xref: /openbmc/linux/fs/jbd2/journal.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 static ushort jbd2_journal_enable_debug __read_mostly;
53 
54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56 #endif
57 
58 EXPORT_SYMBOL(jbd2_journal_extend);
59 EXPORT_SYMBOL(jbd2_journal_stop);
60 EXPORT_SYMBOL(jbd2_journal_lock_updates);
61 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62 EXPORT_SYMBOL(jbd2_journal_get_write_access);
63 EXPORT_SYMBOL(jbd2_journal_get_create_access);
64 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65 EXPORT_SYMBOL(jbd2_journal_set_triggers);
66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67 EXPORT_SYMBOL(jbd2_journal_forget);
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96 EXPORT_SYMBOL(jbd2_inode_cache);
97 
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 #ifdef CONFIG_JBD2_DEBUG
101 void __jbd2_debug(int level, const char *file, const char *func,
102 		  unsigned int line, const char *fmt, ...)
103 {
104 	struct va_format vaf;
105 	va_list args;
106 
107 	if (level > jbd2_journal_enable_debug)
108 		return;
109 	va_start(args, fmt);
110 	vaf.fmt = fmt;
111 	vaf.va = &args;
112 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113 	va_end(args);
114 }
115 #endif
116 
117 /* Checksumming functions */
118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119 {
120 	__u32 csum;
121 	__be32 old_csum;
122 
123 	old_csum = sb->s_checksum;
124 	sb->s_checksum = 0;
125 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126 	sb->s_checksum = old_csum;
127 
128 	return cpu_to_be32(csum);
129 }
130 
131 /*
132  * Helper function used to manage commit timeouts
133  */
134 
135 static void commit_timeout(struct timer_list *t)
136 {
137 	journal_t *journal = from_timer(journal, t, j_commit_timer);
138 
139 	wake_up_process(journal->j_task);
140 }
141 
142 /*
143  * kjournald2: The main thread function used to manage a logging device
144  * journal.
145  *
146  * This kernel thread is responsible for two things:
147  *
148  * 1) COMMIT:  Every so often we need to commit the current state of the
149  *    filesystem to disk.  The journal thread is responsible for writing
150  *    all of the metadata buffers to disk. If a fast commit is ongoing
151  *    journal thread waits until it's done and then continues from
152  *    there on.
153  *
154  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155  *    of the data in that part of the log has been rewritten elsewhere on
156  *    the disk.  Flushing these old buffers to reclaim space in the log is
157  *    known as checkpointing, and this thread is responsible for that job.
158  */
159 
160 static int kjournald2(void *arg)
161 {
162 	journal_t *journal = arg;
163 	transaction_t *transaction;
164 
165 	/*
166 	 * Set up an interval timer which can be used to trigger a commit wakeup
167 	 * after the commit interval expires
168 	 */
169 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170 
171 	set_freezable();
172 
173 	/* Record that the journal thread is running */
174 	journal->j_task = current;
175 	wake_up(&journal->j_wait_done_commit);
176 
177 	/*
178 	 * Make sure that no allocations from this kernel thread will ever
179 	 * recurse to the fs layer because we are responsible for the
180 	 * transaction commit and any fs involvement might get stuck waiting for
181 	 * the trasn. commit.
182 	 */
183 	memalloc_nofs_save();
184 
185 	/*
186 	 * And now, wait forever for commit wakeup events.
187 	 */
188 	write_lock(&journal->j_state_lock);
189 
190 loop:
191 	if (journal->j_flags & JBD2_UNMOUNT)
192 		goto end_loop;
193 
194 	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195 		journal->j_commit_sequence, journal->j_commit_request);
196 
197 	if (journal->j_commit_sequence != journal->j_commit_request) {
198 		jbd2_debug(1, "OK, requests differ\n");
199 		write_unlock(&journal->j_state_lock);
200 		del_timer_sync(&journal->j_commit_timer);
201 		jbd2_journal_commit_transaction(journal);
202 		write_lock(&journal->j_state_lock);
203 		goto loop;
204 	}
205 
206 	wake_up(&journal->j_wait_done_commit);
207 	if (freezing(current)) {
208 		/*
209 		 * The simpler the better. Flushing journal isn't a
210 		 * good idea, because that depends on threads that may
211 		 * be already stopped.
212 		 */
213 		jbd2_debug(1, "Now suspending kjournald2\n");
214 		write_unlock(&journal->j_state_lock);
215 		try_to_freeze();
216 		write_lock(&journal->j_state_lock);
217 	} else {
218 		/*
219 		 * We assume on resume that commits are already there,
220 		 * so we don't sleep
221 		 */
222 		DEFINE_WAIT(wait);
223 		int should_sleep = 1;
224 
225 		prepare_to_wait(&journal->j_wait_commit, &wait,
226 				TASK_INTERRUPTIBLE);
227 		if (journal->j_commit_sequence != journal->j_commit_request)
228 			should_sleep = 0;
229 		transaction = journal->j_running_transaction;
230 		if (transaction && time_after_eq(jiffies,
231 						transaction->t_expires))
232 			should_sleep = 0;
233 		if (journal->j_flags & JBD2_UNMOUNT)
234 			should_sleep = 0;
235 		if (should_sleep) {
236 			write_unlock(&journal->j_state_lock);
237 			schedule();
238 			write_lock(&journal->j_state_lock);
239 		}
240 		finish_wait(&journal->j_wait_commit, &wait);
241 	}
242 
243 	jbd2_debug(1, "kjournald2 wakes\n");
244 
245 	/*
246 	 * Were we woken up by a commit wakeup event?
247 	 */
248 	transaction = journal->j_running_transaction;
249 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250 		journal->j_commit_request = transaction->t_tid;
251 		jbd2_debug(1, "woke because of timeout\n");
252 	}
253 	goto loop;
254 
255 end_loop:
256 	del_timer_sync(&journal->j_commit_timer);
257 	journal->j_task = NULL;
258 	wake_up(&journal->j_wait_done_commit);
259 	jbd2_debug(1, "Journal thread exiting.\n");
260 	write_unlock(&journal->j_state_lock);
261 	return 0;
262 }
263 
264 static int jbd2_journal_start_thread(journal_t *journal)
265 {
266 	struct task_struct *t;
267 
268 	t = kthread_run(kjournald2, journal, "jbd2/%s",
269 			journal->j_devname);
270 	if (IS_ERR(t))
271 		return PTR_ERR(t);
272 
273 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274 	return 0;
275 }
276 
277 static void journal_kill_thread(journal_t *journal)
278 {
279 	write_lock(&journal->j_state_lock);
280 	journal->j_flags |= JBD2_UNMOUNT;
281 
282 	while (journal->j_task) {
283 		write_unlock(&journal->j_state_lock);
284 		wake_up(&journal->j_wait_commit);
285 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286 		write_lock(&journal->j_state_lock);
287 	}
288 	write_unlock(&journal->j_state_lock);
289 }
290 
291 /*
292  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293  *
294  * Writes a metadata buffer to a given disk block.  The actual IO is not
295  * performed but a new buffer_head is constructed which labels the data
296  * to be written with the correct destination disk block.
297  *
298  * Any magic-number escaping which needs to be done will cause a
299  * copy-out here.  If the buffer happens to start with the
300  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301  * magic number is only written to the log for descripter blocks.  In
302  * this case, we copy the data and replace the first word with 0, and we
303  * return a result code which indicates that this buffer needs to be
304  * marked as an escaped buffer in the corresponding log descriptor
305  * block.  The missing word can then be restored when the block is read
306  * during recovery.
307  *
308  * If the source buffer has already been modified by a new transaction
309  * since we took the last commit snapshot, we use the frozen copy of
310  * that data for IO. If we end up using the existing buffer_head's data
311  * for the write, then we have to make sure nobody modifies it while the
312  * IO is in progress. do_get_write_access() handles this.
313  *
314  * The function returns a pointer to the buffer_head to be used for IO.
315  *
316  *
317  * Return value:
318  *  <0: Error
319  * >=0: Finished OK
320  *
321  * On success:
322  * Bit 0 set == escape performed on the data
323  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324  */
325 
326 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327 				  struct journal_head  *jh_in,
328 				  struct buffer_head **bh_out,
329 				  sector_t blocknr)
330 {
331 	int need_copy_out = 0;
332 	int done_copy_out = 0;
333 	int do_escape = 0;
334 	char *mapped_data;
335 	struct buffer_head *new_bh;
336 	struct folio *new_folio;
337 	unsigned int new_offset;
338 	struct buffer_head *bh_in = jh2bh(jh_in);
339 	journal_t *journal = transaction->t_journal;
340 
341 	/*
342 	 * The buffer really shouldn't be locked: only the current committing
343 	 * transaction is allowed to write it, so nobody else is allowed
344 	 * to do any IO.
345 	 *
346 	 * akpm: except if we're journalling data, and write() output is
347 	 * also part of a shared mapping, and another thread has
348 	 * decided to launch a writepage() against this buffer.
349 	 */
350 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351 
352 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353 
354 	/* keep subsequent assertions sane */
355 	atomic_set(&new_bh->b_count, 1);
356 
357 	spin_lock(&jh_in->b_state_lock);
358 repeat:
359 	/*
360 	 * If a new transaction has already done a buffer copy-out, then
361 	 * we use that version of the data for the commit.
362 	 */
363 	if (jh_in->b_frozen_data) {
364 		done_copy_out = 1;
365 		new_folio = virt_to_folio(jh_in->b_frozen_data);
366 		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367 	} else {
368 		new_folio = jh2bh(jh_in)->b_folio;
369 		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370 	}
371 
372 	mapped_data = kmap_local_folio(new_folio, new_offset);
373 	/*
374 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
375 	 * before checking for escaping, as the trigger may modify the magic
376 	 * offset.  If a copy-out happens afterwards, it will have the correct
377 	 * data in the buffer.
378 	 */
379 	if (!done_copy_out)
380 		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381 					   jh_in->b_triggers);
382 
383 	/*
384 	 * Check for escaping
385 	 */
386 	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387 		need_copy_out = 1;
388 		do_escape = 1;
389 	}
390 	kunmap_local(mapped_data);
391 
392 	/*
393 	 * Do we need to do a data copy?
394 	 */
395 	if (need_copy_out && !done_copy_out) {
396 		char *tmp;
397 
398 		spin_unlock(&jh_in->b_state_lock);
399 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400 		if (!tmp) {
401 			brelse(new_bh);
402 			free_buffer_head(new_bh);
403 			return -ENOMEM;
404 		}
405 		spin_lock(&jh_in->b_state_lock);
406 		if (jh_in->b_frozen_data) {
407 			jbd2_free(tmp, bh_in->b_size);
408 			goto repeat;
409 		}
410 
411 		jh_in->b_frozen_data = tmp;
412 		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
413 
414 		new_folio = virt_to_folio(tmp);
415 		new_offset = offset_in_folio(new_folio, tmp);
416 		done_copy_out = 1;
417 
418 		/*
419 		 * This isn't strictly necessary, as we're using frozen
420 		 * data for the escaping, but it keeps consistency with
421 		 * b_frozen_data usage.
422 		 */
423 		jh_in->b_frozen_triggers = jh_in->b_triggers;
424 	}
425 
426 	/*
427 	 * Did we need to do an escaping?  Now we've done all the
428 	 * copying, we can finally do so.
429 	 */
430 	if (do_escape) {
431 		mapped_data = kmap_local_folio(new_folio, new_offset);
432 		*((unsigned int *)mapped_data) = 0;
433 		kunmap_local(mapped_data);
434 	}
435 
436 	folio_set_bh(new_bh, new_folio, new_offset);
437 	new_bh->b_size = bh_in->b_size;
438 	new_bh->b_bdev = journal->j_dev;
439 	new_bh->b_blocknr = blocknr;
440 	new_bh->b_private = bh_in;
441 	set_buffer_mapped(new_bh);
442 	set_buffer_dirty(new_bh);
443 
444 	*bh_out = new_bh;
445 
446 	/*
447 	 * The to-be-written buffer needs to get moved to the io queue,
448 	 * and the original buffer whose contents we are shadowing or
449 	 * copying is moved to the transaction's shadow queue.
450 	 */
451 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
452 	spin_lock(&journal->j_list_lock);
453 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
454 	spin_unlock(&journal->j_list_lock);
455 	set_buffer_shadow(bh_in);
456 	spin_unlock(&jh_in->b_state_lock);
457 
458 	return do_escape | (done_copy_out << 1);
459 }
460 
461 /*
462  * Allocation code for the journal file.  Manage the space left in the
463  * journal, so that we can begin checkpointing when appropriate.
