xref: /openbmc/linux/fs/jbd2/journal.c (revision 4a3fad70)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61 
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77 
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104 
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107 
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 		  unsigned int line, const char *fmt, ...)
111 {
112 	struct va_format vaf;
113 	va_list args;
114 
115 	if (level > jbd2_journal_enable_debug)
116 		return;
117 	va_start(args, fmt);
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121 	va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125 
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129 	if (!jbd2_journal_has_csum_v2or3_feature(j))
130 		return 1;
131 
132 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134 
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137 	__u32 csum;
138 	__be32 old_csum;
139 
140 	old_csum = sb->s_checksum;
141 	sb->s_checksum = 0;
142 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 	sb->s_checksum = old_csum;
144 
145 	return cpu_to_be32(csum);
146 }
147 
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150 	if (!jbd2_journal_has_csum_v2or3(j))
151 		return 1;
152 
153 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155 
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158 	if (!jbd2_journal_has_csum_v2or3(j))
159 		return;
160 
161 	sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163 
164 /*
165  * Helper function used to manage commit timeouts
166  */
167 
168 static void commit_timeout(struct timer_list *t)
169 {
170 	journal_t *journal = from_timer(journal, t, j_commit_timer);
171 
172 	wake_up_process(journal->j_task);
173 }
174 
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190 
191 static int kjournald2(void *arg)
192 {
193 	journal_t *journal = arg;
194 	transaction_t *transaction;
195 
196 	/*
197 	 * Set up an interval timer which can be used to trigger a commit wakeup
198 	 * after the commit interval expires
199 	 */
200 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * Make sure that no allocations from this kernel thread will ever
210 	 * recurse to the fs layer because we are responsible for the
211 	 * transaction commit and any fs involvement might get stuck waiting for
212 	 * the trasn. commit.
213 	 */
214 	memalloc_nofs_save();
215 
216 	/*
217 	 * And now, wait forever for commit wakeup events.
218 	 */
219 	write_lock(&journal->j_state_lock);
220 
221 loop:
222 	if (journal->j_flags & JBD2_UNMOUNT)
223 		goto end_loop;
224 
225 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226 		journal->j_commit_sequence, journal->j_commit_request);
227 
228 	if (journal->j_commit_sequence != journal->j_commit_request) {
229 		jbd_debug(1, "OK, requests differ\n");
230 		write_unlock(&journal->j_state_lock);
231 		del_timer_sync(&journal->j_commit_timer);
232 		jbd2_journal_commit_transaction(journal);
233 		write_lock(&journal->j_state_lock);
234 		goto loop;
235 	}
236 
237 	wake_up(&journal->j_wait_done_commit);
238 	if (freezing(current)) {
239 		/*
240 		 * The simpler the better. Flushing journal isn't a
241 		 * good idea, because that depends on threads that may
242 		 * be already stopped.
243 		 */
244 		jbd_debug(1, "Now suspending kjournald2\n");
245 		write_unlock(&journal->j_state_lock);
246 		try_to_freeze();
247 		write_lock(&journal->j_state_lock);
248 	} else {
249 		/*
250 		 * We assume on resume that commits are already there,
251 		 * so we don't sleep
252 		 */
253 		DEFINE_WAIT(wait);
254 		int should_sleep = 1;
255 
256 		prepare_to_wait(&journal->j_wait_commit, &wait,
257 				TASK_INTERRUPTIBLE);
258 		if (journal->j_commit_sequence != journal->j_commit_request)
259 			should_sleep = 0;
260 		transaction = journal->j_running_transaction;
261 		if (transaction && time_after_eq(jiffies,
262 						transaction->t_expires))
263 			should_sleep = 0;
264 		if (journal->j_flags & JBD2_UNMOUNT)
265 			should_sleep = 0;
266 		if (should_sleep) {
267 			write_unlock(&journal->j_state_lock);
268 			schedule();
269 			write_lock(&journal->j_state_lock);
270 		}
271 		finish_wait(&journal->j_wait_commit, &wait);
272 	}
273 
274 	jbd_debug(1, "kjournald2 wakes\n");
275 
276 	/*
277 	 * Were we woken up by a commit wakeup event?
278 	 */
279 	transaction = journal->j_running_transaction;
280 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281 		journal->j_commit_request = transaction->t_tid;
282 		jbd_debug(1, "woke because of timeout\n");
283 	}
284 	goto loop;
285 
286 end_loop:
287 	del_timer_sync(&journal->j_commit_timer);
288 	journal->j_task = NULL;
289 	wake_up(&journal->j_wait_done_commit);
290 	jbd_debug(1, "Journal thread exiting.\n");
291 	write_unlock(&journal->j_state_lock);
292 	return 0;
293 }
294 
295 static int jbd2_journal_start_thread(journal_t *journal)
296 {
297 	struct task_struct *t;
298 
299 	t = kthread_run(kjournald2, journal, "jbd2/%s",
300 			journal->j_devname);
301 	if (IS_ERR(t))
302 		return PTR_ERR(t);
303 
304 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
305 	return 0;
306 }
307 
308 static void journal_kill_thread(journal_t *journal)
309 {
310 	write_lock(&journal->j_state_lock);
311 	journal->j_flags |= JBD2_UNMOUNT;
312 
313 	while (journal->j_task) {
314 		write_unlock(&journal->j_state_lock);
315 		wake_up(&journal->j_wait_commit);
316 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317 		write_lock(&journal->j_state_lock);
318 	}
319 	write_unlock(&journal->j_state_lock);
320 }
321 
322 /*
323  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324  *
325  * Writes a metadata buffer to a given disk block.  The actual IO is not
326  * performed but a new buffer_head is constructed which labels the data
327  * to be written with the correct destination disk block.
328  *
329  * Any magic-number escaping which needs to be done will cause a
330  * copy-out here.  If the buffer happens to start with the
331  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332  * magic number is only written to the log for descripter blocks.  In
333  * this case, we copy the data and replace the first word with 0, and we
334  * return a result code which indicates that this buffer needs to be
335  * marked as an escaped buffer in the corresponding log descriptor
336  * block.  The missing word can then be restored when the block is read
337  * during recovery.
338  *
339  * If the source buffer has already been modified by a new transaction
340  * since we took the last commit snapshot, we use the frozen copy of
341  * that data for IO. If we end up using the existing buffer_head's data
342  * for the write, then we have to make sure nobody modifies it while the
343  * IO is in progress. do_get_write_access() handles this.
344  *
345  * The function returns a pointer to the buffer_head to be used for IO.
346  *
347  *
348  * Return value:
349  *  <0: Error
350  * >=0: Finished OK
351  *
352  * On success:
353  * Bit 0 set == escape performed on the data
354  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
355  */
356 
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358 				  struct journal_head  *jh_in,
359 				  struct buffer_head **bh_out,
360 				  sector_t blocknr)
361 {
362 	int need_copy_out = 0;
363 	int done_copy_out = 0;
364 	int do_escape = 0;
365 	char *mapped_data;
366 	struct buffer_head *new_bh;
367 	struct page *new_page;
368 	unsigned int new_offset;
369 	struct buffer_head *bh_in = jh2bh(jh_in);
370 	journal_t *journal = transaction->t_journal;
371 
372 	/*
373 	 * The buffer really shouldn't be locked: only the current committing
374 	 * transaction is allowed to write it, so nobody else is allowed
375 	 * to do any IO.
376 	 *
377 	 * akpm: except if we're journalling data, and write() output is
378 	 * also part of a shared mapping, and another thread has
379 	 * decided to launch a writepage() against this buffer.
380 	 */
381 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
382 
383 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
384 
385 	/* keep subsequent assertions sane */
386 	atomic_set(&new_bh->b_count, 1);
387 
388 	jbd_lock_bh_state(bh_in);
389 repeat:
390 	/*
391 	 * If a new transaction has already done a buffer copy-out, then
392 	 * we use that version of the data for the commit.
393 	 */
394 	if (jh_in->b_frozen_data) {
395 		done_copy_out = 1;
396 		new_page = virt_to_page(jh_in->b_frozen_data);
397 		new_offset = offset_in_page(jh_in->b_frozen_data);
398 	} else {
399 		new_page = jh2bh(jh_in)->b_page;
400 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 	}
402 
403 	mapped_data = kmap_atomic(new_page);
404 	/*
405 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406 	 * before checking for escaping, as the trigger may modify the magic
407 	 * offset.  If a copy-out happens afterwards, it will have the correct
408 	 * data in the buffer.
409 	 */
410 	if (!done_copy_out)
411 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 					   jh_in->b_triggers);
413 
414 	/*
415 	 * Check for escaping
416 	 */
417 	if (*((__be32 *)(mapped_data + new_offset)) ==
418 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 		need_copy_out = 1;
420 		do_escape = 1;
421 	}
422 	kunmap_atomic(mapped_data);
423 
424 	/*
425 	 * Do we need to do a data copy?
426 	 */
427 	if (need_copy_out && !done_copy_out) {
428 		char *tmp;
429 
430 		jbd_unlock_bh_state(bh_in);
431 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 		if (!tmp) {
433 			brelse(new_bh);
434 			return -ENOMEM;
435 		}
436 		jbd_lock_bh_state(bh_in);
437 		if (jh_in->b_frozen_data) {
438 			jbd2_free(tmp, bh_in->b_size);
439 			goto repeat;
440 		}
441 
442 		jh_in->b_frozen_data = tmp;
443 		mapped_data = kmap_atomic(new_page);
444 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 		kunmap_atomic(mapped_data);
446 
447 		new_page = virt_to_page(tmp);
448 		new_offset = offset_in_page(tmp);
449 		done_copy_out = 1;
450 
451 		/*
452 		 * This isn't strictly necessary, as we're using frozen
453 		 * data for the escaping, but it keeps consistency with
454 		 * b_frozen_data usage.
455 		 */
456 		jh_in->b_frozen_triggers = jh_in->b_triggers;
457 	}
458 
459 	/*
460 	 * Did we need to do an escaping?  Now we've done all the
461 	 * copying, we can finally do so.
