1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 EXPORT_SYMBOL(jbd2_inode_cache); 98 99 static void __journal_abort_soft (journal_t *journal, int errno); 100 static int jbd2_journal_create_slab(size_t slab_size); 101 102 #ifdef CONFIG_JBD2_DEBUG 103 void __jbd2_debug(int level, const char *file, const char *func, 104 unsigned int line, const char *fmt, ...) 105 { 106 struct va_format vaf; 107 va_list args; 108 109 if (level > jbd2_journal_enable_debug) 110 return; 111 va_start(args, fmt); 112 vaf.fmt = fmt; 113 vaf.va = &args; 114 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 115 va_end(args); 116 } 117 EXPORT_SYMBOL(__jbd2_debug); 118 #endif 119 120 /* Checksumming functions */ 121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 122 { 123 if (!jbd2_journal_has_csum_v2or3_feature(j)) 124 return 1; 125 126 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 127 } 128 129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 130 { 131 __u32 csum; 132 __be32 old_csum; 133 134 old_csum = sb->s_checksum; 135 sb->s_checksum = 0; 136 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 137 sb->s_checksum = old_csum; 138 139 return cpu_to_be32(csum); 140 } 141 142 /* 143 * Helper function used to manage commit timeouts 144 */ 145 146 static void commit_timeout(struct timer_list *t) 147 { 148 journal_t *journal = from_timer(journal, t, j_commit_timer); 149 150 wake_up_process(journal->j_task); 151 } 152 153 /* 154 * kjournald2: The main thread function used to manage a logging device 155 * journal. 156 * 157 * This kernel thread is responsible for two things: 158 * 159 * 1) COMMIT: Every so often we need to commit the current state of the 160 * filesystem to disk. The journal thread is responsible for writing 161 * all of the metadata buffers to disk. 162 * 163 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 164 * of the data in that part of the log has been rewritten elsewhere on 165 * the disk. Flushing these old buffers to reclaim space in the log is 166 * known as checkpointing, and this thread is responsible for that job. 167 */ 168 169 static int kjournald2(void *arg) 170 { 171 journal_t *journal = arg; 172 transaction_t *transaction; 173 174 /* 175 * Set up an interval timer which can be used to trigger a commit wakeup 176 * after the commit interval expires 177 */ 178 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 179 180 set_freezable(); 181 182 /* Record that the journal thread is running */ 183 journal->j_task = current; 184 wake_up(&journal->j_wait_done_commit); 185 186 /* 187 * Make sure that no allocations from this kernel thread will ever 188 * recurse to the fs layer because we are responsible for the 189 * transaction commit and any fs involvement might get stuck waiting for 190 * the trasn. commit. 191 */ 192 memalloc_nofs_save(); 193 194 /* 195 * And now, wait forever for commit wakeup events. 196 */ 197 write_lock(&journal->j_state_lock); 198 199 loop: 200 if (journal->j_flags & JBD2_UNMOUNT) 201 goto end_loop; 202 203 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 204 journal->j_commit_sequence, journal->j_commit_request); 205 206 if (journal->j_commit_sequence != journal->j_commit_request) { 207 jbd_debug(1, "OK, requests differ\n"); 208 write_unlock(&journal->j_state_lock); 209 del_timer_sync(&journal->j_commit_timer); 210 jbd2_journal_commit_transaction(journal); 211 write_lock(&journal->j_state_lock); 212 goto loop; 213 } 214 215 wake_up(&journal->j_wait_done_commit); 216 if (freezing(current)) { 217 /* 218 * The simpler the better. Flushing journal isn't a 219 * good idea, because that depends on threads that may 220 * be already stopped. 221 */ 222 jbd_debug(1, "Now suspending kjournald2\n"); 223 write_unlock(&journal->j_state_lock); 224 try_to_freeze(); 225 write_lock(&journal->j_state_lock); 226 } else { 227 /* 228 * We assume on resume that commits are already there, 229 * so we don't sleep 230 */ 231 DEFINE_WAIT(wait); 232 int should_sleep = 1; 233 234 prepare_to_wait(&journal->j_wait_commit, &wait, 235 TASK_INTERRUPTIBLE); 236 if (journal->j_commit_sequence != journal->j_commit_request) 237 should_sleep = 0; 238 transaction = journal->j_running_transaction; 239 if (transaction && time_after_eq(jiffies, 240 transaction->t_expires)) 241 should_sleep = 0; 242 if (journal->j_flags & JBD2_UNMOUNT) 243 should_sleep = 0; 244 if (should_sleep) { 245 write_unlock(&journal->j_state_lock); 246 schedule(); 247 write_lock(&journal->j_state_lock); 248 } 249 finish_wait(&journal->j_wait_commit, &wait); 250 } 251 252 jbd_debug(1, "kjournald2 wakes\n"); 253 254 /* 255 * Were we woken up by a commit wakeup event? 256 */ 257 transaction = journal->j_running_transaction; 258 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 259 journal->j_commit_request = transaction->t_tid; 260 jbd_debug(1, "woke because of timeout\n"); 261 } 262 goto loop; 263 264 end_loop: 265 del_timer_sync(&journal->j_commit_timer); 266 journal->j_task = NULL; 267 wake_up(&journal->j_wait_done_commit); 268 jbd_debug(1, "Journal thread exiting.\n"); 269 write_unlock(&journal->j_state_lock); 270 return 0; 271 } 272 273 static int jbd2_journal_start_thread(journal_t *journal) 274 { 275 struct task_struct *t; 276 277 t = kthread_run(kjournald2, journal, "jbd2/%s", 278 journal->j_devname); 279 if (IS_ERR(t)) 280 return PTR_ERR(t); 281 282 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 283 return 0; 284 } 285 286 static void journal_kill_thread(journal_t *journal) 287 { 288 write_lock(&journal->j_state_lock); 289 journal->j_flags |= JBD2_UNMOUNT; 290 291 while (journal->j_task) { 292 write_unlock(&journal->j_state_lock); 293 wake_up(&journal->j_wait_commit); 294 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 295 write_lock(&journal->j_state_lock); 296 } 297 write_unlock(&journal->j_state_lock); 298 } 299 300 /* 301 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 302 * 303 * Writes a metadata buffer to a given disk block. The actual IO is not 304 * performed but a new buffer_head is constructed which labels the data 305 * to be written with the correct destination disk block. 306 * 307 * Any magic-number escaping which needs to be done will cause a 308 * copy-out here. If the buffer happens to start with the 309 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 310 * magic number is only written to the log for descripter blocks. In 311 * this case, we copy the data and replace the first word with 0, and we 312 * return a result code which indicates that this buffer needs to be 313 * marked as an escaped buffer in the corresponding log descriptor 314 * block. The missing word can then be restored when the block is read 315 * during recovery. 316 * 317 * If the source buffer has already been modified by a new transaction 318 * since we took the last commit snapshot, we use the frozen copy of 319 * that data for IO. If we end up using the existing buffer_head's data 320 * for the write, then we have to make sure nobody modifies it while the 321 * IO is in progress. do_get_write_access() handles this. 322 * 323 * The function returns a pointer to the buffer_head to be used for IO. 324 * 325 * 326 * Return value: 327 * <0: Error 328 * >=0: Finished OK 329 * 330 * On success: 331 * Bit 0 set == escape performed on the data 332 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 333 */ 334 335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 336 struct journal_head *jh_in, 337 struct buffer_head **bh_out, 338 sector_t blocknr) 339 { 340 int need_copy_out = 0; 341 int done_copy_out = 0; 342 int do_escape = 0; 343 char *mapped_data; 344 struct buffer_head *new_bh; 345 struct page *new_page; 346 unsigned int new_offset; 347 struct buffer_head *bh_in = jh2bh(jh_in); 348 journal_t *journal = transaction->t_journal; 349 350 /* 351 * The buffer really shouldn't be locked: only the current committing 352 * transaction is allowed to write it, so nobody else is allowed 353 * to do any IO. 354 * 355 * akpm: except if we're journalling data, and write() output is 356 * also part of a shared mapping, and another thread has 357 * decided to launch a writepage() against this buffer. 358 */ 359 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 360 361 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 362 363 /* keep subsequent assertions sane */ 364 atomic_set(&new_bh->b_count, 1); 365 366 spin_lock(&jh_in->b_state_lock); 367 repeat: 368 /* 369 * If a new transaction has already done a buffer copy-out, then 370 * we use that version of the data for the commit. 371 */ 372 if (jh_in->b_frozen_data) { 373 done_copy_out = 1; 374 new_page = virt_to_page(jh_in->b_frozen_data); 375 new_offset = offset_in_page(jh_in->b_frozen_data); 376 } else { 377 new_page = jh2bh(jh_in)->b_page; 378 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 379 } 380 381 mapped_data = kmap_atomic(new_page); 382 /* 383 * Fire data frozen trigger if data already wasn't frozen. Do this 384 * before checking for escaping, as the trigger may modify the magic 385 * offset. If a copy-out happens afterwards, it will have the correct 386 * data in the buffer. 387 */ 388 if (!done_copy_out) 389 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 390 jh_in->b_triggers); 391 392 /* 393 * Check for escaping 394 */ 395 if (*((__be32 *)(mapped_data + new_offset)) == 396 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 397 need_copy_out = 1; 398 do_escape = 1; 399 } 400 kunmap_atomic(mapped_data); 401 402 /* 403 * Do we need to do a data copy? 404 */ 405 if (need_copy_out && !done_copy_out) { 406 char *tmp; 407 408 spin_unlock(&jh_in->b_state_lock); 409 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 410 if (!tmp) { 411 brelse(new_bh); 412 return -ENOMEM; 413 } 414 spin_lock(&jh_in->b_state_lock); 415 if (jh_in->b_frozen_data) { 416 jbd2_free(tmp, bh_in->b_size); 417 goto repeat; 418 } 419 420 jh_in->b_frozen_data = tmp; 421 mapped_data = kmap_atomic(new_page); 422 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 423 kunmap_atomic(mapped_data); 424 425 new_page = virt_to_page(tmp); 426 new_offset = offset_in_page(tmp); 427 done_copy_out = 1; 428 429 /* 430 * This isn't strictly necessary, as we're using frozen 431 * data for the escaping, but it keeps consistency with 432 * b_frozen_data usage. 