464  */
465 
466 /*
467  * Called with j_state_lock locked for writing.
468  * Returns true if a transaction commit was started.
469  */
470 static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
471 {
472 	/* Return if the txn has already requested to be committed */
473 	if (journal->j_commit_request == target)
474 		return 0;
475 
476 	/*
477 	 * The only transaction we can possibly wait upon is the
478 	 * currently running transaction (if it exists).  Otherwise,
479 	 * the target tid must be an old one.
480 	 */
481 	if (journal->j_running_transaction &&
482 	    journal->j_running_transaction->t_tid == target) {
483 		/*
484 		 * We want a new commit: OK, mark the request and wakeup the
485 		 * commit thread.  We do _not_ do the commit ourselves.
486 		 */
487 
488 		journal->j_commit_request = target;
489 		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
490 			  journal->j_commit_request,
491 			  journal->j_commit_sequence);
492 		journal->j_running_transaction->t_requested = jiffies;
493 		wake_up(&journal->j_wait_commit);
494 		return 1;
495 	} else if (!tid_geq(journal->j_commit_request, target))
496 		/* This should never happen, but if it does, preserve
497 		   the evidence before kjournald goes into a loop and
498 		   increments j_commit_sequence beyond all recognition. */
499 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
500 			  journal->j_commit_request,
501 			  journal->j_commit_sequence,
502 			  target, journal->j_running_transaction ?
503 			  journal->j_running_transaction->t_tid : 0);
504 	return 0;
505 }
506 
507 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
508 {
509 	int ret;
510 
511 	write_lock(&journal->j_state_lock);
512 	ret = __jbd2_log_start_commit(journal, tid);
513 	write_unlock(&journal->j_state_lock);
514 	return ret;
515 }
516 
517 /*
518  * Force and wait any uncommitted transactions.  We can only force the running
519  * transaction if we don't have an active handle, otherwise, we will deadlock.
520  * Returns: <0 in case of error,
521  *           0 if nothing to commit,
522  *           1 if transaction was successfully committed.
523  */
524 static int __jbd2_journal_force_commit(journal_t *journal)
525 {
526 	transaction_t *transaction = NULL;
527 	tid_t tid;
528 	int need_to_start = 0, ret = 0;
529 
530 	read_lock(&journal->j_state_lock);
531 	if (journal->j_running_transaction && !current->journal_info) {
532 		transaction = journal->j_running_transaction;
533 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
534 			need_to_start = 1;
535 	} else if (journal->j_committing_transaction)
536 		transaction = journal->j_committing_transaction;
537 
538 	if (!transaction) {
539 		/* Nothing to commit */
540 		read_unlock(&journal->j_state_lock);
541 		return 0;
542 	}
543 	tid = transaction->t_tid;
544 	read_unlock(&journal->j_state_lock);
545 	if (need_to_start)
546 		jbd2_log_start_commit(journal, tid);
547 	ret = jbd2_log_wait_commit(journal, tid);
548 	if (!ret)
549 		ret = 1;
550 
551 	return ret;
552 }
553 
554 /**
555  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
556  * calling process is not within transaction.
557  *
558  * @journal: journal to force
559  * Returns true if progress was made.
560  *
561  * This is used for forcing out undo-protected data which contains
562  * bitmaps, when the fs is running out of space.
563  */
564 int jbd2_journal_force_commit_nested(journal_t *journal)
565 {
566 	int ret;
567 
568 	ret = __jbd2_journal_force_commit(journal);
569 	return ret > 0;
570 }
571 
572 /**
573  * jbd2_journal_force_commit() - force any uncommitted transactions
574  * @journal: journal to force
575  *
576  * Caller want unconditional commit. We can only force the running transaction
577  * if we don't have an active handle, otherwise, we will deadlock.
578  */
579 int jbd2_journal_force_commit(journal_t *journal)
580 {
581 	int ret;
582 
583 	J_ASSERT(!current->journal_info);
584 	ret = __jbd2_journal_force_commit(journal);
585 	if (ret > 0)
586 		ret = 0;
587 	return ret;
588 }
589 
590 /*
591  * Start a commit of the current running transaction (if any).  Returns true
592  * if a transaction is going to be committed (or is currently already
593  * committing), and fills its tid in at *ptid
594  */
595 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
596 {
597 	int ret = 0;
598 
599 	write_lock(&journal->j_state_lock);
600 	if (journal->j_running_transaction) {
601 		tid_t tid = journal->j_running_transaction->t_tid;
602 
603 		__jbd2_log_start_commit(journal, tid);
604 		/* There's a running transaction and we've just made sure
605 		 * it's commit has been scheduled. */
606 		if (ptid)
607 			*ptid = tid;
608 		ret = 1;
609 	} else if (journal->j_committing_transaction) {
610 		/*
611 		 * If commit has been started, then we have to wait for
612 		 * completion of that transaction.
613 		 */
614 		if (ptid)
615 			*ptid = journal->j_committing_transaction->t_tid;
616 		ret = 1;
617 	}
618 	write_unlock(&journal->j_state_lock);
619 	return ret;
620 }
621 
622 /*
623  * Return 1 if a given transaction has not yet sent barrier request
624  * connected with a transaction commit. If 0 is returned, transaction
625  * may or may not have sent the barrier. Used to avoid sending barrier
626  * twice in common cases.
627  */
628 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
629 {
630 	int ret = 0;
631 	transaction_t *commit_trans;
632 
633 	if (!(journal->j_flags & JBD2_BARRIER))
634 		return 0;
635 	read_lock(&journal->j_state_lock);
636 	/* Transaction already committed? */
637 	if (tid_geq(journal->j_commit_sequence, tid))
638 		goto out;
639 	commit_trans = journal->j_committing_transaction;
640 	if (!commit_trans || commit_trans->t_tid != tid) {
641 		ret = 1;
642 		goto out;
643 	}
644 	/*
645 	 * Transaction is being committed and we already proceeded to
646 	 * submitting a flush to fs partition?
647 	 */
648 	if (journal->j_fs_dev != journal->j_dev) {
649 		if (!commit_trans->t_need_data_flush ||
650 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
651 			goto out;
652 	} else {
653 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
654 			goto out;
655 	}
656 	ret = 1;
657 out:
658 	read_unlock(&journal->j_state_lock);
659 	return ret;
660 }
661 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
662 
663 /*
664  * Wait for a specified commit to complete.
665  * The caller may not hold the journal lock.
666  */
667 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
668 {
669 	int err = 0;
670 
671 	read_lock(&journal->j_state_lock);
672 #ifdef CONFIG_PROVE_LOCKING
673 	/*
674 	 * Some callers make sure transaction is already committing and in that
675 	 * case we cannot block on open handles anymore. So don't warn in that
676 	 * case.
677 	 */
678 	if (tid_gt(tid, journal->j_commit_sequence) &&
679 	    (!journal->j_committing_transaction ||
680 	     journal->j_committing_transaction->t_tid != tid)) {
681 		read_unlock(&journal->j_state_lock);
682 		jbd2_might_wait_for_commit(journal);
683 		read_lock(&journal->j_state_lock);
684 	}
685 #endif
686 #ifdef CONFIG_JBD2_DEBUG
687 	if (!tid_geq(journal->j_commit_request, tid)) {
688 		printk(KERN_ERR
689 		       "%s: error: j_commit_request=%u, tid=%u\n",
690 		       __func__, journal->j_commit_request, tid);
691 	}
692 #endif
693 	while (tid_gt(tid, journal->j_commit_sequence)) {
694 		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
695 				  tid, journal->j_commit_sequence);
696 		read_unlock(&journal->j_state_lock);
697 		wake_up(&journal->j_wait_commit);
698 		wait_event(journal->j_wait_done_commit,
699 				!tid_gt(tid, journal->j_commit_sequence));
700 		read_lock(&journal->j_state_lock);
701 	}
702 	read_unlock(&journal->j_state_lock);
703 
704 	if (unlikely(is_journal_aborted(journal)))
705 		err = -EIO;
706 	return err;
707 }
708 
709 /*
710  * Start a fast commit. If there's an ongoing fast or full commit wait for
711  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
712  * if a fast commit is not needed, either because there's an already a commit
713  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
714  * commit has yet been performed.
715  */
716 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
717 {
718 	if (unlikely(is_journal_aborted(journal)))
719 		return -EIO;
720 	/*
721 	 * Fast commits only allowed if at least one full commit has
722 	 * been processed.
723 	 */
724 	if (!journal->j_stats.ts_tid)
725 		return -EINVAL;
726 
727 	write_lock(&journal->j_state_lock);
728 	if (tid_geq(journal->j_commit_sequence, tid)) {
729 		write_unlock(&journal->j_state_lock);
730 		return -EALREADY;
731 	}
732 
733 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
734 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
735 		DEFINE_WAIT(wait);
736 
737 		prepare_to_wait(&journal->j_fc_wait, &wait,
738 				TASK_UNINTERRUPTIBLE);
739 		write_unlock(&journal->j_state_lock);
740 		schedule();
741 		finish_wait(&journal->j_fc_wait, &wait);
742 		return -EALREADY;
743 	}
744 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
745 	write_unlock(&journal->j_state_lock);
746 	jbd2_journal_lock_updates(journal);
747 
748 	return 0;
749 }
750 EXPORT_SYMBOL(jbd2_fc_begin_commit);
751 
752 /*
753  * Stop a fast commit. If fallback is set, this function starts commit of
754  * TID tid before any other fast commit can start.
755  */
756 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
757 {
758 	if (journal->j_fc_cleanup_callback)
759 		journal->j_fc_cleanup_callback(journal, 0, tid);
760 	jbd2_journal_unlock_updates(journal);
761 	write_lock(&journal->j_state_lock);
762 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
763 	if (fallback)
764 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
765 	write_unlock(&journal->j_state_lock);
766 	wake_up(&journal->j_fc_wait);
767 	if (fallback)
768 		return jbd2_complete_transaction(journal, tid);
769 	return 0;
770 }
771 
772 int jbd2_fc_end_commit(journal_t *journal)
773 {
774 	return __jbd2_fc_end_commit(journal, 0, false);
775 }
776 EXPORT_SYMBOL(jbd2_fc_end_commit);
777 
778 int jbd2_fc_end_commit_fallback(journal_t *journal)
779 {
780 	tid_t tid;
781 
782 	read_lock(&journal->j_state_lock);
783 	tid = journal->j_running_transaction ?
784 		journal->j_running_transaction->t_tid : 0;
785 	read_unlock(&journal->j_state_lock);
786 	return __jbd2_fc_end_commit(journal, tid, true);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
789 
790 /* Return 1 when transaction with given tid has already committed. */
791 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
792 {
793 	int ret = 1;
794 
795 	read_lock(&journal->j_state_lock);
796 	if (journal->j_running_transaction &&
797 	    journal->j_running_transaction->t_tid == tid)
798 		ret = 0;
799 	if (journal->j_committing_transaction &&
800 	    journal->j_committing_transaction->t_tid == tid)
801 		ret = 0;
802 	read_unlock(&journal->j_state_lock);
803 	return ret;
804 }
805 EXPORT_SYMBOL(jbd2_transaction_committed);
806 
807 /*
808  * When this function returns the transaction corresponding to tid
809  * will be completed.  If the transaction has currently running, start
810  * committing that transaction before waiting for it to complete.  If
811  * the transaction id is stale, it is by definition already completed,
812  * so just return SUCCESS.
813  */
814 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
815 {
816 	int	need_to_wait = 1;
817 
818 	read_lock(&journal->j_state_lock);
819 	if (journal->j_running_transaction &&
820 	    journal->j_running_transaction->t_tid == tid) {
821 		if (journal->j_commit_request != tid) {
822 			/* transaction not yet started, so request it */
823 			read_unlock(&journal->j_state_lock);
824 			jbd2_log_start_commit(journal, tid);
825 			goto wait_commit;
826 		}
827 	} else if (!(journal->j_committing_transaction &&
828 		     journal->j_committing_transaction->t_tid == tid))
829 		need_to_wait = 0;
830 	read_unlock(&journal->j_state_lock);
831 	if (!need_to_wait)
832 		return 0;
833 wait_commit:
834 	return jbd2_log_wait_commit(journal, tid);
835 }
836 EXPORT_SYMBOL(jbd2_complete_transaction);
837 
838 /*
839  * Log buffer allocation routines:
840  */
841 
842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
843 {
844 	unsigned long blocknr;
845 
846 	write_lock(&journal->j_state_lock);
847 	J_ASSERT(journal->j_free > 1);
848 
849 	blocknr = journal->j_head;
850 	journal->j_head++;
851 	journal->j_free--;
852 	if (journal->j_head == journal->j_last)
853 		journal->j_head = journal->j_first;
854 	write_unlock(&journal->j_state_lock);
855 	return jbd2_journal_bmap(journal, blocknr, retp);
856 }
857 
858 /* Map one fast commit buffer for use by the file system */
859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
860 {
861 	unsigned long long pblock;
862 	unsigned long blocknr;
863 	int ret = 0;
864 	struct buffer_head *bh;
865 	int fc_off;
866 
867 	*bh_out = NULL;
868 
869 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
870 		fc_off = journal->j_fc_off;
871 		blocknr = journal->j_fc_first + fc_off;
872 		journal->j_fc_off++;
873 	} else {
874 		ret = -EINVAL;
875 	}
876 
877 	if (ret)
878 		return ret;
879 
880 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
881 	if (ret)
882 		return ret;
883 
884 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
885 	if (!bh)
886 		return -ENOMEM;
887 
888 
889 	journal->j_fc_wbuf[fc_off] = bh;
890 
891 	*bh_out = bh;
892 
893 	return 0;
894 }
895 EXPORT_SYMBOL(jbd2_fc_get_buf);
896 
897 /*
898  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
899  * for completion.
