fmt);
112 	vaf.fmt = fmt;
113 	vaf.va = &args;
114 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115 	va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119 
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123 	if (!jbd2_journal_has_csum_v2or3_feature(j))
124 		return 1;
125 
126 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128 
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131 	__u32 csum;
132 	__be32 old_csum;
133 
134 	old_csum = sb->s_checksum;
135 	sb->s_checksum = 0;
136 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137 	sb->s_checksum = old_csum;
138 
139 	return cpu_to_be32(csum);
140 }
141 
142 /*
143  * Helper function used to manage commit timeouts
144  */
145 
146 static void commit_timeout(struct timer_list *t)
147 {
148 	journal_t *journal = from_timer(journal, t, j_commit_timer);
149 
150 	wake_up_process(journal->j_task);
151 }
152 
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168 
169 static int kjournald2(void *arg)
170 {
171 	journal_t *journal = arg;
172 	transaction_t *transaction;
173 
174 	/*
175 	 * Set up an interval timer which can be used to trigger a commit wakeup
176 	 * after the commit interval expires
177 	 */
178 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179 
180 	set_freezable();
181 
182 	/* Record that the journal thread is running */
183 	journal->j_task = current;
184 	wake_up(&journal->j_wait_done_commit);
185 
186 	/*
187 	 * Make sure that no allocations from this kernel thread will ever
188 	 * recurse to the fs layer because we are responsible for the
189 	 * transaction commit and any fs involvement might get stuck waiting for
190 	 * the trasn. commit.
191 	 */
192 	memalloc_nofs_save();
193 
194 	/*
195 	 * And now, wait forever for commit wakeup events.
196 	 */
197 	write_lock(&journal->j_state_lock);
198 
199 loop:
200 	if (journal->j_flags & JBD2_UNMOUNT)
201 		goto end_loop;
202 
203 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204 		journal->j_commit_sequence, journal->j_commit_request);
205 
206 	if (journal->j_commit_sequence != journal->j_commit_request) {
207 		jbd_debug(1, "OK, requests differ\n");
208 		write_unlock(&journal->j_state_lock);
209 		del_timer_sync(&journal->j_commit_timer);
210 		jbd2_journal_commit_transaction(journal);
211 		write_lock(&journal->j_state_lock);
212 		goto loop;
213 	}
214 
215 	wake_up(&journal->j_wait_done_commit);
216 	if (freezing(current)) {
217 		/*
218 		 * The simpler the better. Flushing journal isn't a
219 		 * good idea, because that depends on threads that may
220 		 * be already stopped.
221 		 */
222 		jbd_debug(1, "Now suspending kjournald2\n");
223 		write_unlock(&journal->j_state_lock);
224 		try_to_freeze();
225 		write_lock(&journal->j_state_lock);
226 	} else {
227 		/*
228 		 * We assume on resume that commits are already there,
229 		 * so we don't sleep
230 		 */
231 		DEFINE_WAIT(wait);
232 		int should_sleep = 1;
233 
234 		prepare_to_wait(&journal->j_wait_commit, &wait,
235 				TASK_INTERRUPTIBLE);
236 		if (journal->j_commit_sequence != journal->j_commit_request)
237 			should_sleep = 0;
238 		transaction = journal->j_running_transaction;
239 		if (transaction && time_after_eq(jiffies,
240 						transaction->t_expires))
241 			should_sleep = 0;
242 		if (journal->j_flags & JBD2_UNMOUNT)
243 			should_sleep = 0;
244 		if (should_sleep) {
245 			write_unlock(&journal->j_state_lock);
246 			schedule();
247 			write_lock(&journal->j_state_lock);
248 		}
249 		finish_wait(&journal->j_wait_commit, &wait);
250 	}
251 
252 	jbd_debug(1, "kjournald2 wakes\n");
253 
254 	/*
255 	 * Were we woken up by a commit wakeup event?
256 	 */
257 	transaction = journal->j_running_transaction;
258 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259 		journal->j_commit_request = transaction->t_tid;
260 		jbd_debug(1, "woke because of timeout\n");
261 	}
262 	goto loop;
263 
264 end_loop:
265 	del_timer_sync(&journal->j_commit_timer);
266 	journal->j_task = NULL;
267 	wake_up(&journal->j_wait_done_commit);
268 	jbd_debug(1, "Journal thread exiting.\n");
269 	write_unlock(&journal->j_state_lock);
270 	return 0;
271 }
272 
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275 	struct task_struct *t;
276 
277 	t = kthread_run(kjournald2, journal, "jbd2/%s",
278 			journal->j_devname);
279 	if (IS_ERR(t))
280 		return PTR_ERR(t);
281 
282 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283 	return 0;
284 }
285 
286 static void journal_kill_thread(journal_t *journal)
287 {
288 	write_lock(&journal->j_state_lock);
289 	journal->j_flags |= JBD2_UNMOUNT;
290 
291 	while (journal->j_task) {
292 		write_unlock(&journal->j_state_lock);
293 		wake_up(&journal->j_wait_commit);
294 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295 		write_lock(&journal->j_state_lock);
296 	}
297 	write_unlock(&journal->j_state_lock);
298 }
299 
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334 
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336 				  struct journal_head  *jh_in,
337 				  struct buffer_head **bh_out,
338 				  sector_t blocknr)
339 {
340 	int need_copy_out = 0;
341 	int done_copy_out = 0;
342 	int do_escape = 0;
343 	char *mapped_data;
344 	struct buffer_head *new_bh;
345 	struct page *new_page;
346 	unsigned int new_offset;
347 	struct buffer_head *bh_in = jh2bh(jh_in);
348 	journal_t *journal = transaction->t_journal;
349 
350 	/*
351 	 * The buffer really shouldn't be locked: only the current committing
352 	 * transaction is allowed to write it, so nobody else is allowed
353 	 * to do any IO.
354 	 *
355 	 * akpm: except if we're journalling data, and write() output is
356 	 * also part of a shared mapping, and another thread has
357 	 * decided to launch a writepage() against this buffer.
358 	 */
359 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360 
361 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362 
363 	/* keep subsequent assertions sane */
364 	atomic_set(&new_bh->b_count, 1);
365 
366 	spin_lock(&jh_in->b_state_lock);
367 repeat:
368 	/*
369 	 * If a new transaction has already done a buffer copy-out, then
370 	 * we use that version of the data for the commit.
371 	 */
372 	if (jh_in->b_frozen_data) {
373 		done_copy_out = 1;
374 		new_page = virt_to_page(jh_in->b_frozen_data);
375 		new_offset = offset_in_page(jh_in->b_frozen_data);
376 	} else {
377 		new_page = jh2bh(jh_in)->b_page;
378 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379 	}
380 
381 	mapped_data = kmap_atomic(new_page);
382 	/*
383 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
384 	 * before checking for escaping, as the trigger may modify the magic
385 	 * offset.  If a copy-out happens afterwards, it will have the correct
386 	 * data in the buffer.
387 	 */
388 	if (!done_copy_out)
389 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390 					   jh_in->b_triggers);
391 
392 	/*
393 	 * Check for escaping
394 	 */
395 	if (*((__be32 *)(mapped_data + new_offset)) ==
396 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397 		need_copy_out = 1;
398 		do_escape = 1;
399 	}
400 	kunmap_atomic(mapped_data);
401 
402 	/*
403 	 * Do we need to do a data copy?
404 	 */
405 	if (need_copy_out && !done_copy_out) {
406 		char *tmp;
407 
408 		spin_unlock(&jh_in->b_state_lock);
409 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410 		if (!tmp) {
411 			brelse(new_bh);
412 			return -ENOMEM;
413 		}
414 		spin_lock(&jh_in->b_state_lock);
415 		if (jh_in->b_frozen_data) {
416 			jbd2_free(tmp, bh_in->b_size);
417 			goto repeat;
418 		}
419 
420 		jh_in->b_frozen_data = tmp;
421 		mapped_data = kmap_atomic(new_page);
422 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423 		kunmap_atomic(mapped_data);
424 
425 		new_page = virt_to_page(tmp);
426 		new_offset = offset_in_page(tmp);
427 		done_copy_out = 1;
428 
429 		/*
430 		 * This isn't strictly necessary, as we're using frozen
431 		 * data for the escaping, but it keeps consistency with
432 		 * b_frozen_data usage.
433 		 */
434 		jh_in->b_frozen_triggers = jh_in->b_triggers;
435 	}
436 
437 	/*
438 	 * Did we need to do an escaping?  Now we've done all the
439 	 * copying, we can finally do so.
440 	 */
441 	if (do_escape) {
442 		mapped_data = kmap_atomic(new_page);
443 		*((unsigned int *)(mapped_data + new_offset)) = 0;
444 		kunmap_atomic(mapped_data);
445 	}
446 
447 	set_bh_page(new_bh, new_page, new_offset);
448 	new_bh->b_size = bh_in->b_size;
449 	new_bh->b_bdev = journal->j_dev;
450 	new_bh->b_blocknr = blocknr;
451 	new_bh->b_private = bh_in;
452 	set_buffer_mapped(new_bh);
453 	set_buffer_dirty(new_bh);
454 
455 	*bh_out = new_bh;
456 
457 	/*
458 	 * The to-be-written buffer needs to get moved to the io queue,
459 	 * and the original buffer whose contents we are shadowing or
460 	 * copying is moved to the transaction's shadow queue.
461 	 */
462 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463 	spin_lock(&journal->j_list_lock);
464 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465 	spin_unlock(&journal->j_list_lock);
466 	set_buffer_shadow(bh_in);
467 	spin_unlock(&jh_in->b_state_lock);
468 
469 	return do_escape | (done_copy_out << 1);
470 }
471 
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476 
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483 	/* Return if the txn has already requested to be committed */
484 	if (journal->j_commit_request == target)
485 		return 0;
486 
487 	/*
488 	 * The only transaction we can possibly wait upon is the
489 	 * currently running transaction (if it exists).  Otherwise,
490 	 * the target tid must be an old one.