433 */ 434 jh_in->b_frozen_triggers = jh_in->b_triggers; 435 } 436 437 /* 438 * Did we need to do an escaping? Now we've done all the 439 * copying, we can finally do so. 440 */ 441 if (do_escape) { 442 mapped_data = kmap_atomic(new_page); 443 *((unsigned int *)(mapped_data + new_offset)) = 0; 444 kunmap_atomic(mapped_data); 445 } 446 447 set_bh_page(new_bh, new_page, new_offset); 448 new_bh->b_size = bh_in->b_size; 449 new_bh->b_bdev = journal->j_dev; 450 new_bh->b_blocknr = blocknr; 451 new_bh->b_private = bh_in; 452 set_buffer_mapped(new_bh); 453 set_buffer_dirty(new_bh); 454 455 *bh_out = new_bh; 456 457 /* 458 * The to-be-written buffer needs to get moved to the io queue, 459 * and the original buffer whose contents we are shadowing or 460 * copying is moved to the transaction's shadow queue. 461 */ 462 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 463 spin_lock(&journal->j_list_lock); 464 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 465 spin_unlock(&journal->j_list_lock); 466 set_buffer_shadow(bh_in); 467 spin_unlock(&jh_in->b_state_lock); 468 469 return do_escape | (done_copy_out << 1); 470 } 471 472 /* 473 * Allocation code for the journal file. Manage the space left in the 474 * journal, so that we can begin checkpointing when appropriate. 475 */ 476 477 /* 478 * Called with j_state_lock locked for writing. 479 * Returns true if a transaction commit was started. 480 */ 481 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 482 { 483 /* Return if the txn has already requested to be committed */ 484 if (journal->j_commit_request == target) 485 return 0; 486 487 /* 488 * The only transaction we can possibly wait upon is the 489 * currently running transaction (if it exists). Otherwise, 490 * the target tid must be an old one. 491 */ 492 if (journal->j_running_transaction && 493 journal->j_running_transaction->t_tid == target) { 494 /* 495 * We want a new commit: OK, mark the request and wakeup the 496 * commit thread. We do _not_ do the commit ourselves. 497 */ 498 499 journal->j_commit_request = target; 500 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 501 journal->j_commit_request, 502 journal->j_commit_sequence); 503 journal->j_running_transaction->t_requested = jiffies; 504 wake_up(&journal->j_wait_commit); 505 return 1; 506 } else if (!tid_geq(journal->j_commit_request, target)) 507 /* This should never happen, but if it does, preserve 508 the evidence before kjournald goes into a loop and 509 increments j_commit_sequence beyond all recognition. */ 510 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 511 journal->j_commit_request, 512 journal->j_commit_sequence, 513 target, journal->j_running_transaction ? 514 journal->j_running_transaction->t_tid : 0); 515 return 0; 516 } 517 518 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 519 { 520 int ret; 521 522 write_lock(&journal->j_state_lock); 523 ret = __jbd2_log_start_commit(journal, tid); 524 write_unlock(&journal->j_state_lock); 525 return ret; 526 } 527 528 /* 529 * Force and wait any uncommitted transactions. We can only force the running 530 * transaction if we don't have an active handle, otherwise, we will deadlock. 531 * Returns: <0 in case of error, 532 * 0 if nothing to commit, 533 * 1 if transaction was successfully committed. 534 */ 535 static int __jbd2_journal_force_commit(journal_t *journal) 536 { 537 transaction_t *transaction = NULL; 538 tid_t tid; 539 int need_to_start = 0, ret = 0; 540 541 read_lock(&journal->j_state_lock); 542 if (journal->j_running_transaction && !current->journal_info) { 543 transaction = journal->j_running_transaction; 544 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 545 need_to_start = 1; 546 } else if (journal->j_committing_transaction) 547 transaction = journal->j_committing_transaction; 548 549 if (!transaction) { 550 /* Nothing to commit */ 551 read_unlock(&journal->j_state_lock); 552 return 0; 553 } 554 tid = transaction->t_tid; 555 read_unlock(&journal->j_state_lock); 556 if (need_to_start) 557 jbd2_log_start_commit(journal, tid); 558 ret = jbd2_log_wait_commit(journal, tid); 559 if (!ret) 560 ret = 1; 561 562 return ret; 563 } 564 565 /** 566 * Force and wait upon a commit if the calling process is not within 567 * transaction. This is used for forcing out undo-protected data which contains 568 * bitmaps, when the fs is running out of space. 569 * 570 * @journal: journal to force 571 * Returns true if progress was made. 572 */ 573 int jbd2_journal_force_commit_nested(journal_t *journal) 574 { 575 int ret; 576 577 ret = __jbd2_journal_force_commit(journal); 578 return ret > 0; 579 } 580 581 /** 582 * int journal_force_commit() - force any uncommitted transactions 583 * @journal: journal to force 584 * 585 * Caller want unconditional commit. We can only force the running transaction 586 * if we don't have an active handle, otherwise, we will deadlock. 587 */ 588 int jbd2_journal_force_commit(journal_t *journal) 589 { 590 int ret; 591 592 J_ASSERT(!current->journal_info); 593 ret = __jbd2_journal_force_commit(journal); 594 if (ret > 0) 595 ret = 0; 596 return ret; 597 } 598 599 /* 600 * Start a commit of the current running transaction (if any). Returns true 601 * if a transaction is going to be committed (or is currently already 602 * committing), and fills its tid in at *ptid 603 */ 604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 605 { 606 int ret = 0; 607 608 write_lock(&journal->j_state_lock); 609 if (journal->j_running_transaction) { 610 tid_t tid = journal->j_running_transaction->t_tid; 611 612 __jbd2_log_start_commit(journal, tid); 613 /* There's a running transaction and we've just made sure 614 * it's commit has been scheduled. */ 615 if (ptid) 616 *ptid = tid; 617 ret = 1; 618 } else if (journal->j_committing_transaction) { 619 /* 620 * If commit has been started, then we have to wait for 621 * completion of that transaction. 622 */ 623 if (ptid) 624 *ptid = journal->j_committing_transaction->t_tid; 625 ret = 1; 626 } 627 write_unlock(&journal->j_state_lock); 628 return ret; 629 } 630 631 /* 632 * Return 1 if a given transaction has not yet sent barrier request 633 * connected with a transaction commit. If 0 is returned, transaction 634 * may or may not have sent the barrier. Used to avoid sending barrier 635 * twice in common cases. 636 */ 637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 638 { 639 int ret = 0; 640 transaction_t *commit_trans; 641 642 if (!(journal->j_flags & JBD2_BARRIER)) 643 return 0; 644 read_lock(&journal->j_state_lock); 645 /* Transaction already committed? */ 646 if (tid_geq(journal->j_commit_sequence, tid)) 647 goto out; 648 commit_trans = journal->j_committing_transaction; 649 if (!commit_trans || commit_trans->t_tid != tid) { 650 ret = 1; 651 goto out; 652 } 653 /* 654 * Transaction is being committed and we already proceeded to 655 * submitting a flush to fs partition? 656 */ 657 if (journal->j_fs_dev != journal->j_dev) { 658 if (!commit_trans->t_need_data_flush || 659 commit_trans->t_state >= T_COMMIT_DFLUSH) 660 goto out; 661 } else { 662 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 663 goto out; 664 } 665 ret = 1; 666 out: 667 read_unlock(&journal->j_state_lock); 668 return ret; 669 } 670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 671 672 /* 673 * Wait for a specified commit to complete. 674 * The caller may not hold the journal lock. 675 */ 676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 677 { 678 int err = 0; 679 680 read_lock(&journal->j_state_lock); 681 #ifdef CONFIG_PROVE_LOCKING 682 /* 683 * Some callers make sure transaction is already committing and in that 684 * case we cannot block on open handles anymore. So don't warn in that 685 * case. 686 */ 687 if (tid_gt(tid, journal->j_commit_sequence) && 688 (!journal->j_committing_transaction || 689 journal->j_committing_transaction->t_tid != tid)) { 690 read_unlock(&journal->j_state_lock); 691 jbd2_might_wait_for_commit(journal); 692 read_lock(&journal->j_state_lock); 693 } 694 #endif 695 #ifdef CONFIG_JBD2_DEBUG 696 if (!tid_geq(journal->j_commit_request, tid)) { 697 printk(KERN_ERR 698 "%s: error: j_commit_request=%u, tid=%u\n", 699 __func__, journal->j_commit_request, tid); 700 } 701 #endif 702 while (tid_gt(tid, journal->j_commit_sequence)) { 703 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 704 tid, journal->j_commit_sequence); 705 read_unlock(&journal->j_state_lock); 706 wake_up(&journal->j_wait_commit); 707 wait_event(journal->j_wait_done_commit, 708 !tid_gt(tid, journal->j_commit_sequence)); 709 read_lock(&journal->j_state_lock); 710 } 711 read_unlock(&journal->j_state_lock); 712 713 if (unlikely(is_journal_aborted(journal))) 714 err = -EIO; 715 return err; 716 } 717 718 /* Return 1 when transaction with given tid has already committed. */ 719 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 720 { 721 int ret = 1; 722 723 read_lock(&journal->j_state_lock); 724 if (journal->j_running_transaction && 725 journal->j_running_transaction->t_tid == tid) 726 ret = 0; 727 if (journal->j_committing_transaction && 728 journal->j_committing_transaction->t_tid == tid) 729 ret = 0; 730 read_unlock(&journal->j_state_lock); 731 return ret; 732 } 733 EXPORT_SYMBOL(jbd2_transaction_committed); 734 735 /* 736 * When this function returns the transaction corresponding to tid 737 * will be completed. If the transaction has currently running, start 738 * committing that transaction before waiting for it to complete. If 739 * the transaction id is stale, it is by definition already completed, 740 * so just return SUCCESS. 741 */ 742 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 743 { 744 int need_to_wait = 1; 745 746 read_lock(&journal->j_state_lock); 747 if (journal->j_running_transaction && 748 journal->j_running_transaction->t_tid == tid) { 749 if (journal->j_commit_request != tid) { 750 /* transaction not yet started, so request it */ 751 read_unlock(&journal->j_state_lock); 752 jbd2_log_start_commit(journal, tid); 753 goto wait_commit; 754 } 755 } else if (!