xref: /openbmc/linux/fs/jbd2/journal.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100 
101 static int jbd2_journal_create_slab(size_t slab_size);
102 
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 		  unsigned int line, const char *fmt, ...)
106 {
107 	struct va_format vaf;
108 	va_list args;
109 
110 	if (level > jbd2_journal_enable_debug)
111 		return;
112 	va_start(args, fmt);
113 	vaf.fmt = fmt;
114 	vaf.va = &args;
115 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 	va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120 
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 	if (!jbd2_journal_has_csum_v2or3_feature(j))
125 		return 1;
126 
127 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129 
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 	__u32 csum;
133 	__be32 old_csum;
134 
135 	old_csum = sb->s_checksum;
136 	sb->s_checksum = 0;
137 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 	sb->s_checksum = old_csum;
139 
140 	return cpu_to_be32(csum);
141 }
142 
143 /*
144  * Helper function used to manage commit timeouts
145  */
146 
147 static void commit_timeout(struct timer_list *t)
148 {
149 	journal_t *journal = from_timer(journal, t, j_commit_timer);
150 
151 	wake_up_process(journal->j_task);
152 }
153 
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171 
172 static int kjournald2(void *arg)
173 {
174 	journal_t *journal = arg;
175 	transaction_t *transaction;
176 
177 	/*
178 	 * Set up an interval timer which can be used to trigger a commit wakeup
179 	 * after the commit interval expires
180 	 */
181 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182 
183 	set_freezable();
184 
185 	/* Record that the journal thread is running */
186 	journal->j_task = current;
187 	wake_up(&journal->j_wait_done_commit);
188 
189 	/*
190 	 * Make sure that no allocations from this kernel thread will ever
191 	 * recurse to the fs layer because we are responsible for the
192 	 * transaction commit and any fs involvement might get stuck waiting for
193 	 * the trasn. commit.
194 	 */
195 	memalloc_nofs_save();
196 
197 	/*
198 	 * And now, wait forever for commit wakeup events.
199 	 */
200 	write_lock(&journal->j_state_lock);
201 
202 loop:
203 	if (journal->j_flags & JBD2_UNMOUNT)
204 		goto end_loop;
205 
206 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 		journal->j_commit_sequence, journal->j_commit_request);
208 
209 	if (journal->j_commit_sequence != journal->j_commit_request) {
210 		jbd_debug(1, "OK, requests differ\n");
211 		write_unlock(&journal->j_state_lock);
212 		del_timer_sync(&journal->j_commit_timer);
213 		jbd2_journal_commit_transaction(journal);
214 		write_lock(&journal->j_state_lock);
215 		goto loop;
216 	}
217 
218 	wake_up(&journal->j_wait_done_commit);
219 	if (freezing(current)) {
220 		/*
221 		 * The simpler the better. Flushing journal isn't a
222 		 * good idea, because that depends on threads that may
223 		 * be already stopped.
224 		 */
225 		jbd_debug(1, "Now suspending kjournald2\n");
226 		write_unlock(&journal->j_state_lock);
227 		try_to_freeze();
228 		write_lock(&journal->j_state_lock);
229 	} else {
230 		/*
231 		 * We assume on resume that commits are already there,
232 		 * so we don't sleep
233 		 */
234 		DEFINE_WAIT(wait);
235 		int should_sleep = 1;
236 
237 		prepare_to_wait(&journal->j_wait_commit, &wait,
238 				TASK_INTERRUPTIBLE);
239 		if (journal->j_commit_sequence != journal->j_commit_request)
240 			should_sleep = 0;
241 		transaction = journal->j_running_transaction;
242 		if (transaction && time_after_eq(jiffies,
243 						transaction->t_expires))
244 			should_sleep = 0;
245 		if (journal->j_flags & JBD2_UNMOUNT)
246 			should_sleep = 0;
247 		if (should_sleep) {
248 			write_unlock(&journal->j_state_lock);
249 			schedule();
250 			write_lock(&journal->j_state_lock);
251 		}
252 		finish_wait(&journal->j_wait_commit, &wait);
253 	}
254 
255 	jbd_debug(1, "kjournald2 wakes\n");
256 
257 	/*
258 	 * Were we woken up by a commit wakeup event?
259 	 */
260 	transaction = journal->j_running_transaction;
261 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 		journal->j_commit_request = transaction->t_tid;
263 		jbd_debug(1, "woke because of timeout\n");
264 	}
265 	goto loop;
266 
267 end_loop:
268 	del_timer_sync(&journal->j_commit_timer);
269 	journal->j_task = NULL;
270 	wake_up(&journal->j_wait_done_commit);
271 	jbd_debug(1, "Journal thread exiting.\n");
272 	write_unlock(&journal->j_state_lock);
273 	return 0;
274 }
275 
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 	struct task_struct *t;
279 
280 	t = kthread_run(kjournald2, journal, "jbd2/%s",
281 			journal->j_devname);
282 	if (IS_ERR(t))
283 		return PTR_ERR(t);
284 
285 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 	return 0;
287 }
288 
289 static void journal_kill_thread(journal_t *journal)
290 {
291 	write_lock(&journal->j_state_lock);
292 	journal->j_flags |= JBD2_UNMOUNT;
293 
294 	while (journal->j_task) {
295 		write_unlock(&journal->j_state_lock);
296 		wake_up(&journal->j_wait_commit);
297 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 		write_lock(&journal->j_state_lock);
299 	}
300 	write_unlock(&journal->j_state_lock);
301 }
302 
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337 
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 				  struct journal_head  *jh_in,
340 				  struct buffer_head **bh_out,
341 				  sector_t blocknr)
342 {
343 	int need_copy_out = 0;
344 	int done_copy_out = 0;
345 	int do_escape = 0;
346 	char *mapped_data;
347 	struct buffer_head *new_bh;
348 	struct page *new_page;
349 	unsigned int new_offset;
350 	struct buffer_head *bh_in = jh2bh(jh_in);
351 	journal_t *journal = transaction->t_journal;
352 
353 	/*
354 	 * The buffer really shouldn't be locked: only the current committing
355 	 * transaction is allowed to write it, so nobody else is allowed
356 	 * to do any IO.
357 	 *
358 	 * akpm: except if we're journalling data, and write() output is
359 	 * also part of a shared mapping, and another thread has
360 	 * decided to launch a writepage() against this buffer.
361 	 */
362 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363 
364 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365 
366 	/* keep subsequent assertions sane */
367 	atomic_set(&new_bh->b_count, 1);
368 
369 	spin_lock(&jh_in->b_state_lock);
370 repeat:
371 	/*
372 	 * If a new transaction has already done a buffer copy-out, then
373 	 * we use that version of the data for the commit.
374 	 */
375 	if (jh_in->b_frozen_data) {
376 		done_copy_out = 1;
377 		new_page = virt_to_page(jh_in->b_frozen_data);
378 		new_offset = offset_in_page(jh_in->b_frozen_data);
379 	} else {
380 		new_page = jh2bh(jh_in)->b_page;
381 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 	}
383 
384 	mapped_data = kmap_atomic(new_page);
385 	/*
386 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
387 	 * before checking for escaping, as the trigger may modify the magic
388 	 * offset.  If a copy-out happens afterwards, it will have the correct
389 	 * data in the buffer.
390 	 */
391 	if (!done_copy_out)
392 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 					   jh_in->b_triggers);
394 
395 	/*
396 	 * Check for escaping
397 	 */
398 	if (*((__be32 *)(mapped_data + new_offset)) ==
399 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 		need_copy_out = 1;
401 		do_escape = 1;
402 	}
403 	kunmap_atomic(mapped_data);
404 
405 	/*
406 	 * Do we need to do a data copy?
407 	 */
408 	if (need_copy_out && !done_copy_out) {
409 		char *tmp;
410 
411 		spin_unlock(&jh_in->b_state_lock);
412 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 		if (!tmp) {
414 			brelse(new_bh);
415 			return -ENOMEM;
416 		}
417 		spin_lock(&jh_in->b_state_lock);
418 		if (jh_in->b_frozen_data) {
419 			jbd2_free(tmp, bh_in->b_size);
420 			goto repeat;
421 		}
422 
423 		jh_in->b_frozen_data = tmp;
424 		mapped_data = kmap_atomic(new_page);
425 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 		kunmap_atomic(mapped_data);
427 
428 		new_page = virt_to_page(tmp);
429 		new_offset = offset_in_page(tmp);
430 		done_copy_out = 1;
431 
432 		/*
433 		 * This isn't strictly necessary, as we're using frozen
434 		 * data for the escaping, but it keeps consistency with
435 		 * b_frozen_data usage.
436 		 */
437 		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 	}
439 
440 	/*
441 	 * Did we need to do an escaping?  Now we've done all the
442 	 * copying, we can finally do so.
443 	 */
444 	if (do_escape) {
445 		mapped_data = kmap_atomic(new_page);
446 		*((unsigned int *)(mapped_data + new_offset)) = 0;
447 		kunmap_atomic(mapped_data);
448 	}
449 
450 	set_bh_page(new_bh, new_page, new_offset);
451 	new_bh->b_size = bh_in->b_size;
452 	new_bh->b_bdev = journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	new_bh->b_private = bh_in;
455 	set_buffer_mapped(new_bh);
456 	set_buffer_dirty(new_bh);
457 
458 	*bh_out = new_bh;
459 
460 	/*
461 	 * The to-be-written buffer needs to get moved to the io queue,
462 	 * and the original buffer whose contents we are shadowing or
463 	 * copying is moved to the transaction's shadow queue.
464 	 */
465 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 	spin_lock(&journal->j_list_lock);
467 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 	spin_unlock(&journal->j_list_lock);
469 	set_buffer_shadow(bh_in);
470 	spin_unlock(&jh_in->b_state_lock);
471 
472 	return do_escape | (done_copy_out << 1);
473 }
474 
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479 
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 	/* Return if the txn has already requested to be committed */
487 	if (journal->j_commit_request == target)
488 		return 0;
489 
490 	/*
491 	 * The only transaction we can possibly wait upon is the
492 	 * currently running transaction (if it exists).  Otherwise,
493 	 * the target tid must be an old one.
494 	 */
495 	if (journal->j_running_transaction &&
496 	    journal->j_running_transaction->t_tid == target) {
497 		/*
498 		 * We want a new commit: OK, mark the request and wakeup the
499 		 * commit thread.  We do _not_ do the commit ourselves.
500 		 */
501 
502 		journal->j_commit_request = target;
503 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 			  journal->j_commit_request,
505 			  journal->j_commit_sequence);
506 		journal->j_running_transaction->t_requested = jiffies;
507 		wake_up(&journal->j_wait_commit);
508 		return 1;
509 	} else if (!tid_geq(journal->j_commit_request, target))
510 		/* This should never happen, but if it does, preserve
511 		   the evidence before kjournald goes into a loop and
512 		   increments j_commit_sequence beyond all recognition. */
513 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 			  journal->j_commit_request,
515 			  journal->j_commit_sequence,
516 			  target, journal->j_running_transaction ?
517 			  journal->j_running_transaction->t_tid : 0);
518 	return 0;
519 }
520 
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 	int ret;
524 
525 	write_lock(&journal->j_state_lock);
526 	ret = __jbd2_log_start_commit(journal, tid);
527 	write_unlock(&journal->j_state_lock);
528 	return ret;
529 }
530 
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 	transaction_t *transaction = NULL;
541 	tid_t tid;
542 	int need_to_start = 0, ret = 0;
543 
544 	read_lock(&journal->j_state_lock);
545 	if (journal->j_running_transaction && !current->journal_info) {
546 		transaction = journal->j_running_transaction;
547 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 			need_to_start = 1;
549 	} else if (journal->j_committing_transaction)
550 		transaction = journal->j_committing_transaction;
551 
552 	if (!transaction) {
553 		/* Nothing to commit */
554 		read_unlock(&journal->j_state_lock);
555 		return 0;
556 	}
557 	tid = transaction->t_tid;
558 	read_unlock(&journal->j_state_lock);
559 	if (need_to_start)
560 		jbd2_log_start_commit(journal, tid);
561 	ret = jbd2_log_wait_commit(journal, tid);
562 	if (!ret)
563 		ret = 1;
564 
565 	return ret;
566 }
567 
568 /**
569  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570  * calling process is not within transaction.