491 	 */
492 	if (journal->j_running_transaction &&
493 	    journal->j_running_transaction->t_tid == target) {
494 		/*
495 		 * We want a new commit: OK, mark the request and wakeup the
496 		 * commit thread.  We do _not_ do the commit ourselves.
497 		 */
498 
499 		journal->j_commit_request = target;
500 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501 			  journal->j_commit_request,
502 			  journal->j_commit_sequence);
503 		journal->j_running_transaction->t_requested = jiffies;
504 		wake_up(&journal->j_wait_commit);
505 		return 1;
506 	} else if (!tid_geq(journal->j_commit_request, target))
507 		/* This should never happen, but if it does, preserve
508 		   the evidence before kjournald goes into a loop and
509 		   increments j_commit_sequence beyond all recognition. */
510 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511 			  journal->j_commit_request,
512 			  journal->j_commit_sequence,
513 			  target, journal->j_running_transaction ?
514 			  journal->j_running_transaction->t_tid : 0);
515 	return 0;
516 }
517 
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520 	int ret;
521 
522 	write_lock(&journal->j_state_lock);
523 	ret = __jbd2_log_start_commit(journal, tid);
524 	write_unlock(&journal->j_state_lock);
525 	return ret;
526 }
527 
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537 	transaction_t *transaction = NULL;
538 	tid_t tid;
539 	int need_to_start = 0, ret = 0;
540 
541 	read_lock(&journal->j_state_lock);
542 	if (journal->j_running_transaction && !current->journal_info) {
543 		transaction = journal->j_running_transaction;
544 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545 			need_to_start = 1;
546 	} else if (journal->j_committing_transaction)
547 		transaction = journal->j_committing_transaction;
548 
549 	if (!transaction) {
550 		/* Nothing to commit */
551 		read_unlock(&journal->j_state_lock);
552 		return 0;
553 	}
554 	tid = transaction->t_tid;
555 	read_unlock(&journal->j_state_lock);
556 	if (need_to_start)
557 		jbd2_log_start_commit(journal, tid);
558 	ret = jbd2_log_wait_commit(journal, tid);
559 	if (!ret)
560 		ret = 1;
561 
562 	return ret;
563 }
564 
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575 	int ret;
576 
577 	ret = __jbd2_journal_force_commit(journal);
578 	return ret > 0;
579 }
580 
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590 	int ret;
591 
592 	J_ASSERT(!current->journal_info);
593 	ret = __jbd2_journal_force_commit(journal);
594 	if (ret > 0)
595 		ret = 0;
596 	return ret;
597 }
598 
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606 	int ret = 0;
607 
608 	write_lock(&journal->j_state_lock);
609 	if (journal->j_running_transaction) {
610 		tid_t tid = journal->j_running_transaction->t_tid;
611 
612 		__jbd2_log_start_commit(journal, tid);
613 		/* There's a running transaction and we've just made sure
614 		 * it's commit has been scheduled. */
615 		if (ptid)
616 			*ptid = tid;
617 		ret = 1;
618 	} else if (journal->j_committing_transaction) {
619 		/*
620 		 * If commit has been started, then we have to wait for
621 		 * completion of that transaction.
622 		 */
623 		if (ptid)
624 			*ptid = journal->j_committing_transaction->t_tid;
625 		ret = 1;
626 	}
627 	write_unlock(&journal->j_state_lock);
628 	return ret;
629 }
630 
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639 	int ret = 0;
640 	transaction_t *commit_trans;
641 
642 	if (!(journal->j_flags & JBD2_BARRIER))
643 		return 0;
644 	read_lock(&journal->j_state_lock);
645 	/* Transaction already committed? */
646 	if (tid_geq(journal->j_commit_sequence, tid))
647 		goto out;
648 	commit_trans = journal->j_committing_transaction;
649 	if (!commit_trans || commit_trans->t_tid != tid) {
650 		ret = 1;
651 		goto out;
652 	}
653 	/*
654 	 * Transaction is being committed and we already proceeded to
655 	 * submitting a flush to fs partition?
656 	 */
657 	if (journal->j_fs_dev != journal->j_dev) {
658 		if (!commit_trans->t_need_data_flush ||
659 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
660 			goto out;
661 	} else {
662 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663 			goto out;
664 	}
665 	ret = 1;
666 out:
667 	read_unlock(&journal->j_state_lock);
668 	return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671 
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678 	int err = 0;
679 
680 	read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682 	/*
683 	 * Some callers make sure transaction is already committing and in that
684 	 * case we cannot block on open handles anymore. So don't warn in that
685 	 * case.
686 	 */
687 	if (tid_gt(tid, journal->j_commit_sequence) &&
688 	    (!journal->j_committing_transaction ||
689 	     journal->j_committing_transaction->t_tid != tid)) {
690 		read_unlock(&journal->j_state_lock);
691 		jbd2_might_wait_for_commit(journal);
692 		read_lock(&journal->j_state_lock);
693 	}
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696 	if (!tid_geq(journal->j_commit_request, tid)) {
697 		printk(KERN_ERR
698 		       "%s: error: j_commit_request=%u, tid=%u\n",
699 		       __func__, journal->j_commit_request, tid);
700 	}
701 #endif
702 	while (tid_gt(tid, journal->j_commit_sequence)) {
703 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704 				  tid, journal->j_commit_sequence);
705 		read_unlock(&journal->j_state_lock);
706 		wake_up(&journal->j_wait_commit);
707 		wait_event(journal->j_wait_done_commit,
708 				!tid_gt(tid, journal->j_commit_sequence));
709 		read_lock(&journal->j_state_lock);
710 	}
711 	read_unlock(&journal->j_state_lock);
712 
713 	if (unlikely(is_journal_aborted(journal)))
714 		err = -EIO;
715 	return err;
716 }
717 
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721 	int ret = 1;
722 
723 	read_lock(&journal->j_state_lock);
724 	if (journal->j_running_transaction &&
725 	    journal->j_running_transaction->t_tid == tid)
726 		ret = 0;
727 	if (journal->j_committing_transaction &&
728 	    journal->j_committing_transaction->t_tid == tid)
729 		ret = 0;
730 	read_unlock(&journal->j_state_lock);
731 	return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734 
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744 	int	need_to_wait = 1;
745 
746 	read_lock(&journal->j_state_lock);
747 	if (journal->j_running_transaction &&
748 	    journal->j_running_transaction->t_tid == tid) {
749 		if (journal->j_commit_request != tid) {
750 			/* transaction not yet started, so request it */
751 			read_unlock(&journal->j_state_lock);
752 			jbd2_log_start_commit(journal, tid);
753 			goto wait_commit;
754 		}
755 	} else if (!(journal->j_committing_transaction &&
756 		     journal->j_committing_transaction->t_tid == tid))
757 		need_to_wait = 0;
758 	read_unlock(&journal->j_state_lock);
759 	if (!need_to_wait)
760 		return 0;
761 wait_commit:
762 	return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765 
766 /*
767  * Log buffer allocation routines:
768  */
769 
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772 	unsigned long blocknr;
773 
774 	write_lock(&journal->j_state_lock);
775 	J_ASSERT(journal->j_free > 1);
776 
777 	blocknr = journal->j_head;
778 	journal->j_head++;
779 	journal->j_free--;
780 	if (journal->j_head == journal->j_last)
781 		journal->j_head = journal->j_first;
782 	write_unlock(&journal->j_state_lock);
783 	return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785 
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794 		 unsigned long long *retp)
795 {
796 	int err = 0;
797 	unsigned long long ret;
798 
799 	if (journal->j_inode) {
800 		ret = bmap(journal->j_inode, blocknr);
801 		if (ret)
802 			*retp = ret;
803 		else {
804 			printk(KERN_ALERT "%s: journal block not found "
805 					"at offset %lu on %s\n",
806 			       __func__, blocknr, journal->j_devname);
807 			err = -EIO;
808 			__journal_abort_soft(journal, err);
809 		}
810 	} else {
811 		*retp = blocknr; /* +journal->j_blk_offset */
812 	}
813 	return err;
814 }
815 
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829 	journal_t *journal = transaction->t_journal;
830 	struct buffer_head *bh;
831 	unsigned long long blocknr;
832 	journal_header_t *header;
833 	int err;
834 
835 	err = jbd2_journal_next_log_block(journal, &blocknr);
836 
837 	if (err)
838 		return NULL;
839 
840 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841 	if (!bh)
842 		return NULL;
843 	atomic_dec(&transaction->t_outstanding_credits);
844 	lock_buffer(bh);
845 	memset(bh->b_data, 0, journal->j_blocksize);
846 	header = (journal_header_t *)bh->b_data;
847 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848 	header->h_blocktype = cpu_to_be32(type);
849 	header->h_sequence = cpu_to_be32(transaction->t_tid);
850 	set_buffer_uptodate(bh);
851 	unlock_buffer(bh);
852 	BUFFER_TRACE(bh, "return this buffer");
853 	return bh;
854 }
855 
856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858 	struct jbd2_journal_block_tail *tail;
859 	__u32 csum;
860 
861 	if (!jbd2_journal_has_csum_v2or3(j))
862 		return;
863 
864 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865 			sizeof(struct jbd2_journal_block_tail));
866 	tail->t_checksum = 0;
867 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868 	tail->t_checksum = cpu_to_be32(csum);
869 }
870 
871 /*
872  * Return tid of the oldest transaction in the journal and block in the journal
873  * where the transaction starts.
874  *
875  * If the journal is now empty, return which will be the next transaction ID
876  * we will write and where will that transaction start.
877  *
878  * The return value is 0 if journal tail cannot be pushed any further, 1 if
879  * it can.