900  */
901 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
902 {
903 	struct buffer_head *bh;
904 	int i, j_fc_off;
905 
906 	j_fc_off = journal->j_fc_off;
907 
908 	/*
909 	 * Wait in reverse order to minimize chances of us being woken up before
910 	 * all IOs have completed
911 	 */
912 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
913 		bh = journal->j_fc_wbuf[i];
914 		wait_on_buffer(bh);
915 		/*
916 		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
917 		 * buffer head.
918 		 */
919 		if (unlikely(!buffer_uptodate(bh))) {
920 			journal->j_fc_off = i + 1;
921 			return -EIO;
922 		}
923 		put_bh(bh);
924 		journal->j_fc_wbuf[i] = NULL;
925 	}
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
930 
931 int jbd2_fc_release_bufs(journal_t *journal)
932 {
933 	struct buffer_head *bh;
934 	int i, j_fc_off;
935 
936 	j_fc_off = journal->j_fc_off;
937 
938 	for (i = j_fc_off - 1; i >= 0; i--) {
939 		bh = journal->j_fc_wbuf[i];
940 		if (!bh)
941 			break;
942 		put_bh(bh);
943 		journal->j_fc_wbuf[i] = NULL;
944 	}
945 
946 	return 0;
947 }
948 EXPORT_SYMBOL(jbd2_fc_release_bufs);
949 
950 /*
951  * Conversion of logical to physical block numbers for the journal
952  *
953  * On external journals the journal blocks are identity-mapped, so
954  * this is a no-op.  If needed, we can use j_blk_offset - everything is
955  * ready.
956  */
957 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
958 		 unsigned long long *retp)
959 {
960 	int err = 0;
961 	unsigned long long ret;
962 	sector_t block = blocknr;
963 
964 	if (journal->j_bmap) {
965 		err = journal->j_bmap(journal, &block);
966 		if (err == 0)
967 			*retp = block;
968 	} else if (journal->j_inode) {
969 		ret = bmap(journal->j_inode, &block);
970 
971 		if (ret || !block) {
972 			printk(KERN_ALERT "%s: journal block not found "
973 					"at offset %lu on %s\n",
974 			       __func__, blocknr, journal->j_devname);
975 			err = -EIO;
976 			jbd2_journal_abort(journal, err);
977 		} else {
978 			*retp = block;
979 		}
980 
981 	} else {
982 		*retp = blocknr; /* +journal->j_blk_offset */
983 	}
984 	return err;
985 }
986 
987 /*
988  * We play buffer_head aliasing tricks to write data/metadata blocks to
989  * the journal without copying their contents, but for journal
990  * descriptor blocks we do need to generate bona fide buffers.
991  *
992  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
993  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
994  * But we don't bother doing that, so there will be coherency problems with
995  * mmaps of blockdevs which hold live JBD-controlled filesystems.
996  */
997 struct buffer_head *
998 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
999 {
1000 	journal_t *journal = transaction->t_journal;
1001 	struct buffer_head *bh;
1002 	unsigned long long blocknr;
1003 	journal_header_t *header;
1004 	int err;
1005 
1006 	err = jbd2_journal_next_log_block(journal, &blocknr);
1007 
1008 	if (err)
1009 		return NULL;
1010 
1011 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1012 	if (!bh)
1013 		return NULL;
1014 	atomic_dec(&transaction->t_outstanding_credits);
1015 	lock_buffer(bh);
1016 	memset(bh->b_data, 0, journal->j_blocksize);
1017 	header = (journal_header_t *)bh->b_data;
1018 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1019 	header->h_blocktype = cpu_to_be32(type);
1020 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1021 	set_buffer_uptodate(bh);
1022 	unlock_buffer(bh);
1023 	BUFFER_TRACE(bh, "return this buffer");
1024 	return bh;
1025 }
1026 
1027 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1028 {
1029 	struct jbd2_journal_block_tail *tail;
1030 	__u32 csum;
1031 
1032 	if (!jbd2_journal_has_csum_v2or3(j))
1033 		return;
1034 
1035 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1036 			sizeof(struct jbd2_journal_block_tail));
1037 	tail->t_checksum = 0;
1038 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1039 	tail->t_checksum = cpu_to_be32(csum);
1040 }
1041 
1042 /*
1043  * Return tid of the oldest transaction in the journal and block in the journal
1044  * where the transaction starts.
1045  *
1046  * If the journal is now empty, return which will be the next transaction ID
1047  * we will write and where will that transaction start.
1048  *
1049  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1050  * it can.
1051  */
1052 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1053 			      unsigned long *block)
1054 {
1055 	transaction_t *transaction;
1056 	int ret;
1057 
1058 	read_lock(&journal->j_state_lock);
1059 	spin_lock(&journal->j_list_lock);
1060 	transaction = journal->j_checkpoint_transactions;
1061 	if (transaction) {
1062 		*tid = transaction->t_tid;
1063 		*block = transaction->t_log_start;
1064 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1065 		*tid = transaction->t_tid;
1066 		*block = transaction->t_log_start;
1067 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1068 		*tid = transaction->t_tid;
1069 		*block = journal->j_head;
1070 	} else {
1071 		*tid = journal->j_transaction_sequence;
1072 		*block = journal->j_head;
1073 	}
1074 	ret = tid_gt(*tid, journal->j_tail_sequence);
1075 	spin_unlock(&journal->j_list_lock);
1076 	read_unlock(&journal->j_state_lock);
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * Update information in journal structure and in on disk journal superblock
1083  * about log tail. This function does not check whether information passed in
1084  * really pushes log tail further. It's responsibility of the caller to make
1085  * sure provided log tail information is valid (e.g. by holding
1086  * j_checkpoint_mutex all the time between computing log tail and calling this
1087  * function as is the case with jbd2_cleanup_journal_tail()).
1088  *
1089  * Requires j_checkpoint_mutex
1090  */
1091 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1092 {
1093 	unsigned long freed;
1094 	int ret;
1095 
1096 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1097 
1098 	/*
1099 	 * We cannot afford for write to remain in drive's caches since as
1100 	 * soon as we update j_tail, next transaction can start reusing journal
1101 	 * space and if we lose sb update during power failure we'd replay
1102 	 * old transaction with possibly newly overwritten data.
1103 	 */
1104 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1105 	if (ret)
1106 		goto out;
1107 
1108 	write_lock(&journal->j_state_lock);
1109 	freed = block - journal->j_tail;
1110 	if (block < journal->j_tail)
1111 		freed += journal->j_last - journal->j_first;
1112 
1113 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1114 	jbd2_debug(1,
1115 		  "Cleaning journal tail from %u to %u (offset %lu), "
1116 		  "freeing %lu\n",
1117 		  journal->j_tail_sequence, tid, block, freed);
1118 
1119 	journal->j_free += freed;
1120 	journal->j_tail_sequence = tid;
1121 	journal->j_tail = block;
1122 	write_unlock(&journal->j_state_lock);
1123 
1124 out:
1125 	return ret;
1126 }
1127 
1128 /*
1129  * This is a variation of __jbd2_update_log_tail which checks for validity of
1130  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1131  * with other threads updating log tail.
1132  */
1133 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1134 {
1135 	mutex_lock_io(&journal->j_checkpoint_mutex);
1136 	if (tid_gt(tid, journal->j_tail_sequence))
1137 		__jbd2_update_log_tail(journal, tid, block);
1138 	mutex_unlock(&journal->j_checkpoint_mutex);
1139 }
1140 
1141 struct jbd2_stats_proc_session {
1142 	journal_t *journal;
1143 	struct transaction_stats_s *stats;
1144 	int start;
1145 	int max;
1146 };
1147 
1148 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1149 {
1150 	return *pos ? NULL : SEQ_START_TOKEN;
1151 }
1152 
1153 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1154 {
1155 	(*pos)++;
1156 	return NULL;
1157 }
1158 
1159 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1160 {
1161 	struct jbd2_stats_proc_session *s = seq->private;
1162 
1163 	if (v != SEQ_START_TOKEN)
1164 		return 0;
1165 	seq_printf(seq, "%lu transactions (%lu requested), "
1166 		   "each up to %u blocks\n",
1167 		   s->stats->ts_tid, s->stats->ts_requested,
1168 		   s->journal->j_max_transaction_buffers);
1169 	if (s->stats->ts_tid == 0)
1170 		return 0;
1171 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1172 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1173 	seq_printf(seq, "  %ums request delay\n",
1174 	    (s->stats->ts_requested == 0) ? 0 :
1175 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1176 			     s->stats->ts_requested));
1177 	seq_printf(seq, "  %ums running transaction\n",
1178 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1179 	seq_printf(seq, "  %ums transaction was being locked\n",
1180 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1181 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1182 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1183 	seq_printf(seq, "  %ums logging transaction\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1185 	seq_printf(seq, "  %lluus average transaction commit time\n",
1186 		   div_u64(s->journal->j_average_commit_time, 1000));
1187 	seq_printf(seq, "  %lu handles per transaction\n",
1188 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1189 	seq_printf(seq, "  %lu blocks per transaction\n",
1190 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1191 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1192 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1193 	return 0;
1194 }
1195 
1196 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1197 {
1198 }
1199 
1200 static const struct seq_operations jbd2_seq_info_ops = {
1201 	.start  = jbd2_seq_info_start,
1202 	.next   = jbd2_seq_info_next,
1203 	.stop   = jbd2_seq_info_stop,
1204 	.show   = jbd2_seq_info_show,
1205 };
1206 
1207 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1208 {
1209 	journal_t *journal = pde_data(inode);
1210 	struct jbd2_stats_proc_session *s;
1211 	int rc, size;
1212 
1213 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1214 	if (s == NULL)
1215 		return -ENOMEM;
1216 	size = sizeof(struct transaction_stats_s);
1217 	s->stats = kmalloc(size, GFP_KERNEL);
1218 	if (s->stats == NULL) {
1219 		kfree(s);
1220 		return -ENOMEM;
1221 	}
1222 	spin_lock(&journal->j_history_lock);
1223 	memcpy(s->stats, &journal->j_stats, size);
1224 	s->journal = journal;
1225 	spin_unlock(&journal->j_history_lock);
1226 
1227 	rc = seq_open(file, &jbd2_seq_info_ops);
1228 	if (rc == 0) {
1229 		struct seq_file *m = file->private_data;
1230 		m->private = s;
1231 	} else {
1232 		kfree(s->stats);
1233 		kfree(s);
1234 	}
1235 	return rc;
1236 
1237 }
1238 
1239 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1240 {
1241 	struct seq_file *seq = file->private_data;
1242 	struct jbd2_stats_proc_session *s = seq->private;
1243 	kfree(s->stats);
1244 	kfree(s);
1245 	return seq_release(inode, file);
1246 }
1247 
1248 static const struct proc_ops jbd2_info_proc_ops = {
1249 	.proc_open	= jbd2_seq_info_open,
1250 	.proc_read	= seq_read,
1251 	.proc_lseek	= seq_lseek,
1252 	.proc_release	= jbd2_seq_info_release,
1253 };
1254 
1255 static struct proc_dir_entry *proc_jbd2_stats;
1256 
1257 static void jbd2_stats_proc_init(journal_t *journal)
1258 {
1259 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1260 	if (journal->j_proc_entry) {
1261 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1262 				 &jbd2_info_proc_ops, journal);
1263 	}
1264 }
1265 
1266 static void jbd2_stats_proc_exit(journal_t *journal)
1267 {
1268 	remove_proc_entry("info", journal->j_proc_entry);
1269 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1270 }
1271 
1272 /* Minimum size of descriptor tag */
1273 static int jbd2_min_tag_size(void)
1274 {
1275 	/*
1276 	 * Tag with 32-bit block numbers does not use last four bytes of the
1277 	 * structure
1278 	 */
1279 	return sizeof(journal_block_tag_t) - 4;
1280 }
1281 
1282 /**
1283  * jbd2_journal_shrink_scan()
1284  * @shrink: shrinker to work on
1285  * @sc: reclaim request to process
1286  *
1287  * Scan the checkpointed buffer on the checkpoint list and release the
1288  * journal_head.
