xref: /openbmc/linux/fs/jbd2/journal.c (revision 4800cd83)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54 
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 /*
104  * Helper function used to manage commit timeouts
105  */
106 
107 static void commit_timeout(unsigned long __data)
108 {
109 	struct task_struct * p = (struct task_struct *) __data;
110 
111 	wake_up_process(p);
112 }
113 
114 /*
115  * kjournald2: The main thread function used to manage a logging device
116  * journal.
117  *
118  * This kernel thread is responsible for two things:
119  *
120  * 1) COMMIT:  Every so often we need to commit the current state of the
121  *    filesystem to disk.  The journal thread is responsible for writing
122  *    all of the metadata buffers to disk.
123  *
124  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125  *    of the data in that part of the log has been rewritten elsewhere on
126  *    the disk.  Flushing these old buffers to reclaim space in the log is
127  *    known as checkpointing, and this thread is responsible for that job.
128  */
129 
130 static int kjournald2(void *arg)
131 {
132 	journal_t *journal = arg;
133 	transaction_t *transaction;
134 
135 	/*
136 	 * Set up an interval timer which can be used to trigger a commit wakeup
137 	 * after the commit interval expires
138 	 */
139 	setup_timer(&journal->j_commit_timer, commit_timeout,
140 			(unsigned long)current);
141 
142 	/* Record that the journal thread is running */
143 	journal->j_task = current;
144 	wake_up(&journal->j_wait_done_commit);
145 
146 	/*
147 	 * And now, wait forever for commit wakeup events.
148 	 */
149 	write_lock(&journal->j_state_lock);
150 
151 loop:
152 	if (journal->j_flags & JBD2_UNMOUNT)
153 		goto end_loop;
154 
155 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
156 		journal->j_commit_sequence, journal->j_commit_request);
157 
158 	if (journal->j_commit_sequence != journal->j_commit_request) {
159 		jbd_debug(1, "OK, requests differ\n");
160 		write_unlock(&journal->j_state_lock);
161 		del_timer_sync(&journal->j_commit_timer);
162 		jbd2_journal_commit_transaction(journal);
163 		write_lock(&journal->j_state_lock);
164 		goto loop;
165 	}
166 
167 	wake_up(&journal->j_wait_done_commit);
168 	if (freezing(current)) {
169 		/*
170 		 * The simpler the better. Flushing journal isn't a
171 		 * good idea, because that depends on threads that may
172 		 * be already stopped.
173 		 */
174 		jbd_debug(1, "Now suspending kjournald2\n");
175 		write_unlock(&journal->j_state_lock);
176 		refrigerator();
177 		write_lock(&journal->j_state_lock);
178 	} else {
179 		/*
180 		 * We assume on resume that commits are already there,
181 		 * so we don't sleep
182 		 */
183 		DEFINE_WAIT(wait);
184 		int should_sleep = 1;
185 
186 		prepare_to_wait(&journal->j_wait_commit, &wait,
187 				TASK_INTERRUPTIBLE);
188 		if (journal->j_commit_sequence != journal->j_commit_request)
189 			should_sleep = 0;
190 		transaction = journal->j_running_transaction;
191 		if (transaction && time_after_eq(jiffies,
192 						transaction->t_expires))
193 			should_sleep = 0;
194 		if (journal->j_flags & JBD2_UNMOUNT)
195 			should_sleep = 0;
196 		if (should_sleep) {
197 			write_unlock(&journal->j_state_lock);
198 			schedule();
199 			write_lock(&journal->j_state_lock);
200 		}
201 		finish_wait(&journal->j_wait_commit, &wait);
202 	}
203 
204 	jbd_debug(1, "kjournald2 wakes\n");
205 
206 	/*
207 	 * Were we woken up by a commit wakeup event?
208 	 */
209 	transaction = journal->j_running_transaction;
210 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
211 		journal->j_commit_request = transaction->t_tid;
212 		jbd_debug(1, "woke because of timeout\n");
213 	}
214 	goto loop;
215 
216 end_loop:
217 	write_unlock(&journal->j_state_lock);
218 	del_timer_sync(&journal->j_commit_timer);
219 	journal->j_task = NULL;
220 	wake_up(&journal->j_wait_done_commit);
221 	jbd_debug(1, "Journal thread exiting.\n");
222 	return 0;
223 }
224 
225 static int jbd2_journal_start_thread(journal_t *journal)
226 {
227 	struct task_struct *t;
228 
229 	t = kthread_run(kjournald2, journal, "jbd2/%s",
230 			journal->j_devname);
231 	if (IS_ERR(t))
232 		return PTR_ERR(t);
233 
234 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235 	return 0;
236 }
237 
238 static void journal_kill_thread(journal_t *journal)
239 {
240 	write_lock(&journal->j_state_lock);
241 	journal->j_flags |= JBD2_UNMOUNT;
242 
243 	while (journal->j_task) {
244 		wake_up(&journal->j_wait_commit);
245 		write_unlock(&journal->j_state_lock);
246 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247 		write_lock(&journal->j_state_lock);
248 	}
249 	write_unlock(&journal->j_state_lock);
250 }
251 
252 /*
253  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254  *
255  * Writes a metadata buffer to a given disk block.  The actual IO is not
256  * performed but a new buffer_head is constructed which labels the data
257  * to be written with the correct destination disk block.
258  *
259  * Any magic-number escaping which needs to be done will cause a
260  * copy-out here.  If the buffer happens to start with the
261  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262  * magic number is only written to the log for descripter blocks.  In
263  * this case, we copy the data and replace the first word with 0, and we
264  * return a result code which indicates that this buffer needs to be
265  * marked as an escaped buffer in the corresponding log descriptor
266  * block.  The missing word can then be restored when the block is read
267  * during recovery.
268  *
269  * If the source buffer has already been modified by a new transaction
270  * since we took the last commit snapshot, we use the frozen copy of
271  * that data for IO.  If we end up using the existing buffer_head's data
272  * for the write, then we *have* to lock the buffer to prevent anyone
273  * else from using and possibly modifying it while the IO is in
274  * progress.
275  *
276  * The function returns a pointer to the buffer_heads to be used for IO.
277  *
278  * We assume that the journal has already been locked in this function.
279  *
280  * Return value:
281  *  <0: Error
282  * >=0: Finished OK
283  *
284  * On success:
285  * Bit 0 set == escape performed on the data
286  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
287  */
288 
289 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 				  struct journal_head  *jh_in,
291 				  struct journal_head **jh_out,
292 				  unsigned long long blocknr)
293 {
294 	int need_copy_out = 0;
295 	int done_copy_out = 0;
296 	int do_escape = 0;
297 	char *mapped_data;
298 	struct buffer_head *new_bh;
299 	struct journal_head *new_jh;
300 	struct page *new_page;
301 	unsigned int new_offset;
302 	struct buffer_head *bh_in = jh2bh(jh_in);
303 	journal_t *journal = transaction->t_journal;
304 
305 	/*
306 	 * The buffer really shouldn't be locked: only the current committing
307 	 * transaction is allowed to write it, so nobody else is allowed
308 	 * to do any IO.
309 	 *
310 	 * akpm: except if we're journalling data, and write() output is
311 	 * also part of a shared mapping, and another thread has
312 	 * decided to launch a writepage() against this buffer.
313 	 */
314 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
315 
316 retry_alloc:
317 	new_bh = alloc_buffer_head(GFP_NOFS);
318 	if (!new_bh) {
319 		/*
320 		 * Failure is not an option, but __GFP_NOFAIL is going
321 		 * away; so we retry ourselves here.
322 		 */
323 		congestion_wait(BLK_RW_ASYNC, HZ/50);
324 		goto retry_alloc;
325 	}
326 
327 	/* keep subsequent assertions sane */
328 	new_bh->b_state = 0;
329 	init_buffer(new_bh, NULL, NULL);
330 	atomic_set(&new_bh->b_count, 1);
331 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
332 
333 	/*
334 	 * If a new transaction has already done a buffer copy-out, then
335 	 * we use that version of the data for the commit.
336 	 */
337 	jbd_lock_bh_state(bh_in);
338 repeat:
339 	if (jh_in->b_frozen_data) {
340 		done_copy_out = 1;
341 		new_page = virt_to_page(jh_in->b_frozen_data);
342 		new_offset = offset_in_page(jh_in->b_frozen_data);
343 	} else {
344 		new_page = jh2bh(jh_in)->b_page;
345 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
346 	}
347 
348 	mapped_data = kmap_atomic(new_page, KM_USER0);
349 	/*
350 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
351 	 * before checking for escaping, as the trigger may modify the magic
352 	 * offset.  If a copy-out happens afterwards, it will have the correct
353 	 * data in the buffer.
354 	 */
355 	if (!done_copy_out)
356 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
357 					   jh_in->b_triggers);
358 
359 	/*
360 	 * Check for escaping
361 	 */
362 	if (*((__be32 *)(mapped_data + new_offset)) ==
363 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 		need_copy_out = 1;
365 		do_escape = 1;
366 	}
367 	kunmap_atomic(mapped_data, KM_USER0);
368 
369 	/*
370 	 * Do we need to do a data copy?