(journal->j_committing_transaction && 756 journal->j_committing_transaction->t_tid == tid)) 757 need_to_wait = 0; 758 read_unlock(&journal->j_state_lock); 759 if (!need_to_wait) 760 return 0; 761 wait_commit: 762 return jbd2_log_wait_commit(journal, tid); 763 } 764 EXPORT_SYMBOL(jbd2_complete_transaction); 765 766 /* 767 * Log buffer allocation routines: 768 */ 769 770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 771 { 772 unsigned long blocknr; 773 774 write_lock(&journal->j_state_lock); 775 J_ASSERT(journal->j_free > 1); 776 777 blocknr = journal->j_head; 778 journal->j_head++; 779 journal->j_free--; 780 if (journal->j_head == journal->j_last) 781 journal->j_head = journal->j_first; 782 write_unlock(&journal->j_state_lock); 783 return jbd2_journal_bmap(journal, blocknr, retp); 784 } 785 786 /* 787 * Conversion of logical to physical block numbers for the journal 788 * 789 * On external journals the journal blocks are identity-mapped, so 790 * this is a no-op. If needed, we can use j_blk_offset - everything is 791 * ready. 792 */ 793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 794 unsigned long long *retp) 795 { 796 int err = 0; 797 unsigned long long ret; 798 799 if (journal->j_inode) { 800 ret = bmap(journal->j_inode, blocknr); 801 if (ret) 802 *retp = ret; 803 else { 804 printk(KERN_ALERT "%s: journal block not found " 805 "at offset %lu on %s\n", 806 __func__, blocknr, journal->j_devname); 807 err = -EIO; 808 __journal_abort_soft(journal, err); 809 } 810 } else { 811 *retp = blocknr; /* +journal->j_blk_offset */ 812 } 813 return err; 814 } 815 816 /* 817 * We play buffer_head aliasing tricks to write data/metadata blocks to 818 * the journal without copying their contents, but for journal 819 * descriptor blocks we do need to generate bona fide buffers. 820 * 821 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 822 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 823 * But we don't bother doing that, so there will be coherency problems with 824 * mmaps of blockdevs which hold live JBD-controlled filesystems. 825 */ 826 struct buffer_head * 827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 828 { 829 journal_t *journal = transaction->t_journal; 830 struct buffer_head *bh; 831 unsigned long long blocknr; 832 journal_header_t *header; 833 int err; 834 835 err = jbd2_journal_next_log_block(journal, &blocknr); 836 837 if (err) 838 return NULL; 839 840 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 841 if (!bh) 842 return NULL; 843 atomic_dec(&transaction->t_outstanding_credits); 844 lock_buffer(bh); 845 memset(bh->b_data, 0, journal->j_blocksize); 846 header = (journal_header_t *)bh->b_data; 847 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 848 header->h_blocktype = cpu_to_be32(type); 849 header->h_sequence = cpu_to_be32(transaction->t_tid); 850 set_buffer_uptodate(bh); 851 unlock_buffer(bh); 852 BUFFER_TRACE(bh, "return this buffer"); 853 return bh; 854 } 855 856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 857 { 858 struct jbd2_journal_block_tail *tail; 859 __u32 csum; 860 861 if (!jbd2_journal_has_csum_v2or3(j)) 862 return; 863 864 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 865 sizeof(struct jbd2_journal_block_tail)); 866 tail->t_checksum = 0; 867 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 868 tail->t_checksum = cpu_to_be32(csum); 869 } 870 871 /* 872 * Return tid of the oldest transaction in the journal and block in the journal 873 * where the transaction starts. 874 * 875 * If the journal is now empty, return which will be the next transaction ID 876 * we will write and where will that transaction start. 877 * 878 * The return value is 0 if journal tail cannot be pushed any further, 1 if 879 * it can. 880 */ 881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 882 unsigned long *block) 883 { 884 transaction_t *transaction; 885 int ret; 886 887 read_lock(&journal->j_state_lock); 888 spin_lock(&journal->j_list_lock); 889 transaction = journal->j_checkpoint_transactions; 890 if (transaction) { 891 *tid = transaction->t_tid; 892 *block = transaction->t_log_start; 893 } else if ((transaction = journal->j_committing_transaction) != NULL) { 894 *tid = transaction->t_tid; 895 *block = transaction->t_log_start; 896 } else if ((transaction = journal->j_running_transaction) != NULL) { 897 *tid = transaction->t_tid; 898 *block = journal->j_head; 899 } else { 900 *tid = journal->j_transaction_sequence; 901 *block = journal->j_head; 902 } 903 ret = tid_gt(*tid, journal->j_tail_sequence); 904 spin_unlock(&journal->j_list_lock); 905 read_unlock(&journal->j_state_lock); 906 907 return ret; 908 } 909 910 /* 911 * Update information in journal structure and in on disk journal superblock 912 * about log tail. This function does not check whether information passed in 913 * really pushes log tail further. It's responsibility of the caller to make 914 * sure provided log tail information is valid (e.g. by holding 915 * j_checkpoint_mutex all the time between computing log tail and calling this 916 * function as is the case with jbd2_cleanup_journal_tail()). 917 * 918 * Requires j_checkpoint_mutex 919 */ 920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 921 { 922 unsigned long freed; 923 int ret; 924 925 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 926 927 /* 928 * We cannot afford for write to remain in drive's caches since as 929 * soon as we update j_tail, next transaction can start reusing journal 930 * space and if we lose sb update during power failure we'd replay 931 * old transaction with possibly newly overwritten data. 932 */ 933 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 934 REQ_SYNC | REQ_FUA); 935 if (ret) 936 goto out; 937 938 write_lock(&journal->j_state_lock); 939 freed = block - journal->j_tail; 940 if (block < journal->j_tail) 941 freed += journal->j_last - journal->j_first; 942 943 trace_jbd2_update_log_tail(journal, tid, block, freed); 944 jbd_debug(1, 945 "Cleaning journal tail from %u to %u (offset %lu), " 946 "freeing %lu\n", 947 journal->j_tail_sequence, tid, block, freed); 948 949 journal->j_free += freed; 950 journal->j_tail_sequence = tid; 951 journal->j_tail = block; 952 write_unlock(&journal->j_state_lock); 953 954 out: 955 return ret; 956 } 957 958 /* 959 * This is a variation of __jbd2_update_log_tail which checks for validity of 960 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 961 * with other threads updating log tail. 962 */ 963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 964 { 965 mutex_lock_io(&journal->j_checkpoint_mutex); 966 if (tid_gt(tid, journal->j_tail_sequence)) 967 __jbd2_update_log_tail(journal, tid, block); 968 mutex_unlock(&journal->j_checkpoint_mutex); 969 } 970 971 struct jbd2_stats_proc_session { 972 journal_t *journal; 973 struct transaction_stats_s *stats; 974 int start; 975 int max; 976 }; 977 978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 979 { 980 return *pos ? NULL : SEQ_START_TOKEN; 981 } 982 983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 984 { 985 return NULL; 986 } 987 988 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 989 { 990 struct jbd2_stats_proc_session *s = seq->private; 991 992 if (v != SEQ_START_TOKEN) 993 return 0; 994 seq_printf(seq, "%lu transactions (%lu requested), " 995 "each up to %u blocks\n", 996 s->stats->ts_tid, s->stats->ts_requested, 997 s->journal->j_max_transaction_buffers); 998 if (s->stats->ts_tid == 0) 999 return 0; 1000 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1001 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1002 seq_printf(seq, " %ums request delay\n", 1003 (s->stats->ts_requested == 0) ? 0 : 1004 jiffies_to_msecs(s->stats->run.rs_request_delay / 1005 s->stats->ts_requested)); 1006 seq_printf(seq, " %ums running transaction\n", 1007 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1008 seq_printf(seq, " %ums transaction was being locked\n", 1009 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1010 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1011 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1012 seq_printf(seq, " %ums logging transaction\n", 1013 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1014 seq_printf(seq, " %lluus average transaction commit time\n", 1015 div_u64(s->journal->j_average_commit_time, 1000)); 1016 seq_printf(seq, " %lu handles per transaction\n", 1017 s->stats->run.rs_handle_count / s->stats->ts_tid); 1018 seq_printf(seq, " %lu blocks per transaction\n", 1019 s->stats->run.rs_blocks / s->stats->ts_tid); 1020 seq_printf(seq, " %lu logged blocks per transaction\n", 1021 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1022 return 0; 1023 } 1024 1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1026 { 1027 } 1028 1029 static const struct seq_operations jbd2_seq_info_ops = { 1030 .start = jbd2_seq_info_start, 1031 .next = jbd2_seq_info_next, 1032 .stop = jbd2_seq_info_stop, 1033 .show = jbd2_seq_info_show, 1034 }; 1035 1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1037 { 1038 journal_t *journal = PDE_DATA(inode); 1039 struct jbd2_stats_proc_session *s; 1040 int rc, size; 1041 1042 s = kmalloc(sizeof(*s), GFP_KERNEL); 1043 if (s == NULL) 1044 return -ENOMEM; 1045 size = sizeof(struct transaction_stats_s); 1046 s->stats = kmalloc(size, GFP_KERNEL); 1047 if (s->stats == NULL) { 1048 kfree(s); 1049 return -ENOMEM; 1050 } 1051 spin_lock(&journal->j_history_lock); 1052 memcpy(s->stats, &journal->j_stats, size); 1053 s->journal = journal; 1054 spin_unlock(&journal->j_history_lock); 1055 1056 rc = seq_open(file, &jbd2_seq_info_ops); 1057 if (rc == 0) { 1058 struct seq_file *m = file->private_data; 1059 m->private = s; 1060 } else { 1061 kfree(s->stats); 1062 kfree(s); 1063 } 1064 return rc; 1065 1066 } 1067 1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1069 { 1070 struct seq_file *seq = file->private_data; 1071 struct jbd2_stats_proc_session *s = seq->private; 1072 kfree(s->stats); 1073 kfree(s); 1074 return seq_release(inode, file); 1075 } 1076 1077 static const struct file_operations jbd2_seq_info_fops = { 1078 .owner = THIS_MODULE, 1079 .open = jbd2_seq_info_open, 1080 .read = seq_read, 1081 .llseek = seq_lseek, 1082 .release = jbd2_seq_info_release, 1083 }; 1084 1085 static struct proc_dir_entry *proc_jbd2_stats; 1086 1087 static void jbd2_stats_proc_init(journal_t *journal) 1088 { 1089 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1090 if (journal->j_proc_entry) { 1091 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1092 &jbd2_seq_info_fops, journal); 1093 } 1094 } 1095 1096 static void jbd2_stats_proc_exit(journal_t *journal) 1097 { 1098 remove_proc_entry("info", journal->j_proc_entry); 1099 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1100 } 1101 1102 /* Minimum