571  *
572  * @journal: journal to force
573  * Returns true if progress was made.
574  *
575  * This is used for forcing out undo-protected data which contains
576  * bitmaps, when the fs is running out of space.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 	int ret;
581 
582 	ret = __jbd2_journal_force_commit(journal);
583 	return ret > 0;
584 }
585 
586 /**
587  * jbd2_journal_force_commit() - force any uncommitted transactions
588  * @journal: journal to force
589  *
590  * Caller want unconditional commit. We can only force the running transaction
591  * if we don't have an active handle, otherwise, we will deadlock.
592  */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 	int ret;
596 
597 	J_ASSERT(!current->journal_info);
598 	ret = __jbd2_journal_force_commit(journal);
599 	if (ret > 0)
600 		ret = 0;
601 	return ret;
602 }
603 
604 /*
605  * Start a commit of the current running transaction (if any).  Returns true
606  * if a transaction is going to be committed (or is currently already
607  * committing), and fills its tid in at *ptid
608  */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 	int ret = 0;
612 
613 	write_lock(&journal->j_state_lock);
614 	if (journal->j_running_transaction) {
615 		tid_t tid = journal->j_running_transaction->t_tid;
616 
617 		__jbd2_log_start_commit(journal, tid);
618 		/* There's a running transaction and we've just made sure
619 		 * it's commit has been scheduled. */
620 		if (ptid)
621 			*ptid = tid;
622 		ret = 1;
623 	} else if (journal->j_committing_transaction) {
624 		/*
625 		 * If commit has been started, then we have to wait for
626 		 * completion of that transaction.
627 		 */
628 		if (ptid)
629 			*ptid = journal->j_committing_transaction->t_tid;
630 		ret = 1;
631 	}
632 	write_unlock(&journal->j_state_lock);
633 	return ret;
634 }
635 
636 /*
637  * Return 1 if a given transaction has not yet sent barrier request
638  * connected with a transaction commit. If 0 is returned, transaction
639  * may or may not have sent the barrier. Used to avoid sending barrier
640  * twice in common cases.
641  */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 	int ret = 0;
645 	transaction_t *commit_trans;
646 
647 	if (!(journal->j_flags & JBD2_BARRIER))
648 		return 0;
649 	read_lock(&journal->j_state_lock);
650 	/* Transaction already committed? */
651 	if (tid_geq(journal->j_commit_sequence, tid))
652 		goto out;
653 	commit_trans = journal->j_committing_transaction;
654 	if (!commit_trans || commit_trans->t_tid != tid) {
655 		ret = 1;
656 		goto out;
657 	}
658 	/*
659 	 * Transaction is being committed and we already proceeded to
660 	 * submitting a flush to fs partition?
661 	 */
662 	if (journal->j_fs_dev != journal->j_dev) {
663 		if (!commit_trans->t_need_data_flush ||
664 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
665 			goto out;
666 	} else {
667 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 			goto out;
669 	}
670 	ret = 1;
671 out:
672 	read_unlock(&journal->j_state_lock);
673 	return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676 
677 /*
678  * Wait for a specified commit to complete.
679  * The caller may not hold the journal lock.
680  */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 	int err = 0;
684 
685 	read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 	/*
688 	 * Some callers make sure transaction is already committing and in that
689 	 * case we cannot block on open handles anymore. So don't warn in that
690 	 * case.
691 	 */
692 	if (tid_gt(tid, journal->j_commit_sequence) &&
693 	    (!journal->j_committing_transaction ||
694 	     journal->j_committing_transaction->t_tid != tid)) {
695 		read_unlock(&journal->j_state_lock);
696 		jbd2_might_wait_for_commit(journal);
697 		read_lock(&journal->j_state_lock);
698 	}
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 	if (!tid_geq(journal->j_commit_request, tid)) {
702 		printk(KERN_ERR
703 		       "%s: error: j_commit_request=%u, tid=%u\n",
704 		       __func__, journal->j_commit_request, tid);
705 	}
706 #endif
707 	while (tid_gt(tid, journal->j_commit_sequence)) {
708 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 				  tid, journal->j_commit_sequence);
710 		read_unlock(&journal->j_state_lock);
711 		wake_up(&journal->j_wait_commit);
712 		wait_event(journal->j_wait_done_commit,
713 				!tid_gt(tid, journal->j_commit_sequence));
714 		read_lock(&journal->j_state_lock);
715 	}
716 	read_unlock(&journal->j_state_lock);
717 
718 	if (unlikely(is_journal_aborted(journal)))
719 		err = -EIO;
720 	return err;
721 }
722 
723 /*
724  * Start a fast commit. If there's an ongoing fast or full commit wait for
725  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726  * if a fast commit is not needed, either because there's an already a commit
727  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728  * commit has yet been performed.
729  */
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 	if (unlikely(is_journal_aborted(journal)))
733 		return -EIO;
734 	/*
735 	 * Fast commits only allowed if at least one full commit has
736 	 * been processed.
737 	 */
738 	if (!journal->j_stats.ts_tid)
739 		return -EINVAL;
740 
741 	write_lock(&journal->j_state_lock);
742 	if (tid <= journal->j_commit_sequence) {
743 		write_unlock(&journal->j_state_lock);
744 		return -EALREADY;
745 	}
746 
747 	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 		DEFINE_WAIT(wait);
750 
751 		prepare_to_wait(&journal->j_fc_wait, &wait,
752 				TASK_UNINTERRUPTIBLE);
753 		write_unlock(&journal->j_state_lock);
754 		schedule();
755 		finish_wait(&journal->j_fc_wait, &wait);
756 		return -EALREADY;
757 	}
758 	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 	write_unlock(&journal->j_state_lock);
760 	jbd2_journal_lock_updates(journal);
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL(jbd2_fc_begin_commit);
765 
766 /*
767  * Stop a fast commit. If fallback is set, this function starts commit of
768  * TID tid before any other fast commit can start.
769  */
770 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
771 {
772 	jbd2_journal_unlock_updates(journal);
773 	if (journal->j_fc_cleanup_callback)
774 		journal->j_fc_cleanup_callback(journal, 0);
775 	write_lock(&journal->j_state_lock);
776 	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
777 	if (fallback)
778 		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
779 	write_unlock(&journal->j_state_lock);
780 	wake_up(&journal->j_fc_wait);
781 	if (fallback)
782 		return jbd2_complete_transaction(journal, tid);
783 	return 0;
784 }
785 
786 int jbd2_fc_end_commit(journal_t *journal)
787 {
788 	return __jbd2_fc_end_commit(journal, 0, false);
789 }
790 EXPORT_SYMBOL(jbd2_fc_end_commit);
791 
792 int jbd2_fc_end_commit_fallback(journal_t *journal)
793 {
794 	tid_t tid;
795 
796 	read_lock(&journal->j_state_lock);
797 	tid = journal->j_running_transaction ?
798 		journal->j_running_transaction->t_tid : 0;
799 	read_unlock(&journal->j_state_lock);
800 	return __jbd2_fc_end_commit(journal, tid, true);
801 }
802 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
803 
804 /* Return 1 when transaction with given tid has already committed. */
805 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
806 {
807 	int ret = 1;
808 
809 	read_lock(&journal->j_state_lock);
810 	if (journal->j_running_transaction &&
811 	    journal->j_running_transaction->t_tid == tid)
812 		ret = 0;
813 	if (journal->j_committing_transaction &&
814 	    journal->j_committing_transaction->t_tid == tid)
815 		ret = 0;
816 	read_unlock(&journal->j_state_lock);
817 	return ret;
818 }
819 EXPORT_SYMBOL(jbd2_transaction_committed);
820 
821 /*
822  * When this function returns the transaction corresponding to tid
823  * will be completed.  If the transaction has currently running, start
824  * committing that transaction before waiting for it to complete.  If
825  * the transaction id is stale, it is by definition already completed,
826  * so just return SUCCESS.
827  */
828 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
829 {
830 	int	need_to_wait = 1;
831 
832 	read_lock(&journal->j_state_lock);
833 	if (journal->j_running_transaction &&
834 	    journal->j_running_transaction->t_tid == tid) {
835 		if (journal->j_commit_request != tid) {
836 			/* transaction not yet started, so request it */
837 			read_unlock(&journal->j_state_lock);
838 			jbd2_log_start_commit(journal, tid);
839 			goto wait_commit;
840 		}
841 	} else if (!(journal->j_committing_transaction &&
842 		     journal->j_committing_transaction->t_tid == tid))
843 		need_to_wait = 0;
844 	read_unlock(&journal->j_state_lock);
845 	if (!need_to_wait)
846 		return 0;
847 wait_commit:
848 	return jbd2_log_wait_commit(journal, tid);
849 }
850 EXPORT_SYMBOL(jbd2_complete_transaction);
851 
852 /*
853  * Log buffer allocation routines:
854  */
855 
856 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
857 {
858 	unsigned long blocknr;
859 
860 	write_lock(&journal->j_state_lock);
861 	J_ASSERT(journal->j_free > 1);
862 
863 	blocknr = journal->j_head;
864 	journal->j_head++;
865 	journal->j_free--;
866 	if (journal->j_head == journal->j_last)
867 		journal->j_head = journal->j_first;
868 	write_unlock(&journal->j_state_lock);
869 	return jbd2_journal_bmap(journal, blocknr, retp);
870 }
871 
872 /* Map one fast commit buffer for use by the file system */
873 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
874 {
875 	unsigned long long pblock;
876 	unsigned long blocknr;
877 	int ret = 0;
878 	struct buffer_head *bh;
879 	int fc_off;
880 
881 	*bh_out = NULL;
882 
883 	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
884 		fc_off = journal->j_fc_off;
885 		blocknr = journal->j_fc_first + fc_off;
886 		journal->j_fc_off++;
887 	} else {
888 		ret = -EINVAL;
889 	}
890 
891 	if (ret)
892 		return ret;
893 
894 	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
895 	if (ret)
896 		return ret;
897 
898 	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
899 	if (!bh)
900 		return -ENOMEM;
901 
902 
903 	journal->j_fc_wbuf[fc_off] = bh;
904 
905 	*bh_out = bh;
906 
907 	return 0;
908 }
909 EXPORT_SYMBOL(jbd2_fc_get_buf);
910 
911 /*
912  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
913  * for completion.
914  */
915 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
916 {
917 	struct buffer_head *bh;
918 	int i, j_fc_off;
919 
920 	j_fc_off = journal->j_fc_off;
921 
922 	/*
923 	 * Wait in reverse order to minimize chances of us being woken up before
924 	 * all IOs have completed
925 	 */
926 	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
927 		bh = journal->j_fc_wbuf[i];
928 		wait_on_buffer(bh);
929 		put_bh(bh);
930 		journal->j_fc_wbuf[i] = NULL;
931 		if (unlikely(!buffer_uptodate(bh)))
932 			return -EIO;
933 	}
934 
935 	return 0;
936 }
937 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
938 
939 int jbd2_fc_release_bufs(journal_t *journal)
940 {
941 	struct buffer_head *bh;
942 	int i, j_fc_off;
943 
944 	j_fc_off = journal->j_fc_off;
945 
946 	for (i = j_fc_off - 1; i >= 0; i--) {
947 		bh = journal->j_fc_wbuf[i];
948 		if (!bh)
949 			break;
950 		put_bh(bh);
951 		journal->j_fc_wbuf[i] = NULL;
952 	}
953 
954 	return 0;
955 }
956 EXPORT_SYMBOL(jbd2_fc_release_bufs);
957 
958 /*
959  * Conversion of logical to physical block numbers for the journal
960  *
961  * On external journals the journal blocks are identity-mapped, so
962  * this is a no-op.  If needed, we can use j_blk_offset - everything is
963  * ready.