462 	 */
463 	if (do_escape) {
464 		mapped_data = kmap_atomic(new_page);
465 		*((unsigned int *)(mapped_data + new_offset)) = 0;
466 		kunmap_atomic(mapped_data);
467 	}
468 
469 	set_bh_page(new_bh, new_page, new_offset);
470 	new_bh->b_size = bh_in->b_size;
471 	new_bh->b_bdev = journal->j_dev;
472 	new_bh->b_blocknr = blocknr;
473 	new_bh->b_private = bh_in;
474 	set_buffer_mapped(new_bh);
475 	set_buffer_dirty(new_bh);
476 
477 	*bh_out = new_bh;
478 
479 	/*
480 	 * The to-be-written buffer needs to get moved to the io queue,
481 	 * and the original buffer whose contents we are shadowing or
482 	 * copying is moved to the transaction's shadow queue.
483 	 */
484 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 	spin_lock(&journal->j_list_lock);
486 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 	spin_unlock(&journal->j_list_lock);
488 	set_buffer_shadow(bh_in);
489 	jbd_unlock_bh_state(bh_in);
490 
491 	return do_escape | (done_copy_out << 1);
492 }
493 
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498 
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 	/* Return if the txn has already requested to be committed */
506 	if (journal->j_commit_request == target)
507 		return 0;
508 
509 	/*
510 	 * The only transaction we can possibly wait upon is the
511 	 * currently running transaction (if it exists).  Otherwise,
512 	 * the target tid must be an old one.
513 	 */
514 	if (journal->j_running_transaction &&
515 	    journal->j_running_transaction->t_tid == target) {
516 		/*
517 		 * We want a new commit: OK, mark the request and wakeup the
518 		 * commit thread.  We do _not_ do the commit ourselves.
519 		 */
520 
521 		journal->j_commit_request = target;
522 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 			  journal->j_commit_request,
524 			  journal->j_commit_sequence);
525 		journal->j_running_transaction->t_requested = jiffies;
526 		wake_up(&journal->j_wait_commit);
527 		return 1;
528 	} else if (!tid_geq(journal->j_commit_request, target))
529 		/* This should never happen, but if it does, preserve
530 		   the evidence before kjournald goes into a loop and
531 		   increments j_commit_sequence beyond all recognition. */
532 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 			  journal->j_commit_request,
534 			  journal->j_commit_sequence,
535 			  target, journal->j_running_transaction ?
536 			  journal->j_running_transaction->t_tid : 0);
537 	return 0;
538 }
539 
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 	int ret;
543 
544 	write_lock(&journal->j_state_lock);
545 	ret = __jbd2_log_start_commit(journal, tid);
546 	write_unlock(&journal->j_state_lock);
547 	return ret;
548 }
549 
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 	transaction_t *transaction = NULL;
560 	tid_t tid;
561 	int need_to_start = 0, ret = 0;
562 
563 	read_lock(&journal->j_state_lock);
564 	if (journal->j_running_transaction && !current->journal_info) {
565 		transaction = journal->j_running_transaction;
566 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 			need_to_start = 1;
568 	} else if (journal->j_committing_transaction)
569 		transaction = journal->j_committing_transaction;
570 
571 	if (!transaction) {
572 		/* Nothing to commit */
573 		read_unlock(&journal->j_state_lock);
574 		return 0;
575 	}
576 	tid = transaction->t_tid;
577 	read_unlock(&journal->j_state_lock);
578 	if (need_to_start)
579 		jbd2_log_start_commit(journal, tid);
580 	ret = jbd2_log_wait_commit(journal, tid);
581 	if (!ret)
582 		ret = 1;
583 
584 	return ret;
585 }
586 
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 	int ret;
598 
599 	ret = __jbd2_journal_force_commit(journal);
600 	return ret > 0;
601 }
602 
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 	int ret;
613 
614 	J_ASSERT(!current->journal_info);
615 	ret = __jbd2_journal_force_commit(journal);
616 	if (ret > 0)
617 		ret = 0;
618 	return ret;
619 }
620 
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 	int ret = 0;
629 
630 	write_lock(&journal->j_state_lock);
631 	if (journal->j_running_transaction) {
632 		tid_t tid = journal->j_running_transaction->t_tid;
633 
634 		__jbd2_log_start_commit(journal, tid);
635 		/* There's a running transaction and we've just made sure
636 		 * it's commit has been scheduled. */
637 		if (ptid)
638 			*ptid = tid;
639 		ret = 1;
640 	} else if (journal->j_committing_transaction) {
641 		/*
642 		 * If commit has been started, then we have to wait for
643 		 * completion of that transaction.
644 		 */
645 		if (ptid)
646 			*ptid = journal->j_committing_transaction->t_tid;
647 		ret = 1;
648 	}
649 	write_unlock(&journal->j_state_lock);
650 	return ret;
651 }
652 
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 	int ret = 0;
662 	transaction_t *commit_trans;
663 
664 	if (!(journal->j_flags & JBD2_BARRIER))
665 		return 0;
666 	read_lock(&journal->j_state_lock);
667 	/* Transaction already committed? */
668 	if (tid_geq(journal->j_commit_sequence, tid))
669 		goto out;
670 	commit_trans = journal->j_committing_transaction;
671 	if (!commit_trans || commit_trans->t_tid != tid) {
672 		ret = 1;
673 		goto out;
674 	}
675 	/*
676 	 * Transaction is being committed and we already proceeded to
677 	 * submitting a flush to fs partition?
678 	 */
679 	if (journal->j_fs_dev != journal->j_dev) {
680 		if (!commit_trans->t_need_data_flush ||
681 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682 			goto out;
683 	} else {
684 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 			goto out;
686 	}
687 	ret = 1;
688 out:
689 	read_unlock(&journal->j_state_lock);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693 
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 	int err = 0;
701 
702 	read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
704 	/*
705 	 * Some callers make sure transaction is already committing and in that
706 	 * case we cannot block on open handles anymore. So don't warn in that
707 	 * case.
708 	 */
709 	if (tid_gt(tid, journal->j_commit_sequence) &&
710 	    (!journal->j_committing_transaction ||
711 	     journal->j_committing_transaction->t_tid != tid)) {
712 		read_unlock(&journal->j_state_lock);
713 		jbd2_might_wait_for_commit(journal);
714 		read_lock(&journal->j_state_lock);
715 	}
716 #endif
717 #ifdef CONFIG_JBD2_DEBUG
718 	if (!tid_geq(journal->j_commit_request, tid)) {
719 		printk(KERN_ERR
720 		       "%s: error: j_commit_request=%d, tid=%d\n",
721 		       __func__, journal->j_commit_request, tid);
722 	}
723 #endif
724 	while (tid_gt(tid, journal->j_commit_sequence)) {
725 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726 				  tid, journal->j_commit_sequence);
727 		read_unlock(&journal->j_state_lock);
728 		wake_up(&journal->j_wait_commit);
729 		wait_event(journal->j_wait_done_commit,
730 				!tid_gt(tid, journal->j_commit_sequence));
731 		read_lock(&journal->j_state_lock);
732 	}
733 	read_unlock(&journal->j_state_lock);
734 
735 	if (unlikely(is_journal_aborted(journal)))
736 		err = -EIO;
737 	return err;
738 }
739 
740 /* Return 1 when transaction with given tid has already committed. */
741 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
742 {
743 	int ret = 1;
744 
745 	read_lock(&journal->j_state_lock);
746 	if (journal->j_running_transaction &&
747 	    journal->j_running_transaction->t_tid == tid)
748 		ret = 0;
749 	if (journal->j_committing_transaction &&
750 	    journal->j_committing_transaction->t_tid == tid)
751 		ret = 0;
752 	read_unlock(&journal->j_state_lock);
753 	return ret;
754 }
755 EXPORT_SYMBOL(jbd2_transaction_committed);
756 
757 /*
758  * When this function returns the transaction corresponding to tid
759  * will be completed.  If the transaction has currently running, start
760  * committing that transaction before waiting for it to complete.  If
761  * the transaction id is stale, it is by definition already completed,
762  * so just return SUCCESS.
763  */
764 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
765 {
766 	int	need_to_wait = 1;
767 
768 	read_lock(&journal->j_state_lock);
769 	if (journal->j_running_transaction &&
770 	    journal->j_running_transaction->t_tid == tid) {
771 		if (journal->j_commit_request != tid) {
772 			/* transaction not yet started, so request it */
773 			read_unlock(&journal->j_state_lock);
774 			jbd2_log_start_commit(journal, tid);
775 			goto wait_commit;
776 		}
777 	} else if (!(journal->j_committing_transaction &&
778 		     journal->j_committing_transaction->t_tid == tid))
779 		need_to_wait = 0;
780 	read_unlock(&journal->j_state_lock);
781 	if (!need_to_wait)
782 		return 0;
783 wait_commit:
784 	return jbd2_log_wait_commit(journal, tid);
785 }
786 EXPORT_SYMBOL(jbd2_complete_transaction);
787 
788 /*
789  * Log buffer allocation routines:
790  */
791 
792 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
793 {
794 	unsigned long blocknr;
795 
796 	write_lock(&journal->j_state_lock);
797 	J_ASSERT(journal->j_free > 1);
798 
799 	blocknr = journal->j_head;
800 	journal->j_head++;
801 	journal->j_free--;
802 	if (journal->j_head == journal->j_last)
803 		journal->j_head = journal->j_first;
804 	write_unlock(&journal->j_state_lock);
805 	return jbd2_journal_bmap(journal, blocknr, retp);
806 }
807 
808 /*
809  * Conversion of logical to physical block numbers for the journal
810  *
811  * On external journals the journal blocks are identity-mapped, so
812  * this is a no-op.  If needed, we can use j_blk_offset - everything is
813  * ready.