size of descriptor tag */ 1103 static int jbd2_min_tag_size(void) 1104 { 1105 /* 1106 * Tag with 32-bit block numbers does not use last four bytes of the 1107 * structure 1108 */ 1109 return sizeof(journal_block_tag_t) - 4; 1110 } 1111 1112 /* 1113 * Management for journal control blocks: functions to create and 1114 * destroy journal_t structures, and to initialise and read existing 1115 * journal blocks from disk. */ 1116 1117 /* First: create and setup a journal_t object in memory. We initialise 1118 * very few fields yet: that has to wait until we have created the 1119 * journal structures from from scratch, or loaded them from disk. */ 1120 1121 static journal_t *journal_init_common(struct block_device *bdev, 1122 struct block_device *fs_dev, 1123 unsigned long long start, int len, int blocksize) 1124 { 1125 static struct lock_class_key jbd2_trans_commit_key; 1126 journal_t *journal; 1127 int err; 1128 struct buffer_head *bh; 1129 int n; 1130 1131 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1132 if (!journal) 1133 return NULL; 1134 1135 init_waitqueue_head(&journal->j_wait_transaction_locked); 1136 init_waitqueue_head(&journal->j_wait_done_commit); 1137 init_waitqueue_head(&journal->j_wait_commit); 1138 init_waitqueue_head(&journal->j_wait_updates); 1139 init_waitqueue_head(&journal->j_wait_reserved); 1140 mutex_init(&journal->j_barrier); 1141 mutex_init(&journal->j_checkpoint_mutex); 1142 spin_lock_init(&journal->j_revoke_lock); 1143 spin_lock_init(&journal->j_list_lock); 1144 rwlock_init(&journal->j_state_lock); 1145 1146 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1147 journal->j_min_batch_time = 0; 1148 journal->j_max_batch_time = 15000; /* 15ms */ 1149 atomic_set(&journal->j_reserved_credits, 0); 1150 1151 /* The journal is marked for error until we succeed with recovery! */ 1152 journal->j_flags = JBD2_ABORT; 1153 1154 /* Set up a default-sized revoke table for the new mount. */ 1155 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1156 if (err) 1157 goto err_cleanup; 1158 1159 spin_lock_init(&journal->j_history_lock); 1160 1161 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1162 &jbd2_trans_commit_key, 0); 1163 1164 /* journal descriptor can store up to n blocks -bzzz */ 1165 journal->j_blocksize = blocksize; 1166 journal->j_dev = bdev; 1167 journal->j_fs_dev = fs_dev; 1168 journal->j_blk_offset = start; 1169 journal->j_maxlen = len; 1170 /* We need enough buffers to write out full descriptor block. */ 1171 n = journal->j_blocksize / jbd2_min_tag_size(); 1172 journal->j_wbufsize = n; 1173 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1174 GFP_KERNEL); 1175 if (!journal->j_wbuf) 1176 goto err_cleanup; 1177 1178 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1179 if (!bh) { 1180 pr_err("%s: Cannot get buffer for journal superblock\n", 1181 __func__); 1182 goto err_cleanup; 1183 } 1184 journal->j_sb_buffer = bh; 1185 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1186 1187 return journal; 1188 1189 err_cleanup: 1190 kfree(journal->j_wbuf); 1191 jbd2_journal_destroy_revoke(journal); 1192 kfree(journal); 1193 return NULL; 1194 } 1195 1196 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1197 * 1198 * Create a journal structure assigned some fixed set of disk blocks to 1199 * the journal. We don't actually touch those disk blocks yet, but we 1200 * need to set up all of the mapping information to tell the journaling 1201 * system where the journal blocks are. 1202 * 1203 */ 1204 1205 /** 1206 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1207 * @bdev: Block device on which to create the journal 1208 * @fs_dev: Device which hold journalled filesystem for this journal. 1209 * @start: Block nr Start of journal. 1210 * @len: Length of the journal in blocks. 1211 * @blocksize: blocksize of journalling device 1212 * 1213 * Returns: a newly created journal_t * 1214 * 1215 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1216 * range of blocks on an arbitrary block device. 1217 * 1218 */ 1219 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1220 struct block_device *fs_dev, 1221 unsigned long long start, int len, int blocksize) 1222 { 1223 journal_t *journal; 1224 1225 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1226 if (!journal) 1227 return NULL; 1228 1229 bdevname(journal->j_dev, journal->j_devname); 1230 strreplace(journal->j_devname, '/', '!'); 1231 jbd2_stats_proc_init(journal); 1232 1233 return journal; 1234 } 1235 1236 /** 1237 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1238 * @inode: An inode to create the journal in 1239 * 1240 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1241 * the journal. The inode must exist already, must support bmap() and 1242 * must have all data blocks preallocated. 1243 */ 1244 journal_t *jbd2_journal_init_inode(struct inode *inode) 1245 { 1246 journal_t *journal; 1247 char *p; 1248 unsigned long long blocknr; 1249 1250 blocknr = bmap(inode, 0); 1251 if (!blocknr) { 1252 pr_err("%s: Cannot locate journal superblock\n", 1253 __func__); 1254 return NULL; 1255 } 1256 1257 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1258 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1259 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1260 1261 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1262 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1263 inode->i_sb->s_blocksize); 1264 if (!journal) 1265 return NULL; 1266 1267 journal->j_inode = inode; 1268 bdevname(journal->j_dev, journal->j_devname); 1269 p = strreplace(journal->j_devname, '/', '!'); 1270 sprintf(p, "-%lu", journal->j_inode->i_ino); 1271 jbd2_stats_proc_init(journal); 1272 1273 return journal; 1274 } 1275 1276 /* 1277 * If the journal init or create aborts, we need to mark the journal 1278 * superblock as being NULL to prevent the journal destroy from writing 1279 * back a bogus superblock. 1280 */ 1281 static void journal_fail_superblock (journal_t *journal) 1282 { 1283 struct buffer_head *bh = journal->j_sb_buffer; 1284 brelse(bh); 1285 journal->j_sb_buffer = NULL; 1286 } 1287 1288 /* 1289 * Given a journal_t structure, initialise the various fields for 1290 * startup of a new journaling session. We use this both when creating 1291 * a journal, and after recovering an old journal to reset it for 1292 * subsequent use. 1293 */ 1294 1295 static int journal_reset(journal_t *journal) 1296 { 1297 journal_superblock_t *sb = journal->j_superblock; 1298 unsigned long long first, last; 1299 1300 first = be32_to_cpu(sb->s_first); 1301 last = be32_to_cpu(sb->s_maxlen); 1302 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1303 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1304 first, last); 1305 journal_fail_superblock(journal); 1306 return -EINVAL; 1307 } 1308 1309 journal->j_first = first; 1310 journal->j_last = last; 1311 1312 journal->j_head = first; 1313 journal->j_tail = first; 1314 journal->j_free = last - first; 1315 1316 journal->j_tail_sequence = journal->j_transaction_sequence; 1317 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1318 journal->j_commit_request = journal->j_commit_sequence; 1319 1320 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1321 1322 /* 1323 * As a special case, if the on-disk copy is already marked as needing 1324 * no recovery (s_start == 0), then we can safely defer the superblock 1325 * update until the next commit by setting JBD2_FLUSHED. This avoids 1326 * attempting a write to a potential-readonly device. 1327 */ 1328 if (sb->s_start == 0) { 1329 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1330 "(start %ld, seq %u, errno %d)\n", 1331 journal->j_tail, journal->j_tail_sequence, 1332 journal->j_errno); 1333 journal->j_flags |= JBD2_FLUSHED; 1334 } else { 1335 /* Lock here to make assertions happy... */ 1336 mutex_lock_io(&journal->j_checkpoint_mutex); 1337 /* 1338 * Update log tail information. We use REQ_FUA since new 1339 * transaction will start reusing journal space and so we 1340 * must make sure information about current log tail is on 1341 * disk before that. 1342 */ 1343 jbd2_journal_update_sb_log_tail(journal, 1344 journal->j_tail_sequence, 1345 journal->j_tail, 1346 REQ_SYNC | REQ_FUA); 1347 mutex_unlock(&journal->j_checkpoint_mutex); 1348 } 1349 return jbd2_journal_start_thread(journal); 1350 } 1351 1352 /* 1353 * This function expects that the caller will have locked the journal 1354 * buffer head, and will return with it unlocked 1355 */ 1356 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1357 { 1358 struct buffer_head *bh = journal->j_sb_buffer; 1359 journal_superblock_t *sb = journal->j_superblock; 1360 int ret; 1361 1362 /* Buffer got discarded which means block device got invalidated */ 1363 if (!buffer_mapped(bh)) 1364 return -EIO; 1365 1366 trace_jbd2_write_superblock(journal, write_flags); 1367 if (!(journal->j_flags & JBD2_BARRIER)) 1368 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1369 if (buffer_write_io_error(bh)) { 1370 /* 1371 * Oh, dear. A previous attempt to write the journal 1372 * superblock failed. This could happen because the 1373 * USB device was yanked out. Or it could happen to 1374 * be a transient write error and maybe the block will 1375 * be remapped. Nothing we can do but to retry the 1376 * write and hope for the best. 1377 */ 1378 printk(KERN_ERR "JBD2: previous I/O error detected " 1379 "for journal superblock update for %s.\n", 1380 journal->j_devname); 1381 clear_buffer_write_io_error(bh); 1382 set_buffer_uptodate(bh); 1383 } 1384 if (jbd2_journal_has_csum_v2or3(journal)) 1385 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1386 get_bh(bh); 1387 bh->b_end_io = end_buffer_write_sync; 1388 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1389 wait_on_buffer(bh); 1390 if (buffer_write_io_error(bh)) { 1391 clear_buffer_write_io_error(bh); 1392 set_buffer_uptodate(bh); 1393 ret = -EIO; 1394 } 1395 if (ret) { 1396 printk(KERN_ERR "JBD2: Error %d detected when updating " 1397 "journal superblock for %s.\n", ret, 1398 journal->j_devname); 1399 jbd2_journal_abort(journal, ret); 1400 } 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1407 * @journal: The journal to update. 1408 * @tail_tid: TID of the new transaction at the tail of the log 1409 * @tail_block: The first block of the transaction at the tail of the log 1410 * @write_op: With which operation should we write the journal sb 1411 * 1412 * Update a journal's superblock information about log tail and write it to 1413 * disk, waiting for the IO to complete. 