880  */
881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882 			      unsigned long *block)
883 {
884 	transaction_t *transaction;
885 	int ret;
886 
887 	read_lock(&journal->j_state_lock);
888 	spin_lock(&journal->j_list_lock);
889 	transaction = journal->j_checkpoint_transactions;
890 	if (transaction) {
891 		*tid = transaction->t_tid;
892 		*block = transaction->t_log_start;
893 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
894 		*tid = transaction->t_tid;
895 		*block = transaction->t_log_start;
896 	} else if ((transaction = journal->j_running_transaction) != NULL) {
897 		*tid = transaction->t_tid;
898 		*block = journal->j_head;
899 	} else {
900 		*tid = journal->j_transaction_sequence;
901 		*block = journal->j_head;
902 	}
903 	ret = tid_gt(*tid, journal->j_tail_sequence);
904 	spin_unlock(&journal->j_list_lock);
905 	read_unlock(&journal->j_state_lock);
906 
907 	return ret;
908 }
909 
910 /*
911  * Update information in journal structure and in on disk journal superblock
912  * about log tail. This function does not check whether information passed in
913  * really pushes log tail further. It's responsibility of the caller to make
914  * sure provided log tail information is valid (e.g. by holding
915  * j_checkpoint_mutex all the time between computing log tail and calling this
916  * function as is the case with jbd2_cleanup_journal_tail()).
917  *
918  * Requires j_checkpoint_mutex
919  */
920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922 	unsigned long freed;
923 	int ret;
924 
925 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926 
927 	/*
928 	 * We cannot afford for write to remain in drive's caches since as
929 	 * soon as we update j_tail, next transaction can start reusing journal
930 	 * space and if we lose sb update during power failure we'd replay
931 	 * old transaction with possibly newly overwritten data.
932 	 */
933 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934 					      REQ_SYNC | REQ_FUA);
935 	if (ret)
936 		goto out;
937 
938 	write_lock(&journal->j_state_lock);
939 	freed = block - journal->j_tail;
940 	if (block < journal->j_tail)
941 		freed += journal->j_last - journal->j_first;
942 
943 	trace_jbd2_update_log_tail(journal, tid, block, freed);
944 	jbd_debug(1,
945 		  "Cleaning journal tail from %u to %u (offset %lu), "
946 		  "freeing %lu\n",
947 		  journal->j_tail_sequence, tid, block, freed);
948 
949 	journal->j_free += freed;
950 	journal->j_tail_sequence = tid;
951 	journal->j_tail = block;
952 	write_unlock(&journal->j_state_lock);
953 
954 out:
955 	return ret;
956 }
957 
958 /*
959  * This is a variation of __jbd2_update_log_tail which checks for validity of
960  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961  * with other threads updating log tail.
962  */
963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965 	mutex_lock_io(&journal->j_checkpoint_mutex);
966 	if (tid_gt(tid, journal->j_tail_sequence))
967 		__jbd2_update_log_tail(journal, tid, block);
968 	mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970 
971 struct jbd2_stats_proc_session {
972 	journal_t *journal;
973 	struct transaction_stats_s *stats;
974 	int start;
975 	int max;
976 };
977 
978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980 	return *pos ? NULL : SEQ_START_TOKEN;
981 }
982 
983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985 	return NULL;
986 }
987 
988 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
989 {
990 	struct jbd2_stats_proc_session *s = seq->private;
991 
992 	if (v != SEQ_START_TOKEN)
993 		return 0;
994 	seq_printf(seq, "%lu transactions (%lu requested), "
995 		   "each up to %u blocks\n",
996 		   s->stats->ts_tid, s->stats->ts_requested,
997 		   s->journal->j_max_transaction_buffers);
998 	if (s->stats->ts_tid == 0)
999 		return 0;
1000 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1001 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1002 	seq_printf(seq, "  %ums request delay\n",
1003 	    (s->stats->ts_requested == 0) ? 0 :
1004 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1005 			     s->stats->ts_requested));
1006 	seq_printf(seq, "  %ums running transaction\n",
1007 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1008 	seq_printf(seq, "  %ums transaction was being locked\n",
1009 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1010 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums logging transaction\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1014 	seq_printf(seq, "  %lluus average transaction commit time\n",
1015 		   div_u64(s->journal->j_average_commit_time, 1000));
1016 	seq_printf(seq, "  %lu handles per transaction\n",
1017 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1018 	seq_printf(seq, "  %lu blocks per transaction\n",
1019 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1020 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1021 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1022 	return 0;
1023 }
1024 
1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1026 {
1027 }
1028 
1029 static const struct seq_operations jbd2_seq_info_ops = {
1030 	.start  = jbd2_seq_info_start,
1031 	.next   = jbd2_seq_info_next,
1032 	.stop   = jbd2_seq_info_stop,
1033 	.show   = jbd2_seq_info_show,
1034 };
1035 
1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1037 {
1038 	journal_t *journal = PDE_DATA(inode);
1039 	struct jbd2_stats_proc_session *s;
1040 	int rc, size;
1041 
1042 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1043 	if (s == NULL)
1044 		return -ENOMEM;
1045 	size = sizeof(struct transaction_stats_s);
1046 	s->stats = kmalloc(size, GFP_KERNEL);
1047 	if (s->stats == NULL) {
1048 		kfree(s);
1049 		return -ENOMEM;
1050 	}
1051 	spin_lock(&journal->j_history_lock);
1052 	memcpy(s->stats, &journal->j_stats, size);
1053 	s->journal = journal;
1054 	spin_unlock(&journal->j_history_lock);
1055 
1056 	rc = seq_open(file, &jbd2_seq_info_ops);
1057 	if (rc == 0) {
1058 		struct seq_file *m = file->private_data;
1059 		m->private = s;
1060 	} else {
1061 		kfree(s->stats);
1062 		kfree(s);
1063 	}
1064 	return rc;
1065 
1066 }
1067 
1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1069 {
1070 	struct seq_file *seq = file->private_data;
1071 	struct jbd2_stats_proc_session *s = seq->private;
1072 	kfree(s->stats);
1073 	kfree(s);
1074 	return seq_release(inode, file);
1075 }
1076 
1077 static const struct file_operations jbd2_seq_info_fops = {
1078 	.owner		= THIS_MODULE,
1079 	.open           = jbd2_seq_info_open,
1080 	.read           = seq_read,
1081 	.llseek         = seq_lseek,
1082 	.release        = jbd2_seq_info_release,
1083 };
1084 
1085 static struct proc_dir_entry *proc_jbd2_stats;
1086 
1087 static void jbd2_stats_proc_init(journal_t *journal)
1088 {
1089 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1090 	if (journal->j_proc_entry) {
1091 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1092 				 &jbd2_seq_info_fops, journal);
1093 	}
1094 }
1095 
1096 static void jbd2_stats_proc_exit(journal_t *journal)
1097 {
1098 	remove_proc_entry("info", journal->j_proc_entry);
1099 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1100 }
1101 
1102 /* Minimum size of descriptor tag */
1103 static int jbd2_min_tag_size(void)
1104 {
1105 	/*
1106 	 * Tag with 32-bit block numbers does not use last four bytes of the
1107 	 * structure
1108 	 */
1109 	return sizeof(journal_block_tag_t) - 4;
1110 }
1111 
1112 /*
1113  * Management for journal control blocks: functions to create and
1114  * destroy journal_t structures, and to initialise and read existing
1115  * journal blocks from disk.  */
1116 
1117 /* First: create and setup a journal_t object in memory.  We initialise
1118  * very few fields yet: that has to wait until we have created the
1119  * journal structures from from scratch, or loaded them from disk. */
1120 
1121 static journal_t *journal_init_common(struct block_device *bdev,
1122 			struct block_device *fs_dev,
1123 			unsigned long long start, int len, int blocksize)
1124 {
1125 	static struct lock_class_key jbd2_trans_commit_key;
1126 	journal_t *journal;
1127 	int err;
1128 	struct buffer_head *bh;
1129 	int n;
1130 
1131 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1132 	if (!journal)
1133 		return NULL;
1134 
1135 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1136 	init_waitqueue_head(&journal->j_wait_done_commit);
1137 	init_waitqueue_head(&journal->j_wait_commit);
1138 	init_waitqueue_head(&journal->j_wait_updates);
1139 	init_waitqueue_head(&journal->j_wait_reserved);
1140 	mutex_init(&journal->j_barrier);
1141 	mutex_init(&journal->j_checkpoint_mutex);
1142 	spin_lock_init(&journal->j_revoke_lock);
1143 	spin_lock_init(&journal->j_list_lock);
1144 	rwlock_init(&journal->j_state_lock);
1145 
1146 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1147 	journal->j_min_batch_time = 0;
1148 	journal->j_max_batch_time = 15000; /* 15ms */
1149 	atomic_set(&journal->j_reserved_credits, 0);
1150 
1151 	/* The journal is marked for error until we succeed with recovery! */
1152 	journal->j_flags = JBD2_ABORT;
1153 
1154 	/* Set up a default-sized revoke table for the new mount. */
1155 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1156 	if (err)
1157 		goto err_cleanup;
1158 
1159 	spin_lock_init(&journal->j_history_lock);
1160 
1161 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1162 			 &jbd2_trans_commit_key, 0);
1163 
1164 	/* journal descriptor can store up to n blocks -bzzz */
1165 	journal->j_blocksize = blocksize;
1166 	journal->j_dev = bdev;
1167 	journal->j_fs_dev = fs_dev;
1168 	journal->j_blk_offset = start;
1169 	journal->j_maxlen = len;
1170 	/* We need enough buffers to write out full descriptor block. */
1171 	n = journal->j_blocksize / jbd2_min_tag_size();
1172 	journal->j_wbufsize = n;
1173 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1174 					GFP_KERNEL);
1175 	if (!journal->j_wbuf)
1176 		goto err_cleanup;
1177 
1178 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1179 	if (!bh) {
1180 		pr_err("%s: Cannot get buffer for journal superblock\n",
1181 			__func__);
1182 		goto err_cleanup;
1183 	}
1184 	journal->j_sb_buffer = bh;
1185 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1186 
1187 	return journal;
1188 
1189 err_cleanup:
1190 	kfree(journal->j_wbuf);
1191 	jbd2_journal_destroy_revoke(journal);
1192 	kfree(journal);
1193 	return NULL;
1194 }
1195 
1196 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1197  *
1198  * Create a journal structure assigned some fixed set of disk blocks to
1199  * the journal.  We don't actually touch those disk blocks yet, but we
1200  * need to set up all of the mapping information to tell the journaling
1201  * system where the journal blocks are.