814  */
815 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
816 		 unsigned long long *retp)
817 {
818 	int err = 0;
819 	unsigned long long ret;
820 
821 	if (journal->j_inode) {
822 		ret = bmap(journal->j_inode, blocknr);
823 		if (ret)
824 			*retp = ret;
825 		else {
826 			printk(KERN_ALERT "%s: journal block not found "
827 					"at offset %lu on %s\n",
828 			       __func__, blocknr, journal->j_devname);
829 			err = -EIO;
830 			__journal_abort_soft(journal, err);
831 		}
832 	} else {
833 		*retp = blocknr; /* +journal->j_blk_offset */
834 	}
835 	return err;
836 }
837 
838 /*
839  * We play buffer_head aliasing tricks to write data/metadata blocks to
840  * the journal without copying their contents, but for journal
841  * descriptor blocks we do need to generate bona fide buffers.
842  *
843  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
844  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
845  * But we don't bother doing that, so there will be coherency problems with
846  * mmaps of blockdevs which hold live JBD-controlled filesystems.
847  */
848 struct buffer_head *
849 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
850 {
851 	journal_t *journal = transaction->t_journal;
852 	struct buffer_head *bh;
853 	unsigned long long blocknr;
854 	journal_header_t *header;
855 	int err;
856 
857 	err = jbd2_journal_next_log_block(journal, &blocknr);
858 
859 	if (err)
860 		return NULL;
861 
862 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
863 	if (!bh)
864 		return NULL;
865 	lock_buffer(bh);
866 	memset(bh->b_data, 0, journal->j_blocksize);
867 	header = (journal_header_t *)bh->b_data;
868 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
869 	header->h_blocktype = cpu_to_be32(type);
870 	header->h_sequence = cpu_to_be32(transaction->t_tid);
871 	set_buffer_uptodate(bh);
872 	unlock_buffer(bh);
873 	BUFFER_TRACE(bh, "return this buffer");
874 	return bh;
875 }
876 
877 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
878 {
879 	struct jbd2_journal_block_tail *tail;
880 	__u32 csum;
881 
882 	if (!jbd2_journal_has_csum_v2or3(j))
883 		return;
884 
885 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
886 			sizeof(struct jbd2_journal_block_tail));
887 	tail->t_checksum = 0;
888 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
889 	tail->t_checksum = cpu_to_be32(csum);
890 }
891 
892 /*
893  * Return tid of the oldest transaction in the journal and block in the journal
894  * where the transaction starts.
895  *
896  * If the journal is now empty, return which will be the next transaction ID
897  * we will write and where will that transaction start.
898  *
899  * The return value is 0 if journal tail cannot be pushed any further, 1 if
900  * it can.
901  */
902 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
903 			      unsigned long *block)
904 {
905 	transaction_t *transaction;
906 	int ret;
907 
908 	read_lock(&journal->j_state_lock);
909 	spin_lock(&journal->j_list_lock);
910 	transaction = journal->j_checkpoint_transactions;
911 	if (transaction) {
912 		*tid = transaction->t_tid;
913 		*block = transaction->t_log_start;
914 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
915 		*tid = transaction->t_tid;
916 		*block = transaction->t_log_start;
917 	} else if ((transaction = journal->j_running_transaction) != NULL) {
918 		*tid = transaction->t_tid;
919 		*block = journal->j_head;
920 	} else {
921 		*tid = journal->j_transaction_sequence;
922 		*block = journal->j_head;
923 	}
924 	ret = tid_gt(*tid, journal->j_tail_sequence);
925 	spin_unlock(&journal->j_list_lock);
926 	read_unlock(&journal->j_state_lock);
927 
928 	return ret;
929 }
930 
931 /*
932  * Update information in journal structure and in on disk journal superblock
933  * about log tail. This function does not check whether information passed in
934  * really pushes log tail further. It's responsibility of the caller to make
935  * sure provided log tail information is valid (e.g. by holding
936  * j_checkpoint_mutex all the time between computing log tail and calling this
937  * function as is the case with jbd2_cleanup_journal_tail()).
938  *
939  * Requires j_checkpoint_mutex
940  */
941 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
942 {
943 	unsigned long freed;
944 	int ret;
945 
946 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
947 
948 	/*
949 	 * We cannot afford for write to remain in drive's caches since as
950 	 * soon as we update j_tail, next transaction can start reusing journal
951 	 * space and if we lose sb update during power failure we'd replay
952 	 * old transaction with possibly newly overwritten data.
953 	 */
954 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
955 					      REQ_SYNC | REQ_FUA);
956 	if (ret)
957 		goto out;
958 
959 	write_lock(&journal->j_state_lock);
960 	freed = block - journal->j_tail;
961 	if (block < journal->j_tail)
962 		freed += journal->j_last - journal->j_first;
963 
964 	trace_jbd2_update_log_tail(journal, tid, block, freed);
965 	jbd_debug(1,
966 		  "Cleaning journal tail from %d to %d (offset %lu), "
967 		  "freeing %lu\n",
968 		  journal->j_tail_sequence, tid, block, freed);
969 
970 	journal->j_free += freed;
971 	journal->j_tail_sequence = tid;
972 	journal->j_tail = block;
973 	write_unlock(&journal->j_state_lock);
974 
975 out:
976 	return ret;
977 }
978 
979 /*
980  * This is a variaon of __jbd2_update_log_tail which checks for validity of
981  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
982  * with other threads updating log tail.
983  */
984 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
985 {
986 	mutex_lock_io(&journal->j_checkpoint_mutex);
987 	if (tid_gt(tid, journal->j_tail_sequence))
988 		__jbd2_update_log_tail(journal, tid, block);
989 	mutex_unlock(&journal->j_checkpoint_mutex);
990 }
991 
992 struct jbd2_stats_proc_session {
993 	journal_t *journal;
994 	struct transaction_stats_s *stats;
995 	int start;
996 	int max;
997 };
998 
999 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1000 {
1001 	return *pos ? NULL : SEQ_START_TOKEN;
1002 }
1003 
1004 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1005 {
1006 	return NULL;
1007 }
1008 
1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011 	struct jbd2_stats_proc_session *s = seq->private;
1012 
1013 	if (v != SEQ_START_TOKEN)
1014 		return 0;
1015 	seq_printf(seq, "%lu transactions (%lu requested), "
1016 		   "each up to %u blocks\n",
1017 		   s->stats->ts_tid, s->stats->ts_requested,
1018 		   s->journal->j_max_transaction_buffers);
1019 	if (s->stats->ts_tid == 0)
1020 		return 0;
1021 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023 	seq_printf(seq, "  %ums request delay\n",
1024 	    (s->stats->ts_requested == 0) ? 0 :
1025 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1026 			     s->stats->ts_requested));
1027 	seq_printf(seq, "  %ums running transaction\n",
1028 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029 	seq_printf(seq, "  %ums transaction was being locked\n",
1030 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033 	seq_printf(seq, "  %ums logging transaction\n",
1034 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035 	seq_printf(seq, "  %lluus average transaction commit time\n",
1036 		   div_u64(s->journal->j_average_commit_time, 1000));
1037 	seq_printf(seq, "  %lu handles per transaction\n",
1038 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1039 	seq_printf(seq, "  %lu blocks per transaction\n",
1040 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1041 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1042 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043 	return 0;
1044 }
1045 
1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049 
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051 	.start  = jbd2_seq_info_start,
1052 	.next   = jbd2_seq_info_next,
1053 	.stop   = jbd2_seq_info_stop,
1054 	.show   = jbd2_seq_info_show,
1055 };
1056 
1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059 	journal_t *journal = PDE_DATA(inode);
1060 	struct jbd2_stats_proc_session *s;
1061 	int rc, size;
1062 
1063 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1064 	if (s == NULL)
1065 		return -ENOMEM;
1066 	size = sizeof(struct transaction_stats_s);
1067 	s->stats = kmalloc(size, GFP_KERNEL);
1068 	if (s->stats == NULL) {
1069 		kfree(s);
1070 		return -ENOMEM;
1071 	}
1072 	spin_lock(&journal->j_history_lock);
1073 	memcpy(s->stats, &journal->j_stats, size);
1074 	s->journal = journal;
1075 	spin_unlock(&journal->j_history_lock);
1076 
1077 	rc = seq_open(file, &jbd2_seq_info_ops);
1078 	if (rc == 0) {
1079 		struct seq_file *m = file->private_data;
1080 		m->private = s;
1081 	} else {
1082 		kfree(s->stats);
1083 		kfree(s);
1084 	}
1085 	return rc;
1086 
1087 }
1088 
1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091 	struct seq_file *seq = file->private_data;
1092 	struct jbd2_stats_proc_session *s = seq->private;
1093 	kfree(s->stats);
1094 	kfree(s);
1095 	return seq_release(inode, file);
1096 }
1097 
1098 static const struct file_operations jbd2_seq_info_fops = {
1099 	.owner		= THIS_MODULE,
1100 	.open           = jbd2_seq_info_open,
1101 	.read           = seq_read,
1102 	.llseek         = seq_lseek,
1103 	.release        = jbd2_seq_info_release,
1104 };
1105 
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107 
1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111 	if (journal->j_proc_entry) {
1112 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113 				 &jbd2_seq_info_fops, journal);
1114 	}
1115 }
1116 
1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119 	remove_proc_entry("info", journal->j_proc_entry);
1120 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122 
1123 /*
1124  * Management for journal control blocks: functions to create and
1125  * destroy journal_t structures, and to initialise and read existing
1126  * journal blocks from disk.  */
1127 
1128 /* First: create and setup a journal_t object in memory.  We initialise
1129  * very few fields yet: that has to wait until we have created the
1130  * journal structures from from scratch, or loaded them from disk. */
1131 
1132 static journal_t *journal_init_common(struct block_device *bdev,
1133 			struct block_device *fs_dev,
1134 			unsigned long long start, int len, int blocksize)
1135 {
1136 	static struct lock_class_key jbd2_trans_commit_key;
1137 	journal_t *journal;
1138 	int err;
1139 	struct buffer_head *bh;
1140 	int n;
1141 
1142 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143 	if (!journal)
1144 		return NULL;
1145 
1146 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1147 	init_waitqueue_head(&journal->j_wait_done_commit);
1148 	init_waitqueue_head(&journal->j_wait_commit);
1149 	init_waitqueue_head(&journal->j_wait_updates);
1150 	init_waitqueue_head(&journal->j_wait_reserved);
1151 	mutex_init(&journal->j_barrier);
1152 	mutex_init(&journal->j_checkpoint_mutex);
1153 	spin_lock_init(&journal->j_revoke_lock);
1154 	spin_lock_init(&journal->j_list_lock);
1155 	rwlock_init(&journal->j_state_lock);
1156 
1157 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158 	journal->j_min_batch_time = 0;
1159 	journal->j_max_batch_time = 15000; /* 15ms */
1160 	atomic_set(&journal->j_reserved_credits, 0);
1161 
1162 	/* The journal is marked for error until we succeed with recovery! */
1163 	journal->j_flags = JBD2_ABORT;
1164 
1165 	/* Set up a default-sized revoke table for the new mount. */
1166 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167 	if (err)
1168 		goto err_cleanup;
1169 
1170 	spin_lock_init(&journal->j_history_lock);
1171 
1172 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173 			 &jbd2_trans_commit_key, 0);
1174 
1175 	/* journal descriptor can store up to n blocks -bzzz */
1176 	journal->j_blocksize = blocksize;
1177 	journal->j_dev = bdev;
1178 	journal->j_fs_dev = fs_dev;
1179 	journal->j_blk_offset = start;
1180 	journal->j_maxlen = len;
1181 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182 	journal->j_wbufsize = n;
1183 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184 					GFP_KERNEL);
1185 	if (!journal->j_wbuf)
1186 		goto err_cleanup;
1187 
1188 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189 	if (!bh) {
1190 		pr_err("%s: Cannot get buffer for journal superblock\n",
1191 			__func__);
1192 		goto err_cleanup;
1193 	}
1194 	journal->j_sb_buffer = bh;
1195 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196 
1197 	return journal;
1198 
1199 err_cleanup:
1200 	kfree(journal->j_wbuf);
1201 	jbd2_journal_destroy_revoke(journal);
1202 	kfree(journal);
1203 	return NULL;
1204 }
1205 
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207  *
1208  * Create a journal structure assigned some fixed set of disk blocks to
1209  * the journal.  We don't actually touch those disk blocks yet, but we
1210  * need to set up all of the mapping information to tell the journaling
1211  * system where the journal blocks are.