371 	 */
372 	if (need_copy_out && !done_copy_out) {
373 		char *tmp;
374 
375 		jbd_unlock_bh_state(bh_in);
376 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 		if (!tmp) {
378 			jbd2_journal_put_journal_head(new_jh);
379 			return -ENOMEM;
380 		}
381 		jbd_lock_bh_state(bh_in);
382 		if (jh_in->b_frozen_data) {
383 			jbd2_free(tmp, bh_in->b_size);
384 			goto repeat;
385 		}
386 
387 		jh_in->b_frozen_data = tmp;
388 		mapped_data = kmap_atomic(new_page, KM_USER0);
389 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
390 		kunmap_atomic(mapped_data, KM_USER0);
391 
392 		new_page = virt_to_page(tmp);
393 		new_offset = offset_in_page(tmp);
394 		done_copy_out = 1;
395 
396 		/*
397 		 * This isn't strictly necessary, as we're using frozen
398 		 * data for the escaping, but it keeps consistency with
399 		 * b_frozen_data usage.
400 		 */
401 		jh_in->b_frozen_triggers = jh_in->b_triggers;
402 	}
403 
404 	/*
405 	 * Did we need to do an escaping?  Now we've done all the
406 	 * copying, we can finally do so.
407 	 */
408 	if (do_escape) {
409 		mapped_data = kmap_atomic(new_page, KM_USER0);
410 		*((unsigned int *)(mapped_data + new_offset)) = 0;
411 		kunmap_atomic(mapped_data, KM_USER0);
412 	}
413 
414 	set_bh_page(new_bh, new_page, new_offset);
415 	new_jh->b_transaction = NULL;
416 	new_bh->b_size = jh2bh(jh_in)->b_size;
417 	new_bh->b_bdev = transaction->t_journal->j_dev;
418 	new_bh->b_blocknr = blocknr;
419 	set_buffer_mapped(new_bh);
420 	set_buffer_dirty(new_bh);
421 
422 	*jh_out = new_jh;
423 
424 	/*
425 	 * The to-be-written buffer needs to get moved to the io queue,
426 	 * and the original buffer whose contents we are shadowing or
427 	 * copying is moved to the transaction's shadow queue.
428 	 */
429 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 	spin_lock(&journal->j_list_lock);
431 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
432 	spin_unlock(&journal->j_list_lock);
433 	jbd_unlock_bh_state(bh_in);
434 
435 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
436 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437 
438 	return do_escape | (done_copy_out << 1);
439 }
440 
441 /*
442  * Allocation code for the journal file.  Manage the space left in the
443  * journal, so that we can begin checkpointing when appropriate.
444  */
445 
446 /*
447  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448  *
449  * Called with the journal already locked.
450  *
451  * Called under j_state_lock
452  */
453 
454 int __jbd2_log_space_left(journal_t *journal)
455 {
456 	int left = journal->j_free;
457 
458 	/* assert_spin_locked(&journal->j_state_lock); */
459 
460 	/*
461 	 * Be pessimistic here about the number of those free blocks which
462 	 * might be required for log descriptor control blocks.
463 	 */
464 
465 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
466 
467 	left -= MIN_LOG_RESERVED_BLOCKS;
468 
469 	if (left <= 0)
470 		return 0;
471 	left -= (left >> 3);
472 	return left;
473 }
474 
475 /*
476  * Called with j_state_lock locked for writing.
477  * Returns true if a transaction commit was started.
478  */
479 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 {
481 	/*
482 	 * Are we already doing a recent enough commit?
483 	 */
484 	if (!tid_geq(journal->j_commit_request, target)) {
485 		/*
486 		 * We want a new commit: OK, mark the request and wakeup the
487 		 * commit thread.  We do _not_ do the commit ourselves.
488 		 */
489 
490 		journal->j_commit_request = target;
491 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
492 			  journal->j_commit_request,
493 			  journal->j_commit_sequence);
494 		wake_up(&journal->j_wait_commit);
495 		return 1;
496 	}
497 	return 0;
498 }
499 
500 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
501 {
502 	int ret;
503 
504 	write_lock(&journal->j_state_lock);
505 	ret = __jbd2_log_start_commit(journal, tid);
506 	write_unlock(&journal->j_state_lock);
507 	return ret;
508 }
509 
510 /*
511  * Force and wait upon a commit if the calling process is not within
512  * transaction.  This is used for forcing out undo-protected data which contains
513  * bitmaps, when the fs is running out of space.
514  *
515  * We can only force the running transaction if we don't have an active handle;
516  * otherwise, we will deadlock.
517  *
518  * Returns true if a transaction was started.
519  */
520 int jbd2_journal_force_commit_nested(journal_t *journal)
521 {
522 	transaction_t *transaction = NULL;
523 	tid_t tid;
524 	int need_to_start = 0;
525 
526 	read_lock(&journal->j_state_lock);
527 	if (journal->j_running_transaction && !current->journal_info) {
528 		transaction = journal->j_running_transaction;
529 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
530 			need_to_start = 1;
531 	} else if (journal->j_committing_transaction)
532 		transaction = journal->j_committing_transaction;
533 
534 	if (!transaction) {
535 		read_unlock(&journal->j_state_lock);
536 		return 0;	/* Nothing to retry */
537 	}
538 
539 	tid = transaction->t_tid;
540 	read_unlock(&journal->j_state_lock);
541 	if (need_to_start)
542 		jbd2_log_start_commit(journal, tid);
543 	jbd2_log_wait_commit(journal, tid);
544 	return 1;
545 }
546 
547 /*
548  * Start a commit of the current running transaction (if any).  Returns true
549  * if a transaction is going to be committed (or is currently already
550  * committing), and fills its tid in at *ptid
551  */
552 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
553 {
554 	int ret = 0;
555 
556 	write_lock(&journal->j_state_lock);
557 	if (journal->j_running_transaction) {
558 		tid_t tid = journal->j_running_transaction->t_tid;
559 
560 		__jbd2_log_start_commit(journal, tid);
561 		/* There's a running transaction and we've just made sure
562 		 * it's commit has been scheduled. */
563 		if (ptid)
564 			*ptid = tid;
565 		ret = 1;
566 	} else if (journal->j_committing_transaction) {
567 		/*
568 		 * If ext3_write_super() recently started a commit, then we
569 		 * have to wait for completion of that transaction
570 		 */
571 		if (ptid)
572 			*ptid = journal->j_committing_transaction->t_tid;
573 		ret = 1;
574 	}
575 	write_unlock(&journal->j_state_lock);
576 	return ret;
577 }
578 
579 /*
580  * Wait for a specified commit to complete.
581  * The caller may not hold the journal lock.
582  */
583 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
584 {
585 	int err = 0;
586 
587 	read_lock(&journal->j_state_lock);
588 #ifdef CONFIG_JBD2_DEBUG
589 	if (!tid_geq(journal->j_commit_request, tid)) {
590 		printk(KERN_EMERG
591 		       "%s: error: j_commit_request=%d, tid=%d\n",
592 		       __func__, journal->j_commit_request, tid);
593 	}
594 #endif
595 	while (tid_gt(tid, journal->j_commit_sequence)) {
596 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
597 				  tid, journal->j_commit_sequence);
598 		wake_up(&journal->j_wait_commit);
599 		read_unlock(&journal->j_state_lock);
600 		wait_event(journal->j_wait_done_commit,
601 				!tid_gt(tid, journal->j_commit_sequence));
602 		read_lock(&journal->j_state_lock);
603 	}
604 	read_unlock(&journal->j_state_lock);
605 
606 	if (unlikely(is_journal_aborted(journal))) {
607 		printk(KERN_EMERG "journal commit I/O error\n");
608 		err = -EIO;
609 	}
610 	return err;
611 }
612 
613 /*
614  * Log buffer allocation routines:
615  */
616 
617 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
618 {
619 	unsigned long blocknr;
620 
621 	write_lock(&journal->j_state_lock);
622 	J_ASSERT(journal->j_free > 1);
623 
624 	blocknr = journal->j_head;
625 	journal->j_head++;
626 	journal->j_free--;
627 	if (journal->j_head == journal->j_last)
628 		journal->j_head = journal->j_first;
629 	write_unlock(&journal->j_state_lock);
630 	return jbd2_journal_bmap(journal, blocknr, retp);
631 }
632 
633 /*
634  * Conversion of logical to physical block numbers for the journal
635  *
636  * On external journals the journal blocks are identity-mapped, so
637  * this is a no-op.  If needed, we can use j_blk_offset - everything is
638  * ready.
639  */
640 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
641 		 unsigned long long *retp)
642 {
643 	int err = 0;
644 	unsigned long long ret;
645 
646 	if (journal->j_inode) {
647 		ret = bmap(journal->j_inode, blocknr);
648 		if (ret)
649 			*retp = ret;
650 		else {
651 			printk(KERN_ALERT "%s: journal block not found "
652 					"at offset %lu on %s\n",
653 			       __func__, blocknr, journal->j_devname);
654 			err = -EIO;
655 			__journal_abort_soft(journal, err);
656 		}
657 	} else {
658 		*retp = blocknr; /* +journal->j_blk_offset */
659 	}
660 	return err;
661 }
662 
663 /*
664  * We play buffer_head aliasing tricks to write data/metadata blocks to
665  * the journal without copying their contents, but for journal
666  * descriptor blocks we do need to generate bona fide buffers.
667  *
668  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
669  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
670  * But we don't bother doing that, so there will be coherency problems with
671  * mmaps of blockdevs which hold live JBD-controlled filesystems.