1414 */ 1415 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1416 unsigned long tail_block, int write_op) 1417 { 1418 journal_superblock_t *sb = journal->j_superblock; 1419 int ret; 1420 1421 if (is_journal_aborted(journal)) 1422 return -EIO; 1423 1424 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1425 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1426 tail_block, tail_tid); 1427 1428 lock_buffer(journal->j_sb_buffer); 1429 sb->s_sequence = cpu_to_be32(tail_tid); 1430 sb->s_start = cpu_to_be32(tail_block); 1431 1432 ret = jbd2_write_superblock(journal, write_op); 1433 if (ret) 1434 goto out; 1435 1436 /* Log is no longer empty */ 1437 write_lock(&journal->j_state_lock); 1438 WARN_ON(!sb->s_sequence); 1439 journal->j_flags &= ~JBD2_FLUSHED; 1440 write_unlock(&journal->j_state_lock); 1441 1442 out: 1443 return ret; 1444 } 1445 1446 /** 1447 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1448 * @journal: The journal to update. 1449 * @write_op: With which operation should we write the journal sb 1450 * 1451 * Update a journal's dynamic superblock fields to show that journal is empty. 1452 * Write updated superblock to disk waiting for IO to complete. 1453 */ 1454 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1455 { 1456 journal_superblock_t *sb = journal->j_superblock; 1457 1458 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1459 lock_buffer(journal->j_sb_buffer); 1460 if (sb->s_start == 0) { /* Is it already empty? */ 1461 unlock_buffer(journal->j_sb_buffer); 1462 return; 1463 } 1464 1465 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1466 journal->j_tail_sequence); 1467 1468 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1469 sb->s_start = cpu_to_be32(0); 1470 1471 jbd2_write_superblock(journal, write_op); 1472 1473 /* Log is no longer empty */ 1474 write_lock(&journal->j_state_lock); 1475 journal->j_flags |= JBD2_FLUSHED; 1476 write_unlock(&journal->j_state_lock); 1477 } 1478 1479 1480 /** 1481 * jbd2_journal_update_sb_errno() - Update error in the journal. 1482 * @journal: The journal to update. 1483 * 1484 * Update a journal's errno. Write updated superblock to disk waiting for IO 1485 * to complete. 1486 */ 1487 void jbd2_journal_update_sb_errno(journal_t *journal) 1488 { 1489 journal_superblock_t *sb = journal->j_superblock; 1490 int errcode; 1491 1492 lock_buffer(journal->j_sb_buffer); 1493 errcode = journal->j_errno; 1494 if (errcode == -ESHUTDOWN) 1495 errcode = 0; 1496 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1497 sb->s_errno = cpu_to_be32(errcode); 1498 1499 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1500 } 1501 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1502 1503 static int journal_revoke_records_per_block(journal_t *journal) 1504 { 1505 int record_size; 1506 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1507 1508 if (jbd2_has_feature_64bit(journal)) 1509 record_size = 8; 1510 else 1511 record_size = 4; 1512 1513 if (jbd2_journal_has_csum_v2or3(journal)) 1514 space -= sizeof(struct jbd2_journal_block_tail); 1515 return space / record_size; 1516 } 1517 1518 /* 1519 * Read the superblock for a given journal, performing initial 1520 * validation of the format. 1521 */ 1522 static int journal_get_superblock(journal_t *journal) 1523 { 1524 struct buffer_head *bh; 1525 journal_superblock_t *sb; 1526 int err = -EIO; 1527 1528 bh = journal->j_sb_buffer; 1529 1530 J_ASSERT(bh != NULL); 1531 if (!buffer_uptodate(bh)) { 1532 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1533 wait_on_buffer(bh); 1534 if (!buffer_uptodate(bh)) { 1535 printk(KERN_ERR 1536 "JBD2: IO error reading journal superblock\n"); 1537 goto out; 1538 } 1539 } 1540 1541 if (buffer_verified(bh)) 1542 return 0; 1543 1544 sb = journal->j_superblock; 1545 1546 err = -EINVAL; 1547 1548 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1549 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1550 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1551 goto out; 1552 } 1553 1554 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1555 case JBD2_SUPERBLOCK_V1: 1556 journal->j_format_version = 1; 1557 break; 1558 case JBD2_SUPERBLOCK_V2: 1559 journal->j_format_version = 2; 1560 break; 1561 default: 1562 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1563 goto out; 1564 } 1565 1566 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1567 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1568 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1569 printk(KERN_WARNING "JBD2: journal file too short\n"); 1570 goto out; 1571 } 1572 1573 if (be32_to_cpu(sb->s_first) == 0 || 1574 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1575 printk(KERN_WARNING 1576 "JBD2: Invalid start block of journal: %u\n", 1577 be32_to_cpu(sb->s_first)); 1578 goto out; 1579 } 1580 1581 if (jbd2_has_feature_csum2(journal) && 1582 jbd2_has_feature_csum3(journal)) { 1583 /* Can't have checksum v2 and v3 at the same time! */ 1584 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1585 "at the same time!\n"); 1586 goto out; 1587 } 1588 1589 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1590 jbd2_has_feature_checksum(journal)) { 1591 /* Can't have checksum v1 and v2 on at the same time! */ 1592 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1593 "at the same time!\n"); 1594 goto out; 1595 } 1596 1597 if (!jbd2_verify_csum_type(journal, sb)) { 1598 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1599 goto out; 1600 } 1601 1602 /* Load the checksum driver */ 1603 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1604 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1605 if (IS_ERR(journal->j_chksum_driver)) { 1606 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1607 err = PTR_ERR(journal->j_chksum_driver); 1608 journal->j_chksum_driver = NULL; 1609 goto out; 1610 } 1611 } 1612 1613 if (jbd2_journal_has_csum_v2or3(journal)) { 1614 /* Check superblock checksum */ 1615 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1616 printk(KERN_ERR "JBD2: journal checksum error\n"); 1617 err = -EFSBADCRC; 1618 goto out; 1619 } 1620 1621 /* Precompute checksum seed for all metadata */ 1622 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1623 sizeof(sb->s_uuid)); 1624 } 1625 1626 journal->j_revoke_records_per_block = 1627 journal_revoke_records_per_block(journal); 1628 set_buffer_verified(bh); 1629 1630 return 0; 1631 1632 out: 1633 journal_fail_superblock(journal); 1634 return err; 1635 } 1636 1637 /* 1638 * Load the on-disk journal superblock and read the key fields into the 1639 * journal_t. 1640 */ 1641 1642 static int load_superblock(journal_t *journal) 1643 { 1644 int err; 1645 journal_superblock_t *sb; 1646 1647 err = journal_get_superblock(journal); 1648 if (err) 1649 return err; 1650 1651 sb = journal->j_superblock; 1652 1653 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1654 journal->j_tail = be32_to_cpu(sb->s_start); 1655 journal->j_first = be32_to_cpu(sb->s_first); 1656 journal->j_last = be32_to_cpu(sb->s_maxlen); 1657 journal->j_errno = be32_to_cpu(sb->s_errno); 1658 1659 return 0; 1660 } 1661 1662 1663 /** 1664 * int jbd2_journal_load() - Read journal from disk. 1665 * @journal: Journal to act on. 1666 * 1667 * Given a journal_t structure which tells us which disk blocks contain 1668 * a journal, read the journal from disk to initialise the in-memory 1669 * structures. 1670 */ 1671 int jbd2_journal_load(journal_t *journal) 1672 { 1673 int err; 1674 journal_superblock_t *sb; 1675 1676 err = load_superblock(journal); 1677 if (err) 1678 return err; 1679 1680 sb = journal->j_superblock; 1681 /* If this is a V2 superblock, then we have to check the 1682 * features flags on it. */ 1683 1684 if (journal->j_format_version >= 2) { 1685 if ((sb->s_feature_ro_compat & 1686 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1687 (sb->s_feature_incompat & 1688 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1689 printk(KERN_WARNING 1690 "JBD2: Unrecognised features on journal\n"); 1691 return -EINVAL; 1692 } 1693 } 1694 1695 /* 1696 * Create a slab for this blocksize 1697 */ 1698 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1699 if (err) 1700 return err; 1701 1702 /* Let the recovery code check whether it needs to recover any 1703 * data from the journal. */ 1704 if (jbd2_journal_recover(journal)) 1705 goto recovery_error; 1706 1707 if (journal->j_failed_commit) { 1708 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1709 "is corrupt.\n", journal->j_failed_commit, 1710 journal->j_devname); 1711 return -EFSCORRUPTED; 1712 } 1713 1714 /* OK, we've finished with the dynamic journal bits: 1715 * reinitialise the dynamic contents of the superblock in memory 1716 * and reset them on disk. */ 1717 if (journal_reset(journal)) 1718 goto recovery_error; 1719 1720 journal->j_flags &= ~JBD2_ABORT; 1721 journal->j_flags |= JBD2_LOADED; 1722 return 0; 1723 1724 recovery_error: 1725 printk(KERN_WARNING "JBD2: recovery failed\n"); 1726 return -EIO; 1727 } 1728 1729 /** 1730 * void jbd2_journal_destroy() - Release a journal_t structure. 1731 * @journal: Journal to act on. 1732 * 1733 * Release a journal_t structure once it is no longer in use by the 1734 * journaled object. 1735 * Return <0 if we couldn't clean up the journal. 