964  */
965 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
966 		 unsigned long long *retp)
967 {
968 	int err = 0;
969 	unsigned long long ret;
970 	sector_t block = 0;
971 
972 	if (journal->j_inode) {
973 		block = blocknr;
974 		ret = bmap(journal->j_inode, &block);
975 
976 		if (ret || !block) {
977 			printk(KERN_ALERT "%s: journal block not found "
978 					"at offset %lu on %s\n",
979 			       __func__, blocknr, journal->j_devname);
980 			err = -EIO;
981 			jbd2_journal_abort(journal, err);
982 		} else {
983 			*retp = block;
984 		}
985 
986 	} else {
987 		*retp = blocknr; /* +journal->j_blk_offset */
988 	}
989 	return err;
990 }
991 
992 /*
993  * We play buffer_head aliasing tricks to write data/metadata blocks to
994  * the journal without copying their contents, but for journal
995  * descriptor blocks we do need to generate bona fide buffers.
996  *
997  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
998  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
999  * But we don't bother doing that, so there will be coherency problems with
1000  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1001  */
1002 struct buffer_head *
1003 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1004 {
1005 	journal_t *journal = transaction->t_journal;
1006 	struct buffer_head *bh;
1007 	unsigned long long blocknr;
1008 	journal_header_t *header;
1009 	int err;
1010 
1011 	err = jbd2_journal_next_log_block(journal, &blocknr);
1012 
1013 	if (err)
1014 		return NULL;
1015 
1016 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1017 	if (!bh)
1018 		return NULL;
1019 	atomic_dec(&transaction->t_outstanding_credits);
1020 	lock_buffer(bh);
1021 	memset(bh->b_data, 0, journal->j_blocksize);
1022 	header = (journal_header_t *)bh->b_data;
1023 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1024 	header->h_blocktype = cpu_to_be32(type);
1025 	header->h_sequence = cpu_to_be32(transaction->t_tid);
1026 	set_buffer_uptodate(bh);
1027 	unlock_buffer(bh);
1028 	BUFFER_TRACE(bh, "return this buffer");
1029 	return bh;
1030 }
1031 
1032 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1033 {
1034 	struct jbd2_journal_block_tail *tail;
1035 	__u32 csum;
1036 
1037 	if (!jbd2_journal_has_csum_v2or3(j))
1038 		return;
1039 
1040 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1041 			sizeof(struct jbd2_journal_block_tail));
1042 	tail->t_checksum = 0;
1043 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1044 	tail->t_checksum = cpu_to_be32(csum);
1045 }
1046 
1047 /*
1048  * Return tid of the oldest transaction in the journal and block in the journal
1049  * where the transaction starts.
1050  *
1051  * If the journal is now empty, return which will be the next transaction ID
1052  * we will write and where will that transaction start.
1053  *
1054  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1055  * it can.
1056  */
1057 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1058 			      unsigned long *block)
1059 {
1060 	transaction_t *transaction;
1061 	int ret;
1062 
1063 	read_lock(&journal->j_state_lock);
1064 	spin_lock(&journal->j_list_lock);
1065 	transaction = journal->j_checkpoint_transactions;
1066 	if (transaction) {
1067 		*tid = transaction->t_tid;
1068 		*block = transaction->t_log_start;
1069 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1070 		*tid = transaction->t_tid;
1071 		*block = transaction->t_log_start;
1072 	} else if ((transaction = journal->j_running_transaction) != NULL) {
1073 		*tid = transaction->t_tid;
1074 		*block = journal->j_head;
1075 	} else {
1076 		*tid = journal->j_transaction_sequence;
1077 		*block = journal->j_head;
1078 	}
1079 	ret = tid_gt(*tid, journal->j_tail_sequence);
1080 	spin_unlock(&journal->j_list_lock);
1081 	read_unlock(&journal->j_state_lock);
1082 
1083 	return ret;
1084 }
1085 
1086 /*
1087  * Update information in journal structure and in on disk journal superblock
1088  * about log tail. This function does not check whether information passed in
1089  * really pushes log tail further. It's responsibility of the caller to make
1090  * sure provided log tail information is valid (e.g. by holding
1091  * j_checkpoint_mutex all the time between computing log tail and calling this
1092  * function as is the case with jbd2_cleanup_journal_tail()).
1093  *
1094  * Requires j_checkpoint_mutex
1095  */
1096 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1097 {
1098 	unsigned long freed;
1099 	int ret;
1100 
1101 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1102 
1103 	/*
1104 	 * We cannot afford for write to remain in drive's caches since as
1105 	 * soon as we update j_tail, next transaction can start reusing journal
1106 	 * space and if we lose sb update during power failure we'd replay
1107 	 * old transaction with possibly newly overwritten data.
1108 	 */
1109 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1110 					      REQ_SYNC | REQ_FUA);
1111 	if (ret)
1112 		goto out;
1113 
1114 	write_lock(&journal->j_state_lock);
1115 	freed = block - journal->j_tail;
1116 	if (block < journal->j_tail)
1117 		freed += journal->j_last - journal->j_first;
1118 
1119 	trace_jbd2_update_log_tail(journal, tid, block, freed);
1120 	jbd_debug(1,
1121 		  "Cleaning journal tail from %u to %u (offset %lu), "
1122 		  "freeing %lu\n",
1123 		  journal->j_tail_sequence, tid, block, freed);
1124 
1125 	journal->j_free += freed;
1126 	journal->j_tail_sequence = tid;
1127 	journal->j_tail = block;
1128 	write_unlock(&journal->j_state_lock);
1129 
1130 out:
1131 	return ret;
1132 }
1133 
1134 /*
1135  * This is a variation of __jbd2_update_log_tail which checks for validity of
1136  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1137  * with other threads updating log tail.
1138  */
1139 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1140 {
1141 	mutex_lock_io(&journal->j_checkpoint_mutex);
1142 	if (tid_gt(tid, journal->j_tail_sequence))
1143 		__jbd2_update_log_tail(journal, tid, block);
1144 	mutex_unlock(&journal->j_checkpoint_mutex);
1145 }
1146 
1147 struct jbd2_stats_proc_session {
1148 	journal_t *journal;
1149 	struct transaction_stats_s *stats;
1150 	int start;
1151 	int max;
1152 };
1153 
1154 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1155 {
1156 	return *pos ? NULL : SEQ_START_TOKEN;
1157 }
1158 
1159 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1160 {
1161 	(*pos)++;
1162 	return NULL;
1163 }
1164 
1165 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1166 {
1167 	struct jbd2_stats_proc_session *s = seq->private;
1168 
1169 	if (v != SEQ_START_TOKEN)
1170 		return 0;
1171 	seq_printf(seq, "%lu transactions (%lu requested), "
1172 		   "each up to %u blocks\n",
1173 		   s->stats->ts_tid, s->stats->ts_requested,
1174 		   s->journal->j_max_transaction_buffers);
1175 	if (s->stats->ts_tid == 0)
1176 		return 0;
1177 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1178 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1179 	seq_printf(seq, "  %ums request delay\n",
1180 	    (s->stats->ts_requested == 0) ? 0 :
1181 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1182 			     s->stats->ts_requested));
1183 	seq_printf(seq, "  %ums running transaction\n",
1184 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1185 	seq_printf(seq, "  %ums transaction was being locked\n",
1186 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1187 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1188 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1189 	seq_printf(seq, "  %ums logging transaction\n",
1190 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1191 	seq_printf(seq, "  %lluus average transaction commit time\n",
1192 		   div_u64(s->journal->j_average_commit_time, 1000));
1193 	seq_printf(seq, "  %lu handles per transaction\n",
1194 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1195 	seq_printf(seq, "  %lu blocks per transaction\n",
1196 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1197 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1198 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1199 	return 0;
1200 }
1201 
1202 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1203 {
1204 }
1205 
1206 static const struct seq_operations jbd2_seq_info_ops = {
1207 	.start  = jbd2_seq_info_start,
1208 	.next   = jbd2_seq_info_next,
1209 	.stop   = jbd2_seq_info_stop,
1210 	.show   = jbd2_seq_info_show,
1211 };
1212 
1213 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1214 {
1215 	journal_t *journal = pde_data(inode);
1216 	struct jbd2_stats_proc_session *s;
1217 	int rc, size;
1218 
1219 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1220 	if (s == NULL)
1221 		return -ENOMEM;
1222 	size = sizeof(struct transaction_stats_s);
1223 	s->stats = kmalloc(size, GFP_KERNEL);
1224 	if (s->stats == NULL) {
1225 		kfree(s);
1226 		return -ENOMEM;
1227 	}
1228 	spin_lock(&journal->j_history_lock);
1229 	memcpy(s->stats, &journal->j_stats, size);
1230 	s->journal = journal;
1231 	spin_unlock(&journal->j_history_lock);
1232 
1233 	rc = seq_open(file, &jbd2_seq_info_ops);
1234 	if (rc == 0) {
1235 		struct seq_file *m = file->private_data;
1236 		m->private = s;
1237 	} else {
1238 		kfree(s->stats);
1239 		kfree(s);
1240 	}
1241 	return rc;
1242 
1243 }
1244 
1245 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1246 {
1247 	struct seq_file *seq = file->private_data;
1248 	struct jbd2_stats_proc_session *s = seq->private;
1249 	kfree(s->stats);
1250 	kfree(s);
1251 	return seq_release(inode, file);
1252 }
1253 
1254 static const struct proc_ops jbd2_info_proc_ops = {
1255 	.proc_open	= jbd2_seq_info_open,
1256 	.proc_read	= seq_read,
1257 	.proc_lseek	= seq_lseek,
1258 	.proc_release	= jbd2_seq_info_release,
1259 };
1260 
1261 static struct proc_dir_entry *proc_jbd2_stats;
1262 
1263 static void jbd2_stats_proc_init(journal_t *journal)
1264 {
1265 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1266 	if (journal->j_proc_entry) {
1267 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1268 				 &jbd2_info_proc_ops, journal);
1269 	}
1270 }
1271 
1272 static void jbd2_stats_proc_exit(journal_t *journal)
1273 {
1274 	remove_proc_entry("info", journal->j_proc_entry);
1275 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1276 }
1277 
1278 /* Minimum size of descriptor tag */
1279 static int jbd2_min_tag_size(void)
1280 {
1281 	/*
1282 	 * Tag with 32-bit block numbers does not use last four bytes of the
1283 	 * structure
1284 	 */
1285 	return sizeof(journal_block_tag_t) - 4;
1286 }
1287 
1288 /**
1289  * jbd2_journal_shrink_scan()
1290  *
1291  * Scan the checkpointed buffer on the checkpoint list and release the
1292  * journal_head.
1293  */
1294 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1295 					      struct shrink_control *sc)
1296 {
1297 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1298 	unsigned long nr_to_scan = sc->nr_to_scan;
1299 	unsigned long nr_shrunk;
1300 	unsigned long count;
1301 
1302 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1303 	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1304 
1305 	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1306 
1307 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1308 	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1309 
1310 	return nr_shrunk;
1311 }
1312 
1313 /**
1314  * jbd2_journal_shrink_count()
1315  *
1316  * Count the number of checkpoint buffers on the checkpoint list.