672  */
673 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
674 {
675 	struct buffer_head *bh;
676 	unsigned long long blocknr;
677 	int err;
678 
679 	err = jbd2_journal_next_log_block(journal, &blocknr);
680 
681 	if (err)
682 		return NULL;
683 
684 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
685 	if (!bh)
686 		return NULL;
687 	lock_buffer(bh);
688 	memset(bh->b_data, 0, journal->j_blocksize);
689 	set_buffer_uptodate(bh);
690 	unlock_buffer(bh);
691 	BUFFER_TRACE(bh, "return this buffer");
692 	return jbd2_journal_add_journal_head(bh);
693 }
694 
695 struct jbd2_stats_proc_session {
696 	journal_t *journal;
697 	struct transaction_stats_s *stats;
698 	int start;
699 	int max;
700 };
701 
702 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
703 {
704 	return *pos ? NULL : SEQ_START_TOKEN;
705 }
706 
707 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
708 {
709 	return NULL;
710 }
711 
712 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
713 {
714 	struct jbd2_stats_proc_session *s = seq->private;
715 
716 	if (v != SEQ_START_TOKEN)
717 		return 0;
718 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
719 			s->stats->ts_tid,
720 			s->journal->j_max_transaction_buffers);
721 	if (s->stats->ts_tid == 0)
722 		return 0;
723 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
724 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
725 	seq_printf(seq, "  %ums running transaction\n",
726 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
727 	seq_printf(seq, "  %ums transaction was being locked\n",
728 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
729 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
730 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
731 	seq_printf(seq, "  %ums logging transaction\n",
732 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
733 	seq_printf(seq, "  %lluus average transaction commit time\n",
734 		   div_u64(s->journal->j_average_commit_time, 1000));
735 	seq_printf(seq, "  %lu handles per transaction\n",
736 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
737 	seq_printf(seq, "  %lu blocks per transaction\n",
738 	    s->stats->run.rs_blocks / s->stats->ts_tid);
739 	seq_printf(seq, "  %lu logged blocks per transaction\n",
740 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
741 	return 0;
742 }
743 
744 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
745 {
746 }
747 
748 static const struct seq_operations jbd2_seq_info_ops = {
749 	.start  = jbd2_seq_info_start,
750 	.next   = jbd2_seq_info_next,
751 	.stop   = jbd2_seq_info_stop,
752 	.show   = jbd2_seq_info_show,
753 };
754 
755 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
756 {
757 	journal_t *journal = PDE(inode)->data;
758 	struct jbd2_stats_proc_session *s;
759 	int rc, size;
760 
761 	s = kmalloc(sizeof(*s), GFP_KERNEL);
762 	if (s == NULL)
763 		return -ENOMEM;
764 	size = sizeof(struct transaction_stats_s);
765 	s->stats = kmalloc(size, GFP_KERNEL);
766 	if (s->stats == NULL) {
767 		kfree(s);
768 		return -ENOMEM;
769 	}
770 	spin_lock(&journal->j_history_lock);
771 	memcpy(s->stats, &journal->j_stats, size);
772 	s->journal = journal;
773 	spin_unlock(&journal->j_history_lock);
774 
775 	rc = seq_open(file, &jbd2_seq_info_ops);
776 	if (rc == 0) {
777 		struct seq_file *m = file->private_data;
778 		m->private = s;
779 	} else {
780 		kfree(s->stats);
781 		kfree(s);
782 	}
783 	return rc;
784 
785 }
786 
787 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
788 {
789 	struct seq_file *seq = file->private_data;
790 	struct jbd2_stats_proc_session *s = seq->private;
791 	kfree(s->stats);
792 	kfree(s);
793 	return seq_release(inode, file);
794 }
795 
796 static const struct file_operations jbd2_seq_info_fops = {
797 	.owner		= THIS_MODULE,
798 	.open           = jbd2_seq_info_open,
799 	.read           = seq_read,
800 	.llseek         = seq_lseek,
801 	.release        = jbd2_seq_info_release,
802 };
803 
804 static struct proc_dir_entry *proc_jbd2_stats;
805 
806 static void jbd2_stats_proc_init(journal_t *journal)
807 {
808 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
809 	if (journal->j_proc_entry) {
810 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
811 				 &jbd2_seq_info_fops, journal);
812 	}
813 }
814 
815 static void jbd2_stats_proc_exit(journal_t *journal)
816 {
817 	remove_proc_entry("info", journal->j_proc_entry);
818 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
819 }
820 
821 /*
822  * Management for journal control blocks: functions to create and
823  * destroy journal_t structures, and to initialise and read existing
824  * journal blocks from disk.  */
825 
826 /* First: create and setup a journal_t object in memory.  We initialise
827  * very few fields yet: that has to wait until we have created the
828  * journal structures from from scratch, or loaded them from disk. */
829 
830 static journal_t * journal_init_common (void)
831 {
832 	journal_t *journal;
833 	int err;
834 
835 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
836 	if (!journal)
837 		return NULL;
838 
839 	init_waitqueue_head(&journal->j_wait_transaction_locked);
840 	init_waitqueue_head(&journal->j_wait_logspace);
841 	init_waitqueue_head(&journal->j_wait_done_commit);
842 	init_waitqueue_head(&journal->j_wait_checkpoint);
843 	init_waitqueue_head(&journal->j_wait_commit);
844 	init_waitqueue_head(&journal->j_wait_updates);
845 	mutex_init(&journal->j_barrier);
846 	mutex_init(&journal->j_checkpoint_mutex);
847 	spin_lock_init(&journal->j_revoke_lock);
848 	spin_lock_init(&journal->j_list_lock);
849 	rwlock_init(&journal->j_state_lock);
850 
851 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
852 	journal->j_min_batch_time = 0;
853 	journal->j_max_batch_time = 15000; /* 15ms */
854 
855 	/* The journal is marked for error until we succeed with recovery! */
856 	journal->j_flags = JBD2_ABORT;
857 
858 	/* Set up a default-sized revoke table for the new mount. */
859 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
860 	if (err) {
861 		kfree(journal);
862 		return NULL;
863 	}
864 
865 	spin_lock_init(&journal->j_history_lock);
866 
867 	return journal;
868 }
869 
870 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
871  *
872  * Create a journal structure assigned some fixed set of disk blocks to
873  * the journal.  We don't actually touch those disk blocks yet, but we
874  * need to set up all of the mapping information to tell the journaling
875  * system where the journal blocks are.
876  *
877  */
878 
879 /**
880  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
881  *  @bdev: Block device on which to create the journal
882  *  @fs_dev: Device which hold journalled filesystem for this journal.
883  *  @start: Block nr Start of journal.
884  *  @len:  Length of the journal in blocks.
885  *  @blocksize: blocksize of journalling device
886  *
887  *  Returns: a newly created journal_t *
888  *
889  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
890  *  range of blocks on an arbitrary block device.
891  *
892  */
893 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
894 			struct block_device *fs_dev,
895 			unsigned long long start, int len, int blocksize)
896 {
897 	journal_t *journal = journal_init_common();
898 	struct buffer_head *bh;
899 	char *p;
900 	int n;
901 
902 	if (!journal)
903 		return NULL;
904 
905 	/* journal descriptor can store up to n blocks -bzzz */
906 	journal->j_blocksize = blocksize;
907 	journal->j_dev = bdev;
908 	journal->j_fs_dev = fs_dev;
909 	journal->j_blk_offset = start;
910 	journal->j_maxlen = len;
911 	bdevname(journal->j_dev, journal->j_devname);
912 	p = journal->j_devname;
913 	while ((p = strchr(p, '/')))
914 		*p = '!';
915 	jbd2_stats_proc_init(journal);
916 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
917 	journal->j_wbufsize = n;
918 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
919 	if (!journal->j_wbuf) {
920 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
921 			__func__);
922 		goto out_err;
923 	}
924 
925 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
926 	if (!bh) {
927 		printk(KERN_ERR
928 		       "%s: Cannot get buffer for journal superblock\n",
929 		       __func__);
930 		goto out_err;
931 	}
932 	journal->j_sb_buffer = bh;
933 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
934 
935 	return journal;
936 out_err:
937 	kfree(journal->j_wbuf);
938 	jbd2_stats_proc_exit(journal);
939 	kfree(journal);
940 	return NULL;
941 }
942 
943 /**
944  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
945  *  @inode: An inode to create the journal in
946  *
947  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
948  * the journal.  The inode must exist already, must support bmap() and
949  * must have all data blocks preallocated.