1202  *
1203  */
1204 
1205 /**
1206  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1207  *  @bdev: Block device on which to create the journal
1208  *  @fs_dev: Device which hold journalled filesystem for this journal.
1209  *  @start: Block nr Start of journal.
1210  *  @len:  Length of the journal in blocks.
1211  *  @blocksize: blocksize of journalling device
1212  *
1213  *  Returns: a newly created journal_t *
1214  *
1215  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1216  *  range of blocks on an arbitrary block device.
1217  *
1218  */
1219 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1220 			struct block_device *fs_dev,
1221 			unsigned long long start, int len, int blocksize)
1222 {
1223 	journal_t *journal;
1224 
1225 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1226 	if (!journal)
1227 		return NULL;
1228 
1229 	bdevname(journal->j_dev, journal->j_devname);
1230 	strreplace(journal->j_devname, '/', '!');
1231 	jbd2_stats_proc_init(journal);
1232 
1233 	return journal;
1234 }
1235 
1236 /**
1237  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1238  *  @inode: An inode to create the journal in
1239  *
1240  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1241  * the journal.  The inode must exist already, must support bmap() and
1242  * must have all data blocks preallocated.
1243  */
1244 journal_t *jbd2_journal_init_inode(struct inode *inode)
1245 {
1246 	journal_t *journal;
1247 	char *p;
1248 	unsigned long long blocknr;
1249 
1250 	blocknr = bmap(inode, 0);
1251 	if (!blocknr) {
1252 		pr_err("%s: Cannot locate journal superblock\n",
1253 			__func__);
1254 		return NULL;
1255 	}
1256 
1257 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1258 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1259 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1260 
1261 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1262 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1263 			inode->i_sb->s_blocksize);
1264 	if (!journal)
1265 		return NULL;
1266 
1267 	journal->j_inode = inode;
1268 	bdevname(journal->j_dev, journal->j_devname);
1269 	p = strreplace(journal->j_devname, '/', '!');
1270 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1271 	jbd2_stats_proc_init(journal);
1272 
1273 	return journal;
1274 }
1275 
1276 /*
1277  * If the journal init or create aborts, we need to mark the journal
1278  * superblock as being NULL to prevent the journal destroy from writing
1279  * back a bogus superblock.
1280  */
1281 static void journal_fail_superblock (journal_t *journal)
1282 {
1283 	struct buffer_head *bh = journal->j_sb_buffer;
1284 	brelse(bh);
1285 	journal->j_sb_buffer = NULL;
1286 }
1287 
1288 /*
1289  * Given a journal_t structure, initialise the various fields for
1290  * startup of a new journaling session.  We use this both when creating
1291  * a journal, and after recovering an old journal to reset it for
1292  * subsequent use.
1293  */
1294 
1295 static int journal_reset(journal_t *journal)
1296 {
1297 	journal_superblock_t *sb = journal->j_superblock;
1298 	unsigned long long first, last;
1299 
1300 	first = be32_to_cpu(sb->s_first);
1301 	last = be32_to_cpu(sb->s_maxlen);
1302 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1303 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1304 		       first, last);
1305 		journal_fail_superblock(journal);
1306 		return -EINVAL;
1307 	}
1308 
1309 	journal->j_first = first;
1310 	journal->j_last = last;
1311 
1312 	journal->j_head = first;
1313 	journal->j_tail = first;
1314 	journal->j_free = last - first;
1315 
1316 	journal->j_tail_sequence = journal->j_transaction_sequence;
1317 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1318 	journal->j_commit_request = journal->j_commit_sequence;
1319 
1320 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1321 
1322 	/*
1323 	 * As a special case, if the on-disk copy is already marked as needing
1324 	 * no recovery (s_start == 0), then we can safely defer the superblock
1325 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1326 	 * attempting a write to a potential-readonly device.
1327 	 */
1328 	if (sb->s_start == 0) {
1329 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1330 			"(start %ld, seq %u, errno %d)\n",
1331 			journal->j_tail, journal->j_tail_sequence,
1332 			journal->j_errno);
1333 		journal->j_flags |= JBD2_FLUSHED;
1334 	} else {
1335 		/* Lock here to make assertions happy... */
1336 		mutex_lock_io(&journal->j_checkpoint_mutex);
1337 		/*
1338 		 * Update log tail information. We use REQ_FUA since new
1339 		 * transaction will start reusing journal space and so we
1340 		 * must make sure information about current log tail is on
1341 		 * disk before that.
1342 		 */
1343 		jbd2_journal_update_sb_log_tail(journal,
1344 						journal->j_tail_sequence,
1345 						journal->j_tail,
1346 						REQ_SYNC | REQ_FUA);
1347 		mutex_unlock(&journal->j_checkpoint_mutex);
1348 	}
1349 	return jbd2_journal_start_thread(journal);
1350 }
1351 
1352 /*
1353  * This function expects that the caller will have locked the journal
1354  * buffer head, and will return with it unlocked
1355  */
1356 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1357 {
1358 	struct buffer_head *bh = journal->j_sb_buffer;
1359 	journal_superblock_t *sb = journal->j_superblock;
1360 	int ret;
1361 
1362 	/* Buffer got discarded which means block device got invalidated */
1363 	if (!buffer_mapped(bh))
1364 		return -EIO;
1365 
1366 	trace_jbd2_write_superblock(journal, write_flags);
1367 	if (!(journal->j_flags & JBD2_BARRIER))
1368 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1369 	if (buffer_write_io_error(bh)) {
1370 		/*
1371 		 * Oh, dear.  A previous attempt to write the journal
1372 		 * superblock failed.  This could happen because the
1373 		 * USB device was yanked out.  Or it could happen to
1374 		 * be a transient write error and maybe the block will
1375 		 * be remapped.  Nothing we can do but to retry the
1376 		 * write and hope for the best.
1377 		 */
1378 		printk(KERN_ERR "JBD2: previous I/O error detected "
1379 		       "for journal superblock update for %s.\n",
1380 		       journal->j_devname);
1381 		clear_buffer_write_io_error(bh);
1382 		set_buffer_uptodate(bh);
1383 	}
1384 	if (jbd2_journal_has_csum_v2or3(journal))
1385 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1386 	get_bh(bh);
1387 	bh->b_end_io = end_buffer_write_sync;
1388 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1389 	wait_on_buffer(bh);
1390 	if (buffer_write_io_error(bh)) {
1391 		clear_buffer_write_io_error(bh);
1392 		set_buffer_uptodate(bh);
1393 		ret = -EIO;
1394 	}
1395 	if (ret) {
1396 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1397 		       "journal superblock for %s.\n", ret,
1398 		       journal->j_devname);
1399 		jbd2_journal_abort(journal, ret);
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /**
1406  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1407  * @journal: The journal to update.
1408  * @tail_tid: TID of the new transaction at the tail of the log
1409  * @tail_block: The first block of the transaction at the tail of the log
1410  * @write_op: With which operation should we write the journal sb
1411  *
1412  * Update a journal's superblock information about log tail and write it to
1413  * disk, waiting for the IO to complete.
1414  */
1415 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1416 				     unsigned long tail_block, int write_op)
1417 {
1418 	journal_superblock_t *sb = journal->j_superblock;
1419 	int ret;
1420 
1421 	if (is_journal_aborted(journal))
1422 		return -EIO;
1423 
1424 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1425 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1426 		  tail_block, tail_tid);
1427 
1428 	lock_buffer(journal->j_sb_buffer);
1429 	sb->s_sequence = cpu_to_be32(tail_tid);
1430 	sb->s_start    = cpu_to_be32(tail_block);
1431 
1432 	ret = jbd2_write_superblock(journal, write_op);
1433 	if (ret)
1434 		goto out;
1435 
1436 	/* Log is no longer empty */
1437 	write_lock(&journal->j_state_lock);
1438 	WARN_ON(!sb->s_sequence);
1439 	journal->j_flags &= ~JBD2_FLUSHED;
1440 	write_unlock(&journal->j_state_lock);
1441 
1442 out:
1443 	return ret;
1444 }
1445 
1446 /**
1447  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1448  * @journal: The journal to update.
1449  * @write_op: With which operation should we write the journal sb
1450  *
1451  * Update a journal's dynamic superblock fields to show that journal is empty.
1452  * Write updated superblock to disk waiting for IO to complete.
1453  */
1454 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1455 {
1456 	journal_superblock_t *sb = journal->j_superblock;
1457 
1458 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1459 	lock_buffer(journal->j_sb_buffer);
1460 	if (sb->s_start == 0) {		/* Is it already empty? */
1461 		unlock_buffer(journal->j_sb_buffer);
1462 		return;
1463 	}
1464 
1465 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1466 		  journal->j_tail_sequence);
1467 
1468 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1469 	sb->s_start    = cpu_to_be32(0);
1470 
1471 	jbd2_write_superblock(journal, write_op);
1472 
1473 	/* Log is no longer empty */
1474 	write_lock(&journal->j_state_lock);
1475 	journal->j_flags |= JBD2_FLUSHED;
1476 	write_unlock(&journal->j_state_lock);
1477 }
1478 
1479 
1480 /**
1481  * jbd2_journal_update_sb_errno() - Update error in the journal.
1482  * @journal: The journal to update.
1483  *
1484  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1485  * to complete.
1486  */
1487 void jbd2_journal_update_sb_errno(journal_t *journal)
1488 {
1489 	journal_superblock_t *sb = journal->j_superblock;
1490 	int errcode;
1491 
1492 	lock_buffer(journal->j_sb_buffer);
1493 	errcode = journal->j_errno;
1494 	if (errcode == -ESHUTDOWN)
1495 		errcode = 0;
1496 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1497 	sb->s_errno    = cpu_to_be32(errcode);
1498 
1499 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1500 }
1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1502 
1503 static int journal_revoke_records_per_block(journal_t *journal)
1504 {
1505 	int record_size;
1506 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1507 
1508 	if (jbd2_has_feature_64bit(journal))
1509 		record_size = 8;
1510 	else
1511 		record_size = 4;
1512 
1513 	if (jbd2_journal_has_csum_v2or3(journal))
1514 		space -= sizeof(struct jbd2_journal_block_tail);
1515 	return space / record_size;
1516 }
1517 
1518 /*
1519  * Read the superblock for a given journal, performing initial
1520  * validation of the format.