1317  */
1318 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1319 					       struct shrink_control *sc)
1320 {
1321 	journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1322 	unsigned long count;
1323 
1324 	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1325 	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1326 
1327 	return count;
1328 }
1329 
1330 /*
1331  * Management for journal control blocks: functions to create and
1332  * destroy journal_t structures, and to initialise and read existing
1333  * journal blocks from disk.  */
1334 
1335 /* First: create and setup a journal_t object in memory.  We initialise
1336  * very few fields yet: that has to wait until we have created the
1337  * journal structures from from scratch, or loaded them from disk. */
1338 
1339 static journal_t *journal_init_common(struct block_device *bdev,
1340 			struct block_device *fs_dev,
1341 			unsigned long long start, int len, int blocksize)
1342 {
1343 	static struct lock_class_key jbd2_trans_commit_key;
1344 	journal_t *journal;
1345 	int err;
1346 	struct buffer_head *bh;
1347 	int n;
1348 
1349 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1350 	if (!journal)
1351 		return NULL;
1352 
1353 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1354 	init_waitqueue_head(&journal->j_wait_done_commit);
1355 	init_waitqueue_head(&journal->j_wait_commit);
1356 	init_waitqueue_head(&journal->j_wait_updates);
1357 	init_waitqueue_head(&journal->j_wait_reserved);
1358 	init_waitqueue_head(&journal->j_fc_wait);
1359 	mutex_init(&journal->j_abort_mutex);
1360 	mutex_init(&journal->j_barrier);
1361 	mutex_init(&journal->j_checkpoint_mutex);
1362 	spin_lock_init(&journal->j_revoke_lock);
1363 	spin_lock_init(&journal->j_list_lock);
1364 	rwlock_init(&journal->j_state_lock);
1365 
1366 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1367 	journal->j_min_batch_time = 0;
1368 	journal->j_max_batch_time = 15000; /* 15ms */
1369 	atomic_set(&journal->j_reserved_credits, 0);
1370 
1371 	/* The journal is marked for error until we succeed with recovery! */
1372 	journal->j_flags = JBD2_ABORT;
1373 
1374 	/* Set up a default-sized revoke table for the new mount. */
1375 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1376 	if (err)
1377 		goto err_cleanup;
1378 
1379 	spin_lock_init(&journal->j_history_lock);
1380 
1381 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1382 			 &jbd2_trans_commit_key, 0);
1383 
1384 	/* journal descriptor can store up to n blocks -bzzz */
1385 	journal->j_blocksize = blocksize;
1386 	journal->j_dev = bdev;
1387 	journal->j_fs_dev = fs_dev;
1388 	journal->j_blk_offset = start;
1389 	journal->j_total_len = len;
1390 	/* We need enough buffers to write out full descriptor block. */
1391 	n = journal->j_blocksize / jbd2_min_tag_size();
1392 	journal->j_wbufsize = n;
1393 	journal->j_fc_wbuf = NULL;
1394 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1395 					GFP_KERNEL);
1396 	if (!journal->j_wbuf)
1397 		goto err_cleanup;
1398 
1399 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1400 	if (!bh) {
1401 		pr_err("%s: Cannot get buffer for journal superblock\n",
1402 			__func__);
1403 		goto err_cleanup;
1404 	}
1405 	journal->j_sb_buffer = bh;
1406 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1407 
1408 	journal->j_shrink_transaction = NULL;
1409 	journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1410 	journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1411 	journal->j_shrinker.seeks = DEFAULT_SEEKS;
1412 	journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1413 
1414 	if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1415 		goto err_cleanup;
1416 
1417 	if (register_shrinker(&journal->j_shrinker)) {
1418 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1419 		goto err_cleanup;
1420 	}
1421 	return journal;
1422 
1423 err_cleanup:
1424 	brelse(journal->j_sb_buffer);
1425 	kfree(journal->j_wbuf);
1426 	jbd2_journal_destroy_revoke(journal);
1427 	kfree(journal);
1428 	return NULL;
1429 }
1430 
1431 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1432  *
1433  * Create a journal structure assigned some fixed set of disk blocks to
1434  * the journal.  We don't actually touch those disk blocks yet, but we
1435  * need to set up all of the mapping information to tell the journaling
1436  * system where the journal blocks are.
1437  *
1438  */
1439 
1440 /**
1441  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1442  *  @bdev: Block device on which to create the journal
1443  *  @fs_dev: Device which hold journalled filesystem for this journal.
1444  *  @start: Block nr Start of journal.
1445  *  @len:  Length of the journal in blocks.
1446  *  @blocksize: blocksize of journalling device
1447  *
1448  *  Returns: a newly created journal_t *
1449  *
1450  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1451  *  range of blocks on an arbitrary block device.
1452  *
1453  */
1454 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1455 			struct block_device *fs_dev,
1456 			unsigned long long start, int len, int blocksize)
1457 {
1458 	journal_t *journal;
1459 
1460 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1461 	if (!journal)
1462 		return NULL;
1463 
1464 	bdevname(journal->j_dev, journal->j_devname);
1465 	strreplace(journal->j_devname, '/', '!');
1466 	jbd2_stats_proc_init(journal);
1467 
1468 	return journal;
1469 }
1470 
1471 /**
1472  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1473  *  @inode: An inode to create the journal in
1474  *
1475  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1476  * the journal.  The inode must exist already, must support bmap() and
1477  * must have all data blocks preallocated.
1478  */
1479 journal_t *jbd2_journal_init_inode(struct inode *inode)
1480 {
1481 	journal_t *journal;
1482 	sector_t blocknr;
1483 	char *p;
1484 	int err = 0;
1485 
1486 	blocknr = 0;
1487 	err = bmap(inode, &blocknr);
1488 
1489 	if (err || !blocknr) {
1490 		pr_err("%s: Cannot locate journal superblock\n",
1491 			__func__);
1492 		return NULL;
1493 	}
1494 
1495 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1496 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1497 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1498 
1499 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1500 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1501 			inode->i_sb->s_blocksize);
1502 	if (!journal)
1503 		return NULL;
1504 
1505 	journal->j_inode = inode;
1506 	bdevname(journal->j_dev, journal->j_devname);
1507 	p = strreplace(journal->j_devname, '/', '!');
1508 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1509 	jbd2_stats_proc_init(journal);
1510 
1511 	return journal;
1512 }
1513 
1514 /*
1515  * If the journal init or create aborts, we need to mark the journal
1516  * superblock as being NULL to prevent the journal destroy from writing
1517  * back a bogus superblock.
1518  */
1519 static void journal_fail_superblock(journal_t *journal)
1520 {
1521 	struct buffer_head *bh = journal->j_sb_buffer;
1522 	brelse(bh);
1523 	journal->j_sb_buffer = NULL;
1524 }
1525 
1526 /*
1527  * Given a journal_t structure, initialise the various fields for
1528  * startup of a new journaling session.  We use this both when creating
1529  * a journal, and after recovering an old journal to reset it for
1530  * subsequent use.
1531  */
1532 
1533 static int journal_reset(journal_t *journal)
1534 {
1535 	journal_superblock_t *sb = journal->j_superblock;
1536 	unsigned long long first, last;
1537 
1538 	first = be32_to_cpu(sb->s_first);
1539 	last = be32_to_cpu(sb->s_maxlen);
1540 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1541 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1542 		       first, last);
1543 		journal_fail_superblock(journal);
1544 		return -EINVAL;
1545 	}
1546 
1547 	journal->j_first = first;
1548 	journal->j_last = last;
1549 
1550 	journal->j_head = journal->j_first;
1551 	journal->j_tail = journal->j_first;
1552 	journal->j_free = journal->j_last - journal->j_first;
1553 
1554 	journal->j_tail_sequence = journal->j_transaction_sequence;
1555 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1556 	journal->j_commit_request = journal->j_commit_sequence;
1557 
1558 	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1559 
1560 	/*
1561 	 * Now that journal recovery is done, turn fast commits off here. This
1562 	 * way, if fast commit was enabled before the crash but if now FS has
1563 	 * disabled it, we don't enable fast commits.
1564 	 */
1565 	jbd2_clear_feature_fast_commit(journal);
1566 
1567 	/*
1568 	 * As a special case, if the on-disk copy is already marked as needing
1569 	 * no recovery (s_start == 0), then we can safely defer the superblock
1570 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1571 	 * attempting a write to a potential-readonly device.
1572 	 */
1573 	if (sb->s_start == 0) {
1574 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1575 			"(start %ld, seq %u, errno %d)\n",
1576 			journal->j_tail, journal->j_tail_sequence,
1577 			journal->j_errno);
1578 		journal->j_flags |= JBD2_FLUSHED;
1579 	} else {
1580 		/* Lock here to make assertions happy... */
1581 		mutex_lock_io(&journal->j_checkpoint_mutex);
1582 		/*
1583 		 * Update log tail information. We use REQ_FUA since new
1584 		 * transaction will start reusing journal space and so we
1585 		 * must make sure information about current log tail is on
1586 		 * disk before that.
1587 		 */
1588 		jbd2_journal_update_sb_log_tail(journal,
1589 						journal->j_tail_sequence,
1590 						journal->j_tail,
1591 						REQ_SYNC | REQ_FUA);
1592 		mutex_unlock(&journal->j_checkpoint_mutex);
1593 	}
1594 	return jbd2_journal_start_thread(journal);
1595 }
1596 
1597 /*
1598  * This function expects that the caller will have locked the journal
1599  * buffer head, and will return with it unlocked
1600  */
1601 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1602 {
1603 	struct buffer_head *bh = journal->j_sb_buffer;
1604 	journal_superblock_t *sb = journal->j_superblock;
1605 	int ret;
1606 
1607 	/* Buffer got discarded which means block device got invalidated */
1608 	if (!buffer_mapped(bh)) {
1609 		unlock_buffer(bh);
1610 		return -EIO;
1611 	}
1612 
1613 	trace_jbd2_write_superblock(journal, write_flags);
1614 	if (!(journal->j_flags & JBD2_BARRIER))
1615 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1616 	if (buffer_write_io_error(bh)) {
1617 		/*
1618 		 * Oh, dear.  A previous attempt to write the journal
1619 		 * superblock failed.  This could happen because the
1620 		 * USB device was yanked out.  Or it could happen to
1621 		 * be a transient write error and maybe the block will
1622 		 * be remapped.  Nothing we can do but to retry the
1623 		 * write and hope for the best.
1624 		 */
1625 		printk(KERN_ERR "JBD2: previous I/O error detected "
1626 		       "for journal superblock update for %s.\n",
1627 		       journal->j_devname);
1628 		clear_buffer_write_io_error(bh);
1629 		set_buffer_uptodate(bh);
1630 	}
1631 	if (jbd2_journal_has_csum_v2or3(journal))
1632 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1633 	get_bh(bh);
1634 	bh->b_end_io = end_buffer_write_sync;
1635 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1636 	wait_on_buffer(bh);
1637 	if (buffer_write_io_error(bh)) {
1638 		clear_buffer_write_io_error(bh);
1639 		set_buffer_uptodate(bh);
1640 		ret = -EIO;
1641 	}
1642 	if (ret) {
1643 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1644 		       "journal superblock for %s.\n", ret,
1645 		       journal->j_devname);
1646 		if (!is_journal_aborted(journal))
1647 			jbd2_journal_abort(journal, ret);
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 /**
1654  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1655  * @journal: The journal to update.
1656  * @tail_tid: TID of the new transaction at the tail of the log
1657  * @tail_block: The first block of the transaction at the tail of the log
1658  * @write_op: With which operation should we write the journal sb
1659  *
1660  * Update a journal's superblock information about log tail and write it to
1661  * disk, waiting for the IO to complete.
1662  */
1663 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1664 				     unsigned long tail_block, int write_op)
1665 {
1666 	journal_superblock_t *sb = journal->j_superblock;
1667 	int ret;
1668 
1669 	if (is_journal_aborted(journal))
1670 		return -EIO;
1671 	if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1672 		jbd2_journal_abort(journal, -EIO);
1673 		return -EIO;
1674 	}
1675 
1676 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1677 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1678 		  tail_block, tail_tid);
1679 
1680 	lock_buffer(journal->j_sb_buffer);
1681 	sb->s_sequence = cpu_to_be32(tail_tid);
1682 	sb->s_start    = cpu_to_be32(tail_block);
1683 
1684 	ret = jbd2_write_superblock(journal, write_op);
1685 	if (ret)
1686 		goto out;
1687 
1688 	/* Log is no longer empty */
1689 	write_lock(&journal->j_state_lock);
1690 	WARN_ON(!sb->s_sequence);
1691 	journal->j_flags &= ~JBD2_FLUSHED;
1692 	write_unlock(&journal->j_state_lock);
1693 
1694 out:
1695 	return ret;
1696 }
1697 
1698 /**
1699  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1700  * @journal: The journal to update.
1701  * @write_op: With which operation should we write the journal sb
1702  *
1703  * Update a journal's dynamic superblock fields to show that journal is empty.