950  */
951 journal_t * jbd2_journal_init_inode (struct inode *inode)
952 {
953 	struct buffer_head *bh;
954 	journal_t *journal = journal_init_common();
955 	char *p;
956 	int err;
957 	int n;
958 	unsigned long long blocknr;
959 
960 	if (!journal)
961 		return NULL;
962 
963 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
964 	journal->j_inode = inode;
965 	bdevname(journal->j_dev, journal->j_devname);
966 	p = journal->j_devname;
967 	while ((p = strchr(p, '/')))
968 		*p = '!';
969 	p = journal->j_devname + strlen(journal->j_devname);
970 	sprintf(p, "-%lu", journal->j_inode->i_ino);
971 	jbd_debug(1,
972 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
973 		  journal, inode->i_sb->s_id, inode->i_ino,
974 		  (long long) inode->i_size,
975 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
976 
977 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
978 	journal->j_blocksize = inode->i_sb->s_blocksize;
979 	jbd2_stats_proc_init(journal);
980 
981 	/* journal descriptor can store up to n blocks -bzzz */
982 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
983 	journal->j_wbufsize = n;
984 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
985 	if (!journal->j_wbuf) {
986 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
987 			__func__);
988 		goto out_err;
989 	}
990 
991 	err = jbd2_journal_bmap(journal, 0, &blocknr);
992 	/* If that failed, give up */
993 	if (err) {
994 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
995 		       __func__);
996 		goto out_err;
997 	}
998 
999 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1000 	if (!bh) {
1001 		printk(KERN_ERR
1002 		       "%s: Cannot get buffer for journal superblock\n",
1003 		       __func__);
1004 		goto out_err;
1005 	}
1006 	journal->j_sb_buffer = bh;
1007 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1008 
1009 	return journal;
1010 out_err:
1011 	kfree(journal->j_wbuf);
1012 	jbd2_stats_proc_exit(journal);
1013 	kfree(journal);
1014 	return NULL;
1015 }
1016 
1017 /*
1018  * If the journal init or create aborts, we need to mark the journal
1019  * superblock as being NULL to prevent the journal destroy from writing
1020  * back a bogus superblock.
1021  */
1022 static void journal_fail_superblock (journal_t *journal)
1023 {
1024 	struct buffer_head *bh = journal->j_sb_buffer;
1025 	brelse(bh);
1026 	journal->j_sb_buffer = NULL;
1027 }
1028 
1029 /*
1030  * Given a journal_t structure, initialise the various fields for
1031  * startup of a new journaling session.  We use this both when creating
1032  * a journal, and after recovering an old journal to reset it for
1033  * subsequent use.
1034  */
1035 
1036 static int journal_reset(journal_t *journal)
1037 {
1038 	journal_superblock_t *sb = journal->j_superblock;
1039 	unsigned long long first, last;
1040 
1041 	first = be32_to_cpu(sb->s_first);
1042 	last = be32_to_cpu(sb->s_maxlen);
1043 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1044 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1045 		       first, last);
1046 		journal_fail_superblock(journal);
1047 		return -EINVAL;
1048 	}
1049 
1050 	journal->j_first = first;
1051 	journal->j_last = last;
1052 
1053 	journal->j_head = first;
1054 	journal->j_tail = first;
1055 	journal->j_free = last - first;
1056 
1057 	journal->j_tail_sequence = journal->j_transaction_sequence;
1058 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1059 	journal->j_commit_request = journal->j_commit_sequence;
1060 
1061 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1062 
1063 	/* Add the dynamic fields and write it to disk. */
1064 	jbd2_journal_update_superblock(journal, 1);
1065 	return jbd2_journal_start_thread(journal);
1066 }
1067 
1068 /**
1069  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1070  * @journal: The journal to update.
1071  * @wait: Set to '0' if you don't want to wait for IO completion.
1072  *
1073  * Update a journal's dynamic superblock fields and write it to disk,
1074  * optionally waiting for the IO to complete.
1075  */
1076 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1077 {
1078 	journal_superblock_t *sb = journal->j_superblock;
1079 	struct buffer_head *bh = journal->j_sb_buffer;
1080 
1081 	/*
1082 	 * As a special case, if the on-disk copy is already marked as needing
1083 	 * no recovery (s_start == 0) and there are no outstanding transactions
1084 	 * in the filesystem, then we can safely defer the superblock update
1085 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1086 	 * attempting a write to a potential-readonly device.
1087 	 */
1088 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1089 				journal->j_transaction_sequence) {
1090 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1091 			"(start %ld, seq %d, errno %d)\n",
1092 			journal->j_tail, journal->j_tail_sequence,
1093 			journal->j_errno);
1094 		goto out;
1095 	}
1096 
1097 	if (buffer_write_io_error(bh)) {
1098 		/*
1099 		 * Oh, dear.  A previous attempt to write the journal
1100 		 * superblock failed.  This could happen because the
1101 		 * USB device was yanked out.  Or it could happen to
1102 		 * be a transient write error and maybe the block will
1103 		 * be remapped.  Nothing we can do but to retry the
1104 		 * write and hope for the best.
1105 		 */
1106 		printk(KERN_ERR "JBD2: previous I/O error detected "
1107 		       "for journal superblock update for %s.\n",
1108 		       journal->j_devname);
1109 		clear_buffer_write_io_error(bh);
1110 		set_buffer_uptodate(bh);
1111 	}
1112 
1113 	read_lock(&journal->j_state_lock);
1114 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1115 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1116 
1117 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1118 	sb->s_start    = cpu_to_be32(journal->j_tail);
1119 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1120 	read_unlock(&journal->j_state_lock);
1121 
1122 	BUFFER_TRACE(bh, "marking dirty");
1123 	mark_buffer_dirty(bh);
1124 	if (wait) {
1125 		sync_dirty_buffer(bh);
1126 		if (buffer_write_io_error(bh)) {
1127 			printk(KERN_ERR "JBD2: I/O error detected "
1128 			       "when updating journal superblock for %s.\n",
1129 			       journal->j_devname);
1130 			clear_buffer_write_io_error(bh);
1131 			set_buffer_uptodate(bh);
1132 		}
1133 	} else
1134 		write_dirty_buffer(bh, WRITE);
1135 
1136 out:
1137 	/* If we have just flushed the log (by marking s_start==0), then
1138 	 * any future commit will have to be careful to update the
1139 	 * superblock again to re-record the true start of the log. */
1140 
1141 	write_lock(&journal->j_state_lock);
1142 	if (sb->s_start)
1143 		journal->j_flags &= ~JBD2_FLUSHED;
1144 	else
1145 		journal->j_flags |= JBD2_FLUSHED;
1146 	write_unlock(&journal->j_state_lock);
1147 }
1148 
1149 /*
1150  * Read the superblock for a given journal, performing initial
1151  * validation of the format.
1152  */
1153 
1154 static int journal_get_superblock(journal_t *journal)
1155 {
1156 	struct buffer_head *bh;
1157 	journal_superblock_t *sb;
1158 	int err = -EIO;
1159 
1160 	bh = journal->j_sb_buffer;
1161 
1162 	J_ASSERT(bh != NULL);
1163 	if (!buffer_uptodate(bh)) {
1164 		ll_rw_block(READ, 1, &bh);
1165 		wait_on_buffer(bh);
1166 		if (!buffer_uptodate(bh)) {
1167 			printk (KERN_ERR
1168 				"JBD: IO error reading journal superblock\n");
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	sb = journal->j_superblock;
1174 
1175 	err = -EINVAL;
1176 
1177 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1178 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1179 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1180 		goto out;
1181 	}
1182 
1183 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1184 	case JBD2_SUPERBLOCK_V1:
1185 		journal->j_format_version = 1;
1186 		break;
1187 	case JBD2_SUPERBLOCK_V2:
1188 		journal->j_format_version = 2;
1189 		break;
1190 	default:
1191 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1192 		goto out;
1193 	}
1194 
1195 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1196 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1197 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1198 		printk (KERN_WARNING "JBD: journal file too short\n");
1199 		goto out;
1200 	}
1201 
1202 	return 0;
1203 
1204 out:
1205 	journal_fail_superblock(journal);
1206 	return err;
1207 }
1208 
1209 /*
1210  * Load the on-disk journal superblock and read the key fields into the
1211  * journal_t.
1212  */
1213 
1214 static int load_superblock(journal_t *journal)
1215 {
1216 	int err;
1217 	journal_superblock_t *sb;
1218 
1219 	err = journal_get_superblock(journal);
1220 	if (err)
1221 		return err;
1222 
1223 	sb = journal->j_superblock;
1224 
1225 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1226 	journal->j_tail = be32_to_cpu(sb->s_start);
1227 	journal->j_first = be32_to_cpu(sb->s_first);
1228 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1229 	journal->j_errno = be32_to_cpu(sb->s_errno);
1230 
1231 	return 0;
1232 }
1233 
1234 
1235 /**
1236  * int jbd2_journal_load() - Read journal from disk.
1237  * @journal: Journal to act on.
1238  *
1239  * Given a journal_t structure which tells us which disk blocks contain
1240  * a journal, read the journal from disk to initialise the in-memory
1241  * structures.
1242  */
1243 int jbd2_journal_load(journal_t *journal)
1244 {
1245 	int err;
1246 	journal_superblock_t *sb;
1247 
1248 	err = load_superblock(journal);
1249 	if (err)
1250 		return err;
1251 
1252 	sb = journal->j_superblock;
1253 	/* If this is a V2 superblock, then we have to check the
1254 	 * features flags on it. */
1255 
1256 	if (journal->j_format_version >= 2) {
1257 		if ((sb->s_feature_ro_compat &
1258 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1259 		    (sb->s_feature_incompat &
1260 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1261 			printk (KERN_WARNING
1262 				"JBD: Unrecognised features on journal\n");
1263 			return -EINVAL;
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Create a slab for this blocksize
1269 	 */
1270 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1271 	if (err)
1272 		return err;
1273 
1274 	/* Let the recovery code check whether it needs to recover any
1275 	 * data from the journal. */
1276 	if (jbd2_journal_recover(journal))
1277 		goto recovery_error;
1278 
1279 	if (journal->j_failed_commit) {
1280 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1281 		       "is corrupt.\n", journal->j_failed_commit,
1282 		       journal->j_devname);
1283 		return -EIO;
1284 	}
1285 
1286 	/* OK, we've finished with the dynamic journal bits:
1287 	 * reinitialise the dynamic contents of the superblock in memory
1288 	 * and reset them on disk. */
1289 	if (journal_reset(journal))
1290 		goto recovery_error;
1291 
1292 	journal->j_flags &= ~JBD2_ABORT;
1293 	journal->j_flags |= JBD2_LOADED;
1294 	return 0;
1295 
1296 recovery_error:
1297 	printk (KERN_WARNING "JBD: recovery failed\n");
1298 	return -EIO;
1299 }
1300 
1301 /**
1302  * void jbd2_journal_destroy() - Release a journal_t structure.