1736 */ 1737 int jbd2_journal_destroy(journal_t *journal) 1738 { 1739 int err = 0; 1740 1741 /* Wait for the commit thread to wake up and die. */ 1742 journal_kill_thread(journal); 1743 1744 /* Force a final log commit */ 1745 if (journal->j_running_transaction) 1746 jbd2_journal_commit_transaction(journal); 1747 1748 /* Force any old transactions to disk */ 1749 1750 /* Totally anal locking here... */ 1751 spin_lock(&journal->j_list_lock); 1752 while (journal->j_checkpoint_transactions != NULL) { 1753 spin_unlock(&journal->j_list_lock); 1754 mutex_lock_io(&journal->j_checkpoint_mutex); 1755 err = jbd2_log_do_checkpoint(journal); 1756 mutex_unlock(&journal->j_checkpoint_mutex); 1757 /* 1758 * If checkpointing failed, just free the buffers to avoid 1759 * looping forever 1760 */ 1761 if (err) { 1762 jbd2_journal_destroy_checkpoint(journal); 1763 spin_lock(&journal->j_list_lock); 1764 break; 1765 } 1766 spin_lock(&journal->j_list_lock); 1767 } 1768 1769 J_ASSERT(journal->j_running_transaction == NULL); 1770 J_ASSERT(journal->j_committing_transaction == NULL); 1771 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1772 spin_unlock(&journal->j_list_lock); 1773 1774 if (journal->j_sb_buffer) { 1775 if (!is_journal_aborted(journal)) { 1776 mutex_lock_io(&journal->j_checkpoint_mutex); 1777 1778 write_lock(&journal->j_state_lock); 1779 journal->j_tail_sequence = 1780 ++journal->j_transaction_sequence; 1781 write_unlock(&journal->j_state_lock); 1782 1783 jbd2_mark_journal_empty(journal, 1784 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1785 mutex_unlock(&journal->j_checkpoint_mutex); 1786 } else 1787 err = -EIO; 1788 brelse(journal->j_sb_buffer); 1789 } 1790 1791 if (journal->j_proc_entry) 1792 jbd2_stats_proc_exit(journal); 1793 iput(journal->j_inode); 1794 if (journal->j_revoke) 1795 jbd2_journal_destroy_revoke(journal); 1796 if (journal->j_chksum_driver) 1797 crypto_free_shash(journal->j_chksum_driver); 1798 kfree(journal->j_wbuf); 1799 kfree(journal); 1800 1801 return err; 1802 } 1803 1804 1805 /** 1806 *int jbd2_journal_check_used_features () - Check if features specified are used. 1807 * @journal: Journal to check. 1808 * @compat: bitmask of compatible features 1809 * @ro: bitmask of features that force read-only mount 1810 * @incompat: bitmask of incompatible features 1811 * 1812 * Check whether the journal uses all of a given set of 1813 * features. Return true (non-zero) if it does. 1814 **/ 1815 1816 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1817 unsigned long ro, unsigned long incompat) 1818 { 1819 journal_superblock_t *sb; 1820 1821 if (!compat && !ro && !incompat) 1822 return 1; 1823 /* Load journal superblock if it is not loaded yet. */ 1824 if (journal->j_format_version == 0 && 1825 journal_get_superblock(journal) != 0) 1826 return 0; 1827 if (journal->j_format_version == 1) 1828 return 0; 1829 1830 sb = journal->j_superblock; 1831 1832 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1833 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1834 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1835 return 1; 1836 1837 return 0; 1838 } 1839 1840 /** 1841 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1842 * @journal: Journal to check. 1843 * @compat: bitmask of compatible features 1844 * @ro: bitmask of features that force read-only mount 1845 * @incompat: bitmask of incompatible features 1846 * 1847 * Check whether the journaling code supports the use of 1848 * all of a given set of features on this journal. Return true 1849 * (non-zero) if it can. */ 1850 1851 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1852 unsigned long ro, unsigned long incompat) 1853 { 1854 if (!compat && !ro && !incompat) 1855 return 1; 1856 1857 /* We can support any known requested features iff the 1858 * superblock is in version 2. Otherwise we fail to support any 1859 * extended sb features. */ 1860 1861 if (journal->j_format_version != 2) 1862 return 0; 1863 1864 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1865 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1866 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1867 return 1; 1868 1869 return 0; 1870 } 1871 1872 /** 1873 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1874 * @journal: Journal to act on. 1875 * @compat: bitmask of compatible features 1876 * @ro: bitmask of features that force read-only mount 1877 * @incompat: bitmask of incompatible features 1878 * 1879 * Mark a given journal feature as present on the 1880 * superblock. Returns true if the requested features could be set. 1881 * 1882 */ 1883 1884 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1885 unsigned long ro, unsigned long incompat) 1886 { 1887 #define INCOMPAT_FEATURE_ON(f) \ 1888 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1889 #define COMPAT_FEATURE_ON(f) \ 1890 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1891 journal_superblock_t *sb; 1892 1893 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1894 return 1; 1895 1896 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1897 return 0; 1898 1899 /* If enabling v2 checksums, turn on v3 instead */ 1900 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1901 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1902 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1903 } 1904 1905 /* Asking for checksumming v3 and v1? Only give them v3. */ 1906 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1907 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1908 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1909 1910 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1911 compat, ro, incompat); 1912 1913 sb = journal->j_superblock; 1914 1915 /* Load the checksum driver if necessary */ 1916 if ((journal->j_chksum_driver == NULL) && 1917 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1918 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1919 if (IS_ERR(journal->j_chksum_driver)) { 1920 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1921 journal->j_chksum_driver = NULL; 1922 return 0; 1923 } 1924 /* Precompute checksum seed for all metadata */ 1925 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1926 sizeof(sb->s_uuid)); 1927 } 1928 1929 lock_buffer(journal->j_sb_buffer); 1930 1931 /* If enabling v3 checksums, update superblock */ 1932 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1933 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1934 sb->s_feature_compat &= 1935 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1936 } 1937 1938 /* If enabling v1 checksums, downgrade superblock */ 1939 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1940 sb->s_feature_incompat &= 1941 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1942 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1943 1944 sb->s_feature_compat |= cpu_to_be32(compat); 1945 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1946 sb->s_feature_incompat |= cpu_to_be32(incompat); 1947 unlock_buffer(journal->j_sb_buffer); 1948 journal->j_revoke_records_per_block = 1949 journal_revoke_records_per_block(journal); 1950 1951 return 1; 1952 #undef COMPAT_FEATURE_ON 1953 #undef INCOMPAT_FEATURE_ON 1954 } 1955 1956 /* 1957 * jbd2_journal_clear_features () - Clear a given journal feature in the 1958 * superblock 1959 * @journal: Journal to act on. 1960 * @compat: bitmask of compatible features 1961 * @ro: bitmask of features that force read-only mount 1962 * @incompat: bitmask of incompatible features 1963 * 1964 * Clear a given journal feature as present on the 1965 * superblock. 1966 */ 1967 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1968 unsigned long ro, unsigned long incompat) 1969 { 1970 journal_superblock_t *sb; 1971 1972 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1973 compat, ro, incompat); 1974 1975 sb = journal->j_superblock; 1976 1977 sb->s_feature_compat &= ~cpu_to_be32(compat); 1978 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1979 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1980 journal->j_revoke_records_per_block = 1981 journal_revoke_records_per_block(journal); 1982 } 1983 EXPORT_SYMBOL(jbd2_journal_clear_features); 1984 1985 /** 1986 * int jbd2_journal_flush () - Flush journal 1987 * @journal: Journal to act on. 1988 * 1989 * Flush all data for a given journal to disk and empty the journal. 1990 * Filesystems can use this when remounting readonly to ensure that 1991 * recovery does not need to happen on remount. 1992 */ 1993 1994 int jbd2_journal_flush(journal_t *journal) 1995 { 1996 int err = 0; 1997 transaction_t *transaction = NULL; 1998 1999 write_lock(&journal->j_state_lock); 2000 2001 /* Force everything buffered to the log... */ 2002 if (journal->j_running_transaction) { 2003 transaction = journal->j_running_transaction; 2004 __jbd2_log_start_commit(journal, transaction->t_tid); 2005 } else if (journal->j_committing_transaction) 2006 transaction = journal->j_committing_transaction; 2007 2008 /* Wait for the log commit to complete... */ 2009 if (transaction) { 2010 tid_t tid = transaction->t_tid; 2011 2012 write_unlock(&journal->j_state_lock); 2013 jbd2_log_wait_commit(journal, tid); 2014 } else { 2015 write_unlock(&journal->j_state_lock); 2016 } 2017 2018 /* ...and flush everything in the log out to disk. */ 2019 spin_lock(&journal->j_list_lock); 2020 while (!err && journal->j_checkpoint_transactions != NULL) { 2021 spin_unlock(&journal->j_list_lock); 2022 mutex_lock_io(&journal->j_checkpoint_mutex); 2023 err = jbd2_log_do_checkpoint(journal); 2024 mutex_unlock(&journal->j_checkpoint_mutex); 2025 spin_lock(&journal->j_list_lock); 2026 } 2027 spin_unlock(&journal->j_list_lock); 2028 2029 if (is_journal_aborted(journal)) 2030 return -EIO; 2031 2032 mutex_lock_io(&journal->j_checkpoint_mutex); 2033 if (!err) { 2034 err = jbd2_cleanup_journal_tail(journal); 2035 if (err < 0) { 2036 mutex_unlock(&journal->j_checkpoint_mutex); 2037 goto out; 2038 } 2039 err = 0; 2040 } 2041 2042 /* Finally, mark the journal as really needing no recovery. 2043 * This sets s_start==0 in the underlying superblock, which is 2044 * the magic code for a fully-recovered superblock. Any future 2045 * commits of data to the journal will restore the current 2046 * s_start value. */ 2047 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2048 mutex_unlock(&journal->j_checkpoint_mutex); 2049 write_lock(&journal->j_state_lock); 2050 J_ASSERT(!journal->j_running_transaction); 2051 J_ASSERT(!journal->j_committing_transaction); 2052 J_ASSERT(!journal->j_checkpoint_transactions); 2053 J_ASSERT(journal->j_head == journal->j_tail); 2054 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2055 write_unlock(&journal->j_state_lock); 2056 out: 2057 return err; 2058 } 2059 2060 /** 2061 * int jbd2_journal_wipe() - Wipe journal contents 2062 * @journal: Journal to act on. 2063 * @write: flag (see below) 2064 * 2065 * Wipe out all of the contents of a journal, safely. This will produce 2066 * a warning if the journal contains any valid recovery information. 2067 * Must be called between journal_init_*() and jbd2_journal_load(). 2068 * 2069 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2070 * we merely suppress recovery. 