1212  *
1213  */
1214 
1215 /**
1216  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217  *  @bdev: Block device on which to create the journal
1218  *  @fs_dev: Device which hold journalled filesystem for this journal.
1219  *  @start: Block nr Start of journal.
1220  *  @len:  Length of the journal in blocks.
1221  *  @blocksize: blocksize of journalling device
1222  *
1223  *  Returns: a newly created journal_t *
1224  *
1225  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226  *  range of blocks on an arbitrary block device.
1227  *
1228  */
1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230 			struct block_device *fs_dev,
1231 			unsigned long long start, int len, int blocksize)
1232 {
1233 	journal_t *journal;
1234 
1235 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236 	if (!journal)
1237 		return NULL;
1238 
1239 	bdevname(journal->j_dev, journal->j_devname);
1240 	strreplace(journal->j_devname, '/', '!');
1241 	jbd2_stats_proc_init(journal);
1242 
1243 	return journal;
1244 }
1245 
1246 /**
1247  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248  *  @inode: An inode to create the journal in
1249  *
1250  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251  * the journal.  The inode must exist already, must support bmap() and
1252  * must have all data blocks preallocated.
1253  */
1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256 	journal_t *journal;
1257 	char *p;
1258 	unsigned long long blocknr;
1259 
1260 	blocknr = bmap(inode, 0);
1261 	if (!blocknr) {
1262 		pr_err("%s: Cannot locate journal superblock\n",
1263 			__func__);
1264 		return NULL;
1265 	}
1266 
1267 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270 
1271 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273 			inode->i_sb->s_blocksize);
1274 	if (!journal)
1275 		return NULL;
1276 
1277 	journal->j_inode = inode;
1278 	bdevname(journal->j_dev, journal->j_devname);
1279 	p = strreplace(journal->j_devname, '/', '!');
1280 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1281 	jbd2_stats_proc_init(journal);
1282 
1283 	return journal;
1284 }
1285 
1286 /*
1287  * If the journal init or create aborts, we need to mark the journal
1288  * superblock as being NULL to prevent the journal destroy from writing
1289  * back a bogus superblock.
1290  */
1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293 	struct buffer_head *bh = journal->j_sb_buffer;
1294 	brelse(bh);
1295 	journal->j_sb_buffer = NULL;
1296 }
1297 
1298 /*
1299  * Given a journal_t structure, initialise the various fields for
1300  * startup of a new journaling session.  We use this both when creating
1301  * a journal, and after recovering an old journal to reset it for
1302  * subsequent use.
1303  */
1304 
1305 static int journal_reset(journal_t *journal)
1306 {
1307 	journal_superblock_t *sb = journal->j_superblock;
1308 	unsigned long long first, last;
1309 
1310 	first = be32_to_cpu(sb->s_first);
1311 	last = be32_to_cpu(sb->s_maxlen);
1312 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314 		       first, last);
1315 		journal_fail_superblock(journal);
1316 		return -EINVAL;
1317 	}
1318 
1319 	journal->j_first = first;
1320 	journal->j_last = last;
1321 
1322 	journal->j_head = first;
1323 	journal->j_tail = first;
1324 	journal->j_free = last - first;
1325 
1326 	journal->j_tail_sequence = journal->j_transaction_sequence;
1327 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328 	journal->j_commit_request = journal->j_commit_sequence;
1329 
1330 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331 
1332 	/*
1333 	 * As a special case, if the on-disk copy is already marked as needing
1334 	 * no recovery (s_start == 0), then we can safely defer the superblock
1335 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336 	 * attempting a write to a potential-readonly device.
1337 	 */
1338 	if (sb->s_start == 0) {
1339 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340 			"(start %ld, seq %d, errno %d)\n",
1341 			journal->j_tail, journal->j_tail_sequence,
1342 			journal->j_errno);
1343 		journal->j_flags |= JBD2_FLUSHED;
1344 	} else {
1345 		/* Lock here to make assertions happy... */
1346 		mutex_lock_io(&journal->j_checkpoint_mutex);
1347 		/*
1348 		 * Update log tail information. We use REQ_FUA since new
1349 		 * transaction will start reusing journal space and so we
1350 		 * must make sure information about current log tail is on
1351 		 * disk before that.
1352 		 */
1353 		jbd2_journal_update_sb_log_tail(journal,
1354 						journal->j_tail_sequence,
1355 						journal->j_tail,
1356 						REQ_SYNC | REQ_FUA);
1357 		mutex_unlock(&journal->j_checkpoint_mutex);
1358 	}
1359 	return jbd2_journal_start_thread(journal);
1360 }
1361 
1362 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1363 {
1364 	struct buffer_head *bh = journal->j_sb_buffer;
1365 	journal_superblock_t *sb = journal->j_superblock;
1366 	int ret;
1367 
1368 	trace_jbd2_write_superblock(journal, write_flags);
1369 	if (!(journal->j_flags & JBD2_BARRIER))
1370 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1371 	lock_buffer(bh);
1372 	if (buffer_write_io_error(bh)) {
1373 		/*
1374 		 * Oh, dear.  A previous attempt to write the journal
1375 		 * superblock failed.  This could happen because the
1376 		 * USB device was yanked out.  Or it could happen to
1377 		 * be a transient write error and maybe the block will
1378 		 * be remapped.  Nothing we can do but to retry the
1379 		 * write and hope for the best.
1380 		 */
1381 		printk(KERN_ERR "JBD2: previous I/O error detected "
1382 		       "for journal superblock update for %s.\n",
1383 		       journal->j_devname);
1384 		clear_buffer_write_io_error(bh);
1385 		set_buffer_uptodate(bh);
1386 	}
1387 	jbd2_superblock_csum_set(journal, sb);
1388 	get_bh(bh);
1389 	bh->b_end_io = end_buffer_write_sync;
1390 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1391 	wait_on_buffer(bh);
1392 	if (buffer_write_io_error(bh)) {
1393 		clear_buffer_write_io_error(bh);
1394 		set_buffer_uptodate(bh);
1395 		ret = -EIO;
1396 	}
1397 	if (ret) {
1398 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1399 		       "journal superblock for %s.\n", ret,
1400 		       journal->j_devname);
1401 		jbd2_journal_abort(journal, ret);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1409  * @journal: The journal to update.
1410  * @tail_tid: TID of the new transaction at the tail of the log
1411  * @tail_block: The first block of the transaction at the tail of the log
1412  * @write_op: With which operation should we write the journal sb
1413  *
1414  * Update a journal's superblock information about log tail and write it to
1415  * disk, waiting for the IO to complete.
1416  */
1417 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1418 				     unsigned long tail_block, int write_op)
1419 {
1420 	journal_superblock_t *sb = journal->j_superblock;
1421 	int ret;
1422 
1423 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425 		  tail_block, tail_tid);
1426 
1427 	sb->s_sequence = cpu_to_be32(tail_tid);
1428 	sb->s_start    = cpu_to_be32(tail_block);
1429 
1430 	ret = jbd2_write_superblock(journal, write_op);
1431 	if (ret)
1432 		goto out;
1433 
1434 	/* Log is no longer empty */
1435 	write_lock(&journal->j_state_lock);
1436 	WARN_ON(!sb->s_sequence);
1437 	journal->j_flags &= ~JBD2_FLUSHED;
1438 	write_unlock(&journal->j_state_lock);
1439 
1440 out:
1441 	return ret;
1442 }
1443 
1444 /**
1445  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446  * @journal: The journal to update.
1447  * @write_op: With which operation should we write the journal sb
1448  *
1449  * Update a journal's dynamic superblock fields to show that journal is empty.
1450  * Write updated superblock to disk waiting for IO to complete.