1303  * @journal: Journal to act on.
1304  *
1305  * Release a journal_t structure once it is no longer in use by the
1306  * journaled object.
1307  * Return <0 if we couldn't clean up the journal.
1308  */
1309 int jbd2_journal_destroy(journal_t *journal)
1310 {
1311 	int err = 0;
1312 
1313 	/* Wait for the commit thread to wake up and die. */
1314 	journal_kill_thread(journal);
1315 
1316 	/* Force a final log commit */
1317 	if (journal->j_running_transaction)
1318 		jbd2_journal_commit_transaction(journal);
1319 
1320 	/* Force any old transactions to disk */
1321 
1322 	/* Totally anal locking here... */
1323 	spin_lock(&journal->j_list_lock);
1324 	while (journal->j_checkpoint_transactions != NULL) {
1325 		spin_unlock(&journal->j_list_lock);
1326 		mutex_lock(&journal->j_checkpoint_mutex);
1327 		jbd2_log_do_checkpoint(journal);
1328 		mutex_unlock(&journal->j_checkpoint_mutex);
1329 		spin_lock(&journal->j_list_lock);
1330 	}
1331 
1332 	J_ASSERT(journal->j_running_transaction == NULL);
1333 	J_ASSERT(journal->j_committing_transaction == NULL);
1334 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1335 	spin_unlock(&journal->j_list_lock);
1336 
1337 	if (journal->j_sb_buffer) {
1338 		if (!is_journal_aborted(journal)) {
1339 			/* We can now mark the journal as empty. */
1340 			journal->j_tail = 0;
1341 			journal->j_tail_sequence =
1342 				++journal->j_transaction_sequence;
1343 			jbd2_journal_update_superblock(journal, 1);
1344 		} else {
1345 			err = -EIO;
1346 		}
1347 		brelse(journal->j_sb_buffer);
1348 	}
1349 
1350 	if (journal->j_proc_entry)
1351 		jbd2_stats_proc_exit(journal);
1352 	if (journal->j_inode)
1353 		iput(journal->j_inode);
1354 	if (journal->j_revoke)
1355 		jbd2_journal_destroy_revoke(journal);
1356 	kfree(journal->j_wbuf);
1357 	kfree(journal);
1358 
1359 	return err;
1360 }
1361 
1362 
1363 /**
1364  *int jbd2_journal_check_used_features () - Check if features specified are used.
1365  * @journal: Journal to check.
1366  * @compat: bitmask of compatible features
1367  * @ro: bitmask of features that force read-only mount
1368  * @incompat: bitmask of incompatible features
1369  *
1370  * Check whether the journal uses all of a given set of
1371  * features.  Return true (non-zero) if it does.
1372  **/
1373 
1374 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1375 				 unsigned long ro, unsigned long incompat)
1376 {
1377 	journal_superblock_t *sb;
1378 
1379 	if (!compat && !ro && !incompat)
1380 		return 1;
1381 	/* Load journal superblock if it is not loaded yet. */
1382 	if (journal->j_format_version == 0 &&
1383 	    journal_get_superblock(journal) != 0)
1384 		return 0;
1385 	if (journal->j_format_version == 1)
1386 		return 0;
1387 
1388 	sb = journal->j_superblock;
1389 
1390 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1391 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1392 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1393 		return 1;
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1400  * @journal: Journal to check.
1401  * @compat: bitmask of compatible features
1402  * @ro: bitmask of features that force read-only mount
1403  * @incompat: bitmask of incompatible features
1404  *
1405  * Check whether the journaling code supports the use of
1406  * all of a given set of features on this journal.  Return true
1407  * (non-zero) if it can. */
1408 
1409 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1410 				      unsigned long ro, unsigned long incompat)
1411 {
1412 	if (!compat && !ro && !incompat)
1413 		return 1;
1414 
1415 	/* We can support any known requested features iff the
1416 	 * superblock is in version 2.  Otherwise we fail to support any
1417 	 * extended sb features. */
1418 
1419 	if (journal->j_format_version != 2)
1420 		return 0;
1421 
1422 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1423 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1424 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1425 		return 1;
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1432  * @journal: Journal to act on.
1433  * @compat: bitmask of compatible features
1434  * @ro: bitmask of features that force read-only mount
1435  * @incompat: bitmask of incompatible features
1436  *
1437  * Mark a given journal feature as present on the
1438  * superblock.  Returns true if the requested features could be set.
1439  *
1440  */
1441 
1442 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1443 			  unsigned long ro, unsigned long incompat)
1444 {
1445 	journal_superblock_t *sb;
1446 
1447 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1448 		return 1;
1449 
1450 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1451 		return 0;
1452 
1453 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1454 		  compat, ro, incompat);
1455 
1456 	sb = journal->j_superblock;
1457 
1458 	sb->s_feature_compat    |= cpu_to_be32(compat);
1459 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1460 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1461 
1462 	return 1;
1463 }
1464 
1465 /*
1466  * jbd2_journal_clear_features () - Clear a given journal feature in the
1467  * 				    superblock
1468  * @journal: Journal to act on.
1469  * @compat: bitmask of compatible features
1470  * @ro: bitmask of features that force read-only mount
1471  * @incompat: bitmask of incompatible features
1472  *
1473  * Clear a given journal feature as present on the
1474  * superblock.
1475  */
1476 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1477 				unsigned long ro, unsigned long incompat)
1478 {
1479 	journal_superblock_t *sb;
1480 
1481 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1482 		  compat, ro, incompat);
1483 
1484 	sb = journal->j_superblock;
1485 
1486 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1487 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1488 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1489 }
1490 EXPORT_SYMBOL(jbd2_journal_clear_features);
1491 
1492 /**
1493  * int jbd2_journal_update_format () - Update on-disk journal structure.
1494  * @journal: Journal to act on.
1495  *
1496  * Given an initialised but unloaded journal struct, poke about in the
1497  * on-disk structure to update it to the most recent supported version.
1498  */
1499 int jbd2_journal_update_format (journal_t *journal)
1500 {
1501 	journal_superblock_t *sb;
1502 	int err;
1503 
1504 	err = journal_get_superblock(journal);
1505 	if (err)
1506 		return err;
1507 
1508 	sb = journal->j_superblock;
1509 
1510 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1511 	case JBD2_SUPERBLOCK_V2:
1512 		return 0;
1513 	case JBD2_SUPERBLOCK_V1:
1514 		return journal_convert_superblock_v1(journal, sb);
1515 	default:
1516 		break;
1517 	}
1518 	return -EINVAL;
1519 }
1520 
1521 static int journal_convert_superblock_v1(journal_t *journal,
1522 					 journal_superblock_t *sb)
1523 {
1524 	int offset, blocksize;
1525 	struct buffer_head *bh;
1526 
1527 	printk(KERN_WARNING
1528 		"JBD: Converting superblock from version 1 to 2.\n");
1529 
1530 	/* Pre-initialise new fields to zero */
1531 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1532 	blocksize = be32_to_cpu(sb->s_blocksize);
1533 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1534 
1535 	sb->s_nr_users = cpu_to_be32(1);
1536 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1537 	journal->j_format_version = 2;
1538 
1539 	bh = journal->j_sb_buffer;
1540 	BUFFER_TRACE(bh, "marking dirty");
1541 	mark_buffer_dirty(bh);
1542 	sync_dirty_buffer(bh);
1543 	return 0;
1544 }
1545 
1546 
1547 /**
1548  * int jbd2_journal_flush () - Flush journal
1549  * @journal: Journal to act on.
1550  *
1551  * Flush all data for a given journal to disk and empty the journal.
1552  * Filesystems can use this when remounting readonly to ensure that
1553  * recovery does not need to happen on remount.
1554  */
1555 
1556 int jbd2_journal_flush(journal_t *journal)
1557 {
1558 	int err = 0;
1559 	transaction_t *transaction = NULL;
1560 	unsigned long old_tail;
1561 
1562 	write_lock(&journal->j_state_lock);
1563 
1564 	/* Force everything buffered to the log... */
1565 	if (journal->j_running_transaction) {
1566 		transaction = journal->j_running_transaction;
1567 		__jbd2_log_start_commit(journal, transaction->t_tid);
1568 	} else if (journal->j_committing_transaction)
1569 		transaction = journal->j_committing_transaction;
1570 
1571 	/* Wait for the log commit to complete... */
1572 	if (transaction) {
1573 		tid_t tid = transaction->t_tid;
1574 
1575 		write_unlock(&journal->j_state_lock);
1576 		jbd2_log_wait_commit(journal, tid);
1577 	} else {
1578 		write_unlock(&journal->j_state_lock);
1579 	}
1580 
1581 	/* ...and flush everything in the log out to disk. */
1582 	spin_lock(&journal->j_list_lock);
1583 	while (!err && journal->j_checkpoint_transactions != NULL) {
1584 		spin_unlock(&journal->j_list_lock);
1585 		mutex_lock(&journal->j_checkpoint_mutex);
1586 		err = jbd2_log_do_checkpoint(journal);
1587 		mutex_unlock(&journal->j_checkpoint_mutex);
1588 		spin_lock(&journal->j_list_lock);
1589 	}
1590 	spin_unlock(&journal->j_list_lock);
1591 
1592 	if (is_journal_aborted(journal))
1593 		return -EIO;
1594 
1595 	jbd2_cleanup_journal_tail(journal);
1596 
1597 	/* Finally, mark the journal as really needing no recovery.