1704  * Write updated superblock to disk waiting for IO to complete.
1705  */
1706 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1707 {
1708 	journal_superblock_t *sb = journal->j_superblock;
1709 	bool had_fast_commit = false;
1710 
1711 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1712 	lock_buffer(journal->j_sb_buffer);
1713 	if (sb->s_start == 0) {		/* Is it already empty? */
1714 		unlock_buffer(journal->j_sb_buffer);
1715 		return;
1716 	}
1717 
1718 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1719 		  journal->j_tail_sequence);
1720 
1721 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1722 	sb->s_start    = cpu_to_be32(0);
1723 	if (jbd2_has_feature_fast_commit(journal)) {
1724 		/*
1725 		 * When journal is clean, no need to commit fast commit flag and
1726 		 * make file system incompatible with older kernels.
1727 		 */
1728 		jbd2_clear_feature_fast_commit(journal);
1729 		had_fast_commit = true;
1730 	}
1731 
1732 	jbd2_write_superblock(journal, write_op);
1733 
1734 	if (had_fast_commit)
1735 		jbd2_set_feature_fast_commit(journal);
1736 
1737 	/* Log is no longer empty */
1738 	write_lock(&journal->j_state_lock);
1739 	journal->j_flags |= JBD2_FLUSHED;
1740 	write_unlock(&journal->j_state_lock);
1741 }
1742 
1743 /**
1744  * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1745  * @journal: The journal to erase.
1746  * @flags: A discard/zeroout request is sent for each physically contigous
1747  *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1748  *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1749  *	to perform.
1750  *
1751  * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1752  * will be explicitly written if no hardware offload is available, see
1753  * blkdev_issue_zeroout for more details.
1754  */
1755 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1756 {
1757 	int err = 0;
1758 	unsigned long block, log_offset; /* logical */
1759 	unsigned long long phys_block, block_start, block_stop; /* physical */
1760 	loff_t byte_start, byte_stop, byte_count;
1761 	struct request_queue *q = bdev_get_queue(journal->j_dev);
1762 
1763 	/* flags must be set to either discard or zeroout */
1764 	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1765 			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1766 			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1767 		return -EINVAL;
1768 
1769 	if (!q)
1770 		return -ENXIO;
1771 
1772 	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q))
1773 		return -EOPNOTSUPP;
1774 
1775 	/*
1776 	 * lookup block mapping and issue discard/zeroout for each
1777 	 * contiguous region
1778 	 */
1779 	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1780 	block_start =  ~0ULL;
1781 	for (block = log_offset; block < journal->j_total_len; block++) {
1782 		err = jbd2_journal_bmap(journal, block, &phys_block);
1783 		if (err) {
1784 			pr_err("JBD2: bad block at offset %lu", block);
1785 			return err;
1786 		}
1787 
1788 		if (block_start == ~0ULL) {
1789 			block_start = phys_block;
1790 			block_stop = block_start - 1;
1791 		}
1792 
1793 		/*
1794 		 * last block not contiguous with current block,
1795 		 * process last contiguous region and return to this block on
1796 		 * next loop
1797 		 */
1798 		if (phys_block != block_stop + 1) {
1799 			block--;
1800 		} else {
1801 			block_stop++;
1802 			/*
1803 			 * if this isn't the last block of journal,
1804 			 * no need to process now because next block may also
1805 			 * be part of this contiguous region
1806 			 */
1807 			if (block != journal->j_total_len - 1)
1808 				continue;
1809 		}
1810 
1811 		/*
1812 		 * end of contiguous region or this is last block of journal,
1813 		 * take care of the region
1814 		 */
1815 		byte_start = block_start * journal->j_blocksize;
1816 		byte_stop = block_stop * journal->j_blocksize;
1817 		byte_count = (block_stop - block_start + 1) *
1818 				journal->j_blocksize;
1819 
1820 		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1821 				byte_start, byte_stop);
1822 
1823 		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1824 			err = blkdev_issue_discard(journal->j_dev,
1825 					byte_start >> SECTOR_SHIFT,
1826 					byte_count >> SECTOR_SHIFT,
1827 					GFP_NOFS, 0);
1828 		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1829 			err = blkdev_issue_zeroout(journal->j_dev,
1830 					byte_start >> SECTOR_SHIFT,
1831 					byte_count >> SECTOR_SHIFT,
1832 					GFP_NOFS, 0);
1833 		}
1834 
1835 		if (unlikely(err != 0)) {
1836 			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1837 					err, block_start, block_stop);
1838 			return err;
1839 		}
1840 
1841 		/* reset start and stop after processing a region */
1842 		block_start = ~0ULL;
1843 	}
1844 
1845 	return blkdev_issue_flush(journal->j_dev);
1846 }
1847 
1848 /**
1849  * jbd2_journal_update_sb_errno() - Update error in the journal.
1850  * @journal: The journal to update.
1851  *
1852  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1853  * to complete.
1854  */
1855 void jbd2_journal_update_sb_errno(journal_t *journal)
1856 {
1857 	journal_superblock_t *sb = journal->j_superblock;
1858 	int errcode;
1859 
1860 	lock_buffer(journal->j_sb_buffer);
1861 	errcode = journal->j_errno;
1862 	if (errcode == -ESHUTDOWN)
1863 		errcode = 0;
1864 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1865 	sb->s_errno    = cpu_to_be32(errcode);
1866 
1867 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1868 }
1869 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1870 
1871 static int journal_revoke_records_per_block(journal_t *journal)
1872 {
1873 	int record_size;
1874 	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1875 
1876 	if (jbd2_has_feature_64bit(journal))
1877 		record_size = 8;
1878 	else
1879 		record_size = 4;
1880 
1881 	if (jbd2_journal_has_csum_v2or3(journal))
1882 		space -= sizeof(struct jbd2_journal_block_tail);
1883 	return space / record_size;
1884 }
1885 
1886 /*
1887  * Read the superblock for a given journal, performing initial
1888  * validation of the format.
1889  */
1890 static int journal_get_superblock(journal_t *journal)
1891 {
1892 	struct buffer_head *bh;
1893 	journal_superblock_t *sb;
1894 	int err = -EIO;
1895 
1896 	bh = journal->j_sb_buffer;
1897 
1898 	J_ASSERT(bh != NULL);
1899 	if (!buffer_uptodate(bh)) {
1900 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1901 		wait_on_buffer(bh);
1902 		if (!buffer_uptodate(bh)) {
1903 			printk(KERN_ERR
1904 				"JBD2: IO error reading journal superblock\n");
1905 			goto out;
1906 		}
1907 	}
1908 
1909 	if (buffer_verified(bh))
1910 		return 0;
1911 
1912 	sb = journal->j_superblock;
1913 
1914 	err = -EINVAL;
1915 
1916 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1917 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1918 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1919 		goto out;
1920 	}
1921 
1922 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1923 	case JBD2_SUPERBLOCK_V1:
1924 		journal->j_format_version = 1;
1925 		break;
1926 	case JBD2_SUPERBLOCK_V2:
1927 		journal->j_format_version = 2;
1928 		break;
1929 	default:
1930 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1931 		goto out;
1932 	}
1933 
1934 	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1935 		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1936 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1937 		printk(KERN_WARNING "JBD2: journal file too short\n");
1938 		goto out;
1939 	}
1940 
1941 	if (be32_to_cpu(sb->s_first) == 0 ||
1942 	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1943 		printk(KERN_WARNING
1944 			"JBD2: Invalid start block of journal: %u\n",
1945 			be32_to_cpu(sb->s_first));
1946 		goto out;
1947 	}
1948 
1949 	if (jbd2_has_feature_csum2(journal) &&
1950 	    jbd2_has_feature_csum3(journal)) {
1951 		/* Can't have checksum v2 and v3 at the same time! */
1952 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1953 		       "at the same time!\n");
1954 		goto out;
1955 	}
1956 
1957 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1958 	    jbd2_has_feature_checksum(journal)) {
1959 		/* Can't have checksum v1 and v2 on at the same time! */
1960 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1961 		       "at the same time!\n");
1962 		goto out;
1963 	}
1964 
1965 	if (!jbd2_verify_csum_type(journal, sb)) {
1966 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1967 		goto out;
1968 	}
1969 
1970 	/* Load the checksum driver */
1971 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1972 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1973 		if (IS_ERR(journal->j_chksum_driver)) {
1974 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1975 			err = PTR_ERR(journal->j_chksum_driver);
1976 			journal->j_chksum_driver = NULL;
1977 			goto out;
1978 		}
1979 	}
1980 
1981 	if (jbd2_journal_has_csum_v2or3(journal)) {
1982 		/* Check superblock checksum */
1983 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1984 			printk(KERN_ERR "JBD2: journal checksum error\n");
1985 			err = -EFSBADCRC;
1986 			goto out;
1987 		}
1988 
1989 		/* Precompute checksum seed for all metadata */
1990 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1991 						   sizeof(sb->s_uuid));
1992 	}
1993 
1994 	journal->j_revoke_records_per_block =
1995 				journal_revoke_records_per_block(journal);
1996 	set_buffer_verified(bh);
1997 
1998 	return 0;
1999 
2000 out:
2001 	journal_fail_superblock(journal);
2002 	return err;
2003 }
2004 
2005 /*
2006  * Load the on-disk journal superblock and read the key fields into the
2007  * journal_t.
2008  */
2009 
2010 static int load_superblock(journal_t *journal)
2011 {
2012 	int err;
2013 	journal_superblock_t *sb;
2014 	int num_fc_blocks;
2015 
2016 	err = journal_get_superblock(journal);
2017 	if (err)
2018 		return err;
2019 
2020 	sb = journal->j_superblock;
2021 
2022 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2023 	journal->j_tail = be32_to_cpu(sb->s_start);
2024 	journal->j_first = be32_to_cpu(sb->s_first);
2025 	journal->j_errno = be32_to_cpu(sb->s_errno);
2026 	journal->j_last = be32_to_cpu(sb->s_maxlen);
2027 
2028 	if (jbd2_has_feature_fast_commit(journal)) {
2029 		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2030 		num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2031 		if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2032 			journal->j_last = journal->j_fc_last - num_fc_blocks;
2033 		journal->j_fc_first = journal->j_last + 1;
2034 		journal->j_fc_off = 0;
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 
2041 /**
2042  * jbd2_journal_load() - Read journal from disk.
2043  * @journal: Journal to act on.
2044  *
2045  * Given a journal_t structure which tells us which disk blocks contain
2046  * a journal, read the journal from disk to initialise the in-memory
2047  * structures.
2048  */
2049 int jbd2_journal_load(journal_t *journal)
2050 {
2051 	int err;
2052 	journal_superblock_t *sb;
2053 
2054 	err = load_superblock(journal);
2055 	if (err)
2056 		return err;
2057 
2058 	sb = journal->j_superblock;
2059 	/* If this is a V2 superblock, then we have to check the
2060 	 * features flags on it. */
2061 
2062 	if (journal->j_format_version >= 2) {
2063 		if ((sb->s_feature_ro_compat &
2064 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2065 		    (sb->s_feature_incompat &
2066 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2067 			printk(KERN_WARNING
2068 				"JBD2: Unrecognised features on journal\n");
2069 			return -EINVAL;
2070 		}
2071 	}
2072 
2073 	/*
2074 	 * Create a slab for this blocksize
2075 	 */
2076 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2077 	if (err)
2078 		return err;
2079 
2080 	/* Let the recovery code check whether it needs to recover any
2081 	 * data from the journal. */
2082 	if (jbd2_journal_recover(journal))
2083 		goto recovery_error;
2084 
2085 	if (journal->j_failed_commit) {
2086 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2087 		       "is corrupt.\n", journal->j_failed_commit,
2088 		       journal->j_devname);
2089 		return -EFSCORRUPTED;
2090 	}
2091 	/*
2092 	 * clear JBD2_ABORT flag initialized in journal_init_common
2093 	 * here to update log tail information with the newest seq.