1289  */
1290 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1291 					      struct shrink_control *sc)
1292 {
1293 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1294 	unsigned long nr_to_scan = sc->nr_to_scan;
1295 	unsigned long nr_shrunk;
1296 	unsigned long count;
1297 
1298 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1299 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1300 
1301 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1302 
1303 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1304 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1305 
1306 	return nr_shrunk;
1307 }
1308 
1309 /**
1310  * jbd2_journal_shrink_count()
1311  * @shrink: shrinker to work on
1312  * @sc: reclaim request to process
1313  *
1314  * Count the number of checkpoint buffers on the checkpoint list.
1315  */
1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 					       struct shrink_control *sc)
1318 {
1319 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 	unsigned long count;
1321 
1322 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324 
1325 	return count;
1326 }
1327 
1328 /*
1329  * If the journal init or create aborts, we need to mark the journal
1330  * superblock as being NULL to prevent the journal destroy from writing
1331  * back a bogus superblock.
1332  */
1333 static void journal_fail_superblock(journal_t *journal)
1334 {
1335 	struct buffer_head *bh = journal->j_sb_buffer;
1336 	brelse(bh);
1337 	journal->j_sb_buffer = NULL;
1338 }
1339 
1340 /*
1341  * Check the superblock for a given journal, performing initial
1342  * validation of the format.
1343  */
1344 static int journal_check_superblock(journal_t *journal)
1345 {
1346 	journal_superblock_t *sb = journal->j_superblock;
1347 	int num_fc_blks;
1348 	int err = -EINVAL;
1349 
1350 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1351 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1352 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1353 		return err;
1354 	}
1355 
1356 	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1357 	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1358 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1359 		return err;
1360 	}
1361 
1362 	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1363 		printk(KERN_WARNING "JBD2: journal file too short\n");
1364 		return err;
1365 	}
1366 
1367 	if (be32_to_cpu(sb->s_first) == 0 ||
1368 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1369 		printk(KERN_WARNING
1370 			"JBD2: Invalid start block of journal: %u\n",
1371 			be32_to_cpu(sb->s_first));
1372 		return err;
1373 	}
1374 
1375 	/*
1376 	 * If this is a V2 superblock, then we have to check the
1377 	 * features flags on it.
1378 	 */
1379 	if (!jbd2_format_support_feature(journal))
1380 		return 0;
1381 
1382 	if ((sb->s_feature_ro_compat &
1383 			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1384 	    (sb->s_feature_incompat &
1385 			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1386 		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1387 		return err;
1388 	}
1389 
1390 	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1391 				jbd2_journal_get_num_fc_blks(sb) : 0;
1392 	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1393 	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1394 		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1395 		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1396 		return err;
1397 	}
1398 
1399 	if (jbd2_has_feature_csum2(journal) &&
1400 	    jbd2_has_feature_csum3(journal)) {
1401 		/* Can't have checksum v2 and v3 at the same time! */
1402 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1403 		       "at the same time!\n");
1404 		return err;
1405 	}
1406 
1407 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1408 	    jbd2_has_feature_checksum(journal)) {
1409 		/* Can't have checksum v1 and v2 on at the same time! */
1410 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1411 		       "at the same time!\n");
1412 		return err;
1413 	}
1414 
1415 	/* Load the checksum driver */
1416 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1417 		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1418 			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1419 			return err;
1420 		}
1421 
1422 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1423 		if (IS_ERR(journal->j_chksum_driver)) {
1424 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1425 			err = PTR_ERR(journal->j_chksum_driver);
1426 			journal->j_chksum_driver = NULL;
1427 			return err;
1428 		}
1429 		/* Check superblock checksum */
1430 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1431 			printk(KERN_ERR "JBD2: journal checksum error\n");
1432 			err = -EFSBADCRC;
1433 			return err;
1434 		}
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int journal_revoke_records_per_block(journal_t *journal)
1441 {
1442 	int record_size;
1443 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1444 
1445 	if (jbd2_has_feature_64bit(journal))
1446 		record_size = 8;
1447 	else
1448 		record_size = 4;
1449 
1450 	if (jbd2_journal_has_csum_v2or3(journal))
1451 		space -= sizeof(struct jbd2_journal_block_tail);
1452 	return space / record_size;
1453 }
1454 
1455 static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1456 {
1457 	return (journal->j_total_len - journal->j_fc_wbufsize) / 4;
1458 }
1459 
1460 /*
1461  * Base amount of descriptor blocks we reserve for each transaction.
1462  */
1463 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1464 {
1465 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1466 	int tags_per_block;
1467 
1468 	/* Subtract UUID */
1469 	tag_space -= 16;
1470 	if (jbd2_journal_has_csum_v2or3(journal))
1471 		tag_space -= sizeof(struct jbd2_journal_block_tail);
1472 	/* Commit code leaves a slack space of 16 bytes at the end of block */
1473 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1474 	/*
1475 	 * Revoke descriptors are accounted separately so we need to reserve
1476 	 * space for commit block and normal transaction descriptor blocks.
1477 	 */
1478 	return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1479 				tags_per_block);
1480 }
1481 
1482 /*
1483  * Initialize number of blocks each transaction reserves for its bookkeeping
1484  * and maximum number of blocks a transaction can use. This needs to be called
1485  * after the journal size and the fastcommit area size are initialized.
1486  */
1487 static void jbd2_journal_init_transaction_limits(journal_t *journal)
1488 {
1489 	journal->j_revoke_records_per_block =
1490 				journal_revoke_records_per_block(journal);
1491 	journal->j_transaction_overhead_buffers =
1492 				jbd2_descriptor_blocks_per_trans(journal);
1493 	journal->j_max_transaction_buffers =
1494 				jbd2_journal_get_max_txn_bufs(journal);
1495 }
1496 
1497 /*
1498  * Load the on-disk journal superblock and read the key fields into the
1499  * journal_t.
1500  */
1501 static int journal_load_superblock(journal_t *journal)
1502 {
1503 	int err;
1504 	struct buffer_head *bh;
1505 	journal_superblock_t *sb;
1506 
1507 	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1508 			      journal->j_blocksize);
1509 	if (bh)
1510 		err = bh_read(bh, 0);
1511 	if (!bh || err < 0) {
1512 		pr_err("%s: Cannot read journal superblock\n", __func__);
1513 		brelse(bh);
1514 		return -EIO;
1515 	}
1516 
1517 	journal->j_sb_buffer = bh;
1518 	sb = (journal_superblock_t *)bh->b_data;
1519 	journal->j_superblock = sb;
1520 	err = journal_check_superblock(journal);
1521 	if (err) {
1522 		journal_fail_superblock(journal);
1523 		return err;
1524 	}
1525 
1526 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1527 	journal->j_tail = be32_to_cpu(sb->s_start);
1528 	journal->j_first = be32_to_cpu(sb->s_first);
1529 	journal->j_errno = be32_to_cpu(sb->s_errno);
1530 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1531 
1532 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1533 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1534 	/* Precompute checksum seed for all metadata */
1535 	if (jbd2_journal_has_csum_v2or3(journal))
1536 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1537 						   sizeof(sb->s_uuid));
1538 	/* After journal features are set, we can compute transaction limits */
1539 	jbd2_journal_init_transaction_limits(journal);
1540 
1541 	if (jbd2_has_feature_fast_commit(journal)) {
1542 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1543 		journal->j_last = journal->j_fc_last -
1544 				  jbd2_journal_get_num_fc_blks(sb);
1545 		journal->j_fc_first = journal->j_last + 1;
1546 		journal->j_fc_off = 0;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 
1553 /*
1554  * Management for journal control blocks: functions to create and
1555  * destroy journal_t structures, and to initialise and read existing
1556  * journal blocks from disk.  */
1557 
1558 /* First: create and setup a journal_t object in memory.  We initialise
1559  * very few fields yet: that has to wait until we have created the
1560  * journal structures from from scratch, or loaded them from disk. */
1561 
1562 static journal_t *journal_init_common(struct block_device *bdev,
1563 			struct block_device *fs_dev,
1564 			unsigned long long start, int len, int blocksize)
1565 {
1566 	static struct lock_class_key jbd2_trans_commit_key;
1567 	journal_t *journal;
1568 	int err;
1569 	int n;
1570 
1571 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1572 	if (!journal)
1573 		return ERR_PTR(-ENOMEM);
1574 
1575 	journal->j_blocksize = blocksize;
1576 	journal->j_dev = bdev;
1577 	journal->j_fs_dev = fs_dev;
1578 	journal->j_blk_offset = start;
1579 	journal->j_total_len = len;
1580 
1581 	err = journal_load_superblock(journal);
1582 	if (err)
1583 		goto err_cleanup;
1584 
1585 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1586 	init_waitqueue_head(&journal->j_wait_done_commit);
1587 	init_waitqueue_head(&journal->j_wait_commit);
1588 	init_waitqueue_head(&journal->j_wait_updates);
1589 	init_waitqueue_head(&journal->j_wait_reserved);
1590 	init_waitqueue_head(&journal->j_fc_wait);
1591 	mutex_init(&journal->j_abort_mutex);
1592 	mutex_init(&journal->j_barrier);
1593 	mutex_init(&journal->j_checkpoint_mutex);
1594 	spin_lock_init(&journal->j_revoke_lock);
1595 	spin_lock_init(&journal->j_list_lock);
1596 	spin_lock_init(&journal->j_history_lock);
1597 	rwlock_init(&journal->j_state_lock);
1598 
1599 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1600 	journal->j_min_batch_time = 0;
1601 	journal->j_max_batch_time = 15000; /* 15ms */
1602 	atomic_set(&journal->j_reserved_credits, 0);
1603 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1604 			 &jbd2_trans_commit_key, 0);
1605 
1606 	/* The journal is marked for error until we succeed with recovery! */
1607 	journal->j_flags = JBD2_ABORT;
1608 
1609 	/* Set up a default-sized revoke table for the new mount. */
1610 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1611 	if (err)
1612 		goto err_cleanup;
1613 
1614 	/*
1615 	 * journal descriptor can store up to n blocks, we need enough
1616 	 * buffers to write out full descriptor block.
1617 	 */
1618 	err = -ENOMEM;
1619 	n = journal->j_blocksize / jbd2_min_tag_size();
1620 	journal->j_wbufsize = n;
1621 	journal->j_fc_wbuf = NULL;
1622 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1623 					GFP_KERNEL);
1624 	if (!journal->j_wbuf)
1625 		goto err_cleanup;
1626 
1627 	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1628 				  GFP_KERNEL);
1629 	if (err)
1630 		goto err_cleanup;
1631 
1632 	journal->j_shrink_transaction = NULL;
1633 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1634 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1635 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1636 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1637 	err = register_shrinker(&journal->j_shrinker, "jbd2-journal:(%u:%u)",
1638 				MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1639 	if (err)
1640 		goto err_cleanup;
1641 
1642 	return journal;
1643 
1644 err_cleanup:
1645 	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1646 	if (journal->j_chksum_driver)
1647 		crypto_free_shash(journal->j_chksum_driver);
1648 	kfree(journal->j_wbuf);
1649 	jbd2_journal_destroy_revoke(journal);
1650 	journal_fail_superblock(journal);
1651 	kfree(journal);
1652 	return ERR_PTR(err);
1653 }
1654 
1655 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1656  *
1657  * Create a journal structure assigned some fixed set of disk blocks to
1658  * the journal.  We don't actually touch those disk blocks yet, but we
1659  * need to set up all of the mapping information to tell the journaling
1660  * system where the journal blocks are.
1661  *
1662  */
1663 
1664 /**
1665  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1666  *  @bdev: Block device on which to create the journal
1667  *  @fs_dev: Device which hold journalled filesystem for this journal.
1668  *  @start: Block nr Start of journal.
1669  *  @len:  Length of the journal in blocks.
1670  *  @blocksize: blocksize of journalling device
1671  *
1672  *  Returns: a newly created journal_t *
1673  *
1674  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1675  *  range of blocks on an arbitrary block device.