1598 	 * This sets s_start==0 in the underlying superblock, which is
1599 	 * the magic code for a fully-recovered superblock.  Any future
1600 	 * commits of data to the journal will restore the current
1601 	 * s_start value. */
1602 	write_lock(&journal->j_state_lock);
1603 	old_tail = journal->j_tail;
1604 	journal->j_tail = 0;
1605 	write_unlock(&journal->j_state_lock);
1606 	jbd2_journal_update_superblock(journal, 1);
1607 	write_lock(&journal->j_state_lock);
1608 	journal->j_tail = old_tail;
1609 
1610 	J_ASSERT(!journal->j_running_transaction);
1611 	J_ASSERT(!journal->j_committing_transaction);
1612 	J_ASSERT(!journal->j_checkpoint_transactions);
1613 	J_ASSERT(journal->j_head == journal->j_tail);
1614 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1615 	write_unlock(&journal->j_state_lock);
1616 	return 0;
1617 }
1618 
1619 /**
1620  * int jbd2_journal_wipe() - Wipe journal contents
1621  * @journal: Journal to act on.
1622  * @write: flag (see below)
1623  *
1624  * Wipe out all of the contents of a journal, safely.  This will produce
1625  * a warning if the journal contains any valid recovery information.
1626  * Must be called between journal_init_*() and jbd2_journal_load().
1627  *
1628  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1629  * we merely suppress recovery.
1630  */
1631 
1632 int jbd2_journal_wipe(journal_t *journal, int write)
1633 {
1634 	int err = 0;
1635 
1636 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1637 
1638 	err = load_superblock(journal);
1639 	if (err)
1640 		return err;
1641 
1642 	if (!journal->j_tail)
1643 		goto no_recovery;
1644 
1645 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1646 		write ? "Clearing" : "Ignoring");
1647 
1648 	err = jbd2_journal_skip_recovery(journal);
1649 	if (write)
1650 		jbd2_journal_update_superblock(journal, 1);
1651 
1652  no_recovery:
1653 	return err;
1654 }
1655 
1656 /*
1657  * Journal abort has very specific semantics, which we describe
1658  * for journal abort.
1659  *
1660  * Two internal functions, which provide abort to the jbd layer
1661  * itself are here.
1662  */
1663 
1664 /*
1665  * Quick version for internal journal use (doesn't lock the journal).
1666  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1667  * and don't attempt to make any other journal updates.
1668  */
1669 void __jbd2_journal_abort_hard(journal_t *journal)
1670 {
1671 	transaction_t *transaction;
1672 
1673 	if (journal->j_flags & JBD2_ABORT)
1674 		return;
1675 
1676 	printk(KERN_ERR "Aborting journal on device %s.\n",
1677 	       journal->j_devname);
1678 
1679 	write_lock(&journal->j_state_lock);
1680 	journal->j_flags |= JBD2_ABORT;
1681 	transaction = journal->j_running_transaction;
1682 	if (transaction)
1683 		__jbd2_log_start_commit(journal, transaction->t_tid);
1684 	write_unlock(&journal->j_state_lock);
1685 }
1686 
1687 /* Soft abort: record the abort error status in the journal superblock,
1688  * but don't do any other IO. */
1689 static void __journal_abort_soft (journal_t *journal, int errno)
1690 {
1691 	if (journal->j_flags & JBD2_ABORT)
1692 		return;
1693 
1694 	if (!journal->j_errno)
1695 		journal->j_errno = errno;
1696 
1697 	__jbd2_journal_abort_hard(journal);
1698 
1699 	if (errno)
1700 		jbd2_journal_update_superblock(journal, 1);
1701 }
1702 
1703 /**
1704  * void jbd2_journal_abort () - Shutdown the journal immediately.
1705  * @journal: the journal to shutdown.
1706  * @errno:   an error number to record in the journal indicating
1707  *           the reason for the shutdown.
1708  *
1709  * Perform a complete, immediate shutdown of the ENTIRE
1710  * journal (not of a single transaction).  This operation cannot be
1711  * undone without closing and reopening the journal.
1712  *
1713  * The jbd2_journal_abort function is intended to support higher level error
1714  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1715  * mode.
1716  *
1717  * Journal abort has very specific semantics.  Any existing dirty,
1718  * unjournaled buffers in the main filesystem will still be written to
1719  * disk by bdflush, but the journaling mechanism will be suspended
1720  * immediately and no further transaction commits will be honoured.
1721  *
1722  * Any dirty, journaled buffers will be written back to disk without
1723  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1724  * filesystem, but we _do_ attempt to leave as much data as possible
1725  * behind for fsck to use for cleanup.
1726  *
1727  * Any attempt to get a new transaction handle on a journal which is in
1728  * ABORT state will just result in an -EROFS error return.  A
1729  * jbd2_journal_stop on an existing handle will return -EIO if we have
1730  * entered abort state during the update.
1731  *
1732  * Recursive transactions are not disturbed by journal abort until the
1733  * final jbd2_journal_stop, which will receive the -EIO error.
1734  *
1735  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1736  * which will be recorded (if possible) in the journal superblock.  This
1737  * allows a client to record failure conditions in the middle of a
1738  * transaction without having to complete the transaction to record the
1739  * failure to disk.  ext3_error, for example, now uses this
1740  * functionality.
1741  *
1742  * Errors which originate from within the journaling layer will NOT
1743  * supply an errno; a null errno implies that absolutely no further
1744  * writes are done to the journal (unless there are any already in
1745  * progress).
1746  *
1747  */
1748 
1749 void jbd2_journal_abort(journal_t *journal, int errno)
1750 {
1751 	__journal_abort_soft(journal, errno);
1752 }
1753 
1754 /**
1755  * int jbd2_journal_errno () - returns the journal's error state.
1756  * @journal: journal to examine.
1757  *
1758  * This is the errno number set with jbd2_journal_abort(), the last
1759  * time the journal was mounted - if the journal was stopped
1760  * without calling abort this will be 0.
1761  *
1762  * If the journal has been aborted on this mount time -EROFS will
1763  * be returned.
1764  */
1765 int jbd2_journal_errno(journal_t *journal)
1766 {
1767 	int err;
1768 
1769 	read_lock(&journal->j_state_lock);
1770 	if (journal->j_flags & JBD2_ABORT)
1771 		err = -EROFS;
1772 	else
1773 		err = journal->j_errno;
1774 	read_unlock(&journal->j_state_lock);
1775 	return err;
1776 }
1777 
1778 /**
1779  * int jbd2_journal_clear_err () - clears the journal's error state
1780  * @journal: journal to act on.
1781  *
1782  * An error must be cleared or acked to take a FS out of readonly
1783  * mode.
1784  */
1785 int jbd2_journal_clear_err(journal_t *journal)
1786 {
1787 	int err = 0;
1788 
1789 	write_lock(&journal->j_state_lock);
1790 	if (journal->j_flags & JBD2_ABORT)
1791 		err = -EROFS;
1792 	else
1793 		journal->j_errno = 0;
1794 	write_unlock(&journal->j_state_lock);
1795 	return err;
1796 }
1797 
1798 /**
1799  * void jbd2_journal_ack_err() - Ack journal err.
1800  * @journal: journal to act on.
1801  *
1802  * An error must be cleared or acked to take a FS out of readonly
1803  * mode.
1804  */
1805 void jbd2_journal_ack_err(journal_t *journal)
1806 {
1807 	write_lock(&journal->j_state_lock);
1808 	if (journal->j_errno)
1809 		journal->j_flags |= JBD2_ACK_ERR;
1810 	write_unlock(&journal->j_state_lock);
1811 }
1812 
1813 int jbd2_journal_blocks_per_page(struct inode *inode)
1814 {
1815 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1816 }
1817 
1818 /*
1819  * helper functions to deal with 32 or 64bit block numbers.
1820  */
1821 size_t journal_tag_bytes(journal_t *journal)
1822 {
1823 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1824 		return JBD2_TAG_SIZE64;
1825 	else
1826 		return JBD2_TAG_SIZE32;
1827 }
1828 
1829 /*
1830  * JBD memory management
1831  *
1832  * These functions are used to allocate block-sized chunks of memory
1833  * used for making copies of buffer_head data.  Very often it will be
1834  * page-sized chunks of data, but sometimes it will be in
1835  * sub-page-size chunks.  (For example, 16k pages on Power systems
1836  * with a 4k block file system.)  For blocks smaller than a page, we
1837  * use a SLAB allocator.  There are slab caches for each block size,
1838  * which are allocated at mount time, if necessary, and we only free
1839  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1840  * this reason we don't need to a mutex to protect access to
1841  * jbd2_slab[] allocating or releasing memory; only in
1842  * jbd2_journal_create_slab().