1521  */
1522 static int journal_get_superblock(journal_t *journal)
1523 {
1524 	struct buffer_head *bh;
1525 	journal_superblock_t *sb;
1526 	int err = -EIO;
1527 
1528 	bh = journal->j_sb_buffer;
1529 
1530 	J_ASSERT(bh != NULL);
1531 	if (!buffer_uptodate(bh)) {
1532 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1533 		wait_on_buffer(bh);
1534 		if (!buffer_uptodate(bh)) {
1535 			printk(KERN_ERR
1536 				"JBD2: IO error reading journal superblock\n");
1537 			goto out;
1538 		}
1539 	}
1540 
1541 	if (buffer_verified(bh))
1542 		return 0;
1543 
1544 	sb = journal->j_superblock;
1545 
1546 	err = -EINVAL;
1547 
1548 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1549 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1550 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1551 		goto out;
1552 	}
1553 
1554 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1555 	case JBD2_SUPERBLOCK_V1:
1556 		journal->j_format_version = 1;
1557 		break;
1558 	case JBD2_SUPERBLOCK_V2:
1559 		journal->j_format_version = 2;
1560 		break;
1561 	default:
1562 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1563 		goto out;
1564 	}
1565 
1566 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1567 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1568 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1569 		printk(KERN_WARNING "JBD2: journal file too short\n");
1570 		goto out;
1571 	}
1572 
1573 	if (be32_to_cpu(sb->s_first) == 0 ||
1574 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1575 		printk(KERN_WARNING
1576 			"JBD2: Invalid start block of journal: %u\n",
1577 			be32_to_cpu(sb->s_first));
1578 		goto out;
1579 	}
1580 
1581 	if (jbd2_has_feature_csum2(journal) &&
1582 	    jbd2_has_feature_csum3(journal)) {
1583 		/* Can't have checksum v2 and v3 at the same time! */
1584 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1585 		       "at the same time!\n");
1586 		goto out;
1587 	}
1588 
1589 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1590 	    jbd2_has_feature_checksum(journal)) {
1591 		/* Can't have checksum v1 and v2 on at the same time! */
1592 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1593 		       "at the same time!\n");
1594 		goto out;
1595 	}
1596 
1597 	if (!jbd2_verify_csum_type(journal, sb)) {
1598 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1599 		goto out;
1600 	}
1601 
1602 	/* Load the checksum driver */
1603 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1604 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1605 		if (IS_ERR(journal->j_chksum_driver)) {
1606 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1607 			err = PTR_ERR(journal->j_chksum_driver);
1608 			journal->j_chksum_driver = NULL;
1609 			goto out;
1610 		}
1611 	}
1612 
1613 	if (jbd2_journal_has_csum_v2or3(journal)) {
1614 		/* Check superblock checksum */
1615 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1616 			printk(KERN_ERR "JBD2: journal checksum error\n");
1617 			err = -EFSBADCRC;
1618 			goto out;
1619 		}
1620 
1621 		/* Precompute checksum seed for all metadata */
1622 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1623 						   sizeof(sb->s_uuid));
1624 	}
1625 
1626 	journal->j_revoke_records_per_block =
1627 				journal_revoke_records_per_block(journal);
1628 	set_buffer_verified(bh);
1629 
1630 	return 0;
1631 
1632 out:
1633 	journal_fail_superblock(journal);
1634 	return err;
1635 }
1636 
1637 /*
1638  * Load the on-disk journal superblock and read the key fields into the
1639  * journal_t.
1640  */
1641 
1642 static int load_superblock(journal_t *journal)
1643 {
1644 	int err;
1645 	journal_superblock_t *sb;
1646 
1647 	err = journal_get_superblock(journal);
1648 	if (err)
1649 		return err;
1650 
1651 	sb = journal->j_superblock;
1652 
1653 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1654 	journal->j_tail = be32_to_cpu(sb->s_start);
1655 	journal->j_first = be32_to_cpu(sb->s_first);
1656 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1657 	journal->j_errno = be32_to_cpu(sb->s_errno);
1658 
1659 	return 0;
1660 }
1661 
1662 
1663 /**
1664  * int jbd2_journal_load() - Read journal from disk.
1665  * @journal: Journal to act on.
1666  *
1667  * Given a journal_t structure which tells us which disk blocks contain
1668  * a journal, read the journal from disk to initialise the in-memory
1669  * structures.
1670  */
1671 int jbd2_journal_load(journal_t *journal)
1672 {
1673 	int err;
1674 	journal_superblock_t *sb;
1675 
1676 	err = load_superblock(journal);
1677 	if (err)
1678 		return err;
1679 
1680 	sb = journal->j_superblock;
1681 	/* If this is a V2 superblock, then we have to check the
1682 	 * features flags on it. */
1683 
1684 	if (journal->j_format_version >= 2) {
1685 		if ((sb->s_feature_ro_compat &
1686 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1687 		    (sb->s_feature_incompat &
1688 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1689 			printk(KERN_WARNING
1690 				"JBD2: Unrecognised features on journal\n");
1691 			return -EINVAL;
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Create a slab for this blocksize
1697 	 */
1698 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1699 	if (err)
1700 		return err;
1701 
1702 	/* Let the recovery code check whether it needs to recover any
1703 	 * data from the journal. */
1704 	if (jbd2_journal_recover(journal))
1705 		goto recovery_error;
1706 
1707 	if (journal->j_failed_commit) {
1708 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1709 		       "is corrupt.\n", journal->j_failed_commit,
1710 		       journal->j_devname);
1711 		return -EFSCORRUPTED;
1712 	}
1713 
1714 	/* OK, we've finished with the dynamic journal bits:
1715 	 * reinitialise the dynamic contents of the superblock in memory
1716 	 * and reset them on disk. */
1717 	if (journal_reset(journal))
1718 		goto recovery_error;
1719 
1720 	journal->j_flags &= ~JBD2_ABORT;
1721 	journal->j_flags |= JBD2_LOADED;
1722 	return 0;
1723 
1724 recovery_error:
1725 	printk(KERN_WARNING "JBD2: recovery failed\n");
1726 	return -EIO;
1727 }
1728 
1729 /**
1730  * void jbd2_journal_destroy() - Release a journal_t structure.
1731  * @journal: Journal to act on.
1732  *
1733  * Release a journal_t structure once it is no longer in use by the
1734  * journaled object.
1735  * Return <0 if we couldn't clean up the journal.
1736  */
1737 int jbd2_journal_destroy(journal_t *journal)
1738 {
1739 	int err = 0;
1740 
1741 	/* Wait for the commit thread to wake up and die. */
1742 	journal_kill_thread(journal);
1743 
1744 	/* Force a final log commit */
1745 	if (journal->j_running_transaction)
1746 		jbd2_journal_commit_transaction(journal);
1747 
1748 	/* Force any old transactions to disk */
1749 
1750 	/* Totally anal locking here... */
1751 	spin_lock(&journal->j_list_lock);
1752 	while (journal->j_checkpoint_transactions != NULL) {
1753 		spin_unlock(&journal->j_list_lock);
1754 		mutex_lock_io(&journal->j_checkpoint_mutex);
1755 		err = jbd2_log_do_checkpoint(journal);
1756 		mutex_unlock(&journal->j_checkpoint_mutex);
1757 		/*
1758 		 * If checkpointing failed, just free the buffers to avoid
1759 		 * looping forever
1760 		 */
1761 		if (err) {
1762 			jbd2_journal_destroy_checkpoint(journal);
1763 			spin_lock(&journal->j_list_lock);
1764 			break;
1765 		}
1766 		spin_lock(&journal->j_list_lock);
1767 	}
1768 
1769 	J_ASSERT(journal->j_running_transaction == NULL);
1770 	J_ASSERT(journal->j_committing_transaction == NULL);
1771 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1772 	spin_unlock(&journal->j_list_lock);
1773 
1774 	if (journal->j_sb_buffer) {
1775 		if (!is_journal_aborted(journal)) {
1776 			mutex_lock_io(&journal->j_checkpoint_mutex);
1777 
1778 			write_lock(&journal->j_state_lock);
1779 			journal->j_tail_sequence =
1780 				++journal->j_transaction_sequence;
1781 			write_unlock(&journal->j_state_lock);
1782 
1783 			jbd2_mark_journal_empty(journal,
1784 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1785 			mutex_unlock(&journal->j_checkpoint_mutex);
1786 		} else
1787 			err = -EIO;
1788 		brelse(journal->j_sb_buffer);
1789 	}
1790 
1791 	if (journal->j_proc_entry)
1792 		jbd2_stats_proc_exit(journal);
1793 	iput(journal->j_inode);
1794 	if (journal->j_revoke)
1795 		jbd2_journal_destroy_revoke(journal);
1796 	if (journal->j_chksum_driver)
1797 		crypto_free_shash(journal->j_chksum_driver);
1798 	kfree(journal->j_wbuf);
1799 	kfree(journal);
1800 
1801 	return err;
1802 }
1803 
1804 
1805 /**
1806  *int jbd2_journal_check_used_features () - Check if features specified are used.
1807  * @journal: Journal to check.
1808  * @compat: bitmask of compatible features
1809  * @ro: bitmask of features that force read-only mount
1810  * @incompat: bitmask of incompatible features
1811  *
1812  * Check whether the journal uses all of a given set of
1813  * features.  Return true (non-zero) if it does.
1814  **/
1815 
1816 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1817 				 unsigned long ro, unsigned long incompat)
1818 {
1819 	journal_superblock_t *sb;
1820 
1821 	if (!compat && !ro && !incompat)
1822 		return 1;
1823 	/* Load journal superblock if it is not loaded yet. */
1824 	if (journal->j_format_version == 0 &&
1825 	    journal_get_superblock(journal) != 0)
1826 		return 0;
1827 	if (journal->j_format_version == 1)
1828 		return 0;
1829 
1830 	sb = journal->j_superblock;
1831 
1832 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1833 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1834 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1835 		return 1;
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1842  * @journal: Journal to check.