1451  */
1452 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453 {
1454 	journal_superblock_t *sb = journal->j_superblock;
1455 
1456 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457 	read_lock(&journal->j_state_lock);
1458 	/* Is it already empty? */
1459 	if (sb->s_start == 0) {
1460 		read_unlock(&journal->j_state_lock);
1461 		return;
1462 	}
1463 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464 		  journal->j_tail_sequence);
1465 
1466 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467 	sb->s_start    = cpu_to_be32(0);
1468 	read_unlock(&journal->j_state_lock);
1469 
1470 	jbd2_write_superblock(journal, write_op);
1471 
1472 	/* Log is no longer empty */
1473 	write_lock(&journal->j_state_lock);
1474 	journal->j_flags |= JBD2_FLUSHED;
1475 	write_unlock(&journal->j_state_lock);
1476 }
1477 
1478 
1479 /**
1480  * jbd2_journal_update_sb_errno() - Update error in the journal.
1481  * @journal: The journal to update.
1482  *
1483  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484  * to complete.
1485  */
1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488 	journal_superblock_t *sb = journal->j_superblock;
1489 
1490 	read_lock(&journal->j_state_lock);
1491 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1492 		  journal->j_errno);
1493 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1494 	read_unlock(&journal->j_state_lock);
1495 
1496 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1497 }
1498 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1499 
1500 /*
1501  * Read the superblock for a given journal, performing initial
1502  * validation of the format.
1503  */
1504 static int journal_get_superblock(journal_t *journal)
1505 {
1506 	struct buffer_head *bh;
1507 	journal_superblock_t *sb;
1508 	int err = -EIO;
1509 
1510 	bh = journal->j_sb_buffer;
1511 
1512 	J_ASSERT(bh != NULL);
1513 	if (!buffer_uptodate(bh)) {
1514 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1515 		wait_on_buffer(bh);
1516 		if (!buffer_uptodate(bh)) {
1517 			printk(KERN_ERR
1518 				"JBD2: IO error reading journal superblock\n");
1519 			goto out;
1520 		}
1521 	}
1522 
1523 	if (buffer_verified(bh))
1524 		return 0;
1525 
1526 	sb = journal->j_superblock;
1527 
1528 	err = -EINVAL;
1529 
1530 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1531 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1532 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1533 		goto out;
1534 	}
1535 
1536 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1537 	case JBD2_SUPERBLOCK_V1:
1538 		journal->j_format_version = 1;
1539 		break;
1540 	case JBD2_SUPERBLOCK_V2:
1541 		journal->j_format_version = 2;
1542 		break;
1543 	default:
1544 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1545 		goto out;
1546 	}
1547 
1548 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1549 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1550 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1551 		printk(KERN_WARNING "JBD2: journal file too short\n");
1552 		goto out;
1553 	}
1554 
1555 	if (be32_to_cpu(sb->s_first) == 0 ||
1556 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1557 		printk(KERN_WARNING
1558 			"JBD2: Invalid start block of journal: %u\n",
1559 			be32_to_cpu(sb->s_first));
1560 		goto out;
1561 	}
1562 
1563 	if (jbd2_has_feature_csum2(journal) &&
1564 	    jbd2_has_feature_csum3(journal)) {
1565 		/* Can't have checksum v2 and v3 at the same time! */
1566 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1567 		       "at the same time!\n");
1568 		goto out;
1569 	}
1570 
1571 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1572 	    jbd2_has_feature_checksum(journal)) {
1573 		/* Can't have checksum v1 and v2 on at the same time! */
1574 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1575 		       "at the same time!\n");
1576 		goto out;
1577 	}
1578 
1579 	if (!jbd2_verify_csum_type(journal, sb)) {
1580 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1581 		goto out;
1582 	}
1583 
1584 	/* Load the checksum driver */
1585 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1586 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1587 		if (IS_ERR(journal->j_chksum_driver)) {
1588 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1589 			err = PTR_ERR(journal->j_chksum_driver);
1590 			journal->j_chksum_driver = NULL;
1591 			goto out;
1592 		}
1593 	}
1594 
1595 	/* Check superblock checksum */
1596 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1597 		printk(KERN_ERR "JBD2: journal checksum error\n");
1598 		err = -EFSBADCRC;
1599 		goto out;
1600 	}
1601 
1602 	/* Precompute checksum seed for all metadata */
1603 	if (jbd2_journal_has_csum_v2or3(journal))
1604 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1605 						   sizeof(sb->s_uuid));
1606 
1607 	set_buffer_verified(bh);
1608 
1609 	return 0;
1610 
1611 out:
1612 	journal_fail_superblock(journal);
1613 	return err;
1614 }
1615 
1616 /*
1617  * Load the on-disk journal superblock and read the key fields into the
1618  * journal_t.
1619  */
1620 
1621 static int load_superblock(journal_t *journal)
1622 {
1623 	int err;
1624 	journal_superblock_t *sb;
1625 
1626 	err = journal_get_superblock(journal);
1627 	if (err)
1628 		return err;
1629 
1630 	sb = journal->j_superblock;
1631 
1632 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1633 	journal->j_tail = be32_to_cpu(sb->s_start);
1634 	journal->j_first = be32_to_cpu(sb->s_first);
1635 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1636 	journal->j_errno = be32_to_cpu(sb->s_errno);
1637 
1638 	return 0;
1639 }
1640 
1641 
1642 /**
1643  * int jbd2_journal_load() - Read journal from disk.
1644  * @journal: Journal to act on.
1645  *
1646  * Given a journal_t structure which tells us which disk blocks contain
1647  * a journal, read the journal from disk to initialise the in-memory
1648  * structures.
1649  */
1650 int jbd2_journal_load(journal_t *journal)
1651 {
1652 	int err;
1653 	journal_superblock_t *sb;
1654 
1655 	err = load_superblock(journal);
1656 	if (err)
1657 		return err;
1658 
1659 	sb = journal->j_superblock;
1660 	/* If this is a V2 superblock, then we have to check the
1661 	 * features flags on it. */
1662 
1663 	if (journal->j_format_version >= 2) {
1664 		if ((sb->s_feature_ro_compat &
1665 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1666 		    (sb->s_feature_incompat &
1667 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1668 			printk(KERN_WARNING
1669 				"JBD2: Unrecognised features on journal\n");
1670 			return -EINVAL;
1671 		}
1672 	}
1673 
1674 	/*
1675 	 * Create a slab for this blocksize
1676 	 */
1677 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1678 	if (err)
1679 		return err;
1680 
1681 	/* Let the recovery code check whether it needs to recover any
1682 	 * data from the journal. */
1683 	if (jbd2_journal_recover(journal))
1684 		goto recovery_error;
1685 
1686 	if (journal->j_failed_commit) {
1687 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1688 		       "is corrupt.\n", journal->j_failed_commit,
1689 		       journal->j_devname);
1690 		return -EFSCORRUPTED;
1691 	}
1692 
1693 	/* OK, we've finished with the dynamic journal bits:
1694 	 * reinitialise the dynamic contents of the superblock in memory
1695 	 * and reset them on disk. */
1696 	if (journal_reset(journal))
1697 		goto recovery_error;
1698 
1699 	journal->j_flags &= ~JBD2_ABORT;
1700 	journal->j_flags |= JBD2_LOADED;
1701 	return 0;
1702 
1703 recovery_error:
1704 	printk(KERN_WARNING "JBD2: recovery failed\n");
1705 	return -EIO;
1706 }
1707 
1708 /**
1709  * void jbd2_journal_destroy() - Release a journal_t structure.
1710  * @journal: Journal to act on.
1711  *
1712  * Release a journal_t structure once it is no longer in use by the
1713  * journaled object.
1714  * Return <0 if we couldn't clean up the journal.
1715  */
1716 int jbd2_journal_destroy(journal_t *journal)
1717 {
1718 	int err = 0;
1719 
1720 	/* Wait for the commit thread to wake up and die. */
1721 	journal_kill_thread(journal);
1722 
1723 	/* Force a final log commit */
1724 	if (journal->j_running_transaction)
1725 		jbd2_journal_commit_transaction(journal);
1726 
1727 	/* Force any old transactions to disk */
1728 
1729 	/* Totally anal locking here... */
1730 	spin_lock(&journal->j_list_lock);
1731 	while (journal->j_checkpoint_transactions != NULL) {
1732 		spin_unlock(&journal->j_list_lock);
1733 		mutex_lock_io(&journal->j_checkpoint_mutex);
1734 		err = jbd2_log_do_checkpoint(journal);
1735 		mutex_unlock(&journal->j_checkpoint_mutex);
1736 		/*
1737 		 * If checkpointing failed, just free the buffers to avoid
1738 		 * looping forever
1739 		 */
1740 		if (err) {
1741 			jbd2_journal_destroy_checkpoint(journal);
1742 			spin_lock(&journal->j_list_lock);
1743 			break;
1744 		}
1745 		spin_lock(&journal->j_list_lock);
1746 	}
1747 
1748 	J_ASSERT(journal->j_running_transaction == NULL);
1749 	J_ASSERT(journal->j_committing_transaction == NULL);
1750 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1751 	spin_unlock(&journal->j_list_lock);
1752 
1753 	if (journal->j_sb_buffer) {
1754 		if (!is_journal_aborted(journal)) {
1755 			mutex_lock_io(&journal->j_checkpoint_mutex);
1756 
1757 			write_lock(&journal->j_state_lock);
1758 			journal->j_tail_sequence =
1759 				++journal->j_transaction_sequence;
1760 			write_unlock(&journal->j_state_lock);
1761 
1762 			jbd2_mark_journal_empty(journal,
1763 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1764 			mutex_unlock(&journal->j_checkpoint_mutex);
1765 		} else
1766 			err = -EIO;
1767 		brelse(journal->j_sb_buffer);
1768 	}
1769 
1770 	if (journal->j_proc_entry)
1771 		jbd2_stats_proc_exit(journal);
1772 	iput(journal->j_inode);
1773 	if (journal->j_revoke)
1774 		jbd2_journal_destroy_revoke(journal);
1775 	if (journal->j_chksum_driver)
1776 		crypto_free_shash(journal->j_chksum_driver);
1777 	kfree(journal->j_wbuf);
1778 	kfree(journal);
1779 
1780 	return err;
1781 }
1782 
1783 
1784 /**
1785  *int jbd2_journal_check_used_features () - Check if features specified are used.