1676  *
1677  */
1678 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1679 			struct block_device *fs_dev,
1680 			unsigned long long start, int len, int blocksize)
1681 {
1682 	journal_t *journal;
1683 
1684 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1685 	if (IS_ERR(journal))
1686 		return ERR_CAST(journal);
1687 
1688 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1689 		 "%pg", journal->j_dev);
1690 	strreplace(journal->j_devname, '/', '!');
1691 	jbd2_stats_proc_init(journal);
1692 
1693 	return journal;
1694 }
1695 
1696 /**
1697  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1698  *  @inode: An inode to create the journal in
1699  *
1700  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1701  * the journal.  The inode must exist already, must support bmap() and
1702  * must have all data blocks preallocated.
1703  */
1704 journal_t *jbd2_journal_init_inode(struct inode *inode)
1705 {
1706 	journal_t *journal;
1707 	sector_t blocknr;
1708 	int err = 0;
1709 
1710 	blocknr = 0;
1711 	err = bmap(inode, &blocknr);
1712 	if (err || !blocknr) {
1713 		pr_err("%s: Cannot locate journal superblock\n", __func__);
1714 		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1715 	}
1716 
1717 	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1718 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1719 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1720 
1721 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1722 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1723 			inode->i_sb->s_blocksize);
1724 	if (IS_ERR(journal))
1725 		return ERR_CAST(journal);
1726 
1727 	journal->j_inode = inode;
1728 	snprintf(journal->j_devname, sizeof(journal->j_devname),
1729 		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1730 	strreplace(journal->j_devname, '/', '!');
1731 	jbd2_stats_proc_init(journal);
1732 
1733 	return journal;
1734 }
1735 
1736 /*
1737  * Given a journal_t structure, initialise the various fields for
1738  * startup of a new journaling session.  We use this both when creating
1739  * a journal, and after recovering an old journal to reset it for
1740  * subsequent use.
1741  */
1742 
1743 static int journal_reset(journal_t *journal)
1744 {
1745 	journal_superblock_t *sb = journal->j_superblock;
1746 	unsigned long long first, last;
1747 
1748 	first = be32_to_cpu(sb->s_first);
1749 	last = be32_to_cpu(sb->s_maxlen);
1750 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1751 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1752 		       first, last);
1753 		journal_fail_superblock(journal);
1754 		return -EINVAL;
1755 	}
1756 
1757 	journal->j_first = first;
1758 	journal->j_last = last;
1759 
1760 	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1761 		/*
1762 		 * Disable the cycled recording mode if the journal head block
1763 		 * number is not correct.
1764 		 */
1765 		if (journal->j_head < first || journal->j_head >= last) {
1766 			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1767 			       "disable journal_cycle_record\n",
1768 			       journal->j_head);
1769 			journal->j_head = journal->j_first;
1770 		}
1771 	} else {
1772 		journal->j_head = journal->j_first;
1773 	}
1774 	journal->j_tail = journal->j_head;
1775 	journal->j_free = journal->j_last - journal->j_first;
1776 
1777 	journal->j_tail_sequence = journal->j_transaction_sequence;
1778 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1779 	journal->j_commit_request = journal->j_commit_sequence;
1780 
1781 	/*
1782 	 * Now that journal recovery is done, turn fast commits off here. This
1783 	 * way, if fast commit was enabled before the crash but if now FS has
1784 	 * disabled it, we don't enable fast commits.
1785 	 */
1786 	jbd2_clear_feature_fast_commit(journal);
1787 
1788 	/*
1789 	 * As a special case, if the on-disk copy is already marked as needing
1790 	 * no recovery (s_start == 0), then we can safely defer the superblock
1791 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1792 	 * attempting a write to a potential-readonly device.
1793 	 */
1794 	if (sb->s_start == 0) {
1795 		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1796 			"(start %ld, seq %u, errno %d)\n",
1797 			journal->j_tail, journal->j_tail_sequence,
1798 			journal->j_errno);
1799 		journal->j_flags |= JBD2_FLUSHED;
1800 	} else {
1801 		/* Lock here to make assertions happy... */
1802 		mutex_lock_io(&journal->j_checkpoint_mutex);
1803 		/*
1804 		 * Update log tail information. We use REQ_FUA since new
1805 		 * transaction will start reusing journal space and so we
1806 		 * must make sure information about current log tail is on
1807 		 * disk before that.
1808 		 */
1809 		jbd2_journal_update_sb_log_tail(journal,
1810 						journal->j_tail_sequence,
1811 						journal->j_tail, REQ_FUA);
1812 		mutex_unlock(&journal->j_checkpoint_mutex);
1813 	}
1814 	return jbd2_journal_start_thread(journal);
1815 }
1816 
1817 /*
1818  * This function expects that the caller will have locked the journal
1819  * buffer head, and will return with it unlocked
1820  */
1821 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1822 {
1823 	struct buffer_head *bh = journal->j_sb_buffer;
1824 	journal_superblock_t *sb = journal->j_superblock;
1825 	int ret = 0;
1826 
1827 	/* Buffer got discarded which means block device got invalidated */
1828 	if (!buffer_mapped(bh)) {
1829 		unlock_buffer(bh);
1830 		return -EIO;
1831 	}
1832 
1833 	/*
1834 	 * Always set high priority flags to exempt from block layer's
1835 	 * QOS policies, e.g. writeback throttle.
1836 	 */
1837 	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1838 	if (!(journal->j_flags & JBD2_BARRIER))
1839 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1840 
1841 	trace_jbd2_write_superblock(journal, write_flags);
1842 
1843 	if (buffer_write_io_error(bh)) {
1844 		/*
1845 		 * Oh, dear.  A previous attempt to write the journal
1846 		 * superblock failed.  This could happen because the
1847 		 * USB device was yanked out.  Or it could happen to
1848 		 * be a transient write error and maybe the block will
1849 		 * be remapped.  Nothing we can do but to retry the
1850 		 * write and hope for the best.
1851 		 */
1852 		printk(KERN_ERR "JBD2: previous I/O error detected "
1853 		       "for journal superblock update for %s.\n",
1854 		       journal->j_devname);
1855 		clear_buffer_write_io_error(bh);
1856 		set_buffer_uptodate(bh);
1857 	}
1858 	if (jbd2_journal_has_csum_v2or3(journal))
1859 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1860 	get_bh(bh);
1861 	bh->b_end_io = end_buffer_write_sync;
1862 	submit_bh(REQ_OP_WRITE | write_flags, bh);
1863 	wait_on_buffer(bh);
1864 	if (buffer_write_io_error(bh)) {
1865 		clear_buffer_write_io_error(bh);
1866 		set_buffer_uptodate(bh);
1867 		ret = -EIO;
1868 	}
1869 	if (ret) {
1870 		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1871 				journal->j_devname);
1872 		if (!is_journal_aborted(journal))
1873 			jbd2_journal_abort(journal, ret);
1874 	}
1875 
1876 	return ret;
1877 }
1878 
1879 /**
1880  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1881  * @journal: The journal to update.
1882  * @tail_tid: TID of the new transaction at the tail of the log
1883  * @tail_block: The first block of the transaction at the tail of the log
1884  * @write_flags: Flags for the journal sb write operation
1885  *
1886  * Update a journal's superblock information about log tail and write it to
1887  * disk, waiting for the IO to complete.
1888  */
1889 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1890 				    unsigned long tail_block,
1891 				    blk_opf_t write_flags)
1892 {
1893 	journal_superblock_t *sb = journal->j_superblock;
1894 	int ret;
1895 
1896 	if (is_journal_aborted(journal))
1897 		return -EIO;
1898 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1899 		jbd2_journal_abort(journal, -EIO);
1900 		return -EIO;
1901 	}
1902 
1903 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1904 	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1905 		  tail_block, tail_tid);
1906 
1907 	lock_buffer(journal->j_sb_buffer);
1908 	sb->s_sequence = cpu_to_be32(tail_tid);
1909 	sb->s_start    = cpu_to_be32(tail_block);
1910 
1911 	ret = jbd2_write_superblock(journal, write_flags);
1912 	if (ret)
1913 		goto out;
1914 
1915 	/* Log is no longer empty */
1916 	write_lock(&journal->j_state_lock);
1917 	WARN_ON(!sb->s_sequence);
1918 	journal->j_flags &= ~JBD2_FLUSHED;
1919 	write_unlock(&journal->j_state_lock);
1920 
1921 out:
1922 	return ret;
1923 }
1924 
1925 /**
1926  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1927  * @journal: The journal to update.
1928  * @write_flags: Flags for the journal sb write operation
1929  *
1930  * Update a journal's dynamic superblock fields to show that journal is empty.
1931  * Write updated superblock to disk waiting for IO to complete.
1932  */
1933 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1934 {
1935 	journal_superblock_t *sb = journal->j_superblock;
1936 	bool had_fast_commit = false;
1937 
1938 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1939 	lock_buffer(journal->j_sb_buffer);
1940 	if (sb->s_start == 0) {		/* Is it already empty? */
1941 		unlock_buffer(journal->j_sb_buffer);
1942 		return;
1943 	}
1944 
1945 	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1946 		  journal->j_tail_sequence);
1947 
1948 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1949 	sb->s_start    = cpu_to_be32(0);
1950 	sb->s_head     = cpu_to_be32(journal->j_head);
1951 	if (jbd2_has_feature_fast_commit(journal)) {
1952 		/*
1953 		 * When journal is clean, no need to commit fast commit flag and
1954 		 * make file system incompatible with older kernels.
1955 		 */
1956 		jbd2_clear_feature_fast_commit(journal);
1957 		had_fast_commit = true;
1958 	}
1959 
1960 	jbd2_write_superblock(journal, write_flags);
1961 
1962 	if (had_fast_commit)
1963 		jbd2_set_feature_fast_commit(journal);
1964 
1965 	/* Log is no longer empty */
1966 	write_lock(&journal->j_state_lock);
1967 	journal->j_flags |= JBD2_FLUSHED;
1968 	write_unlock(&journal->j_state_lock);
1969 }
1970 
1971 /**
1972  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1973  * @journal: The journal to erase.
1974  * @flags: A discard/zeroout request is sent for each physically contigous
1975  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1976  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1977  *	to perform.
1978  *
1979  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1980  * will be explicitly written if no hardware offload is available, see
1981  * blkdev_issue_zeroout for more details.
1982  */
1983 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1984 {
1985 	int err = 0;
1986 	unsigned long block, log_offset; /* logical */
1987 	unsigned long long phys_block, block_start, block_stop; /* physical */
1988 	loff_t byte_start, byte_stop, byte_count;
1989 
1990 	/* flags must be set to either discard or zeroout */
1991 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1992 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1993 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1994 		return -EINVAL;
1995 
1996 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1997 	    !bdev_max_discard_sectors(journal->j_dev))
1998 		return -EOPNOTSUPP;
1999 
2000 	/*
2001 	 * lookup block mapping and issue discard/zeroout for each
2002 	 * contiguous region
2003 	 */
2004 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
2005 	block_start =  ~0ULL;
2006 	for (block = log_offset; block < journal->j_total_len; block++) {
2007 		err = jbd2_journal_bmap(journal, block, &phys_block);
2008 		if (err) {
2009 			pr_err("JBD2: bad block at offset %lu", block);
2010 			return err;
2011 		}
2012 
2013 		if (block_start == ~0ULL) {
2014 			block_start = phys_block;
2015 			block_stop = block_start - 1;
2016 		}
2017 
2018 		/*
2019 		 * last block not contiguous with current block,
2020 		 * process last contiguous region and return to this block on
2021 		 * next loop
2022 		 */
2023 		if (phys_block != block_stop + 1) {
2024 			block--;
2025 		} else {
2026 			block_stop++;
2027 			/*
2028 			 * if this isn't the last block of journal,
2029 			 * no need to process now because next block may also
2030 			 * be part of this contiguous region
2031 			 */
2032 			if (block != journal->j_total_len - 1)
2033 				continue;
2034 		}
2035 
2036 		/*
2037 		 * end of contiguous region or this is last block of journal,
2038 		 * take care of the region
2039 		 */
2040 		byte_start = block_start * journal->j_blocksize;
2041 		byte_stop = block_stop * journal->j_blocksize;
2042 		byte_count = (block_stop - block_start + 1) *
2043 				journal->j_blocksize;
2044 
2045 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2046 				byte_start, byte_stop);
2047 
2048 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2049 			err = blkdev_issue_discard(journal->j_dev,
2050 					byte_start >> SECTOR_SHIFT,
2051 					byte_count >> SECTOR_SHIFT,
2052 					GFP_NOFS);
2053 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2054 			err = blkdev_issue_zeroout(journal->j_dev,
2055 					byte_start >> SECTOR_SHIFT,
2056 					byte_count >> SECTOR_SHIFT,
2057 					GFP_NOFS, 0);
2058 		}
2059 
2060 		if (unlikely(err != 0)) {
2061 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2062 					err, block_start, block_stop);
2063 			return err;
2064 		}
2065 
2066 		/* reset start and stop after processing a region */
2067 		block_start = ~0ULL;
2068 	}
2069 
2070 	return blkdev_issue_flush(journal->j_dev);
2071 }
2072 
2073 /**
2074  * jbd2_journal_update_sb_errno() - Update error in the journal.