1843  * @compat: bitmask of compatible features
1844  * @ro: bitmask of features that force read-only mount
1845  * @incompat: bitmask of incompatible features
1846  *
1847  * Check whether the journaling code supports the use of
1848  * all of a given set of features on this journal.  Return true
1849  * (non-zero) if it can. */
1850 
1851 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1852 				      unsigned long ro, unsigned long incompat)
1853 {
1854 	if (!compat && !ro && !incompat)
1855 		return 1;
1856 
1857 	/* We can support any known requested features iff the
1858 	 * superblock is in version 2.  Otherwise we fail to support any
1859 	 * extended sb features. */
1860 
1861 	if (journal->j_format_version != 2)
1862 		return 0;
1863 
1864 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1865 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1866 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1867 		return 1;
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1874  * @journal: Journal to act on.
1875  * @compat: bitmask of compatible features
1876  * @ro: bitmask of features that force read-only mount
1877  * @incompat: bitmask of incompatible features
1878  *
1879  * Mark a given journal feature as present on the
1880  * superblock.  Returns true if the requested features could be set.
1881  *
1882  */
1883 
1884 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1885 			  unsigned long ro, unsigned long incompat)
1886 {
1887 #define INCOMPAT_FEATURE_ON(f) \
1888 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1889 #define COMPAT_FEATURE_ON(f) \
1890 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1891 	journal_superblock_t *sb;
1892 
1893 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1894 		return 1;
1895 
1896 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1897 		return 0;
1898 
1899 	/* If enabling v2 checksums, turn on v3 instead */
1900 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1901 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1902 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1903 	}
1904 
1905 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1906 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1907 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1908 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1909 
1910 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1911 		  compat, ro, incompat);
1912 
1913 	sb = journal->j_superblock;
1914 
1915 	/* Load the checksum driver if necessary */
1916 	if ((journal->j_chksum_driver == NULL) &&
1917 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1918 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1919 		if (IS_ERR(journal->j_chksum_driver)) {
1920 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1921 			journal->j_chksum_driver = NULL;
1922 			return 0;
1923 		}
1924 		/* Precompute checksum seed for all metadata */
1925 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1926 						   sizeof(sb->s_uuid));
1927 	}
1928 
1929 	lock_buffer(journal->j_sb_buffer);
1930 
1931 	/* If enabling v3 checksums, update superblock */
1932 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1933 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1934 		sb->s_feature_compat &=
1935 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1936 	}
1937 
1938 	/* If enabling v1 checksums, downgrade superblock */
1939 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1940 		sb->s_feature_incompat &=
1941 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1942 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1943 
1944 	sb->s_feature_compat    |= cpu_to_be32(compat);
1945 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1946 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1947 	unlock_buffer(journal->j_sb_buffer);
1948 	journal->j_revoke_records_per_block =
1949 				journal_revoke_records_per_block(journal);
1950 
1951 	return 1;
1952 #undef COMPAT_FEATURE_ON
1953 #undef INCOMPAT_FEATURE_ON
1954 }
1955 
1956 /*
1957  * jbd2_journal_clear_features () - Clear a given journal feature in the
1958  * 				    superblock
1959  * @journal: Journal to act on.
1960  * @compat: bitmask of compatible features
1961  * @ro: bitmask of features that force read-only mount
1962  * @incompat: bitmask of incompatible features
1963  *
1964  * Clear a given journal feature as present on the
1965  * superblock.
1966  */
1967 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1968 				unsigned long ro, unsigned long incompat)
1969 {
1970 	journal_superblock_t *sb;
1971 
1972 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1973 		  compat, ro, incompat);
1974 
1975 	sb = journal->j_superblock;
1976 
1977 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1978 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1979 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1980 	journal->j_revoke_records_per_block =
1981 				journal_revoke_records_per_block(journal);
1982 }
1983 EXPORT_SYMBOL(jbd2_journal_clear_features);
1984 
1985 /**
1986  * int jbd2_journal_flush () - Flush journal
1987  * @journal: Journal to act on.
1988  *
1989  * Flush all data for a given journal to disk and empty the journal.
1990  * Filesystems can use this when remounting readonly to ensure that
1991  * recovery does not need to happen on remount.
1992  */
1993 
1994 int jbd2_journal_flush(journal_t *journal)
1995 {
1996 	int err = 0;
1997 	transaction_t *transaction = NULL;
1998 
1999 	write_lock(&journal->j_state_lock);
2000 
2001 	/* Force everything buffered to the log... */
2002 	if (journal->j_running_transaction) {
2003 		transaction = journal->j_running_transaction;
2004 		__jbd2_log_start_commit(journal, transaction->t_tid);
2005 	} else if (journal->j_committing_transaction)
2006 		transaction = journal->j_committing_transaction;
2007 
2008 	/* Wait for the log commit to complete... */
2009 	if (transaction) {
2010 		tid_t tid = transaction->t_tid;
2011 
2012 		write_unlock(&journal->j_state_lock);
2013 		jbd2_log_wait_commit(journal, tid);
2014 	} else {
2015 		write_unlock(&journal->j_state_lock);
2016 	}
2017 
2018 	/* ...and flush everything in the log out to disk. */
2019 	spin_lock(&journal->j_list_lock);
2020 	while (!err && journal->j_checkpoint_transactions != NULL) {
2021 		spin_unlock(&journal->j_list_lock);
2022 		mutex_lock_io(&journal->j_checkpoint_mutex);
2023 		err = jbd2_log_do_checkpoint(journal);
2024 		mutex_unlock(&journal->j_checkpoint_mutex);
2025 		spin_lock(&journal->j_list_lock);
2026 	}
2027 	spin_unlock(&journal->j_list_lock);
2028 
2029 	if (is_journal_aborted(journal))
2030 		return -EIO;
2031 
2032 	mutex_lock_io(&journal->j_checkpoint_mutex);
2033 	if (!err) {
2034 		err = jbd2_cleanup_journal_tail(journal);
2035 		if (err < 0) {
2036 			mutex_unlock(&journal->j_checkpoint_mutex);
2037 			goto out;
2038 		}
2039 		err = 0;
2040 	}
2041 
2042 	/* Finally, mark the journal as really needing no recovery.
2043 	 * This sets s_start==0 in the underlying superblock, which is
2044 	 * the magic code for a fully-recovered superblock.  Any future
2045 	 * commits of data to the journal will restore the current
2046 	 * s_start value. */
2047 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2048 	mutex_unlock(&journal->j_checkpoint_mutex);
2049 	write_lock(&journal->j_state_lock);
2050 	J_ASSERT(!journal->j_running_transaction);
2051 	J_ASSERT(!journal->j_committing_transaction);
2052 	J_ASSERT(!journal->j_checkpoint_transactions);
2053 	J_ASSERT(journal->j_head == journal->j_tail);
2054 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2055 	write_unlock(&journal->j_state_lock);
2056 out:
2057 	return err;
2058 }
2059 
2060 /**
2061  * int jbd2_journal_wipe() - Wipe journal contents
2062  * @journal: Journal to act on.
2063  * @write: flag (see below)
2064  *
2065  * Wipe out all of the contents of a journal, safely.  This will produce
2066  * a warning if the journal contains any valid recovery information.
2067  * Must be called between journal_init_*() and jbd2_journal_load().
2068  *
2069  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2070  * we merely suppress recovery.
2071  */
2072 
2073 int jbd2_journal_wipe(journal_t *journal, int write)
2074 {
2075 	int err = 0;
2076 
2077 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2078 
2079 	err = load_superblock(journal);
2080 	if (err)
2081 		return err;
2082 
2083 	if (!journal->j_tail)
2084 		goto no_recovery;
2085 
2086 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2087 		write ? "Clearing" : "Ignoring");
2088 
2089 	err = jbd2_journal_skip_recovery(journal);
2090 	if (write) {
2091 		/* Lock to make assertions happy... */
2092 		mutex_lock_io(&journal->j_checkpoint_mutex);
2093 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2094 		mutex_unlock(&journal->j_checkpoint_mutex);
2095 	}
2096 
2097  no_recovery:
2098 	return err;
2099 }
2100 
2101 /*
2102  * Journal abort has very specific semantics, which we describe
2103  * for journal abort.
2104  *
2105  * Two internal functions, which provide abort to the jbd layer
2106  * itself are here.
2107  */
2108 
2109 /*
2110  * Quick version for internal journal use (doesn't lock the journal).
2111  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2112  * and don't attempt to make any other journal updates.
2113  */
2114 void __jbd2_journal_abort_hard(journal_t *journal)
2115 {
2116 	transaction_t *transaction;
2117 
2118 	if (journal->j_flags & JBD2_ABORT)
2119 		return;
2120 
2121 	printk(KERN_ERR "Aborting journal on device %s.\n",
2122 	       journal->j_devname);
2123 
2124 	write_lock(&journal->j_state_lock);
2125 	journal->j_flags |= JBD2_ABORT;
2126 	transaction = journal->j_running_transaction;
2127 	if (transaction)
2128 		__jbd2_log_start_commit(journal, transaction->t_tid);
2129 	write_unlock(&journal->j_state_lock);
2130 }
2131 
2132 /* Soft abort: record the abort error status in the journal superblock,
2133  * but don't do any other IO. */
2134 static void __journal_abort_soft (journal_t *journal, int errno)
2135 {
2136 	int old_errno;
2137 
2138 	write_lock(&journal->j_state_lock);
2139 	old_errno = journal->j_errno;
2140 	if (!journal->j_errno || errno == -ESHUTDOWN)
2141 		journal->j_errno = errno;
2142 
2143 	if (journal->j_flags & JBD2_ABORT) {
2144 		write_unlock(&journal->j_state_lock);
2145 		if (!old_errno && old_errno != -ESHUTDOWN &&
2146 		    errno == -ESHUTDOWN)
2147 			jbd2_journal_update_sb_errno(journal);
2148 		return;
2149 	}
2150 	write_unlock(&journal->j_state_lock);
2151 
2152 	__jbd2_journal_abort_hard(journal);
2153 
2154 	if (errno) {
2155 		jbd2_journal_update_sb_errno(journal);
2156 		write_lock(&journal->j_state_lock);
2157 		journal->j_flags |= JBD2_REC_ERR;
2158 		write_unlock(&journal->j_state_lock);
2159 	}
2160 }
2161 
2162 /**
2163  * void jbd2_journal_abort () - Shutdown the journal immediately.