2094 	 */
2095 	journal->j_flags &= ~JBD2_ABORT;
2096 
2097 	/* OK, we've finished with the dynamic journal bits:
2098 	 * reinitialise the dynamic contents of the superblock in memory
2099 	 * and reset them on disk. */
2100 	if (journal_reset(journal))
2101 		goto recovery_error;
2102 
2103 	journal->j_flags |= JBD2_LOADED;
2104 	return 0;
2105 
2106 recovery_error:
2107 	printk(KERN_WARNING "JBD2: recovery failed\n");
2108 	return -EIO;
2109 }
2110 
2111 /**
2112  * jbd2_journal_destroy() - Release a journal_t structure.
2113  * @journal: Journal to act on.
2114  *
2115  * Release a journal_t structure once it is no longer in use by the
2116  * journaled object.
2117  * Return <0 if we couldn't clean up the journal.
2118  */
2119 int jbd2_journal_destroy(journal_t *journal)
2120 {
2121 	int err = 0;
2122 
2123 	/* Wait for the commit thread to wake up and die. */
2124 	journal_kill_thread(journal);
2125 
2126 	/* Force a final log commit */
2127 	if (journal->j_running_transaction)
2128 		jbd2_journal_commit_transaction(journal);
2129 
2130 	/* Force any old transactions to disk */
2131 
2132 	/* Totally anal locking here... */
2133 	spin_lock(&journal->j_list_lock);
2134 	while (journal->j_checkpoint_transactions != NULL) {
2135 		spin_unlock(&journal->j_list_lock);
2136 		mutex_lock_io(&journal->j_checkpoint_mutex);
2137 		err = jbd2_log_do_checkpoint(journal);
2138 		mutex_unlock(&journal->j_checkpoint_mutex);
2139 		/*
2140 		 * If checkpointing failed, just free the buffers to avoid
2141 		 * looping forever
2142 		 */
2143 		if (err) {
2144 			jbd2_journal_destroy_checkpoint(journal);
2145 			spin_lock(&journal->j_list_lock);
2146 			break;
2147 		}
2148 		spin_lock(&journal->j_list_lock);
2149 	}
2150 
2151 	J_ASSERT(journal->j_running_transaction == NULL);
2152 	J_ASSERT(journal->j_committing_transaction == NULL);
2153 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2154 	spin_unlock(&journal->j_list_lock);
2155 
2156 	/*
2157 	 * OK, all checkpoint transactions have been checked, now check the
2158 	 * write out io error flag and abort the journal if some buffer failed
2159 	 * to write back to the original location, otherwise the filesystem
2160 	 * may become inconsistent.
2161 	 */
2162 	if (!is_journal_aborted(journal) &&
2163 	    test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2164 		jbd2_journal_abort(journal, -EIO);
2165 
2166 	if (journal->j_sb_buffer) {
2167 		if (!is_journal_aborted(journal)) {
2168 			mutex_lock_io(&journal->j_checkpoint_mutex);
2169 
2170 			write_lock(&journal->j_state_lock);
2171 			journal->j_tail_sequence =
2172 				++journal->j_transaction_sequence;
2173 			write_unlock(&journal->j_state_lock);
2174 
2175 			jbd2_mark_journal_empty(journal,
2176 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2177 			mutex_unlock(&journal->j_checkpoint_mutex);
2178 		} else
2179 			err = -EIO;
2180 		brelse(journal->j_sb_buffer);
2181 	}
2182 
2183 	if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2184 		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2185 		unregister_shrinker(&journal->j_shrinker);
2186 	}
2187 	if (journal->j_proc_entry)
2188 		jbd2_stats_proc_exit(journal);
2189 	iput(journal->j_inode);
2190 	if (journal->j_revoke)
2191 		jbd2_journal_destroy_revoke(journal);
2192 	if (journal->j_chksum_driver)
2193 		crypto_free_shash(journal->j_chksum_driver);
2194 	kfree(journal->j_fc_wbuf);
2195 	kfree(journal->j_wbuf);
2196 	kfree(journal);
2197 
2198 	return err;
2199 }
2200 
2201 
2202 /**
2203  * jbd2_journal_check_used_features() - Check if features specified are used.
2204  * @journal: Journal to check.
2205  * @compat: bitmask of compatible features
2206  * @ro: bitmask of features that force read-only mount
2207  * @incompat: bitmask of incompatible features
2208  *
2209  * Check whether the journal uses all of a given set of
2210  * features.  Return true (non-zero) if it does.
2211  **/
2212 
2213 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2214 				 unsigned long ro, unsigned long incompat)
2215 {
2216 	journal_superblock_t *sb;
2217 
2218 	if (!compat && !ro && !incompat)
2219 		return 1;
2220 	/* Load journal superblock if it is not loaded yet. */
2221 	if (journal->j_format_version == 0 &&
2222 	    journal_get_superblock(journal) != 0)
2223 		return 0;
2224 	if (journal->j_format_version == 1)
2225 		return 0;
2226 
2227 	sb = journal->j_superblock;
2228 
2229 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2230 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2231 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2232 		return 1;
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * jbd2_journal_check_available_features() - Check feature set in journalling layer
2239  * @journal: Journal to check.
2240  * @compat: bitmask of compatible features
2241  * @ro: bitmask of features that force read-only mount
2242  * @incompat: bitmask of incompatible features
2243  *
2244  * Check whether the journaling code supports the use of
2245  * all of a given set of features on this journal.  Return true
2246  * (non-zero) if it can. */
2247 
2248 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2249 				      unsigned long ro, unsigned long incompat)
2250 {
2251 	if (!compat && !ro && !incompat)
2252 		return 1;
2253 
2254 	/* We can support any known requested features iff the
2255 	 * superblock is in version 2.  Otherwise we fail to support any
2256 	 * extended sb features. */
2257 
2258 	if (journal->j_format_version != 2)
2259 		return 0;
2260 
2261 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2262 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2263 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2264 		return 1;
2265 
2266 	return 0;
2267 }
2268 
2269 static int
2270 jbd2_journal_initialize_fast_commit(journal_t *journal)
2271 {
2272 	journal_superblock_t *sb = journal->j_superblock;
2273 	unsigned long long num_fc_blks;
2274 
2275 	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2276 	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2277 		return -ENOSPC;
2278 
2279 	/* Are we called twice? */
2280 	WARN_ON(journal->j_fc_wbuf != NULL);
2281 	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2282 				sizeof(struct buffer_head *), GFP_KERNEL);
2283 	if (!journal->j_fc_wbuf)
2284 		return -ENOMEM;
2285 
2286 	journal->j_fc_wbufsize = num_fc_blks;
2287 	journal->j_fc_last = journal->j_last;
2288 	journal->j_last = journal->j_fc_last - num_fc_blks;
2289 	journal->j_fc_first = journal->j_last + 1;
2290 	journal->j_fc_off = 0;
2291 	journal->j_free = journal->j_last - journal->j_first;
2292 	journal->j_max_transaction_buffers =
2293 		jbd2_journal_get_max_txn_bufs(journal);
2294 
2295 	return 0;
2296 }
2297 
2298 /**
2299  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2300  * @journal: Journal to act on.
2301  * @compat: bitmask of compatible features
2302  * @ro: bitmask of features that force read-only mount
2303  * @incompat: bitmask of incompatible features
2304  *
2305  * Mark a given journal feature as present on the
2306  * superblock.  Returns true if the requested features could be set.
2307  *
2308  */
2309 
2310 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2311 			  unsigned long ro, unsigned long incompat)
2312 {
2313 #define INCOMPAT_FEATURE_ON(f) \
2314 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2315 #define COMPAT_FEATURE_ON(f) \
2316 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2317 	journal_superblock_t *sb;
2318 
2319 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2320 		return 1;
2321 
2322 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2323 		return 0;
2324 
2325 	/* If enabling v2 checksums, turn on v3 instead */
2326 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2327 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2328 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2329 	}
2330 
2331 	/* Asking for checksumming v3 and v1?  Only give them v3. */
2332 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2333 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2334 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2335 
2336 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2337 		  compat, ro, incompat);
2338 
2339 	sb = journal->j_superblock;
2340 
2341 	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2342 		if (jbd2_journal_initialize_fast_commit(journal)) {
2343 			pr_err("JBD2: Cannot enable fast commits.\n");
2344 			return 0;
2345 		}
2346 	}
2347 
2348 	/* Load the checksum driver if necessary */
2349 	if ((journal->j_chksum_driver == NULL) &&
2350 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2351 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2352 		if (IS_ERR(journal->j_chksum_driver)) {
2353 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2354 			journal->j_chksum_driver = NULL;
2355 			return 0;
2356 		}
2357 		/* Precompute checksum seed for all metadata */
2358 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2359 						   sizeof(sb->s_uuid));
2360 	}
2361 
2362 	lock_buffer(journal->j_sb_buffer);
2363 
2364 	/* If enabling v3 checksums, update superblock */
2365 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2366 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2367 		sb->s_feature_compat &=
2368 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2369 	}
2370 
2371 	/* If enabling v1 checksums, downgrade superblock */
2372 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2373 		sb->s_feature_incompat &=
2374 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2375 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2376 
2377 	sb->s_feature_compat    |= cpu_to_be32(compat);
2378 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2379 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2380 	unlock_buffer(journal->j_sb_buffer);
2381 	journal->j_revoke_records_per_block =
2382 				journal_revoke_records_per_block(journal);
2383 
2384 	return 1;
2385 #undef COMPAT_FEATURE_ON
2386 #undef INCOMPAT_FEATURE_ON
2387 }
2388 
2389 /*
2390  * jbd2_journal_clear_features() - Clear a given journal feature in the
2391  * 				    superblock
2392  * @journal: Journal to act on.
2393  * @compat: bitmask of compatible features
2394  * @ro: bitmask of features that force read-only mount
2395  * @incompat: bitmask of incompatible features
2396  *
2397  * Clear a given journal feature as present on the
2398  * superblock.
2399  */
2400 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2401 				unsigned long ro, unsigned long incompat)
2402 {
2403 	journal_superblock_t *sb;
2404 
2405 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2406 		  compat, ro, incompat);
2407 
2408 	sb = journal->j_superblock;
2409 
2410 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2411 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2412 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2413 	journal->j_revoke_records_per_block =
2414 				journal_revoke_records_per_block(journal);
2415 }
2416 EXPORT_SYMBOL(jbd2_journal_clear_features);
2417 
2418 /**
2419  * jbd2_journal_flush() - Flush journal
2420  * @journal: Journal to act on.
2421  * @flags: optional operation on the journal blocks after the flush (see below)
2422  *
2423  * Flush all data for a given journal to disk and empty the journal.
2424  * Filesystems can use this when remounting readonly to ensure that
2425  * recovery does not need to happen on remount. Optionally, a discard or zeroout
2426  * can be issued on the journal blocks after flushing.
2427  *
2428  * flags:
2429  *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2430  *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2431  */
2432 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2433 {
2434 	int err = 0;
2435 	transaction_t *transaction = NULL;
2436 
2437 	write_lock(&journal->j_state_lock);
2438 
2439 	/* Force everything buffered to the log... */
2440 	if (journal->j_running_transaction) {
2441 		transaction = journal->j_running_transaction;
2442 		__jbd2_log_start_commit(journal, transaction->t_tid);
2443 	} else if (journal->j_committing_transaction)
2444 		transaction = journal->j_committing_transaction;
2445 
2446 	/* Wait for the log commit to complete... */
2447 	if (transaction) {
2448 		tid_t tid = transaction->t_tid;
2449 
2450 		write_unlock(&journal->j_state_lock);
2451 		jbd2_log_wait_commit(journal, tid);
2452 	} else {
2453 		write_unlock(&journal->j_state_lock);
2454 	}
2455 
2456 	/* ...and flush everything in the log out to disk. */
2457 	spin_lock(&journal->j_list_lock);
2458 	while (!err && journal->j_checkpoint_transactions != NULL) {
2459 		spin_unlock(&journal->j_list_lock);
2460 		mutex_lock_io(&journal->j_checkpoint_mutex);
2461 		err = jbd2_log_do_checkpoint(journal);
2462 		mutex_unlock(&journal->j_checkpoint_mutex);
2463 		spin_lock(&journal->j_list_lock);
2464 	}
2465 	spin_unlock(&journal->j_list_lock);
2466 
2467 	if (is_journal_aborted(journal))
2468 		return -EIO;
2469 
2470 	mutex_lock_io(&journal->j_checkpoint_mutex);
2471 	if (!err) {
2472 		err = jbd2_cleanup_journal_tail(journal);
2473 		if (err < 0) {
2474 			mutex_unlock(&journal->j_checkpoint_mutex);
2475 			goto out;
2476 		}
2477 		err = 0;
2478 	}
2479 
2480 	/* Finally, mark the journal as really needing no recovery.