1843  */
1844 #define JBD2_MAX_SLABS 8
1845 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1846 
1847 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1848 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1849 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1850 };
1851 
1852 
1853 static void jbd2_journal_destroy_slabs(void)
1854 {
1855 	int i;
1856 
1857 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1858 		if (jbd2_slab[i])
1859 			kmem_cache_destroy(jbd2_slab[i]);
1860 		jbd2_slab[i] = NULL;
1861 	}
1862 }
1863 
1864 static int jbd2_journal_create_slab(size_t size)
1865 {
1866 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1867 	int i = order_base_2(size) - 10;
1868 	size_t slab_size;
1869 
1870 	if (size == PAGE_SIZE)
1871 		return 0;
1872 
1873 	if (i >= JBD2_MAX_SLABS)
1874 		return -EINVAL;
1875 
1876 	if (unlikely(i < 0))
1877 		i = 0;
1878 	mutex_lock(&jbd2_slab_create_mutex);
1879 	if (jbd2_slab[i]) {
1880 		mutex_unlock(&jbd2_slab_create_mutex);
1881 		return 0;	/* Already created */
1882 	}
1883 
1884 	slab_size = 1 << (i+10);
1885 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1886 					 slab_size, 0, NULL);
1887 	mutex_unlock(&jbd2_slab_create_mutex);
1888 	if (!jbd2_slab[i]) {
1889 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1890 		return -ENOMEM;
1891 	}
1892 	return 0;
1893 }
1894 
1895 static struct kmem_cache *get_slab(size_t size)
1896 {
1897 	int i = order_base_2(size) - 10;
1898 
1899 	BUG_ON(i >= JBD2_MAX_SLABS);
1900 	if (unlikely(i < 0))
1901 		i = 0;
1902 	BUG_ON(jbd2_slab[i] == NULL);
1903 	return jbd2_slab[i];
1904 }
1905 
1906 void *jbd2_alloc(size_t size, gfp_t flags)
1907 {
1908 	void *ptr;
1909 
1910 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1911 
1912 	flags |= __GFP_REPEAT;
1913 	if (size == PAGE_SIZE)
1914 		ptr = (void *)__get_free_pages(flags, 0);
1915 	else if (size > PAGE_SIZE) {
1916 		int order = get_order(size);
1917 
1918 		if (order < 3)
1919 			ptr = (void *)__get_free_pages(flags, order);
1920 		else
1921 			ptr = vmalloc(size);
1922 	} else
1923 		ptr = kmem_cache_alloc(get_slab(size), flags);
1924 
1925 	/* Check alignment; SLUB has gotten this wrong in the past,
1926 	 * and this can lead to user data corruption! */
1927 	BUG_ON(((unsigned long) ptr) & (size-1));
1928 
1929 	return ptr;
1930 }
1931 
1932 void jbd2_free(void *ptr, size_t size)
1933 {
1934 	if (size == PAGE_SIZE) {
1935 		free_pages((unsigned long)ptr, 0);
1936 		return;
1937 	}
1938 	if (size > PAGE_SIZE) {
1939 		int order = get_order(size);
1940 
1941 		if (order < 3)
1942 			free_pages((unsigned long)ptr, order);
1943 		else
1944 			vfree(ptr);
1945 		return;
1946 	}
1947 	kmem_cache_free(get_slab(size), ptr);
1948 };
1949 
1950 /*
1951  * Journal_head storage management
1952  */
1953 static struct kmem_cache *jbd2_journal_head_cache;
1954 #ifdef CONFIG_JBD2_DEBUG
1955 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1956 #endif
1957 
1958 static int journal_init_jbd2_journal_head_cache(void)
1959 {
1960 	int retval;
1961 
1962 	J_ASSERT(jbd2_journal_head_cache == NULL);
1963 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1964 				sizeof(struct journal_head),
1965 				0,		/* offset */
1966 				SLAB_TEMPORARY,	/* flags */
1967 				NULL);		/* ctor */
1968 	retval = 0;
1969 	if (!jbd2_journal_head_cache) {
1970 		retval = -ENOMEM;
1971 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1972 	}
1973 	return retval;
1974 }
1975 
1976 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1977 {
1978 	if (jbd2_journal_head_cache) {
1979 		kmem_cache_destroy(jbd2_journal_head_cache);
1980 		jbd2_journal_head_cache = NULL;
1981 	}
1982 }
1983 
1984 /*
1985  * journal_head splicing and dicing
1986  */
1987 static struct journal_head *journal_alloc_journal_head(void)
1988 {
1989 	struct journal_head *ret;
1990 
1991 #ifdef CONFIG_JBD2_DEBUG
1992 	atomic_inc(&nr_journal_heads);
1993 #endif
1994 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995 	if (!ret) {
1996 		jbd_debug(1, "out of memory for journal_head\n");
1997 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
1998 		while (!ret) {
1999 			yield();
2000 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2001 		}
2002 	}
2003 	return ret;
2004 }
2005 
2006 static void journal_free_journal_head(struct journal_head *jh)
2007 {
2008 #ifdef CONFIG_JBD2_DEBUG
2009 	atomic_dec(&nr_journal_heads);
2010 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2011 #endif
2012 	kmem_cache_free(jbd2_journal_head_cache, jh);
2013 }
2014 
2015 /*
2016  * A journal_head is attached to a buffer_head whenever JBD has an
2017  * interest in the buffer.
2018  *
2019  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2020  * is set.  This bit is tested in core kernel code where we need to take
2021  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2022  * there.
2023  *
2024  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2025  *
2026  * When a buffer has its BH_JBD bit set it is immune from being released by
2027  * core kernel code, mainly via ->b_count.
2028  *
2029  * A journal_head may be detached from its buffer_head when the journal_head's
2030  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2031  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2032  * journal_head can be dropped if needed.
2033  *
2034  * Various places in the kernel want to attach a journal_head to a buffer_head
2035  * _before_ attaching the journal_head to a transaction.  To protect the
2036  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2037  * journal_head's b_jcount refcount by one.  The caller must call
2038  * jbd2_journal_put_journal_head() to undo this.
2039  *
2040  * So the typical usage would be:
2041  *
2042  *	(Attach a journal_head if needed.  Increments b_jcount)
2043  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2044  *	...
2045  *	jh->b_transaction = xxx;
2046  *	jbd2_journal_put_journal_head(jh);
2047  *
2048  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2049  * because it has a non-zero b_transaction.
2050  */
2051 
2052 /*
2053  * Give a buffer_head a journal_head.
2054  *
2055  * Doesn't need the journal lock.
2056  * May sleep.
2057  */
2058 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2059 {
2060 	struct journal_head *jh;
2061 	struct journal_head *new_jh = NULL;
2062 
2063 repeat:
2064 	if (!buffer_jbd(bh)) {
2065 		new_jh = journal_alloc_journal_head();
2066 		memset(new_jh, 0, sizeof(*new_jh));
2067 	}
2068 
2069 	jbd_lock_bh_journal_head(bh);
2070 	if (buffer_jbd(bh)) {
2071 		jh = bh2jh(bh);
2072 	} else {
2073 		J_ASSERT_BH(bh,
2074 			(atomic_read(&bh->b_count) > 0) ||
2075 			(bh->b_page && bh->b_page->mapping));
2076 
2077 		if (!new_jh) {
2078 			jbd_unlock_bh_journal_head(bh);
2079 			goto repeat;
2080 		}
2081 
2082 		jh = new_jh;
2083 		new_jh = NULL;		/* We consumed it */
2084 		set_buffer_jbd(bh);
2085 		bh->b_private = jh;
2086 		jh->b_bh = bh;
2087 		get_bh(bh);
2088 		BUFFER_TRACE(bh, "added journal_head");
2089 	}
2090 	jh->b_jcount++;
2091 	jbd_unlock_bh_journal_head(bh);
2092 	if (new_jh)
2093 		journal_free_journal_head(new_jh);
2094 	return bh->b_private;
2095 }
2096 
2097 /*
2098  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2099  * having a journal_head, return NULL
2100  */
2101 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2102 {
2103 	struct journal_head *jh = NULL;
2104 
2105 	jbd_lock_bh_journal_head(bh);
2106 	if (buffer_jbd(bh)) {
2107 		jh = bh2jh(bh);
2108 		jh->b_jcount++;
2109 	}
2110 	jbd_unlock_bh_journal_head(bh);
2111 	return jh;
2112 }
2113 
2114 static void __journal_remove_journal_head(struct buffer_head *bh)
2115 {
2116 	struct journal_head *jh = bh2jh(bh);
2117 
2118 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2119 
2120 	get_bh(bh);
2121 	if (jh->b_jcount == 0) {
2122 		if (jh->b_transaction == NULL &&
2123 				jh->b_next_transaction == NULL &&
2124 				jh->b_cp_transaction == NULL) {
2125 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2126 			J_ASSERT_BH(bh, buffer_jbd(bh));
2127 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2128 			BUFFER_TRACE(bh, "remove journal_head");
2129 			if (jh->b_frozen_data) {
2130 				printk(KERN_WARNING "%s: freeing "
2131 						"b_frozen_data\n",
2132 						__func__);
2133 				jbd2_free(jh->b_frozen_data, bh->b_size);
2134 			}
2135 			if (jh->b_committed_data) {
2136 				printk(KERN_WARNING "%s: freeing "
2137 						"b_committed_data\n",
2138 						__func__);
2139 				jbd2_free(jh->b_committed_data, bh->b_size);
2140 			}
2141 			bh->b_private = NULL;
2142 			jh->b_bh = NULL;	/* debug, really */
2143 			clear_buffer_jbd(bh);
2144 			__brelse(bh);
2145 			journal_free_journal_head(jh);
2146 		} else {
2147 			BUFFER_TRACE(bh, "journal_head was locked");
2148 		}
2149 	}
2150 }
2151 
2152 /*
2153  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2154  * and has a zero b_jcount then remove and release its journal_head.   If we did
2155  * see that the buffer is not used by any transaction we also "logically"
2156  * decrement ->b_count.