2164  * @journal: the journal to shutdown.
2165  * @errno:   an error number to record in the journal indicating
2166  *           the reason for the shutdown.
2167  *
2168  * Perform a complete, immediate shutdown of the ENTIRE
2169  * journal (not of a single transaction).  This operation cannot be
2170  * undone without closing and reopening the journal.
2171  *
2172  * The jbd2_journal_abort function is intended to support higher level error
2173  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2174  * mode.
2175  *
2176  * Journal abort has very specific semantics.  Any existing dirty,
2177  * unjournaled buffers in the main filesystem will still be written to
2178  * disk by bdflush, but the journaling mechanism will be suspended
2179  * immediately and no further transaction commits will be honoured.
2180  *
2181  * Any dirty, journaled buffers will be written back to disk without
2182  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2183  * filesystem, but we _do_ attempt to leave as much data as possible
2184  * behind for fsck to use for cleanup.
2185  *
2186  * Any attempt to get a new transaction handle on a journal which is in
2187  * ABORT state will just result in an -EROFS error return.  A
2188  * jbd2_journal_stop on an existing handle will return -EIO if we have
2189  * entered abort state during the update.
2190  *
2191  * Recursive transactions are not disturbed by journal abort until the
2192  * final jbd2_journal_stop, which will receive the -EIO error.
2193  *
2194  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2195  * which will be recorded (if possible) in the journal superblock.  This
2196  * allows a client to record failure conditions in the middle of a
2197  * transaction without having to complete the transaction to record the
2198  * failure to disk.  ext3_error, for example, now uses this
2199  * functionality.
2200  *
2201  * Errors which originate from within the journaling layer will NOT
2202  * supply an errno; a null errno implies that absolutely no further
2203  * writes are done to the journal (unless there are any already in
2204  * progress).
2205  *
2206  */
2207 
2208 void jbd2_journal_abort(journal_t *journal, int errno)
2209 {
2210 	__journal_abort_soft(journal, errno);
2211 }
2212 
2213 /**
2214  * int jbd2_journal_errno () - returns the journal's error state.
2215  * @journal: journal to examine.
2216  *
2217  * This is the errno number set with jbd2_journal_abort(), the last
2218  * time the journal was mounted - if the journal was stopped
2219  * without calling abort this will be 0.
2220  *
2221  * If the journal has been aborted on this mount time -EROFS will
2222  * be returned.
2223  */
2224 int jbd2_journal_errno(journal_t *journal)
2225 {
2226 	int err;
2227 
2228 	read_lock(&journal->j_state_lock);
2229 	if (journal->j_flags & JBD2_ABORT)
2230 		err = -EROFS;
2231 	else
2232 		err = journal->j_errno;
2233 	read_unlock(&journal->j_state_lock);
2234 	return err;
2235 }
2236 
2237 /**
2238  * int jbd2_journal_clear_err () - clears the journal's error state
2239  * @journal: journal to act on.
2240  *
2241  * An error must be cleared or acked to take a FS out of readonly
2242  * mode.
2243  */
2244 int jbd2_journal_clear_err(journal_t *journal)
2245 {
2246 	int err = 0;
2247 
2248 	write_lock(&journal->j_state_lock);
2249 	if (journal->j_flags & JBD2_ABORT)
2250 		err = -EROFS;
2251 	else
2252 		journal->j_errno = 0;
2253 	write_unlock(&journal->j_state_lock);
2254 	return err;
2255 }
2256 
2257 /**
2258  * void jbd2_journal_ack_err() - Ack journal err.
2259  * @journal: journal to act on.
2260  *
2261  * An error must be cleared or acked to take a FS out of readonly
2262  * mode.
2263  */
2264 void jbd2_journal_ack_err(journal_t *journal)
2265 {
2266 	write_lock(&journal->j_state_lock);
2267 	if (journal->j_errno)
2268 		journal->j_flags |= JBD2_ACK_ERR;
2269 	write_unlock(&journal->j_state_lock);
2270 }
2271 
2272 int jbd2_journal_blocks_per_page(struct inode *inode)
2273 {
2274 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2275 }
2276 
2277 /*
2278  * helper functions to deal with 32 or 64bit block numbers.
2279  */
2280 size_t journal_tag_bytes(journal_t *journal)
2281 {
2282 	size_t sz;
2283 
2284 	if (jbd2_has_feature_csum3(journal))
2285 		return sizeof(journal_block_tag3_t);
2286 
2287 	sz = sizeof(journal_block_tag_t);
2288 
2289 	if (jbd2_has_feature_csum2(journal))
2290 		sz += sizeof(__u16);
2291 
2292 	if (jbd2_has_feature_64bit(journal))
2293 		return sz;
2294 	else
2295 		return sz - sizeof(__u32);
2296 }
2297 
2298 /*
2299  * JBD memory management
2300  *
2301  * These functions are used to allocate block-sized chunks of memory
2302  * used for making copies of buffer_head data.  Very often it will be
2303  * page-sized chunks of data, but sometimes it will be in
2304  * sub-page-size chunks.  (For example, 16k pages on Power systems
2305  * with a 4k block file system.)  For blocks smaller than a page, we
2306  * use a SLAB allocator.  There are slab caches for each block size,
2307  * which are allocated at mount time, if necessary, and we only free
2308  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2309  * this reason we don't need to a mutex to protect access to
2310  * jbd2_slab[] allocating or releasing memory; only in
2311  * jbd2_journal_create_slab().
2312  */
2313 #define JBD2_MAX_SLABS 8
2314 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2315 
2316 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2317 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2318 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2319 };
2320 
2321 
2322 static void jbd2_journal_destroy_slabs(void)
2323 {
2324 	int i;
2325 
2326 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2327 		kmem_cache_destroy(jbd2_slab[i]);
2328 		jbd2_slab[i] = NULL;
2329 	}
2330 }
2331 
2332 static int jbd2_journal_create_slab(size_t size)
2333 {
2334 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2335 	int i = order_base_2(size) - 10;
2336 	size_t slab_size;
2337 
2338 	if (size == PAGE_SIZE)
2339 		return 0;
2340 
2341 	if (i >= JBD2_MAX_SLABS)
2342 		return -EINVAL;
2343 
2344 	if (unlikely(i < 0))
2345 		i = 0;
2346 	mutex_lock(&jbd2_slab_create_mutex);
2347 	if (jbd2_slab[i]) {
2348 		mutex_unlock(&jbd2_slab_create_mutex);
2349 		return 0;	/* Already created */
2350 	}
2351 
2352 	slab_size = 1 << (i+10);
2353 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2354 					 slab_size, 0, NULL);
2355 	mutex_unlock(&jbd2_slab_create_mutex);
2356 	if (!jbd2_slab[i]) {
2357 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2358 		return -ENOMEM;
2359 	}
2360 	return 0;
2361 }
2362 
2363 static struct kmem_cache *get_slab(size_t size)
2364 {
2365 	int i = order_base_2(size) - 10;
2366 
2367 	BUG_ON(i >= JBD2_MAX_SLABS);
2368 	if (unlikely(i < 0))
2369 		i = 0;
2370 	BUG_ON(jbd2_slab[i] == NULL);
2371 	return jbd2_slab[i];
2372 }
2373 
2374 void *jbd2_alloc(size_t size, gfp_t flags)
2375 {
2376 	void *ptr;
2377 
2378 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2379 
2380 	if (size < PAGE_SIZE)
2381 		ptr = kmem_cache_alloc(get_slab(size), flags);
2382 	else
2383 		ptr = (void *)__get_free_pages(flags, get_order(size));
2384 
2385 	/* Check alignment; SLUB has gotten this wrong in the past,
2386 	 * and this can lead to user data corruption! */
2387 	BUG_ON(((unsigned long) ptr) & (size-1));
2388 
2389 	return ptr;
2390 }
2391 
2392 void jbd2_free(void *ptr, size_t size)
2393 {
2394 	if (size < PAGE_SIZE)
2395 		kmem_cache_free(get_slab(size), ptr);
2396 	else
2397 		free_pages((unsigned long)ptr, get_order(size));
2398 };
2399 
2400 /*
2401  * Journal_head storage management
2402  */
2403 static struct kmem_cache *jbd2_journal_head_cache;
2404 #ifdef CONFIG_JBD2_DEBUG
2405 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2406 #endif
2407 
2408 static int __init jbd2_journal_init_journal_head_cache(void)
2409 {
2410 	J_ASSERT(!jbd2_journal_head_cache);
2411 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2412 				sizeof(struct journal_head),
2413 				0,		/* offset */
2414 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2415 				NULL);		/* ctor */
2416 	if (!jbd2_journal_head_cache) {
2417 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2418 		return -ENOMEM;
2419 	}
2420 	return 0;
2421 }
2422 
2423 static void jbd2_journal_destroy_journal_head_cache(void)
2424 {
2425 	kmem_cache_destroy(jbd2_journal_head_cache);
2426 	jbd2_journal_head_cache = NULL;
2427 }
2428 
2429 /*
2430  * journal_head splicing and dicing
2431  */
2432 static struct journal_head *journal_alloc_journal_head(void)
2433 {
2434 	struct journal_head *ret;
2435 
2436 #ifdef CONFIG_JBD2_DEBUG
2437 	atomic_inc(&nr_journal_heads);
2438 #endif
2439 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2440 	if (!ret) {
2441 		jbd_debug(1, "out of memory for journal_head\n");
2442 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2443 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2444 				GFP_NOFS | __GFP_NOFAIL);
2445 	}
2446 	if (ret)
2447 		spin_lock_init(&ret->b_state_lock);
2448 	return ret;
2449 }
2450 
2451 static void journal_free_journal_head(struct journal_head *jh)
2452 {
2453 #ifdef CONFIG_JBD2_DEBUG
2454 	atomic_dec(&nr_journal_heads);
2455 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2456 #endif
2457 	kmem_cache_free(jbd2_journal_head_cache, jh);
2458 }
2459 
2460 /*
2461  * A journal_head is attached to a buffer_head whenever JBD has an
2462  * interest in the buffer.