2075  * @journal: The journal to update.
2076  *
2077  * Update a journal's errno.  Write updated superblock to disk waiting for IO
2078  * to complete.
2079  */
2080 void jbd2_journal_update_sb_errno(journal_t *journal)
2081 {
2082 	journal_superblock_t *sb = journal->j_superblock;
2083 	int errcode;
2084 
2085 	lock_buffer(journal->j_sb_buffer);
2086 	errcode = journal->j_errno;
2087 	if (errcode == -ESHUTDOWN)
2088 		errcode = 0;
2089 	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2090 	sb->s_errno    = cpu_to_be32(errcode);
2091 
2092 	jbd2_write_superblock(journal, REQ_FUA);
2093 }
2094 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2095 
2096 /**
2097  * jbd2_journal_load() - Read journal from disk.
2098  * @journal: Journal to act on.
2099  *
2100  * Given a journal_t structure which tells us which disk blocks contain
2101  * a journal, read the journal from disk to initialise the in-memory
2102  * structures.
2103  */
2104 int jbd2_journal_load(journal_t *journal)
2105 {
2106 	int err;
2107 	journal_superblock_t *sb = journal->j_superblock;
2108 
2109 	/*
2110 	 * Create a slab for this blocksize
2111 	 */
2112 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2113 	if (err)
2114 		return err;
2115 
2116 	/* Let the recovery code check whether it needs to recover any
2117 	 * data from the journal. */
2118 	err = jbd2_journal_recover(journal);
2119 	if (err) {
2120 		pr_warn("JBD2: journal recovery failed\n");
2121 		return err;
2122 	}
2123 
2124 	if (journal->j_failed_commit) {
2125 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2126 		       "is corrupt.\n", journal->j_failed_commit,
2127 		       journal->j_devname);
2128 		return -EFSCORRUPTED;
2129 	}
2130 	/*
2131 	 * clear JBD2_ABORT flag initialized in journal_init_common
2132 	 * here to update log tail information with the newest seq.
2133 	 */
2134 	journal->j_flags &= ~JBD2_ABORT;
2135 
2136 	/* OK, we've finished with the dynamic journal bits:
2137 	 * reinitialise the dynamic contents of the superblock in memory
2138 	 * and reset them on disk. */
2139 	err = journal_reset(journal);
2140 	if (err) {
2141 		pr_warn("JBD2: journal reset failed\n");
2142 		return err;
2143 	}
2144 
2145 	journal->j_flags |= JBD2_LOADED;
2146 	return 0;
2147 }
2148 
2149 /**
2150  * jbd2_journal_destroy() - Release a journal_t structure.
2151  * @journal: Journal to act on.
2152  *
2153  * Release a journal_t structure once it is no longer in use by the
2154  * journaled object.
2155  * Return <0 if we couldn't clean up the journal.
2156  */
2157 int jbd2_journal_destroy(journal_t *journal)
2158 {
2159 	int err = 0;
2160 
2161 	/* Wait for the commit thread to wake up and die. */
2162 	journal_kill_thread(journal);
2163 
2164 	/* Force a final log commit */
2165 	if (journal->j_running_transaction)
2166 		jbd2_journal_commit_transaction(journal);
2167 
2168 	/* Force any old transactions to disk */
2169 
2170 	/* Totally anal locking here... */
2171 	spin_lock(&journal->j_list_lock);
2172 	while (journal->j_checkpoint_transactions != NULL) {
2173 		spin_unlock(&journal->j_list_lock);
2174 		mutex_lock_io(&journal->j_checkpoint_mutex);
2175 		err = jbd2_log_do_checkpoint(journal);
2176 		mutex_unlock(&journal->j_checkpoint_mutex);
2177 		/*
2178 		 * If checkpointing failed, just free the buffers to avoid
2179 		 * looping forever
2180 		 */
2181 		if (err) {
2182 			jbd2_journal_destroy_checkpoint(journal);
2183 			spin_lock(&journal->j_list_lock);
2184 			break;
2185 		}
2186 		spin_lock(&journal->j_list_lock);
2187 	}
2188 
2189 	J_ASSERT(journal->j_running_transaction == NULL);
2190 	J_ASSERT(journal->j_committing_transaction == NULL);
2191 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2192 	spin_unlock(&journal->j_list_lock);
2193 
2194 	/*
2195 	 * OK, all checkpoint transactions have been checked, now check the
2196 	 * write out io error flag and abort the journal if some buffer failed
2197 	 * to write back to the original location, otherwise the filesystem
2198 	 * may become inconsistent.
2199 	 */
2200 	if (!is_journal_aborted(journal) &&
2201 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2202 		jbd2_journal_abort(journal, -EIO);
2203 
2204 	if (journal->j_sb_buffer) {
2205 		if (!is_journal_aborted(journal)) {
2206 			mutex_lock_io(&journal->j_checkpoint_mutex);
2207 
2208 			write_lock(&journal->j_state_lock);
2209 			journal->j_tail_sequence =
2210 				++journal->j_transaction_sequence;
2211 			write_unlock(&journal->j_state_lock);
2212 
2213 			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2214 			mutex_unlock(&journal->j_checkpoint_mutex);
2215 		} else
2216 			err = -EIO;
2217 		brelse(journal->j_sb_buffer);
2218 	}
2219 
2220 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2221 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2222 		unregister_shrinker(&journal->j_shrinker);
2223 	}
2224 	if (journal->j_proc_entry)
2225 		jbd2_stats_proc_exit(journal);
2226 	iput(journal->j_inode);
2227 	if (journal->j_revoke)
2228 		jbd2_journal_destroy_revoke(journal);
2229 	if (journal->j_chksum_driver)
2230 		crypto_free_shash(journal->j_chksum_driver);
2231 	kfree(journal->j_fc_wbuf);
2232 	kfree(journal->j_wbuf);
2233 	kfree(journal);
2234 
2235 	return err;
2236 }
2237 
2238 
2239 /**
2240  * jbd2_journal_check_used_features() - Check if features specified are used.
2241  * @journal: Journal to check.
2242  * @compat: bitmask of compatible features
2243  * @ro: bitmask of features that force read-only mount
2244  * @incompat: bitmask of incompatible features
2245  *
2246  * Check whether the journal uses all of a given set of
2247  * features.  Return true (non-zero) if it does.
2248  **/
2249 
2250 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2251 				 unsigned long ro, unsigned long incompat)
2252 {
2253 	journal_superblock_t *sb;
2254 
2255 	if (!compat && !ro && !incompat)
2256 		return 1;
2257 	if (!jbd2_format_support_feature(journal))
2258 		return 0;
2259 
2260 	sb = journal->j_superblock;
2261 
2262 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2263 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2264 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2265 		return 1;
2266 
2267 	return 0;
2268 }
2269 
2270 /**
2271  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2272  * @journal: Journal to check.
2273  * @compat: bitmask of compatible features
2274  * @ro: bitmask of features that force read-only mount
2275  * @incompat: bitmask of incompatible features
2276  *
2277  * Check whether the journaling code supports the use of
2278  * all of a given set of features on this journal.  Return true
2279  * (non-zero) if it can. */
2280 
2281 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2282 				      unsigned long ro, unsigned long incompat)
2283 {
2284 	if (!compat && !ro && !incompat)
2285 		return 1;
2286 
2287 	if (!jbd2_format_support_feature(journal))
2288 		return 0;
2289 
2290 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2291 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2292 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2293 		return 1;
2294 
2295 	return 0;
2296 }
2297 
2298 static int
2299 jbd2_journal_initialize_fast_commit(journal_t *journal)
2300 {
2301 	journal_superblock_t *sb = journal->j_superblock;
2302 	unsigned long long num_fc_blks;
2303 
2304 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2305 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2306 		return -ENOSPC;
2307 
2308 	/* Are we called twice? */
2309 	WARN_ON(journal->j_fc_wbuf != NULL);
2310 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2311 				sizeof(struct buffer_head *), GFP_KERNEL);
2312 	if (!journal->j_fc_wbuf)
2313 		return -ENOMEM;
2314 
2315 	journal->j_fc_wbufsize = num_fc_blks;
2316 	journal->j_fc_last = journal->j_last;
2317 	journal->j_last = journal->j_fc_last - num_fc_blks;
2318 	journal->j_fc_first = journal->j_last + 1;
2319 	journal->j_fc_off = 0;
2320 	journal->j_free = journal->j_last - journal->j_first;
2321 
2322 	return 0;
2323 }
2324 
2325 /**
2326  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2327  * @journal: Journal to act on.
2328  * @compat: bitmask of compatible features
2329  * @ro: bitmask of features that force read-only mount
2330  * @incompat: bitmask of incompatible features
2331  *
2332  * Mark a given journal feature as present on the
2333  * superblock.  Returns true if the requested features could be set.
2334  *
2335  */
2336 
2337 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2338 			  unsigned long ro, unsigned long incompat)
2339 {
2340 #define INCOMPAT_FEATURE_ON(f) \
2341 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2342 #define COMPAT_FEATURE_ON(f) \
2343 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2344 	journal_superblock_t *sb;
2345 
2346 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2347 		return 1;
2348 
2349 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2350 		return 0;
2351 
2352 	/* If enabling v2 checksums, turn on v3 instead */
2353 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2354 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2355 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2356 	}
2357 
2358 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2359 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2360 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2361 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2362 
2363 	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2364 		  compat, ro, incompat);
2365 
2366 	sb = journal->j_superblock;
2367 
2368 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2369 		if (jbd2_journal_initialize_fast_commit(journal)) {
2370 			pr_err("JBD2: Cannot enable fast commits.\n");
2371 			return 0;
2372 		}
2373 	}
2374 
2375 	/* Load the checksum driver if necessary */
2376 	if ((journal->j_chksum_driver == NULL) &&
2377 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2378 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2379 		if (IS_ERR(journal->j_chksum_driver)) {
2380 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2381 			journal->j_chksum_driver = NULL;
2382 			return 0;
2383 		}
2384 		/* Precompute checksum seed for all metadata */
2385 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2386 						   sizeof(sb->s_uuid));
2387 	}
2388 
2389 	lock_buffer(journal->j_sb_buffer);
2390 
2391 	/* If enabling v3 checksums, update superblock */
2392 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2393 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2394 		sb->s_feature_compat &=
2395 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2396 	}
2397 
2398 	/* If enabling v1 checksums, downgrade superblock */
2399 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2400 		sb->s_feature_incompat &=
2401 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2402 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2403 
2404 	sb->s_feature_compat    |= cpu_to_be32(compat);
2405 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2406 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2407 	unlock_buffer(journal->j_sb_buffer);
2408 	jbd2_journal_init_transaction_limits(journal);
2409 
2410 	return 1;
2411 #undef COMPAT_FEATURE_ON
2412 #undef INCOMPAT_FEATURE_ON
2413 }
2414 
2415 /*
2416  * jbd2_journal_clear_features() - Clear a given journal feature in the
2417  * 				    superblock
2418  * @journal: Journal to act on.
2419  * @compat: bitmask of compatible features
2420  * @ro: bitmask of features that force read-only mount
2421  * @incompat: bitmask of incompatible features
2422  *
2423  * Clear a given journal feature as present on the
2424  * superblock.
2425  */
2426 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2427 				unsigned long ro, unsigned long incompat)
2428 {
2429 	journal_superblock_t *sb;
2430 
2431 	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2432 		  compat, ro, incompat);
2433 
2434 	sb = journal->j_superblock;
2435 
2436 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2437 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2438 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2439 	jbd2_journal_init_transaction_limits(journal);
2440 }
2441 EXPORT_SYMBOL(jbd2_journal_clear_features);
2442 
2443 /**
2444  * jbd2_journal_flush() - Flush journal
2445  * @journal: Journal to act on.
2446  * @flags: optional operation on the journal blocks after the flush (see below)
2447  *
2448  * Flush all data for a given journal to disk and empty the journal.
2449  * Filesystems can use this when remounting readonly to ensure that
2450  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2451  * can be issued on the journal blocks after flushing.