2157  *
2158  * We in fact take an additional increment on ->b_count as a convenience,
2159  * because the caller usually wants to do additional things with the bh
2160  * after calling here.
2161  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2162  * time.  Once the caller has run __brelse(), the buffer is eligible for
2163  * reaping by try_to_free_buffers().
2164  */
2165 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2166 {
2167 	jbd_lock_bh_journal_head(bh);
2168 	__journal_remove_journal_head(bh);
2169 	jbd_unlock_bh_journal_head(bh);
2170 }
2171 
2172 /*
2173  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2174  * release the journal_head from the buffer_head.
2175  */
2176 void jbd2_journal_put_journal_head(struct journal_head *jh)
2177 {
2178 	struct buffer_head *bh = jh2bh(jh);
2179 
2180 	jbd_lock_bh_journal_head(bh);
2181 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2182 	--jh->b_jcount;
2183 	if (!jh->b_jcount && !jh->b_transaction) {
2184 		__journal_remove_journal_head(bh);
2185 		__brelse(bh);
2186 	}
2187 	jbd_unlock_bh_journal_head(bh);
2188 }
2189 
2190 /*
2191  * Initialize jbd inode head
2192  */
2193 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2194 {
2195 	jinode->i_transaction = NULL;
2196 	jinode->i_next_transaction = NULL;
2197 	jinode->i_vfs_inode = inode;
2198 	jinode->i_flags = 0;
2199 	INIT_LIST_HEAD(&jinode->i_list);
2200 }
2201 
2202 /*
2203  * Function to be called before we start removing inode from memory (i.e.,
2204  * clear_inode() is a fine place to be called from). It removes inode from
2205  * transaction's lists.
2206  */
2207 void jbd2_journal_release_jbd_inode(journal_t *journal,
2208 				    struct jbd2_inode *jinode)
2209 {
2210 	if (!journal)
2211 		return;
2212 restart:
2213 	spin_lock(&journal->j_list_lock);
2214 	/* Is commit writing out inode - we have to wait */
2215 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2216 		wait_queue_head_t *wq;
2217 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2218 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2219 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2220 		spin_unlock(&journal->j_list_lock);
2221 		schedule();
2222 		finish_wait(wq, &wait.wait);
2223 		goto restart;
2224 	}
2225 
2226 	if (jinode->i_transaction) {
2227 		list_del(&jinode->i_list);
2228 		jinode->i_transaction = NULL;
2229 	}
2230 	spin_unlock(&journal->j_list_lock);
2231 }
2232 
2233 /*
2234  * debugfs tunables
2235  */
2236 #ifdef CONFIG_JBD2_DEBUG
2237 u8 jbd2_journal_enable_debug __read_mostly;
2238 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2239 
2240 #define JBD2_DEBUG_NAME "jbd2-debug"
2241 
2242 static struct dentry *jbd2_debugfs_dir;
2243 static struct dentry *jbd2_debug;
2244 
2245 static void __init jbd2_create_debugfs_entry(void)
2246 {
2247 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2248 	if (jbd2_debugfs_dir)
2249 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2250 					       S_IRUGO | S_IWUSR,
2251 					       jbd2_debugfs_dir,
2252 					       &jbd2_journal_enable_debug);
2253 }
2254 
2255 static void __exit jbd2_remove_debugfs_entry(void)
2256 {
2257 	debugfs_remove(jbd2_debug);
2258 	debugfs_remove(jbd2_debugfs_dir);
2259 }
2260 
2261 #else
2262 
2263 static void __init jbd2_create_debugfs_entry(void)
2264 {
2265 }
2266 
2267 static void __exit jbd2_remove_debugfs_entry(void)
2268 {
2269 }
2270 
2271 #endif
2272 
2273 #ifdef CONFIG_PROC_FS
2274 
2275 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2276 
2277 static void __init jbd2_create_jbd_stats_proc_entry(void)
2278 {
2279 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281 
2282 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2283 {
2284 	if (proc_jbd2_stats)
2285 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2286 }
2287 
2288 #else
2289 
2290 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2291 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2292 
2293 #endif
2294 
2295 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2296 
2297 static int __init journal_init_handle_cache(void)
2298 {
2299 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2300 	if (jbd2_handle_cache == NULL) {
2301 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2302 		return -ENOMEM;
2303 	}
2304 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2305 	if (jbd2_inode_cache == NULL) {
2306 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2307 		kmem_cache_destroy(jbd2_handle_cache);
2308 		return -ENOMEM;
2309 	}
2310 	return 0;
2311 }
2312 
2313 static void jbd2_journal_destroy_handle_cache(void)
2314 {
2315 	if (jbd2_handle_cache)
2316 		kmem_cache_destroy(jbd2_handle_cache);
2317 	if (jbd2_inode_cache)
2318 		kmem_cache_destroy(jbd2_inode_cache);
2319 
2320 }
2321 
2322 /*
2323  * Module startup and shutdown
2324  */
2325 
2326 static int __init journal_init_caches(void)
2327 {
2328 	int ret;
2329 
2330 	ret = jbd2_journal_init_revoke_caches();
2331 	if (ret == 0)
2332 		ret = journal_init_jbd2_journal_head_cache();
2333 	if (ret == 0)
2334 		ret = journal_init_handle_cache();
2335 	return ret;
2336 }
2337 
2338 static void jbd2_journal_destroy_caches(void)
2339 {
2340 	jbd2_journal_destroy_revoke_caches();
2341 	jbd2_journal_destroy_jbd2_journal_head_cache();
2342 	jbd2_journal_destroy_handle_cache();
2343 	jbd2_journal_destroy_slabs();
2344 }
2345 
2346 static int __init journal_init(void)
2347 {
2348 	int ret;
2349 
2350 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2351 
2352 	ret = journal_init_caches();
2353 	if (ret == 0) {
2354 		jbd2_create_debugfs_entry();
2355 		jbd2_create_jbd_stats_proc_entry();
2356 	} else {
2357 		jbd2_journal_destroy_caches();
2358 	}
2359 	return ret;
2360 }
2361 
2362 static void __exit journal_exit(void)
2363 {
2364 #ifdef CONFIG_JBD2_DEBUG
2365 	int n = atomic_read(&nr_journal_heads);
2366 	if (n)
2367 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2368 #endif
2369 	jbd2_remove_debugfs_entry();
2370 	jbd2_remove_jbd_stats_proc_entry();
2371 	jbd2_journal_destroy_caches();
2372 }
2373 
2374 /*
2375  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2376  * tracing infrastructure to map a dev_t to a device name.
2377  *
2378  * The caller should use rcu_read_lock() in order to make sure the
2379  * device name stays valid until its done with it.  We use
2380  * rcu_read_lock() as well to make sure we're safe in case the caller
2381  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2382  * nested.
2383  */
2384 struct devname_cache {
2385 	struct rcu_head	rcu;
2386 	dev_t		device;
2387 	char		devname[BDEVNAME_SIZE];
2388 };
2389 #define CACHE_SIZE_BITS 6
2390 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2391 static DEFINE_SPINLOCK(devname_cache_lock);
2392 
2393 static void free_devcache(struct rcu_head *rcu)
2394 {
2395 	kfree(rcu);
2396 }
2397 
2398 const char *jbd2_dev_to_name(dev_t device)
2399 {
2400 	int	i = hash_32(device, CACHE_SIZE_BITS);
2401 	char	*ret;
2402 	struct block_device *bd;
2403 	static struct devname_cache *new_dev;
2404 
2405 	rcu_read_lock();
2406 	if (devcache[i] && devcache[i]->device == device) {
2407 		ret = devcache[i]->devname;
2408 		rcu_read_unlock();
2409 		return ret;
2410 	}
2411 	rcu_read_unlock();
2412 
2413 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2414 	if (!new_dev)
2415 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2416 	spin_lock(&devname_cache_lock);
2417 	if (devcache[i]) {
2418 		if (devcache[i]->device == device) {
2419 			kfree(new_dev);
2420 			ret = devcache[i]->devname;
2421 			spin_unlock(&devname_cache_lock);
2422 			return ret;
2423 		}
2424 		call_rcu(&devcache[i]->rcu, free_devcache);
2425 	}
2426 	devcache[i] = new_dev;
2427 	devcache[i]->device = device;
2428 	bd = bdget(device);
2429 	if (bd) {
2430 		bdevname(bd, devcache[i]->devname);
2431 		bdput(bd);
2432 	} else
2433 		__bdevname(device, devcache[i]->devname);
2434 	ret = devcache[i]->devname;
2435 	spin_unlock(&devname_cache_lock);
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL(jbd2_dev_to_name);
2439 
2440 MODULE_LICENSE("GPL");
2441 module_init(journal_init);
2442 module_exit(journal_exit);
2443 
2444