2463  *
2464  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2465  * is set.  This bit is tested in core kernel code where we need to take
2466  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2467  * there.
2468  *
2469  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2470  *
2471  * When a buffer has its BH_JBD bit set it is immune from being released by
2472  * core kernel code, mainly via ->b_count.
2473  *
2474  * A journal_head is detached from its buffer_head when the journal_head's
2475  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2476  * transaction (b_cp_transaction) hold their references to b_jcount.
2477  *
2478  * Various places in the kernel want to attach a journal_head to a buffer_head
2479  * _before_ attaching the journal_head to a transaction.  To protect the
2480  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2481  * journal_head's b_jcount refcount by one.  The caller must call
2482  * jbd2_journal_put_journal_head() to undo this.
2483  *
2484  * So the typical usage would be:
2485  *
2486  *	(Attach a journal_head if needed.  Increments b_jcount)
2487  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2488  *	...
2489  *      (Get another reference for transaction)
2490  *	jbd2_journal_grab_journal_head(bh);
2491  *	jh->b_transaction = xxx;
2492  *	(Put original reference)
2493  *	jbd2_journal_put_journal_head(jh);
2494  */
2495 
2496 /*
2497  * Give a buffer_head a journal_head.
2498  *
2499  * May sleep.
2500  */
2501 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2502 {
2503 	struct journal_head *jh;
2504 	struct journal_head *new_jh = NULL;
2505 
2506 repeat:
2507 	if (!buffer_jbd(bh))
2508 		new_jh = journal_alloc_journal_head();
2509 
2510 	jbd_lock_bh_journal_head(bh);
2511 	if (buffer_jbd(bh)) {
2512 		jh = bh2jh(bh);
2513 	} else {
2514 		J_ASSERT_BH(bh,
2515 			(atomic_read(&bh->b_count) > 0) ||
2516 			(bh->b_page && bh->b_page->mapping));
2517 
2518 		if (!new_jh) {
2519 			jbd_unlock_bh_journal_head(bh);
2520 			goto repeat;
2521 		}
2522 
2523 		jh = new_jh;
2524 		new_jh = NULL;		/* We consumed it */
2525 		set_buffer_jbd(bh);
2526 		bh->b_private = jh;
2527 		jh->b_bh = bh;
2528 		get_bh(bh);
2529 		BUFFER_TRACE(bh, "added journal_head");
2530 	}
2531 	jh->b_jcount++;
2532 	jbd_unlock_bh_journal_head(bh);
2533 	if (new_jh)
2534 		journal_free_journal_head(new_jh);
2535 	return bh->b_private;
2536 }
2537 
2538 /*
2539  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2540  * having a journal_head, return NULL
2541  */
2542 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2543 {
2544 	struct journal_head *jh = NULL;
2545 
2546 	jbd_lock_bh_journal_head(bh);
2547 	if (buffer_jbd(bh)) {
2548 		jh = bh2jh(bh);
2549 		jh->b_jcount++;
2550 	}
2551 	jbd_unlock_bh_journal_head(bh);
2552 	return jh;
2553 }
2554 
2555 static void __journal_remove_journal_head(struct buffer_head *bh)
2556 {
2557 	struct journal_head *jh = bh2jh(bh);
2558 
2559 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2560 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2561 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2562 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2563 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2564 	J_ASSERT_BH(bh, buffer_jbd(bh));
2565 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2566 	BUFFER_TRACE(bh, "remove journal_head");
2567 
2568 	/* Unlink before dropping the lock */
2569 	bh->b_private = NULL;
2570 	jh->b_bh = NULL;	/* debug, really */
2571 	clear_buffer_jbd(bh);
2572 }
2573 
2574 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2575 {
2576 	if (jh->b_frozen_data) {
2577 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2578 		jbd2_free(jh->b_frozen_data, b_size);
2579 	}
2580 	if (jh->b_committed_data) {
2581 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2582 		jbd2_free(jh->b_committed_data, b_size);
2583 	}
2584 	journal_free_journal_head(jh);
2585 }
2586 
2587 /*
2588  * Drop a reference on the passed journal_head.  If it fell to zero then
2589  * release the journal_head from the buffer_head.
2590  */
2591 void jbd2_journal_put_journal_head(struct journal_head *jh)
2592 {
2593 	struct buffer_head *bh = jh2bh(jh);
2594 
2595 	jbd_lock_bh_journal_head(bh);
2596 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2597 	--jh->b_jcount;
2598 	if (!jh->b_jcount) {
2599 		__journal_remove_journal_head(bh);
2600 		jbd_unlock_bh_journal_head(bh);
2601 		journal_release_journal_head(jh, bh->b_size);
2602 		__brelse(bh);
2603 	} else {
2604 		jbd_unlock_bh_journal_head(bh);
2605 	}
2606 }
2607 
2608 /*
2609  * Initialize jbd inode head
2610  */
2611 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2612 {
2613 	jinode->i_transaction = NULL;
2614 	jinode->i_next_transaction = NULL;
2615 	jinode->i_vfs_inode = inode;
2616 	jinode->i_flags = 0;
2617 	jinode->i_dirty_start = 0;
2618 	jinode->i_dirty_end = 0;
2619 	INIT_LIST_HEAD(&jinode->i_list);
2620 }
2621 
2622 /*
2623  * Function to be called before we start removing inode from memory (i.e.,
2624  * clear_inode() is a fine place to be called from). It removes inode from
2625  * transaction's lists.
2626  */
2627 void jbd2_journal_release_jbd_inode(journal_t *journal,
2628 				    struct jbd2_inode *jinode)
2629 {
2630 	if (!journal)
2631 		return;
2632 restart:
2633 	spin_lock(&journal->j_list_lock);
2634 	/* Is commit writing out inode - we have to wait */
2635 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2636 		wait_queue_head_t *wq;
2637 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2638 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2639 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2640 		spin_unlock(&journal->j_list_lock);
2641 		schedule();
2642 		finish_wait(wq, &wait.wq_entry);
2643 		goto restart;
2644 	}
2645 
2646 	if (jinode->i_transaction) {
2647 		list_del(&jinode->i_list);
2648 		jinode->i_transaction = NULL;
2649 	}
2650 	spin_unlock(&journal->j_list_lock);
2651 }
2652 
2653 
2654 #ifdef CONFIG_PROC_FS
2655 
2656 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2657 
2658 static void __init jbd2_create_jbd_stats_proc_entry(void)
2659 {
2660 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2661 }
2662 
2663 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2664 {
2665 	if (proc_jbd2_stats)
2666 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2667 }
2668 
2669 #else
2670 
2671 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2672 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2673 
2674 #endif
2675 
2676 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2677 
2678 static int __init jbd2_journal_init_inode_cache(void)
2679 {
2680 	J_ASSERT(!jbd2_inode_cache);
2681 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2682 	if (!jbd2_inode_cache) {
2683 		pr_emerg("JBD2: failed to create inode cache\n");
2684 		return -ENOMEM;
2685 	}
2686 	return 0;
2687 }
2688 
2689 static int __init jbd2_journal_init_handle_cache(void)
2690 {
2691 	J_ASSERT(!jbd2_handle_cache);
2692 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2693 	if (!jbd2_handle_cache) {
2694 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2695 		return -ENOMEM;
2696 	}
2697 	return 0;
2698 }
2699 
2700 static void jbd2_journal_destroy_inode_cache(void)
2701 {
2702 	kmem_cache_destroy(jbd2_inode_cache);
2703 	jbd2_inode_cache = NULL;
2704 }
2705 
2706 static void jbd2_journal_destroy_handle_cache(void)
2707 {
2708 	kmem_cache_destroy(jbd2_handle_cache);
2709 	jbd2_handle_cache = NULL;
2710 }
2711 
2712 /*
2713  * Module startup and shutdown
2714  */
2715 
2716 static int __init journal_init_caches(void)
2717 {
2718 	int ret;
2719 
2720 	ret = jbd2_journal_init_revoke_record_cache();
2721 	if (ret == 0)
2722 		ret = jbd2_journal_init_revoke_table_cache();
2723 	if (ret == 0)
2724 		ret = jbd2_journal_init_journal_head_cache();
2725 	if (ret == 0)
2726 		ret = jbd2_journal_init_handle_cache();
2727 	if (ret == 0)
2728 		ret = jbd2_journal_init_inode_cache();
2729 	if (ret == 0)
2730 		ret = jbd2_journal_init_transaction_cache();
2731 	return ret;
2732 }
2733 
2734 static void jbd2_journal_destroy_caches(void)
2735 {
2736 	jbd2_journal_destroy_revoke_record_cache();
2737 	jbd2_journal_destroy_revoke_table_cache();
2738 	jbd2_journal_destroy_journal_head_cache();
2739 	jbd2_journal_destroy_handle_cache();
2740 	jbd2_journal_destroy_inode_cache();
2741 	jbd2_journal_destroy_transaction_cache();
2742 	jbd2_journal_destroy_slabs();
2743 }
2744 
2745 static int __init journal_init(void)
2746 {
2747 	int ret;
2748 
2749 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2750 
2751 	ret = journal_init_caches();
2752 	if (ret == 0) {
2753 		jbd2_create_jbd_stats_proc_entry();
2754 	} else {
2755 		jbd2_journal_destroy_caches();
2756 	}
2757 	return ret;
2758 }
2759 
2760 static void __exit journal_exit(void)
2761 {
2762 #ifdef CONFIG_JBD2_DEBUG
2763 	int n = atomic_read(&nr_journal_heads);
2764 	if (n)
2765 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2766 #endif
2767 	jbd2_remove_jbd_stats_proc_entry();
2768 	jbd2_journal_destroy_caches();
2769 }
2770 
2771 MODULE_LICENSE("GPL");
2772 module_init(journal_init);
2773 module_exit(journal_exit);
2774 
2775