2452  *
2453  * flags:
2454  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2455  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2456  */
2457 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2458 {
2459 	int err = 0;
2460 	transaction_t *transaction = NULL;
2461 
2462 	write_lock(&journal->j_state_lock);
2463 
2464 	/* Force everything buffered to the log... */
2465 	if (journal->j_running_transaction) {
2466 		transaction = journal->j_running_transaction;
2467 		__jbd2_log_start_commit(journal, transaction->t_tid);
2468 	} else if (journal->j_committing_transaction)
2469 		transaction = journal->j_committing_transaction;
2470 
2471 	/* Wait for the log commit to complete... */
2472 	if (transaction) {
2473 		tid_t tid = transaction->t_tid;
2474 
2475 		write_unlock(&journal->j_state_lock);
2476 		jbd2_log_wait_commit(journal, tid);
2477 	} else {
2478 		write_unlock(&journal->j_state_lock);
2479 	}
2480 
2481 	/* ...and flush everything in the log out to disk. */
2482 	spin_lock(&journal->j_list_lock);
2483 	while (!err && journal->j_checkpoint_transactions != NULL) {
2484 		spin_unlock(&journal->j_list_lock);
2485 		mutex_lock_io(&journal->j_checkpoint_mutex);
2486 		err = jbd2_log_do_checkpoint(journal);
2487 		mutex_unlock(&journal->j_checkpoint_mutex);
2488 		spin_lock(&journal->j_list_lock);
2489 	}
2490 	spin_unlock(&journal->j_list_lock);
2491 
2492 	if (is_journal_aborted(journal))
2493 		return -EIO;
2494 
2495 	mutex_lock_io(&journal->j_checkpoint_mutex);
2496 	if (!err) {
2497 		err = jbd2_cleanup_journal_tail(journal);
2498 		if (err < 0) {
2499 			mutex_unlock(&journal->j_checkpoint_mutex);
2500 			goto out;
2501 		}
2502 		err = 0;
2503 	}
2504 
2505 	/* Finally, mark the journal as really needing no recovery.
2506 	 * This sets s_start==0 in the underlying superblock, which is
2507 	 * the magic code for a fully-recovered superblock.  Any future
2508 	 * commits of data to the journal will restore the current
2509 	 * s_start value. */
2510 	jbd2_mark_journal_empty(journal, REQ_FUA);
2511 
2512 	if (flags)
2513 		err = __jbd2_journal_erase(journal, flags);
2514 
2515 	mutex_unlock(&journal->j_checkpoint_mutex);
2516 	write_lock(&journal->j_state_lock);
2517 	J_ASSERT(!journal->j_running_transaction);
2518 	J_ASSERT(!journal->j_committing_transaction);
2519 	J_ASSERT(!journal->j_checkpoint_transactions);
2520 	J_ASSERT(journal->j_head == journal->j_tail);
2521 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2522 	write_unlock(&journal->j_state_lock);
2523 out:
2524 	return err;
2525 }
2526 
2527 /**
2528  * jbd2_journal_wipe() - Wipe journal contents
2529  * @journal: Journal to act on.
2530  * @write: flag (see below)
2531  *
2532  * Wipe out all of the contents of a journal, safely.  This will produce
2533  * a warning if the journal contains any valid recovery information.
2534  * Must be called between journal_init_*() and jbd2_journal_load().
2535  *
2536  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2537  * we merely suppress recovery.
2538  */
2539 
2540 int jbd2_journal_wipe(journal_t *journal, int write)
2541 {
2542 	int err;
2543 
2544 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2545 
2546 	if (!journal->j_tail)
2547 		return 0;
2548 
2549 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2550 		write ? "Clearing" : "Ignoring");
2551 
2552 	err = jbd2_journal_skip_recovery(journal);
2553 	if (write) {
2554 		/* Lock to make assertions happy... */
2555 		mutex_lock_io(&journal->j_checkpoint_mutex);
2556 		jbd2_mark_journal_empty(journal, REQ_FUA);
2557 		mutex_unlock(&journal->j_checkpoint_mutex);
2558 	}
2559 
2560 	return err;
2561 }
2562 
2563 /**
2564  * jbd2_journal_abort () - Shutdown the journal immediately.
2565  * @journal: the journal to shutdown.
2566  * @errno:   an error number to record in the journal indicating
2567  *           the reason for the shutdown.
2568  *
2569  * Perform a complete, immediate shutdown of the ENTIRE
2570  * journal (not of a single transaction).  This operation cannot be
2571  * undone without closing and reopening the journal.
2572  *
2573  * The jbd2_journal_abort function is intended to support higher level error
2574  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2575  * mode.
2576  *
2577  * Journal abort has very specific semantics.  Any existing dirty,
2578  * unjournaled buffers in the main filesystem will still be written to
2579  * disk by bdflush, but the journaling mechanism will be suspended
2580  * immediately and no further transaction commits will be honoured.
2581  *
2582  * Any dirty, journaled buffers will be written back to disk without
2583  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2584  * filesystem, but we _do_ attempt to leave as much data as possible
2585  * behind for fsck to use for cleanup.
2586  *
2587  * Any attempt to get a new transaction handle on a journal which is in
2588  * ABORT state will just result in an -EROFS error return.  A
2589  * jbd2_journal_stop on an existing handle will return -EIO if we have
2590  * entered abort state during the update.
2591  *
2592  * Recursive transactions are not disturbed by journal abort until the
2593  * final jbd2_journal_stop, which will receive the -EIO error.
2594  *
2595  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2596  * which will be recorded (if possible) in the journal superblock.  This
2597  * allows a client to record failure conditions in the middle of a
2598  * transaction without having to complete the transaction to record the
2599  * failure to disk.  ext3_error, for example, now uses this
2600  * functionality.
2601  *
2602  */
2603 
2604 void jbd2_journal_abort(journal_t *journal, int errno)
2605 {
2606 	transaction_t *transaction;
2607 
2608 	/*
2609 	 * Lock the aborting procedure until everything is done, this avoid
2610 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2611 	 * ensure panic after the error info is written into journal's
2612 	 * superblock.
2613 	 */
2614 	mutex_lock(&journal->j_abort_mutex);
2615 	/*
2616 	 * ESHUTDOWN always takes precedence because a file system check
2617 	 * caused by any other journal abort error is not required after
2618 	 * a shutdown triggered.
2619 	 */
2620 	write_lock(&journal->j_state_lock);
2621 	if (journal->j_flags & JBD2_ABORT) {
2622 		int old_errno = journal->j_errno;
2623 
2624 		write_unlock(&journal->j_state_lock);
2625 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2626 			journal->j_errno = errno;
2627 			jbd2_journal_update_sb_errno(journal);
2628 		}
2629 		mutex_unlock(&journal->j_abort_mutex);
2630 		return;
2631 	}
2632 
2633 	/*
2634 	 * Mark the abort as occurred and start current running transaction
2635 	 * to release all journaled buffer.
2636 	 */
2637 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2638 
2639 	journal->j_flags |= JBD2_ABORT;
2640 	journal->j_errno = errno;
2641 	transaction = journal->j_running_transaction;
2642 	if (transaction)
2643 		__jbd2_log_start_commit(journal, transaction->t_tid);
2644 	write_unlock(&journal->j_state_lock);
2645 
2646 	/*
2647 	 * Record errno to the journal super block, so that fsck and jbd2
2648 	 * layer could realise that a filesystem check is needed.
2649 	 */
2650 	jbd2_journal_update_sb_errno(journal);
2651 	mutex_unlock(&journal->j_abort_mutex);
2652 }
2653 
2654 /**
2655  * jbd2_journal_errno() - returns the journal's error state.
2656  * @journal: journal to examine.
2657  *
2658  * This is the errno number set with jbd2_journal_abort(), the last
2659  * time the journal was mounted - if the journal was stopped
2660  * without calling abort this will be 0.
2661  *
2662  * If the journal has been aborted on this mount time -EROFS will
2663  * be returned.
2664  */
2665 int jbd2_journal_errno(journal_t *journal)
2666 {
2667 	int err;
2668 
2669 	read_lock(&journal->j_state_lock);
2670 	if (journal->j_flags & JBD2_ABORT)
2671 		err = -EROFS;
2672 	else
2673 		err = journal->j_errno;
2674 	read_unlock(&journal->j_state_lock);
2675 	return err;
2676 }
2677 
2678 /**
2679  * jbd2_journal_clear_err() - clears the journal's error state
2680  * @journal: journal to act on.
2681  *
2682  * An error must be cleared or acked to take a FS out of readonly
2683  * mode.
2684  */
2685 int jbd2_journal_clear_err(journal_t *journal)
2686 {
2687 	int err = 0;
2688 
2689 	write_lock(&journal->j_state_lock);
2690 	if (journal->j_flags & JBD2_ABORT)
2691 		err = -EROFS;
2692 	else
2693 		journal->j_errno = 0;
2694 	write_unlock(&journal->j_state_lock);
2695 	return err;
2696 }
2697 
2698 /**
2699  * jbd2_journal_ack_err() - Ack journal err.
2700  * @journal: journal to act on.
2701  *
2702  * An error must be cleared or acked to take a FS out of readonly
2703  * mode.
2704  */
2705 void jbd2_journal_ack_err(journal_t *journal)
2706 {
2707 	write_lock(&journal->j_state_lock);
2708 	if (journal->j_errno)
2709 		journal->j_flags |= JBD2_ACK_ERR;
2710 	write_unlock(&journal->j_state_lock);
2711 }
2712 
2713 int jbd2_journal_blocks_per_page(struct inode *inode)
2714 {
2715 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2716 }
2717 
2718 /*
2719  * helper functions to deal with 32 or 64bit block numbers.
2720  */
2721 size_t journal_tag_bytes(journal_t *journal)
2722 {
2723 	size_t sz;
2724 
2725 	if (jbd2_has_feature_csum3(journal))
2726 		return sizeof(journal_block_tag3_t);
2727 
2728 	sz = sizeof(journal_block_tag_t);
2729 
2730 	if (jbd2_has_feature_csum2(journal))
2731 		sz += sizeof(__u16);
2732 
2733 	if (jbd2_has_feature_64bit(journal))
2734 		return sz;
2735 	else
2736 		return sz - sizeof(__u32);
2737 }
2738 
2739 /*
2740  * JBD memory management
2741  *
2742  * These functions are used to allocate block-sized chunks of memory
2743  * used for making copies of buffer_head data.  Very often it will be
2744  * page-sized chunks of data, but sometimes it will be in
2745  * sub-page-size chunks.  (For example, 16k pages on Power systems
2746  * with a 4k block file system.)  For blocks smaller than a page, we
2747  * use a SLAB allocator.  There are slab caches for each block size,
2748  * which are allocated at mount time, if necessary, and we only free
2749  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2750  * this reason we don't need to a mutex to protect access to
2751  * jbd2_slab[] allocating or releasing memory; only in
2752  * jbd2_journal_create_slab().