1786  * @journal: Journal to check.
1787  * @compat: bitmask of compatible features
1788  * @ro: bitmask of features that force read-only mount
1789  * @incompat: bitmask of incompatible features
1790  *
1791  * Check whether the journal uses all of a given set of
1792  * features.  Return true (non-zero) if it does.
1793  **/
1794 
1795 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1796 				 unsigned long ro, unsigned long incompat)
1797 {
1798 	journal_superblock_t *sb;
1799 
1800 	if (!compat && !ro && !incompat)
1801 		return 1;
1802 	/* Load journal superblock if it is not loaded yet. */
1803 	if (journal->j_format_version == 0 &&
1804 	    journal_get_superblock(journal) != 0)
1805 		return 0;
1806 	if (journal->j_format_version == 1)
1807 		return 0;
1808 
1809 	sb = journal->j_superblock;
1810 
1811 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1812 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1813 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1814 		return 1;
1815 
1816 	return 0;
1817 }
1818 
1819 /**
1820  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1821  * @journal: Journal to check.
1822  * @compat: bitmask of compatible features
1823  * @ro: bitmask of features that force read-only mount
1824  * @incompat: bitmask of incompatible features
1825  *
1826  * Check whether the journaling code supports the use of
1827  * all of a given set of features on this journal.  Return true
1828  * (non-zero) if it can. */
1829 
1830 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1831 				      unsigned long ro, unsigned long incompat)
1832 {
1833 	if (!compat && !ro && !incompat)
1834 		return 1;
1835 
1836 	/* We can support any known requested features iff the
1837 	 * superblock is in version 2.  Otherwise we fail to support any
1838 	 * extended sb features. */
1839 
1840 	if (journal->j_format_version != 2)
1841 		return 0;
1842 
1843 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1844 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1845 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1846 		return 1;
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1853  * @journal: Journal to act on.
1854  * @compat: bitmask of compatible features
1855  * @ro: bitmask of features that force read-only mount
1856  * @incompat: bitmask of incompatible features
1857  *
1858  * Mark a given journal feature as present on the
1859  * superblock.  Returns true if the requested features could be set.
1860  *
1861  */
1862 
1863 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1864 			  unsigned long ro, unsigned long incompat)
1865 {
1866 #define INCOMPAT_FEATURE_ON(f) \
1867 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1868 #define COMPAT_FEATURE_ON(f) \
1869 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1870 	journal_superblock_t *sb;
1871 
1872 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1873 		return 1;
1874 
1875 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1876 		return 0;
1877 
1878 	/* If enabling v2 checksums, turn on v3 instead */
1879 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1880 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1881 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1882 	}
1883 
1884 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1885 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1886 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1887 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1888 
1889 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1890 		  compat, ro, incompat);
1891 
1892 	sb = journal->j_superblock;
1893 
1894 	/* If enabling v3 checksums, update superblock */
1895 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1896 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1897 		sb->s_feature_compat &=
1898 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1899 
1900 		/* Load the checksum driver */
1901 		if (journal->j_chksum_driver == NULL) {
1902 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1903 								      0, 0);
1904 			if (IS_ERR(journal->j_chksum_driver)) {
1905 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1906 				       "driver.\n");
1907 				journal->j_chksum_driver = NULL;
1908 				return 0;
1909 			}
1910 
1911 			/* Precompute checksum seed for all metadata */
1912 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1913 							   sb->s_uuid,
1914 							   sizeof(sb->s_uuid));
1915 		}
1916 	}
1917 
1918 	/* If enabling v1 checksums, downgrade superblock */
1919 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1920 		sb->s_feature_incompat &=
1921 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1922 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1923 
1924 	sb->s_feature_compat    |= cpu_to_be32(compat);
1925 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1926 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1927 
1928 	return 1;
1929 #undef COMPAT_FEATURE_ON
1930 #undef INCOMPAT_FEATURE_ON
1931 }
1932 
1933 /*
1934  * jbd2_journal_clear_features () - Clear a given journal feature in the
1935  * 				    superblock
1936  * @journal: Journal to act on.
1937  * @compat: bitmask of compatible features
1938  * @ro: bitmask of features that force read-only mount
1939  * @incompat: bitmask of incompatible features
1940  *
1941  * Clear a given journal feature as present on the
1942  * superblock.
1943  */
1944 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1945 				unsigned long ro, unsigned long incompat)
1946 {
1947 	journal_superblock_t *sb;
1948 
1949 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1950 		  compat, ro, incompat);
1951 
1952 	sb = journal->j_superblock;
1953 
1954 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1955 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1956 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1957 }
1958 EXPORT_SYMBOL(jbd2_journal_clear_features);
1959 
1960 /**
1961  * int jbd2_journal_flush () - Flush journal
1962  * @journal: Journal to act on.
1963  *
1964  * Flush all data for a given journal to disk and empty the journal.
1965  * Filesystems can use this when remounting readonly to ensure that
1966  * recovery does not need to happen on remount.
1967  */
1968 
1969 int jbd2_journal_flush(journal_t *journal)
1970 {
1971 	int err = 0;
1972 	transaction_t *transaction = NULL;
1973 
1974 	write_lock(&journal->j_state_lock);
1975 
1976 	/* Force everything buffered to the log... */
1977 	if (journal->j_running_transaction) {
1978 		transaction = journal->j_running_transaction;
1979 		__jbd2_log_start_commit(journal, transaction->t_tid);
1980 	} else if (journal->j_committing_transaction)
1981 		transaction = journal->j_committing_transaction;
1982 
1983 	/* Wait for the log commit to complete... */
1984 	if (transaction) {
1985 		tid_t tid = transaction->t_tid;
1986 
1987 		write_unlock(&journal->j_state_lock);
1988 		jbd2_log_wait_commit(journal, tid);
1989 	} else {
1990 		write_unlock(&journal->j_state_lock);
1991 	}
1992 
1993 	/* ...and flush everything in the log out to disk. */
1994 	spin_lock(&journal->j_list_lock);
1995 	while (!err && journal->j_checkpoint_transactions != NULL) {
1996 		spin_unlock(&journal->j_list_lock);
1997 		mutex_lock_io(&journal->j_checkpoint_mutex);
1998 		err = jbd2_log_do_checkpoint(journal);
1999 		mutex_unlock(&journal->j_checkpoint_mutex);
2000 		spin_lock(&journal->j_list_lock);
2001 	}
2002 	spin_unlock(&journal->j_list_lock);
2003 
2004 	if (is_journal_aborted(journal))
2005 		return -EIO;
2006 
2007 	mutex_lock_io(&journal->j_checkpoint_mutex);
2008 	if (!err) {
2009 		err = jbd2_cleanup_journal_tail(journal);
2010 		if (err < 0) {
2011 			mutex_unlock(&journal->j_checkpoint_mutex);
2012 			goto out;
2013 		}
2014 		err = 0;
2015 	}
2016 
2017 	/* Finally, mark the journal as really needing no recovery.
2018 	 * This sets s_start==0 in the underlying superblock, which is
2019 	 * the magic code for a fully-recovered superblock.  Any future
2020 	 * commits of data to the journal will restore the current
2021 	 * s_start value. */
2022 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2023 	mutex_unlock(&journal->j_checkpoint_mutex);
2024 	write_lock(&journal->j_state_lock);
2025 	J_ASSERT(!journal->j_running_transaction);
2026 	J_ASSERT(!journal->j_committing_transaction);
2027 	J_ASSERT(!journal->j_checkpoint_transactions);
2028 	J_ASSERT(journal->j_head == journal->j_tail);
2029 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2030 	write_unlock(&journal->j_state_lock);
2031 out:
2032 	return err;
2033 }
2034 
2035 /**
2036  * int jbd2_journal_wipe() - Wipe journal contents
2037  * @journal: Journal to act on.
2038  * @write: flag (see below)
2039  *
2040  * Wipe out all of the contents of a journal, safely.  This will produce
2041  * a warning if the journal contains any valid recovery information.
2042  * Must be called between journal_init_*() and jbd2_journal_load().
2043  *
2044  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2045  * we merely suppress recovery.
2046  */
2047 
2048 int jbd2_journal_wipe(journal_t *journal, int write)
2049 {
2050 	int err = 0;
2051 
2052 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2053 
2054 	err = load_superblock(journal);
2055 	if (err)
2056 		return err;
2057 
2058 	if (!journal->j_tail)
2059 		goto no_recovery;
2060 
2061 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2062 		write ? "Clearing" : "Ignoring");
2063 
2064 	err = jbd2_journal_skip_recovery(journal);
2065 	if (write) {
2066 		/* Lock to make assertions happy... */
2067 		mutex_lock(&journal->j_checkpoint_mutex);
2068 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2069 		mutex_unlock(&journal->j_checkpoint_mutex);
2070 	}
2071 
2072  no_recovery:
2073 	return err;
2074 }
2075 
2076 /*
2077  * Journal abort has very specific semantics, which we describe
2078  * for journal abort.
2079  *
2080  * Two internal functions, which provide abort to the jbd layer
2081  * itself are here.
2082  */
2083 
2084 /*
2085  * Quick version for internal journal use (doesn't lock the journal).
2086  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2087  * and don't attempt to make any other journal updates.