2481 	 * This sets s_start==0 in the underlying superblock, which is
2482 	 * the magic code for a fully-recovered superblock.  Any future
2483 	 * commits of data to the journal will restore the current
2484 	 * s_start value. */
2485 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2486 
2487 	if (flags)
2488 		err = __jbd2_journal_erase(journal, flags);
2489 
2490 	mutex_unlock(&journal->j_checkpoint_mutex);
2491 	write_lock(&journal->j_state_lock);
2492 	J_ASSERT(!journal->j_running_transaction);
2493 	J_ASSERT(!journal->j_committing_transaction);
2494 	J_ASSERT(!journal->j_checkpoint_transactions);
2495 	J_ASSERT(journal->j_head == journal->j_tail);
2496 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2497 	write_unlock(&journal->j_state_lock);
2498 out:
2499 	return err;
2500 }
2501 
2502 /**
2503  * jbd2_journal_wipe() - Wipe journal contents
2504  * @journal: Journal to act on.
2505  * @write: flag (see below)
2506  *
2507  * Wipe out all of the contents of a journal, safely.  This will produce
2508  * a warning if the journal contains any valid recovery information.
2509  * Must be called between journal_init_*() and jbd2_journal_load().
2510  *
2511  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2512  * we merely suppress recovery.
2513  */
2514 
2515 int jbd2_journal_wipe(journal_t *journal, int write)
2516 {
2517 	int err = 0;
2518 
2519 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2520 
2521 	err = load_superblock(journal);
2522 	if (err)
2523 		return err;
2524 
2525 	if (!journal->j_tail)
2526 		goto no_recovery;
2527 
2528 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2529 		write ? "Clearing" : "Ignoring");
2530 
2531 	err = jbd2_journal_skip_recovery(journal);
2532 	if (write) {
2533 		/* Lock to make assertions happy... */
2534 		mutex_lock_io(&journal->j_checkpoint_mutex);
2535 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2536 		mutex_unlock(&journal->j_checkpoint_mutex);
2537 	}
2538 
2539  no_recovery:
2540 	return err;
2541 }
2542 
2543 /**
2544  * jbd2_journal_abort () - Shutdown the journal immediately.
2545  * @journal: the journal to shutdown.
2546  * @errno:   an error number to record in the journal indicating
2547  *           the reason for the shutdown.
2548  *
2549  * Perform a complete, immediate shutdown of the ENTIRE
2550  * journal (not of a single transaction).  This operation cannot be
2551  * undone without closing and reopening the journal.
2552  *
2553  * The jbd2_journal_abort function is intended to support higher level error
2554  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2555  * mode.
2556  *
2557  * Journal abort has very specific semantics.  Any existing dirty,
2558  * unjournaled buffers in the main filesystem will still be written to
2559  * disk by bdflush, but the journaling mechanism will be suspended
2560  * immediately and no further transaction commits will be honoured.
2561  *
2562  * Any dirty, journaled buffers will be written back to disk without
2563  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2564  * filesystem, but we _do_ attempt to leave as much data as possible
2565  * behind for fsck to use for cleanup.
2566  *
2567  * Any attempt to get a new transaction handle on a journal which is in
2568  * ABORT state will just result in an -EROFS error return.  A
2569  * jbd2_journal_stop on an existing handle will return -EIO if we have
2570  * entered abort state during the update.
2571  *
2572  * Recursive transactions are not disturbed by journal abort until the
2573  * final jbd2_journal_stop, which will receive the -EIO error.
2574  *
2575  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2576  * which will be recorded (if possible) in the journal superblock.  This
2577  * allows a client to record failure conditions in the middle of a
2578  * transaction without having to complete the transaction to record the
2579  * failure to disk.  ext3_error, for example, now uses this
2580  * functionality.
2581  *
2582  */
2583 
2584 void jbd2_journal_abort(journal_t *journal, int errno)
2585 {
2586 	transaction_t *transaction;
2587 
2588 	/*
2589 	 * Lock the aborting procedure until everything is done, this avoid
2590 	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2591 	 * ensure panic after the error info is written into journal's
2592 	 * superblock.
2593 	 */
2594 	mutex_lock(&journal->j_abort_mutex);
2595 	/*
2596 	 * ESHUTDOWN always takes precedence because a file system check
2597 	 * caused by any other journal abort error is not required after
2598 	 * a shutdown triggered.
2599 	 */
2600 	write_lock(&journal->j_state_lock);
2601 	if (journal->j_flags & JBD2_ABORT) {
2602 		int old_errno = journal->j_errno;
2603 
2604 		write_unlock(&journal->j_state_lock);
2605 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2606 			journal->j_errno = errno;
2607 			jbd2_journal_update_sb_errno(journal);
2608 		}
2609 		mutex_unlock(&journal->j_abort_mutex);
2610 		return;
2611 	}
2612 
2613 	/*
2614 	 * Mark the abort as occurred and start current running transaction
2615 	 * to release all journaled buffer.
2616 	 */
2617 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2618 
2619 	journal->j_flags |= JBD2_ABORT;
2620 	journal->j_errno = errno;
2621 	transaction = journal->j_running_transaction;
2622 	if (transaction)
2623 		__jbd2_log_start_commit(journal, transaction->t_tid);
2624 	write_unlock(&journal->j_state_lock);
2625 
2626 	/*
2627 	 * Record errno to the journal super block, so that fsck and jbd2
2628 	 * layer could realise that a filesystem check is needed.
2629 	 */
2630 	jbd2_journal_update_sb_errno(journal);
2631 	mutex_unlock(&journal->j_abort_mutex);
2632 }
2633 
2634 /**
2635  * jbd2_journal_errno() - returns the journal's error state.
2636  * @journal: journal to examine.
2637  *
2638  * This is the errno number set with jbd2_journal_abort(), the last
2639  * time the journal was mounted - if the journal was stopped
2640  * without calling abort this will be 0.
2641  *
2642  * If the journal has been aborted on this mount time -EROFS will
2643  * be returned.
2644  */
2645 int jbd2_journal_errno(journal_t *journal)
2646 {
2647 	int err;
2648 
2649 	read_lock(&journal->j_state_lock);
2650 	if (journal->j_flags & JBD2_ABORT)
2651 		err = -EROFS;
2652 	else
2653 		err = journal->j_errno;
2654 	read_unlock(&journal->j_state_lock);
2655 	return err;
2656 }
2657 
2658 /**
2659  * jbd2_journal_clear_err() - clears the journal's error state
2660  * @journal: journal to act on.
2661  *
2662  * An error must be cleared or acked to take a FS out of readonly
2663  * mode.
2664  */
2665 int jbd2_journal_clear_err(journal_t *journal)
2666 {
2667 	int err = 0;
2668 
2669 	write_lock(&journal->j_state_lock);
2670 	if (journal->j_flags & JBD2_ABORT)
2671 		err = -EROFS;
2672 	else
2673 		journal->j_errno = 0;
2674 	write_unlock(&journal->j_state_lock);
2675 	return err;
2676 }
2677 
2678 /**
2679  * jbd2_journal_ack_err() - Ack journal err.
2680  * @journal: journal to act on.
2681  *
2682  * An error must be cleared or acked to take a FS out of readonly
2683  * mode.
2684  */
2685 void jbd2_journal_ack_err(journal_t *journal)
2686 {
2687 	write_lock(&journal->j_state_lock);
2688 	if (journal->j_errno)
2689 		journal->j_flags |= JBD2_ACK_ERR;
2690 	write_unlock(&journal->j_state_lock);
2691 }
2692 
2693 int jbd2_journal_blocks_per_page(struct inode *inode)
2694 {
2695 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2696 }
2697 
2698 /*
2699  * helper functions to deal with 32 or 64bit block numbers.
2700  */
2701 size_t journal_tag_bytes(journal_t *journal)
2702 {
2703 	size_t sz;
2704 
2705 	if (jbd2_has_feature_csum3(journal))
2706 		return sizeof(journal_block_tag3_t);
2707 
2708 	sz = sizeof(journal_block_tag_t);
2709 
2710 	if (jbd2_has_feature_csum2(journal))
2711 		sz += sizeof(__u16);
2712 
2713 	if (jbd2_has_feature_64bit(journal))
2714 		return sz;
2715 	else
2716 		return sz - sizeof(__u32);
2717 }
2718 
2719 /*
2720  * JBD memory management
2721  *
2722  * These functions are used to allocate block-sized chunks of memory
2723  * used for making copies of buffer_head data.  Very often it will be
2724  * page-sized chunks of data, but sometimes it will be in
2725  * sub-page-size chunks.  (For example, 16k pages on Power systems
2726  * with a 4k block file system.)  For blocks smaller than a page, we
2727  * use a SLAB allocator.  There are slab caches for each block size,
2728  * which are allocated at mount time, if necessary, and we only free
2729  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2730  * this reason we don't need to a mutex to protect access to
2731  * jbd2_slab[] allocating or releasing memory; only in
2732  * jbd2_journal_create_slab().
2733  */
2734 #define JBD2_MAX_SLABS 8
2735 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2736 
2737 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2738 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2739 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2740 };
2741 
2742 
2743 static void jbd2_journal_destroy_slabs(void)
2744 {
2745 	int i;
2746 
2747 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2748 		kmem_cache_destroy(jbd2_slab[i]);
2749 		jbd2_slab[i] = NULL;
2750 	}
2751 }
2752 
2753 static int jbd2_journal_create_slab(size_t size)
2754 {
2755 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2756 	int i = order_base_2(size) - 10;
2757 	size_t slab_size;
2758 
2759 	if (size == PAGE_SIZE)
2760 		return 0;
2761 
2762 	if (i >= JBD2_MAX_SLABS)
2763 		return -EINVAL;
2764 
2765 	if (unlikely(i < 0))
2766 		i = 0;
2767 	mutex_lock(&jbd2_slab_create_mutex);
2768 	if (jbd2_slab[i]) {
2769 		mutex_unlock(&jbd2_slab_create_mutex);
2770 		return 0;	/* Already created */
2771 	}
2772 
2773 	slab_size = 1 << (i+10);
2774 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2775 					 slab_size, 0, NULL);
2776 	mutex_unlock(&jbd2_slab_create_mutex);
2777 	if (!jbd2_slab[i]) {
2778 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2779 		return -ENOMEM;
2780 	}
2781 	return 0;
2782 }
2783 
2784 static struct kmem_cache *get_slab(size_t size)
2785 {
2786 	int i = order_base_2(size) - 10;
2787 
2788 	BUG_ON(i >= JBD2_MAX_SLABS);
2789 	if (unlikely(i < 0))
2790 		i = 0;
2791 	BUG_ON(jbd2_slab[i] == NULL);
2792 	return jbd2_slab[i];
2793 }
2794 
2795 void *jbd2_alloc(size_t size, gfp_t flags)
2796 {
2797 	void *ptr;
2798 
2799 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2800 
2801 	if (size < PAGE_SIZE)
2802 		ptr = kmem_cache_alloc(get_slab(size), flags);
2803 	else
2804 		ptr = (void *)__get_free_pages(flags, get_order(size));
2805 
2806 	/* Check alignment; SLUB has gotten this wrong in the past,
2807 	 * and this can lead to user data corruption! */
2808 	BUG_ON(((unsigned long) ptr) & (size-1));
2809 
2810 	return ptr;
2811 }
2812 
2813 void jbd2_free(void *ptr, size_t size)
2814 {
2815 	if (size < PAGE_SIZE)
2816 		kmem_cache_free(get_slab(size), ptr);
2817 	else
2818 		free_pages((unsigned long)ptr, get_order(size));
2819 };
2820 
2821 /*
2822  * Journal_head storage management
2823  */
2824 static struct kmem_cache *jbd2_journal_head_cache;
2825 #ifdef CONFIG_JBD2_DEBUG
2826 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2827 #endif
2828 
2829 static int __init jbd2_journal_init_journal_head_cache(void)
2830 {
2831 	J_ASSERT(!jbd2_journal_head_cache);
2832 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2833 				sizeof(struct journal_head),
2834 				0,		/* offset */
2835 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2836 				NULL);		/* ctor */
2837 	if (!jbd2_journal_head_cache) {
2838 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2839 		return -ENOMEM;
2840 	}
2841 	return 0;
2842 }
2843 
2844 static void jbd2_journal_destroy_journal_head_cache(void)
2845 {
2846 	kmem_cache_destroy(jbd2_journal_head_cache);
2847 	jbd2_journal_head_cache = NULL;
2848 }
2849 
2850 /*
2851  * journal_head splicing and dicing
2852  */
2853 static struct journal_head *journal_alloc_journal_head(void)
2854 {
2855 	struct journal_head *ret;
2856 
2857 #ifdef CONFIG_JBD2_DEBUG
2858 	atomic_inc(&nr_journal_heads);
2859 #endif
2860 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2861 	if (!ret) {
2862 		jbd_debug(1, "out of memory for journal_head\n");
2863 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2864 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2865 				GFP_NOFS | __GFP_NOFAIL);
2866 	}
2867 	if (ret)
2868 		spin_lock_init(&ret->b_state_lock);
2869 	return ret;
2870 }
2871 
2872 static void journal_free_journal_head(struct journal_head *jh)
2873 {
2874 #ifdef CONFIG_JBD2_DEBUG
2875 	atomic_dec(&nr_journal_heads);
2876 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2877 #endif
2878 	kmem_cache_free(jbd2_journal_head_cache, jh);
2879 }
2880 
2881 /*
2882  * A journal_head is attached to a buffer_head whenever JBD has an
2883  * interest in the buffer.