2071 */ 2072 2073 int jbd2_journal_wipe(journal_t *journal, int write) 2074 { 2075 int err = 0; 2076 2077 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2078 2079 err = load_superblock(journal); 2080 if (err) 2081 return err; 2082 2083 if (!journal->j_tail) 2084 goto no_recovery; 2085 2086 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2087 write ? "Clearing" : "Ignoring"); 2088 2089 err = jbd2_journal_skip_recovery(journal); 2090 if (write) { 2091 /* Lock to make assertions happy... */ 2092 mutex_lock_io(&journal->j_checkpoint_mutex); 2093 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2094 mutex_unlock(&journal->j_checkpoint_mutex); 2095 } 2096 2097 no_recovery: 2098 return err; 2099 } 2100 2101 /* 2102 * Journal abort has very specific semantics, which we describe 2103 * for journal abort. 2104 * 2105 * Two internal functions, which provide abort to the jbd layer 2106 * itself are here. 2107 */ 2108 2109 /* 2110 * Quick version for internal journal use (doesn't lock the journal). 2111 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2112 * and don't attempt to make any other journal updates. 2113 */ 2114 void __jbd2_journal_abort_hard(journal_t *journal) 2115 { 2116 transaction_t *transaction; 2117 2118 if (journal->j_flags & JBD2_ABORT) 2119 return; 2120 2121 printk(KERN_ERR "Aborting journal on device %s.\n", 2122 journal->j_devname); 2123 2124 write_lock(&journal->j_state_lock); 2125 journal->j_flags |= JBD2_ABORT; 2126 transaction = journal->j_running_transaction; 2127 if (transaction) 2128 __jbd2_log_start_commit(journal, transaction->t_tid); 2129 write_unlock(&journal->j_state_lock); 2130 } 2131 2132 /* Soft abort: record the abort error status in the journal superblock, 2133 * but don't do any other IO. */ 2134 static void __journal_abort_soft (journal_t *journal, int errno) 2135 { 2136 int old_errno; 2137 2138 write_lock(&journal->j_state_lock); 2139 old_errno = journal->j_errno; 2140 if (!journal->j_errno || errno == -ESHUTDOWN) 2141 journal->j_errno = errno; 2142 2143 if (journal->j_flags & JBD2_ABORT) { 2144 write_unlock(&journal->j_state_lock); 2145 if (!old_errno && old_errno != -ESHUTDOWN && 2146 errno == -ESHUTDOWN) 2147 jbd2_journal_update_sb_errno(journal); 2148 return; 2149 } 2150 write_unlock(&journal->j_state_lock); 2151 2152 __jbd2_journal_abort_hard(journal); 2153 2154 if (errno) { 2155 jbd2_journal_update_sb_errno(journal); 2156 write_lock(&journal->j_state_lock); 2157 journal->j_flags |= JBD2_REC_ERR; 2158 write_unlock(&journal->j_state_lock); 2159 } 2160 } 2161 2162 /** 2163 * void jbd2_journal_abort () - Shutdown the journal immediately. 2164 * @journal: the journal to shutdown. 2165 * @errno: an error number to record in the journal indicating 2166 * the reason for the shutdown. 2167 * 2168 * Perform a complete, immediate shutdown of the ENTIRE 2169 * journal (not of a single transaction). This operation cannot be 2170 * undone without closing and reopening the journal. 2171 * 2172 * The jbd2_journal_abort function is intended to support higher level error 2173 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2174 * mode. 2175 * 2176 * Journal abort has very specific semantics. Any existing dirty, 2177 * unjournaled buffers in the main filesystem will still be written to 2178 * disk by bdflush, but the journaling mechanism will be suspended 2179 * immediately and no further transaction commits will be honoured. 2180 * 2181 * Any dirty, journaled buffers will be written back to disk without 2182 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2183 * filesystem, but we _do_ attempt to leave as much data as possible 2184 * behind for fsck to use for cleanup. 2185 * 2186 * Any attempt to get a new transaction handle on a journal which is in 2187 * ABORT state will just result in an -EROFS error return. A 2188 * jbd2_journal_stop on an existing handle will return -EIO if we have 2189 * entered abort state during the update. 2190 * 2191 * Recursive transactions are not disturbed by journal abort until the 2192 * final jbd2_journal_stop, which will receive the -EIO error. 2193 * 2194 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2195 * which will be recorded (if possible) in the journal superblock. This 2196 * allows a client to record failure conditions in the middle of a 2197 * transaction without having to complete the transaction to record the 2198 * failure to disk. ext3_error, for example, now uses this 2199 * functionality. 2200 * 2201 * Errors which originate from within the journaling layer will NOT 2202 * supply an errno; a null errno implies that absolutely no further 2203 * writes are done to the journal (unless there are any already in 2204 * progress). 2205 * 2206 */ 2207 2208 void jbd2_journal_abort(journal_t *journal, int errno) 2209 { 2210 __journal_abort_soft(journal, errno); 2211 } 2212 2213 /** 2214 * int jbd2_journal_errno () - returns the journal's error state. 2215 * @journal: journal to examine. 2216 * 2217 * This is the errno number set with jbd2_journal_abort(), the last 2218 * time the journal was mounted - if the journal was stopped 2219 * without calling abort this will be 0. 2220 * 2221 * If the journal has been aborted on this mount time -EROFS will 2222 * be returned. 2223 */ 2224 int jbd2_journal_errno(journal_t *journal) 2225 { 2226 int err; 2227 2228 read_lock(&journal->j_state_lock); 2229 if (journal->j_flags & JBD2_ABORT) 2230 err = -EROFS; 2231 else 2232 err = journal->j_errno; 2233 read_unlock(&journal->j_state_lock); 2234 return err; 2235 } 2236 2237 /** 2238 * int jbd2_journal_clear_err () - clears the journal's error state 2239 * @journal: journal to act on. 2240 * 2241 * An error must be cleared or acked to take a FS out of readonly 2242 * mode. 2243 */ 2244 int jbd2_journal_clear_err(journal_t *journal) 2245 { 2246 int err = 0; 2247 2248 write_lock(&journal->j_state_lock); 2249 if (journal->j_flags & JBD2_ABORT) 2250 err = -EROFS; 2251 else 2252 journal->j_errno = 0; 2253 write_unlock(&journal->j_state_lock); 2254 return err; 2255 } 2256 2257 /** 2258 * void jbd2_journal_ack_err() - Ack journal err. 2259 * @journal: journal to act on. 2260 * 2261 * An error must be cleared or acked to take a FS out of readonly 2262 * mode. 2263 */ 2264 void jbd2_journal_ack_err(journal_t *journal) 2265 { 2266 write_lock(&journal->j_state_lock); 2267 if (journal->j_errno) 2268 journal->j_flags |= JBD2_ACK_ERR; 2269 write_unlock(&journal->j_state_lock); 2270 } 2271 2272 int jbd2_journal_blocks_per_page(struct inode *inode) 2273 { 2274 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2275 } 2276 2277 /* 2278 * helper functions to deal with 32 or 64bit block numbers. 2279 */ 2280 size_t journal_tag_bytes(journal_t *journal) 2281 { 2282 size_t sz; 2283 2284 if (jbd2_has_feature_csum3(journal)) 2285 return sizeof(journal_block_tag3_t); 2286 2287 sz = sizeof(journal_block_tag_t); 2288 2289 if (jbd2_has_feature_csum2(journal)) 2290 sz += sizeof(__u16); 2291 2292 if (jbd2_has_feature_64bit(journal)) 2293 return sz; 2294 else 2295 return sz - sizeof(__u32); 2296 } 2297 2298 /* 2299 * JBD memory management 2300 * 2301 * These functions are used to allocate block-sized chunks of memory 2302 * used for making copies of buffer_head data. Very often it will be 2303 * page-sized chunks of data, but sometimes it will be in 2304 * sub-page-size chunks. (For example, 16k pages on Power systems 2305 * with a 4k block file system.) For blocks smaller than a page, we 2306 * use a SLAB allocator. There are slab caches for each block size, 2307 * which are allocated at mount time, if necessary, and we only free 2308 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2309 * this reason we don't need to a mutex to protect access to 2310 * jbd2_slab[] allocating or releasing memory; only in 2311 * jbd2_journal_create_slab(). 2312 */ 2313 #define JBD2_MAX_SLABS 8 2314 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2315 2316 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2317 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2318 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2319 }; 2320 2321 2322 static void jbd2_journal_destroy_slabs(void) 2323 { 2324 int i; 2325 2326 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2327 kmem_cache_destroy(jbd2_slab[i]); 2328 jbd2_slab[i] = NULL; 2329 } 2330 } 2331 2332 static int jbd2_journal_create_slab(size_t size) 2333 { 2334 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2335 int i = order_base_2(size) - 10; 2336 size_t slab_size; 2337 2338 if (size == PAGE_SIZE) 2339 return 0; 2340 2341 if (i >= JBD2_MAX_SLABS) 2342 return -EINVAL; 2343 2344 if (unlikely(i < 0)) 2345 i = 0; 2346 mutex_lock(&jbd2_slab_create_mutex); 2347 if (jbd2_slab[i]) { 2348 mutex_unlock(&jbd2_slab_create_mutex); 2349 return 0; /* Already created */ 2350 } 2351 2352 slab_size = 1 << (i+10); 2353 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2354 slab_size, 0, NULL); 2355 mutex_unlock(&jbd2_slab_create_mutex); 2356 if (!jbd2_slab[i]) { 2357 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2358 return -ENOMEM; 2359 } 2360 return 0; 2361 } 2362 2363 static struct kmem_cache *get_slab(size_t size) 2364 { 2365 int i = order_base_2(size) - 10; 2366 2367 BUG_ON(i >= JBD2_MAX_SLABS); 2368 if (unlikely(i < 0)) 2369 i = 0; 2370 BUG_ON(jbd2_slab[i] == NULL); 2371 return jbd2_slab[i]; 2372 } 2373 2374 void *jbd2_alloc(size_t size, gfp_t flags) 2375 { 2376 void *ptr; 2377 2378 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2379 2380 if (size < PAGE_SIZE) 2381 ptr = kmem_cache_alloc(get_slab(size), flags); 2382 else 2383 ptr = (void *)__get_free_pages(flags, get_order(size)); 2384 2385 /* Check alignment; SLUB has gotten this wrong in the past, 2386 * and this can lead to user data corruption! */ 2387 BUG_ON(((unsigned long) ptr) & (size-1)); 2388 2389 return ptr; 2390 } 2391 2392 void jbd2_free(void *ptr, size_t size) 2393 { 2394 if (size < PAGE_SIZE) 2395 kmem_cache_free(get_slab(size), ptr); 2396 else 2397 free_pages((unsigned long)ptr, get_order(size)); 2398 }; 2399 2400 /* 2401 * Journal_head storage management 2402 */ 2403 static struct kmem_cache *jbd2_journal_head_cache; 2404 #ifdef CONFIG_JBD2_DEBUG 2405 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2406 #endif 2407 2408 static int __init jbd2_journal_init_journal_head_cache(void) 2409 { 2410 J_ASSERT(!jbd2_journal_head_cache); 2411 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2412 sizeof(struct journal_head), 2413 0, /* offset */ 2414 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2415 NULL); /* ctor */ 2416 if (!jbd2_journal_head_cache) { 2417 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2418 return -ENOMEM; 2419 } 2420 return 0; 2421 } 2422 2423 static void jbd2_journal_destroy_journal_head_cache(void) 2424 { 2425 kmem_cache_destroy(jbd2_journal_head_cache); 2426 jbd2_journal_head_cache = NULL; 2427 } 2428 2429 /* 2430 * journal_head splicing and dicing 2431 */ 2432 static struct journal_head *journal_alloc_journal_head(void) 2433 { 2434 struct journal_head *ret; 2435 2436 #ifdef CONFIG_JBD2_DEBUG 2437 atomic_inc(&nr_journal_heads); 2438 #endif 2439 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2440 if (!ret) { 2441 jbd_debug(1, "out of memory for journal_head\n"); 2442 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2443 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2444 GFP_NOFS | __GFP_NOFAIL); 2445 } 2446 if (ret) 2447 spin_lock_init(&ret->b_state_lock); 2448 return ret; 2449 } 2450 2451 static void journal_free_journal_head(struct journal_head *jh) 2452 { 2453 #ifdef CONFIG_JBD2_DEBUG 2454 atomic_dec(&nr_journal_heads); 2455 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2456 #endif 2457 kmem_cache_free(jbd2_journal_head_cache, jh); 2458 } 2459 2460 /* 2461 * A journal_head is attached to a buffer_head whenever JBD has an 2462 * interest in the buffer. 