2088  */
2089 void __jbd2_journal_abort_hard(journal_t *journal)
2090 {
2091 	transaction_t *transaction;
2092 
2093 	if (journal->j_flags & JBD2_ABORT)
2094 		return;
2095 
2096 	printk(KERN_ERR "Aborting journal on device %s.\n",
2097 	       journal->j_devname);
2098 
2099 	write_lock(&journal->j_state_lock);
2100 	journal->j_flags |= JBD2_ABORT;
2101 	transaction = journal->j_running_transaction;
2102 	if (transaction)
2103 		__jbd2_log_start_commit(journal, transaction->t_tid);
2104 	write_unlock(&journal->j_state_lock);
2105 }
2106 
2107 /* Soft abort: record the abort error status in the journal superblock,
2108  * but don't do any other IO. */
2109 static void __journal_abort_soft (journal_t *journal, int errno)
2110 {
2111 	if (journal->j_flags & JBD2_ABORT)
2112 		return;
2113 
2114 	if (!journal->j_errno)
2115 		journal->j_errno = errno;
2116 
2117 	__jbd2_journal_abort_hard(journal);
2118 
2119 	if (errno) {
2120 		jbd2_journal_update_sb_errno(journal);
2121 		write_lock(&journal->j_state_lock);
2122 		journal->j_flags |= JBD2_REC_ERR;
2123 		write_unlock(&journal->j_state_lock);
2124 	}
2125 }
2126 
2127 /**
2128  * void jbd2_journal_abort () - Shutdown the journal immediately.
2129  * @journal: the journal to shutdown.
2130  * @errno:   an error number to record in the journal indicating
2131  *           the reason for the shutdown.
2132  *
2133  * Perform a complete, immediate shutdown of the ENTIRE
2134  * journal (not of a single transaction).  This operation cannot be
2135  * undone without closing and reopening the journal.
2136  *
2137  * The jbd2_journal_abort function is intended to support higher level error
2138  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2139  * mode.
2140  *
2141  * Journal abort has very specific semantics.  Any existing dirty,
2142  * unjournaled buffers in the main filesystem will still be written to
2143  * disk by bdflush, but the journaling mechanism will be suspended
2144  * immediately and no further transaction commits will be honoured.
2145  *
2146  * Any dirty, journaled buffers will be written back to disk without
2147  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2148  * filesystem, but we _do_ attempt to leave as much data as possible
2149  * behind for fsck to use for cleanup.
2150  *
2151  * Any attempt to get a new transaction handle on a journal which is in
2152  * ABORT state will just result in an -EROFS error return.  A
2153  * jbd2_journal_stop on an existing handle will return -EIO if we have
2154  * entered abort state during the update.
2155  *
2156  * Recursive transactions are not disturbed by journal abort until the
2157  * final jbd2_journal_stop, which will receive the -EIO error.
2158  *
2159  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2160  * which will be recorded (if possible) in the journal superblock.  This
2161  * allows a client to record failure conditions in the middle of a
2162  * transaction without having to complete the transaction to record the
2163  * failure to disk.  ext3_error, for example, now uses this
2164  * functionality.
2165  *
2166  * Errors which originate from within the journaling layer will NOT
2167  * supply an errno; a null errno implies that absolutely no further
2168  * writes are done to the journal (unless there are any already in
2169  * progress).
2170  *
2171  */
2172 
2173 void jbd2_journal_abort(journal_t *journal, int errno)
2174 {
2175 	__journal_abort_soft(journal, errno);
2176 }
2177 
2178 /**
2179  * int jbd2_journal_errno () - returns the journal's error state.
2180  * @journal: journal to examine.
2181  *
2182  * This is the errno number set with jbd2_journal_abort(), the last
2183  * time the journal was mounted - if the journal was stopped
2184  * without calling abort this will be 0.
2185  *
2186  * If the journal has been aborted on this mount time -EROFS will
2187  * be returned.
2188  */
2189 int jbd2_journal_errno(journal_t *journal)
2190 {
2191 	int err;
2192 
2193 	read_lock(&journal->j_state_lock);
2194 	if (journal->j_flags & JBD2_ABORT)
2195 		err = -EROFS;
2196 	else
2197 		err = journal->j_errno;
2198 	read_unlock(&journal->j_state_lock);
2199 	return err;
2200 }
2201 
2202 /**
2203  * int jbd2_journal_clear_err () - clears the journal's error state
2204  * @journal: journal to act on.
2205  *
2206  * An error must be cleared or acked to take a FS out of readonly
2207  * mode.
2208  */
2209 int jbd2_journal_clear_err(journal_t *journal)
2210 {
2211 	int err = 0;
2212 
2213 	write_lock(&journal->j_state_lock);
2214 	if (journal->j_flags & JBD2_ABORT)
2215 		err = -EROFS;
2216 	else
2217 		journal->j_errno = 0;
2218 	write_unlock(&journal->j_state_lock);
2219 	return err;
2220 }
2221 
2222 /**
2223  * void jbd2_journal_ack_err() - Ack journal err.
2224  * @journal: journal to act on.
2225  *
2226  * An error must be cleared or acked to take a FS out of readonly
2227  * mode.
2228  */
2229 void jbd2_journal_ack_err(journal_t *journal)
2230 {
2231 	write_lock(&journal->j_state_lock);
2232 	if (journal->j_errno)
2233 		journal->j_flags |= JBD2_ACK_ERR;
2234 	write_unlock(&journal->j_state_lock);
2235 }
2236 
2237 int jbd2_journal_blocks_per_page(struct inode *inode)
2238 {
2239 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2240 }
2241 
2242 /*
2243  * helper functions to deal with 32 or 64bit block numbers.
2244  */
2245 size_t journal_tag_bytes(journal_t *journal)
2246 {
2247 	size_t sz;
2248 
2249 	if (jbd2_has_feature_csum3(journal))
2250 		return sizeof(journal_block_tag3_t);
2251 
2252 	sz = sizeof(journal_block_tag_t);
2253 
2254 	if (jbd2_has_feature_csum2(journal))
2255 		sz += sizeof(__u16);
2256 
2257 	if (jbd2_has_feature_64bit(journal))
2258 		return sz;
2259 	else
2260 		return sz - sizeof(__u32);
2261 }
2262 
2263 /*
2264  * JBD memory management
2265  *
2266  * These functions are used to allocate block-sized chunks of memory
2267  * used for making copies of buffer_head data.  Very often it will be
2268  * page-sized chunks of data, but sometimes it will be in
2269  * sub-page-size chunks.  (For example, 16k pages on Power systems
2270  * with a 4k block file system.)  For blocks smaller than a page, we
2271  * use a SLAB allocator.  There are slab caches for each block size,
2272  * which are allocated at mount time, if necessary, and we only free
2273  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2274  * this reason we don't need to a mutex to protect access to
2275  * jbd2_slab[] allocating or releasing memory; only in
2276  * jbd2_journal_create_slab().
2277  */
2278 #define JBD2_MAX_SLABS 8
2279 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2280 
2281 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2282 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2283 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284 };
2285 
2286 
2287 static void jbd2_journal_destroy_slabs(void)
2288 {
2289 	int i;
2290 
2291 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2292 		if (jbd2_slab[i])
2293 			kmem_cache_destroy(jbd2_slab[i]);
2294 		jbd2_slab[i] = NULL;
2295 	}
2296 }
2297 
2298 static int jbd2_journal_create_slab(size_t size)
2299 {
2300 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2301 	int i = order_base_2(size) - 10;
2302 	size_t slab_size;
2303 
2304 	if (size == PAGE_SIZE)
2305 		return 0;
2306 
2307 	if (i >= JBD2_MAX_SLABS)
2308 		return -EINVAL;
2309 
2310 	if (unlikely(i < 0))
2311 		i = 0;
2312 	mutex_lock(&jbd2_slab_create_mutex);
2313 	if (jbd2_slab[i]) {
2314 		mutex_unlock(&jbd2_slab_create_mutex);
2315 		return 0;	/* Already created */
2316 	}
2317 
2318 	slab_size = 1 << (i+10);
2319 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2320 					 slab_size, 0, NULL);
2321 	mutex_unlock(&jbd2_slab_create_mutex);
2322 	if (!jbd2_slab[i]) {
2323 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2324 		return -ENOMEM;
2325 	}
2326 	return 0;
2327 }
2328 
2329 static struct kmem_cache *get_slab(size_t size)
2330 {
2331 	int i = order_base_2(size) - 10;
2332 
2333 	BUG_ON(i >= JBD2_MAX_SLABS);
2334 	if (unlikely(i < 0))
2335 		i = 0;
2336 	BUG_ON(jbd2_slab[i] == NULL);
2337 	return jbd2_slab[i];
2338 }
2339 
2340 void *jbd2_alloc(size_t size, gfp_t flags)
2341 {
2342 	void *ptr;
2343 
2344 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2345 
2346 	if (size < PAGE_SIZE)
2347 		ptr = kmem_cache_alloc(get_slab(size), flags);
2348 	else
2349 		ptr = (void *)__get_free_pages(flags, get_order(size));
2350 
2351 	/* Check alignment; SLUB has gotten this wrong in the past,
2352 	 * and this can lead to user data corruption! */
2353 	BUG_ON(((unsigned long) ptr) & (size-1));
2354 
2355 	return ptr;
2356 }
2357 
2358 void jbd2_free(void *ptr, size_t size)
2359 {
2360 	if (size < PAGE_SIZE)
2361 		kmem_cache_free(get_slab(size), ptr);
2362 	else
2363 		free_pages((unsigned long)ptr, get_order(size));
2364 };
2365 
2366 /*
2367  * Journal_head storage management
2368  */
2369 static struct kmem_cache *jbd2_journal_head_cache;
2370 #ifdef CONFIG_JBD2_DEBUG
2371 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2372 #endif
2373 
2374 static int jbd2_journal_init_journal_head_cache(void)
2375 {
2376 	int retval;
2377 
2378 	J_ASSERT(jbd2_journal_head_cache == NULL);
2379 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2380 				sizeof(struct journal_head),
2381 				0,		/* offset */
2382 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2383 				NULL);		/* ctor */
2384 	retval = 0;
2385 	if (!jbd2_journal_head_cache) {
2386 		retval = -ENOMEM;
2387 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2388 	}
2389 	return retval;
2390 }
2391 
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394 	if (jbd2_journal_head_cache) {
2395 		kmem_cache_destroy(jbd2_journal_head_cache);
2396 		jbd2_journal_head_cache = NULL;
2397 	}
2398 }
2399 
2400 /*
2401  * journal_head splicing and dicing
2402  */
2403 static struct journal_head *journal_alloc_journal_head(void)
2404 {
2405 	struct journal_head *ret;
2406 
2407 #ifdef CONFIG_JBD2_DEBUG
2408 	atomic_inc(&nr_journal_heads);
2409 #endif
2410 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2411 	if (!ret) {
2412 		jbd_debug(1, "out of memory for journal_head\n");
2413 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2414 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2415 				GFP_NOFS | __GFP_NOFAIL);
2416 	}
2417 	return ret;
2418 }
2419 
2420 static void journal_free_journal_head(struct journal_head *jh)
2421 {
2422 #ifdef CONFIG_JBD2_DEBUG
2423 	atomic_dec(&nr_journal_heads);
2424 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2425 #endif
2426 	kmem_cache_free(jbd2_journal_head_cache, jh);
2427 }
2428 
2429 /*
2430  * A journal_head is attached to a buffer_head whenever JBD has an
2431  * interest in the buffer.