2884  *
2885  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2886  * is set.  This bit is tested in core kernel code where we need to take
2887  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2888  * there.
2889  *
2890  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2891  *
2892  * When a buffer has its BH_JBD bit set it is immune from being released by
2893  * core kernel code, mainly via ->b_count.
2894  *
2895  * A journal_head is detached from its buffer_head when the journal_head's
2896  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2897  * transaction (b_cp_transaction) hold their references to b_jcount.
2898  *
2899  * Various places in the kernel want to attach a journal_head to a buffer_head
2900  * _before_ attaching the journal_head to a transaction.  To protect the
2901  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2902  * journal_head's b_jcount refcount by one.  The caller must call
2903  * jbd2_journal_put_journal_head() to undo this.
2904  *
2905  * So the typical usage would be:
2906  *
2907  *	(Attach a journal_head if needed.  Increments b_jcount)
2908  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2909  *	...
2910  *      (Get another reference for transaction)
2911  *	jbd2_journal_grab_journal_head(bh);
2912  *	jh->b_transaction = xxx;
2913  *	(Put original reference)
2914  *	jbd2_journal_put_journal_head(jh);
2915  */
2916 
2917 /*
2918  * Give a buffer_head a journal_head.
2919  *
2920  * May sleep.
2921  */
2922 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2923 {
2924 	struct journal_head *jh;
2925 	struct journal_head *new_jh = NULL;
2926 
2927 repeat:
2928 	if (!buffer_jbd(bh))
2929 		new_jh = journal_alloc_journal_head();
2930 
2931 	jbd_lock_bh_journal_head(bh);
2932 	if (buffer_jbd(bh)) {
2933 		jh = bh2jh(bh);
2934 	} else {
2935 		J_ASSERT_BH(bh,
2936 			(atomic_read(&bh->b_count) > 0) ||
2937 			(bh->b_page && bh->b_page->mapping));
2938 
2939 		if (!new_jh) {
2940 			jbd_unlock_bh_journal_head(bh);
2941 			goto repeat;
2942 		}
2943 
2944 		jh = new_jh;
2945 		new_jh = NULL;		/* We consumed it */
2946 		set_buffer_jbd(bh);
2947 		bh->b_private = jh;
2948 		jh->b_bh = bh;
2949 		get_bh(bh);
2950 		BUFFER_TRACE(bh, "added journal_head");
2951 	}
2952 	jh->b_jcount++;
2953 	jbd_unlock_bh_journal_head(bh);
2954 	if (new_jh)
2955 		journal_free_journal_head(new_jh);
2956 	return bh->b_private;
2957 }
2958 
2959 /*
2960  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2961  * having a journal_head, return NULL
2962  */
2963 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2964 {
2965 	struct journal_head *jh = NULL;
2966 
2967 	jbd_lock_bh_journal_head(bh);
2968 	if (buffer_jbd(bh)) {
2969 		jh = bh2jh(bh);
2970 		jh->b_jcount++;
2971 	}
2972 	jbd_unlock_bh_journal_head(bh);
2973 	return jh;
2974 }
2975 
2976 static void __journal_remove_journal_head(struct buffer_head *bh)
2977 {
2978 	struct journal_head *jh = bh2jh(bh);
2979 
2980 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2981 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2982 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2983 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2984 	J_ASSERT_BH(bh, buffer_jbd(bh));
2985 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2986 	BUFFER_TRACE(bh, "remove journal_head");
2987 
2988 	/* Unlink before dropping the lock */
2989 	bh->b_private = NULL;
2990 	jh->b_bh = NULL;	/* debug, really */
2991 	clear_buffer_jbd(bh);
2992 }
2993 
2994 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2995 {
2996 	if (jh->b_frozen_data) {
2997 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2998 		jbd2_free(jh->b_frozen_data, b_size);
2999 	}
3000 	if (jh->b_committed_data) {
3001 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3002 		jbd2_free(jh->b_committed_data, b_size);
3003 	}
3004 	journal_free_journal_head(jh);
3005 }
3006 
3007 /*
3008  * Drop a reference on the passed journal_head.  If it fell to zero then
3009  * release the journal_head from the buffer_head.
3010  */
3011 void jbd2_journal_put_journal_head(struct journal_head *jh)
3012 {
3013 	struct buffer_head *bh = jh2bh(jh);
3014 
3015 	jbd_lock_bh_journal_head(bh);
3016 	J_ASSERT_JH(jh, jh->b_jcount > 0);
3017 	--jh->b_jcount;
3018 	if (!jh->b_jcount) {
3019 		__journal_remove_journal_head(bh);
3020 		jbd_unlock_bh_journal_head(bh);
3021 		journal_release_journal_head(jh, bh->b_size);
3022 		__brelse(bh);
3023 	} else {
3024 		jbd_unlock_bh_journal_head(bh);
3025 	}
3026 }
3027 
3028 /*
3029  * Initialize jbd inode head
3030  */
3031 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3032 {
3033 	jinode->i_transaction = NULL;
3034 	jinode->i_next_transaction = NULL;
3035 	jinode->i_vfs_inode = inode;
3036 	jinode->i_flags = 0;
3037 	jinode->i_dirty_start = 0;
3038 	jinode->i_dirty_end = 0;
3039 	INIT_LIST_HEAD(&jinode->i_list);
3040 }
3041 
3042 /*
3043  * Function to be called before we start removing inode from memory (i.e.,
3044  * clear_inode() is a fine place to be called from). It removes inode from
3045  * transaction's lists.
3046  */
3047 void jbd2_journal_release_jbd_inode(journal_t *journal,
3048 				    struct jbd2_inode *jinode)
3049 {
3050 	if (!journal)
3051 		return;
3052 restart:
3053 	spin_lock(&journal->j_list_lock);
3054 	/* Is commit writing out inode - we have to wait */
3055 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3056 		wait_queue_head_t *wq;
3057 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3058 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3059 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3060 		spin_unlock(&journal->j_list_lock);
3061 		schedule();
3062 		finish_wait(wq, &wait.wq_entry);
3063 		goto restart;
3064 	}
3065 
3066 	if (jinode->i_transaction) {
3067 		list_del(&jinode->i_list);
3068 		jinode->i_transaction = NULL;
3069 	}
3070 	spin_unlock(&journal->j_list_lock);
3071 }
3072 
3073 
3074 #ifdef CONFIG_PROC_FS
3075 
3076 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3077 
3078 static void __init jbd2_create_jbd_stats_proc_entry(void)
3079 {
3080 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3081 }
3082 
3083 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3084 {
3085 	if (proc_jbd2_stats)
3086 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3087 }
3088 
3089 #else
3090 
3091 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3092 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3093 
3094 #endif
3095 
3096 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3097 
3098 static int __init jbd2_journal_init_inode_cache(void)
3099 {
3100 	J_ASSERT(!jbd2_inode_cache);
3101 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3102 	if (!jbd2_inode_cache) {
3103 		pr_emerg("JBD2: failed to create inode cache\n");
3104 		return -ENOMEM;
3105 	}
3106 	return 0;
3107 }
3108 
3109 static int __init jbd2_journal_init_handle_cache(void)
3110 {
3111 	J_ASSERT(!jbd2_handle_cache);
3112 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3113 	if (!jbd2_handle_cache) {
3114 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3115 		return -ENOMEM;
3116 	}
3117 	return 0;
3118 }
3119 
3120 static void jbd2_journal_destroy_inode_cache(void)
3121 {
3122 	kmem_cache_destroy(jbd2_inode_cache);
3123 	jbd2_inode_cache = NULL;
3124 }
3125 
3126 static void jbd2_journal_destroy_handle_cache(void)
3127 {
3128 	kmem_cache_destroy(jbd2_handle_cache);
3129 	jbd2_handle_cache = NULL;
3130 }
3131 
3132 /*
3133  * Module startup and shutdown
3134  */
3135 
3136 static int __init journal_init_caches(void)
3137 {
3138 	int ret;
3139 
3140 	ret = jbd2_journal_init_revoke_record_cache();
3141 	if (ret == 0)
3142 		ret = jbd2_journal_init_revoke_table_cache();
3143 	if (ret == 0)
3144 		ret = jbd2_journal_init_journal_head_cache();
3145 	if (ret == 0)
3146 		ret = jbd2_journal_init_handle_cache();
3147 	if (ret == 0)
3148 		ret = jbd2_journal_init_inode_cache();
3149 	if (ret == 0)
3150 		ret = jbd2_journal_init_transaction_cache();
3151 	return ret;
3152 }
3153 
3154 static void jbd2_journal_destroy_caches(void)
3155 {
3156 	jbd2_journal_destroy_revoke_record_cache();
3157 	jbd2_journal_destroy_revoke_table_cache();
3158 	jbd2_journal_destroy_journal_head_cache();
3159 	jbd2_journal_destroy_handle_cache();
3160 	jbd2_journal_destroy_inode_cache();
3161 	jbd2_journal_destroy_transaction_cache();
3162 	jbd2_journal_destroy_slabs();
3163 }
3164 
3165 static int __init journal_init(void)
3166 {
3167 	int ret;
3168 
3169 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3170 
3171 	ret = journal_init_caches();
3172 	if (ret == 0) {
3173 		jbd2_create_jbd_stats_proc_entry();
3174 	} else {
3175 		jbd2_journal_destroy_caches();
3176 	}
3177 	return ret;
3178 }
3179 
3180 static void __exit journal_exit(void)
3181 {
3182 #ifdef CONFIG_JBD2_DEBUG
3183 	int n = atomic_read(&nr_journal_heads);
3184 	if (n)
3185 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3186 #endif
3187 	jbd2_remove_jbd_stats_proc_entry();
3188 	jbd2_journal_destroy_caches();
3189 }
3190 
3191 MODULE_LICENSE("GPL");
3192 module_init(journal_init);
3193 module_exit(journal_exit);
3194 
3195