2463 * 2464 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2465 * is set. This bit is tested in core kernel code where we need to take 2466 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2467 * there. 2468 * 2469 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2470 * 2471 * When a buffer has its BH_JBD bit set it is immune from being released by 2472 * core kernel code, mainly via ->b_count. 2473 * 2474 * A journal_head is detached from its buffer_head when the journal_head's 2475 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2476 * transaction (b_cp_transaction) hold their references to b_jcount. 2477 * 2478 * Various places in the kernel want to attach a journal_head to a buffer_head 2479 * _before_ attaching the journal_head to a transaction. To protect the 2480 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2481 * journal_head's b_jcount refcount by one. The caller must call 2482 * jbd2_journal_put_journal_head() to undo this. 2483 * 2484 * So the typical usage would be: 2485 * 2486 * (Attach a journal_head if needed. Increments b_jcount) 2487 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2488 * ... 2489 * (Get another reference for transaction) 2490 * jbd2_journal_grab_journal_head(bh); 2491 * jh->b_transaction = xxx; 2492 * (Put original reference) 2493 * jbd2_journal_put_journal_head(jh); 2494 */ 2495 2496 /* 2497 * Give a buffer_head a journal_head. 2498 * 2499 * May sleep. 2500 */ 2501 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2502 { 2503 struct journal_head *jh; 2504 struct journal_head *new_jh = NULL; 2505 2506 repeat: 2507 if (!buffer_jbd(bh)) 2508 new_jh = journal_alloc_journal_head(); 2509 2510 jbd_lock_bh_journal_head(bh); 2511 if (buffer_jbd(bh)) { 2512 jh = bh2jh(bh); 2513 } else { 2514 J_ASSERT_BH(bh, 2515 (atomic_read(&bh->b_count) > 0) || 2516 (bh->b_page && bh->b_page->mapping)); 2517 2518 if (!new_jh) { 2519 jbd_unlock_bh_journal_head(bh); 2520 goto repeat; 2521 } 2522 2523 jh = new_jh; 2524 new_jh = NULL; /* We consumed it */ 2525 set_buffer_jbd(bh); 2526 bh->b_private = jh; 2527 jh->b_bh = bh; 2528 get_bh(bh); 2529 BUFFER_TRACE(bh, "added journal_head"); 2530 } 2531 jh->b_jcount++; 2532 jbd_unlock_bh_journal_head(bh); 2533 if (new_jh) 2534 journal_free_journal_head(new_jh); 2535 return bh->b_private; 2536 } 2537 2538 /* 2539 * Grab a ref against this buffer_head's journal_head. If it ended up not 2540 * having a journal_head, return NULL 2541 */ 2542 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2543 { 2544 struct journal_head *jh = NULL; 2545 2546 jbd_lock_bh_journal_head(bh); 2547 if (buffer_jbd(bh)) { 2548 jh = bh2jh(bh); 2549 jh->b_jcount++; 2550 } 2551 jbd_unlock_bh_journal_head(bh); 2552 return jh; 2553 } 2554 2555 static void __journal_remove_journal_head(struct buffer_head *bh) 2556 { 2557 struct journal_head *jh = bh2jh(bh); 2558 2559 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2560 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2561 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2562 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2563 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2564 J_ASSERT_BH(bh, buffer_jbd(bh)); 2565 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2566 BUFFER_TRACE(bh, "remove journal_head"); 2567 2568 /* Unlink before dropping the lock */ 2569 bh->b_private = NULL; 2570 jh->b_bh = NULL; /* debug, really */ 2571 clear_buffer_jbd(bh); 2572 } 2573 2574 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2575 { 2576 if (jh->b_frozen_data) { 2577 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2578 jbd2_free(jh->b_frozen_data, b_size); 2579 } 2580 if (jh->b_committed_data) { 2581 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2582 jbd2_free(jh->b_committed_data, b_size); 2583 } 2584 journal_free_journal_head(jh); 2585 } 2586 2587 /* 2588 * Drop a reference on the passed journal_head. If it fell to zero then 2589 * release the journal_head from the buffer_head. 2590 */ 2591 void jbd2_journal_put_journal_head(struct journal_head *jh) 2592 { 2593 struct buffer_head *bh = jh2bh(jh); 2594 2595 jbd_lock_bh_journal_head(bh); 2596 J_ASSERT_JH(jh, jh->b_jcount > 0); 2597 --jh->b_jcount; 2598 if (!jh->b_jcount) { 2599 __journal_remove_journal_head(bh); 2600 jbd_unlock_bh_journal_head(bh); 2601 journal_release_journal_head(jh, bh->b_size); 2602 __brelse(bh); 2603 } else { 2604 jbd_unlock_bh_journal_head(bh); 2605 } 2606 } 2607 2608 /* 2609 * Initialize jbd inode head 2610 */ 2611 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2612 { 2613 jinode->i_transaction = NULL; 2614 jinode->i_next_transaction = NULL; 2615 jinode->i_vfs_inode = inode; 2616 jinode->i_flags = 0; 2617 jinode->i_dirty_start = 0; 2618 jinode->i_dirty_end = 0; 2619 INIT_LIST_HEAD(&jinode->i_list); 2620 } 2621 2622 /* 2623 * Function to be called before we start removing inode from memory (i.e., 2624 * clear_inode() is a fine place to be called from). It removes inode from 2625 * transaction's lists. 2626 */ 2627 void jbd2_journal_release_jbd_inode(journal_t *journal, 2628 struct jbd2_inode *jinode) 2629 { 2630 if (!journal) 2631 return; 2632 restart: 2633 spin_lock(&journal->j_list_lock); 2634 /* Is commit writing out inode - we have to wait */ 2635 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2636 wait_queue_head_t *wq; 2637 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2638 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2639 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2640 spin_unlock(&journal->j_list_lock); 2641 schedule(); 2642 finish_wait(wq, &wait.wq_entry); 2643 goto restart; 2644 } 2645 2646 if (jinode->i_transaction) { 2647 list_del(&jinode->i_list); 2648 jinode->i_transaction = NULL; 2649 } 2650 spin_unlock(&journal->j_list_lock); 2651 } 2652 2653 2654 #ifdef CONFIG_PROC_FS 2655 2656 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2657 2658 static void __init jbd2_create_jbd_stats_proc_entry(void) 2659 { 2660 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2661 } 2662 2663 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2664 { 2665 if (proc_jbd2_stats) 2666 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2667 } 2668 2669 #else 2670 2671 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2672 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2673 2674 #endif 2675 2676 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2677 2678 static int __init jbd2_journal_init_inode_cache(void) 2679 { 2680 J_ASSERT(!jbd2_inode_cache); 2681 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2682 if (!jbd2_inode_cache) { 2683 pr_emerg("JBD2: failed to create inode cache\n"); 2684 return -ENOMEM; 2685 } 2686 return 0; 2687 } 2688 2689 static int __init jbd2_journal_init_handle_cache(void) 2690 { 2691 J_ASSERT(!jbd2_handle_cache); 2692 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2693 if (!jbd2_handle_cache) { 2694 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2695 return -ENOMEM; 2696 } 2697 return 0; 2698 } 2699 2700 static void jbd2_journal_destroy_inode_cache(void) 2701 { 2702 kmem_cache_destroy(jbd2_inode_cache); 2703 jbd2_inode_cache = NULL; 2704 } 2705 2706 static void jbd2_journal_destroy_handle_cache(void) 2707 { 2708 kmem_cache_destroy(jbd2_handle_cache); 2709 jbd2_handle_cache = NULL; 2710 } 2711 2712 /* 2713 * Module startup and shutdown 2714 */ 2715 2716 static int __init journal_init_caches(void) 2717 { 2718 int ret; 2719 2720 ret = jbd2_journal_init_revoke_record_cache(); 2721 if (ret == 0) 2722 ret = jbd2_journal_init_revoke_table_cache(); 2723 if (ret == 0) 2724 ret = jbd2_journal_init_journal_head_cache(); 2725 if (ret == 0) 2726 ret = jbd2_journal_init_handle_cache(); 2727 if (ret == 0) 2728 ret = jbd2_journal_init_inode_cache(); 2729 if (ret == 0) 2730 ret = jbd2_journal_init_transaction_cache(); 2731 return ret; 2732 } 2733 2734 static void jbd2_journal_destroy_caches(void) 2735 { 2736 jbd2_journal_destroy_revoke_record_cache(); 2737 jbd2_journal_destroy_revoke_table_cache(); 2738 jbd2_journal_destroy_journal_head_cache(); 2739 jbd2_journal_destroy_handle_cache(); 2740 jbd2_journal_destroy_inode_cache(); 2741 jbd2_journal_destroy_transaction_cache(); 2742 jbd2_journal_destroy_slabs(); 2743 } 2744 2745 static int __init journal_init(void) 2746 { 2747 int ret; 2748 2749 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2750 2751 ret = journal_init_caches(); 2752 if (ret == 0) { 2753 jbd2_create_jbd_stats_proc_entry(); 2754 } else { 2755 jbd2_journal_destroy_caches(); 2756 } 2757 return ret; 2758 } 2759 2760 static void __exit journal_exit(void) 2761 { 2762 #ifdef CONFIG_JBD2_DEBUG 2763 int n = atomic_read(&nr_journal_heads); 2764 if (n) 2765 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2766 #endif 2767 jbd2_remove_jbd_stats_proc_entry(); 2768 jbd2_journal_destroy_caches(); 2769 } 2770 2771 MODULE_LICENSE("GPL"); 2772 module_init(journal_init); 2773 module_exit(journal_exit); 2774 2775