2432  *
2433  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2434  * is set.  This bit is tested in core kernel code where we need to take
2435  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2436  * there.
2437  *
2438  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2439  *
2440  * When a buffer has its BH_JBD bit set it is immune from being released by
2441  * core kernel code, mainly via ->b_count.
2442  *
2443  * A journal_head is detached from its buffer_head when the journal_head's
2444  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2445  * transaction (b_cp_transaction) hold their references to b_jcount.
2446  *
2447  * Various places in the kernel want to attach a journal_head to a buffer_head
2448  * _before_ attaching the journal_head to a transaction.  To protect the
2449  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2450  * journal_head's b_jcount refcount by one.  The caller must call
2451  * jbd2_journal_put_journal_head() to undo this.
2452  *
2453  * So the typical usage would be:
2454  *
2455  *	(Attach a journal_head if needed.  Increments b_jcount)
2456  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2457  *	...
2458  *      (Get another reference for transaction)
2459  *	jbd2_journal_grab_journal_head(bh);
2460  *	jh->b_transaction = xxx;
2461  *	(Put original reference)
2462  *	jbd2_journal_put_journal_head(jh);
2463  */
2464 
2465 /*
2466  * Give a buffer_head a journal_head.
2467  *
2468  * May sleep.
2469  */
2470 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2471 {
2472 	struct journal_head *jh;
2473 	struct journal_head *new_jh = NULL;
2474 
2475 repeat:
2476 	if (!buffer_jbd(bh))
2477 		new_jh = journal_alloc_journal_head();
2478 
2479 	jbd_lock_bh_journal_head(bh);
2480 	if (buffer_jbd(bh)) {
2481 		jh = bh2jh(bh);
2482 	} else {
2483 		J_ASSERT_BH(bh,
2484 			(atomic_read(&bh->b_count) > 0) ||
2485 			(bh->b_page && bh->b_page->mapping));
2486 
2487 		if (!new_jh) {
2488 			jbd_unlock_bh_journal_head(bh);
2489 			goto repeat;
2490 		}
2491 
2492 		jh = new_jh;
2493 		new_jh = NULL;		/* We consumed it */
2494 		set_buffer_jbd(bh);
2495 		bh->b_private = jh;
2496 		jh->b_bh = bh;
2497 		get_bh(bh);
2498 		BUFFER_TRACE(bh, "added journal_head");
2499 	}
2500 	jh->b_jcount++;
2501 	jbd_unlock_bh_journal_head(bh);
2502 	if (new_jh)
2503 		journal_free_journal_head(new_jh);
2504 	return bh->b_private;
2505 }
2506 
2507 /*
2508  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2509  * having a journal_head, return NULL
2510  */
2511 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2512 {
2513 	struct journal_head *jh = NULL;
2514 
2515 	jbd_lock_bh_journal_head(bh);
2516 	if (buffer_jbd(bh)) {
2517 		jh = bh2jh(bh);
2518 		jh->b_jcount++;
2519 	}
2520 	jbd_unlock_bh_journal_head(bh);
2521 	return jh;
2522 }
2523 
2524 static void __journal_remove_journal_head(struct buffer_head *bh)
2525 {
2526 	struct journal_head *jh = bh2jh(bh);
2527 
2528 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2529 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2530 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2531 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2532 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2533 	J_ASSERT_BH(bh, buffer_jbd(bh));
2534 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2535 	BUFFER_TRACE(bh, "remove journal_head");
2536 	if (jh->b_frozen_data) {
2537 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2538 		jbd2_free(jh->b_frozen_data, bh->b_size);
2539 	}
2540 	if (jh->b_committed_data) {
2541 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2542 		jbd2_free(jh->b_committed_data, bh->b_size);
2543 	}
2544 	bh->b_private = NULL;
2545 	jh->b_bh = NULL;	/* debug, really */
2546 	clear_buffer_jbd(bh);
2547 	journal_free_journal_head(jh);
2548 }
2549 
2550 /*
2551  * Drop a reference on the passed journal_head.  If it fell to zero then
2552  * release the journal_head from the buffer_head.
2553  */
2554 void jbd2_journal_put_journal_head(struct journal_head *jh)
2555 {
2556 	struct buffer_head *bh = jh2bh(jh);
2557 
2558 	jbd_lock_bh_journal_head(bh);
2559 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2560 	--jh->b_jcount;
2561 	if (!jh->b_jcount) {
2562 		__journal_remove_journal_head(bh);
2563 		jbd_unlock_bh_journal_head(bh);
2564 		__brelse(bh);
2565 	} else
2566 		jbd_unlock_bh_journal_head(bh);
2567 }
2568 
2569 /*
2570  * Initialize jbd inode head
2571  */
2572 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2573 {
2574 	jinode->i_transaction = NULL;
2575 	jinode->i_next_transaction = NULL;
2576 	jinode->i_vfs_inode = inode;
2577 	jinode->i_flags = 0;
2578 	INIT_LIST_HEAD(&jinode->i_list);
2579 }
2580 
2581 /*
2582  * Function to be called before we start removing inode from memory (i.e.,
2583  * clear_inode() is a fine place to be called from). It removes inode from
2584  * transaction's lists.
2585  */
2586 void jbd2_journal_release_jbd_inode(journal_t *journal,
2587 				    struct jbd2_inode *jinode)
2588 {
2589 	if (!journal)
2590 		return;
2591 restart:
2592 	spin_lock(&journal->j_list_lock);
2593 	/* Is commit writing out inode - we have to wait */
2594 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595 		wait_queue_head_t *wq;
2596 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599 		spin_unlock(&journal->j_list_lock);
2600 		schedule();
2601 		finish_wait(wq, &wait.wq_entry);
2602 		goto restart;
2603 	}
2604 
2605 	if (jinode->i_transaction) {
2606 		list_del(&jinode->i_list);
2607 		jinode->i_transaction = NULL;
2608 	}
2609 	spin_unlock(&journal->j_list_lock);
2610 }
2611 
2612 
2613 #ifdef CONFIG_PROC_FS
2614 
2615 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2616 
2617 static void __init jbd2_create_jbd_stats_proc_entry(void)
2618 {
2619 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620 }
2621 
2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623 {
2624 	if (proc_jbd2_stats)
2625 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626 }
2627 
2628 #else
2629 
2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632 
2633 #endif
2634 
2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636 
2637 static int __init jbd2_journal_init_handle_cache(void)
2638 {
2639 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2640 	if (jbd2_handle_cache == NULL) {
2641 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2642 		return -ENOMEM;
2643 	}
2644 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2645 	if (jbd2_inode_cache == NULL) {
2646 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2647 		kmem_cache_destroy(jbd2_handle_cache);
2648 		return -ENOMEM;
2649 	}
2650 	return 0;
2651 }
2652 
2653 static void jbd2_journal_destroy_handle_cache(void)
2654 {
2655 	if (jbd2_handle_cache)
2656 		kmem_cache_destroy(jbd2_handle_cache);
2657 	if (jbd2_inode_cache)
2658 		kmem_cache_destroy(jbd2_inode_cache);
2659 
2660 }
2661 
2662 /*
2663  * Module startup and shutdown
2664  */
2665 
2666 static int __init journal_init_caches(void)
2667 {
2668 	int ret;
2669 
2670 	ret = jbd2_journal_init_revoke_caches();
2671 	if (ret == 0)
2672 		ret = jbd2_journal_init_journal_head_cache();
2673 	if (ret == 0)
2674 		ret = jbd2_journal_init_handle_cache();
2675 	if (ret == 0)
2676 		ret = jbd2_journal_init_transaction_cache();
2677 	return ret;
2678 }
2679 
2680 static void jbd2_journal_destroy_caches(void)
2681 {
2682 	jbd2_journal_destroy_revoke_caches();
2683 	jbd2_journal_destroy_journal_head_cache();
2684 	jbd2_journal_destroy_handle_cache();
2685 	jbd2_journal_destroy_transaction_cache();
2686 	jbd2_journal_destroy_slabs();
2687 }
2688 
2689 static int __init journal_init(void)
2690 {
2691 	int ret;
2692 
2693 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2694 
2695 	ret = journal_init_caches();
2696 	if (ret == 0) {
2697 		jbd2_create_jbd_stats_proc_entry();
2698 	} else {
2699 		jbd2_journal_destroy_caches();
2700 	}
2701 	return ret;
2702 }
2703 
2704 static void __exit journal_exit(void)
2705 {
2706 #ifdef CONFIG_JBD2_DEBUG
2707 	int n = atomic_read(&nr_journal_heads);
2708 	if (n)
2709 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2710 #endif
2711 	jbd2_remove_jbd_stats_proc_entry();
2712 	jbd2_journal_destroy_caches();
2713 }
2714 
2715 MODULE_LICENSE("GPL");
2716 module_init(journal_init);
2717 module_exit(journal_exit);
2718 
2719