2753  */
2754 #define JBD2_MAX_SLABS 8
2755 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2756 
2757 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2758 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2759 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2760 };
2761 
2762 
2763 static void jbd2_journal_destroy_slabs(void)
2764 {
2765 	int i;
2766 
2767 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2768 		kmem_cache_destroy(jbd2_slab[i]);
2769 		jbd2_slab[i] = NULL;
2770 	}
2771 }
2772 
2773 static int jbd2_journal_create_slab(size_t size)
2774 {
2775 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2776 	int i = order_base_2(size) - 10;
2777 	size_t slab_size;
2778 
2779 	if (size == PAGE_SIZE)
2780 		return 0;
2781 
2782 	if (i >= JBD2_MAX_SLABS)
2783 		return -EINVAL;
2784 
2785 	if (unlikely(i < 0))
2786 		i = 0;
2787 	mutex_lock(&jbd2_slab_create_mutex);
2788 	if (jbd2_slab[i]) {
2789 		mutex_unlock(&jbd2_slab_create_mutex);
2790 		return 0;	/* Already created */
2791 	}
2792 
2793 	slab_size = 1 << (i+10);
2794 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2795 					 slab_size, 0, NULL);
2796 	mutex_unlock(&jbd2_slab_create_mutex);
2797 	if (!jbd2_slab[i]) {
2798 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2799 		return -ENOMEM;
2800 	}
2801 	return 0;
2802 }
2803 
2804 static struct kmem_cache *get_slab(size_t size)
2805 {
2806 	int i = order_base_2(size) - 10;
2807 
2808 	BUG_ON(i >= JBD2_MAX_SLABS);
2809 	if (unlikely(i < 0))
2810 		i = 0;
2811 	BUG_ON(jbd2_slab[i] == NULL);
2812 	return jbd2_slab[i];
2813 }
2814 
2815 void *jbd2_alloc(size_t size, gfp_t flags)
2816 {
2817 	void *ptr;
2818 
2819 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2820 
2821 	if (size < PAGE_SIZE)
2822 		ptr = kmem_cache_alloc(get_slab(size), flags);
2823 	else
2824 		ptr = (void *)__get_free_pages(flags, get_order(size));
2825 
2826 	/* Check alignment; SLUB has gotten this wrong in the past,
2827 	 * and this can lead to user data corruption! */
2828 	BUG_ON(((unsigned long) ptr) & (size-1));
2829 
2830 	return ptr;
2831 }
2832 
2833 void jbd2_free(void *ptr, size_t size)
2834 {
2835 	if (size < PAGE_SIZE)
2836 		kmem_cache_free(get_slab(size), ptr);
2837 	else
2838 		free_pages((unsigned long)ptr, get_order(size));
2839 };
2840 
2841 /*
2842  * Journal_head storage management
2843  */
2844 static struct kmem_cache *jbd2_journal_head_cache;
2845 #ifdef CONFIG_JBD2_DEBUG
2846 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2847 #endif
2848 
2849 static int __init jbd2_journal_init_journal_head_cache(void)
2850 {
2851 	J_ASSERT(!jbd2_journal_head_cache);
2852 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2853 				sizeof(struct journal_head),
2854 				0,		/* offset */
2855 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2856 				NULL);		/* ctor */
2857 	if (!jbd2_journal_head_cache) {
2858 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2859 		return -ENOMEM;
2860 	}
2861 	return 0;
2862 }
2863 
2864 static void jbd2_journal_destroy_journal_head_cache(void)
2865 {
2866 	kmem_cache_destroy(jbd2_journal_head_cache);
2867 	jbd2_journal_head_cache = NULL;
2868 }
2869 
2870 /*
2871  * journal_head splicing and dicing
2872  */
2873 static struct journal_head *journal_alloc_journal_head(void)
2874 {
2875 	struct journal_head *ret;
2876 
2877 #ifdef CONFIG_JBD2_DEBUG
2878 	atomic_inc(&nr_journal_heads);
2879 #endif
2880 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2881 	if (!ret) {
2882 		jbd2_debug(1, "out of memory for journal_head\n");
2883 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2884 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2885 				GFP_NOFS | __GFP_NOFAIL);
2886 	}
2887 	if (ret)
2888 		spin_lock_init(&ret->b_state_lock);
2889 	return ret;
2890 }
2891 
2892 static void journal_free_journal_head(struct journal_head *jh)
2893 {
2894 #ifdef CONFIG_JBD2_DEBUG
2895 	atomic_dec(&nr_journal_heads);
2896 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2897 #endif
2898 	kmem_cache_free(jbd2_journal_head_cache, jh);
2899 }
2900 
2901 /*
2902  * A journal_head is attached to a buffer_head whenever JBD has an
2903  * interest in the buffer.
2904  *
2905  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2906  * is set.  This bit is tested in core kernel code where we need to take
2907  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2908  * there.
2909  *
2910  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2911  *
2912  * When a buffer has its BH_JBD bit set it is immune from being released by
2913  * core kernel code, mainly via ->b_count.
2914  *
2915  * A journal_head is detached from its buffer_head when the journal_head's
2916  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2917  * transaction (b_cp_transaction) hold their references to b_jcount.
2918  *
2919  * Various places in the kernel want to attach a journal_head to a buffer_head
2920  * _before_ attaching the journal_head to a transaction.  To protect the
2921  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2922  * journal_head's b_jcount refcount by one.  The caller must call
2923  * jbd2_journal_put_journal_head() to undo this.
2924  *
2925  * So the typical usage would be:
2926  *
2927  *	(Attach a journal_head if needed.  Increments b_jcount)
2928  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2929  *	...
2930  *      (Get another reference for transaction)
2931  *	jbd2_journal_grab_journal_head(bh);
2932  *	jh->b_transaction = xxx;
2933  *	(Put original reference)
2934  *	jbd2_journal_put_journal_head(jh);
2935  */
2936 
2937 /*
2938  * Give a buffer_head a journal_head.
2939  *
2940  * May sleep.
2941  */
2942 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2943 {
2944 	struct journal_head *jh;
2945 	struct journal_head *new_jh = NULL;
2946 
2947 repeat:
2948 	if (!buffer_jbd(bh))
2949 		new_jh = journal_alloc_journal_head();
2950 
2951 	jbd_lock_bh_journal_head(bh);
2952 	if (buffer_jbd(bh)) {
2953 		jh = bh2jh(bh);
2954 	} else {
2955 		J_ASSERT_BH(bh,
2956 			(atomic_read(&bh->b_count) > 0) ||
2957 			(bh->b_folio && bh->b_folio->mapping));
2958 
2959 		if (!new_jh) {
2960 			jbd_unlock_bh_journal_head(bh);
2961 			goto repeat;
2962 		}
2963 
2964 		jh = new_jh;
2965 		new_jh = NULL;		/* We consumed it */
2966 		set_buffer_jbd(bh);
2967 		bh->b_private = jh;
2968 		jh->b_bh = bh;
2969 		get_bh(bh);
2970 		BUFFER_TRACE(bh, "added journal_head");
2971 	}
2972 	jh->b_jcount++;
2973 	jbd_unlock_bh_journal_head(bh);
2974 	if (new_jh)
2975 		journal_free_journal_head(new_jh);
2976 	return bh->b_private;
2977 }
2978 
2979 /*
2980  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2981  * having a journal_head, return NULL
2982  */
2983 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2984 {
2985 	struct journal_head *jh = NULL;
2986 
2987 	jbd_lock_bh_journal_head(bh);
2988 	if (buffer_jbd(bh)) {
2989 		jh = bh2jh(bh);
2990 		jh->b_jcount++;
2991 	}
2992 	jbd_unlock_bh_journal_head(bh);
2993 	return jh;
2994 }
2995 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2996 
2997 static void __journal_remove_journal_head(struct buffer_head *bh)
2998 {
2999 	struct journal_head *jh = bh2jh(bh);
3000 
3001 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
3002 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
3003 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
3004 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
3005 	J_ASSERT_BH(bh, buffer_jbd(bh));
3006 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
3007 	BUFFER_TRACE(bh, "remove journal_head");
3008 
3009 	/* Unlink before dropping the lock */
3010 	bh->b_private = NULL;
3011 	jh->b_bh = NULL;	/* debug, really */
3012 	clear_buffer_jbd(bh);
3013 }
3014 
3015 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
3016 {
3017 	if (jh->b_frozen_data) {
3018 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
3019 		jbd2_free(jh->b_frozen_data, b_size);
3020 	}
3021 	if (jh->b_committed_data) {
3022 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3023 		jbd2_free(jh->b_committed_data, b_size);
3024 	}
3025 	journal_free_journal_head(jh);
3026 }
3027 
3028 /*
3029  * Drop a reference on the passed journal_head.  If it fell to zero then
3030  * release the journal_head from the buffer_head.
3031  */
3032 void jbd2_journal_put_journal_head(struct journal_head *jh)
3033 {
3034 	struct buffer_head *bh = jh2bh(jh);
3035 
3036 	jbd_lock_bh_journal_head(bh);
3037 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3038 	--jh->b_jcount;
3039 	if (!jh->b_jcount) {
3040 		__journal_remove_journal_head(bh);
3041 		jbd_unlock_bh_journal_head(bh);
3042 		journal_release_journal_head(jh, bh->b_size);
3043 		__brelse(bh);
3044 	} else {
3045 		jbd_unlock_bh_journal_head(bh);
3046 	}
3047 }
3048 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3049 
3050 /*
3051  * Initialize jbd inode head
3052  */
3053 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3054 {
3055 	jinode->i_transaction = NULL;
3056 	jinode->i_next_transaction = NULL;
3057 	jinode->i_vfs_inode = inode;
3058 	jinode->i_flags = 0;
3059 	jinode->i_dirty_start = 0;
3060 	jinode->i_dirty_end = 0;
3061 	INIT_LIST_HEAD(&jinode->i_list);
3062 }
3063 
3064 /*
3065  * Function to be called before we start removing inode from memory (i.e.,
3066  * clear_inode() is a fine place to be called from). It removes inode from
3067  * transaction's lists.
3068  */
3069 void jbd2_journal_release_jbd_inode(journal_t *journal,
3070 				    struct jbd2_inode *jinode)
3071 {
3072 	if (!journal)
3073 		return;
3074 restart:
3075 	spin_lock(&journal->j_list_lock);
3076 	/* Is commit writing out inode - we have to wait */
3077 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3078 		wait_queue_head_t *wq;
3079 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3080 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3081 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3082 		spin_unlock(&journal->j_list_lock);
3083 		schedule();
3084 		finish_wait(wq, &wait.wq_entry);
3085 		goto restart;
3086 	}
3087 
3088 	if (jinode->i_transaction) {
3089 		list_del(&jinode->i_list);
3090 		jinode->i_transaction = NULL;
3091 	}
3092 	spin_unlock(&journal->j_list_lock);
3093 }
3094 
3095 
3096 #ifdef CONFIG_PROC_FS
3097 
3098 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3099 
3100 static void __init jbd2_create_jbd_stats_proc_entry(void)
3101 {
3102 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3103 }
3104 
3105 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3106 {
3107 	if (proc_jbd2_stats)
3108 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3109 }
3110 
3111 #else
3112 
3113 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3114 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3115 
3116 #endif
3117 
3118 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3119 
3120 static int __init jbd2_journal_init_inode_cache(void)
3121 {
3122 	J_ASSERT(!jbd2_inode_cache);
3123 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3124 	if (!jbd2_inode_cache) {
3125 		pr_emerg("JBD2: failed to create inode cache\n");
3126 		return -ENOMEM;
3127 	}
3128 	return 0;
3129 }
3130 
3131 static int __init jbd2_journal_init_handle_cache(void)
3132 {
3133 	J_ASSERT(!jbd2_handle_cache);
3134 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3135 	if (!jbd2_handle_cache) {
3136 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3137 		return -ENOMEM;
3138 	}
3139 	return 0;
3140 }
3141 
3142 static void jbd2_journal_destroy_inode_cache(void)
3143 {
3144 	kmem_cache_destroy(jbd2_inode_cache);
3145 	jbd2_inode_cache = NULL;
3146 }
3147 
3148 static void jbd2_journal_destroy_handle_cache(void)
3149 {
3150 	kmem_cache_destroy(jbd2_handle_cache);
3151 	jbd2_handle_cache = NULL;
3152 }
3153 
3154 /*
3155  * Module startup and shutdown
3156  */
3157 
3158 static int __init journal_init_caches(void)
3159 {
3160 	int ret;
3161 
3162 	ret = jbd2_journal_init_revoke_record_cache();
3163 	if (ret == 0)
3164 		ret = jbd2_journal_init_revoke_table_cache();
3165 	if (ret == 0)
3166 		ret = jbd2_journal_init_journal_head_cache();
3167 	if (ret == 0)
3168 		ret = jbd2_journal_init_handle_cache();
3169 	if (ret == 0)
3170 		ret = jbd2_journal_init_inode_cache();
3171 	if (ret == 0)
3172 		ret = jbd2_journal_init_transaction_cache();
3173 	return ret;
3174 }
3175 
3176 static void jbd2_journal_destroy_caches(void)
3177 {
3178 	jbd2_journal_destroy_revoke_record_cache();
3179 	jbd2_journal_destroy_revoke_table_cache();
3180 	jbd2_journal_destroy_journal_head_cache();
3181 	jbd2_journal_destroy_handle_cache();
3182 	jbd2_journal_destroy_inode_cache();
3183 	jbd2_journal_destroy_transaction_cache();
3184 	jbd2_journal_destroy_slabs();
3185 }
3186 
3187 static int __init journal_init(void)
3188 {
3189 	int ret;
3190 
3191 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3192 
3193 	ret = journal_init_caches();
3194 	if (ret == 0) {
3195 		jbd2_create_jbd_stats_proc_entry();
3196 	} else {
3197 		jbd2_journal_destroy_caches();
3198 	}
3199 	return ret;
3200 }
3201 
3202 static void __exit journal_exit(void)
3203 {
3204 #ifdef CONFIG_JBD2_DEBUG
3205 	int n = atomic_read(&nr_journal_heads);
3206 	if (n)
3207 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3208 #endif
3209 	jbd2_remove_jbd_stats_proc_entry();
3210 	jbd2_journal_destroy_caches();
3211 }
3212 
3213 MODULE_LICENSE("GPL");
3214 module_init(journal_init);
3215 module_exit(journal_exit);
3216 
3217